

1 **Aligning Climate and Health Co-benefits through Supply-
2 Chain Energy Intensity Coordination in China**

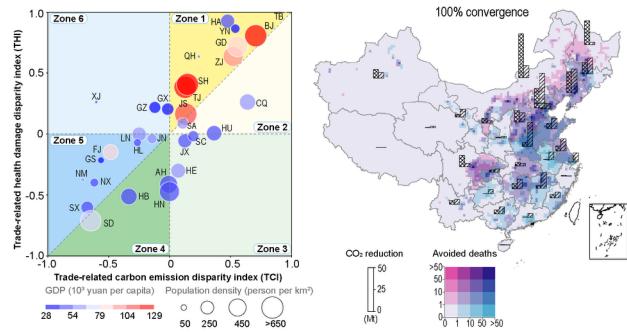
3 Jiao Du^{1,2}, Yilin Chen^{1,2*}, Huizhong Shen², Jing Meng³, Jianmin Ma⁴, Guofeng Shen⁴,
4 Armistead G. Russell⁵, Shunliu Zhao⁶, Amir Hakami⁶, Shu Tao^{2,4}

5 ¹School of Urban Planning and Design, Peking University Shenzhen Graduate School,
6 Shenzhen 518055, China.

7 ²Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban
8 Environmental Health Risks, School of Environmental Science and Engineering, Southern
9 University of Science and Technology, Shenzhen 518055, China.

10 ³The Bartlett School of Sustainable Construction, University College London, London WC1E
11 6BT, UK.

12 ⁴College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.


13 ⁵School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA
14 30332, USA.

15 ⁶Department of Civil and Environmental Engineering, Carleton University, Ottawa, ON
16 K1S5B6, Canada.

17 *Corresponding author, e-mail: ylchen2023@pku.edu.cn

18

19 **Word Count: Approximately 6800 word-equivalents.**

22 **Abstract**

23 The co-mitigation of carbon emissions and air pollutants offers substantial benefits but is
24 complicated by divergent sectoral emission profiles and spatial disparities. By integrating input-
25 output analysis with health impact source attribution, we examine how interprovincial trade
26 redistributes CO₂ emissions and PM_{2.5}-related mortality across China's supply chains. We find
27 that demand from economically advanced provinces induces two distinct burden-shifting
28 patterns between carbon emissions and health burdens. Carbon emissions are outsourced to
29 sparsely populated northwestern regions through power generation, while health burdens
30 concentrate in the densely populated industrial manufacturing belt of central and northern China.
31 Despite production-side divergences, we identify a notable alignment at the final production
32 level, offering opportunities to narrow the energy intensity gap through supply-chain
33 coordination. We simulate three convergence scenarios in which upstream producers in the
34 nonmetal, metal, and power sectors adopt energy intensities of their downstream partners.
35 These include full convergence (100% adoption) and two partial convergence scenarios (75%
36 and 50% adoption), with the latter constrained by national benchmark performance. Full
37 convergence reduces trade-related CO₂ emissions by 17% (491 Mt) and averts 19% of
38 associated mortality (3.8×10^4 deaths). Partial convergence scenarios still deliver meaningful
39 co-benefits. This demonstrates that supply-chain coordination offers pathways to reconciling
40 production-side disparities and more balanced climate–health co-benefits in China.

41 **Keywords:** supply-chain coordination, climate-health co-benefits, regional disparity

42 **Synopsis Statement:** Coordinating provincial supply chains provides a strategic pathway to
43 align climate mitigation with public health benefits in China.

44 **1. INTRODUCTION**

45 Addressing the dual challenges of climate change and air pollution-related health impacts
46 remains a pressing priority for China.¹⁻³ Both challenges stem largely from shared sources—
47 combustion processes and industrial activities—justifying the need for integrated mitigation of
48 carbon dioxide (CO₂) and air pollutant emissions.⁴ Co-mitigation strategies offer substantial
49 advantages by simultaneously addressing both issues more efficiently, while also delivering
50 immediate health benefits that can help build public support—particularly given that the long-
51 term gains of climate policies are often intangible.^{4,5} As China nears the saturation point of end-
52 of-pipe pollution control technologies, further emission reduction through conventional
53 approaches is becoming increasingly constrained.^{6,7} Consequently, strategies focusing on
54 improvements in fuel efficiency, shifts towards renewable energy, and structural industrial
55 upgrades are emerging as critical pathways for future air pollution control and climate
56 mitigation.⁸⁻¹⁰

57 However, the effectiveness of co-mitigation efforts is complicated by divergent sectoral
58 emission profiles and spatial distributions. While CO₂ emissions are predominantly
59 concentrated in power generation and contribute to global climate impacts, air pollutants are
60 mainly emitted by energy-intensive industries and residential sectors, exerting localized health
61 effects that depend on population density, meteorological conditions, and atmospheric
62 chemistry.¹¹⁻¹³ This spatial heterogeneity presents a significant challenge, as industrial
63 agglomeration has concentrated polluting industries in particular regions—often densely
64 populated—where economic development has driven the clustering of heavy industries.¹⁴
65 Although large facilities in these areas are generally better equipped to implement advanced

66 end-of-pipe controls and energy efficiency measures than smaller operations,¹⁵ they
67 simultaneously generate pollution hotspots that disproportionately affect local populations.¹⁶

68 This complexity is further amplified by the structure of supply chains, which effectively
69 redistribute emissions and associated health damages across regions. Economically developed
70 provinces often outsource their emissions and health impacts to industrial clusters in less
71 developed areas, creating a geographical mismatch between those who consume goods and
72 those who bear the environmental and health burdens of production.¹⁷⁻¹⁹ Approximately 25%
73 of China's PM_{2.5}-related deaths are linked to interprovincial trade, with emissions typically
74 transferred from developed coastal provinces to interior regions where mitigation resources are
75 limited.²⁰ This pattern not only weakens regional mitigation efforts but also exacerbates
76 inequalities in health outcomes, thereby impeding progress toward several Sustainable
77 Development Goals (SDGs), including reduced inequalities (SDG 10), good health and well-
78 being (SDG 3), and climate action (SDG 13).²¹

79 The divergence between production-side emission patterns of carbon and air pollutants calls
80 for greater attention to coordination at the supply-chain level in co-mitigation research. While
81 production-oriented approaches have demonstrated considerable potential for delivering co-
82 benefits,^{13,22,23} studies focusing on co-benefits along supply chains remain limited. Recent
83 studies have examined carbon emissions²⁴⁻²⁶ and air pollution-related health impacts^{20,27-29}
84 embodied in interregional trade; few have provided an integrated, high-resolution assessment
85 that captures the coupling between climate and health impacts within supply chains. Most
86 existing health attribution studies predominantly employ scenario-based analyses or reduced-
87 complexity models,^{20,28} which either lack spatial resolution for source-specific contributions or

88 inadequately represent atmospheric physicochemical processes. A better understanding of how
89 carbon emissions and health impacts may exhibit different spatial and sectoral patterns along
90 supply chains is critical to inform effective co-mitigation strategy design.

91 To address these complex dynamics, we integrate input-output analyses with spatially explicit
92 health impact assessments to examine how interprovincial trade in China redistributes both CO₂
93 emissions and air pollution-related health damages. Our high-resolution analytical framework,
94 which incorporates harmonized emission inventories, evaluates polarization patterns of carbon
95 emissions and health impacts, revealing the influence of industrial agglomeration and supply
96 chain-mediated emission relocation. Crucially, we assess the potential co-benefits of reducing
97 the energy intensities of trade partners to levels comparable to those of outsourcing provinces,
98 identifying strategic opportunities for synergistic mitigation. By exploring the interplay among
99 industrial structure, trade patterns, emissions, and health outcomes, our study provides a
100 comprehensive framework for addressing the intertwined challenges of climate change and air
101 pollution in China, with broader implications for other countries facing similarly complex
102 supply chain dynamics.

103

104 **2. METHODS**

105 Our integrated analytical framework combines three main components to assess climate-health
106 co-mitigation potential in China's interprovincial supply chains (Figure S1): (1) High-
107 resolution adjoint modeling using the Community Multiscale Air Quality (CMAQ) v5.0 to
108 quantify how location- and species-specific emissions contribute to PM_{2.5}-related mortality
109 nationwide; (2) Multi-regional input-output (MRIO) analysis using China's 2017 provincial

110 MRIO table to trace CO₂ emissions and health impacts through interprovincial trade flows; and
111 (3) Scenario analysis evaluating co-benefits from aligning energy intensities across supply
112 chain partners. This workflow enables us to identify spatial and sectoral patterns of burden
113 redistribution and assess strategic opportunities for coordinated mitigation.

114 **2.1. Air Quality Modeling with the Adjoint Model.** We employ the adjoint^{30,31} model of
115 CMAQ³² v5.0 to quantify the contributions of location- and species-specific air pollutant
116 emissions to PM_{2.5}-related premature deaths in China for the year 2017. CMAQ is a widely
117 used chemical transport model (CTM) that simulates the transport and transformation of
118 atmospheric pollutants and estimates their concentrations.³² In this study, the CMAQ model is
119 configured with the CB05 gas-phase chemistry mechanism and the AERO5 aerosol module.
120 The adjoint model operates similarly to the CTM but in reverse, tracking the impact of a
121 pollutant at receptor locations back to its emission sources through a cost function.³⁰ In our case,
122 the cost function is the total number of premature deaths attributable to PM_{2.5} exposure for
123 China. Mortality estimates cover five major causes, including ischemic heart disease (IHD),
124 cerebrovascular disease (stroke), chronic obstructive pulmonary disease (COPD), and lung
125 cancer (LC) for adults over 25 years old, and acute lower respiratory illness for children under
126 five. A single adjoint simulation provides the sensitivity of model output (e.g., PM_{2.5}-related
127 mortality) to emissions at all locations and times, without the need for multiple forward
128 simulations with perturbed inputs. The adjoint approach has been extensively applied in
129 backward sensitivity analysis, source attribution, data assimilation, and inverse modeling.³³⁻³⁵
130 The CMAQ adjoint implementation includes multiphase aerosol-forming processes, which
131 allows efficient and high-resolution source attribution of health impacts.³¹ Using the adjoint

132 simulation, we quantify the contributions of emissions from seven species to PM_{2.5}-related
133 mortality, including organic carbon (OC), elemental carbon (EC), other primary PM_{2.5}, sulfur
134 dioxide (SO₂), nitrogen oxides (NO_x), ammonia (NH₃), and volatile organic compounds
135 (VOCs). The mathematical derivation of adjoint sensitivity analysis is presented in previous
136 studies^{11,19} and summarized in Text S1.

137 The modeling domain covers all of China with a horizontal resolution of 36 × 36 km (Figure
138 S2) and 13 vertical layers extending up to ~16 km above the ground. Anthropogenic emissions
139 are derived from the AiMa emission inventory (<http://www.aimayubao.com/>),³⁶ which
140 categorizes eight sources (i.e., power generation, industry, residential, transportation,
141 agriculture, solvent usage, fugitive dust, and fires).^{37,38} The AiMa inventory provides
142 constrained bottom-up emission data for China, integrating statistical data, ground
143 measurements, and satellite observations. It has been extensively used and validated in previous
144 modeling studies and air quality forecasting services in China.^{11,39,40} Meteorological inputs are
145 generated using the Weather Research Forecasting (WRF) model v3.4.1,⁴¹ driven by global
146 weather forecast products from the National Centres for Environmental Prediction (NCEP)
147 Global Forecast System⁴² at a spatial resolution of 0.5° × 0.5°.

148 To ensure robust exposure-response assessment, simulated concentrations of PM_{2.5}, PM₁₀, SO₂,
149 and NO₂ are evaluated against observations from 1,504 ground-based monitoring sites across
150 China (Figures S3 and S4). The model successfully reproduces the spatial distribution of PM_{2.5}
151 concentration with a Pearson correlation coefficient (*r*) of 0.63, and performance metrics for all
152 evaluated pollutants meet or approach recommended benchmarks, indicating reliable model
153 performance.^{43,44} In addition, the adjoint sensitivities are validated against forward sensitivities

154 derived from finite-difference and complex variable methods, showing consistent results.³¹

155 Further details on model evaluation are provided in Text S2.

156 **2.2. Emissions and Associated Health Impacts Embodied in the Supply Chains.** While
157 AiMa provides better constrained model-ready emission inputs, it lacks the sectoral resolution
158 required for MRIO analysis. We therefore employ the Global Emission Modeling System
159 (GEMS),^{45,46} which provides production-based emissions disaggregated by sector and fuel
160 combinations (Table S1). To ensure consistency with our air quality modeling, GEMS sectoral
161 emissions are harmonized with provincial totals from AiMa. The mapping between GEMS
162 sectors and the MRIO sectoral classification is provided in Text S3. Notably, direct household
163 emissions from residential fossil/biomass combustion for cooking and heating, as well as
164 emissions from private cars, are excluded from the MRIO analysis since they do not enter
165 economic supply chains.

166 Second, we attribute emissions emitted in each region (i.e., direct emitter) to both final
167 producers^{47–49} (who produce the finished products using local or imported intermediate inputs)
168 in supply chains and final consumers^{47,49} (who ultimately consume the finished products).

169 Environmentally extended MRIO models, based on input-output tables that capture exchanges
170 within and among regions, have been widely applied to trace environmental burdens along
171 increasingly interconnected supply chains.^{26–29} In this study, we use the 2017 multiregional
172 input-output table from the China Emission Accounts and Datasets (CEADs) database⁵⁰ to
173 quantify emissions embodied in China's supply chains. The MRIO table covers 31 mainland
174 provincial-level administrative divisions (excluding Macao, Hong Kong, and Taiwan) and 42
175 economic sectors (Table S2). Emissions embodied in international imports for domestic

176 consumption are not considered, as this study focuses on interprovincial trade. By combining
177 adjoint sensitivities with emissions related to economic activities (i.e., final producer or final
178 consumer), we trace PM_{2.5}-related mortality along interprovincial supply chains. Further
179 methodological details are provided in Texts S4 and S5.

180 A comprehensive uncertainty analysis is conducted using 10,000 Monte Carlo simulations,
181 incorporating uncertainties from emission inventories and concentration-response functions.
182 The associated uncertainty ranges for CO₂ emissions and PM_{2.5}-related premature deaths are
183 reported throughout the study, with full details available in Text S6.

184 **2.3. Disparities in Carbon Emissions and Health Damage.** To facilitate direct interprovincial
185 comparison of disparity in carbon emissions and health damage from the final production
186 perspective, we introduce two normalized indices: the Trade-related carbon emission disparity
187 index (*TCI*) and the Trade-related health damage disparity index (*THI*), which can be expressed
188 as follows:

$$189 \quad TCI^r = \frac{EEI^r - EEE^r}{EEI^r + EEE^r} \quad (1)$$

$$190 \quad THI^r = \frac{MEI^r - MEE^r}{MEI^r + MEE^r} \quad (2)$$

191 where EEI^r and MEI^r are emissions and mortality embodied imports for province r ,
192 respectively, while EEE^r and MEE^r are emissions and mortality embodied in exports for
193 province r , respectively. Detailed calculations are provided in Text S7. For both indices (*TCI*
194 and *THI*), the values range from -1 (strong net receiving regions of emissions/health burdens)
195 to 1 (strong net outsourcing regions). Throughout this study, “export” and “import” refer to
196 interprovincial trade unless noted, whereas “international export” refers to China’s exports to

197 the rest of the world.

198 **2.4. Co-Mitigation via Sectoral Energy Intensity Convergence.** We define potential
199 reductions in both CO₂ emissions and PM_{2.5}-related health damages achievable through supply-
200 chain coordination of energy intensities. Energy intensity is measured as energy consumption
201 per unit of physical output, expressed in tonnes of coal equivalent (tce). To demonstrate the
202 potential of supply-chain coordination for co-mitigation, we quantify emission and health
203 benefits for three sectors—nonmetal, metal, and energy generation—that not only contribute
204 most to these impacts but also have available physical output data.^{20,25} Energy intensities for
205 these sectors are measured as tce per 100 tonnes of cement, tce per 100 tonnes of steel, and tce
206 per 10⁵ kWh of electricity, respectively (Figure S5). Physical output data are obtained from the
207 China Statistical Yearbook 2018⁵¹ and the China Energy Statistical Yearbook 2018⁵², and energy
208 consumption data are derived from activity data underlying the GEMS inventory.

209 Emission reduction through supply-chain coordination refers to the reduction embodied in a
210 province's imports for final production, achieved when downstream provinces with lower
211 energy intensities influence their upstream suppliers to adopt improved performance levels.
212 This approach preserves MRIO relationships without altering inter-sectoral technical
213 coefficients. We calculate the supply-chain coordination potential for each province serving as
214 a downstream final production hub across all provinces in mainland China. Emission reduction
215 ($\Delta E^{r,s}$) and health benefits ($\Delta M^{r,s}$) in imports of goods by province s from province r are
216 calculated as:

$$217 \Delta E^{r,s} = \sum_{m \in \{nonmetal, metal, power\}} E_m^{r,s} \cdot \left(1 - \frac{w'_{r,m}}{w_{r,m}} \right) \quad (3)$$

218

$$\Delta M^{r,s} = \sum_{m \in \{nonmetal, metal, power\}} M_m^{r,s} \cdot \left(1 - \frac{w'_{r,m}}{w_{r,m}}\right) \quad (4)$$

219 where $E_m^{r,s}$ and $M_m^{r,s}$ are emissions and associated mortality that occur in province r for sector
 220 m when producing intermediate goods consumed in province s , respectively. $w_{r,m}$ and $w'_{r,m}$
 221 are the original and adjusted energy intensities of sector m in province r , respectively.

222 We examine three coordination scenarios, with adjusted energy intensity $w'_{r,m}$ defined as:

223

$$w'_{r,m} = \begin{cases} w_{s,m} & , \text{if } w_{s,m} < w_{r,m}, 100\% \text{ coordination} \\ \max(w_{s,m}, q_{25}) & , \text{if } w_{s,m} < w_{r,m}, 75\% \text{ coordination} \\ \max(w_{s,m}, q_{50}) & , \text{if } w_{s,m} < w_{r,m}, 50\% \text{ coordination} \\ w_{r,m} & , \text{otherwise} \end{cases} \quad (5)$$

224 where $w_{s,m}$ is the energy intensity of sector m in province s . q_{25} and q_{50} represent the 25th and
 225 50th percentiles of the provincial energy intensity distribution for sector m , respectively (Figure
 226 S6). Under full coordination, upstream provinces completely adopt the downstream province's
 227 cleaner technology when downstream provinces operate more efficiently than their upstream
 228 suppliers, representing an optimal case. Under partial coordination, technology transfer is
 229 constrained either by the downstream province's performance or national benchmarks,
 230 reflecting realistic limitations in achieving complete convergence.

231

232 **3. RESULTS and DISCUSSION**

233 **3.1. Sectoral Shift in CO₂ Emissions and PM_{2.5}-Related Premature Deaths along Supply
 234 Chains.** In 2017, China emitted 10,495 Mt (95% CI: 8,279–13,121) of anthropogenic CO₂,
 235 along with 7.8 Mt (95% CI: 3.5–15.2) of primary PM_{2.5}, 10.8 Mt (95% CI: 5.4–19.5) of SO₂,
 236 22.4 Mt (95% CI: 17.9–27.6) of NO_x, and 11.0 Mt (95% CI: 8.6–13.9) of NH₃. Notably, 91%
 237 of China's anthropogenic CO₂ emissions and a substantial share of air pollutant emissions—

238 ranging from 63% for PM_{2.5} to 94% for NH₃—are related to economic activities along supply
239 chains, rather than residential direct energy consumption (Figure S7). Using an adjoint-based
240 source attribution approach, we link these supply chain-related emissions to approximately 9.9
241 $\times 10^5$ premature deaths (95% CI: 5.9×10^5 – 1.6×10^6) nationwide. For the health co-benefit
242 assessment, we exclude the 16% contribution from NH₃ emissions and 5% contribution from
243 VOCs (Figure S8), as NH₃ primarily originates from fertilizer application and livestock
244 management while VOCs largely come from solvent use and fugitive emissions (Figure S9).

245 Mapping emissions and associated health damages across 42 economic sectors reveals
246 substantial divergences in production-side contributions to CO₂ emissions and PM_{2.5}-related
247 premature deaths. Power generation accounts for over half of production-based CO₂ emissions
248 but contributed to less than one-third of PM_{2.5}-related deaths (Figure 1). This imbalance is
249 largely due to the widespread implementation of stringent emission control technologies in
250 power plants.⁵³ These controls limit power generation’s contribution to only 20% of embodied
251 primary PM_{2.5} emissions and 39% of secondary precursor emissions (SO₂ and NO_x) (Figure
252 S10). In contrast, the three major heavy industries—chemical, metal, and nonmetal
253 production—exhibit varied contribution patterns. While chemical and metal production make
254 relatively balanced contributions to both CO₂ emissions and PM_{2.5}-related premature deaths
255 (approximately 11% and 23%, respectively), nonmetal production stands out by contributing
256 nearly a quarter of health damages despite its relatively lower CO₂ contributions. Additionally,
257 transportation and service sectors show higher relative contributions to health damages than to
258 CO₂ emissions.

259 These sectoral imbalances present challenges for production-side co-mitigation strategies.

260 When shifting from a production-side to a final production-side perspective, we observe that
261 CO₂ emissions and associated health damages driven by the same final production sector often
262 pass through different upstream production pathways. For example, while 41% of CO₂
263 emissions attributed to construction demand originate from power generation, 44% of the
264 associated premature deaths are primarily caused by emissions from nonmetal production.
265 Similarly, for equipment and services demand, power generation is the main source of CO₂
266 emissions, whereas the metal and services sectors are the primary contributors to health impacts.
267 This misalignment between sectors driving carbon emissions and those causing health damages
268 complicates efforts to achieve balanced co-benefits through production-focused interventions
269 alone.

270 Despite these production-side divergences, our analysis identifies strategic coordination
271 opportunities at the supply-chain level. Both CO₂ emissions and PM_{2.5}-related premature deaths
272 embodied in supply chains are driven by common underlying final consumption categories.
273 Over half of these CO₂ emissions and health impacts can be attributed to a single category—
274 capital investment—especially through construction and equipment demand. This pattern
275 indicates the central role of China's real estate industry and infrastructure projects in driving
276 both climate change and air pollution-related health damages.^{20,25,54} Together, the top three final
277 production sectors—construction, equipment, and services—account for 94% of embodied CO₂
278 emissions and premature deaths driven by capital investment. Beyond capital investment,
279 international export also plays a significant role, contributing 36% of both CO₂ emissions and
280 premature deaths embodied in equipment demand. This alignment between CO₂ emissions and
281 health impacts at the final production level demonstrates how consumption-driven demand

282 patterns ultimately shape both climate change and air pollution-related health damages, offering
 283 strategic intervention points along supply chains where co-benefits can be achieved.

284
 285 **Figure 1. Sectoral flow patterns of CO₂ emissions and health damages in 2017.** Sankey diagrams
 286 show the flows of (a) CO₂ emissions and (b) PM_{2.5}-related premature deaths through China's supply
 287 chains, traced from upstream production sectors (Tier 1, left), through sectors producing final goods and
 288 services (Tier 2, middle), to final demand categories (Tier 3, right). Line thickness indicates the relative
 289 magnitude of emission or premature deaths transferred between tiers. Percentages show the share of
 290 impacts attributed to each sector at each tier. "Capital formation" includes both fixed capital investment
 291 and capital inventory. For clarity, the original 44 economic sectors are aggregated into 11 broad categories
 292 (see Table S2).

293

294 3.2. Relocation of CO₂ Emissions and PM_{2.5}-Related Premature Deaths in Key Sectors.

295 Interprovincial trade between production-side regions and final production-side regions
 296 accounts for 35% of the national total CO₂ emissions (3,682 Mt, 95% CI: 2905–4603) and 20%
 297 of PM_{2.5}-related deaths (2.8×10^5 , 95% CI: 1.6×10^5 – 4.9×10^5). Sector- and provincial-specific
 298 analyses reveal that these trade-embodied impacts are highly concentrated, with nearly half of
 299 both CO₂ emissions and PM_{2.5}-related deaths linked to just 3% of all trade flows (Figure S11),
 300 primarily involving the nonmetal, metal, and power generation sectors. Spatially, final
 301 production demand from economically advanced provinces drives distinct sectoral relocation

302 patterns, each governed by different spatial mechanisms (Figure 2).

303 Proximity-driven relocation characterizes the nonmetal sector, where emission relocation is

304 largely confined to geographically adjacent provinces due to high transport costs of bulk

305 materials such as cement and bricks. For instance, Shanghai's demand leads to significant CO₂

306 emission relocation to neighboring Zhejiang, while Jiangsu's demand causes the largest health

307 damage relocation to adjacent Anhui. Similarly, Beijing externalizes a considerable portion of

308 nonmetal production to Hebei. This proximity-driven outsourcing has fostered industrial

309 clusters in surrounding provinces that often enforce comparatively lenient environmental

310 regulations relative to economic hubs like Zhejiang, Jiangsu, and Guangdong.⁵⁵ These

311 regulatory disparities translate into lower pollution control efficiency, generating

312 disproportionate health burdens relative to carbon footprints. Provinces such as Anhui and

313 Hebei, which specialize in energy- and emission-intensive processes like cement clinker

314 production, experience disproportionate health damage, with their shares of relocated PM_{2.5}-

315 related mortality exceeding their shares of relocated CO₂ emissions by 60% and 73%,

316 respectively. In contrast, Zhejiang, equipped with more advanced pollution control technologies,

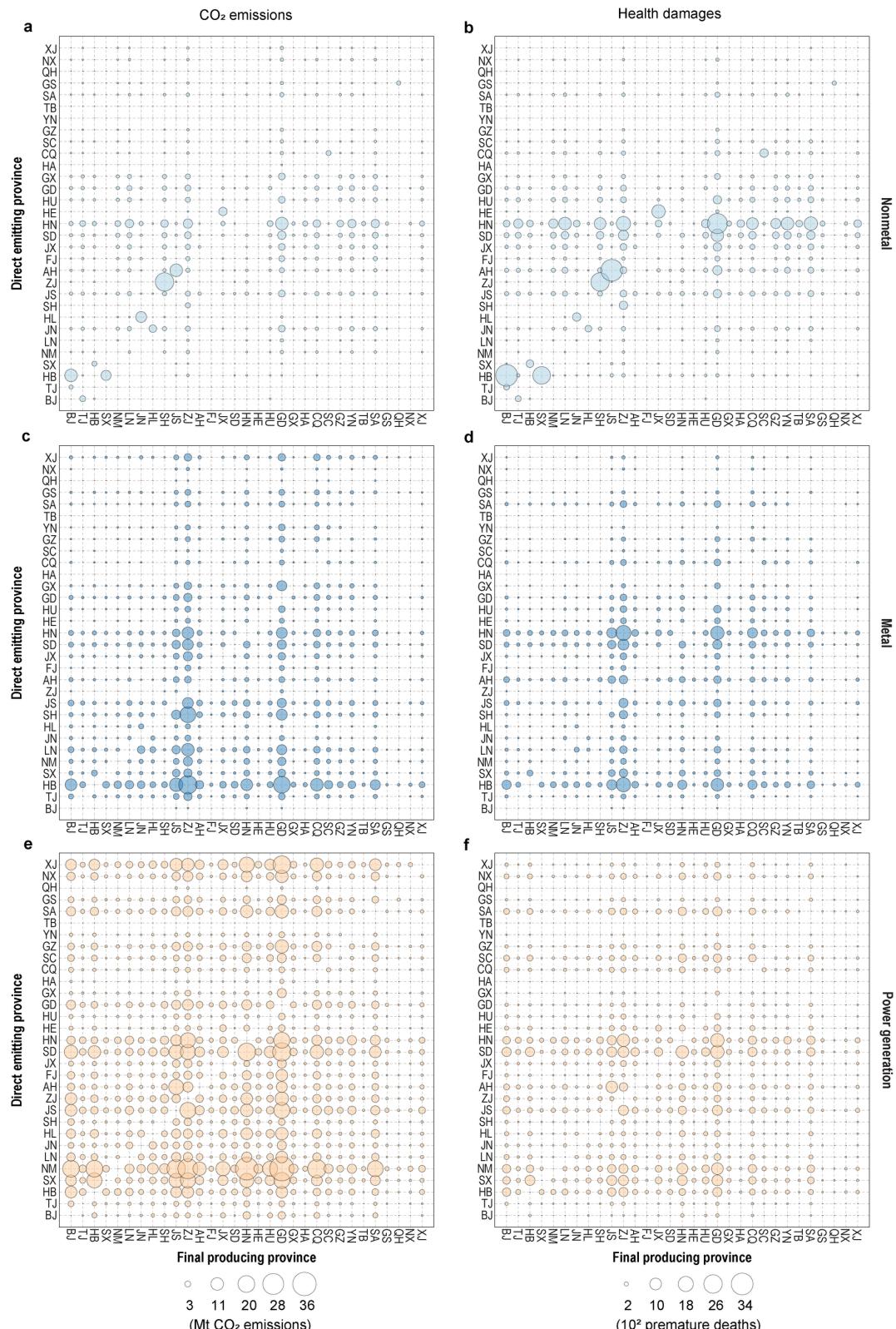
317 exhibits a 40% lower share of relocated mortality compared to its corresponding CO₂ emissions.

318 The metal sector displays more spatially dispersed relocation patterns while maintaining similar

319 efficiency disparities. Zhejiang and Guangdong, as major manufacturing hubs producing final

320 metal products, drive production in upstream regions. Together, they account for 31% of all

321 relocated CO₂ emissions and PM_{2.5}-related mortality in the metal sector, with their demand


322 influencing production across 29 of China's 30 mainland provinces. Relocated impacts

323 concentrate in the leading iron and steel-producing provinces. These production regions exhibit

324 significant heterogeneity in pollution control efficiency. Hebei accounts for 19% of relocated
325 CO₂ emissions and 16% of health impacts, maintaining relatively balanced ratios. However,
326 Henan contributes 15% of relocated mortality despite generating only 6% of relocated CO₂
327 emissions. This disparity reflects significant heterogeneity in pollution control technologies,
328 particularly in the emission-intensive sintering process.⁵⁶ Weaker emission standards in Henan
329 result in higher pollutant emissions—and consequently greater health damages—per unit of
330 CO₂ emitted (Figure S12).

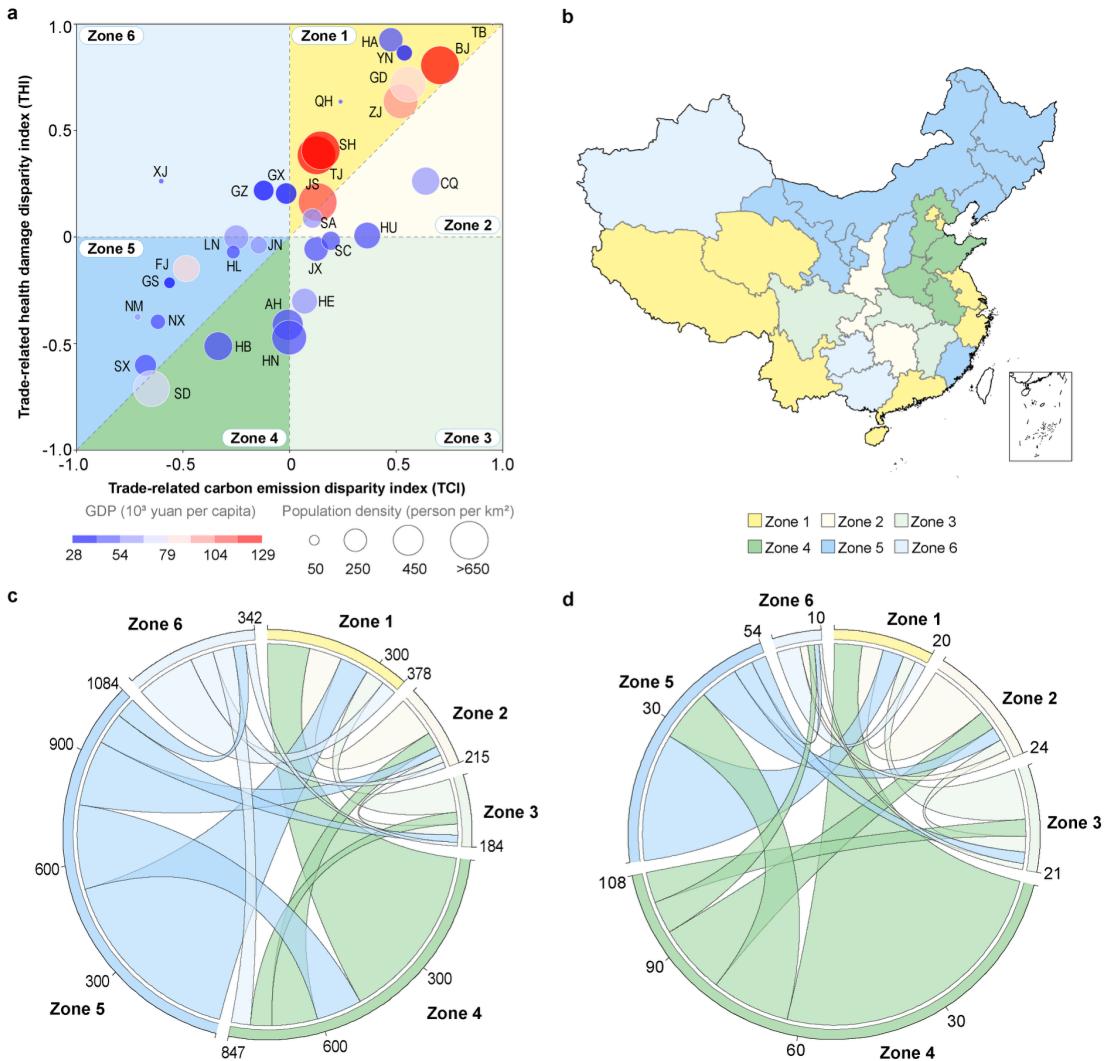
331 The power generation sector exhibits a resource-driven spatial pattern shaped by energy
332 resource distribution and grid infrastructure. Final production demand spans both developed
333 provinces (e.g., Beijing, Jiangsu, Zhejiang, and Guangdong) and industrial regions (Henan,
334 Hebei, and Shaanxi). However, the geography of power production creates pronounced health
335 impact disparities. Roughly 25% of CO₂ emissions (525 Mt, 95% CI: 414–656) and 33% of
336 associated premature deaths (3.0×10^4 , 95% CI: 1.7×10^4 – 5.3×10^4) are relocated to densely
337 populated industrial provinces, including Hebei, Henan, Shandong, and Jiangsu. In contrast,
338 another 25% of CO₂ emissions are externalized to energy-rich northwestern provinces—Inner
339 Mongolia, Xinjiang, and Ningxia—but generate only 1.1×10^4 premature deaths (95% CI: 6.1
340 $\times 10^3$ – 1.9×10^4). The stark contrast is primarily driven by demographic differences—the
341 average population density in the four eastern industrial provinces exceeds that in the three
342 northwestern provinces by a factor of 29. Our adjoint analysis confirms that the emission-
343 weighted sensitivity of primary PM_{2.5} and its precursors in Henan is 165% to 420% higher than
344 that in Inner Mongolia and Xinjiang, respectively (Figure S13).

346 **Figure 2. Relocation of CO₂ emissions and health damages driven by interprovincial trade across**
 347 **key industrial sectors.** Bubble plots illustrate the relocation of impacts across provinces, with each panel
 348 representing a specific sector: (a–b) nonmetal, (c–d) metal, and (e–f) power generation. Left panels (a,
 349 c, e) show CO₂ emissions, while right panels (b, d, f) show PM_{2.5}-related premature deaths. Each circle
 350 represents the impacts that occurred in the producing province (y-axis), induced by demand from the

351 final producing province (x -axis). Circle size is proportional to the magnitude of transferred impact, as
352 indicated in the legends below. Local consumption impacts (i.e., those on the diagonal from lower left to
353 upper right) are set as zeros and not displayed. Province abbreviations: BJ, Beijing; TJ, Tianjin; HB,
354 Hebei; SX, Shanxi; NM, Inner Mongolia; LN, Liaoning; JL, Jilin; HL, Heilongjiang; SH, Shanghai; JS,
355 Jiangsu; ZJ, Zhejiang; AH, Anhui; FJ, Fujian; JX, Jiangxi; SD, Shandong; HN, Henan; HE, Hubei; HU,
356 Hunan; GD, Guangdong; GX, Guangxi; HA, Hainan; CQ, Chongqing; SC, Sichuan; GZ, Guizhou; YN,
357 Yunnan; TB, Tibet; SA, Shaanxi; GS, Gansu; QH, Qinghai; NX, Ningxia; XJ, Xinjiang.

358

359 **3.3. Divergent Polarization of CO₂ Emissions and PM_{2.5}-Related Premature Deaths.** To
360 systematically assess how sectoral emission relocations translate into broader provincial
361 disparities, we developed two complementary metrics: the trade-related carbon emission
362 disparity index (TCI) and the trade-related health damage disparity index (THI). These indices
363 evaluate whether a province is a net importer or exporter of environmental burdens, normalized
364 from -1 (strong exporter) to 1 (strong importer), allowing for direct cross-provincial
365 comparison.


366 By plotting provinces based on their TCI and THI scores (Figure 3a), we identified six distinct
367 zones characterizing the spatial distribution of carbon and health burden transfer. Most
368 provinces cluster in the upper-right and lower-left quadrants (Zones 1, 2, 4, and 5), indicating
369 a systematic pattern of burden relocation through interprovincial trade. Provinces that function
370 as final production hubs in our sectoral analysis—Beijing, Shanghai, Zhejiang, and
371 Guangdong—cluster in Zone 1 along the 1:1 line, reflecting high TCI and THI scores. These
372 provinces capture high added value through final goods production while driving demand for
373 raw materials and intermediate goods from other regions. Their supply-chain networks generate
374 comparable relocations of both carbon emissions and health impacts, indicating aligned burden
375 transfer patterns. Interestingly, several less-developed provinces—including Hainan, Yunnan,

376 and Tibet—also fall within Zone 1, despite their relatively minor contributions to national totals
377 (Figure S14). These provinces exhibit high dependence on imports due to increasing
378 consumption and limited local production capacity.^{20,25} Given their import dependence,
379 development-oriented policies are needed to promote sustainable local production and reduce
380 reliance on emission-intensive imports.

381 Zone 2 comprises provinces with decoupled carbon and health burden profiles. These provinces
382 typically import electricity and raw materials while exporting manufactured goods,^{20,25} creating
383 asymmetric environmental burden patterns. Though their TCI scores are positive, their THI
384 scores are comparatively lower, as local manufacturing emissions offset the health gains
385 achieved through outsourcing. Chongqing exemplifies this trend, with a TCI of 0.6 but a THI
386 of only 0.2, reflecting how local topography and population density intensify health impacts
387 from its industrial activities.⁵⁷

388 Burden-bearing provinces exhibit diverging patterns, rather than aligning along the 1:1 line.
389 Zone 4 provinces—concentrated in North and Central China (Figure 3b)—form a densely
390 populated industrial manufacturing corridor shaped by historical infrastructure development,
391 market accessibility, and labor availability.⁵⁸ Provinces with manufacturing specialization and
392 less stringent pollution controls—particularly Henan and Anhui—fall into this zone with THI
393 scores around -0.5 but TCI scores near zero. This pattern indicates these provinces shoulder
394 disproportionate health burdens relative to their net carbon emissions, consistent with the
395 pollution control efficiency disparities previously discussed. In contrast, Zone 5 includes
396 sparsely populated northwestern regions, showing significant carbon leakage but minimal
397 health burden spillover, largely due to low population exposure.

398 Chord diagrams (Figure 3c,d) further visualize this divergence. The dominant carbon flow runs
399 from Zone 5 to Zone 1, with approximately 530 Mt (95% CI: 418–662) of CO₂ (17% of total
400 interprovincial flows). In terms of health impacts, the primary flow is from Zone 4 to Zone 1,
401 transferring approximately 6.3×10^4 premature deaths (95% CI: 3.5×10^4 – 1.1×10^5), or 27%
402 of trade-related mortality. This single pathway accounts for more than twice the number of
403 deaths exported from Zone 5 to Zone 1. Although CO₂ emissions and health impacts stem from
404 different burden-bearing zones, they converge at a common outsourcing destination—Zone 1.
405 These patterns reveal how final production activity in economically advanced provinces creates
406 distinct spatial footprints for carbon and health burdens, with important implications for
407 understanding coordination opportunities across China’s supply-chain networks.

408

409 **Figure 3. Polarization patterns in CO₂ emissions and health damages in China.** (a) Province-level
 410 classification based on the trade-related carbon emission disparity index (TCI; x-axis) and the trade-
 411 related health damage disparity index (THI; y-axis). TCI and THI represent normalized differences
 412 between emissions (or health impacts) embodied in imports and exports. Circle size indicates population
 413 density; circle color indicates GDP per capita (from dark blue for less developed to dark red for more
 414 developed provinces). Province abbreviations follow Figure 2. (b) Spatial distribution of provinces by
 415 zone classifications corresponding to panel (a). (c) Chord diagram showing major interregional CO₂
 416 emission transfers between zones. Line color represents the exporting zone, and line width indicates
 417 transferred volume (in Mt CO₂). (d) same as (c), but for PM_{2.5}-related premature deaths (in thousands).

418 **3.4. Co-mitigation Opportunities through Supply-Chain Energy Intensity Coordination.**

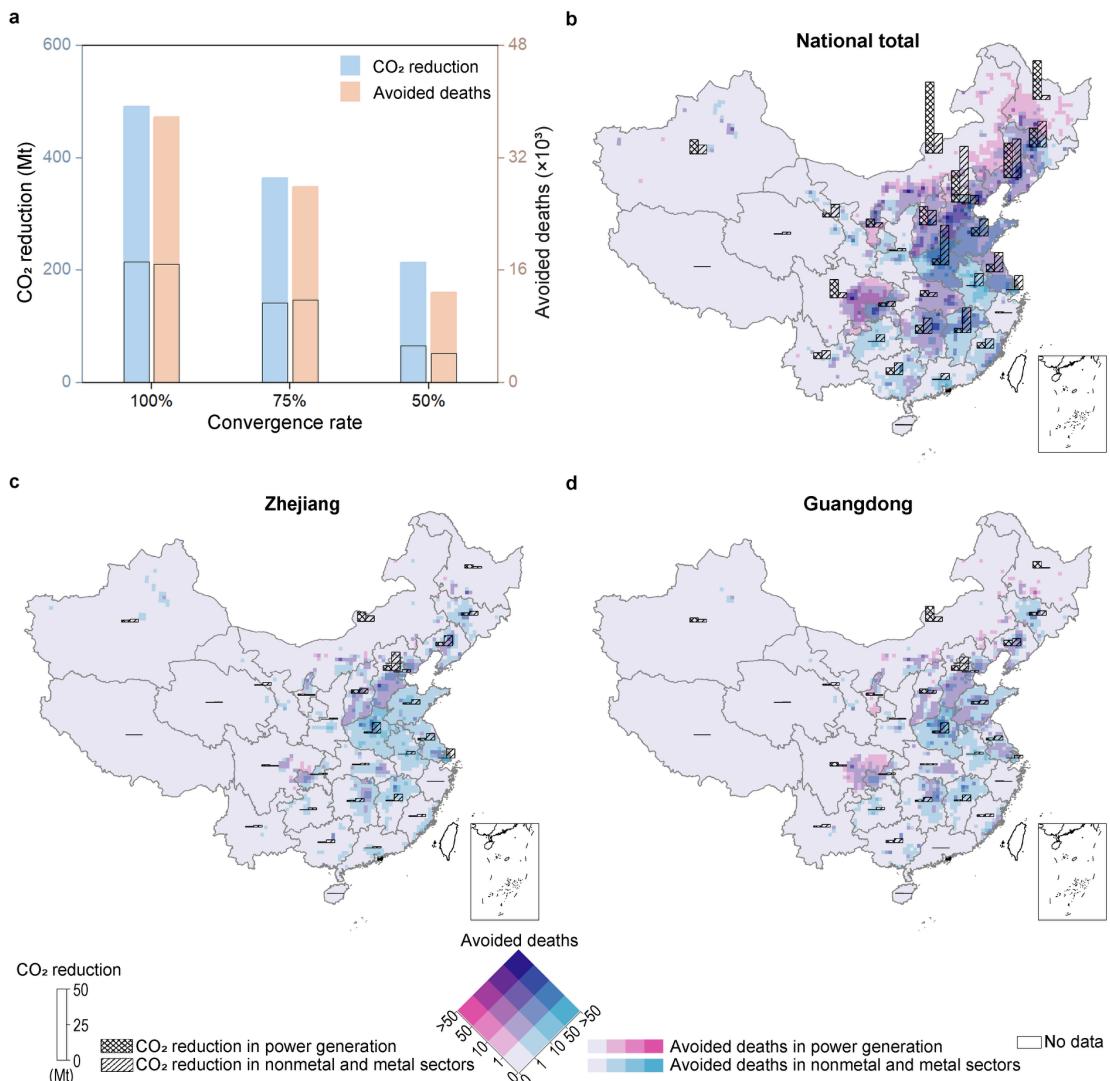
419 Disparities in energy intensity are a key driver of the geographic and sectoral polarization of
420 carbon emissions and associated health burdens.^{59,60} Provincial energy intensities range from
421 roughly twofold differences in power generation to more than 50-fold gaps in the metal sector
422 (Figure S5). Power generation shows relatively smaller variation but still follows a regional
423 divide, with provinces within the Northeast China Power Grid (Liaoning, Jilin, and
424 Heilongjiang) exhibiting notably higher intensities. Developed coastal provinces consistently
425 exhibit lower energy intensities compared to less-developed inland provinces. Major producers,
426 such as Hebei for steel, Anhui for cement, and Inner Mongolia for electricity, exhibit
427 intermediate energy intensity levels. These intensity gaps between final production hubs and
428 their upstream supplier regions amplify trade-driven emission relocation and associated health
429 burdens, revealing substantial potential for targeted intervention.

430 To quantify these opportunities, we simulate scenarios in which upstream producers adopt
431 cleaner technologies through supply-chain coordination with the advanced provinces they serve.
432 This reflects documented mechanisms of technology diffusion and knowledge spillovers when
433 production regions are integrated into supply networks anchored by economically developed
434 hubs.^{61–63} We examine three convergence scenarios with varying degrees of adoption. Full
435 convergence (100%) assumes complete alignment with downstream partners, while partial
436 convergence (75% and 50%) imposes limits based on national benchmark performance (see
437 Section 2.4).

438 Full convergence reduces trade-related CO₂ emissions from nonmetal, metal, and power
439 generation sectors by 17% (491 Mt), and avoids 19% of the associated premature deaths (3.8 ×

440 10^4) (Figure 4a). Critically, partial convergence scenarios still deliver meaningful gains, with
441 75% convergence achieving 364 Mt CO₂ reduction and 2.8×10^4 avoided deaths, while 50%
442 convergence yielding 213 Mt CO₂ reduction and 1.3×10^4 avoided deaths, respectively. These
443 findings demonstrate that supply-chain coordination offers viable pathways to co-benefits, even
444 when technology transfer faces realistic constraints.

445 The spatial distribution of benefits reflects the burden-shifting patterns documented in Section
446 3.3 and remains broadly consistent across scenarios (Figures 4b and S15). CO₂ reduction
447 concentrates in northwestern and northeastern energy-supplying regions (Zone 5), while health
448 benefits concentrate in densely populated central and northern provinces (Zone 4). This
449 geographic divergence underscores how supply-chain coordination can simultaneously address
450 carbon leakage to remote regions and health burden concentration in industrial corridors.


451 Sectoral priorities vary by coordination relationship, informing targeted technology transfer
452 strategies. In Xinjiang, Ningxia, and Inner Mongolia—the major northwestern provinces
453 supplying electricity to advanced coastal hubs—power sector improvements dominate potential
454 co-benefits. For instance, reducing energy intensity in Inner Mongolia’s power generation
455 could yield CO₂ reduction more than three times greater than that from industrial upgrades
456 (nonmetal and metal). Conversely, in densely populated industrial provinces such as Hebei,
457 improvements in the nonmetal and metal sectors deliver greater combined climate-health
458 benefits due to higher exposure levels. Across most southern provinces, industrial sector
459 improvements contribute more to CO₂ reduction than power-sector interventions, reflecting
460 regional differences in industrial structure and electricity sourcing.

461 A small number of provinces can leverage their supply-chain influence to generate
462 disproportionate co-benefits nationwide. Zhejiang and Guangdong emerge as the two most
463 influential final production hubs, together accounting for about 44% of total achievable co-
464 benefits under full convergence and about one-third under partial convergence (Figure 4a).

465 Their pathways to impact, however, show notable differences (Figure 4c,d). Zhejiang-driven
466 coordination primarily reduces CO₂ emissions through nonmetal and metal sector
467 improvements in proximate regions (Shanghai and Jiangsu) within the Yangtze River Delta and
468 northern industrial provinces (e.g., Hebei and Liaoning). Guangdong, while achieving smaller
469 reductions in these nearby regions, exerts broader geographical influence through long-distance
470 supply chains. For example, Guangdong-driven collaboration yields substantial CO₂ reduction
471 in Inner Mongolia and health benefits in Sichuan Basin and Ningxia, predominantly via power
472 sector pathways. These complementary patterns suggest that effective strategies should
473 capitalize on the different geographic and sectoral reach of these final production hubs.

474 Spatially explicit analysis at the grid level reveals that even within provinces, strategically
475 targeted interventions can maximize efficiency of technology transfer investments. In Inner
476 Mongolia, energy intensity reduction in eastern and central areas near population centers
477 provides far greater health benefits than comparable actions in the sparsely populated western
478 region. Similarly, in Hebei, southern industrial cities, such as Handan, Xingtai, and
479 Shijiazhuang, emerge as high-priority intervention targets. Moreover, collaboration through
480 different sectoral pathways produces spatially distinct benefit distribution patterns within
481 provinces. In Shandong, for example, Guangdong-driven coordination generates greater health
482 benefits in the southwestern region through power sector improvement, but produces larger

483 gains in other parts of the province through industrial improvements.

484

485 **Figure 4. Co-mitigation potential from narrowing sectoral energy intensity gaps along provincial**
486 **supply chains in China.** (a) National total co-benefits under three convergence scenarios (100%, 75%,
487 and 50%), in which upstream provinces are assumed to improve their sectoral energy intensity toward
488 convergence benchmarks. Contributions from Zhejiang and Guangdong, the top two influential final
489 production hubs, are highlighted with black boxes. (b-d) Reduction in CO₂ emissions (Mt, vertical bars)
490 and avoided PM_{2.5}-related premature deaths (colored background) for supply chains driven by the
491 national total (b) and the top two provinces—Zhejiang (c) and Guangdong (d)—under the 100%
492 convergence scenario. Results are shown by two sectoral categories: power generation and the industrial
493 sectors of nonmetal and metal.

494

495 **3.5. Discussion and Environmental Implications.** Our integrated framework reveals the
496 pivotal role of final producers in achieving climate-health co-mitigation. While production-side

497 emissions are spatially and sectorally dispersed, the final production demand driving these
498 impacts is highly concentrated. This convergence pattern, obscured in previously separated
499 analyses,^{20,25,26} establishes final producers as critical coordination nodes. Furthermore, our
500 high-resolution adjoint modeling shows that health impacts of these relationships vary
501 substantially by location, depending on population exposure and regulation stringency. Hence,
502 sourcing decisions directly determine both emission volumes and associated health impacts.
503 This leverage can be exercised through strategic supplier selection and improvement initiatives,
504 for which precedents already exist.

505 Evidence of final producers' coordination capacity spans multiple governance contexts. Apple's
506 Supplier Clean Energy Program requires manufacturing partners to procure 100% renewable
507 electricity and facilitate joint clean energy investments through mechanisms like the China
508 Clean Energy Fund.⁶⁴ Under the Clean Development Mechanism, multinational companies
509 have promoted energy efficiency among upstream partners in emerging economies by offering
510 financial and technological support in exchange for carbon reduction credits.⁶⁵ Final producers
511 have also coordinated technology diffusion by establishing common standards. Zhejiang's ISO
512 50001 supplier certification program exemplifies how final producers can standardize
513 efficiency practices across upstream partners, achieving an estimated 26% reduction in energy
514 intensity.⁶⁶ Cross-firm R&D consortia enable collaborative development of technologies such
515 as hydrogen-based direct reduction for iron ore processing, projected to reduce energy intensity
516 by about 40% at marginal abatement costs below near-term carbon price forecasts.⁶⁷ At the
517 regional level, the Beijing-Tianjin-Hebei coordination framework illustrates how final
518 production hubs can drive upstream industrial transformation.⁶⁸ Beijing and Tianjin coordinate

519 emission reduction in Hebei through technical assistance and ecological compensation
520 programs, facilitating large-scale phaseout of outdated crude steel capacity.^{69–71} These examples
521 demonstrate coordination feasibility across corporate, sectoral, and regional scales. Achieving
522 the 17% emission and 19% mortality reduction identified in our full convergence scenario
523 would require systematically scaling such approaches, though our partial convergence
524 scenarios may represent more realistic near-term targets given institutional constraints.

525 Scaling coordination mechanisms requires institutional frameworks aligned with existing
526 governance structures. China's national carbon market, covering power and industrial sectors
527 since 2021, provides such a platform.⁷² Incorporating supply-chain emission credits would
528 require mechanisms for allocating reductions between final producers and suppliers alongside
529 verification protocols for upstream improvements. While detailed policy design remains for
530 future development, the concentration of impacts offers practical entry points. With 3% of trade
531 flows, primarily in the nonmetal, metal, and power sectors, accounting for 50% of emission
532 burdens, targeted pilot programs could deliver substantial co-benefits before broader expansion.

533 Significant barriers remain despite these opportunities. Provincial governments often prioritize
534 local GDP growth over cross-regional environmental objectives, while fragmented authority
535 between environmental and economic agencies hampers coordination.⁷³ The absence of
536 standardized mechanisms for cross-provincial technology transfer and benefit-sharing raises
537 transaction costs, discouraging voluntary coordination.^{74,75} These institutional constraints,
538 combined with resource availability limitations, form key barriers to realizing identified co-
539 benefits. Moreover, infrastructure lock-in embedded in existing energy and technological
540 systems further constrains the pace and scope of energy intensity improvements.⁷⁶ Our

541 estimates, therefore, represent achievable benefits under reformed governance and gradual
542 infrastructure adjustment, rather than outcomes expected under current institutional and
543 technological arrangements.

544 Several limitations affect interpretation. First, the use of 2017 MRIO data does not capture
545 recent supply chain restructuring under China's dual circulation strategy, likely underestimating
546 current trade-embodied impacts. Second, VOC-related health impacts are not fully quantified.

547 This study adopts a combustion-based energy intensity framework. Electrification-related
548 mitigation strategies, which offer more comprehensive co-mitigation prospects by
549 simultaneously reducing CO₂ and VOC emissions, require fundamental restructuring of Input-
550 Output relationships for accurate representation. Additionally, CMAQ v5.0 lacks several
551 critical secondary organic aerosol formation pathways for VOCs, potentially underestimating
552 their contribution to PM_{2.5}-related health impacts.⁷⁷ Third, our convergence scenarios assume

553 static MRIO relationships, not accounting for how energy intensity improvements could
554 reshape supply chain structures through price and substitution effects, alongside simplified
555 treatment of technological and institutional path dependencies. Essential research directions

556 include dynamic modeling of final producer responses to carbon pricing to clarify policy
557 effectiveness under different market conditions, sectoral analysis of coordination capacity
558 variations to identify where final producer leverage is strongest, integration of electrification
559 pathways into supply-chain co-mitigation frameworks, and assessment of how spatial
560 redistribution of final production activities affects co-benefit distribution as China's industrial
561 transformation continues. Extending this framework internationally could guide supply chain
562 governance as climate policies expand globally, particularly for countries with pronounced

563 production-consumption separations.^{18,78}

564

565 **ASSOCIATED CONTENT**

566 **Data Availability Statement**

567 Meteorological fields were generated using WRF v3.8.1 with grid nudging, driven by Global
568 Forecast System (GFS) surface data from the National Centers for Environmental Prediction
569 (NCEP), available at <https://www.nco.ncep.noaa.gov/pmb/products/gfs/#GFS>. The CMAQ
570 Adjoint v5.0 model code can be accessed from the U.S. EPA GitHub repository
571 (https://github.com/USEPA/CMAQ_ADJOINT) and its Zenodo archive
572 (<https://zenodo.org/records/3780216>). The 2017 AiMa emission dataset used in this study can
573 be accessed at <https://doi.org/10.5281/zenodo.17199169>. The Global Emission Modeling
574 System (GEMS) inventory can be accessed at <https://gems.sustech.edu.cn/home>. The 2017
575 Chinese Multi-regional Input-Output table is available from the CEADs database
576 (https://www.ceads.net/data/input_output_tables/). Source attribution analysis was performed
577 using MATLAB R2021a.

578 **Supporting Information.** Supplementary figures 1–15; supplementary tables 1–4;
579 Supplementary texts 1–7, including methodological framework, emissions and health impacts
580 embodied in the supply chains, GEMS inventory source information, MRIO sector
581 classification, fitted parameters for IER model, model evaluation, health impact attribution
582 analysis, mapping of GEMS emissions to the MRIO table, and uncertainty analysis.

583 **DECLARATION of COMPETING INTEREST**

584 The authors declare that they have no known competing financial interests or personal

585 relationships that could have appeared to influence the work reported in this paper.

586 **ACKNOWLEDGEMENT**

587 Y.C., H.S., and G.S. acknowledge funding from the Ministry of Science and Technology of the
588 People's Republic of China (2023YFE0112900), Y.C. acknowledges funding from the National
589 Natural Science Foundation of China (42571087), Y.C. and T.S. acknowledge funding from the
590 National Natural Science Foundation of China (42330709), J.D. and H.S. acknowledge support
591 from the Center for Computational Science and Engineering at Southern University of Science
592 and Technology.

593 **AUTHOR CONTRIBUTIONS**

594 Y.C. conceived and supervised the study. J.D. and Y.C. processed and analyzed the data. H.S.,
595 J.M.M., and S.T. contributed to the development of the model framework. D.J. and Y.C. drafted
596 the manuscript. H.S., G.S., and S.T. participated in the result discussions. J.M., J.M.M., A.G.R.,
597 S.Z., and A.H. provided critical revisions.

598

599 **REFERENCES**

- 600 (1) Cohen, A. J.; Brauer, M.; Burnett, R.; Anderson, H. R.; Frostad, J.; Estep, K.;
601 Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; Feigin, V.; Freedman, G.;
602 Hubbell, B.; Jobling, A.; Kan, H.; Knibbs, L.; Liu, Y.; Martin, R.; Morawska, L.; Pope,
603 C. A.; Shin, H.; Straif, K.; Shaddick, G.; Thomas, M.; van Dingenen, R.; van Donkelaar,
604 A.; Vos, T.; Murray, C. J. L.; Forouzanfar, M. H. Estimates and 25-year trends of the
605 global burden of disease attributable to ambient air pollution: an analysis of data from
606 the Global Burden of Diseases Study 2015. *Lancet* **2017**, *389* (10082), 1907–1918.
- 607 (2) National Development and Reform Commission (NDRC). *Enhanced Actions on climate
608 change: China's Intended Nationally Determined Contributions*. 2015.
609 https://english.www.gov.cn/archive/publications/2015/07/01/content_281475138245408.htm (accessed 2024-11-08).
- 611 (3) Yue, H.; He, C.; Huang, Q.; Yin, D.; Bryan, B. A. Stronger policy required to
612 substantially reduce deaths from PM_{2.5} pollution in China. *Nat. Commun.* **2020**, *11*, 1462.
- 613 (4) Shindell, D.; Smith, C. J. Climate and air-quality benefits of a realistic phase-out of

614 fossil fuels. *Nature* **2019**, *573*, 408–411.

615 (5) Wang, P.; Lin, C. K.; Wang, Y.; Liu, D.; Song, D.; Wu, T. Location-specific co-benefits
616 of carbon emissions reduction from coal-fired power plants in China. *Nat. Commun.*
617 **2021**, *12*, 6948.

618 (6) Geng, G.; Zheng, Y.; Zhang, Q.; Xue, T.; Zhao, H.; Tong, D.; Zheng, B.; Li, M.; Liu,
619 F.; Hong, C.; He, K.; Davis, S. J. Drivers of PM_{2.5} air pollution deaths in China 2002–
620 2017. *Nat. Geosci.* **2021**, *14*, 645–650.

621 (7) Zhang, S.; An, K.; Li, J.; Weng, Y.; Zhang, S.; Wang, S.; Cai, W.; Wang, C.; Gong, P.
622 Incorporating health co-benefits into technology pathways to achieve China's 2060
623 carbon neutrality goal: a modelling Study. *Lancet Planet. Heal.* **2021**, *5* (11), e808–e817.

624 (8) Cheng, J.; Tong, D.; Liu, Y.; Geng, G.; Davis, S. J.; He, K.; Zhang, Q. A synergistic
625 approach to air pollution control and carbon neutrality in China can avoid millions of
626 premature deaths annually by 2060. *One Earth* **2023**, *6* (8), 978–989.

627 (9) Li, X.; Xu, H. The Energy-conservation and Emission-reduction Paths of Industrial
628 Sectors: Evidence from Chinas 35 Industrial Sectors. *Energy Econ.* **2020**, *86*, 104628.

629 (10) Miller, S. A.; Moore, F. C. Climate and health damages from global concrete production.
630 *Nat. Clim. Chang.* **2020**, *10*, 439–443.

631 (11) Chen, Y.; Shen, H.; Shen, G.; Ma, J.; Cheng, Y.; Russell, A. G.; Zhao, S.; Hakami, A.;
632 Tao, S. Substantial differences in source contributions to carbon emissions and health
633 damage necessitate balanced synergistic control plans in China. *Nat. Commun.* **2024**,
634 *15*, 5880.

635 (12) Ma, T.; Zhang, S.; Xiao, Y.; Liu, X.; Wang, M.; Wu, K.; Shen, G.; Huang, C.; Fang, Y.
636 R.; Xie, Y. Costs and health benefits of the rural energy transition to carbon neutrality
637 in China. *Nat. Commun.* **2023**, *14*, 1601.

638 (13) Zhu, S.; Mac Kinnon, M.; Carlos-Carlos, A.; Davis, S. J.; Samuels, S.
639 Decarbonization will lead to more equitable air quality in California. *Nat. Commun.*
640 **2022**, *13*, 5738.

641 (14) Chen, C.; Sun, Y.; Lan, Q.; Jiang, F. Impacts of industrial agglomeration on pollution
642 and ecological efficiency-A spatial econometric analysis based on a big panel dataset of
643 China's 259 cities. *J. Clean. Prod.* **2020**, *258*, 120721.

644 (15) Wang, Y.; Wang, J. Does industrial agglomeration facilitate environmental performance:
645 New evidence from urban China? *J. Environ. Manage.* **2019**, *248*, 109244.

646 (16) Li, X.; Xu, Y.; Yao, X. Effects of industrial agglomeration on haze pollution: A Chinese
647 city-level study. *Energy Policy* **2021**, *148*, 111928.

648 (17) Lin, J.; Du, M.; Chen, L.; Feng, K.; Liu, Y.; Martin, R. V.; Wang, J.; Ni, R.; Zhao, Y.;
649 Kong, H.; Weng, H.; Liu, M.; van Donkelaar, A.; Liu, Q.; Hubacek, K. Carbon and
650 health implications of trade restrictions. *Nat. Commun.* **2019**, *10*, 4947.

651 (18) Nansai, K.; Tohno, S.; Chatani, S.; Kanemoto, K.; Kagawa, S.; Kondo, Y.; Takayanagi,
652 W.; Lenzen, M. Consumption in the G20 nations causes particulate air pollution
653 resulting in two million premature deaths annually. *Nat. Commun.* **2021**, *12*, 6286.

654 (19) Zheng, L.; Adalibieke, W.; Zhou, F.; He, P.; Chen, Y.; Guo, P.; He, J.; Zhang, Y.; Xu,
655 P.; Wang, C.; Ye, J.; Zhu, L.; Shen, G.; Fu, T. M.; Yang, X.; Zhao, S.; Hakami, A.;
656 Russell, A. G.; Tao, S.; Meng, J.; Shen, H. Health burden from food systems is highly
657 unequal across income groups. *Nat. Food* **2024**, *5*, 251–261.

658 (20) Zhao, H.; Wu, R.; Liu, Y.; Cheng, J.; Geng, G.; Zheng, Y.; Tian, H.; He, K.; Zhang, Q.
659 Air pollution health burden embodied in China's supply chains. *Environ. Sci.
660 Ecotechnol.* **2023**, *16*, 100264.

661 (21) Malik, A.; Lenzen, M.; Li, M.; Mora, C.; Carter, S.; Giljum, S.; Lutter, S.; Gómez-
662 Paredes, J. Polarizing and equalizing trends in international trade and Sustainable
663 Development Goals. *Nat. Sustain.* **2024**, *7*, 1359–1370.

664 (22) Cao, C.; Cui, X. Q.; Cai, W.; Wang, C.; Xing, L.; Zhang, N.; Shen, S.; Bai, Y.; Deng,
665 Z. Incorporating health co-benefits into regional carbon emission reduction policy
666 making: A case study of China's power sector. *Appl. Energy* **2019**, *253*, 113498.

667 (23) Tang, R.; Zhao, J.; Liu, Y.; Huang, X.; Zhang, Y.; Zhou, D.; Ding, A.; Nielsen, C. P.;
668 Wang, H. Air quality and health co-benefits of China's carbon dioxide emissions
669 peaking before 2030. *Nat. Commun.* **2022**, *13*, 1008.

670 (24) Xia, C.; Zheng, H.; Meng, J.; Shan, Y.; Liang, X.; Li, J.; Yin, Z.; Chen, M.; Du, P.;
671 Wang, C. Outsourced carbon mitigation efforts of Chinese cities from 2012 to 2017.
672 *Nat. Cities* **2024**, *1*, 480–488.

673 (25) Zhang, H.; Zhang, W.; Lu, Y.; Wang, Y.; Shan, Y.; Ping, L.; Li, H.; Lee, L. C.; Wang,
674 T.; Liang, C.; Jiang, H.; Cao, D. Worsening Carbon Inequality Embodied in Trade
675 within China. *Environ. Sci. Technol.* **2023**, *57* (2), 863–873.

676 (26) He, K.; Mi, Z.; Zhang, J.; Li, J.; Coffman, D. The Polarizing Trend of Regional CO₂
677 Emissions in China and Its Implications. *Environ. Sci. Technol.* **2023**, *57* (11), 4406–
678 4414.

679 (27) Zhang, W.; Zhao, J.; Zhang, Z.; Liu, M.; Li, R.; Xue, W.; Xing, J.; Cai, B.; Jiang, L.;
680 Zhang, J.; Hu, X.; Zhong, L.; Jiang, H.; Wang, J.; Bi, J. The economy–employment–
681 environmental health transfer and embedded inequities of China's capital metropolitan
682 area: a mixed-methods study. *Lancet Planetary Health* **2023**, *7*, e912–e924.

683 (28) Wang, H.; Zhang, Y.; Zhao, H.; Lu, X.; Zhang, Y.; Zhu, W.; Nielsen, C. P.; Li, X.; Zhang,
684 Q.; Bi, J.; McElroy, M. B. Trade-driven relocation of air pollution and health impacts in
685 China. *Nat. Commun.* **2017**, *8*, 738.

686 (29) Zhao, H.; Li, X.; Zhang, Q.; Jiang, X.; Lin, J.; Peters, G. P.; Li, M.; Geng, G.; Zheng,
687 B.; Huo, H.; Zhang, L.; Wang, H.; Davis, S. J.; He, K. Effects of atmospheric transport
688 and trade on air pollution mortality in China. *Atmos. Chem. Phys.* **2017**, *17*, 10367–
689 10381.

690 (30) Hakami, A.; Henze, D. K.; Seinfeld, J. H.; Singh, K.; Sandu, A.; Kim, S.; Byun, D.; Li,
691 Q. The Adjoint of CMAQ. *Environ. Sci. Technol.* **2007**, *41* (22), 7807–7817.

692 (31) Zhao, S.; Russell, M. G.; Hakami, A.; Capps, S. L.; Turner, M. D.; Henze, D. K.; Percell,
693 P. B.; Resler, J.; Shen, H.; Russell, A. G.; Nenes, A.; Pappin, A. J.; Napelenok, S. L.;
694 Bash, J. O.; Fahey, K. M.; Carmichael, G. R.; Stanier, C. O.; Chai, T. A multiphase
695 CMAQ version 5.0 adjoint. *Geosci. Model Dev.* **2020**, *13* (7), 2925–2944.

696 (32) Byun, D.; Schere, K. L. Review of the Governing Equations, Computational Algorithms,
697 and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ)
698 Modeling System. *Appl. Mech. Rev.* **2006**, *59*, 51–77.

699 (33) Henze, D. K.; Seinfeld, J. H.; Shindell, D. T. Inverse modeling and mapping US air
700 quality influences of inorganic PM_{2.5} precursor emissions using the adjoint of GEOS-
701 Chem. *Atmos. Chem. Phys.* **2009**, *9*, 5877–5903.

702 (34) Zhao, H.; Geng, G.; Zhang, Q.; Davis, S. J.; Li, X.; Liu, Y.; Peng, L.; Li, M.; Zheng, B.;
703 Huo, H.; Zhang, L.; Henze, D. K.; Mi, Z.; Liu, Z.; Guan, D.; He, K. Inequality of
704 household consumption and air pollution-related deaths in China. *Nat. Commun.* **2019**,
705 *10*, 4337.

706 (35) Wang, Y.; Bastien, L.; Jin, L.; Harley, R. A. Location-Specific Control of Precursor
707 Emissions to Mitigate Photochemical Air Pollution. *Environ. Sci. Technol.* **2023**, *57*
708 (26), 9693–9701.

709 (36) AiMa Forecasts. AiMa Air Quality Forecasting System. <http://www.aimayubao.com>
710 (accessed 2021-01-17)

711 (37) Lyu, B.; Zhang, Y.; Hu, Y. Improving PM_{2.5} Air Quality Model Forecasts in China
712 Using a Bias-Correction Framework. *Atmosphere* **2017**, *8* (8), 147.

713 (38) Lyu, B.; Hu, Y.; Zhang, W.; Du, Y.; Luo, B.; Sun, X.; Sun, Z.; Deng, Z.; Wang, X.; Liu,
714 J.; Wang, X.; Russell, A. G. Fusion Method Combining Ground-Level Observations
715 with Chemical Transport Model Predictions Using an Ensemble Deep Learning
716 Framework: Application in China to Estimate Spatiotemporally-Resolved PM_{2.5}
717 Exposure Fields in 2014–2017. *Environ. Sci. Technol.* **2019**, *53* (13), 7306–7315.

718 (39) Shen, H.; Shen, G.; Chen, Y.; Russell, A. G.; Hu, Y.; Duan, X.; Meng, W.; Xu, Y.; Yun,
719 X.; Lyu, B.; Zhao, S.; Hakami, A.; Guo, J.; Tao, S.; Smith, K. R. Increased air pollution
720 exposure among the Chinese population during the national quarantine in 2020. *Nat.
721 Hum. Behav.* **2021**, *5*, 239–246.

722 (40) Shen, H.; Sun, Z.; Chen, Y.; Russell, A. G.; Hu, Y.; Odman, M. T.; Qian, Y.; Archibald,
723 A. T.; Tao, S. Novel Method for Ozone Isopleth Construction and Diagnosis for the
724 Ozone Control Strategy of Chinese Cities. *Environ. Sci. Technol.* **2021**, *55* (23),
725 15625–15636.

726 (41) Skamarock, W. C.; Klemp, J. B.; Dudhia, J.; Gill, D. O.; Barker, D. M.; Duda, M. G.;
727 Huang, X. Y.; Wang, W.; Powers, J. G. *A Description of the Advanced Research WRF
728 Version 3*; NCAR Tech Notes-475+STR, National Center for Atmospheric Research
729 (NCAR), 2008.

730 (42) National Centers for Environmental Prediction (NCEP). NCEP Products Inventory:
731 Global Products, Global Forecast System (GFS) Model;
732 <https://www.nco.ncep.noaa.gov/pmb/products/gfs/#GFS> (accessed 2021-01-17).

733 (43) Emery, C.; Liu, Z.; Russell, A.G.; Odman, M.T.; Yarwood, G.; Kumar, N.
734 Recommendations on statistics and benchmarks to assess photochemical model
735 performance. *J. Air Waste Manag. Assoc.* **2017**, *67* (5), 582–598.

736 (44) Zhai, H.; Huang, L.; Emery, C.; Zhang, X.; Wang, Y.; Yarwood, G.; Fu, J. S.; Li, L.
737 Recommendations on benchmarks for photochemical air quality model applications in
738 China—NO₂, SO₂, CO and PM₁₀. *Atmos. Environ.* **2024**, *319*, 120290.

739 (45) GEMS. Global Emission Modeling System (GEMS): A comprehensive global emission
740 inventory for greenhouse gases and air pollutants. <https://gems.sustech.edu.cn/home>
741 (accessed 2024-06-17).

742 (46) Huang, Y.; Shen, H.; Chen, H.; Wang, R.; Zhang, Y.; Su, S.; Chen, Y.; Lin, N.; Zhuo, S.;
743 Zhong, Q.; Wang, X.; Liu, J.; Li, B.; Liu, W.; Tao, S. Quantification of Global Primary
744 Emissions of PM_{2.5}, PM₁₀, and TSP from Combustion and Industrial Process Sources.
745 *Environ. Sci. Technol.* **2014**, *48* (23), 13834–13843.

746 (47) Peters, G. P. From production-based to consumption-based national emission
747 inventories. *Ecol. Econ.* **2008**, *65* (1), 13–23.

748 (48) Liang, S.; Zhang, C.; Wang, Y.; Xu, M.; Liu, W. Virtual Atmospheric Mercury
749 Emission Network in China. *Environ. Sci. Technol.* **2014**, *48* (5), 2807–2815.

750 (49) Li, R.; Zhang, J.; Krebs, P. Global trade drives transboundary transfer of the health
751 impacts of polycyclic aromatic hydrocarbon emissions. *Commun. Earth Environ.* **2022**,
752 3, 170.

753 (50) Zheng, H.; Bai, Y.; Wei, W.; Meng, J.; Zhang, Z.; Song, M.; Guan, D. Chinese
754 provincial multi-regional input-output database for 2012, 2015, and 2017. *Sci. Data*
755 **2021**, *8*, 244.

756 (51) National Bureau of Statistics. China Statistical Yearbook 2018. China Statistics Press:
757 Beijing, 2019.

758 (52) National Bureau of Statistics. China Energy Statistical Yearbook 2018. China Statistics
759 Press: Beijing, 2019.

760 (53) Tang, L.; Qu, J.; Mi, Z.; Bo, X.; Chang, X.; Anadon, L. D.; Wang, S.; Xue, X.; Li, S.;
761 Wang, X.; Zhao, X. Substantial emission reductions from Chinese power plants after
762 the introduction of ultra-low emissions standards. *Nat. Energy* **2019**, *4*, 929–938.

763 (54) Feng, K.; Davis, S. J.; Sun, L.; Li, X.; Guan, D.; Liu, W.; Liu, Z.; Hubacek, K.
764 Outsourcing CO₂ within China. *Proc. Natl. Acad. Sci. U. S. A.* **2013**, *110* (28), 11654–
765 11659.

766 (55) Shen, J.; Wei, Y. D.; Yang, Z. The impact of environmental regulations on the location
767 of pollution-intensive industries in China. *J. Clean. Prod.* **2017**, *148*, 785–794.

768 (56) Wu, W.; Tang, Q.; Xue, W.; Shi, X.; Zhao, D.; Liu, Z.; Liu, X.; Jiang, C.; Yan, G.;
769 Wang, J. Quantifying China's iron and steel industry's CO₂ emissions and
770 environmental health burdens: A pathway to sustainable transformation. *Environ. Sci.
771 Ecotechnol.* **2024**, *20*, 100367.

772 (57) Shu, Z.; Zhao, T.; Liu, Y.; Zhang, L.; Ma, X.; Kuang, X.; Li, Y.; Huo, Z.; Ding, Q.; Sun,
773 X.; Shen, L. Impact of deep basin terrain on PM_{2.5} distribution and its seasonality over
774 the Sichuan Basin, Southwest China. *Environ. Pollut.* **2022**, *300*, 118944.

775 (58) Zeng, P.; Zong, C. Research on the relationship between population distribution pattern
776 and urban industrial facility agglomeration in China. *Sci. Rep.* **2023**, *13*, 16225.

777 (59) Sun, X.; Li, J.; Qiao, H.; Zhang, B. Energy implications of China's regional
778 development: New insights from multi-regional input-output analysis. *Appl. Energy*
779 **2017**, *196*, 118–131.

780 (60) Shao, S.; Wang, C.; Guo, Y.; Yang, L.; Chen, S.; Yan, J.; Shan, Y.; Liu, Z.; Guan, D.
781 Enlarging Regional Disparities in Energy Intensity within China. *Earth's Future* **2020**,
782 8 (8), e2020EF001572.

783 (61) Jiao, J.; Chen, C.; Bai, Y. Is green technology vertical spillovers more significant in
784 mitigating carbon intensity? Evidence from Chinese industries. *J. Clean. Prod.* **2020**,
785 257, 120354.

786 (62) Tong, B.; Zhang, L.; Hou, Y.; Oenema, O.; Long, W.; Velthof, G.; Ma, W.; Zhang, F.
787 Lower pork consumption and technological change in feed production can reduce the
788 pork supply chain environmental footprint in China. *Nat. Food* **2023**, *4*, 74–83.

789 (63) Rahko, J. Vertical spillovers and the energy intensity of European industries. *Energy*

790 *Econ.* **2025**, *141*, 108053.

791 (64) Apple Inc. *Supplier Clean Energy Program Update 2022*.
https://www.apple.com/environment/pdf/Apple_Supplier_Clean_Energy_Program_Update_2022.pdf (accessed 2025-09-28).

792 (65) Liu, D. *Clean Development Mechanism (CDM)*. In *The Palgrave Encyclopedia of Global Security Studies*; Romaniuk, S. N.; Marton, P. N., Eds.; Palgrave Macmillan: Cham. 2023.

793 (66) Wang, E. -Z.; Pan, T. Does ISO 50001 adoption reduce manufacturing energy intensity? Micro-evidence from China. *Econ. Anal. Policy* **2025**, *86*, 653–672.

794 (67) Pimm, A. J.; Cockerill, T. T.; Gale, W. F. Energy system requirements of fossil-free steelmaking using hydrogen direct reduction. *J. Clean. Prod.* **2021**, *312*, 127665.

795 (68) Asian Development Bank. *Policies and Investments to Address Climate Change and Air Quality in Beijing-Tianjin-Hebei Region*.
https://www.adb.org/sites/default/files/publication/844441/climate-change-air-quality-beijing-tianjin-hebei_0.pdf (accessed 2025-09-28).

796 (69) Du, H.; Zhao, L.; Zhang, P.; Li, J.; Yu, S. Ecological compensation in the Beijing-Tianjin-Hebei region based on ecosystem services flow. *J. Environ. Manage.* **2023**, *331*, 117230.

797 (70) National People's Congress. *Beijing, Tianjin, Hebei to come closer for development, according to local legislature*. http://en.npc.gov.cn/cdurl.cn/2024-02/08/c_962573.htm (accessed 2025-09-28).

798 (71) The State Council of the People's Republic of China. *Major steel province makes headway in eco-friendly growth*.
https://english.www.gov.cn/news/topnews/202209/14/content_WS63212ae5c6d0a757729dff63.html (accessed 2025-09-28).

799 (72) Ministry of Ecology and Environment of the People's Republic of China. *Work Plan for Including Steel, Cement, and Aluminum Smelting Industries in the National Carbon Emissions Trading Market*.
https://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202503/t20250326_1104736.html (accessed 2025-03-28).

800 (73) Qi, Y.; Zhang, L. Local Environmental Enforcement Constrained by Central–Local Relations in China. *Environ. Policy Gov.* **2014**, *24* (3), 216–232.

801 (74) Banerjee, S.; Cason, T. N.; de Vries, F. P.; Hanley, N. Transaction costs, communication and spatial coordination in Payment for Ecosystem Services Schemes. *J. Environ. Econ. Manage.* **2017**, *83*, 68–89.

802 (75) Sun, Y.; Grimes, S. The actors and relations in evolving networks: The determinants of inter-regional technology transaction in China. *Technol. Forecast. Soc. Change* **2017**, *125*, 125–136.

803 (76) Seto, K. C.; Davis, S. J.; Mitchell, R. B.; Stokes, E. C.; Unruh, G.; Ürge-Vorsatz, D. Carbon Lock-In: Types, Causes, and Policy Implications. *Annu. Rev. Environ. Resour.* **2016**, *41*, 425–452.

804 (77) Wu, R.; Tessum, C. W.; Zhang, Y.; Hong, C.; Zheng, Y.; Qin, X.; Liu, S.; Zhang, Q. Reduced-complexity air quality intervention modeling over China: the development of InMAPv1.6.1-China and a comparison with CMAQv5.2. *Geosci. Model Dev.* **2021**, *14*

834 (12), 7621–7638.

835 (78) Wang, Z.; Meng, J.; Zheng, H.; Shao, S.; Wang, D.; Mi, Z.; Guan, D. Temporal change
836 in India's imbalance of carbon emissions embodied in international trade. *Appl. Energy*
837 **2018**, *231*, 914–925.