
Thesis on Environment and

Transport Economics

Lichao Chen

Submitted in fulfillment of the requirements for the degree of

Doctor of Philosophy

University College London (UCL)

Department of Economics

October 2025



1



Declaration

I, Lichao Chen, confirm that the work presented in my thesis is my own. Where

information has been derived from other sources, I confirm that this has been indi-

cated in the thesis.

2



3



Abstract

This thesis examines how supply-side carbon pricing and demand-side purchase sub-

sidies reshape market structure and welfare in Europe’s two largest transport sectors:

aviation and automobiles. Chapter 1 analyses the European airline industry using

a two-stage entry-and-pricing model that captures key institutional features such

as airport slot constraints and point-to-point business models. Fixed-cost parame-

ters are estimated through a hybrid approach combining moment inequalities with

maximum likelihood, ensuring policy simulations remain consistent with observed

market structures. The analysis shows that carbon pricing induces asymmetric

network adjustments concentrated among low-cost and regional carriers, while full-

service groups at hub airports remain relatively resilient. Although industry profits

decline, the reallocation of capacity improves allocative efficiency and redistributes

welfare unevenly across Europe. Chapter 2 evaluates electric-vehicle purchase sub-

sidies in the UK, France, and Germany (2010–2021) using a random-coefficients

logit demand model with micro-moment calibration and a static Bertrand pricing

framework. The results show that the expansion of the EV market has been driven

mainly by product innovation and model fleet turnover rather than by flat purchase

incentives. Subsidy effectiveness varies across countries, with limited impacts in the

UK and France but stronger effects in Germany. An income-targeted subsidy de-

sign achieves similar emissions reductions at substantially lower fiscal cost and with

greater equity. Together, the chapters demonstrate that environmental policies op-

erate through distinct mechanisms—reconfiguring airline networks and influencing

car buyers’ choices—and that well-designed instruments can achieve decarbonisation

with higher efficiency and fairer distributional outcomes.
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Impact Statement

This thesis investigates how climate policy reshapes competition, consumer choice,

and welfare in Europe’s transport sector, treating aviation and road transport as

complementary testbeds for the supply- and demand-side instruments at the core

of the EU’s decarbonisation strategy. The contribution is twofold. Substantively,

it provides comparable, policy-relevant evidence on who bears the costs and who

benefits when carbon prices and purchase subsidies interact with market structure

and household heterogeneity. Methodologically, it advances estimation and coun-

terfactual design so that simulated policies are disciplined by observed networks

and by micro-evidence on preferences, improving external validity for ex-ante policy

appraisal.

Chapter 1 is, to our knowledge, the first paper to study how carbon regulation

alters competition on a European airline route network, jointly modelling endoge-

nous network formation and price competition under binding slot constraints. It

estimates a two-stage game in which airlines choose routes and frequencies before

pricing, and introduces a hybrid identification strategy: moment inequalities identify

linear fixed-cost components, while maximum likelihood recovers the full distribu-

tion of unobserved fixed-cost shocks. This permits drawing shock realisations that

exactly rationalise the observed network, eliminating baseline drift and anchoring

counterfactuals in the data. The counterfactuals—implemented via an iterative

equilibrium algorithm under EU-ETS-style carbon pricing—show asymmetric net-

work responses concentrated among low-cost and regional carriers, with full-service

groups at congested hubs comparatively resilient. Despite lower industry profits,

carbon pricing can raise total welfare by reallocating aircraft toward higher-value

services, while redistributing welfare geographically across Europe. Conceptually,
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the chapter reframes carbon policy from a pure cost shock to a force that reconfigures

market structure in a highly congested, mixed-model industry, and methodologically

contributes a portable way to combine set- and point-identification for credible net-

work counterfactuals.

Chapter 2 provides a unified, multi-country structural evidence on the drivers

of Europe’s EV uptake and on the incidence and design of purchase subsidies. Us-

ing annual model-level sales and characteristics for the UK, France, and Germany

(2010–2021), augmented with micro-moments that link purchasing to income, it

estimates a random-coefficients logit with a static Bertrand supply side. Decom-

positions show that the surge in EV market share is driven primarily by product

turnover and attributes—not by flat purchase subsidies—with limited effects in the

UK and France and larger effects in Germany. The income-linked micro-moments

reveal pronounced heterogeneity: poorer households are more price-sensitive yet

have weaker baseline EV tastes, implying uneven welfare gains under uniform sub-

sidies. The chapter then designs income-based subsidies and shows they can deliver

comparable or higher EV shares at substantially lower fiscal cost, while reshaping

the distribution of benefits toward lower-income households—thus clarifying effi-

ciency–equity trade-offs and offering implementable policy rules for Europe, where

income-based EV subsidies are not yet standard practice.

Together, the chapters show that climate policy’s real effects emerge from its

interaction with industrial organisation on the supply side and with heterogeneous

preferences on the demand side. By pairing network-credible airline counterfactuals

with income-disciplined EV demand, the thesis offers a coherent template for ap-

praising transport decarbonisation policies that is both empirically grounded and

directly usable by policymakers.

7



8



Acknowledgements

I thank my main supervisor, Lars Nesheim, for his encouragement and guid-

ance throughout this long journey. When I felt lost in my first year, he generously

supported my shift into empirical industrial organisation, which proved to be an in-

flection point in my PhD. His mentoring combines calm, thoughtful advice with the

freedom to explore my own interests rather than prescribing a fixed path. Whenever

difficulties arose—whether in data acquisition, high-performance computing, or ca-

reer planning—he consistently went out of his way to help. I am also grateful to my

second supervisor, Joao Granja, for his help in countless situations, and to Aureo

de Paula for invaluable suggestions on virtually every aspect of both chapters.

I thank all co-authors and collaborators. In particular, I am profoundly grateful

to Ertian Chen, whose brilliance and extensive comments have continually inspired

me to push further. I am also grateful to colleagues in the Air Transportation

Systems Lab at the UCL Energy Institute, including Andreas Schafer, Lynnette

Dray, Khan Doyme, Peggy Li, Brian Pearce, Olivier Dessens, Yagmur Gok, and

Boning Yang, for generously providing key European airline data and for their many

helpful suggestions from an industry perspective. I will miss our weekly meetings.

I would also like to thank the IO group in the department, especially Javier

Boncompte and Giuseppe Forte, for numerous insightful discussions on empirical IO.

I am also thankful to participants at seminars and workshops for their constructive

comments throughout.

Finally, I am grateful to all data providers who made this dissertation possible,

and to Simeon Duckworth and Mateusz Mysliwski for exceptional industry connec-

tions and conversations that were crucial for an empirical IO project of this scope.

9



10



Introduction

This thesis examines how environmental policy reshapes competition, consumer

choice, and welfare in Europe’s two largest transport sectors: aviation and automo-

biles. It combines a supply-side study of carbon regulation in airline markets with

a demand-side study of purchase subsidies in car markets to deliver comparable,

policy-relevant evidence on the incidence and efficiency of climate instruments. In

both chapters, policy counterfactuals are analysed using parameters estimated from

the data: in aviation, within a route-network formation framework under binding

capacity (slot) constraints; in the automotive sector, through the design and eval-

uation of income-based electric-vehicle subsidies. Together, these analyses yield an

integrated, empirically grounded framework for ex-ante appraisal of decarbonisation

policies.

Chapter 1: Carbon regulation and competition in European

aviation

Chapter 1 examines how carbon regulation alters competition on a European

airline route network while jointly modelling endogenous network formation and

price competition under binding airport slot constraints. The analysis uses propri-

etary itinerary-level data for 2019 with prices, frequencies, travel times, and passen-

ger volumes at the route–airline level, supplemented by metropolitan populations

and airport-to-airport distances. The model is a two-stage oligopoly: in the first

stage, carriers choose route networks and frequencies subject to aircraft and slot

constraints; in the second stage, they set prices conditional on those choices.

Fixed-cost parameters are recovered with a hybrid identification strategy. Mo-

ment inequalities identify linear components of entry and frequency costs, and max-
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imum likelihood recovers the distribution of unobserved fixed-cost shocks. This

allows the baseline network to be rationalised exactly, which improves the credi-

bility of counterfactuals by avoiding drift from the observed equilibrium. Policy

experiments implement an EU-ETS-style carbon price and compute new network

equilibria through an iterative best-response procedure in which airlines re-optimise

route choices subject to capacity limits.

Four results follow. First, demand and cost differences between full-service and

low-cost carriers are pronounced, especially in the valuation of hub access and fixed

costs. Second, carbon pricing produces asymmetric network adjustments that are

concentrated among low-cost and regional carriers, while full-service groups an-

chored at congested hubs are comparatively resilient. Third, welfare is redistributed

across space as connectivity patterns change, with gains and losses varying across

European regions. Finally, despite lower industry profits, overall welfare can rise

because capacity is reallocated toward higher-value services. Conceptually, the

chapter reframes carbon policy as a force that reconfigures market structure in a

slot-constrained, mixed-business-model industry. Methodologically, it contributes a

portable way to combine set and point identification for network-credible counter-

factuals.

Chapter 2: Purchase subsidies, drivers of EV uptake, and

equity in Europe

Chapter 2 provides unified, multi-country structural evidence on the drivers of

Europe’s electric-vehicle uptake and on the incidence and design of purchase subsi-

dies. It assembles annual model-level sales and characteristics for the UK, France,

and Germany from 2010 to 2021 and augments these data with micro moments that
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link vehicle purchasing to income. The empirical framework is a random-coefficients

logit demand system paired with a static Bertrand supply side, with interactions

that allow preferences to evolve by time, brand, and fuel type.

Three findings stand out. First, decompositions attribute most of the EV market-

share growth to new-model introductions and changes in product attributes rather

than to flat purchase subsidies. Second, subsidy effectiveness differs across countries,

with relatively modest impacts in the UK and France and larger impacts in Germany.

Third, welfare gains are uneven across income groups: lower-income households are

more price sensitive but exhibit weaker baseline EV tastes, which limits their re-

alised benefits under uniform subsidies. Motivated by this incidence pattern, the

chapter designs income-based subsidies targeted at low- and middle-income house-

holds. Counterfactuals show that such designs can deliver comparable or higher EV

sales at substantially lower fiscal cost while shifting benefits toward lower-income

consumers. Budget-equivalent comparisons clarify efficiency–equity trade-offs and

provide implementable rules for European policymakers.

Synthesis and policy relevance

Together, the chapters show that the real effects of climate policy are shaped by

product (route) entry and exit on the supply side and by heterogeneous preferences

on the demand side. In aviation, carbon pricing interacts with congestion, network

choices, and business-model heterogeneity to reshape competitive structure and the

spatial distribution of welfare. In the automotive sector, purchase incentives inter-

act with product turnover and income-linked tastes to alter fleet composition and

the distribution of benefits across households. By pairing network-credible airline

counterfactuals with income-disciplined EV demand, the thesis provides a coherent

template for appraising transport decarbonisation policies—externally valid, atten-
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tive to distributional outcomes, and directly applicable to policy design.
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Abstract

This paper quantifies the effects of carbon regulation on airline competition

and endogenous route network formation in Europe. We estimate a two-stage

structural model where full-service and low-cost carriers choose route networks

before competing on prices. Our framework is the first to jointly analyse these

dynamics while accounting for unique European features like binding airport

slot constraints. A novel estimation strategy combines moment inequalities

with maximum likelihood to ensure credible policy simulations. Counterfac-

tual analysis of a carbon tax reveals asymmetric impacts: network changes

are concentrated amongst low-cost and regional airlines, whilst full-service

carriers prove resilient. The policy also induces a significant geographic re-

distribution of welfare, benefiting Central and Eastern Europe at the expense

of remote regions. Importantly, whilst airline profits fall, the policy can be

total welfare-enhancing by forcing a competitive reallocation of aircraft that

improves allocative efficiency.

Keywords: European Aviation, Carbon Policy, Route Entry & Exit

JEL Codes: L52, L62, L90
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1.1 Introduction

The aviation industry, a cornerstone of global connectivity, presents one of the

most formidable challenges in the transition to a low-carbon economy. In 2022,

the sector accounted for nearly 4% of the European Union’s total greenhouse gas

emissions, a figure projected to grow rapidly as air travel rebounds and expands

(European Commission; International Energy Agency). The scale of the problem is

striking: a single round trip from Lisbon to New York emits carbon equivalent to

heating a typical EU home for an entire year. While technological advancements

are promising, their large-scale impact remains a distant prospect. Gains from more

efficient new-generation aircraft are incremental and slow to materialise across a

global fleet with operational lifespans often exceeding 25 years; historically, these

efficiency gains have been outpaced by demand growth. Sustainable Aviation Fuels

(SAFs), a key alternative, face prohibitive costs and severe supply constraints, with

production capacity at less than 1% of global demand. Truly transformative solu-

tions, such as hydrogen or electric propulsion, are not expected to be commercially

viable for most routes until the 2030s at the earliest. Consequently, in the short to

medium term, meaningful emissions reductions will likely depend less on innovation

and more on regulation.

This paper investigates the competitive and network-level effects of increas-

ingly stringent carbon regulations within the European airline industry—one of

the world’s largest and most complex aviation market. The European market’s

structure is unique, shaped by factors that distinguish it sharply from its North

American or Asia-Pacific counterparts. It is the world’s most mature low-cost car-

rier (LCC) market, where budget airlines operate a majority of short-haul flights,

fostering intense price competition. This is coupled with a network dominated by
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direct, point-to-point routes, a departure from the hub-and-spoke models prevalent

in the U.S. Furthermore, the continent suffers from severe infrastructure constraints,

hosting nearly half of the world’s most congested, slot-coordinated airports (IATA),

and features high aircraft utilisation rates driven by the operational efficiency and

rapid turnaround times pioneered by LCCs.

This market structure gives rise to a uniquely intense competitive dynamic,

driven by the deep bifurcation of airline business models. Full-service carriers

(FSCs) typically operate from major, congested primary airports, leveraging net-

work economies to serve both point-to-point and international connecting traffic.

In contrast, the highly prevalent LCCs exploit a point-to-point model, often from

smaller, secondary airports within the same metropolitan area to minimise opera-

tional costs. These divergent strategies create starkly different cost structures and

fare strategies; LCCs leverage their operational efficiencies to offer lower base fares

and unbundled services, capturing a price-sensitive market segment of a scale not

seen elsewhere. Crucially, the point-to-point model affords LCCs greater strategic

flexibility in network expansion. By serving a wider portfolio of cities, LCCs possess

a combinatorially larger set of feasible new routes to enter, allowing them to rapidly

redeploy aircraft to capture emerging demand in markets that may be too thin or

unprofitable for the more rigid hub-and-spoke structure of an FSC. This fundamen-

tally alters the calculus of route entry and profitability across the continent.

It is within this complex competitive environment that Europe is implementing

some of the world’s most stringent aviation carbon policies, which are poised to

significantly affect airline operations. The progressive phasing out of free allowances

under the EU Emissions Trading System (EU-ETS) is set to dramatically increase

the effective carbon price for airlines by 2026. This is compounded by the ReFuelEU

mandate, which requires an increasing blend of Sustainable Aviation Fuels (SAFs)—

22



a technology that remains several times more expensive than conventional jet fuel

and faces significant production shortfalls. These cost shocks will not be neutral;

they will disproportionately impact airlines based on their business models, route

structures, and margins, making the interaction between regulation and competition

a first-order question for the industry’s future.

To that end, this paper is the first to jointly analyse the effects of carbon regula-

tion on airline competition and endogenous route network formation in the European

context. We ask: How do the distinct business models of FSCs and LCCs shape

their strategic responses to rising carbon costs? How does regulation alter market

structure through route entry and exit? And what are the ultimate consequences

for consumer welfare and its geographic distribution across Europe?

To answer these questions, we develop and estimate a two-stage static game of

oligopoly competition. In the first stage, airlines endogenously choose their route

networks and flight frequencies. In the second stage, conditional on the established

network, they compete on prices. Our primary methodological contribution lies in a

novel, hybrid estimation strategy for the fixed costs of route operation. We first use

moment inequalities to set-identify the linear parameters of the fixed cost function,

following recent advances in the industrial organisation literature (Ho and Pakes

[2014]; Pakes et al. [2015]). We then, in a novel second step, estimate the full distri-

bution of the unobserved fixed cost shocks via maximum likelihood. This allows us

to draw a specific realisation of these shocks in a way that ensures our counterfactual

simulations begin from the actual observed network, lending significant credibility

to our policy analysis. Demand and marginal cost parameters are estimated using

established methods (Berry and Jia [2010]; Bontemps et al. [2023]).

Our counterfactual analysis simulates the impact of a carbon tax, implemented

through the EU Emissions Trading System (EU-ETS). The simulation finds a new
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network equilibrium using an iterative algorithm where airlines sequentially re-

optimise their route choices. Our key findings are fourfold. First, our estimates

reveal stark differences in the demand and cost structures of FSCs and LCCs, par-

ticularly in the valuation of hub airports and the underlying distribution of fixed

costs. Second, the impacts of a carbon tax are highly asymmetric: network adjust-

ments are concentrated amongst LCCs and smaller regional carriers, whilst large

FSCs with valuable and congested hubs prove remarkably resilient. Third, the pol-

icy induces a significant geographic redistribution of welfare. Central and Eastern

European countries benefit from intensified competition on shorter routes, while

remote regions like Iceland and Norway suffer from reduced connectivity. Finally,

we find that despite reducing airline profits, carbon pricing can be total welfare-

enhancing. The policy not only prices the environmental externality but also forces

a competitive reallocation of aircraft that improves allocative efficiency in an imper-

fectly competitive market, suggesting a potential ”double dividend”.

Literature and Contribution

This paper contributes to four distinct strands of literature. First, we build

on the rich body of work estimating structural models of airline competition. The

vast majority of this research, however, focuses on the U.S. market, where hub-and-

spoke networks and connecting traffic are central to competition (Bontemps et al.

[2023]; Yuan and Barwick [2024]; Aguirregabiria and Ho [2012]). Our focus on the

intra-European market is not merely a geographic shift; it necessitates a fundamental

change in modelling approach. With direct, point-to-point flights accounting for 94%

of passengers in our data, complex network spillovers are of second-order importance.

Instead, the critical institutional feature is the prevalence of binding slot constraints

at major airports. This motivates one of our key modelling innovations: we frame an
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airline’s choice not as a series of independent entry/exit decisions, but as a problem

of redeploying a fixed stock of aircraft—and their associated valuable slots—across

a set of feasible routes.

Second, we contribute to the small strand but growing literature on competition

in the European airline market. While existing studies have examined specific fea-

tures such as slot allocation (Marra [2024]), LCC subsidies (Bontemps et al. [2024]),

or mergers (Bergantino et al. [2024]), our paper provides the first integrated anal-

ysis of how the defining features of European competition—the FSC versus LCC

dynamic, and hub airports congestion—interact with environmental regulation to

shape market-wide outcomes. We also add to the literature on other slot constraints

(Park [2020]; Ciliberto and Williams [2014]; Forbes and Lederman [2009]; Argyres

et al. [2024]) by incorporating their effects structurally through aircraft utilisation

constraints, reflecting the reality that an airline exiting a route from a congested

hub must redeploy its aircraft to retain its valuable slot.

Third, we advance the literature on the economic impacts of carbon regulation.

While many studies on carbon pricing focus on environmental efficacy or policy de-

sign (Timilsina [2022]), we examine how such policies fundamentally reconfigure an

oligopolistic industry. Our approach is related in spirit to Ryan [2012], who studies

environmental regulation in the U.S. cement industry using a dynamic oligopoly

model. While a full dynamic model is computationally infeasible for the thousands

of city-pair markets in our setting, we adapt the core insight: environmental policy is

not just a cost shock, but a catalyst for changes in market structure, concentration,

and welfare. This paper is the first to apply this lens to the European airline indus-

try, quantifying the competitive fallout of its unique and stringent carbon policies.

Finally, we make a methodological contribution to the estimation of entry games.

While two-stage models are common, our hybrid estimation of fixed costs is novel.
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The existing literature listed above typically either ignores unobserved fixed cost

shocks in counterfactuals or relies solely on moment inequalities, which can only set-

identify parameters. By combining moment inequalities for the linear parameters

with a maximum likelihood estimation of the full shock distribution, we can point-

identify the group-specific means and variances of these shocks. This allows us to

then draw realisations of the shocks that perfectly rationalise the observed network

as the baseline equilibrium, which is missing in all previous literature. This step

is crucial for ensuring the accuracy and credibility of policy counterfactuals, as it

eliminates the ”baseline drift” that can undermine simulations in complex structural

models.

The remainder of this paper is structured as follows. Section 2 reviews the Eu-

ropean airline market and our dataset. Section 3 presents the two-stage model.

Section 4 discusses estimation and identification. Section 5 reports parameter es-

timates. Section 6 presents the counterfactual analysis of the EU-ETS. Section 7

concludes.

1.2 Background and Data

1.2.1 The Unique Structure of the European Airline Market

The Rise of European Low-Cost Carriers Following the deregulation of Euro-

pean aviation, low-cost carriers (LCCs) have fundamentally reshaped the continent’s

competitive landscape. Their market share surged from just 5.3% in 2001 to approx-

imately 35% by 2022. As Figure 1 illustrates, LCCs now consistently account for

nearly half of all intra-European passenger traffic. The scale of this transformation

is exemplified by Ryanair, which in 2023 carried 182 million passengers—more than
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any single full-service carrier (FSC) in Europe.1 The LCC sector itself is hetero-

geneous, comprising two main archetypes: subsidiaries of legacy FSC groups (such

as Vueling, Eurowings, and Transavia) and independent, ‘pure-play’ LCCs (such as

Ryanair, EasyJet, and Wizz Air). It is this latter group, with its distinct business

models, that has been the primary driver of market disruption.

Figure 1: Market Share for Different Types of Airlines

Full-service carriers (FSCs) and low-cost carriers (LCCs) operate according to

starkly different business models. First, a primary strategic divergence lies in net-

work architecture. Full-service carriers (FSCs) typically employ a Hub-and-Spoke

model, where the network is anchored by one or more major hubs—such as London

Heathrow for British Airways, Paris Charles de Gaulle for Air France, and Amster-

dam Schiphol for KLM. These hubs serve a dual purpose: they achieve economies of

1Statista.
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scale in ground operations and, critically, aggregate short-haul European traffic to

feed lucrative long-haul intercontinental services. In stark contrast, LCCs operate

decentralised Point-to-Point (P2P) networks, which offer direct flights between a

wide array of city pairs, providing greater routing flexibility.

The distinction is visually apparent in Figure 2, which contrasts the hub-centric

network of Air France-KLM with the diffuse, web-like structure of Ryanair. While

Ryanair maintains large operational bases at airports like London Stansted, these

do not function as connecting hubs for transfer passengers; their strategic role is to

serve large origin-destination markets, not to facilitate transfers, underscoring the

airline’s strict adherence to the P2P model.2

Second, cost structures differ markedly. FSCs incur higher per-passenger and

per-flight costs, driven by operations at expensive hub airports, lower fleet utili-

sation, and premium offerings like business class and meal services. According to

KPMG, the cost per available seat kilometre for LCCs (excluding fuel) is 20%–30%

lower than for FSCs,3 granting them a substantial pricing advantage.

Third, service levels and airport selection strategies diverge. LCCs ‘unbundle’

their product, earning a significant portion of revenue from ancillary fees for ser-

vices like baggage handling and seat selection.4 In contrast, FSCs traditionally offer

a more inclusive fare. This strategic bifurcation extends to airport choice, which is

particularly notable in Europe’s multi-airport metropolitan areas. FSCs typically

operate from large international hubs, while LCCs favour smaller, secondary air-

ports. London provides the clearest example across its six airports: Heathrow serves

2Ryanair operates de facto hubs at London Stansted and Dublin. However, these are primarily
used as operational bases for aircraft and do not function as international hubs in the FSC sense.
Their significance lies in serving large local markets rather than facilitating connecting traffic.

3KPMG.
4While FSCs increasingly adopt similar pricing practices, they are still generally perceived as

offering higher service quality. See: Daily Telegraph.
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Air France-KLM Group Route Map

Ryanair Route Map

Figure 2: Comparing Route Map Between Full-service and Low-cost Airlines

almost exclusively FSCs as the principal international hub; Gatwick accommodates

both; Stansted and Luton are major LCC bases; and the City and Southend airports

cater to specialised segments.5 Although Heathrow is the most connected, its severe

5London City mainly serves business routes (e.g., London–Paris or London–Frankfurt), while
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capacity constraints and high airport charges make it economically unattractive to

the LCC business model.

To formalise these strategic distinctions, we embed the defining characteristics of

FSC and LCC business models directly within our structural framework. Differences

in network formation are captured through constraints on feasible route entries,

while variations in service quality and airport choice are modelled via airline- and

airport-specific fixed effects. Finally, divergent operational efficiencies are reflected

in differentiated cost structures. This specification is crucial for identifying the

heterogeneous strategic responses of each airline type to a uniform carbon regulation.

Binding Slot Constraints in European Airports Europe is home to some

of the world’s most congested airports. Several major hubs—most notably London

Heathrow—have operated at or near full capacity for decades, yet expanding this

infrastructure faces significant barriers, including stringent regulatory constraints,

political opposition, and financing challenges (ACI Europe). Consequently, airline

operations are governed by a rigid system of slot controls. A slot grants an airline

the right to use a runway for takeoff or landing during a specific time window, and its

allocation is critical in capacity-constrained environments. The scale of this issue is

unique to Europe, which accounts for nearly half of all IATA Level-3 slot-coordinated

airports worldwide—those where demand consistently exceeds capacity.6

The allocation of these scarce slots is a contentious issue in European aviation

policy. The current system, established in 1993, is built on a “grandfathering”

principle, where an airline retains its historical slots provided it meets a minimum

Southend is dominated by charter airlines.
6IATA classifies airports into three categories: Level-1 airports have no significant congestion;

Level-2 airports may require coordination; Level-3 airports consistently face demand that exceeds
available capacity. This system is widely used to measure airport congestion.

30



usage threshold—typically 80% in a given season.7 This “use it or lose it” rule creates

powerful incumbency advantages, particularly for established national carriers who

can maintain control over valuable slot portfolios. The immense strategic value

of these slots has led to perverse incentives, most notably the operation of near-

empty “ghost flights” during periods of low demand, flown solely to satisfy usage

requirements and prevent the forfeiture of a prized asset.8

Figure 3: Proportion of Passengers Travelling from/to at Least one Hub

Rather than proposing specific reforms to the EU’s slot allocation system (see

Marra [2024] for a comprehensive treatment), this paper incorporates the binding

nature of slot constraints directly into our modelling framework. We treat slot avail-

ability as a key constraint that limits the set of feasible frequency adjustments an

7European Union.
8This phenomenon was widely reported during the pandemic. See: Forbes.
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airline can make when entering new routes. The strategic importance of these air-

ports varies significantly by business model, a pattern illustrated in Figure 3, which

shows that passengers flying with full-service carriers are far more likely to travel

through slot-controlled airports than their low-cost counterparts. This underscores

the fundamental trade-off these airports present: they offer superior connectivity

and infrastructure but impose higher operating costs and congestion. We explore

precisely how these airport characteristics shape airline revenues, costs, and network

expansion strategies for each carrier type in Sections 3 and 4.

1.2.2 Data

A significant challenge in studying the European airline market is the limited

availability of public data, in stark contrast to the U.S. market where sources like

the DB1B dataset are readily accessible. To overcome this, our analysis is built

upon a proprietary dataset from Sabre Market Intelligence,9 a global distribution

system that provides travel reservation and pricing tools for many of Europe’s largest

airlines, including IAG Group, Air France-KLM Group, Lufthansa Group, EasyJet,

and Wizz Air. Because this system is actively used by airlines for fare optimisation,

it offers highly accurate, itinerary-level pricing information—a critical component

for demand estimation that is typically absent from public administrative datasets.

The raw Sabre data are organised at the itinerary level, defined as a specific

airline’s service between an origin and destination airport. Each observation includes

key characteristics such as average airfare (price), flight frequency, travel time, and

passenger volume. We make two key processing decisions. First, given that only

6% of European passengers in our sample travel on connecting flights, we restrict

our analysis to the direct flight market. Second, following the methodology of Yuan

9Sabre.
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and Barwick [2024] and Bontemps et al. [2023], we aggregate directional itineraries

(e.g., A to B and B to A by the same airline) into a single non-directional route.

This aggregation reflects the operational reality that airlines typically operate return

services with nearly identical prices and frequencies, allowing us to sum passenger

counts across both directions.

Our sample period comprises the four quarters of 2019. We select this year as our

baseline because it represents the most recent period of ‘normal’ market conditions

before the profound structural disruption caused by the COVID-19 pandemic. As

of our analysis, data reflecting a full post-pandemic recovery are not yet available,10

making 2019 the most suitable reference for a stable equilibrium from which to

analyse policy-induced changes to route networks.

Finally, we supplement the Sabre data with two external sources: metropolitan

population data from Eurostat,11 which we use to construct our market size variable,

and airport-to-airport surface distances obtained via the Google Distance Matrix

API.

Market Definition A critical modelling choice in our analysis is the definition

of a market. We define each market as a city-pair, representing the origin and

destination metropolitan areas, observed quarterly in 2019. We use city-pairs rather

than airport-pairs for two primary reasons related to competitive dynamics and

consumer behaviour.

First, a city-pair definition is essential to capture the true extent of competition

between full-service and low-cost carriers. LCCs frequently operate from secondary

airports within a major metropolitan area to minimise fees and operational costs—a

10Indeed, it is debatable whether the European airline market has fully returned to its pre-
pandemic structure and performance.

11European Union.
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strategy exemplified by their near-total absence from London Heathrow and strong

presence at airports like Gatwick, Luton, and Stansted. Defining markets at the

airport-pair level would therefore fail to capture the direct substitution that occurs

between an FSC at a primary hub and an LCC at a secondary airport serving the

same urban catchment area.

Second, consumers exhibit distinct preferences for different airports within the

same city. Primary hub airports typically offer superior ground services and pub-

lic transport connections, but are often more congested. Conversely, non-hub air-

ports may be located farther from the city centre, imposing additional ground travel

time. To capture this variation in consumer utility, our demand model incorporates

dummy variables for all major hub airports, allowing us to estimate the value con-

sumers place on hub status.

To implement this, we adopt Eurostat’s official definition of “metropolitan re-

gions” to delineate city boundaries.12 This classification provides a robust and

economically meaningful definition of a city, accounting for dimensions such as pop-

ulation density, commuting flows, and transport integration. This approach ensures

that all airports located within a given pair of metropolitan regions are correctly

treated as effective substitutes within the same air travel market.

Our definition captures not only well-known multi-airport systems like Greater

London and the Paris metropolitan area, but also less obvious, economically in-

tegrated regions such as the Düsseldorf/Dortmund/Cologne corridor in Germany’s

Ruhr area. It also includes cross-border metropolitan regions with integrated trans-

port systems, such as Copenhagen/Malmö and Vienna/Bratislava. For our analysis,

we include all metropolitan areas with populations exceeding 850,000, which collec-

tively account for over 90% of all European air travel.

12European Union.
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Hubs, Airline Aggregation, and Slot Constraints Hub airports are central

to the operations of full-service carriers (FSCs). Table 1 lists the parent airline

groups, their associated operating carriers, and designated hub airports, using the

industry-standard IATA codes employed throughout this paper.

Parent Airlines Hubs
BA British Airways, Iberia, Aer Lingus, Vueling LHR, MAD, DUB, BCN, FCO
AF Air France, KLM, Transavia CDG, AMS

LH
Lufthansa, Austria Airline FRA, MUC, ZRH

Swiss, Brussels Airline, Eurowings VIE, BRU
SK Scandinavian Airlines CPH, ARN, OSL
AY Finnair HEL
A3 Aegean Airlines ATH
LO LOT Polish Airlines WAW

Note: The parent airline’s code is assigned to the largest airline within the parent company.
Hub airports represent the central hubs for all airlines under the same parent company.

Table 1: List of Parent-Constituted Airlines-Hubs

In this study, we define airlines at the parent company level rather than at the

level of individual operating carriers. For instance, ‘BA’ represents the International

Airlines Group (IAG), which encompasses not only British Airways but also other

major carriers such as Iberia (Spain’s flag carrier), Aer Lingus (Ireland’s national

airline), and the low-cost subsidiary Vueling. Consequently, the hub network at-

tributed to ‘BA’ includes the primary hubs of these carriers, such as Madrid (MAD)

and Dublin (DUB), in addition to London Heathrow (LHR).

This parent-level aggregation is motivated by two factors. First, it reduces the

number of distinct airline entities from over 35 to a computationally tractable 14,

simplifying both estimation and empirical identification. Second, it reflects the

economic reality that carriers within the same parent group typically coordinate

operations through code-sharing and complementary routes, behaving more like a

unified strategic actor than as separate competitors.
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As previously discussed, Europe is home to many of the world’s most congested

airports. London Heathrow, for instance, has operated at over 98% of its runway

capacity for more than two decades, with expansion severely limited by a combina-

tion of local opposition, land constraints, environmental concerns, and the political

influence of incumbent airlines seeking to protect their market power.13

To incorporate this critical operational reality, we classify all major hub airports

used by FSCs—as defined in Table 1—as slot-controlled. This classification is empir-

ically grounded, as all 18 of these airports are designated as Level 3 congested under

the IATA system. We then operationalise this constraint in both our estimation

and counterfactual exercises by limiting the ability of airlines to alter their existing

route networks or increase frequencies, as detailed in the subsequent sections.

Aircraft Choice and Utilisation While aircraft selection is a key strategic lever

for airlines, we do not explicitly model this dimension of choice. Our focus on

intra-European routes justifies this simplification, as this market is overwhelmingly

dominated by two highly comparable aircraft families: the Boeing 737 and the

Airbus A320. These single-aisle aircraft exhibit similar characteristics in seating

capacity, fuel efficiency, and emissions per kilometre. The use of larger, twin-aisle

aircraft is rare and economically unviable for these short-haul operations,14 while

LCCs further homogenise their fleets by operating a single aircraft type to maximise

efficiency. Given this relative uniformity, we abstract from aircraft heterogeneity.15

A more salient constraint in the European context is aircraft utilisation, which

directly limits an airline’s ability to adjust flight frequencies. Two features of the

13For further discussion, see European Union.
14An exception is the occasional use of A350s on routes such as London–Helsinki.
15Although variants within aircraft families—such as the A319, A320, and A321—exist on intra-

European routes, they usually share the same engine type and have similar fuel consumption.
Newer, more fuel-efficient models like the A320NEO and B737MAX were still relatively rare in
2019.
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market in our 2019 sample period are critical. First, European carriers operate with

high levels of fleet efficiency, meaning most aircraft were already near full operational

capacity, leaving little slack to increase total network frequency.16 Second, the con-

tinent’s airlines were not undergoing significant fleet expansion during this period.

Given the long lead times for aircraft orders—typically three to five years—rapid

capacity growth was not feasible, and no large-scale orders were pending delivery.

These realities of a fixed fleet size and high utilisation rates motivate a key feature

of our modelling framework: we treat network adjustments not as unconstrained

entry and exit decisions, but as a problem of aircraft redeployment. Consequently,

if an airline exits a route, we assume the freed aircraft is reallocated to another

profitable opportunity within its feasible network.

We formally define an airline’s set of feasible redeployment routes based on two

conditions: (1) the airline must already maintain a presence in both endpoint cities,

and (2) the route must already be served by at least one other airline in the market.

The first condition reflects the operational incentive to expand within an existing

network, leveraging established infrastructure and personnel. This constraint also

captures a key structural difference between business models: FSCs, with their

hub-and-spoke networks, serve fewer cities and tend to add spokes from their hubs,

whereas LCCs’ more diffuse point-to-point presence gives them a combinatorially

larger set of feasible new routes. The second condition ensures that we only consider

routes with demonstrated underlying demand, avoiding economically implausible

connections between remote or low-traffic locations. Together, these constraints

define a realistic choice set for aircraft redeployment that shapes the simulated

network adjustments and resulting profit outcomes.

16See the report from Eurocontrol.
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Summary Statistics Table 2 presents the summary statistics for our 2019 sam-

ple, which reveals a highly concentrated market structure. The industry is domi-

nated by 14 parent airline groups, with the six largest—the three primary full-service

carriers (IAG, Air France-KLM, and Lufthansa Group) and the three primary low-

cost carriers (Ryanair, EasyJet, and Wizz Air)—collectively accounting for 87% of

all intra-European passenger traffic. Competition is widespread, as only 4,039 of the

11,292 total itineraries operate on monopoly routes, indicating that most markets

feature multi-product competition. The central role of hubs is also evident, with

nearly 22% of all itineraries involving a flight to or from a designated hub airport.

A typical route in our sample has an average fare of approximately $86, a frequency

of roughly one flight per day, and a travel distance of about 1,400 kilometres (a flight

duration of just under two hours). In total, the routes in our 2019 sample served

over 350 million passengers.

Table 3 further quantifies the strategic divergence in network structure by pro-

viding key metrics for hub cities. While LCCs do not operate formal hubs in the

traditional sense, we identify the two most connected cities in each LCC’s network

for comparative purposes. Panels (a) and (b) reveal that FSCs maintain far greater

connectivity from their hubs and operate at significantly higher frequencies, par-

ticularly on dense business routes. For instance, Lufthansa Group (LH) operates

approximately 40 daily flights between its hubs in Munich and Düsseldorf, while

IAG (BA) operates 35 between Madrid and Barcelona.

This contrast is starkly illustrated in Panels (c) and (d), which measure network

concentration. Nearly 70% of Air France–KLM’s entire route network touches its

hubs in Paris or Amsterdam, a clear empirical signature of a Hub-and-Spoke model.

In contrast, LCCs exhibit much lower concentration levels, with their routes more

evenly distributed across a wide range of cities, reflecting their decentralised Point-
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(a) Sizes:
Number of firms 14

Number of products (itineraries) 11292
Number of markets 7025

Number of the hub itineraries 2432
Number of monopoly itineraries 4039

Number of city pairs 2003
Number of passengers (1 million) 354.0

Number of quarters 4
(b) Market shares by airline (excl. outsude option)

BA 0.16
AF 0.09
LH 0.12

FR (LCC) 0.25
U2 (LCC) 0.21
W6 (LCC) 0.04

Other 0.13
(c) Demand and cost variables Mean St.Dev

Fare (100 USD) 0.86 0.57
Frequency (Daily) 0.95 1.74
Distance (1,000 km) 1.38 0.73

Market Size (1 million) 2.82 2.01
Product Shares 1.48e-02 2.40e-02

(d) Market level statistics Mean St.Dev
Number of products 2.07 1.11

Average Fare in Similar Markets 0.86 0.15

Note: This table presents key summary statistics for the sample drawn from the four quarters
of 2019. Hub itineraries are defined as those where at least one of the origin or destination
airports is classified as a hub airport. Market shares in panel (b) exclude outside options, such
as individuals choosing not to travel or opting for alternative modes of transportation. Fares
are calculated as the average fare across all tickets for a specific itinerary. Comparable markets
used to compute average fares are defined as those with similar distances (±10%).

Table 2: Summary Statistics

to-Point strategy.17

17Wizz Air shows a relatively high concentration rate, primarily because it operated a much
smaller network in 2019 compared to the other airlines. This is also reflected in its smaller market
share. Since then, Wizz Air has expanded significantly, and its hub concentration is now closer to
that of Ryanair and EasyJet.
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Airlines Top Hub Hub Index Freq Second Hub Hub Index Freq

(a) Full service:
BA Madrid 60 2.3 London 56 2.6
AF Amsterdam 73 2.1 Paris 52 1.9
LH Frankfurt 66 3.0 Munich 64 4.0

(b) Low Cost:
FR Dublin 61 0.9 London 56 1.2
U2 London 61 1.8 Geneva 51 0.7
W6 Budapest 37 0.4 Bucharest 27 0.4

Airlines Hub1 Concentration Hub2 Concentration

(c) Full service:
BA Madrid 14% London 25%
AF Amsterdam 36% Paris 37%
LH Frankfurt 19% Munich 18%

(d) Low Cost:
FR Dublin 7% London 7%
U2 London 12% Geneva 9%
W6 Budapest 18% Bucharest 14%

Note: This table presents key summary statistics for each airline’s hub cities and their charac-
teristics. The Hub Index represents the total number of cities served by the hub, indicating its
level of connectivity. Freq refers to the average frequency of all itineraries to/from a specific
hub. Concentration refers to the proportion of itineraries to/from this hub city relative to the
total number of itineraries.

Table 3: Summary Statistics of Hub Cities

Figure 4: Number of Airlines in Each Market
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Several key features of the market’s competitive structure are illustrated in Fig-

ures 4 through 8. The overall level of competitive intensity is high; as shown in

Figure 4, nearly half (46%) of all markets are served by more than one airline group.

This has a clear disciplinary effect on pricing (Figure 5), where average fares decrease

as the number of competitors increases, consistent with standard oligopoly theory.

Fares in monopoly markets are not only higher but also exhibit greater dispersion.

The data also reveal stark strategic differences between carrier types. FSCs oper-

ate, on average, nearly three times as many routes involving a hub as LCCs (Figure

6). This hub-centric strategy is also reflected in their dynamic network adjustments

(Figure 7): FSCs frequently alter their portfolio of hub-related routes in response to

seasonal demand, while LCCs rarely do, a pattern likely driven by slot constraints at

major airports. Finally, Figure 8 highlights how these different strategies translate

into market share. While LCCs like Ryanair (FR) and EasyJet (U2) lead in terms

of passenger volume, FSCs such as IAG (BA) and Lufthansa Group (LH) dominate

when measured by revenue and frequency, reflecting their focus on premium services

and dense schedules.
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Figure 5: Average Fare vs. Number of Airlines in Each Market
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Figure 6: Number of Routes Linking at Least One Hub Airport
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Quarterly Numbers of Routes Change

Quarterly Numbers of Routes Change for Hub Airports

Figure 7: Comparing Quarterly Numbers of Routes Change
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Figure 8: Market Share Analysis

1.3 Model

This section introduces a static model for airlines’ entry, flight frequency, and

pricing decisions similar to Yuan and Barwick [2024] and Bontemps et al. [2023].
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The model has two stages. In the first stage, airlines simultaneously decide routes

to enter, thereby shaping the overall flight network. If an airline enters, it also

determines the flight frequency. In the second stage, airlines compete on prices to

attract customers.

The total cost of operating a route in the airline industry consists of three main

components: airport costs, flight costs, and passenger-related costs (Ciliberto et al.

[2021]). Airport costs include fees for landing, parking, terminal access, and security,

as well as ground handling expenses at both origin and destination airports. Flight

costs refer to per-flight expenditures such as fuel, pilot salaries, and wages for flight

attendants. Passenger costs cover per-passenger items like ticketing, in-flight cater-

ing, insurance, and liability charges. Beyond these recurring operational expenses,

airlines also incur a one-time entry cost when launching a new route. This includes

expenses related to hiring personnel, coordinating logistics, and marketing the new

service.

As previously discussed, Europe is home to some of the most congested airports in

the world—an issue that carries important implications for both consumer behaviour

and airline operations. On the demand side, passengers often favour flights through

major hub airports, influencing how airlines design their networks. On the cost

side, congestion drives up landing fees and other charges, raising both per-passenger

and per-flight operating costs. In addition, regulatory constraints—most notably

slot control policies—limit airlines’ ability to freely enter or exit congested markets.

These constraints do not affect all carriers equally: their impact varies by business

model, shaping the strategic responses of full-service and low-cost airlines in distinct

ways.

All these factors play a crucial role in understanding airline competition and

route entry decisions. We will explore them in greater detail in this section and
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further elaborate on them in the next section, where we specify the estimation and

identification approach.

1.3.1 Model Setting: Demand and Price Competition

In the second stage, the route network and frequencies are fixed. There are

m ∈ M markets in total, each defined by a city-pair, which specifies the origin and

destination cities for a given quarter of the year. We adopt the city-pair definition

rather than the airport-pair for the reasons discussed earlier.

Each product j ∈ Jm in market m represents an airline itinerary in a given

quarter of 2019, specifying an airline f ∈ F operating from airport o ∈ O in city

a ∈ A to airport d ∈ D in city b ∈ B. We consider itineraries in a one-directional

manner, meaning that the origin and destination airports are not distinguished. This

approach is commonly adopted in the literature (Ciliberto et al. [2021], Bontemps

et al. [2023]). For instance, in the London–Paris market, examples of products

include British Airways flying from Heathrow to Charles de Gaulle, Air France from

Heathrow to Orly, and EasyJet from Gatwick to Charles de Gaulle. Airlines are

defined at the parent company level.

As our study focuses on intra-European18 flights, we only consider direct flights.

Short-haul indirect flights are uncommon in Europe for both full-service and low-cost

carriers, unlike in the United States, where previous studies primarily examine net-

work spillover effects from indirect flights across the route network. In each market,

airlines face product-specific demand, incur a per-passenger marginal cost, and set

prices to maximise profits under complete information and Bertrand competition.

The following sections detail the demand and supply settings.

18Flights to and from Armenia, Azerbaijan, Georgia, Belarus, Moldova, Serbia, Ukraine, Russia,
and Turkey are excluded due to their non-compliance with current European aviation policy, despite
their geographical location in Europe.
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Demand: Consumers make a discrete choice from all available products in a

given market to maximise their indirect utility. We adopt a nested logit model,

following Bresnahan [1987], Berry [1994], and Berry and Jia [2010]. In this model,

all air travel products form one nest, while all other options—including not travel-

ling or using alternative transport modes such as road, high-speed rail (HSR), and

ferry—form another.

The indirect utility received by individual passenger i from choosing product j

in market m for air travel (inside goods) is given by:

Uijm = βXjm − αpjm + ξjm + vim(λ) + λϵijm (1)

In (1), Xjm is a vector of product characteristics and pjm is a scalar of the average

fare for an itinerary. β and α are vector and scalar respectively. ξjm is the struc-

tural unobserved (to researchers) error and it can potentially be correlated with

prices. λ is the nesting parameter which defines the extent of the correlation among

consumer’s idiosyncratic shock within a nest. Finally, ϵijm should follow a type I

extreme value distribution.

We include in Xjm a range of product characteristics. First, we incorporate the

logarithm of flight frequency for each itinerary. Higher frequency offers consumers

more travel options and greater flexibility, allowing them to adjust their plans in

response to unexpected events.

Second, we include fixed effects for airlines and cities, as is standard in the

literature. Given the prevalence of multi-airport systems in European metropolitan

areas, passengers may exhibit distinct preferences for different airports within the

same city. To capture this, we also include fixed effects for major hub airports.

Third, we include an airline × airport interaction term for selected major hub
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airports and their respective national carriers. This fixed effect is important be-

cause major European hubs serve not only intra-European passengers but also a

substantial volume of intercontinental transfer passengers who fall outside the scope

of our analysis19. We include this additional fixed effect to control for the influence

of intercontinental layover traffic on observed demand patterns at key hub airports.

Finally, we include seasonal fixed effects to capture the variation between the

summer peak season and the winter off-peak season.

The utility for the outside good is normalised as: U0m = vim(λ) + λϵi0m. Then,

the market share for product j in market m at nest g is:

sjm|g(Xm,pm, ξm, θd) =
exp((βXjm − αpjm + ξjm)/λg)∑

k∈g exp((βXkm − αpkm + ξkm)/λg)
(2)

And the probability of choosing a nest g is:

smg(Xm,pm, ξm, θd) =
(
∑

k∈g exp((βXkm − αpkm + ξkm)/λg))
λg

1 + (
∑

k∈g exp((βXkm − αpkm + ξkm)/λg))λg
(3)

In equation (2) and (3), Xm := (Xjm : j ∈ Jm), pm := (pjm : j ∈ Jm),

ξm := (ξjm : j ∈ Jm), θd := (β, α). Jm is the product set in market m and λg is

the nesting parameters for nest g. Given that we only have two nests, then nest

g just includes all products excluding the outside good. The unconditional choice

probability for product j in market m is:

sjm(Xm,pm, ξm, θd) = sjm|g · smg (4)

19Specifically, international transfer passengers travelling on a single itinerary with a short
layover are not captured in our dataset and are excluded from the demand estimation. However,
some travellers choose to extend their stopover to visit the hub city itself. In such cases, the
intra-European leg of the journey is included in our demand sample.
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The market size in a city-pair is the geometric mean of the two end points (Berry

and Jia [2010]):

MSm = exp(
ln(popa) + ln(popb)

2
) (5)

where popa and popb are the population of two endpoints. The advantage of using

the geometric means instead of the absolute mean is that it balance large and small

cities in a more moderate way.

Supply Airlines simultaneously set the prices for all their offered products in

each market m to maximise the variable profits, under complete information:

πf =
∑
m∈M

∑
j∈Jfm

(pjm −MCjm) · sjm ·MSm (6)

where Jfm is the observed set of products offered by firm f in market m and MCjm

is product j’s per-passenger marginal cost. Without any constraint, airline f ’s

equilibrium pricing choices are determined by the first order condition of maximising

the variable profits for each product j ∈ Jfm:

pm − cm = ∆−1
m sm (7)

Equation (7) is the vector-matrix form of first order conditions in a specific mar-

ket m where pm, cm, and sm representing three Jm × 1 vectors of prices, marginal

costs, and market shares respectively. ∆m is a Jm × Jm intra-firm (negative, trans-

posed) demand derivatives:

∆m = Hm ⊙
∂s′m
∂pm

(8)

Where Hm is the market level ownership matrix where Hmjk equals one if product

j and k belong to the same airline. We further decompose the marginal cost as a
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function of observed and unobserved characteristics:

MCjm = θsWjm + ωjm (9)

where Wjm is a vector of marginal cost shifters that are observed by the researcher

and ωjm represents the marginal cost shifters that are unobersved by the researcher.

As on the demand side, we include various product characteristics inWjm. First,

we incorporate distance and its squared term to account for the impact of route

length on crew labour costs for serving an additional passenger. Second, we include

the log of flight frequency, as itineraries with higher frequency typically have lower

load factors, increasing the marginal cost of accommodating an extra passenger.

Third, consistent with the demand-side specification, we include airline, city, and

airport dummies to capture fixed effects. Finally, we incorporate seasonal fixed

effects to account for cost variations between peak and off-peak travel periods.

1.3.2 Model Setting: Entry and Frequency

In the first stage, each airline simultaneously determines its route network and

chooses the flight frequency for every active route in a given quarter. When an

airline operates in a market, it incurs a fixed cost that includes operational expenses

and entry-related adjustment costs. Let Afj denote an indicator for whether airline

f operates product j ∈ Gft, where Gft is the set of all feasible routes for airline f

in quarter t. A route is defined as a unique tuple (Cityx, Cityy, Airportx, Airporty),

where Cityx and Cityy are the endpoint cities and Airportx and Airporty the corre-

sponding airports. Routes are treated as unidirectional since directional attributes

are nearly identical in the data: airlines typically return aircraft to their origin af-

ter a flight, particularly full-service carriers. Thus, London–Paris–LHR–CDG and
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Paris–London–CDG–LHR are considered the same route. Finally, Freqfj denotes

the frequency of product j operated by airline f .

Entry and exit are defined at the product level (Quarter–Airline–City Pair–

Airport Pair), not at the market level (Quarter–Airline–City Pair). This distinction

reflects the multi-airport structure of many European metropolitan areas. As noted

earlier, full-service and low-cost carriers often operate from different airports within

the same city. Modelling entry and exit only at the market level would obscure this

distinction, which is already incorporated in the demand estimation via airport-

specific fixed effects.

Airlines incur fixed costs when actively operating a route. The total fixed cost

of airline f in quarter t is the sum of fixed costs across all active routes:

FCft =
∑
j∈Gft

FCj · Afj. (10)

We further decompose FCj as:

FCj(Zj, θfc;κj) = θfcZj + κj, (11)

where Zj denotes route characteristics affecting fixed costs. First, we include a

‘frequency × distance’ term to capture operating costs: longer and more frequent

routes incur higher fuel, maintenance, and labour costs. Second, we include market

size in Zj, since entering larger markets typically requires greater investment. Unlike

much of the literature, we do not include a constant term in Zj to represent the pure

entry effect, because our difference-based moment inequalities cannot jointly identify

both the lower and upper bounds of such an intercept.

Nevertheless, the pure entry effect remains important. Rather than estimate a
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constant directly, we model the fixed cost shock κj as normally distributed:

κj ∼ N (µg, σ
2
g). (12)

Here, shocks vary across groups g, each with its own mean and variance. The

mean can be interpreted as the pure entry effect. We define groups as follows: the

three largest full-service airlines (BA, AF, LH), the three largest low-cost carriers

(FR, U2, W6), and a pooled group of smaller airlines. For the three full-service

carriers and the pooled group, we further distinguish between routes involving at

least one of the carrier’s hubs and routes without hubs, reflecting the special role of

hubs in generating revenue20. In total, this yields 11 groups, each with a distinct

mean and variance. These additional distributional assumptions on fixed cost shocks

make our model more flexible than approaches in the existing literature, which

typically do not impose such structure. We discuss these distributional assumptions

in Section 4, where we compare them with prior work and explain how we estimate

the group-specific means and variances.

1.3.3 Information Structure and Equilibrium Concept

Information Structure: In the first stage, airlines simultaneously decide whether

to enter a route and, if so, determine the corresponding frequency. Each airline has

perfect information on product characteristics Zj, Xjm, and Wjm, which correspond

to fixed costs, demand, and marginal costs, respectively. They also know the pa-

rameter values θfc, θd, and θs. Consequently, when making entry and frequency

decisions in the first stage, airlines are aware of the linear part of values of fixed

costs, marginal costs, and demand.

20This may include loyal business travellers, international transfer passengers, and economies
of scale in labour and maintenance.
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The model includes one set of fixed cost shocks κj in the first stage, and two sets

of shocks in the second stage: demand shocks ξjm and marginal cost shocks ωjm. In

the second stage, it is standard to assume that airlines observe the realised values of

ξjm and ωjm and then set prices optimally. However, we assume that airlines only

know the distributions of demand and marginal cost shocks, not their realisations.

This timing assumption follows prior work, including Aguirregabiria and Ho [2012],

Sweeting [2013], Eizenberg [2014], and Yuan and Barwick [2024], where firms learn

the true values of demand and marginal cost shocks only after committing to entry.

In addition, airlines are assumed to have complete information on the set of

fixed cost shocks κj for all products j in a given quarter. This assumption is consis-

tent with the strand of literature using moment inequalities to estimate fixed cost

parameters21.

Equilibrium Concept: The equilibrium of this two-stage game is a Subgame

Perfect Nash Equilibrium (SPNE). We now describe the optimisation problem for

each airline in quarter t:

• First stage: Given the optimal route networks of competitors A∗
−ft := (A−fj :

j ∈ G−ft), the frequencies of competitors’ products Freq∗
−ft := (Freq−fj : j ∈

G−ft), the complete set of fixed cost shocks κ := (κj : j ∈ Gft, ∀f), and the

optimal second-stage pricing profile p∗
t := (p∗jm : j ∈ Jft,m ∈ M, ∀f), airline

f chooses its route network A∗
ft and frequencies Freq∗

ft to maximise expected

profit:

21Sabal [2025] assumes that fixed cost shocks are private information across firms, which implies
conditional independence. However, his context is the automobile industry, where the fixed costs
of developing new models are likely private and independent across products. By contrast, in the
airline industry, fixed cost shocks are widely recognised as common knowledge among competitors
and are typically correlated rather than conditionally independent.
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(A∗
ft,Freq

∗
ft) = argmax

Aft,Freqft

{
Eξ,ω

[
πf (Aft,Freqft,p

∗
ft(ξ, ω); θd, θs |A∗

−ft,Freq
∗
−ft,p

∗
−ft(ξ, ω))

]
−FCft(Aft,Freqft, κ; θfc)

}
.

(13)

In equation (13), we omit the arguments Freqft and Freq∗
−ft in p∗

t to simplify

notation. The choicesAft and Freqft also determine the product attributes Zj,

which enter the fixed cost function. In equilibrium, condition (13) must hold

for all airlines. Expectations are taken over the unobserved shocks ξ and ω,

which are not realised until after entry. In practice, we independently draw 36

pairs of (ξ, ω) for each Quarter–Airline–Route from the empirical distribution

of recovered shocks on observed routes. These draws are stored and reused

in counterfactual simulations to ensure consistency between estimation and

counterfactual analysis.

• Second stage: Airlines compete on fares in each market following Bertrand-

style competition. In market m, given the active airlines’ frequencies from the

first stage Freq∗
m := (Freqfm : f ∈ F ) and competitors’ pricing strategies

p∗
−fm(ξm, ωm), where ξm and ωm are the realised demand and cost shocks for

all products in m, airline f ’s optimal pricing strategy solves:

p∗
fm(ξm, ωm) = argmax

pfm(ξm,ωm)

πfm(Freq
∗
m,pfm(ξm, ωm); θd, θs |p∗

−fm(ξm, ωm)).

(14)

Airlines may operate multiple products in the same market due to multi-

airport structures. In equation (14), πfm denotes total profits from all products

of airline f in market m. Unlike in (13), no expectation is taken since shocks
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are realised in the second stage. Equation (14) must hold for all airlines in all

markets in equilibrium.

The existence and uniqueness of equilibrium in the second-stage pricing game are

established by Nocke and Schutz [2018] for multi-product nested logit models. By

contrast, equilibrium in the first-stage entry game is not guaranteed to exist or be

unique. As noted by Bontemps et al. [2023] and Yuan and Barwick [2024], multiple

equilibria A∗ may arise due to spillovers in demand, marginal costs, and fixed costs.

Following standard practice, we assume the existence of at least one equilibrium.

Crucially, our moment inequality approach to estimating fixed costs does not require

solving for the industry equilibrium, allowing us to sidestep the issue of multiplicity.

We revisit the equilibrium concept when discussing counterfactual simulations in

later sections.

1.4 Identification and Estimation Strategies

Endogenous Entry: Route network choices and flight frequencies directly af-

fect the indirect utility of itinerary selection in the second stage. This relationship

creates a fundamental challenge in the product entry literature: firms endogenously

select markets based on anticipated private gains. To address this issue, Ciliberto

et al. [2021], following Ciliberto and Tamer [2009], simultaneously estimate entry and

pricing decisions whilst allowing for correlation between cost and demand shocks.

These authors assume a joint normal distribution for all shocks—fixed cost, marginal

cost, and demand—and estimate the joint variance-covariance matrix using a pro-

bit approach. Alternatively, Aguirregabiria and Ho [2012] and Yuan and Barwick

[2024] assume firms realise demand and marginal cost shocks only after market en-

try. Rather than imposing specific distributional assumptions on fixed cost shocks,
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they exploit revealed preference arguments to construct moment inequalities for set

estimation of fixed cost parameters.22 In practice, instruments are introduced to

eliminate fixed cost shocks when constructing moment inequalities.

Our estimation approach synthesises both methodologies. We employ IV-moment

inequalities to set-estimate the linear parameters θfc for frequency × distance and

market size. However, given that our deviations involve redeploying aircraft to ex-

isting routes, we can only estimate terms that vary across alternative routes. The

constant term cannot be estimated as it cancels on both sides of the inequality. We

therefore impose distributional assumptions on fixed cost shocks (described in Sec-

tion 3) and estimate their mean and variance directly from the likelihood of revealed

preference inequalities. Notably, airlines maintain complete information on all fixed

cost shocks, preserving the arguments for handling multiple equilibria in moment

inequality estimation. Whilst our estimation approach to fixed cost shock’s distri-

bution resembles Ciliberto et al. [2021], our estimation focuses on fitting residuals

to the most appropriate distribution rather than solving endogenous entry problems

under incomplete information.

There are several reasons to impose a distributional assumption on the fixed cost

shocks. First, because Zj contains no constant term, the mean of the shocks is not

expected to be zero. This mean has a clear economic interpretation: it captures

the average pure entry cost together with any unexplained components of airline

net profits. Second, we need to draw fixed cost shocks from the estimated distri-

bution to ensure that all revealed-preference inequalities hold, which is particularly

important for counterfactual analysis. Ignoring the fixed cost shocks, as in some

studies, would generate a large number of Quarter–Airline–Route deviations under

the estimated θfc from moment inequalities. This would further distort the coun-

22See also Pakes et al. [2015], Ho and Pakes [2014], and Houde et al. [2023].
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terfactual results because the benchmark network would deviate substantially from

the observed network. We provide further details in Section 6.

Choice Set: Our approach differs fundamentally from the existing entry lit-

erature. In most studies, airlines enter a route if the expected profit is positive

and exit if it is negative. This reduces the entry problem to independent binary

choices across all available routes, allowing standard logit or probit models to be

applied. We do not believe this binary setting fits the European airline market. As

discussed in earlier sections, the key resource constraints are aircraft availability and

slot capacity at congested airports. This means airlines cannot freely choose flight

frequencies because they may lack sufficient aircraft or secured slots.

The existing literature either abstracts entirely from frequency decisions or treats

frequency decision as an unconstrained problem to maximise expected profit, both of

which are unrealistic in the European context. Instead, for every observed Quarter–

Airline–Route combination, we assume the choice set consists of redeploying all

aircraft used on that route (i.e., the total frequency) to any route in the airline’s

feasible set23, plus an exit option. Hence, rather than making independent binary

entry choices across all routes, the airline selects the best available route conditional

on a fixed number of aircraft.

This setup creates two key differences when forming the estimation inequalities.

First, even if the expected profit of an alternative route is positive, the airline will

not enter if a more profitable redeployment exists. Second, we require only that the

expected profit of the observed route be positive, since it represents the best option

under revealed preferences. We do not require alternative routes in the choice set

to have negative profits, as long as their profits do not exceed those of the observed

23The feasible set requires that the airline already serves both endpoint cities and that the
market (city pair) is served by at least one other airline.
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route. In the counterfactual analysis, an airline exits only if all feasible routes yield

negative profits.

Section 4.1 introduces the instrument-based construction of moment inequali-

ties, Section 4.2 sets the criteria for feasible alternative route networks, Section 4.3

presents the estimation strategy for the linear parameters θfc, and Section 4.4 details

the maximum-likelihood estimation of the fixed cost shock distribution.

1.4.1 Construction of Moment Inequalities

Let Πf (A
∗
f ,Freq

∗
f , κ; θfc|A∗

−f ,Freq
∗
−f ) and Πf (A

a
f ,Freq

a
f , κ; θfc|A∗

−f ,Freq
∗
−f ) de-

note airline f ’s expected profit under the observed and alternative route networks

A∗
f and Aa

f , given competitors’ observed optimal network A∗
−f . This Πf corresponds

to the value on the right-hand side of equation (13). For notational simplicity, we

omit the time index t, the optimal second-stage prices p∗
t, the demand and marginal

cost parameters θd and θs, and the demand and marginal cost shocks ξ and ω. By

revealed preference, the observed network must yield at least as high an expected

profit as any alternative network:

Πf (A
a
f ,Freq

a
f , κ; θfc)−Πf (A

∗
f ,Freq

∗
f , κ; θfc) = ∆Πf (A

∗
f ,Freq

∗
f ,A

a
f ,Freq

a
f ; θfc)+τaf (κ) ≤ 0.

(15)

The term ∆Πf captures the profit difference between the observed (optimal)

network and a counterfactual alternative, excluding the fixed cost shocks. The

term τaf ((κ) represents the difference in fixed cost shocks between the observed and

alternative networks. We further decompose ∆Πf into the difference in second-stage
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variable profits and the difference in the linear component of fixed costs:

∆Πf =
[
Eξ,ω[πf (A

a
f ,Freq

a
f )]−Eξ,ω[πf (A

∗
f ,Freq

∗
f )]
]
−
∑
j∈Gf

[
θfcZ

a
j ·Aa

fj−θfcZ
∗
j ·A∗

fj

]
.

(16)

Here, Eξ,ω[πf (A
a
f ,Freq

a
f )] and Eξ,ω[πf (A

∗
f ,Freq

∗
f )] denote the second-stage ex-

pected profits under the alternative and observed networks, evaluated at the optimal

prices for each draw of ξ and ω. To speed computation, we use a computing cluster

with 36 cores per node to parallelise the calculation of expected second-stage profits.

Unlike the U.S. airline industry, where a change on one direct route can have

knock-on effects on all connecting routes in a Hub-and-Spoke network, the intra-

European airline industry is dominated by direct Point-to-Point networks. Because

we evaluate only direct flights, as long as the product set in a market remains

unchanged, prices and demand in that market are unaffected by changes in other

markets24. In the second part of equation (16), Za
j and Z∗

j denote the vectors of

market characteristics for each product under the alternative and observed networks.

The difference between the observed and alternative profit residuals τaf (κ) in

equation (15) is interpreted as measurement errors following Houde et al. [2023].

We use a vector of non-negative instruments H to cancel the measurement errors:

E[H ·∆Πf (A
∗
f ,Freq

∗
f ,A

a
f ,Freq

a
f ; θfc)] + E[H · τaf (κ)]︸ ︷︷ ︸

=0

≤ 0 (17)

We use exogenous factors such as market size and distance as instruments. Then

we construct the sample moment inequalities to estimate the fixed cost coefficients

θfc following Pakes et al. [2015]:

24Strictly speaking, markets are not completely independent in our setting because deviations
involve redeploying existing aircraft to alternative routes. However, once the route network and
frequencies are fixed, conditions in one market do not directly affect another.
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1

Na

∑
A∗

f ,F req∗f ,A
a
f ,F reqaf

Hh · [∆Πf (A
∗
f ,Freq

∗
f ,A

a
f ,Freq

a
f ; θfc] = mh(θfc) ≤ 0 (18)

Equation (18) holds for all h = 1, . . . , |H|, where |H| is the total number of

instruments and thus the number of moment inequalities. Na denotes the number

of feasible alternative route networks for a given observed Quarter–Airline–Route.

We now explain how the feasible alternative route network is defined.

1.4.2 Feasible Alternative Route Network

Exploring all possible alternative route networks is computationally infeasible

because the number of combinations grows exponentially (2M) and flight frequencies

vary continuously, so we instead select a carefully constructed subset of alternatives

that captures the most relevant and informative deviations, drawing on previous

literature and the operational realities of the European airline market and guided

by the following principles:

First, we consider only single–market deviations, following Yuan and Bar-

wick [2024] and Bontemps et al. [2023]. This assumption is well suited to the

European market, where the dominance of point–to–point operations limits interde-

pendence across routes. It is less appropriate for the U.S. airline market tho, where

Hub–and–Spoke networks dominate and a change in one “spoke” can generate ex-

tensive knock–on effects throughout the network via the hubs. In Europe, such

spillovers arise only at a handful of large hubs and mainly affect indirect connec-

tions that combine an international long–haul flight with a “direct” intra–European

short–haul leg. For these airports, the frequency constraints below ensures that the

model remains consistent with operational realities.
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Second, when an airline seeks an alternative route to replace an existing one,

it must redeploy the same aircraft from the exited route to the new route.

This implies that the alternative route must be operated at the same frequency

as the original route. This contrasts with the U.S. literature, where entry and

exit decisions are typically modelled independently. The rationale is that aircraft

are high–value assets that generate revenue only when in service, and European

carriers—especially low–cost airlines—maintain high utilisation rates. Rather than

asking whether entering a new market is profitable, we ask which feasible route yields

the highest profit conditional on the available aircraft (i.e., the fixed frequency). This

approach better reflects actual airline behaviour and sharpens identification of the

fixed–cost parameters.

Third, a route is deemed feasible for an airline if two conditions hold: (1) the

airline already operates in both endpoint cities of the route, as in Berry [1992]; and

(2) the route is currently served by at least one airline. The first condition captures

the practical requirement for existing infrastructure and resources at both endpoints

and highlights differences between full–service and low–cost carriers. Full–service

airlines, which typically follow hub–based strategies, serve fewer cities and expand

primarily from their hubs, whereas low–cost carriers serve many more cities and

therefore face a larger feasible choice set. The second condition rules out routes with

negligible or unobserved demand, such as those connecting economically isolated

regions.

These constraints substantially reduce the number of feasible alternative route

networks and, more importantly, focus the analysis on realistic and economically

meaningful deviations, thereby avoiding distortions from extreme or implausible

scenarios. Figure 9 summarises the network characteristics across airlines. In the

top–left panel, network size refers to the total number of City–Airport pairs served by

62



Figure 9: Network Analysis

each airline; a larger network size implies a broader set of feasible route alternatives.

The three largest full–service airlines (AF, BA, LH) and the three largest low–cost

carriers (FR, U2, W6) exhibit the largest network sizes. The bottom–left panel com-

pares the number of observed routes with the number of potential deviation routes.

A larger gap indicates weaker direct connectivity between city pairs served by an

airline. By this measure, full–service carriers show lower connectivity across their

served cities, reflecting their hub–and–spoke business model. This pattern is rein-

forced in the top–right panel, where low–cost carriers display higher network density

percentages. Finally, the bottom–right panel reports network efficiency, defined as

the average number of unique routes per City–Airport, which measures how inten-

sively each served City–Airport is used. Low–cost carriers again score higher on this

metric: for example, Ryanair (FR) operates on average more than ten unique routes

per City–Airport it serves, whereas Air France (AF) averages fewer than three.
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1.4.3 Estimation of the Linear Fixed Cost Parameters

We use two sets of moment inequalities, as shown in equation (15), to estimate

the linear fixed–cost parameters θfc. First, the observed route must generate the

highest expected profit among all feasible alternative routes operated at the same

frequency (the redeployment argument). Second, the observed route must yield a

non–negative expected profit (the entry argument).

Because we focus on single–market deviations, any deviation affects profits only

in two markets: the market of the exited route and the market of the new entry

route. Profits in all other markets remain unchanged. Under this structure, the first

bracket of ∆Πf in equation (16) for the redeployment inequality can be rewritten

as

[
Eξ,ω[πf (A

a
f ,Freq

a
f )]− Eξ,ω[πf (A

∗
f ,Freq

∗
f )]
]
= Eξ,ω(π

a
fj′)− Eξ,ω(π

o
fj∗). (19)

Here Eξ,ω(π
a
fj′) is the expected profit from the alternative single new route (prod-

uct) j′ to which airline f redeploys its aircraft. Eξ,ω(π
o
fj∗) is the expected profit from

the original observed route (product) j∗. Equation (19) therefore shows that, un-

der a single–market deviation, the total profit difference reduces to the profit gap

between the deviated route and the substituted route25.

The second bracket of equation (16) can be simplified in the same way:

∑
j∈Gf

[
θfcZ

a
jA

a
fj − θfcZ

∗
jA

∗
fj

]
= θfc

(
Za

j′ − Zo
j∗

)
. (20)

Here Za
j′ and Zo

j∗ are the vectors of two market attributes—frequency×distance
25In rare cases where an airline operates multiple products within the same market—only in large

cities such as London or Paris—we assume that the airline exits all such products and reallocates
the combined aircraft to the alternative route.
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and market size—for the alternative and observed routes. Consequently, equa-

tion (18) becomes

1

Na

∑
j′,j∗

Hh

[(
Eξ,ω(π

a
fj′)− Eξ,ω(π

o
fj∗)
)
− θfc

(
Za

j′ − Zo
j∗

)]
≤ 0. (21)

For the instruments Hh, we follow standard practice and define them as dummy

variables indicating whether a market’s exogenous characteristics—such as market

size or population—fall within the hth bin. Bins are created by evenly dividing the

range of each characteristic into discrete intervals. As in prior studies, we vary the

number of bins to test the robustness of the results.

Identification of θfc relies on the differences in attributes between observed and

alternative routes. Any attribute that does not vary across routes—such as a con-

stant term or a full–service airline dummy—cannot be identified through these in-

equalities. The second set of moment inequalities, imposing non–negative profit for

each observed route, is defined similarly:

1

N o

∑
j∗c

Ho
h

[
Eξ,ω(π

o
fj∗)− θfcZ

o
j∗

]
≥ 0. (22)

Here N o is the number of unique observed routes, and the instruments Ho
h are

constructed in the same way, although the number of dummies may differ.

At first glance, the inequalities in equation (23) seem to allow identification of

terms that do not vary between observed and alternative routes, such as a constant

or a full–service dummy. However, the redeployment inequalities in equation (22)

identify only an upper bound for such terms, not a lower bound. Unlike the clas-

sic entry literature—where moment inequalities are based on a binary entry/exit

choice—our inequalities cover only the “entry” side because of the frequency con-
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straint. In practice, we find that even the upper bound is very loose regardless of the

number of instruments. We therefore interpret these constant terms as part of the

mean of the fixed cost shock κ, which is estimated separately in the next subsection.

The key difference between our moment inequalities and those in the existing

literature lies in how the bounds of the identification set are determined. In our

framework, the bounds are driven by the sign of the differences in market character-

istics between observed and deviated routes. By contrast, previous studies typically

derive these bounds from firms’ entry and exit decisions. Identification in our setting

therefore depends heavily on variation in characteristics between observed and al-

ternative routes. This motivates the use of the interaction term frequency×distance

rather than frequency alone. Because frequency remains constant between the de-

viated and original routes, its stand–alone effect cannot be separately identified.

To implement these inequalities, we compute roughly 12.6 million expected profit

values. These calculations are parallelised across a computing cluster to ensure

feasible computation times.

1.4.4 Estimation of the Distribution of Fixed Cost Shocks

While the previous subsection provides estimates of the linear component of the

fixed–cost parameters θfc, we still need to estimate the means and variances of the

fixed–cost shocks as defined in equation (12). This step is essential because we must

draw the realised shocks for each observed and alternative route in order to satisfy

the revealed–preference inequalities in equation (15) for every observed–alternative

pair.

The current IV–based moment inequalities in equations (21) and (22) only guar-

antee that the weighted average of the inequalities holds. This is sufficient for esti-

mation but problematic for counterfactual analysis. In practice, we find that if the
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fixed–cost shocks are ignored, more than 50% of the revealed–preference inequali-

ties are violated under the estimated θ̂fc. When this occurs, the benchmark route

network—defined as the optimal network under the estimated parameters follow-

ing Yuan and Barwick [2024]—deviates substantially from the observed network.

Such a gap undermines the interpretation of the counterfactual results because the

benchmark for comparison is such different compared to the observed route network.

Our goal is therefore to estimate the distribution of fixed–cost shocks so that all

inequalities implied by revealed preference hold, conditional on the estimated linear

fixed–cost parameters. These conditions include

Eξ,ω(π
a
fj′)− θ̂fcZ

a
j′ + κj′ ≤ Eξ,ω(π

o
fj∗)− θ̂fcZ

o
j∗ + κj∗ , (23)

And the requirement that all observed routes earn non–negative expected profits:

Eξ,ω(π
o
fj∗)− θ̂fcZ

o
j∗ + κj∗ ≥ 0. (24)

Inequality (23) must hold for every combination of observed Quarter–Airline–Route

j∗ and alternative Quarter–Airline–Route j′, and inequality (24) must hold for ev-

ery unique observed route. Let Π̂fj = Eξ,ω(πfj) − θ̂fcZj denote the known part of

the estimated route’s expected profit. With this notation, inequality (23) can be

rewritten as

κj′ ≤ Π̂o
fj∗ − Π̂a

fj′ + κj∗ (25)

And inequality (24) as

κj∗ ≥ −Π̂o
fj∗ . (26)

Each observed route j∗ is associated with many alternative routes j′. Fix atten-
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tion on a particular observed route j∗ and its set of alternatives, the joint probability

that all inequalities in equation (25) hold is

∏
j′

Φ

(
Π̂o

fj∗ − Π̂a
fj′ + κj∗ − µgj′

σgj′

)
. (27)

Given j∗, the inequalities for different alternatives j′ are independent. The joint

probability is therefore the product of standard normal CDFs with mean µgj′ and

standard deviation σgj′ , where g indexes the group of the alternative route j′. Groups

are defined by both the airline and whether the route connects a hub. Thus, even

alternatives of the same airline may have different means and variances depending

on whether the alternative route link hubs.

Combining equations (25), (26), and (27), the joint probability for an observed

route j∗ is

∫ ∞

−Π̂o
fj∗

∏
j′

Φ

(
Π̂o

fj∗ − Π̂a
fj′ + κj∗ − µgj′

σgj′

)
ϕ

(
κj∗

σgj∗

)
1

σgj∗
dκj∗ . (28)

The integral in equation (28) is taken over a truncated normal distribution of

κj∗ , where the lower bound is set by inequality (26). The total log–likelihood for all

observed routes of all airlines is then

∑
j∗

ln

∫ ∞

−Π̂o
fj∗

∏
j′

Φ

(
Π̂o

fj∗ − Π̂a
fj′ + κj∗ − µgj′

σgj′

)
ϕ

(
κj∗

σgj∗

)
1

σgj∗
dκj∗ . (29)

This structure resembles a standard probit model but with key differences. First,

in a conventional binary entry model, the entry and exit shocks are independent be-

cause they never appear in the same inequality. Here, all alternative–route shocks

associated with a given observed route are correlated through equation (25). We

must therefore evaluate each observed route and all of its alternatives jointly. Sec-
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ond, the classic probit model does not involve a truncated normal distribution,

whereas truncation arises here because the entry condition applies only to observed

routes and not to alternatives.

Compared with the moment–inequality literature, which typically includes an

intercept in the linear component, our maximum–likelihood approach offers several

advantages. First, it can point identify both the mean and the variance of the

fixed–cost shocks, whereas moment inequalities provide only set identification. Sec-

ond, it allows us to estimate a rich set of group–specific mean terms. As discussed

earlier, we model eleven different groups defined by airline type and hub status, and

we estimate a distinct mean for each group. Such richness would be practically in-

feasible in a pure moment–inequality framework, because increasing the number of

parameters causes the identified sets to interact and greatly complicates estimation.

1.5 Estimation Results

1.5.1 Demand Estimates

Table 4 reports the demand–estimation results for the core parameters and se-

lected fixed effects. We use two types of instruments: (i) the number of products

offered in each market, and (ii) the average fare of routes with similar distances26.

Following the standard BLP literature, we report the first–stage F–statistic for price

as an indicator of instrument relevance. The first–stage F–statistic is 172.55, and

the heteroskedasticity–robust F–statistic is 91.16. Both far exceed the conventional

threshold of 10, indicating that the instruments are strongly correlated with price

and are unlikely to suffer from weak–instrument problems.

26Routes with distances between 99% and 101% of the current route, taking advantage of the
dense European airline network.
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For clearer economic interpretation, we translate the estimated coefficients into

willingness–to–pay (WTP) measures.27 On average, consumers are willing to pay

about $22.4 for a one–unit increase in the log of daily flight frequency, reflecting the

high value passengers place on schedule convenience.

The distance coefficients reveal a more nuanced trade-off. The linear term is

positive, and the squared term is also positive but smaller, producing a convex

relationship. Evaluated at the sample mean distance of roughly 1,000 km, consumers

are willing to pay approximately

0.325 + 2× 0.145× 1

|−5.426|
× 100 ≈ $8.6

for an additional 1,000 km of travel. This WTP increases with distance because the

marginal utility of distance becomes more positive on longer routes. Economically,

passengers are less price-sensitive on longer flights where practical travel alternatives

are limited. At shorter distances the incremental value is smaller—especially in

Europe, where rail and car travel provide strong substitutes—and could even turn

negative for very short segments if the squared term dominates.

Seasonal preferences are also evident. Relative to the baseline quarter (Q1),

consumers value spring (Q2) flights about $9.8 more and summer (Q3) flights about

$3.3 more, while winter (Q4) shows no significant difference. Carrier and hub effects

are also obvious. Full-service airlines receive sizable premia: consumers are willing

to pay roughly $32.7 more to fly with the Air France–KLM Group than with Ryanair

on the same route. Air France–KLM also enjoys strong hub advantages: itineraries

involving CDG or AMS are valued about $36 higher than competing services on

27WTP is calculated as the ratio of the coefficient of interest to the absolute value of the price
coefficient. It measures how much more consumers are willing to pay for a one–unit change in a
product characteristic, holding utility constant.
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identical markets.

The estimated nesting parameter is 0.885 and highly significant. In the nested-

logit framework, this parameter captures the correlation in unobserved utility among

products within the same nest. Here all airline itineraries form one nest and the

outside option forms the other. A value close to one indicates strong substitution

among airline products and substantial correlation in their unobserved components

(for example, common shocks such as weather or macro-demand factors). It also

confirms that the nested-logit specification is appropriate, lying comfortably between

the simple logit case (λ = 0) and the degenerate case of perfectly correlated products

(λ = 1).

Overall, the WTP estimates highlight the key drivers of consumer choice in

European short-haul aviation: a high value on frequency, a non-linear premium

for longer distances, pronounced seasonal patterns, and significant brand and hub

advantages.

Figure 10 shows the distribution of the recovered demand shocks ξ for one

full–service airline (BA) and one low–cost airline (FR). In both cases, the mean

is close to zero and the spread between the 5th and 95th percentiles is roughly one,

indicating a shape that is close to a standard normal distribution. This pattern is

consistent with the BLP framework, where ξ captures unobserved product–market

characteristics that are orthogonal to the instruments after estimation. A distri-

bution centred near zero with unit–like dispersion suggests that the instruments

successfully purge price endogeneity and that the structural error behaves like a

well–specified mean-zero disturbance. Such a pattern is typically viewed as evidence

of a good model fit: if the model were badly misspecified, the recovered ξ would

display large systematic biases or heavy tails rather than a near-Gaussian shape.

Similar distributions are found for other airlines, reinforcing the conclusion that the
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Table 4: Demand Estimation Results: Core Parameters and Selected Fixed Effects

Variable Coefficient Std. Error

Core Demand Parameters
Price (in 100 USD) -5.426*** 0.515
Log Frequency 1.217*** 0.037
Distance (in 1,000 KMs) 0.325** 0.163
Distance2 0.145*** 0.033
Nesting Parameter 0.885*** 0.054
Q2 0.533*** 0.084
Q3 0.181*** 0.065
Q4 -0.018 0.063

Airline Fixed Effects
Airline BA 3.449*** 0.401
Airline AF 1.663*** 0.236
Airline LH 3.585*** 0.452
Airline FR -0.094* 0.053
Airline W6 -0.263*** 0.089

Airport Fixed Effects
Airport AMS -0.580*** 0.082
Airport FRA -0.621*** 0.105
Airport MAD -1.554*** 0.118
Airport BCN -1.701*** 0.103
Airport VIE -0.742*** 0.058

City Fixed Effects
London/Southend/Cambridge -1.100*** 0.160
Paris/Pontoise -1.309*** 0.145
Amsterdam/Rotterdam -0.580*** 0.082
Dusseldorf/Dortmund/Cologne -0.608*** 0.194
Rome -1.412*** 0.107
Madrid -1.554*** 0.118

Airline–Airport Fixed Effects
AF CDG 1.987*** 0.323
AF AMS 1.951*** 0.358
BA LHR 0.633 0.417
LH FRA -0.037 0.259

Notes: Stars denote significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1. Seasonal
dummies (Q2–Q4) control for quarterly variation. Airline–airport interactions capture
route-specific advantages.
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demand system captures the main drivers of consumer choice. The estimation is

based on a total of 11,062 observed airline–market combinations.

ξ Plot for BA (IAG Group)

ξ Plot for FR (Ryanair)

Figure 10: ξ Plot for Two Representative Airlines

Figure 11 shows the distribution of own- and cross-price elasticities implied by
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Own-Price Elasticity Plot

Cross-Price Elasticity Plot

Figure 11: Price Elasticity Plot

the BLP estimates. The average own-price elasticity is approximately –4.49, which

is close to the estimate reported in Bontemps et al. [2023] (–3.78) and notably more

elastic than the values from the two-consumer-type model in Berry and Jia [2010].
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Elasticities of this magnitude are consistent with evidence from the airline industry,

where empirical studies of European short-haul markets typically find own-price

elasticities ranging between –3 and –5 for leisure-dominated routes. Such values

indicate that passengers are quite sensitive to fare changes: a 1% increase in price

leads, on average, to roughly a 4.5% decrease in demand. This high responsiveness

reflects the availability of close substitutes—both between airlines on the same city

pair and across alternative modes of transport. The cross-price elasticities, while

smaller in absolute value, confirm significant substitution across carriers operating in

the same market, reinforcing the interpretation of a highly competitive environment.

Several factors help explain why our estimate is more elastic than the typical val-

ues reported in the U.S. literature. European air travellers are generally more price

sensitive, as documented in both empirical studies and industry reports. This height-

ened sensitivity reflects the greater presence of low–cost carriers, denser and more

competitive point-to-point networks, and, on average, lower income levels across

Europe.28 In contrast, the estimated cross–price elasticities are mostly positive,

consistent with standard substitution patterns among competing airline products

and confirming that passengers readily switch to rival carriers when relative fares

change.

1.5.2 Marginal Cost on Passengers

Marginal costs are recovered from the first–order condition in Equation (7). Ta-

ble 5 reports the estimates. The average marginal cost per passenger is $67.6,

roughly 30% lower than comparable U.S. estimates such as those in Yuan and Bar-

wick [2024], who report mean marginal costs around $95 per passenger for similar

short–haul markets.

28See, for example, IATA’s report: IATA.
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Table 5: Marginal Cost Estimation Results: Core Parameters and Selected Fixed
Effects

Variable Coefficient Std. Error

Core Cost Parameters
Distance (in 1,000 KMs) 0.098*** 0.020
Distance2 0.024*** 0.006
Frequency 0.064*** 0.005
Q2 0.090*** 0.010
Q3 0.021** 0.010
Q4 -0.006 0.010

Airline Fixed Effects
Airline AF 0.608*** 0.019
Airline BA 0.744*** 0.016
Airline LH 0.831*** 0.018
Airline FR 0.020 0.013
Airline W6 -0.044** 0.022

Airport Fixed Effects
Airport FRA 0.099*** 0.011
Airport CDG 0.217*** 0.026
Airport LHR 0.175*** 0.027
Airport AMS 0.117*** 0.010

City Fixed Effects
London/Southend/Cambridge 0.150*** 0.017
Paris/Pontoise 0.041** 0.022
Amsterdam/Rotterdam (Randstad) 0.117*** 0.01
Frankfurt/Mannheim 0.099*** 0.011
Dusseldorf/Dortmund/Cologne 0.243*** 0.022

Statistics Value
Average Marginal Cost $67.6
Average Markup $17.9
Average Percentage Markup 35.2%
Average Profit 560,586

Notes: Stars denote significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1. Seasonal
dummies (Q2–Q4) control for quarterly variation. Selected fixed effects are displayed
for airlines, cities, and airports with high statistical significance.

76



This difference is in line with broad industry evidence. European carriers consis-

tently report lower unit operating costs than their U.S. counterparts. For example,

IATA cost benchmarking shows that European short–haul airlines have cost per

available seat kilometre (CASK) roughly 20–35% below that of major U.S. legacy

carriers over the past decade, largely because of a higher share of low–cost carriers,

denser route networks, and more efficient aircraft utilisation.29 Low–cost carriers

such as Ryanair and Wizz Air routinely report CASK levels less than half of those

of U.S. full–service carriers, and their presence drives average European unit costs

downward even for network airlines.

The average route distance in our sample is 1,407 kilometres (about 875 miles),

which implies a unit cost of roughly $0.05 per kilometre or $0.08 per mile. These

figures closely match international benchmarks: Berry and Jia [2010] report about

$0.06 per mile for U.S. domestic flights, while Yuan and Barwick [2024] find around

$0.08 per mile. IATA cost data for European short–haul operations similarly cluster

in the $0.05–$0.09 per mile range once adjusted for fuel prices and exchange rates,

reinforcing the plausibility of our estimates.

The implied markup is also sizeable. The average markup is $17.9, correspond-

ing to an average percentage markup of 35.2% and an average per–route profit of

roughly $0.56 million. These figures are broadly consistent with European airline

financial statements and with the 25–35% margin estimates commonly reported for

competitive U.S. domestic routes. Higher airport charges and slot constraints in

Europe may also sustain slightly higher margins even in markets served by multiple

carriers.

The cost coefficients reveal clear economic patterns. Both distance and distance2

29See IATA Annual Review (various years) and InterVISTAS (2015) Estimating Air Travel
Demand Elasticities, which report CASK figures for major world regions.
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are positive and significant, implying that marginal cost rises at an increasing rate

with route length. This convexity reflects the growing cost of fuel, crew time, and

maintenance over longer legs and is consistent with engineering cost studies for

narrow–body fleets. The coefficient on frequency is also positive, in contrast to

many U.S. studies where frequency often lowers marginal cost by spreading fixed

expenses across more departures. In Europe, two factors likely drive this differ-

ence. First, European carriers operate with consistently high load factors—often

above 85%—leaving little unused capacity to absorb additional flights. Second,

high–frequency services are typically short–haul “city–hopper” routes (e.g., Lon-

don–Amsterdam or Madrid–Barcelona) where airlines deploy smaller regional jets

with higher per–seat operating costs.30

As expected, full–service carriers face higher marginal costs than low–cost air-

lines, and operating from large hub airports (e.g., FRA, CDG, LHR) is also associ-

ated with higher costs. These patterns mirror industry evidence on cost heterogene-

ity: full-service airlines incur higher labour and service costs, while congested hubs

impose higher landing fees and turnaround expenses. The recovered marginal–cost

distribution, together with realistic markups and distance–cost relationships, sup-

ports the internal consistency of our model and aligns well with both academic

estimates and industry cost benchmarks for European short–haul aviation.

1.5.3 Linear Fixed Cost Estimation

Table 6 presents the attributes and expected profits of observed and alterna-

tive routes by airline. For each metric, Diff (%) is computed as (Observed −

Alt.)/Observed × 100. This difference is the key variable used in the moment in-

30For example, British Airways frequently operates Embraer 190s from London City Airport to
destinations such as Dublin and Amsterdam, which raises per–passenger marginal costs relative to
larger narrow–body aircraft.
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equalities to estimate θfc.

For the Frequency×Distance measure, full–service airlines (FSCs) consistently

operate longer routes than low–cost carriers (LCCs) in both observed and alter-

native networks. This pattern reflects the distinct business models of the two

groups. Hub–and–spoke networks naturally link longer city–pairs to one or more

hubs, whereas point–to–point strategies favour shorter sectors to maximise daily

aircraft utilisation—a hallmark of the European low–cost model.31

The difference term for Frequency×Distance shows that all FSCs would, if free

to redeploy aircraft, shift toward alternative routes with longer distances than those

currently operated. Because frequencies are held constant, the choice sets of alterna-

tive network for FSCs contain routes of greater length than their current networks.

Among LCCs, the picture is more heterogeneous. easyJet, often described as a “hy-

brid” or semi–full–service carrier, displays a pattern similar to the FSCs, consistent

with its strategy of operating both dense leisure city–pairs and key primary air-

ports. Ryanair’s Frequency×Distance shows almost no difference between observed

and alternative routes. This is intuitive because Ryanair already operates the most

extensive network in Europe, serving nearly every major city–pair of economic rele-

vance, so potential alternatives offer similar distances and therefore limited scope for

reallocation. Wizz Air, headquartered in Budapest and heavily focused on Eastern

Europe, shows a positive difference (alternative routes shorter on average). Many of

its feasible redeployments link medium–sized cities in Central and Eastern Europe,

because the largest Eastern European markets are already present in its current

network. Several regional carriers, such as Finnair and Icelandair, exhibit very high

Frequency×Distance values, reflecting the remote geographic position of their hubs

31EUROCONTROL’s Data Snapshots document the higher average stage length of full-service
carriers and the shorter, more numerous sectors flown by European LCCs.
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(Helsinki and Reykjavik) and the long sectors required to connect them to the rest

of Europe.

Full–service airlines also tend to serve markets with larger populations than

low–cost carriers. The difference terms show that FSCs’ alternative routes generally

connect smaller endpoint populations than their observed routes. This is natural be-

cause most large European city–pairs are already covered in their current networks,

so remaining alternatives involve thinner markets. In contrast, all LCCs have alter-

native routes with larger market size than the observed routes. This reflects their

tactical avoidance of certain large markets in the observed network—often to avoid

higher landing fees, congestion charges, or labour costs at primary airports—and

their focus on secondary airports around major metropolitan areas.32

Expected variable profits from second–stage price competition also differ sharply

by business model. FSCs earn higher expected profits than LCCs on both observed

and alternative routes, reflecting their ability to command price premia through

brand reputation, business–class demand, and hub connectivity. The differences

between observed and alternative profits are larger for FSCs than for LCCs, a re-

sult of strong hub effects. Most of the profitable hub routes for FSCs are already

included in their current networks; alternative routes are therefore more likely to

be non–hub markets where network economies are weaker and price competition is

stronger. This large gap supports our decision to allow hub and non–hub routes

within the same full–service airline to follow different distributions of fixed–cost

shocks. Among LCCs, profit differences are modest, consistent with already opti-

mised point–to–point schedules and intense fare competition on thick leisure mar-

kets. All regional carriers show higher expected profits for alternative routes. Their

32For example, Ryanair often uses airports such as Charleroi for Brussels and Beauvais for Paris,
allowing it to tap large catchment areas while avoiding the high costs of main hubs.
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continued operation of current networks is likely sustained by substantial subsidies

and public–service obligations, which reduce the private incentive to redeploy ca-

pacity even when profitable alternatives exist.33

Large full-service and low-cost carriers have far more observations than regional

airlines. On the one hand, this richer data generates greater variation for the

moment-inequality estimation. On the other hand, it allows us to estimate the

fixed-cost distribution separately for each of the six largest European airlines—a

level of flexibility that is rarely achievable in the existing literature.

Taken together, the counterfactual reallocations push full–service airlines toward

longer routes but smaller markets, while low–cost airlines tilt toward larger markets

with limited changes in route distance—patterns consistent with their point–to–point,

high–utilisation model. These findings are in line with European industry norms:

high LCC penetration and sustained load factors above 85%34 leave little spare ca-

pacity for large schedule reoptimisations, while hub–and–spoke legacy carriers face

an inherent trade–off between maintaining network connectivity and chasing pure

market size.35

We use standard exogenous instruments—such as market population and route

distance—following the moment–inequality literature. Table 7 reports the identified

sets for the linear fixed–cost parameters when varying the number of instruments

used in the difference and observed–profit inequalities. When the number of instru-

ments is small, the identified sets are wide: for example, with 20 difference inequal-

33Regional carriers in Europe frequently receive national or EU subsidies, particularly on thin
peripheral routes; see European Commission reports on Public Service Obligation (PSO) routes.
It is worth noting, however, that large legacy carriers such as Air France also receive state support,
especially during crises.

34IATA reports European carriers’ 2023 load factor at about 83.8%; Ryanair’s investor reports
indicate load factors above 93% in recent years.

35See EUROCONTROL on LCC market share and network structure, and IATA monthly and
annual market analyses for European load factors and capacity trends.
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Table 7: Set-Identified Fixed Cost Bounds Under Different Instrument Combinations
(in $100s)

IV Count Frequency × Distance Market Size

Diff. Ineq. Obs. Ineq. Lower Upper Lower Upper

20
10 770 1,743 445 834
20 770 1,657 445 834
30 770 1,657 445 834

30
10 1,086 1,417 433 654
20 1,086 1,417 433 654
30 1,086 1,387 433 654

40
10 Empty Set Empty Set
20 Empty Set Empty Set
30 Empty Set Empty Set

Notes: Each coefficient is set-identified using moment inequalities. ”Diff. Ineq.” refers
to difference-based moment inequalities requiring the observed route to have the high-
est expected profit among alternatives. ”Obs. Ineq.” refers to moment inequalities
requiring observed routes to have non-negative profits. Both sets use Market Size and
Distance as instruments, with counts shown in the first two columns. Frequency × Dis-
tance measured in daily flights × thousands of kilometers. Market size is the geomet-
ric mean of endpoint populations in millions. Empty sets indicate over-identification
where no parameter values satisfy all moment conditions.
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ities and only 10 observation inequalities, the bounds for the Frequency×Distance

coefficient range from 770 to 1,743 (in $100s). As the number of instruments in-

creases, the bounds tighten considerably, reflecting stronger informational content

and more stringent moment restrictions. When the instrument count becomes too

large (e.g., 40 difference inequalities), the feasible set collapses to an empty set,

indicating that the additional moments over–identify the model and no parameter

vector can satisfy all conditions simultaneously. This pattern is consistent with the

findings of Yuan and Barwick [2024] and other applications of set–identified moment

inequalities, where the tension between sampling variation and strong instrument

sets can lead to empty identified sets.

Compared with existing studies, our identified sets are substantially tighter. This

improvement reflects the richer variation in our European route–level data and the

greater economic content of our moment inequalities, which exploit both deviation

profits and non–negative observed profits across a large network of markets. The

high number of deviations further enhances the precision of the moments, allowing

for sharper bounds even with relatively few instruments.

Interestingly, the bounds for the Frequency×Distance coefficient change very lit-

tle when we vary the number of instruments for the observation inequalities while

holding the difference–inequality instruments fixed. For example, with 20 differ-

ence inequalities, increasing the observation instruments from 10 to 30 leaves the

lower and upper bounds essentially unchanged. This suggests that identification

of deviation–sensitive parameters is primarily driven by the first set of moments

(the difference inequalities), where most of the empirical variation occurs when air-

lines consider redeployment. In contrast, the second set of moments (non–negative

profit conditions) adds little incremental identifying power once the core deviation

structure is captured.
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From an economic perspective, these results imply that the key identifying infor-

mation for fixed costs comes from the behaviour of airlines when they face realistic

redeployment choices rather than from simple entry profitability conditions. This is

consistent with industry intuition: in congested European markets, airlines continu-

ally re–optimise aircraft allocation across feasible routes, and the profit differentials

between observed and alternative routes reveal more about underlying fixed costs

than the mere fact that a route remains active.

Given the estimation results and the sample averages (Distance = 1,350 km;

Market size = 2.896 million), the implied per-flight linear component of the fixed

cost (distance term + market-size term) evaluates to the midpoint value36 of ap-

proximately $3,602.89.

The estimated figure above represents the linear contribution to per-flight fixed

cost that is attributable to the observable covariates (distance and market size)

evaluated at sample means. It does not include the stochastic fixed-cost shock κ.

Equivalently, this amount is the per-flight value implied by the estimated linear

parameters alone and therefore constitutes a partial yet comprehensive measure of

per-flight operating cost.

We clarify the economic interpretation of the $3.6k fixed-cost component through

three key considerations, contextualised within European airline industry bench-

marks.

First, our framework separately identifies per-passenger marginal costs during

36Computation (units: USD per flight; coefficients reported in the table are in $100s):

Distance part =
(1086 + 1387)

2
× 100÷ 90× 1.350 = 1236.5× 100÷ 90× 1.350 ≈ 1,854.80,

Market size part =
(433 + 654)

2
× 100÷ 90× 2.896 = 543.5× 100÷ 90× 2.896 ≈ 1,748.09,

Total (Distance + Market) ≈ 1,854.80 + 1,748.09 ≈ $3,602.89.
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demand estimation. Industry-standard cost metrics typically reported on a per-flight

basis—such as fuel allocated by available seat-kilometres (ASK), variable handling

fees, or aircraft turnaround costs—are captured both within our marginal-cost and

fixed cost estimates. Consequently, the $3.6k figure should not be interpreted as the

total “per-flight” operating cost reported in airline financial statements. Instead, it

represents the specific component of fixed costs that scales linearly with distance

and market size within our econometric specification.

Second, industry benchmarking employs standardised metrics such as CASK

(cost per available seat-kilometre). European carriers exhibit substantial variation:

ultra-low-cost carriers report CASK values of 3.2-4.2 US cents, whilst full-service

carriers exceed 10 US cents (CAPA, 2025; Wizz Air H1 FY24). Since CASK de-

clines systematically with stage length, converting to per-flight equivalents requires

aircraft-specific adjustments. For narrowbody aircraft typical of European short-

haul operations, industry sources report operating costs of $2,900-$3,200 per block

hour for A320/B737 aircraft (OPShots, 2015; Simple Flying, 2024), suggesting a 1.5-

hour flight at 1,300km incurs approximately $4,350-$4,800 in total costs. Within this

context, our $3.6k estimate represents a plausible fixed-cost component, accounting

for roughly 75-80% of total per-flight costs.

Third, whilst many empirical studies normalise fixed-cost shocks to have zero

mean, we do not impose this restriction. A non-zero mean of κ implies that a portion

of the true per-flight fixed cost could be partially absorbed into the intercept term.

Specifically, total per-flight fixed cost comprises three components: (i) the linear

term computed here ($3.6k), (ii) the intercept (mean of κ), and (iii) the route-specific

idiosyncratic shock. Therefore, actual per-flight fixed costs (linear component +

intercept + shock) will exceed $3.6k in many cases. Industry evidence confirms

substantial variation in total costs: European low-cost carriers report per-passenger
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costs ranging from €40 for Ryanair to €79 for easyJet (excluding fuel), whilst legacy

carriers like IAG and Lufthansa operate at €159-164 per passenger (The Flight Club,

2025). With typical load factors of 85-90% on 150-180 seat aircraft, this translates

to per-flight costs varying from approximately $5,100 to $25,000 across different

business models (EUROCONTROL, 2024), supporting our framework where fixed

costs include both the linear component and additional stochastic elements. We will

estimate the distribution of fixed cost shocks κ in the next subsection.

1.5.4 Fixed Cost Shocks Estimation

We estimate the means and variances of the fixed-cost shock distributions by

maximizing the likelihood in equation (29). Before applying the gradient–based

Newton method, we evaluate the likelihood over a grid of mean and variance values to

confirm the presence of a unique global maximum.37 Table 8 reports the estimation

results. We estimate separate distributions for the three largest full-service carriers

and the three largest low-cost carriers, as well as a pooled distribution for all regional

airlines. For the full-service carriers and the pooled group, we further distinguish hub

and non-hub routes. In total, this yields 11 distinct fixed-cost shock distributions.

The results demonstrate remarkable consistency with the chosen linear fixed cost

parameters, indicating minimal unexplained variation in our previous moment in-

equality estimation, which has been effectively absorbed into the fixed cost shocks.

The stability of these parameters across different specifications suggests robust iden-

tification of the underlying cost structure.

The most significant and striking finding emerges from the systematic differences

between hub routes and non-hub routes. This pattern reinforces the critical impor-

37We use a 50×50 grid, with ranges spanning from the minimum to the maximum of the expected
variable profit from price competition, net of the linear component of fixed cost.
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Table 8: Distribution for Fixed Cost Shocks by Airlines and Hub Status

Lower Bound Middle Point Upper Bound

Airline Route Type µ σ µ σ µ σ

Full-Service Airlines

AF Non-hub -3.59 3.82 -3.69 3.87 -3.94 3.99
Hub 3.61 4.17 3.72 4.19 3.97 4.26

BA Non-hub -5.08 4.99 -5.08 5.00 -5.08 5.04
Hub 2.97 4.22 2.97 4.27 2.97 4.36

LH Non-hub -5.53 4.22 -5.53 4.24 -1.66 4.39
Hub 3.16 4.99 3.16 5.03 7.47 5.08

Low-Cost Airlines

FR All routes -2.87 3.61 -2.87 3.62 -2.87 3.67
U2 All routes -8.18 7.20 -8.18 7.17 -8.18 7.13
W6 All routes -5.07 2.61 -5.07 2.61 -5.07 2.64

Pooled (Other Airlines)

Pooled Non-hub -5.64 3.67 -6.11 3.72 -5.61 3.70
Hub 10.22 2.12 10.05 2.15 10.53 2.19

Notes: The reported parameters are the mean (µ) and standard deviation (σ) of these
distributions, expressed in units of 105USD. The terms Lower Bound, Middle Point,
and Upper Bound refer to the set estimates of the linear fixed-cost parameters.

tance of hub operations for full-service airlines’ strategic positioning and network

economics. Specifically, hub routes for all full-service airlines exhibit positive mean

fixed cost shocks, whilst all non-hub routes and routes operated by low-cost carriers

demonstrate consistently negative means. The mean of fixed cost shocks can be

explained as the pure “entry cost” plus any unexplained effects from the structural

model and data that render the observed route optimal amongst all available alter-

natives. The positive mean for hub routes indicates that, all else equal, there exists

a strong unexplained positive effect favouring observed hub routes, making them

preferable despite potentially higher underlying costs—otherwise, they would not

88



represent the optimal route choice.

The positive hub route’s mean can be explained by established industry knowl-

edge and practices. First, the fundamental purpose of many hub routes operated by

major full-service airlines in Europe is to facilitate international transfer passengers

connecting to or from long-haul flights.38 Evaluating these routes in isolation, con-

sidering only point-to-point demand, would rarely demonstrate profitability. The

network effects and connecting passenger flows create substantial value that is not

captured in simple route-level analysis.

Second, European full-service airlines frequently benefit from extensive govern-

ment incentive schemes and subsidies, which fundamentally differs from the com-

petitive landscape faced by major US carriers. Many European airlines remain

government-owned or receive substantial state support. Research by Transport &

Environment reveals that the aviation sector receives €26.4 billion of indirect sub-

sidies annually through tax breaks on VAT (€13.6 billion) and fuel tax exemptions

(€10.7 billion).39 This contrasts sharply with the operational environment of the

major US carriers, which operate as privately-owned entities with limited govern-

ment support. The European model of state involvement creates implicit incentives

for maintaining certain routes that serve broader economic or political objectives

beyond pure commercial viability.

The estimated means of non-hub routes and low-cost airlines’ routes are consid-

erably more likely to resemble the pure entry cost estimates, given the substantially

fewer non-economic reasons to operate such routes. This analytical distinction pro-

vides valuable insights into the underlying cost structures across different airline

business models. On this front, we find that full-service airlines generally exhibit

38Centreforaviation.com
39Transport & Environment
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significantly higher pure entry costs compared to their low-cost counterparts, re-

flecting fundamental differences in operational complexity, service standards, and

market positioning strategies.

Ryanair (FR) demonstrates the lowest pure entry cost amongst all airlines in our

sample, which aligns perfectly with their well-documented ultra-low-cost operational

model. In contrast, easyJet exhibits the highest entry costs amongst low-cost carri-

ers, a finding that reflects their fundamentally different strategic positioning within

the European aviation market. Unlike Ryanair’s exclusive focus on secondary air-

ports, easyJet deliberately operates from primary airports at considerably higher

costs, positioning itself to compete directly with full-service airlines at their tradi-

tional hub airportsIndustry Report. This strategic choice necessitates substantially

higher entry costs as easyJet must overcome the established advantages of incum-

bent full-service carriers whilst operating in more expensive airport environments.

The airline’s emphasis on higher frequency services and premium airport access cre-

ates natural barriers to entry that require substantial initial investment to establish

competitive viability.

Regarding the reasonableness of our estimated pure entry costs, the figures

demonstrate remarkably strong consistency with both established academic liter-

ature and comprehensive industry benchmarks. For instance, the estimated entry

cost for British Airways on an average non-hub route approximates $0.5 million per

quarter, translating to nearly $2 million annually. This magnitude aligns exception-

ally well with industry cost structures documented in recent literature, including

Yuan and Barwick [2024], and demonstrates robust consistency with comprehensive

industry cost analyses conducted across multiple aviation markets.

Industry reports indicate that route establishment costs typically range between

90

https://ukdiss.com/examples/easyjet-and-ryanair-competition-analysis.php


$1.5-3 million annually for full-service carriers on medium-haul European routes40.

These estimates encompass not only direct operational costs but also substantial

fixed investments required for viable route operations, including airport slot acquisi-

tion (exceeding $500,000 for premium European airports), ground handling arrange-

ments, marketing expenditure, and regulatory compliance costs. The convergence

of our econometric estimates with these industry benchmarks provides compelling

validation of our structural modelling approach.

1.6 Counterfactual Experiment on Carbon Policy

Carbon taxation has emerged as a pivotal policy instrument in the European avi-

ation industry, with significant implications for airline operational costs and route

economics. The current regulatory framework centres on the EU Emissions Trading

System (EU ETS), which has experienced substantial price volatility and structural

reforms in recent years. According to the International Emissions Trading Associ-

ation, the average EU ETS carbon price is expected to rise from €84.4 per tonne

during 2022-2025 to almost €100 per tonne during 2026-2030 (Statista). Critically,

the system’s application to aviation has been significantly strengthened, with 25%

fewer free allowances allocated to aircraft operators in 2024, and complete removal of

free allocation scheduled for 2026 (European Commission). This regulatory tighten-

ing ensures that airlines will face substantially higher carbon costs in the immediate

future.

International organisations project even more dramatic carbon price escalations

over the coming decades. Advanced modelling by Enerdata indicates that EU ETS

prices will progressively increase after 2030, reaching around €130/tCO2 in 2040,

40IATA
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before rapidly escalating to exceed €500/tCO2 by 2044 (Enerdata). These pro-

jections, spanning from approximately $100 to $500 per tonne over the next two

decades, translate to substantial operational cost increases for airlines. For typical

narrow-body aircraft operating intra-European routes, these carbon prices corre-

spond to additional costs ranging from approximately $1 to $5 per kilometre flown,

depending on fuel efficiency and carbon content assumptions.

Concurrent with carbon pricing pressures, the aviation industry faces mounting

fuel cost challenges through two primary mechanisms. First, conventional aviation

fuel supplies are increasingly constrained by environmental regulations and policy

frameworks designed to reduce fossil fuel dependency. Second, mandatory sustain-

able aviation fuel (SAF) adoption requirements impose substantial cost premiums

on airlines. Current market data indicates that SAF costs between two to seven

times more than traditional jet fuel, whilst EASA’s 2024 assessment shows conven-

tional aviation fuel priced at €734 per tonne compared to aviation biofuels at €2,085

per tonne. Industry projections suggest that SAF prices will remain two to three

times higher than conventional jet fuel until 2030(World Economic Forum), creating

persistent upward pressure on airline fuel costs beyond carbon taxation effects.

Given these converging cost pressures from both carbon pricing mechanisms and

fuel supply constraints, we implement five counterfactual scenarios that increase the

Frequency × Distance coefficient by 1,000, 2,000, 3,000, 4,000, and 5,000 respec-

tively. This parametric approach captures the combined effects of escalating carbon

taxation and higher fuel prices within a realistic range of $1-5 per additional kilome-

tre flown. The lower bound reflects current EU ETS price levels with modest SAF

adoption, whilst the upper bound corresponds to high carbon price scenarios with

extensive SAF mandates. This specification provides a comprehensive framework

for analysing how European airlines might adapt their route networks and pric-
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ing strategies under increasingly stringent environmental policies, thereby offering

valuable insights for both industry stakeholders and policymakers navigating the

transition to sustainable aviation.

What are the anticipated outcomes of route network deviation arising from in-

creased Frequency × Distance coefficients? In the absence of competitive effects,

airlines should exhibit a marginal preference for shorter routes over longer alter-

natives. This occurs because, holding optimal fares and expected variable profits

constant, the increase in the linear component of fixed costs from larger coefficients

imposes more severe penalties on longer routes compared to shorter ones. Given

that frequency remains constant across all routes within the same choice set, the

additional fixed cost can be expressed as: Extra coefficients × constant frequency

× distance. In essence, maintaining frequency at constant levels, shorter routes

generate fewer emissions and consequently incur lower additional emission-related

costs.

However, airline competition also plays a crucial role in route selection decisions,

as network deviations affect all airlines’ expected variable profits from price competi-

tion across both origin and destination markets. The competitive interdependencies

mean that when one airline adjusts its route portfolio in response to carbon pricing,

this creates ripple effects throughout the whole market structure for the market it

left and the market it entered, potentially altering the competitive dynamics on

remaining routes and influencing rivals’ strategic responses.

The empirical results presented subsequently demonstrate that whilst the ab-

solute number of route changes remains relatively modest compared to the entire

network, the economic implications are substantially more pronounced. Specifically,

we observe significant effects on fare structures, passenger volumes, and expected

profitability that extend far beyond the directly affected routes, highlighting the in-
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terconnected nature of airline network competition and the amplified welfare effects

of environmental policy interventions in aviation markets.

Subsection 6.1 describes the methodology for drawing fixed cost shocks from the

truncated distribution based on revealed preference constraints and our estimated

distributional parameters. Subsection 6.2 introduces the equilibrium concept em-

ployed in the counterfactual analysis and details the iterative algorithm used to

achieve such equilibrium. Subsection 6.3 presents the counterfactual results, exam-

ining how route networks evolve under different carbon tax scenarios, the resulting

changes in fares, passenger volumes, and airline profits, and the overall welfare im-

plications of the proposed carbon taxation policy.

1.6.1 Drawing Fixed Cost Shocks from Estimated Distribu-

tions

As detailed in the previous section, we draw realisations of the fixed cost shocks

from their respective distributions. This represents a crucial methodological innova-

tion that distinguishes our approach from all other research in the literature, which

typically ignores fixed cost shocks in counterfactual simulations. The realisation of

fixed cost shocks critically determines whether observed routes generate the highest

net profit amongst all available alternatives. Ignoring these shocks would render

the optimal network under our estimates substantially divergent from the actual

observed network, thereby complicating the interpretation of counterfactual results

and potentially undermining their policy relevance.

We draw fixed cost shocks whilst ensuring that all revealed preference constraints

are satisfied. It is important to note that each observed route is associated with nu-

merous alternative routes, and different observed routes may share common alter-
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native options. We draw realisations of fixed cost shocks for each Quarter-Airline-

Route tuple and apply the same realisation for identical tuples across different choice

sets, encompassing both observed and alternative routes. In essence, we assume that

fixed cost shock realisations remain constant across different decision-making con-

texts, provided the tuple specification is identical. Our dataset comprises 64,661

unique Quarter-Airline-Route tuples, which is substantially smaller than the total

number of observed-alternative route pairs detailed in Table 6.

Operationally, we first draw realisations of all unique alternative Quarter-Airline-

Route shocks κ̂j′ freely from their dedicated distributions. Subsequently, given all

κ̂j′ values, we draw shocks for unique observed Quarter-Airline-Routes κ̂j∗ from

truncated dedicated distributions where the lower bound satisfies:

κ̂j∗ ≥ max
{
Π̂a

fj′ − Π̂o
fj∗ + κ̂j′ ,−Π̂o

fj∗

}
(30)

Inequality (30) ensures that all revealed preference constraints hold under the

realised shocks. This methodology guarantees that when we insert the original

estimated coefficients into the counterfactual analysis, we recover precisely the ob-

served route network, thereby rendering comparisons across different counterfactual

scenarios both meaningful and empirically grounded.

We draw shock realisations separately for the lower bound, midpoint, and up-

per bound of the linear parameter estimates, providing robustness checks across

the identified parameter space whilst maintaining consistency with our estimation

framework.
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1.6.2 Equilibrium Concept and Iterative Algorithm

As in the estimation section, the counterfactual experiment encounters similar

computational difficulties as the number of possible deviations explodes with the

number of markets. It is computationally infeasible to compute all 2M − 1 route

networks with M representing the number of City-Airport combinations.

Unlike the equilibrium concept employed in the theoretical model, which requires

optimality for all possible deviations, we impose a more restrictive equilibrium con-

cept consistent with the literature by allowing only single-market deviations (Yuan

and Barwick [2024], Jackson and Wolinsky [1996]). Although this restrictive equi-

librium concept differs from the theoretical model, it remains consistent with the

empirical approach used to estimate the parameters, thereby ensuring that counter-

factual simulation results are directly comparable to the observed route network.

When calculating expected variable profits from price competition, we employ

the same 36 draws of ξ and ω in counterfactual simulations as in the estimation stages

to minimise numerical fluctuation from different draws of demand and marginal cost

shocks.

Once we focus exclusively on single-market deviations, the order of evaluating

Quarter-Airline-Route combinations becomes crucial for the final converged network.

In practice, we first define a sequence of airline moves in each quarter and each

airline’s best response within each move. The network is updated following each

airline move, with airlines moving sequentially and responding to their best response

when facing the most up-to-date network in the sequence. The sequence is defined

as follows.

We begin with the observed route network and calculate revenue for each Airline-

Route in a specific quarter, where revenue equals optimal airfare multiplied by pas-
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senger numbers. We then calculate total revenue for all Airline-Routes in a given

market (city pairs) and rank them from the highest-revenue (largest) market to

the lowest-revenue (smallest) market. Airlines move first in larger markets, then

progress to smaller markets. This ordering mimics real-world behaviour, as airlines

typically prioritise larger markets over smaller ones and are likely to make decisions

for larger markets first. Within each market, the airline with the highest combined

revenue (largest) for all routes it operates in that market moves first, followed by

smaller airlines within that market. Larger airlines in a market are likely established

incumbents, whilst other smaller airlines are likely followers.

The route network changes continuously as airlines deviate to new routes. This

affects both total revenue for a market and revenues for airlines still operating in that

market during subsequent visits, potentially altering the revenue-based ordering for

both markets and airlines within markets. In practice, we first rank markets by

revenues from the starting network in each iteration. This order remains unchanged

throughout the iteration, even if deviations alter revenue. In the first iteration, the

starting network is the observed network. In subsequent iterations, the starting

network represents the most up-to-date network after visiting all markets sequen-

tially in the previous iteration. In other words, there is no reversal of market orders

within one iteration. However, airline ordering within a specific market should be

continuously updated by previous deviations. If, during visits to previous (larger)

markets, airlines deviate to a (smaller) market, once we evaluate the smaller mar-

ket subsequently, we must consider the previous deviation and rank airline revenue

using the current market structure following previous deviations.

Airlines will exit the market completely if the best expected net profit in the

current evaluation remains negative. In the original case where no additional carbon-

related costs are imposed, there are no exits compared to the benchmark observed
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route network. At the other extreme, if carbon-related costs are infinite, airlines

would exit all routes, regardless of sequential orders.

Deviations may also alter the set of feasible routes faced by each airline given our

previous definition. The set of feasible routes is defined as airlines already serving

both endpoint cities, with routes already served by at least one other airline. When

airlines deviate, the total universe of served cities may change. Additionally, a route

currently served by at least one airline may become empty if that airline deviates

from or exits that route. We do not account for changes in the set of feasible routes

to avoid further complicating our counterfactual exercise. Instead, we employ fixed

sets derived from the observed route network. This approach is justified because

if a city is currently served by an airline, or if a market is currently served by at

least one airline, it is likely that this airline maintains some presence in this city, or

that demand for the market is not negligible, even if both feasible route criteria fail

in later counterfactual iterations. In essence, we always provide airlines with the

largest possible feasible route network available when making choices.

Finally, since we employ exactly the same 36 draws of ξ and ω, we use pre-

computed profits for both observed and alternative routes from the fixed cost es-

timation, provided the market structure41 remains unchanged. This significantly

accelerates computation, particularly in early iterations where deviations have yet

to impact the broader network.

We perform counterfactual analysis separately for 4 quarters, 5 different carbon

prices, and 3 sets of linear parameters θfc. In all cases, the algorithm converged,

with convergence occurring on average around 5 iterations.

41This means that all products in one market (city pair), defined by unique Airline-Routes and
their frequency, remain exactly the same for the current counterfactual network compared to the
observed network in this market.
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1.6.3 Counterfactual Results

Table 9 presents a comprehensive analysis of network changes under different

counterfactual scenarios across quarters. We disaggregate the results by airline

type, as they exhibit markedly different behavioural patterns in response to carbon

pricing.

Total Routes denotes the total number of unique routes in our sample. Unsur-

prisingly, the summer peak season (Q2, Q3) features substantially more routes than

the winter off-peak season (Q1, Q4). Low-cost carriers contribute the majority of

unique routes, followed by full-service airlines and regional carriers. This distribu-

tion reflects the European aviation market structure, where low-cost carriers have

significantly expanded their route networks following liberalisation.

Total Deviations measures the reallocation of aircraft to different routes by ex-

iting current markets and entering new ones. The number of deviations increases

monotonically with carbon cost intensity—from 40 under low carbon costs to 222

under ultra-high costs in peak season. Whilst deviations represent approximately

3–7% of total routes, their impact extends far beyond this percentage, as dis-

cussed below. Crucially, the burden falls disproportionately on regional carriers,

who can account for over 120 deviations compared to just 8–54 for larger airlines.

This fragility stems from regional airlines’ longer average route lengths and thinner

profit margins. In contrast, full-service carriers benefit from hub economies of scale

and established market positions, whilst low-cost carriers operate higher-frequency,

shorter-haul routes that are less carbon-intensive per passenger-kilometre.

Exit Number captures routes where airlines withdraw completely rather than

redeploying aircraft. Pure exits increase substantially with carbon costs, rising from

as few as 7 to as many as 51 under extreme scenarios. Remarkably, exits concentrate
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almost exclusively amongst low-cost carriers, with only scattered exits by regional

carriers and virtually none by full-service airlines across all scenarios. This pattern

reflects the thin operating margins inherent to the low-cost business model, as evi-

denced by the lower expected variable profits shown in Table 6. The near-complete

absence of full-service carrier exits underscores the powerful role of hub networks

and sunk investments in maintaining route viability even under extreme carbon

pricing—a finding consistent with evidence that full-service airlines exhibit greater

route persistence due to network effects and slot constraints at major airports.

Total Markets refers to unique city pairs served in our sample. Changed Markets

denotes city pairs experiencing altered market structure between counterfactual and

observed networks, where market structure encompasses all product offerings gov-

erning competitive dynamics. Regional airlines again show the greatest sensitivity:

under ultra-high carbon costs, approximately 25–27% of regional airline markets ex-

perience structural changes, compared to less than 10% for full-service and low-cost

carriers. This disparity reflects regional carriers’ focus on thinner routes with fewer

competitors, where the exit or entry of even a single airline fundamentally alters

market conditions.

Affected Routes quantifies all routes in the observed network experiencing mar-

ket structure changes. Revenue and profit or those routes change despite unchanged

exogenous attributes through competitive spillovers. Notably, the affected routes

can reach 10–20% of the total network—substantially exceeding the direct impact

measured by total deviations alone. This multiplier effect demonstrates that carbon

pricing’s competitive consequences extend well beyond the routes directly restruc-

tured. Unlike previous metrics, affected routes distribute more evenly across airline

types relative to their network sizes, suggesting that competitive interdependencies

propagate throughout the network regardless of the type of airlines.
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In summary, carbon pricing triggers cascading effects throughout the European

aviation network, with regional carriers bearing disproportionate adjustment costs

whilst full-service carriers demonstrate remarkable resilience. Crucially, the true

economic impact extends far beyond the routes directly restructured: competitive

spillovers affect a substantial portion of the network, with up to 433 routes experi-

encing altered profit conditions in peak season under ultra-high carbon costs. This

multiplier effect—where market structure changes propagate throughout intercon-

nected city-pair markets—highlights the critical importance of general equilibrium

considerations in transport policy evaluation. Analyses focusing solely on direct

route adjustments would severely underestimate the policy’s full economic conse-

quences.

How do ticket prices, passenger numbers, and airlines’ net profits adjust when an

additional carbon cost is imposed and the route network is re-optimised? Addressing

these questions clarifies which types of routes shift for different airline groups and

sets up the welfare analysis that follows. Table 10 reports the results for Q2, which

we highlight because the Q2 network is the largest and therefore most informative;

the other quarters display very similar patterns.

We report average fares separately for routes that are common to both the base-

line and counterfactual networks and for routes that appear only in one network

(i.e., non-common routes that are either newly added or dropped). Average fares

on common routes remain stable across scenarios because the underlying market

structure on those links—such as the set of active competitors and their relative

positions—changes little, so second-stage pricing incentives are largely preserved.

In contrast, for non-common routes, the pattern depends on airline type. For large

full-service and low-cost carriers, the routes that are discontinued or replaced tend

to have below-average fares, which suggests that re-optimisation targets links where
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competition is stronger and price premia are limited—often because the routes do

not connect hubs or major cities and hence cannot sustain higher markups. For small

regional carriers, however, the deviated (dropped) routes typically have higher av-

erage fares; these links are frequently (near-)monopoly services connecting remote,

long-distance pairs that are relatively costly to operate under higher carbon prices

and that face thinner demand.

The mechanism linking carbon costs to fares operates through the network rather

than directly through prices in our two-stage framework. In the second stage, pric-

ing depends on the contemporaneous competitive structure of the realised network,

not directly on costs. Consequently, higher carbon costs influence fares by altering

which routes are profitable to operate, which then changes competitive intensity on

the resulting network. This implies that higher carbon costs do not mechanically

translate into higher pass-through to prices or lower total passenger numbers. Em-

pirically, across counterfactuals, newly chosen routes exhibit higher average fares

than common routes, but this difference does not necessarily grow monotonically

with the level of the carbon cost. As carbon costs rise, some previously optimal

links become unprofitable and exit; this selection margin widens the gap between

the average fares of old and new routes, which is precisely what we observe.

Passenger volumes can increase relative to the baseline even when carbon costs

are higher, because fares on common routes are nearly unchanged while the re-

optimised network may attract additional demand on newly added links. In our

results, total passenger numbers rise in all scenarios. For large carriers, the aggregate

change is modest, reflecting the fact that their core, high-capacity networks remain

largely intact. For regional airlines, the proportional increase is more pronounced,

because their newly selected routes feature substantially lower average fares relative

to the routes they discontinue, which stimulates demand. A decomposition confirms
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that most of the passenger growth for regional carriers originates from non-common

(i.e., newly operated) routes.

Higher passenger numbers and nearly stable fares do not guarantee higher net

profits, because fixed and carbon-related costs also increase. In the baseline, we es-

timate total net profits across all airlines at approximately $8.89 billion (USD). This

magnitude aligns extremely well with industry evidence for 2019, which places Euro-

pean airlines’ net profits at roughly €7 billion (EUROCONTROL) and is consistent

with IATA’s regional benchmarks (IATA).42 Across counterfactuals, net profits de-

cline for all airline groups and the losses increase with the carbon cost, as expected.

Full-service and regional carriers experience the largest reductions, which is con-

sistent with their longer average stage lengths—implying higher carbon exposure

per link—and with the relatively lower average fares on the routes they select after

re-optimisation.

How do the results in Table 10 translate into the welfare analysis? In Table 11, we

report the change in airlines’ net profit (producer surplus), the change in consumer

surplus (measured as equivalent variation), and the carbon-related revenues paid

by airlines—either to government in the form of a carbon tax or to fuel suppliers

via higher prices for sustainable fuels. We then present the combined change in

producer and consumer surplus, followed by the total welfare change obtained by

adding carbon revenues to these surplus components. For completeness, we also

report the change in daily flown distance, which provides a transparent proxy for

daily carbon savings: flying fewer total kilometres implies lower emissions, holding

aircraft technology and load factors fixed.

The results display several robust patterns. Net profit losses become more se-

42Differences stem from currency units (USD vs. EUR), data vintages, coverage definitions, and
the fact that our aggregates are model-based.
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vere as the carbon cost rises, reflecting higher per-kilometre operating costs and

re-optimisation away from previously profitable links. By contrast, consumer sur-

plus increases in all scenarios, because newly entered routes tend to exhibit lower

fares and attract additional passengers, consistent with the demand and pricing

movements documented in Table 10. On balance, the combined consumer–producer

surplus becomes more negative at higher carbon cost levels, largely because growing

profit shortfalls outweigh consumer gains.

Carbon revenues are constructed from the change in total frequency–distance

cost in each counterfactual relative to the baseline. Two forces operate simulta-

neously. First, the per-kilometre charge increases with the carbon price (or the

renewable-fuel premium). Second, total frequency–distance adjusts as airlines en-

ter and exit routes in response to profitability. As the per-kilometre cost rises, the

revenue component increases mechanically, while network adjustments can either

amplify or partially offset this depending on how total operated distance responds.

The most consequential finding concerns total welfare, defined as the sum of the

surplus changes and carbon revenues. Once carbon revenues are included, the net

welfare effect becomes positive rather than negative. Intuitively, the carbon charge

reduces distortions on two margins. It prices the externality directly (the Pigou-

vian channel) and, through network re-optimisation, can temper mark-ups on links

with pronounced market power—improving allocative efficiency even before count-

ing the environmental benefits of lower emissions. This mechanism is consistent

with established results on corrective taxation and the “double-dividend” discussion

in environmental economics, where revenue recycling and competitive reallocation

can yield welfare gains in already distorted markets. In the European airline con-

text—where many routes are effectively monopolies or duopolies—this channel is

particularly salient. The policy implication is that, provided the raised revenues are
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used productively (for example, to reduce other distortionary charges or to support

efficiency-enhancing infrastructure), carbon pricing can deliver broad social gains in

addition to its primary environmental objectives.

Finally, the overall impact of the carbon policy is distributed unevenly across Eu-

ropean countries. Figure 12, Figure 13, and Figure 14 report the percentage changes

in consumer surplus, airlines’ net profits, and total welfare by country in Q2 under

the UHigh counterfactual. To attribute route-level changes to countries, we weight

each route’s contribution by the population shares of its origin and destination cities

and then aggregate to the country level. For cities that straddle national bound-

aries (e.g., Copenhagen/Malmö or Vienna/Bratislava), we split each measure evenly

across the two affected countries to avoid double counting.43

43This allocation preserves country aggregates while remaining neutral with respect to cross-
border functional city regions.
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Figure 12: Change of Consumer Surplus by Countries (Q2, UHigh)

Consumer surplus increases most strongly, in percentage terms, in several Central

and Eastern European countries such as Poland, Slovakia, and Hungary. Two forces

account for this pattern. First, many of the newly entered routes under the carbon

constraint are relatively short-haul links within the region, which typically sustain

lower average fares and attract higher passenger volumes once the network is re-

optimised. Second, these countries offer dense catchment areas with multiple viable
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secondary airports, expanding entry options and intensifying competition on newly

operated links. By contrast, peripheral and island geographies such as Iceland,

Norway, Greece, and Portugal experience declines in consumer surplus. Longer stage

lengths in these regions raise carbon-related costs per flight, and the re-optimised

network is more likely to cancel or deviate from thin, long-haul leisure routes; both

the reduction in available links and the higher average fares on surviving routes

depress passenger volumes. These directional effects are consistent with industry

evidence that carbon exposure scales with distance and that periphery markets rely

disproportionately on long sectors with limited substitution options.44

44For background, see industry discussions of distance-related carbon cost exposure and the
resilience of short-haul, multi-airport networks in Europe in 2019–2023 reporting (e.g., EURO-
CONTROL network and market monitors; IATA regional outlooks).
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Figure 13: Change of Net Profit by Countries (Q2, UHigh)

Net profit changes in Figure 13 follow a similar geography. Peripheral countries

see the largest percentage drops, reflecting both higher incremental carbon costs on

longer average stage lengths and a greater incidence of route exits, which remove

positive-contribution links from the portfolio. In Central and Eastern Europe, the

declines are more muted because newly entered, demand-rich short-haul routes can

offset part of the cost increase, and the shorter sectors imply a smaller per-flight car-
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bon cost uplift. This asymmetry aligns with pre-existing carrier network strategies:

ultra- and low-cost carriers have concentrated growth in Central/Eastern Europe

using short-haul, high-frequency networks and secondary airports, while full-service

and regional operators disproportionately serve longer or thinner markets where the

fixed and carbon-related cost burden is harder to dilute.

Figure 14: Change of Total Welfare by Countries (Q2, UHigh)

Total welfare changes mirror the joint behaviour of consumer surplus and pro-
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ducer surplus. Central and Eastern European countries emerge as net beneficiaries

under the UHigh policy; for example, Poland records a projected total welfare gain

of about 14.8%. In contrast, remote areas such as Iceland and Norway experience

the largest welfare losses, driven by reduced network connectivity and higher average

travel costs on retained routes. For countries hosting large hub airports—such as

the UK, France, and Germany—aggregate welfare changes are comparatively small.

Hub networks tend to preserve core trunk routes even under higher operating costs,

which stabilises both prices and volumes on the common network segment; as a

result, the national aggregates move little despite rebalancing at the margin across

thinner spokes. Overall, these patterns are consistent with the notion that carbon

pricing reshapes the extensive margin of route choice more forcefully in peripheral,

long-haul-dominated markets than in central, short-haul-dense systems.

1.7 Conclusion

This paper develops a static, two-stage oligopoly model tailored to European

short-haul aviation. In the first stage, airlines choose route networks and frequencies

subject to capacity constraints at congested airports; in the second stage, they

compete in multiproduct Bertrand pricing within each city-pair market. Demand

is specified as a nested logit with airline, airport, and city fixed effects, and the

estimated nesting and price coefficients imply own-price elasticities consistent with

strong within-market substitution. The cost side features distance- and frequency-

dependent marginal costs and fixed costs with a linear component and an unobserved

shock that varies by business model and hub status. Linear fixed-cost parameters

are set-identified using moment inequalities constructed from revealed-preference

comparisons over feasible alternatives, while the full distribution of fixed-cost shocks
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is point-identified by maximum likelihood. This hybrid strategy allows us to draw

shock realisations that rationalise the observed baseline network and to discipline

policy simulations with the estimated primitives.

Counterfactuals impose an EU-ETS–style carbon cost proportional to operated

distance (or fuel burn) and recompute network equilibria. To preserve a credible

baseline, we draw route- and period-specific fixed-cost shocks from the estimated

distributions and ensure that the observed network is an equilibrium under the es-

timated parameters. We solve for counterfactual networks using a sequential best-

response algorithm in which airlines make single-market entry, exit, and frequency

adjustments until no profitable deviation remains. Under higher carbon costs, air-

craft are reallocated toward shorter, higher-density links; route exits are concen-

trated among low-cost and regional carriers, while full-service groups anchored at

hub airports are comparatively resilient. Consumer surplus tends to rise where

intensified competition lowers fares on newly operated or expanded links, while pro-

ducer surplus falls; once carbon revenues are included, total welfare effects can be

positive. Geographically, welfare changes are uneven: central and better-connected

regions gain more, whereas peripheral and island geographies face larger risks from

connectivity losses.

Substantively, the paper shows that carbon pricing is not merely a uniform cost

shifter; by interacting with congestion, network choice, and heterogeneous business

models, it reshapes competitive structure and the distribution of welfare. Method-

ologically, combining moment inequalities for linear fixed costs with likelihood-based

recovery of shock distributions enables network-credible counterfactuals that limit

baseline drift. Several extensions would further strengthen external validity if addi-

tional data—such as itineraries for international transfer passengers and airport-level

slot allocations—were available. First, incorporating transfer passengers would bet-
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ter capture the economics of full-service hub operations, where connecting traffic

is a major revenue driver. Second, replacing reduced-form capacity measures with

slot microdata would allow explicit slot constraints at each hub. Third, allowing

endogenous fleet dynamics would permit capacity to grow or contract in response

to policy. Finally, expanding the feasible choice set beyond the current observed

network to include currently unserved city pairs would test the robustness of entry

margins under alternative expansion paths. These extensions are feasible within the

present framework and, given appropriate data, would sharpen welfare and incidence

conclusions for European aviation policy.
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Chapter 2

Does The Subsidy on Electric

Vehicles Reach Its Target?

Evidence From The European Car

Market
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Abstract

This paper examines the key drivers behind the adoption of electric vehicles

in the European car market. By combining annual car sales data with ve-

hicle characteristics from the UK, France, and Germany between 2010 and

2021, along with detailed micro survey data from national transport surveys,

I estimate a random coefficient logit model. The model incorporates inter-

actions between time dummies, brand dummies, and fuel-type dummies to

capture shifts in consumer preferences towards different fuel types over time.

Counterfactual analysis reveals that subsidies have minimal impact on the

change in EV market shares in the UK and France. Instead, the primary

factor driving EV adoption is the evolution of the product lineup and vehicle

attributes. Welfare analysis shows that consumers across different income lev-

els are affected heterogeneously by these market changes. Finally, I propose

an alternative income-based subsidy policy that achieves the same level of EV

sales with less than half the current expenditure.

Keywords: Electric Vehicles, Purchasing Subsidy, Income-based Policy

JEL Codes: L52, L62, L90
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2.1 Introduction

The automobile industry has undergone significant changes in the past decade,

most notably with the sharp increase in market share for electric vehicles (EVs).

According to the International Energy Agency (IEA), 14% of all new cars sold in

2022 were electric45, up from around 9% in 2021 and less than 5% in 2020 (Global

EV Outlook 2023, IEA). Three markets have contributed most to this surge in global

sales. China accounted for nearly 60% of global electric car sales, with one in four

new cars on the road now being electric. Europe is the second-largest market for

EVs, with more than one in five new cars being electric. Given the recent spike in

oil prices, largely due to the conflict in Ukraine, the global EV market is expected

to continue its rapid growth.

Despite similar market shares, the specifics vary widely across regions. In Eu-

rope, EVs tend to be much more expensive compared to internal combustion engine

(ICE) vehicles, such as petrol and diesel cars. Since 2015, the average price of EVs

in Europe and the U.S. has risen significantly, whereas in China, EV prices have

dropped by nearly half. According to JATO Dynamics, a reputable automotive in-

dustry research firm, the average EV in Europe cost just under €49,000 in 2015. By

the first half of 2022, this had increased to almost €56,000, a rise of nearly 14%. As

a result, an EV in Europe is now 27% more expensive than a petrol car. In contrast,

the average EV in China cost nearly €67,000 in 2015, but this dropped to less than

€32,000—a 52% reduction.

Another report by JATO Dynamics shows that in May 2021, EVs were on aver-

age 52% more expensive than ICE cars in the UK and 54% more expensive in the

Netherlands. The relatively high EV prices in Europe are primarily due to produc-

45Electric cars include both battery electric vehicles (BEVs) and plug-in hybrid vehicles
(PHEVs).
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tion costs, as many of the raw materials needed for key EV components, such as

batteries, must be imported from East Asia. Additionally, European car manufac-

turers are reluctant to fully transition from ICE vehicles to EVs, as they are hesitant

to give up their competitive advantage in the ICE market. Even though the higher

purchase price of an EV can be partly offset by lower running costs compared to

ICE vehicles, owning an EV in Europe remains more expensive than in other parts

of the world.

In reality, EVs in Europe have slowly become a luxury item, affordable mainly to

wealthier consumers. Unless more affordable models are introduced soon, achieving

net-zero emissions will be challenging, as the majority of vehicle usage comes from

middle- to lower-income consumers.

Driven primarily by environmental concerns, governments around the world have

implemented various policies to encourage the adoption of electric vehicles (EVs).

Two of the most influential policies are subsidies for EV purchases and the planned

bans on the development and sale of new internal combustion engine (ICE) vehi-

cles in the near to medium future. The two most common forms of EV subsidies

are attribute-based subsidies and flat subsidies. For example, China and Japan

use attribute-based subsidies, where the subsidy amount increases with the driving

range, though in different ways46. In contrast, most European countries offer a flat

subsidy to EV buyers47.

The rationale behind the decision of European countries to apply a flat subsidy

across all EV models and to all potential buyers is not entirely clear48. Nevertheless,

46In China, this is a step-wise function, while in Japan it is a linear function.
47It is important to note that the subsidy amount is not entirely flat in Europe. For instance,

there are specific criteria that must be met to qualify for the subsidy (usually based on emission
levels or the retail price). However, the variation in subsidy amounts across different models is
generally minimal.

48This may be due to capacity issues, where the cost of implementing a more flexible policy is
prohibitively high.
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the uniform subsidy has a varied impact on EV models with different attributes.

More importantly, it creates disparate effects on consumers with differing prefer-

ences, often influenced by demographic factors such as income level and geographic

location.

On the other hand, governments worldwide have committed to phasing out the

sale of new internal combustion engine (ICE) cars in the near future. Norway, for

example, aims to achieve 100% electric vehicle sales by 2025, setting one of the most

ambitious goals globally. In 2020, the UK government made a historic step towards

net-zero emissions by advancing the end date for new petrol and diesel car sales to

2030, a decade earlier than its previous target (GOV.UK)49. The European Union

has also agreed to ban all new ICE car sales by 2035, despite initial resistance from

Germany and some Eastern European countries (Fit for 55: zero CO2 emissions for

new cars and vans by 2035, 14 February 2023).

Car manufacturers have had to align with these policies and significantly shift

their development focus towards electric vehicles. For instance, Mercedes has an-

nounced that starting in 2025, all new vehicle platforms will be EV-only, while

Volvo has committed to producing only EVs by 2030. This shift has been particu-

larly challenging for European manufacturers, who previously promoted diesel cars

as a cleaner alternative to petrol and invested heavily in that technology. However,

the so-called ”Dieselgate” scandal on September 18, 2015, revealed that Volkswagen

Group’s diesel vehicles were cheating on emissions tests. This shocking discovery

highlighted that diesel vehicles were far more polluting than official figures suggested,

even more so than petrol cars (BBC, 4 November 2015)50. As a result, public opin-

49Although this was revised in September 2023 to reset the date to 2035, the overarching goal
remains unchanged. See https://www.bbc.co.uk/news/uk-politics-66871457.

50This could partly explain the high EV prices in Europe, as development efforts were focused
on another technology for a considerable time.
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ion on diesel cars has likely been influenced by the scandal, pushing consumers to

seek alternative fuel options, whether petrol or electric.

Both subsidies and the ban on ICE cars could, in principle, facilitate the sale of

electric vehicles (EVs). However, the key question remains: which factor contributes

most to the increase in EV market share? Understanding the primary driver behind

EV adoption is crucial because it affects how consumer surplus varies across different

groups. If the ban on ICE cars is the main driver, the reduced availability of ICE

options could force some consumers to purchase expensive EVs, especially if they

need a car. This is likely to negatively impact consumer welfare, particularly for

poorer households, who often hold unfavourable views of electric vehicles. According

to the Society of Motor Manufacturers and Traders (SMMT), more than half of EV

owners were in the top 20% of earners, while those in the lowest two income brackets

accounted for just 4% of EV owners in the first nine months of 2020.

On the other hand, if monetary incentives are the main driver, consumer surplus

is likely to increase, albeit at the expense of the social planner’s surplus. How-

ever, the heterogeneous preferences among consumer groups mean that the welfare

gains from the flat subsidies used in Europe are unevenly distributed. Wealthier

consumers, who might have purchased EVs even without subsidies, benefit more,

while lower-income consumers may still find EVs too expensive, even with subsidies.

This creates a twofold issue: first, higher-income consumers gain disproportionately

under the current policy; second, subsidies are effectively wasted on wealthier con-

sumers who would have bought EVs regardless, diverting resources that could be

better used elsewhere. An income-based subsidy policy might be a more efficient way

to achieve the same targets while better preserving consumer welfare and reducing

government spending.

This paper aims to address three key research questions: 1.What is the main
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driving force behind the observed uptake of EVs? 2.How is consumer welfare affected

differently across various income groups? 3.Can we design a more efficient policy

that achieves the same goals while better protecting consumer welfare?

A carbon-free car industry is unsustainable if EVs remain the domain of affluent

consumers while poorer consumers are forced to switch due to the elimination of

alternatives. Wealthier consumers, typically living in urban areas, use their cars

less frequently than lower-income consumers in rural areas, who have fewer public

transportation options51. Achieving a carbon-free car market is impossible without

the participation of lower-income consumers, who should not be compelled to switch

solely through restrictive measures.

The discrete choice model is commonly used to estimate demand parameters

in this type of research. Three specific models are prevalent in the literature: the

nested logit model (Berry [1994]), the random coefficient logit model (Berry et al.

[1993], hereafter BLP), and the random coefficient nested logit model (Brenkers and

Verboven [2006]; Grigolon and Verboven [2014]). As Grigolon and Verboven [2014]

point out, both the nested logit model and the random coefficient logit model are

special cases of the random coefficient nested logit model. The differences between

these models stem from how they account for consumer heterogeneity. In the nested

logit model, heterogeneity is defined by nests, where residuals of products within

the same nest are correlated. In the random coefficient logit model, heterogeneity is

captured by random coefficients on product characteristics. The random coefficient

nested logit model combines these two approaches. The distinction between the

nested logit model and the random coefficient logit model lies in their different

distributional assumptions. As discussed by Cardell [1997], the nested logit model

51This context applies to Western Europe, with its high population density and strong public
transportation networks. The situation differs in other regions, such as North America.
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can be viewed as a special case of the random coefficient model, where the random

coefficient applies to group dummy variables forming the nests, under a specific

distributional assumption to ensure the overall residual follows an extreme value

distribution.

In this paper, we use the random coefficient logit model, while incorporating

potential nesting variables into the non-linear terms. This approach captures much

of the heterogeneity that the nested logit model would account for, through the use

of random coefficients, as highlighted by Grigolon and Verboven [2014]. It is well

known that models of this type can encounter endogeneity issues, as price and other

characteristics may be correlated with unobserved (to the econometrician) structural

errors. To address this, we employ instrumental variables (IVs) from Gandhi and

Houde [2019], building on the IVs introduced by Berry [1994]52.

On the supply side, profit-maximising firms are assumed to engage in static

Bertrand competition, setting prices for each product. Marginal costs are assumed

to be correlated with product characteristics and are jointly estimated with the

demand side, following standard practice in the literature. I have chosen not to

introduce additional dynamic elements, such as product entry and exit, endogenous

product attributes, or supply-side investments, as this paper primarily focuses on

demand-side policy design and welfare.

The main finding shows that growth in EV market share is driven primarily

by changes in the product portfolio, notably the introduction of new models and

improvements in attributes, rather than by uniform purchase subsidies. Subsidies

play a limited role in the UK and France and a larger one in Germany. Income also

shapes preferences for EVs. Lower-income households are more price sensitive and,

52Other potential IVs are also used in the literature. For example, Berto Villas-Boas [2007] uses
input prices interacted with product dummy variables as instruments, while Hausman [1975] and
Nevo [2001] rely on prices of the same product in other markets.
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on average, place a lower intrinsic value on EVs than higher-income households.

Counterfactual exercises indicate that an income-targeted subsidy can match or

exceed the sales achieved under a flat scheme at substantially lower fiscal cost,

while shifting benefits toward lower-income households and improving the overall

distribution of welfare.

2.2 Literature

This study contributes to three key areas of literature. First, it adds to the

research on public policy for promoting electric vehicle (EV) adoption, as reviewed

by Rapson and Muehlegger [2023]. Existing studies, such as those by Linn [2022]

and Xing et al. [2021], examine income-targeted subsidy designs in the US, showing

that these policies are more cost-effective. However, there are notable differences

between the US and European markets that influence policy outcomes. In the US,

credit systems for zero-emission vehicles (ZEV) and vehicle greenhouse gas (GHG)

emissions play a significant role, whereas these systems are absent in Europe. As

a result, subsidies in the US act more like a consumption tax credit, whereas in

Europe, they tend to reduce EV prices by lowering marginal costs53. Additionally,

European countries have set firm deadlines to phase out internal combustion engine

(ICE) cars, which has led to the discontinuation of new ICE models—a major factor

driving the market shift towards EVs in Europe, a shift that is less pronounced in

the US.

This paper extends the analysis of how subsidy policies impact different con-

sumer groups, particularly in terms of income. For instance, Muehlegger and Rap-

son [2022] investigate the California Enhanced Fleet Modernisation Programme

53For example, Linn [2022] suggests that subsidies in the US may increase EV prices as the
credit price falls. In Europe, however, subsidies drive down EV prices by reducing marginal costs.
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(EFMP), which provides retire-and-replace subsidies for EV purchases, focusing on

low- and middle-income households. However, their analysis is limited to the EV

market, whereas this paper considers the entire new vehicle market in Europe. This

paper also explores the interaction between demand-side policies, such as subsidies,

and supply-side dynamics. Armitage and Pinter [2021] study the effects of supply-

side policies, like zero-emission mandates, alongside demand-side incentives in the

US. While their work compares these different policy approaches, this paper fo-

cuses specifically on optimising demand-side policies, given the existing flat subsidy

structure in Europe. Finally, Remmy [2022] addresses the indirect network effects

between EV sales and charging infrastructure. Although Remmy compares the im-

pact of purchase subsidies and charging station subsidies in Germany, this paper

delves deeper into how purchase subsidies affect consumer heterogeneity, particu-

larly in terms of income, across multiple European countries54. To my knowledge,

most existing research on EV adoption focuses on the US, Chinese, or Scandinavian

markets, with the exception of Remmy [2022], who studies Germany. This paper,

however, broadens the scope by comparing policy effects across the UK, France, and

Germany, providing a more comprehensive understanding of EV market dynamics

in Europe.

Second, this paper contributes to the broader research on environmental regu-

lations in the automobile industry. Reynaert [2021] examines European emission

standards for cars and finds that the policy fell short of its goals, as firms resorted

to technological adaptations and manipulation of emission tests to reduce emissions,

ultimately failing to improve overall welfare. This paper extends this analysis by

evaluating the changes in vehicle fleets following the ban on ICE cars, which can

54While Remmy examines EV range choices on the supply side, this paper focuses on income
heterogeneity on the demand side, which presents a different challenge in equilibrium analysis.
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be seen as the most extreme form of emission regulation. Other relevant studies

include Ale-Chilet et al. [2021], who explore collusion among firms in response to

imperfectly monitored environmental regulations, as well as research by Anderson

and Sallee [2011], Anderson and Sallee [2016], Holland et al. [2009], Klier and Linn

[2012], Whitefoot et al. [2017], Whitefoot and Skerlos [2012], and Ito and Sallee

[2018].

Third, this paper also contributes to the literature on the impact of the ’diesel-

gate’ scandal. Bachmann et al. [2019] treat the scandal as a natural experiment,

finding that it damaged the collective reputation of both diesel cars and German

manufacturing, even for products that passed emission tests after the scandal. This

indicates a shift in consumer preferences away from diesel cars. This paper delves

further into this topic, demonstrating that the negative effects on diesel cars have

primarily shifted consumer demand towards petrol cars rather than electric vehi-

cles55. Other studies, such as those by Strittmatter and Lechner [2020], Che et al.

[2018], and Ater and Yoseph [2022], examine the scandal’s impact on Volkswagen

vehicles in the used car market. Additionally, Griffin and Lont [2018] and Barth

et al. [2022] investigate the financial market repercussions for VW and other major

automakers. However, this research focuses exclusively on the new car market.

The empirical analysis yields several key findings. First, the estimation re-

sults show that the correlation between income level and preference for EVs varies

across regions. Specifically, French consumers generally prefer non-BEVs over BEVs,

though this preference gap narrows as income increases. In contrast, German con-

sumers show a stronger preference for BEVs, with this disparity widening at higher

income levels. UK consumers, on the other hand, tend to favor EVs, but there

is no significant variation across income groups. These results are derived while

55Though the impact varies across different consumer groups.
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controlling for all other characteristics and prices. Borenstein and Davis [2016])

document that high-income households were significantly more likely to be early

adopters of EVs, which aligns with the findings for France and Germany. Several

factors, such as maintenance costs, the second-hand car market, and financial loans,

could explain this heterogeneous preference. However, the presence of such prefer-

ence heterogeneity highlights the inequality in EV access, underscoring the need for

alternative policies that efficiently target specific consumer subsets.

Second, the counterfactual analysis indicates that the subsidy policy is most

effective in Germany, contributing up to an 11% increase in EV market share. In

contrast, the subsidy only results in a 2% increase in EV market share in the UK

and France56. In the UK, observed and unobserved characteristic changes are the

primary drivers of EV uptake, while in France, fleet changes play the dominant role.

In Germany, EV adoption is evenly driven by all changing factors. Across all three

countries, however, the decline in diesel car sales is primarily due to fleet changes

rather than changes in characteristics, preferences, or subsidy policies, indicating

that the ’dieselgate’ scandal had only a minor effect on diesel car sales compared to

the ban on ICE cars.

Third, the welfare analysis reveals that overall consumer surplus increased in all

three countries under the subsidy scheme. However, these benefits are not evenly

distributed across different income groups. In France, consumers in the lowest two

income groups actually experienced a decrease in surplus, while in the UK, the per-

consumer surplus increase for the highest income group is nearly six times greater

than that for the lowest income group. This raises important questions about how

to design a more equitable policy that maintains the trend of EV uptake while

56A similar result is found in Archsmith et al. [2022], which concludes that by 2035, EV market
share will be determined more by non-monetary factors than by subsidies.
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addressing income disparities. I propose an alternative income-based subsidy policy

to better target the consumers who most need EVs.

Fourth, I designed and evaluated an alternative income-based subsidy policy.

Making EVs more affordable for lower-income consumers is crucial for achieving

net-zero targets. In the counterfactual scenario, I demonstrate that an income-

based policy could achieve higher EV market shares and greater consumer surplus

using the same budget. Additionally, the total subsidy spending required to reach

the same EV market share is substantially lower under an income-based subsidy,

suggesting that such a policy would benefit both consumers and the government.

The remainder of the paper is organised as follows: Section 2 provides a detailed

description of the industry and data. Section 3 presents the model setup, estimation

methods, and results. Section 4 discusses the counterfactual results. Section 5

compares the current flat subsidy with a flexible subsidy based on income levels.

Section 6 concludes.

2.3 Background and Data

2.3.1 Industry Background

The global sales of electric vehicles (EVs) have surged over the past decade.

Before 2010, EVs were marginal products, often used as prototypes, with a negli-

gible global market share. However, thanks to technological advancements, several

popular EV models were introduced around 2010, including the Nissan Leaf (2010),

Vauxhall Ampera (2011), Renault Zoe (2012), and Tesla Model S (2012). Addi-

tionally, growing environmental concerns and the ripple effects of the ’dieselgate’

scandal in 2015 likely accelerated adoption. Governments worldwide have also im-
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plemented generous subsidies to boost EV sales. As a result, 10.2 million EV units

were sold in 2022, accounting for 14% of global vehicle sales. However, electrification

remains highly concentrated in China, Europe, and the United States, as EV supply

requires an electric distribution grid and sufficient electric generation capabilities.

China represents the largest market share, with 57.8% of global EV sales in 2022,

driven by tax incentives and exemptions from local vehicle sales quotas for EVs.

Europe follows as the second-largest market with 25.4% of sales, although there are

significant variations across countries. Norway, rich in electricity, boasts the highest

EV sales share globally, with 72% of all new vehicle sales being electric. In com-

parison, the figure is around 25% for Germany and 15% for France and the United

Kingdom. Understanding the reasons behind the increase in EV market share is vi-

tal for designing better policies to accelerate EV uptake without forcing consumers

to adopt EVs by eliminating ICE options, especially in less affluent countries.

Regarding EV sales in Europe by manufacturer, the Volkswagen Group holds

the largest market share (19.6%) as of April 2023, with popular models like the

ID.3 and ID.4. Stellantis follows with a 13.9% share, thanks to its compact models

such as the Fiat 500e and Peugeot 208 EV. Tesla ranks third with 12.6%, the only

non-European manufacturer in the top five. The Tesla Model Y is currently the

best-selling EV in Europe, with over 10,000 units sold.

According to the European Alternative Fuels Observatory (EAFO), the combined

EV sales in the UK, France, and Germany account for over 50% of all EV sales in

Europe5758. In terms of market share, EVs constitute 2.94% of the total passenger

cars on the road in the UK, 2.58% in France, and 3.78% in Germany. Although

57Europe refers to the EU27 plus the UK, Norway, Iceland, Switzerland, Turkey, and Liechten-
stein.

58The total numbers of electric passenger cars in the UK, France, and Germany are 1,094,821,
1,174,187, and 1,967,099, respectively.
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these figures might seem modest, the new car registration data for 2022 reveals that

19.24% of new car sales in the UK were electric. The corresponding figures for

France and Germany are 20.48% and 18.62%, respectively.

Meanwhile, the variety of car models with different powertrains has changed

dramatically over the last decade. According to the International Energy Agency

(IEA) Global EV Outlook, the number of available EV models reached 500 in 2022,

up from below 450 in 2021 and more than double the figure from 2018-2019. At the

same time, the number of ICE car models has steadily decreased, with a compound

annual growth rate of minus 2% over the 2016-2022 period, bringing the total to

about 1,300 models in 2022. In Europe, the number of available ICE options was 8%

lower in 2022 than in 2016, largely due to the introduction of more EV models and

the phasing out of ICE models. More details will be provided in the data description

subsection.

EVs are increasingly likely to be SUVs, with nearly 40% of all BEV models being

SUVs59, which is 10% higher than the average percentage of SUVs across all models.

Moreover, EVs are much more expensive in Europe than in other major markets like

China and the US. In China, the best-selling electric cars in 2022 were the Wuling

Mini BEV, a small model priced at under USD 6,500, and BYD’s Dolphin, another

small model priced below USD 16,000. Together, these two models accounted for

nearly 15% of Chinese BEV passenger car sales, illustrating the demand for smaller

models. In contrast, the best-selling small BEVs in France, Germany, and the

United Kingdom – Fiat’s 500, Peugeot’s e-208, and Renault’s Zoe – were all priced

above USD 35,000 (Global EV Outlook 2023, IEA). The correlations between fuel

type, body type, brand, and prices, which are evident in the dataset, create an

endogeneity problem in estimation. To address this issue, several dummy variables

59From an engineering perspective, it is also easier to develop an EV as an SUV.
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and their interactions are included in the regression to prevent omitted variable bias,

which is typically overlooked in non-EV-focused automobile literature (for example,

Berry, Levinsohn, and Pakes (1995)).

2.3.2 Policy Background

Governments in many countries have implemented policies to boost EV sales.

Some of the earlier measures include subsidies for new EV buyers, grants for scrap-

ping old vehicles, reductions in vehicle registration fees and taxes, public investments

in charging infrastructure, and subsidies for home chargers. Additional measures

include the establishment of clean city zones. More recently, policies have shifted

towards the supply side of the industry, with investments in battery technology, fast

charging infrastructure, and more60. In more developed markets, such as China and

several European countries, governments are progressively reducing or phasing out

incentive schemes for electric cars, shifting focus towards other sectors like heavy

transport and charging infrastructure61. This raises questions about the effective-

ness of subsidies and provides useful insights into when and how subsidies should be

implemented in emerging EV markets.

Figure 15 presents the direct consumer subsidies for electric vehicles in the UK,

France, and Germany from 2010 to 2022. The UK and France were early adopters

of subsidies, introducing them as far back as 2010. In contrast, Germany began

subsidising EV purchases much later, in 201662. However, the amount of subsidy

in UK and France has decreasing after 2016. Both countries put a price cap to

60Industry-wide initiatives include the Inflation Reduction Act (IRA) in the United States and
the Green Deal Industrial Plan in the European Union.

61For example, the UK government phased out the plug-in grant for electric cars on 14 June
2022 (GOV.UK)

62This delay may be attributed to the influence of powerful German car manufacturers and
their lobbying efforts, which were less prominent in the UK and France.
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qualify the subsidy and ruled out the subsidy for PHEV completely over the years63.

Although being late on early subsidising, Germany actually increased their subsidy

amount recently. Also, by the end of 2022, Germany is the only country which still

subsidising the PHEV64. As a result, I find that Germany is the only country where

the subsidy on EV actually makes a significant impact on the market share after

the ‘dieselgate’ scandal. The amount of the subsidy for the UK and France is quite

similar. However, UK decreased the amount of the subsidy at a much radical pace.

2.3.3 Data (Car Sales)

The data used in this paper are drawn from several sources. I obtained monthly

new car registration data from IHS Markit, covering the period from January 2010 to

September 2022. This dataset includes key car characteristics such as manufacturer,

MSRP (in local currency and USD), horsepower (HP), body type, and fuel type. To

make the estimation more tractable, I processed the raw data as follows:

First, I aggregated trim-level observations65 to model-level observations using

sales-weighted averages, as is common in the literature (e.g., Grigolon and Verboven

(2014); Grieco, Murry, and Yurukoglu (2021)). Focusing on the model level simplifies

the logit estimation by reducing the number of products in the analysis. I also

aggregated the monthly sales data to an annual level.

Second, I removed car models with very high prices (greater than $150,000) and

very low sales (fewer than 200 units per month). Extremely expensive models are

likely to be luxury goods, which can distort price elasticity estimates, potentially

63This is not shown in the plot but the price cap drops over the years.
64Part of the reason of the increased subsidy comes from the effect of the pandemic. See Die

Bundesregierung (The Federal Government) (2020-09-22). ”Climate-friendly transport: Promoting
the conversion to electric mobility”. Cabinet of Germany. Retrieved 2021-01-25.

65In the automobile industry, ”trims” refer to different versions of a model, such as those with
leather seats or premium sound systems.
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resulting in positive elasticity. Similarly, low-sales models can create unusual odds

ratios, making logistic regression results less reliable.

Third, I grouped car manufacturers by their parent companies (e.g., Volkswagen

Group) rather than individual brands (e.g., Audi), as profit maximisation often

occurs at the parent company level. Models from brands within the same parent

company often share key components, such as chassis and engines. For example, the

Audi A3 and Volkswagen Golf share the same platform (MQB) and engine choices

(EA888). Parent companies typically make joint decisions for their subsidiaries.

A few mergers and acquisitions occurred during the sample period: PSA acquired

Vauxhall and Opel from General Motors in 2017, and PSA and FCA merged to form

the Stellantis group in 2022. I assigned brands to their parent companies based on

the time of the sample observation to minimise distortion in competition66. After

this processing, the dataset includes approximately 20 firms.

Fourth, I created a new dummy variable to indicate whether a brand is con-

sidered luxurious. Brands such as Audi, BMW, Mercedes, Subaru, Volvo, Tesla,

Jaguar, and Land Rover are classified as luxury brands, while others are consid-

ered affordable67. This classification follows industry norms and, more importantly,

the sales-weighted average prices of luxury brands are much closer to each other

compared to those of affordable brands, suggesting that luxury brands are more

likely to be close competitors. Introducing the luxury dummy is crucial for several

reasons. First, it addresses important endogeneity issues because it correlates with

prices, body types, and fuel types, as shown in the summary statistics later. Sec-

ond, the luxury dummy correlates with income levels, reflecting consumers’ varying

66I treated PSA and FCA as separate entities for the entire sample period, as the merger was
not fully completed by the end of 2022.

67For example, Audi is classified as a luxury brand, whereas other brands within the Volkswagen
Group, such as Skoda, are classified as affordable.
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preferences for brand premiums.

Figure 16 shows the evolution of market share by fuel type in the UK, France, and

Germany, based on the disaggregated monthly data. Overall, the market share for

diesel cars has decreased sharply. Before the ’dieselgate’ scandal in September 2015,

the market share for diesel cars was relatively stable in all three countries. However,

the scandal damaged the reputation of diesel vehicles and raised public awareness

about the environmental and health impacts of diesel emissions. Consequently, the

market share for diesel cars declined significantly after 2015. In the UK, the market

share fell from 45% in 2015 to less than 10% in 2022. In France, it dropped from

50% to less than 15% in 2022. Germany experienced a relatively moderate decline

from around 40% to 20%. Such a drastic change in market structure within less

than a decade is rare in any industry, raising an important question: what are the

underlying reasons for this shift?

It is unclear whether the decline in diesel car sales is attributable to changes

in subsidies, shifts in consumer preferences, alterations in the product list and car

characteristics, or a combination of these factors. In the early years following the

’dieselgate’ scandal, there was no significant change in the market share of elec-

tric vehicles (EVs), which remained just above 3% by the end of 2019 in all three

countries. However, from 2020 onwards, the market share of EVs surged, reaching

approximately 35% of new car sales in 2022. These observations prompt several

intriguing questions. First, the impact of subsidies is contentious, as both the UK

and France significantly reduced their subsidy amounts after 2019. Second, it is

uncertain whether the reduction in diesel car shares is translating into increased EV

sales, given that the shifts in market shares for diesel cars and EVs do not occur

simultaneously. This suggests that different factors may be influencing the market

changes for diesel cars and EVs.
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Table 12 and table 13 present the summary statistics for different subsets of

the disaggregated data across all three countries. Specifically, I examine the key

characteristics across the entire sample, as well as within SUV, luxury, and EV

sub-samples. There are strong correlations between SUVs, luxury brand models,

and EVs in all three countries. SUVs and luxury brand models each account for

approximately 30% of all models, while EV models make up 20% of the total models

in the full sample. However, the proportion of EV models is 5 to 10 percentage points

higher in SUV sub-samples and 10 to 20 percentage points higher in luxury sub-

samples compared to the full sample. Similar patterns are observed with luxury

models within the SUV and EV sub-samples. Given these strong correlations, it is

crucial to include all three dummy variables in the model to avoid omitted variable

bias. Additionally, SUVs, luxury brand models, and EVs generally have higher

prices and horsepower on average, which addresses another potential endogeneity

issue related to price.

Figure 17 illustrates the change in the total number of models by fuel type. It is

evident that the number of diesel car models has significantly declined since 2016.

In the UK, the number of diesel car models peaked at 120 in 2016 and decreased

to just 30 models by 2022, representing a reduction of nearly 75% over this period.

Similar trends are observed in France and Germany. Conversely, the number of EV

models has increased from fewer than 50 in 2016 to 150 in 2022. By around 2020,

the number of EV models surpassed the number of diesel car models, with the gap

widening over time. The number of petrol car models has remained relatively stable

throughout the sample period. In a logit model framework, the reduction in diesel

car options has forced consumers to switch to petrol cars, EVs, or other alternatives,

even if some of these options are less desirable. The significant change in the product

list may have a substantial impact on consumer welfare, though whether it will result
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in an increase or decrease remains uncertain.

In conclusion, the sales data shows a sharp increase in the EV market share

and a decline in diesel car sales over the sample period. The summary statistics also

reveal strong correlations among SUVs, luxury brand models, and EVs, underscoring

the need to include dummy variables in the analysis. Furthermore, the significant

growth in the number of EV models, coupled with the shrinking number of diesel car

models, suggests additional factors driving market changes beyond subsidy policies,

changes in characteristics, and shifts in consumer preferences.

2.3.4 Data (Socio-Demographic)

I use micro-survey data on individual purchasing decisions to highlight the im-

portance of consumer heterogeneity. The survey data for the UK is sourced from the

National Travel Survey (NTS) conducted by the Department for Transport. This

survey is conducted annually and links purchasing behaviour with income levels68.

Each year, approximately 3,700 individuals from 7,000 households in England par-

ticipate in the survey. Since the survey focuses on existing car ownership rather than

new car sales, I use the 2021 survey results to represent the most current market ac-

cumulation. In contrast, public sources on individual purchasing decisions in France

and Germany are less accessible. One notable source is the European Alternative

Fuels Observatory (EAFO) Consumer Monitor & Survey (European Commission,

2022), which was conducted across the EU27 countries.

The survey, launched in September 2022, provides up-to-date information on

accumulated stock. In France, the survey received 1,703 valid responses, including

58 BEV drivers and 1,645 non-BEV drivers. In Germany, the survey included 1,648

68In the survey, consumers are categorised into five income quintiles. Individual income levels
are not directly observed.
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observations, with 57 BEV owners and 1,591 non-BEV owners. A typical French

BEV driver is characterised as a male aged 35 or younger, living in a detached

house, with a monthly income between €2,000 and €3,999, and holding a university

degree or higher. A typical German BEV driver is a male aged 33 to 55, residing

in a detached house, with a monthly income between €2,000 and €3,999, and also

holding a university degree or higher (EAFO Consumer Monitor 2022).

Table 14 presents the summary statistics from the survey data used for micro

moments in estimation. Due to the survey’s structure, models in the UK are classi-

fied as either EV or ICE cars, while in France and Germany, they are divided into

BEVs (a subset of EVs) and non-BEVs. However, this different classification does

not affect the main argument or the creation of micro moments. It is evident that

there is a negative correlation between income levels and the ownership of electric

vehicles. Wealthier consumers are more likely to own an EV (or BEV) compared

to poorer consumers, who are more likely to own an ICE car (or non-BEV)69. This

observation highlights the heterogeneous preferences for EVs, which will be incor-

porated into the random coefficients of the demand estimation.

It is essential to create a micro sample for demand estimation, with the goal of

making it as representative as possible of the unobserved survey samples. To achieve

this, I randomly draw individual income observations from the national income

distribution. In the UK, data on income distribution is obtained from the Survey

of Personal Incomes (HMRC). For France and Germany, the data is sourced from

the EU-SILC and ECHP surveys (Eurostat). Figure 18 illustrates the evolution of

disposable incomes (after tax) for the 10th, 30th, 50th, 70th, and 90th percentiles70.

69The proportion of very wealthy consumers owning an EV in the UK appears higher compared
to the proportion of the top income group owning a BEV in France and Germany. This discrepancy
arises from different definitions of income groups, with the very wealthy in the UK representing
the top 20% of earners, a broader category than the top income groups in France and Germany.

70The currency used in the UK is pounds sterling (GBP), while the currency adopted in France
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France shows the lowest income for the bottom 10% of the population, with minimal

changes over the past decade. However, France has the highest income levels for the

low to medium percentiles (30th and 50th) compared to the UK and Germany. The

top 10% of the population in the UK are generally wealthier than their counterparts

on the continent. All three countries have experienced income growth over the last

decade. However, disposable incomes have increased at a higher rate in the UK and

Germany compared to France, where growth has been nearly stagnant. Wealthy

individuals have seen a more significant increase in income than poorer consumers.

For example, in the UK, the income threshold for the top 10% rose by £10,200,

whereas the median income increased by only £6,700. In Germany, the income

threshold for the top 10% increased by €12,008, nearly doubling the increase in the

median income.

As previously mentioned, the random draw from the income distribution should

closely replicate the survey data. To create a pseudo-survey sample, I first derive

unconditional probabilities for each income group based on the conditional proba-

bilities provided in Table 3, alongside the number of drivers for different fuel types.

Next, I generate a pseudo-survey sample with 200 observations for each market (or

time period) and calculate the number of consumers in various income groups using

the derived unconditional probabilities. Finally, I randomly draw income observa-

tions for each income group from the interpolated income distribution, according to

the number of consumers in each group.

Income distribution changes over time, and it is unlikely that consumer prefer-

ences remain independent of income levels across different periods. However, it is

probable that individuals in the same relative income position (for example, the me-

dian) share similar preferences. Therefore, I adjust the cutoffs for different income

and Germany is euros (EUR).

138



groups based on their current relative income position while maintaining the fixed

proportion of each income group.

2.4 Empirical Model

2.4.1 Set-up

I require a model that realistically captures substitution patterns between electric

and combustion engine cars on the demand side, along with a competition model on

the supply side. To address this, I use the random coefficients logit model (RC) from

Berry et al. [1993], paired with Bertrand competition on the supply side. Alternative

models include the nested logit model (NL) from Berry [1994] and the random

coefficient nested logit model (RCNL) from Brenkers and Verboven [2006]. As noted

by Cardell [1997] and Grigolon and Verboven [2014], the nested logit model involves

a specific type of random coefficients on group dummy variables71. Generally, the

NL model is more tractable but less flexible due to its distributional assumptions,

while the RC model offers greater flexibility but is computationally demanding.

The RCNL model combines the features of both the NL and RC models but often

yields insignificant results, as the heterogeneity is estimated twice, both through

random coefficients and nesting parameters. In practice, I find that the RC model

effectively captures heterogeneity compared to the NL and RCNL models, consistent

with findings in the automobile industry literature72. This paper does not aim to

offer methodological innovation but to utilise existing models to understand recent

71Specifically, these (somewhat) random coefficients must follow a particular distribution to
comply with the assumption that the error term is distributed according to an extreme value
distribution.

72In practice, I attempted to separate luxury and EV models into distinct nests. The NL
model performed poorly relative to the RC models when luxury and EV were included as dummy
variables. The RCNL model provided similar estimates, but the price elasticity was excessively
high in absolute value, suggesting model mis-specification.
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developments in the Western European automobile industry.

Consumers choose products to maximise their indirect utility, exhibiting hetero-

geneity in response to prices and product characteristics on the demand side. On

the supply side, firms engage in Bertrand competition, simultaneously setting prices

to maximise overall profit across all products in a repeated game. Consumers se-

lect products from the available options in a given market. This model represents

a repeated static Bertrand competition. Although a dynamic model could provide

additional insights into firm decision-making, it would also significantly enlarge the

state space, potentially rendering it infeasible to solve7374. Since this paper primarily

focuses on the impact of consumer subsidies, a repeated static Bertrand competition

model is a reasonable simplification for the supply side. On the demand side, car-

makers typically update their models every 7-8 years, and consumers usually keep a

vehicle for 5-6 years. Given the significance of cars for many consumers, especially

those in rural areas, it is unlikely that they would delay purchases in anticipation

of future events; rather, they are more likely to choose alternative options (Remmy

[2022]). Hence, it is also reasonable to assume that consumers’ buying decisions are

static.

2.4.2 Demand

I treat the UK, France, and Germany as isolated markets and compare the

estimation and counterfactual results. There are t = 1, 2, 3, . . . , T markets across all

three countries. Following Berry et al. [1993], markets are defined by time. In this

73Consider a simple product entry and exit game: in each market, firms must decide the number
of new models to introduce and old models to phase out, as well as the characteristics of each new
model. They must do this based on information about all available models, not just their own
but also those of competitors. Such problems are typically too complex to solve using standard
methods.

74However, I am working on a follow-up paper that examines the dynamic effects of introducing
new EV models using value function approximation and neural networks.
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paper, I use annual sales data from 2010 to 2021 to form a total of T = 12 markets.

Each market contains j = 1, 2, 3, . . . , Jt products, produced by f = 1, 2, 3, . . . , Ft

firms. The number of products may vary between markets. Each market contains

i = 1, 2, 3, . . . , It consumers with different income levels, drawn from the income

distribution. Consumers choose from existing products or an outside option, j =

0. The market size is captured by the total population for the UK, France, and

Germany. Hence, consumers who choose the outside option either buy a used car

or do not purchase a car at all.

Observed demand-side product characteristics form the N ×K1 matrix of linear

characteristics, X1, and the N ×K2 matrix of nonlinear characteristics, X2, which

is typically a subset of X1. The structural error term, ξ, represents unobserved

characteristics for all product-market bundles, with dimension N × 1. In market

t, demographics d form an It × D matrix for the agent’s observed characteristics.

The agent’s unobserved characteristics are represented by the It × K2 matrix v,

where the elements are drawn independently from a known distribution (e.g., normal

distribution).

The indirect utility of agent i in market t from purchasing product j is:

Uijt = δjt + µijt + ϵijt (31)

I use Vijt = δjt+µijt to denote the model predicted utility excluded the idiosyncratic

shocks. Vector δ is so called the mean utility in literature and the functional form

is given below:

δjt = βhp ·Hpwtjt+βSUV ·SUVjt+Pre16·βPre16 ·xjt+After16·βAfter16 ·xjt+ξjt (32)
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Here, Hpwtjt represents the horsepower, and SUVjt is a dummy variable indicating

whether the body type is an SUV. The vector xjt includes all interactions between a

brand dummy (for luxury or affordable brands) and a fuel-type dummy (for Petrol,

Diesel, and EV). Thus, xjt is a 1 × 6 vector. As mentioned earlier, including xjt

is crucial for mitigating the omitted variable problem, given the strong correlation

between SUVs, luxury brands, and EVs.

EV-specific characteristics, such as range and charging time, would ideally be in-

cluded. Unfortunately, I do not have access to this information in the dataset. Since

firms’ decisions do not involve choosing range and charging time, as in other studies

(Remmy [2022]; Armitage and Pinter [2021]), the EV dummy should adequately

capture the effects of EV-specific characteristics. I also allow consumer preferences

for xjt to vary before and after 2016, in an attempt to account for any potential

changes in preferences due to the dieselgate scandal and other factors, should they

exist.75

There are K1 = 15 linear characteristics in total. To further control for unob-

served characteristics, ξjt, I decompose it as follows:

ξjt = ξf + ξyear + ξ̃jt (33)

Here ξf is the fixed effect for firm f and ξyear is the annual fixed effect to capture

the industry wide shock in a given year (for example, the 2020 covid pandemic).

Finally, ξ̃jt is the pure unobserved characteristic to form the moment function for

identification.

75An alternative approach would be to create a linear time-trend variable, rather than using
collapsed time dummies as in Remmy [2022]. However, most estimators become insignificant under
the time-trend setting, suggesting that any changes in preference are minor, as will be seen later
in the estimation results.
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The agent-specific utility is divided into following parts:

µijt = −
α

Yit

· Pjt + γICE · Incomegroupit · ICEjt + γEV · Incomegroupit ·EVjt (34)

Here, Pjt represents the final price of product j at time t, after deducting any subsi-

dies from the listed price. Yit denotes the income level of agent i at time t. Wealthier

consumers are less sensitive to price changes compared to poorer consumers. Each

consumer is categorised into one of five income groups: very poor, poor, medium,

rich, and very rich, aligning with the micro-moments observed in the survey data.

Consumer preferences for internal combustion engine (ICE) vehicles and electric

vehicles (EVs)76 are allowed to vary across different income groups. This captures

important heterogeneity in vehicle preference, which would otherwise be overlooked

in a standard setting. Lastly, consumer preferences for luxury brands are subject to

a random shock, σvit, where σ is the standard deviation and vit is randomly drawn

from a standard normal distribution.

Consumer i in market t chooses alternative products to maximise her utility.

Given that the idiosyncratic shock ϵijt follows a type-I extreme value distribution,

the probability of consumer i to choose product j in market t is:

sijt =
expVijt

1 +
∑

k∈Jt expVikt

(35)

Aggregate market shares are obtained by integrating over the distribution of in-

dividual heterogeneity, which includes both the agent’s observed and unobserved

characteristics. The integration is typically solved using numerical approximations.

I utilise the Halton sequence for numerical integration, which functions similarly to

76Given the nature of the survey data, in France and Germany, ICE vehicles include all non-
BEV models (Petrol, Diesel, and PHEV), while EVs only include BEV models. In the UK, ICE
vehicles include Petrol and Diesel models, while EVs include both BEV and PHEV models.
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a quasi-Monte Carlo simulation.77 The Halton sequence generates an It×K2 matrix

of integration nodes, v, and an It × 1 vector of integration weights, w, such that:

sjt ≈
∑
i∈It

witsijt (36)

2.4.3 Supply

I model the profit-maximisation price decisions for F multi-product carmakers in

each market t. I assume that all product characteristics are fixed so as not to further

complicate the model. The observed product characteristics form the N×K3 matrix,

X3, into which any non-price characteristics can be included. An additional N × 1

vector of unobserved supply-side characteristics, ω, is introduced, acting similarly

to the vector ξ on the demand side.

Firm f sets prices for each product in its portfolio Jft ⊂ Jt to maximise total

profit at time t:

πft =
∑
j∈Jft

(pjt + λjt − cjt)sjt (37)

Here λjt denotes the subsidy for product j in time t. There are different ways to

model the asymmetrical price between supply-side and demand-side where the listed

price is the choice variable. The current setting is used because I use the final price

on the demand side. The first order conditions are, in vector-matrix form:

p+ λ− c = ∆(−1)s︸ ︷︷ ︸
η

(38)

Here η denotes the markups and it depends on ∆, a Jt × Jt matrix of intra-firm

77Other options include Monte Carlo, Gauss-Hermite quadrature, sparse grids, and Latin hy-
percube sampling.
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(negative, transposed) demand derivatives:

∆ = −H⊙ ∂s′

∂p
(39)

Here H denotes the market-level ownership matrix with dimension Jt × Jt where

element Hjk = 1 if the same firm produces product j and k, and 0 otherwise.

I pull the subsidy and the marginal cost term together to create a standard

notation as in Berry, Levinsohn, and Pakes (1995) where:

c′ = c− λ (40)

By doing this, it becomes easier to further decompose the de facto marginal cost

c′ and estimate the relevant coefficients. Additionally, this creates a simplified no-

tation for counterfactual scenarios without subsidies, by adding the subsidy to the

estimated marginal cost. The explanatory variables for the marginal cost are as-

sumed to be exactly the same as the linear characteristics on the demand side:

log(c′jt) = γhplog(Hpwtjt) + γSUV SUVjt + γEVEVjt + γDieselDieseljt + ωjt (41)

I take the logarithmic form of the marginal cost. A simplified set of variables is

used here compared to the demand side, as employing the same set would lead to

insignificant results. This suggests that marginal costs do not change significantly

before and after 2016. Insignificant results can create substantial bias in the coun-

terfactual analysis; hence, I have limited the variables to those that remain relevant.

Environmental policies in other sectors may affect the marginal cost of producing

one unit of an existing model, particularly if the cost of raw materials increases.

Technological advancements could also alter marginal costs, especially for electric
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vehicles (EVs). Hsieh et al. [2019] show a clear downward trend in the price of

lithium-ion cells, a key component in EV batteries. As on the demand side, I also

include firm fixed effects and annual fixed effects:

ωjt = ωf + ωyear + ω̃jt (42)

2.5 Estimation

2.5.1 Instrumental Variables

Demand-side estimation in the random coefficient logit model faces the well-

known endogeneity issue, where the price may be correlated with unobserved char-

acteristics. Even if additional variables correlated with the price are included, the

unobserved characteristics may still contain important factors that correlate with

the price. One notable example is fuel efficiency, often measured in miles per gallon

(MPG), which unfortunately is not observed in my dataset. Suitable instruments not

only mitigate the endogeneity issue but also help to identify the random coefficients,

thus serving a dual purpose.

Recent literature has highlighted that the widely used BLP instruments, which

involve summing the product characteristics, tend to perform rather poorly (Rey-

naert and Verboven [2014]; Gandhi and Houde [2019]). The main reason is that the

BLP model is not ‘optimal’ in the sense defined by Chamberlain [1987] for optimal

instruments. While the sum of characteristics contains relevant information about

the price, it also introduces a significant amount of noise. To address this, I combine

three sets of instruments to filter the most relevant information regarding prices.

I use differentiation instruments, as introduced by Gandhi and Houde [2019]. The
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idea is to select close substitutes based on their relative positions in the characteristic

space. I employ the quadratic variant, which sums the squared differences between

product characteristics across the entire sample:

ZQuad,Other
jtk (X) =

∑
k∈Jft\{j}

d2jtkl

ZQuad,Rival
jtk (X) =

∑
k/∈Jft

d2jtkl

(43)

Here djtkl = xktl − xjtl is the difference between products j and k in terms of

characteristic l. ZQuad,Other
jtk is the instrument regarding firm’s internal distance and

ZQuad,Rival
jtk is the instrument for the product from rival firms. Finally, I also include

the government subsidy as a instrument as in Armitage and Pinter [2021].

2.5.2 Identification

The aforementioned instruments aid in identifying the linear parameters on both

the demand and supply sides. Market shares vary across different products and over

time, whereas the explanatory variables (characteristics) primarily vary over time.

It is well known that the BLP-style model is only identified when the outside option

is specified and the indirect utility for the outside option is normalised to Ui0t = ϵi0t.

The firm’s first-order conditions, combined with optimal prices and the log form of

marginal cost relative to characteristics, assist in identifying the supply parameters.

On the heterogeneous side, market shares, non-linear characteristics, consumer

demographics, and micro-moments help identify the demographic coefficients Π and

variance σ. This is because consumer income levels vary over time. All theoretical

identification results can be found in Berry and Haile [2014], Berry and Haile [2024],

Salanié and Wolak [2022], and Conlon and Gortmaker [2023]. More details on
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constructing the moment functions will be discussed in the next section.

2.5.3 Estimation Approach

On the demand side, there are three sets of parameters to estimate: the linear pa-

rameter β, the demographic heterogeneity matrix Π, and the random heterogeneity

Σ. Including the supply side, there is also γ. All non-concentrated-out parameters

are denoted by θ. The estimation process follows several steps. First, the mean

utility δ(θ) must be computed for each market. Second, the structural error terms

ξ̂(θ) and ω̂(θ) are estimated and used to form the moment functions. Third, addi-

tional moment functions based on micro-moments from survey data are calculated.

Finally, the GMM objective function is constructed using the moment functions and

the optimal weighting matrix. I will now describe each step in detail.

To compute the mean utilities δ(θ), I use the SQUAREM accelerated iteration

method from Varadhan and Roland [2008], and Reynaerts et al. [2012]. This method

is typically three to six times faster than the standard iteration of Berry et al.

[1993], as it employs a first-order squared non-monotone extrapolation scheme. The

iteration is defined as:

δh+1
jt ←− δhjt − 2αhrh + (αh)2vh (44)

Where

αh =
(vh)′rh

(vh)′vh
, rh = f(δhjt)− δhjt, v

h = f(f(δhjt))− 2f(δhjt) + δhjt (45)

Here f(δhjt) = δhjt + (1 − ρ)(log sjt − log sjt(δ
h, θ)) denotes the original contraction.

Once the mean utility is calculated, marginal cost are then computed according to

148



firm’s first order conditions:

cjt(θ) = pjt − ηjt(θ) (46)

Concentrated out parameters are computed with linear IV-GMM where:

β̂ex

γ̂

 = (X ′ZWZ ′X)−1X ′ZWZ ′Y (θ) (47)

Where

X =

Xex
1 0

0 X3

 , Z =

ZD 0

0 ZS

 , Y (θ) =

δ(θ)−Xen
1 α̂

c̃(θ)

 (48)

Here I use the same notation defined in Conlon and Gortmaker [2020] where the

first row in Y (θ) includes the endogenous part. This is different from the standard

notation in Berry et al. [1993] where the endogenous coefficients has to be jointly

estimated with the supply side. The reason of doing so is to increase the accuracy of

the estimators on endogenous variables. Once the linear parameters are concentrated

out, the (estimated) structural errors are:

 ξ̂(θ)
ω̂(θ)

 =

δ̂(θ)−X1β̂

c̃(θ)−X3γ̂

 (49)

Estimated structural errors are then used to construct the moment conditionsE[gD,jt] =

E[gS,jt] = 0 where: [
gD,jt gS,jt

]
=

[
ξ̂jtZD,it ω̂jtZS,jt

]
(50)

Here ZD,jt and ZS,jt are N ×MD and N ×MS matrices of the demand and supply

instruments. To bring down the dimensionality of the moment condition, sample
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analogues g for each instruments are used to construct the objective function for the

GMM estimation where:

g =

gD
gS

 =
1

N

∑j,t Z
′
D,jtξ̂jt∑

j,t Z
′
S,jtω̂jt

 (51)

More detailed micro data on individual choices can be used to supplement the

standard demand- and supply-side moments gD and gS above with an additional

m = 1, 2, ...,MM micro moments, gM , for a total of M = MD +MS +MM moments:

g =


gD

gS

gM

 (52)

Conlon and Gortmaker [2023] provides a standardised framework for incorporating

micro moments into BLP estimation. The base idea is to create distance moments

based between the statistics observed in the survey data and model predictions:

gM,m = fm(v)− fm(v) (53)

Here fm(·) is a function that maps micro moment parts v or v into a micro statis-

tic. This is typically a conditional expectation. Like in the demand- and supply-

moments, I use the sample analogue version. More details can be checked in Conlon

and Gortmaker (2023). Finally, the GMM problem becomes:

min
θ

q(θ) = g(θ)′Wg(θ) (54)

Here q(θ) is the GMM objective on the non-linear parameters θ. W is the GMM

150



optimal weighting matrix with dimension M×M . Traditionally, the 2SLS weighting

matrix is used in the first stage:

W =

(Z ′
DZD/N)−1 0

0 (Z ′
SZS/N)−1

 (55)

With two-step GMM, which is usually the case, W is updated before the second

stage according to:

W = S−1 (56)

Matrix S could take different forms depending on the optimisation context. I use

the clustered weighting matrices with c = 1, 2, ..., C clusters:

S =
1

N

C∑
c=1

gcg
′
c (57)

Where, letting the set Jct ⊂ Jt denote products in cluster c and market t,

gc =
∑
t∈T

∑
j∈Jct

gjt (58)

The robust standard errors are adjusted for each cluster. For the (re)calculation of

equilibrium prices in the counterfactual analysis and data simulation, I use the re-

formulation of the FOC of the profit maximisation problem by Morrow and Skerlos

[2011], which enhances performance in terms of speed and convergence compared to

the conventional Newton’s method. For the software, I utilise the PyBLP package

developed by Conlon and Gortmaker [2020] and Conlon and Gortmaker [2023] to

perform the estimation. Several micro-moments are constructed to match the ob-

servations in the survey data. I use the ‘BFGS’ algorithm for optimisation, setting

the tolerance to 1e−4. The ‘SQUAREM’ iteration method is employed, with the
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convergence tolerance set to 1e−14.

It is well-known that the GMM objective function is generally non-convex. Ad-

ditionally, numerical issues arise when random coefficients for dummy variables be-

come too large. Given the scope of the GMM problem, I impose a bound on random

coefficients, drawing from the extensive results in the automobile literature. I also

experiment with different starting points to find the global minimum within the

bound, and use both first-order and second-order gradients to ensure the optimiser

does not get stuck at a saddle point.

2.6 Estimation Results

Table 15 presents the estimated coefficients for the linear parameters. Columns

two to four represent the demand-side coefficients, while columns five to seven dis-

play the supply-side coefficients. The top panel shows the universal variables that

remain constant over time, whereas the bottom two panels illustrate the coefficients

of interacted dummies for pre-2016 and post-2016 levels on the demand side. All

else being equal on the demand side, consumers in all three countries prefer vehicles

with higher horsepower. German consumers place a higher value on each additional

unit of horsepower compared to consumers in the UK and France. Consumers also

show a preference for SUVs over other body types, with UK consumers deriving the

least utility premium from SUVs.

In the bottom two panels, changes in preferences exhibit distinct patterns across

the three countries. French consumers’ preference for all brand × fuel-type in-

tersections declines, suggesting a generally weaker automobile market after 2016.

In contrast, UK consumers’ preference for all vehicle types increased after 2016.

In Germany, the preference for models from affordable brands increased, while the
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preference for luxury brand models decreased after 2016, indicating a weaker market

for luxury brand sales overall.

On the supply side, producing models with higher horsepower is more costly.

SUVs have a significant impact on marginal costs in the UK and France, but not

in Germany. In the lower panel, EVs are more expensive to produce in the UK,

cheaper in Germany, and roughly the same cost in France when compared to diesel

cars. I also attempted to include the luxury dummy on the supply side. However, the

marginal cost for luxury brands proved insignificant in all three countries, indicating

that, all else being equal, there is no substantial difference in marginal production

costs between luxury and affordable brands.

Table 16 presents the results from the non-linear estimates, which include in-

teraction terms between income levels and car characteristics. Additionally, Table

16 shows the price elasticity for different fuel-type vehicles. Recall that Table 14

demonstrates a strong correlation between income levels and the likelihood of being

an EV (BEV) driver. Two factors could explain this observed survey result. First,

wealthy consumers may be less sensitive to price changes compared to poorer con-

sumers, increasing their likelihood of purchasing more expensive EVs. This effect

is confirmed in all three countries, as the coefficients for price/income are consis-

tently negative. Second, affluent consumers may have a stronger preference for EVs

than poorer consumers. This reflects a combination of between and within effects.

Wealthier consumers may have a greater preference margin between EVs and ICE

cars (within), compared to poorer consumers (between).

In the UK, while consumers in all income groups prefer ICE vehicles over EVs, the

preference gap narrows as income increases. In France, the preference gap between

BEVs and non-BEVs remains relatively stable, regardless of changes in consumers’

income. Germany is the only country where some income groups prefer BEVs over
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non-BEVs. Except for the poorest consumers, all other income groups showed a

preference for BEVs, with the preference margin increasing as consumers become

wealthier. All estimates are statistically significant.

Table 16 also presents the price elasticity for all three countries in the total sam-

ple, as well as for each fuel-type sub-sample. The overall elasticity is consistent with

estimates in the existing literature on the automobile industry (Berry et al. [1993];

Petrin [2002]; Brenkers and Verboven [2006]; Grigolon and Verboven [2014]; Grieco

et al. [2024]; Linn [2022]; Remmy [2022]; Armitage and Pinter [2021]). Germany

exhibits the highest price elasticity across the three countries.

In comparing the elasticity across the fuel-type sub-samples, consumers in the

UK and France are more price-sensitive towards EVs than ICE cars. However, in

Germany, EVs show the lowest price elasticity among all fuel types. This result

aligns with the previous finding that, except for lower-income consumers, German

consumers exhibit a strong preference for EVs.

Figure 19 presents the estimated marginal costs across different fuel types and

brand models. In general, diesel cars are more expensive to produce than petrol

cars, and EVs are even costlier to manufacture than diesel cars. Additionally, lux-

ury models are generally more expensive to produce than affordable models. It is

important to note that the estimated marginal costs are derived after accounting

for the purchase subsidy. The actual marginal costs should be the estimated val-

ues plus the current subsidy amount. In the UK and Germany, the real marginal

costs for EVs initially declined and then stabilised, whereas in France, the marginal

costs for EVs continued to rise. On the brand side, subsidies affect both luxury and

affordable brands in a similar manner. Overall, marginal costs have increased over

the past decade.

In general, diesel cars are more expensive to produce than petrol cars, and EVs
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are even costlier to manufacture than diesel vehicles. Additionally, luxury models

are generally more expensive to produce than affordable models. It is important to

note that the estimated marginal costs were derived by factoring in the purchase

subsidy. The actual marginal costs should therefore be the estimated values plus the

current subsidy amount. In the UK and Germany, the real marginal costs for EVs

initially decreased before stabilising, whereas in France, the marginal costs for EVs

continued to rise. On the brand side, subsidies affect both luxury and affordable

brands in a similar way. Overall, marginal costs have increased over the past decade.

Figure 20 represents the average markups by fuel and brand types. The average

markups in the UK and France decreased throughout the 2010s. This is similar

to the findings of Grieco et al. [2024], where they observed a similar decline in

markups in the US automobile market. Potential reasons for this decrease include

increasing competition and rising raw material prices. However, markups remained

relatively constant in Germany, which aligns more closely with the results found

in macroeconomic literature (for example, De Loecker et al. [2020]). Germany also

has the lowest average markups among the three countries. This can be partially

explained by the fact that, unlike the UK and France, Germany has a large and

highly competitive car manufacturing industry, leading to greater competition and

lower markups.

Regarding markups for different fuel types, the three countries exhibit distinct

patterns. In the UK and France, EV markups have been the lowest among all fuel

types since 2016, once the EV market reached a size significant enough to draw

meaningful conclusions. However, in Germany, EV markups consistently exceed

those of their ICE counterparts. When combined with the findings from Figure 5,

the main factor is that EVs are significantly more costly to produce in the UK and

France compared to Germany.
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Figure 20 also shows that markups for luxury brands are generally lower than

those for affordable brands. This is a striking result, considering that luxury brands

have higher marginal costs, as shown in Figure 19. The high prices of luxury brand

models do not stem from market power but rather from the high marginal costs.

Therefore, a more targeted subsidy policy is needed to lower EV prices by reducing

the marginal costs for luxury brands, which dominate the new models in the EV

market.

To summarise, the estimation results indicate that different income groups ex-

hibit varying price sensitivities and preferences for EVs. On the production side,

EVs are generally more costly to produce, and average markups either decrease or

remain constant in the UK, France, and Germany.

2.7 Welfare Analysis

In this section, I calculate the consumer surplus for each agent within their

respective income group. Additionally, I compute the firm’s profits at equilibrium.

Table 17 presents the average change in consumer surplus for each income group

from 2015 to 2021.

The average consumer surplus across the entire sample decreases in the UK and

France, while it increases in Germany. Specifically, consumers in the UK experience

the greatest decline, whereas those in Germany see the largest gains. This outcome

is partly explained by the fact that German consumers received the most generous

subsidies in 2021, while UK consumers benefited from significantly higher subsidies

in 2015 compared to 2021. However, the distribution of these benefits is highly

unequal across income groups. For example, very wealthy consumers gain substan-

tially more than poorer consumers. A typical consumer in the top 20% income group
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experiences welfare improvements in all three countries, whereas consumers in the

bottom two income groups face welfare losses.

Another noteworthy finding is that consumers in the middle-income group are

the most negatively affected by changes in the automobile market. Unlike lower-

income consumers, who may opt for outside alternatives, middle-income consumers

generally require a car for daily commuting. However, shifts in the market have

forced them to switch to more expensive EVs, resulting in significant welfare losses.

This striking result highlights the unequal impact of market changes on different

consumers. In particular, wealthier consumers benefit more from the rise of EVs, as

they receive the same amount of government subsidies but have a stronger preference

for EVs compared to poorer consumers. Meanwhile, middle-income consumers are

the hardest hit, as EVs are too expensive for them, and the availability of ICE

vehicles is simultaneously diminishing.

Figure 21 presents the total profits by fuel and brand types. Profits for EVs

have been increasing, while profits for diesel cars have been declining in all three

countries since 2016. Despite the generally higher markup for diesel cars compared

to EVs (as shown in Figure 20), the sharp decline in diesel car market share has led

to decreasing total profits for diesel vehicles. Finally, the total profits for all firms

have risen from 2015 to 2021.

In summary, changes in consumer surplus vary significantly across income groups,

with wealthier consumers benefiting much more than poorer consumers. The total

profits from diesel cars have declined, while profits from EVs have increased. As

both overall consumer surplus and firms’ profits have increased over time, it appears

that overall market efficiency has improved, driven either by advanced technologies

like EVs or increased competition. However, government subsidies also distort the

market to some extent. Therefore, it is essential to identify the effect of these
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subsidies on market share changes and overall welfare. This will be discussed in the

next chapter.

2.8 Counterfactual One: Driver of the Market

Share Changes

Figure 16 shows a drastic increase in EV sales and a significant drop in the

market share of diesel cars, but the underlying reasons for this shift in market

structure remain unclear. In this section, I use the estimation results to explore the

detailed causes of this change through various counterfactual designs. The findings

will provide important insights into the effectiveness of current policies and inform

recommendations for better policy design in the future.

Table 18 presents the overall change in market shares from 2015 to 2021. Several

factors, as predicted by the random coefficient logit model, may have contributed

to this shift.

First, purchase subsidies affect the perceived prices and, consequently, the sales

of models with different fuel types. Second, the available product list and its charac-

teristics (both observed and unobserved) may shift market shares. Third, consumer

preferences for various fuel and brand types may evolve over time, influencing their

indirect utility when selecting different models.

It is challenging to analyse these four factors simultaneously. Instead, I examine

each factor individually. For instance, to explore the effect of subsidies, I adjust only

the marginal costs of subsidised models while keeping all other factors constant.

By doing this, I decompose the overall changes into four distinct sections, each

representing a driving factor. I denote these factors as F1, F2, and F3, representing
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subsidies, preferences, characteristics, and product lists, respectively. The overall

change in market shares can be decomposed as follows:

s21jt − s15jt = sjt(F
21
1 , F 21

2 , F 21
3 )− sjt(F

15
1 , F 15

2 , F 15
3 )

= sjt(F
21
1 , F 21

2 , F 21
3 )− sjt(F

15
1 , F 21

2 , F 21
3 )

+ sjt(F
15
1 , F 21

2 , F 21
3 )− sjt(F

15
1 , F 15

2 , F 21
3 )

+ sjt(F
15
1 , F 15

2 , F 21
3 )− sjt(F

15
1 , F 15

2 , F 15
3 )

(59)

It is important to note that when considering the subsidy effect, the second line of

equation (29) represents the difference in the subsidy effect between 2015 and 2022,

rather than the absolute impact of subsidies compared to a no-subsidy scenario. The

overall number of available products has decreased over time, meaning that most

models in 2021 had counterparts in 2015.78 Meanwhile, a significant portion of the

models available in 2015 had disappeared by 2021.

In principle, three simulated equilibria are required to fully decompose the overall

change in the manner described by equation (29). However, since the total change

in market shares is already known, two simulations are sufficient to derive the com-

plete result. In this case, I run counterfactual analyses for subsidies and preferences,

allowing the effects of the product list and characteristics to be determined auto-

matically. I also changed the order of the three factors in equation (29) to test the

stability of the results. All outcomes were consistent, confirming that the order of

the factors does not affect the conclusions. Table 19 presents the simulation results

as a percentage of the total absolute changes. This approach is necessary because

some of the absolute changes in market shares, particularly for the subsidy effect,

are very small.

78For example, the C7 version of the Audi A6 was introduced in 2011, while the C8 version was
produced starting in 2018. In fact, over 85% of models in 2021 have a counterpart in 2015.
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Table 19 indicates that the subsidy effect is negligible in the UK. In France,

the subsidy effect accounts for only 16% of the total change in market shares. In

contrast, the subsidy effect explains nearly half of the total increase in EV market

share in Germany. This is because the subsidy amount in the UK and France was

much more generous in 2015 compared to 2021. However, since the EV market

share was very small in 2015, the subsidy had little impact in these countries. By

2021, as the EV market matured, the subsidy amount had sharply reduced. In

Germany, however, the government started subsidising EVs at a later stage, when

the EV market was more established. This made the subsidy policy more effective,

contributing to nearly half of the overall changes in EV market shares. These results

suggest an important implication: purchase incentives are more effective when the

market for new technology is more mature.

The preference effect aims to capture the impact of the dieselgate scandal, as

many previous studies have claimed it shifted consumer preferences away from diesel

cars in the US, where the scandal originated. However, the simulation results do

not fully support the same argument for Western Europe. The preference effect for

petrol cars is quite volatile in the UK and France, where preference changes actually

led to significant shifts in the opposite direction of the overall petrol car sales trends.

One possible reason for this is that the total change in petrol car sales in the UK

and France is relatively small compared to Germany.

For diesel cars, while preference shifts account for more than 100% of the drop

in diesel car sales in France, they again move in the opposite direction in the UK,

indicating that UK consumers actually preferred diesel cars after 2016. German

consumer preferences for diesel cars remained relatively unchanged after 2016. One

explanation for why the dieselgate scandal had less of an impact in Europe compared

to the US is that most of the manufacturers involved in the scandal are European,
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making them harder to replace in Europe, where they have much stronger regional

market power. On the EV side, preferences explain much of the share changes in

the UK, have the opposite effect in France, and have only a negligible impact in

Germany.

Finally, changes in the product list and characteristics also show interesting

results across the three countries. Changes in fleet and characteristics explain more

than the actual changes for petrol cars. However, they only explain the changes

in diesel cars in the UK and Germany. For EVs, fleet and characteristics changes

have no impact on EV sales in the UK, explain half of the changes in Germany, and

account for more than the observed increase in France.

The effectiveness of the subsidy depends on the cost pass-through to the price

(i.e., the ratio of change in equilibrium price to the change in marginal cost). Previ-

ous literature has outlined the pass-through ratio in Bertrand competition, including

Zimmerman and Carlson [2010] for linear demand, and Verboven and Dijk [2009])

for logit demand. However, analysing the random coefficient logit demand is more

complex. One general finding is that the cost pass-through is larger when the de-

mand curve becomes more convex. Weyl and Fabinger [2013] also confirmed that

the pass-through rate can exceed 100%, resulting in an overshifting situation. The

authors argue that this phenomenon is more likely to occur in Bertrand competition

than in Cournot competition.

Figure 22 presents the average own pass-through ratio for subsidised vehicles in

the UK, France, and Germany. It is evident that the demand for subsidised vehicles

(BEVs and PHEVs) is sufficiently convex, leading to overshifting in all cases. EV

producers in France and Germany have greater market power than those in the UK,

allowing them to charge even higher prices with the same increase in marginal costs.

If the actual MSRP (prices used in the estimation plus the subsidy) is considered,
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the model predicts that MSRP would rise in the absence of subsidies. The overall

pass-through ratio is decreasing, suggesting a more competitive EV market over

time.

Table 20 shows the welfare impact of the three different effects. Many of the

results reflect the findings in Table 8. Preference effects negatively impact consumer

welfare in the UK and Germany, while French consumers benefit significantly from

the shift in preferences. Product and characteristics effects move in the opposite

direction compared to preference effects. Overall, UK and French consumers expe-

rience a welfare loss, while German consumers enjoy a welfare gain. This outcome

is largely driven by the fact that Germany implemented a more generous subsidy

policy at a much later stage compared to the UK and France.

In summary, the counterfactual results indicate that the subsidy effect plays a

minor role in the change in market shares. However, the primary reasons for these

changes vary across countries. In the UK, changes are primarily driven by character-

istic and preference effects, while in France and Germany, characteristic and product

effects account for most of the changes in market shares. The ineffectiveness of the

subsidy policy stems from the fact that the EV market had not yet matured when

subsidies were substantial, and the demand was sufficiently convex, allowing EV

producers to wield significant market power and distort the subsidy’s impact. The

key policy implication is that it is more effective to subsidise EVs when the market is

more mature (as seen in Germany) and more competitive. Characteristic and prod-

uct effects dominate the changes in consumer surplus, with changes in characteristics

decreasing surplus, while changes in the product list increase surplus.
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2.9 Counterfactual Two: Income-based Subsidy

Policy

In this section, I construct counterfactuals based on proposed alternative income-

based policies. Specifically, two policy strands are considered. The first keeps overall

spending constant for a given time period, allowing the subsidy amount to vary by

income level. The goal of this policy is to maximise EV sales. The second strand aims

to keep the EV market share constant while minimising the total spending required

to achieve a specific level of EV market share. I use the differential evolution method

to find the optimal alternative subsidy allocations.79 Given the heavy computational

burden of this optimisation, it is infeasible to find the optimal policies for each year

from 2010 to 2021. Instead, I select two representative years—2017 and 2021—to

compute optimal income-based subsidies.

The year 2017 captures a scenario where the EV market was immature and

subsidies were relatively generous in some countries. This result is particularly

relevant for emerging EV markets worldwide. The year 2021 reflects a more mature

EV market with stricter subsidy policies, which is indicative of markets that already

have established EV sectors but aim to reduce financial support. Finally, I compare

the consumer surplus differences under no subsidy, uniform subsidy, and income-

based subsidy for consumers from various income groups.

Implementing an income-based subsidy policy may seem challenging due to the

additional resources required to assess each individual’s income. However, such

policies are already in place in several US states. For example, the California Clean

79Remmy (2023) used the grid search method to solve a different policy redesign. However,
given the vast candidate space in my problem and the significant computational time required for
each new equilibrium, I employ the differential evolution method, which is designed for this type
of optimisation.
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Vehicle Assistance Program (CVRP) offers income-based incentives for the purchase

or lease of new or used electric vehicles, targeting California residents living in

disadvantaged communities (DAC).80 Similarly, the New York State Drive Clean

Rebate provides higher rebate amounts for low- and moderate-income individuals

purchasing or leasing electric vehicles.81 However, I have not observed income-based

subsidy policies being implemented in Europe, either in the past or in the near

future. This creates an ideal scenario to study the effects of alternative policies,

offering implications for both Europe and emerging EV markets globally.

Income-dependent subsidies result in varying outcomes. Since lower-income con-

sumers are more price-sensitive in all three countries, it is ”cheaper” to stimulate

additional EV sales by subsidising low- and medium-income consumers. However,

this does not always lead to higher sales, as lower-income consumers generally exhibit

a stronger preference for ICE vehicles over EVs. Table 16 confirms this argument,

showing that the gap between preferences narrows as consumer income increases.

Additionally, targeting specific income groups for subsidies shifts consumer surplus,

as different income groups receive varying amounts of financial support.

Before presenting the simulation results for alternative income-based policies,

it is crucial to introduce some comparable benchmarks for evaluating subsidy ef-

fectiveness beyond total spending and EV market share. Two new concepts are

introduced here. First, I use the subsidy per extra unit of EV sales (subsidy-per-

unit) to capture the pure monetary incentives. This measure is commonly used in

the literature, including by Hughes and Podolefsky [2015], Li [2019], Springel [2021],

and Linn [2022]. The difference between the policy subsidy and the subsidy-per-unit

captures the number of consumers who would not have purchased an EV without

80https://cleanvehiclegrants.org/
81https://www.nyserda.ny.gov/All-Programs/Drive-Clean-Rebate-For-Electric-Cars-Program
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the subsidy. As the subsidy-per-unit increases, the policy’s effectiveness diminishes.

Figure 23 illustrates the annual average subsidy-per-unit in the three countries.

Germany has the highest overall subsidy-per-unit compared to the UK and

France, particularly after 2020. This result suggests that most EV buyers in Ger-

many would still purchase EVs even in the absence of a subsidy policy. The UK,

however, has the most effective subsidy policy in terms of triggering additional EV

sales. In all three countries, the subsidy-per-unit is at least three times the current

subsidy, meaning that the majority of EV buyers would continue to purchase EVs

even without the subsidy.

The second benchmark is the welfare change per unit of sales (welfare-per-unit),

which is the sum of the change in consumer welfare, the change in carmaker profits,

and the subsidy expenditure, divided by the change in EV sales. This measure, used

by Pless and Van Benthem [2019]), captures the social benefits or costs, excluding

environmental externalities. Figure 24 illustrates the annual average welfare-per-

unit.

The result in Figure 24 is quite striking because the welfare changes in all three

countries are positive. This contrasts with the findings of Linn [2022] for the US

market, where welfare changes were negative. One key difference between this paper

and Linn [2022] is that this study does not account for interactions between different

policies, which may drive the results in varying directions.

From the components of the welfare-per-unit, two main reasons explain the in-

crease. First, the improvement in consumer surplus under the subsidy policy ex-

ceeds the subsidy amount itself. This is primarily due to the pass-through rate

being greater than 1, as shown in Figure 8. The reduction in marginal costs due

to subsidies leads to an even larger reduction in price, thereby boosting consumer

surplus. Second, carmakers’ profits increase with the subsidy because more con-
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sumers are willing to purchase EVs as they become cheaper. In the US, spending on

other policies, such as ZEV and GHG credits, potentially drives firms’ profits into

the negative, which results in a negative welfare-per-unit. However, the positive

welfare-per-unit in this study is not distributed evenly across income groups, as will

be discussed later in this section.

The goal is to determine five optimal subsidy amounts for each income group in

different scenarios. The following steps are used to conduct the analysis. First, I fix

four subsidy amounts and use a root-finding algorithm to pin down the remaining

one. The root function depends on the counterfactual scenario. If the goal is to max-

imise EV shares given a fixed total expenditure, the root objective function ensures

that the equilibrium-induced total expenditure matches the fixed amount. If the

goal is to minimise spending while maintaining a certain EV share, the root-finding

function ensures that the equilibrium-induced EV shares equal the benchmark.

Second, I allow the four subsidy amounts to vary and calculate the simulated EV

shares or subsidy amounts derived from the remaining optimal subsidy, as found by

the root-finding method. Third, I use the differential evolution method to find the

optimal subsidy allocation for either share maximisation or spending minimisation

scenarios.

Table 21 presents the simulation results for 2021, when the EV market is more

mature. It includes the optimal subsidy amounts, original and simulated objectives

(including EV shares and total subsidy amounts), as well as subsidy-per-unit and

welfare-per-unit for both the original and simulated values. It is more effective to

subsidise low-income consumers, regardless of the objective, as they are more price-

sensitive. For high-income consumers, many EV buyers would still purchase EVs

even without subsidies. Therefore, it is more cost-efficient to allocate subsidies to

low-income rather than high-income consumers in all three countries.
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Regarding the simulated objectives, the results are mixed. The EV shares sim-

ulated under the income-based policy are not drastically different from those under

the uniform policy, with the largest improvement in Germany showing only a 25%

increase in EV shares. However, the share-oriented policy does reduce the subsidy-

per-unit by around 35% to 45%. On the other hand, the spending minimisation

policy significantly impacts the outcomes, yielding more than 50% in cost savings

while achieving the same EV shares. Moreover, the subsidy-per-unit tends to be

lower compared to the share maximisation policy.

However, the welfare-per-unit decreases under the income-based policy compared

to the uniform policy, indicating that the income-based policy is actually more costly

in terms of welfare. Further analysis reveals that both average consumer welfare and

firms’ profits decrease under the new policy, and the sum of these negative effects

outweighs the cost savings from the subsidy. This important result suggests that

while the income-based policy is more cost-efficient, it comes at the expense of

reduced average consumer surplus and firms’ profits. It is crucial to balance welfare

gains and losses when setting policy from the government’s perspective.

Table 22 presents the results for 2017, reflecting an immature market situation.

The key implications of the results—such as allocating more subsidies to poorer con-

sumers than to wealthier ones, and the minor improvement in EV shares relative to

the savings in subsidies—remain consistent with the 2021 findings. The only excep-

tion is the subsidy-driven policy in the UK, where most of the subsidy is allocated

to medium-income consumers, resulting in increased total subsidy spending.

In the 2017 simulation, the improvements in EV shares are slightly higher in

percentage terms compared to the 2021 case, with both France and Germany ex-

periencing a 30% increase in EV shares compared to 20% in 2021. In the bottom

panel, the subsidy-per-unit and welfare-per-unit results also follow similar patterns
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to those seen in 2021, where both values decrease under the income-based policy.

The results from Table 21 and Table 22 suggest that there is no significant

difference in the relative improvement of income-based policies between mature and

immature markets. While the income-based policy makes it cheaper to stimulate

an additional EV sale, this comes at the cost of overall welfare, affecting consumers,

carmakers, and the government.

Although the subsidy policy undoubtedly increases the average consumer surplus,

it is not evenly distributed across all income groups. Table 23 shows the difference in

average consumer surplus among the five defined income groups, with and without

the subsidy policy (both uniform and income-based) in 2021. Under the uniform

subsidy, wealthier consumers gain significantly more welfare compared to poorer

consumers, as expected, since poorer consumers are more price-sensitive. However,

under the income-based subsidy, the situation is reversed for the very-poor and very-

rich consumers, as the optimal subsidy allocation is heavily skewed toward poorer

consumers.

The income-based policy results in a U-shaped change in surplus as consumers

become wealthier. This is because medium-income consumers are both too price-

sensitive compared to the very-rich and receive far less subsidy than the very-poor.

When comparing share-oriented and subsidy-oriented optimal policies, it appears

that the distortions under the subsidy-driven policy are more moderate.

In summary, I propose an alternative income-based subsidy policy that shows

both higher induced EV shares and lower total subsidy spending compared to the

uniform subsidy policy. The subsidy-per-unit measurement decreases under the

income-based policy, indicating it is cheaper to promote an additional EV sale un-

der this approach. However, this comes at the cost of total welfare for consumers,

firms, and the government, as the welfare-per-unit also declines. Under the uniform
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policy, wealthier consumers gain more surplus than poorer consumers, while under

the income-based policy, welfare gains follow a U-shape as consumer income rises.

2.10 Conclusion

This paper addresses three major questions. First, what drives the recent sharp

increase in EV sales? To answer this, I use annual new car sales data from the UK,

France, and Germany to estimate consumer preferences via a random coefficient

logit model. I then run various simulations allowing key factors affecting EV market

shares—subsidies, preferences, and product/characteristics—to change. The results

show that the subsidy effect plays a minor role in explaining the rise in EV shares

compared to the influence of preferences and product/characteristics changes. This

suggests that the primary drivers of EV adoption stem from changes in consumer

preferences following the 2015 ’dieselgate’ scandal and product list/characteristics

changes after governments announced plans to ban ICE cars within the next 15 to

20 years.

Second, this paper explores heterogeneous preferences among consumers of dif-

ferent income levels. Using data from national travel surveys, I generate micro-

moments to improve the accuracy of the estimation. The random coefficients esti-

mates illustrate that poorer consumers are more price-sensitive than wealthier con-

sumers, and higher-income consumers tend to have a stronger preference for EVs

over ICE cars. This heterogeneity in EV preferences means that different income

groups are affected unevenly by market changes. Welfare analysis reveals that very-

poor consumers experienced a welfare loss, while very-rich consumers saw a welfare

gain from 2015 to 2021 in all three countries. This indicates that poorer consumers

were more negatively impacted by the sharp rise in EV market shares compared to
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wealthier consumers.

Third, the paper proposes an alternative income-based subsidy policy and com-

pares its effectiveness to the current uniform subsidy across various dimensions. The

optimal income-based subsidy generally allocates more funds to poorer consumers,

who are more price-sensitive and therefore more likely to be incentivised to purchase

an EV. A significant number of wealthier consumers would buy EVs even without

a subsidy. The income-based subsidy policy is up to 60% more cost-effective in

boosting EV sales compared to the uniform subsidy. However, this comes at the

cost of total welfare, as the combined consumer surplus and firm profits decline

by more than the government savings. Nevertheless, unlike in the US market, the

welfare of each additional EV sale remains positive, leaving some room to balance

environmental externalities.

A significant gap in this paper is the lack of analysis on how car manufacturers

decide whether to introduce new EV models or phase out existing ICE models. Both

the effects of ’dieselgate’ and the impending ban on ICE car sales make introducing

new ICE models more costly, and consumer preferences for EVs make it even harder

to achieve profits with ICE models. Addressing product entry/exit decisions would

require a dynamic discrete/continuous choice model. However, given the large state

and choice spaces, traditional methodologies may not be sufficient to solve the model.

On the policy side, instead of providing subsidies to consumers to lower EV

purchase costs, governments could also offer subsidies to carmakers to reduce EV

production costs. It would be interesting to explore under what conditions one

policy outperforms the other and examine the differing welfare impacts of purchase

subsidies versus production subsidies. These research questions are left for future

study.
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2.11 Tables

Table 12: Summary Statistics (UK and France)

UK Mean Std Min Max Mean Std Min Max

All cars SUVs

Price (1e4) 3.990 2.259 0.926 15.00 Price (1e4) 4.960 2.347 1.312 15.00

Horsepower 0.38 0.18 0.12 1.68 Horsepower 0.45 0.19 0.18 1.68

SUV 0.35 0.48 - - SUV - - - -

Luxury 0.33 0.47 - - Luxury 0.38 0.49 - -

EV 0.19 0.39 - - EV 0.23 0.42 - -

Observation 31757 Observation 11004

Luxury EV

Price (1e4) 5.687 2.472 1.122 15.00 Price (1e4) 6.220 2.850 1.608 14.98

Horsepower 0.52 0.19 0.12 1.68 Horsepower 0.51 0.25 0.12 1.68

SUV 0.40 0.49 - - SUV 0.42 0.49 - -

Luxury - - - - Luxury 0.48 0.50 - -

EV 0.27 0.45 - - EV - - - -

Observation 10535 Observation 5985

FR Mean Std Min Max Mean Std Min Max

All cars SUVs

Price (1e4) 3.731 2.244 0.755 15.00 Price 4.788 2.412 1.557 15.00

Horsepower 0.34 0.17 0.12 1.59 Horsepower 0.42 0.19 0.18 1.53

SUV 0.32 0.46 - - SUV - - - -

Luxury 0.24 0.43 - - Luxury 0.31 0.46 - -

EV 0.24 0.43 - - EV 0.32 0.47 - -

Observation 27552 Observation 8709

Luxury EV

Price (1e4) 5.946 2.722 1.344 15.00 Price (1e4) 6.067 3.014 1.661 15.00

Horsepower 0.49 0.23 0.12 1.59 Horsepower 0.49 0.26 0.12 1.59

SUV 0.41 0.49 - - SUV 0.42 0.49 - -

Luxury - - - - Luxury 0.45 0.50 - -

EV 0.45 0.50 - - EV - - - -

Observation 6524 Observation 6617
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Table 13: Summary Statistics (Germany)

DE Mean Std Min Max Mean Std Min Max

All cars SUVs

Price (1e4) 3.929 2.217 0.788 15.00 Price (1e4) 4.675 2.213 1.445 15.00

Horsepower 0.39 0.18 0.12 1.68 Horsepower 0.46 0.18 0.18 1.68

SUV 0.30 0.46 - - SUV - - - -

Luxury 0.31 0.46 - - Luxury 0.36 0.48 - -

EV 0.17 0.37 - - EV 0.22 0.41 - -

Observation 44230 Observation 13333

Luxury EV

Price (1e4) 5.588 2.380 1.365 15.00 Price (1e4) 5.721 2.978 1.308 15.00

Horsepower 0.52 0.20 0.12 1.68 Horsepower 0.49 0.25 0.12 1.68

SUV 0.35 0.48 - - SUV 0.39 0.49 - -

Luxury - - - - Luxury 0.46 0.50 - -

EV 0.25 0.43 - - EV - - - -

Observation 13833 Observation 7393

Notes: an observation is a maker-model-month. Prices is the list price (MSRP)

minus the subsidy in a given time in US dollars to represent the final price

faced by consumers. The horsepower is also normalised by 400 to make the

mean closer to 1.
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Table 14: Income Level vs Fuel-types

Net income / Fuel-types EV driver ICE driver

UK, N = 3,626

Very poor (1st quintile) 9% 15%

Poor (2nd quintile) 8% 17%

Medium (3rd quintile) 21% 22%

Rich (4th quintile) 25% 23%

Very rich (5th quintile) 37% 23%

Net income / Fuel-types BEV driver Non-BEV driver

FR, N = 1,703

< 800€ 3% 4%

800 - 1,999€ 10% 32%

2,000 - 3,999€ 45% 44%

4,000 - 5,999€ 28% 15%

>= 6,000€ 14% 5%

DE, N = 1,648

< 800€ 2% 4%

800 - 1,999€ 5% 26%

2,000 - 3,999€ 36% 45%

4,000 - 5,999€ 25% 19%

>= 6,000€ 32% 6%

Notes: Net income represents the monthly disposable

after-tax income.
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Table 15: Estimation Results (Linear Parameters)

Country UK France Germany UK France Germany

Side demand demand demand Side supply supply supply

Variables 1:

hpwt 4.07 3.87 5.05 log(hpwt) 1.14 1.34 1.21

(0.31) (1.50) (1.14) (0.03) (0.16) (0.05)

SUV 0.52 0.50 0.35 SUV 0.03 0.04 0.01

(0.09) (0.09) (0.09) (0.01) (0.02) (0.02)

Pre 2016: All time

Afford×Petrol 1.01 5.05 9.09 EV 0.34 0.24 0.16

(0.32) (0.94) (1.03) (0.03) (0.04) (0.04)

Luxury×Petrol 1.16 5.42 9.23 Diesel 0.22 0.22 0.24

(0.31) (1.01) (1.06) (0.01) (0.04) (0.01)

Afford×Diesel 1.14 5.76 9.49

(0.31) (1.07) (1.14)

Luxury×Diesel 1.94 6.60 10.31

(0.30) (1.14) (1.18)

Afford×EV 1.45 5.79 9.05

(0.74) (1.25) (1.38)

Luxury×EV 4.70 5.44 9.30

(1.21) (1.20) (1.36)

After 2016:

Afford×Petrol 4.41 4.03 9.56

(0.28) (2.00) (1.01)

Luxury×Petrol 4.57 4.23 9.12

(0.34) (2.01) (1.02)

Afford×Diesel 4.06 4.13 9.58

(0.30) (2.03) (1.13)

Luxury×Diesel 5.02 5.09 10.04

(0.34) (2.06) (1.16)

Afford×EV 5.55 4.57 9.42

(0.59) (2.06) (1.22)

Luxury×EV 7.37 4.72 9.16

(0.66) (2.05) (1.17)
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Table 16: Estimation Results (Non-linear Parameters)

UK

Π 1/incomeUS poor medium rich veryrich

prices
-3.22

(0.18)

ICE
-1.10 -2.06 -2.93 -4.27

(0.12) (0.14) (0.17) (0.24)

EV
-1.73 -1.96 -2.88 -4.27

(0.80) (0.66) (0.70) (0.78)

France

Π 1/incomeUS poor medium rich veryrich

prices
-2.74

(0.74)

Non-BEV
-3.00 -4.62 -5.80 -6.21

(0.65) (1.02) (1.31) (1.45)

BEV
-4.65 -5.56 -6.41 -6.50

(1.50) (1.20) (1.54) (1.78)

Germany

Π 1/incomeUS poor medium rich veryrich

prices
-3.10

(0.53)

Non-BEV
-4.53 -6.89 -8.43 -9.26

(0.57) (0.90) (1.12) (1.27)

BEV
-6.08 -6.71 -7.49 -6.70

(1.24) (1.23) (1.42) (1.53)

UK France Germany

Elasticity (Overall)

-3.36 -2.77 -3.58

Elasticity (Petrol)

-3.13 -2.58 -3.55

Elasticity (Diesel)

-3.41 -2.88 -3.69

Elasticity (EV)

-4.74 -2.95 -3.42

175



Income/Country UK France Germany

Very-poor -52.98 -32.48 -88.57

Poor -93.07 -25.76 -38.45

Medium -113.48 -113.53 -35.25

Rich -183.25 18.38 82.31

Very-rich 36.80 132.32 670.49

Overall -83.37 -49.90 31.72

Table 17: Change of Consumer Surplus 2016-2021 (Population Averaged)
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Fuel/Country UK France Germany

Petrol -0.398% 0.184% -0.499%

Diesel -1.608% -1.096% -1.146%

EV 0.417% 0.394% 0.776%

Table 18: Market Share Change 2016-2021
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Factors/Fuels Petrol Diesel EV

Subsidy (UK) 0.000% 0.029% 2.887%

Subsidy (France) -1.129% 0.012% 16.427%

Subsidy (Germany) 1.474% 0.309% 44.880%

Preference (UK) -393.594% -20.297% 96.482%

Preference (France) -1175.581% 184.889% -148.814%

Preference (Germany) -79.162% 5.535% 4.553%

Product and Characteristics (UK) 493.595% 120.326% 0.632%

Product and Characteristics (France) 1276.710% -84.901% 232.387%

Product and Characteristics (Germany) 177.688% 94.156% 50.568%

Table 19: Decomposition of Market Share Changes
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Factors/Countries UK France Germany

Subsidy 2.218 10.135 53.699

Preference -355.602 747.199 -43.104

Product and Characteristics 270.011 -827.234 21.125

Overall -83.373 -49.900 31.720

Table 20: Decomposition of Consumer Surplus Change
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2021 UK UK France France Germany Germany

objectives shares subsidy shares subsidy shares subsidy

Very-poor 7065.6 5468.5 11468.2 9607.2 13212.4 11717.6

Poor 4048.1 1709.3 4239.3 3610.9 10407.8 9547.9

Medium 42.8 0.1 130.5 2.4 414.1 266.3

Rich 0.3 0.7 91.7 26.8 50.6 16.9

Very-rich 3.2 0.9 91.2 32.1 137.9 24.5

objectives (old) 0.458% 828.3 0.424% 2368.5 0.804% 11461.1

objectives (new) 0.482% 404.8 0.499% 912.2 1.008% 6133.1

subsidy-per-unit (old) 11670.8 11670.8 14567.4 14567.4 16449.5 16449.5

subsidy-per-unit (new) 6940.6 5703.6 7580.8 5678.3 10362.6 8802.6

welfare-per-unit (old) 10191.2 10191.2 11673.9 11673.9 9931.5 9931.5

welfare-per-unit (new) 8543.8 9633.4 3268.6 6422.7 83.8 3068.9

Table 21: Optimal Income-based Subsidy 2021
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2017 UK UK France France Germany Germany

objectives shares subsidy shares subsidy shares subsidy

Very-poor 6588.6 256.6 9791.7 8415.1 7856.0 6470.5

Poor 2984.7 6136.5 3819.9 321.2 4872.9 3510.0

Medium 998.9 9018.5 18.2 4.9 114.8 2.6

Rich 24.7 7620.8 103.8 1.1 33.8 0.0

Very-rich 255.9 135.7 85.0 2.0 31.6 0.3

objectives (old) 0.071% 475.6 0.053% 542.1 0.064% 430.6

objectives (new) 0.078% 790.1 0.070% 210.5 0.084% 137.7

subsidy-per-unit (old) 10430.8 10430.8 12436.8 12436.8 12361.1 12361.1

subsidy-per-unit (new) 7951.2 17327.4 7006.7 4828.1 5799.0 3954.0

welfare-per-unit (old) 6546.2 6545.2 8275.1 8275.1 10490.4 10490.4

welfare-per-unit (new) 4243.5 5576.1 2327.9 4237.1 1805.0 5106.0

Table 22: Optimal Income-based Subsidy 2017
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2021 UK UK France France Germany Germany

objectives shares subsidy shares subsidy shares subsidy

Uniform subsidy/no subsidy

Very-poor 3.66 — 3.87 — 16.55 —

Poor 2.16 — 3.96 — 17.83 —

Medium 5.03 — 13.05 — 46.86 —

Rich 5.31 — 22.29 — 72.44 —

Very-rich 4.49 — 33.36 — 210.28 —

Income-based subsidy/no subsidy

Very-poor 15.80 9.96 81.29 34.15 262.24 121.16

Poor 4.84 2.05 6.62 4.39 46.50 37.04

Medium 3.77 2.07 8.77 5.66 19.43 15.45

Rich 3.48 2.39 13.39 8.90 27.40 21.92

Very-rich 3.33 2.29 19.18 12.84 74.60 56.21

Table 23: CS Changes for Income-based and Uniform Policy (2021)
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2.12 Figures
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Figure 22: Average Pass-through
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Figure 23: Average subsidy-per-unit 2016-2021
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Figure 24: Average welfare-per-unit 2016-2021

193



References

[1] Victor Aguirregabiria and Chun-Yu Ho. A dynamic oligopoly game of the us

airline industry: Estimation and policy experiments. Journal of Econometrics,

168(1):156–173, 2012.

[2] Jorge Ale-Chilet, Cuicui Chen, Jing Li, and Mathias Reynaert. Colluding

against environmental regulation. Technical report, Toulouse School of Eco-

nomics (TSE), 2021.

[3] Soren T Anderson and James M Sallee. Using loopholes to reveal the marginal

cost of regulation: The case of fuel-economy standards. American Economic

Review, 101(4):1375–1409, 2011.

[4] Soren T Anderson and James M Sallee. Designing policies to make cars greener.

Annual Review of Resource Economics, 8(1):157–180, 2016.

[5] James Archsmith, Erich Muehlegger, and David S Rapson. Future paths of

electric vehicle adoption in the united states: predictable determinants, obsta-

cles, and opportunities. Environmental and Energy Policy and the Economy, 3

(1):71–110, 2022.

[6] Nicholas Argyres, Ricard Gil, and Giorgio Zanarone. Does supply concentration

encourage cooperation? evidence from airlines. Management Science, 2024.

[7] Sarah Armitage and Frank Pinter. Regulatory mandates and electric vehicle

product variety. Technical report, Working paper, 2021.

[8] Itai Ater and Nir S Yoseph. The impact of environmental fraud on the used car

market: Evidence from dieselgate. The Journal of Industrial Economics, 70(2):

463–491, 2022.

[9] Ruediger Bachmann, Gabriel Ehrlich, Ying Fan, Dimitrije Ruzic, and Benjamin

Leard. Firms and collective reputation: a study of the volkswagen emissions

194



scandal. Technical report, National Bureau of Economic Research, 2019.

[10] Florian Barth, Christian Eckert, Nadine Gatzert, and Hendrik Scholz. Spillover

effects from the volkswagen emissions scandal: An analysis of stock and corpo-

rate bond markets. Schmalenbach Journal of Business Research, 74(1):37–76,

2022.

[11] Angela Stefania Bergantino, Christian Bontemps, Mario Intini, and Ada Spiru.

Toward a consolidation of the european airline sector: the potential merger be-

tween ita and lufthansa. In Air Transport Research Society World Conference,

2024.

[12] Steven Berry. Estimating discrete-choice models of product differentiation. The

RAND Journal of Economics, pages 242–262, 1994.

[13] Steven Berry and Panle Jia. Tracing the woes: An empirical analysis of the

airline industry. American Economic Journal: Microeconomics, 2(3):1–43, 2010.

[14] Steven T Berry. Estimation of a model of entry in the airline industry.

Econometrica: Journal of the Econometric Society, pages 889–917, 1992.

[15] Steven T Berry. Estimating discrete-choice models of product differentiation.

The RAND Journal of Economics, pages 242–262, 1994.

[16] Steven T Berry and Philip A Haile. Identification in differentiated products

markets using market level data. Econometrica, 82(5):1749–1797, 2014.

[17] Steven T Berry and Philip A Haile. Nonparametric identification of differ-

entiated products demand using micro data. Econometrica, 92(4):1135–1162,

2024.

[18] Steven T Berry, James A Levinsohn, and Ariel Pakes. Automobile prices in

market equilibrium: Part i and ii, 1993.

[19] Sofia Berto Villas-Boas. Vertical relationships between manufacturers and re-

tailers: Inference with limited data. The Review of Economic Studies, 74(2):

195



625–652, 2007.

[20] Christian Bontemps, Cristina Gualdani, and Kevin Remmy. Price competi-

tion and endogenous product choice in networks: Evidence from the us airline

industry. Technical report, Working Paper, 2023.

[21] Christian Bontemps, Gianmaria Martini, and Flavio Porta. The effects of lccs

subsidies on the tourism industry. TSE Working Paper, 2024.

[22] Severin Borenstein and Lucas W Davis. The distributional effects of us clean

energy tax credits. Tax Policy and the Economy, 30(1):191–234, 2016.

[23] Randy Brenkers and Frank Verboven. Liberalizing a distribution system: the

european car market. Journal of the European Economic Association, 4(1):

216–251, 2006.

[24] Timothy F Bresnahan. Competition and collusion in the american automobile

industry: The 1955 price war. Journal of Industrial Economics, pages 457–482,

1987.

[25] N Scott Cardell. Variance components structures for the extreme-value and

logistic distributions with application to models of heterogeneity. Econometric

Theory, 13(2):185–213, 1997.

[26] Gary Chamberlain. Asymptotic efficiency in estimation with conditional mo-

ment restrictions. Journal of econometrics, 34(3):305–334, 1987.

[27] Xiaogang Che, Hajime Katayama, and Peter Lee. Willingness to pay for brand

reputation: Lessons from the volkswagen emissions scandal. Technical report,

Working Paper, Durham University, 2018.

[28] Federico Ciliberto and Elie Tamer. Market structure and multiple equilibria in

airline markets. Econometrica, 77(6):1791–1828, 2009.

[29] Federico Ciliberto and Jonathan W Williams. Does multimarket contact facil-

itate tacit collusion? inference on conduct parameters in the airline industry.

196



The RAND journal of economics, 45(4):764–791, 2014.

[30] Federico Ciliberto, Charles Murry, and Elie Tamer. Market structure and com-

petition in airline markets. Journal of Political Economy 129.11, pages 2995–

3038, 2021.

[31] Christopher Conlon and Jeff Gortmaker. Best practices for differentiated prod-

ucts demand estimation with pyblp. The RAND Journal of Economics, 51(4):

1108–1161, 2020.

[32] Christopher Conlon and Jeff Gortmaker. Incorporating micro data into differ-

entiated products demand estimation with pyblp. Technical report, National

Bureau of Economic Research, 2023.

[33] Jan De Loecker, Jan Eeckhout, and Gabriel Unger. The rise of market power

and the macroeconomic implications. The Quarterly Journal of Economics, 135

(2):561–644, 2020.

[34] Alon Eizenberg. Upstream innovation and product variety in the us home pc

market. Review of Economic Studies, 81(3):1003–1045, 2014.

[35] Silke Januszewski Forbes and Mara Lederman. Adaptation and vertical inte-

gration in the airline industry. American Economic Review, 99(5):1831–1849,

2009.

[36] Amit Gandhi and Jean-François Houde. Measuring substitution patterns in

differentiated-products industries. NBER Working paper, (w26375), 2019.

[37] Paul LE Grieco, Charles Murry, and Ali Yurukoglu. The evolution of market

power in the us automobile industry. The Quarterly Journal of Economics, 139

(2):1201–1253, 2024.

[38] Paul A Griffin and David H Lont. Game changer? the impact of the vw

emission-cheating scandal on the interrelation between large automakers’ equity

and credit markets. Journal of Contemporary Accounting & Economics, 14(2):

197



179–196, 2018.

[39] Laura Grigolon and Frank Verboven. Nested logit or random coefficients logit?

a comparison of alternative discrete choice models of product differentiation.

Review of Economics and Statistics, 96(5):916–935, 2014.

[40] Jerry A Hausman. An instrumental variable approach to full information es-

timators for linear and certain nonlinear econometric models. Econometrica:

Journal of the Econometric Society, pages 727–738, 1975.

[41] Kate Ho and Ariel Pakes. Hospital choices, hospital prices, and financial incen-

tives to physicians. American Economic Review, 104(12):3841–3884, 2014.

[42] Stephen P Holland, Jonathan E Hughes, and Christopher R Knittel. Green-

house gas reductions under low carbon fuel standards? American Economic

Journal: Economic Policy, 1(1):106–146, 2009.

[43] Jean-François Houde, Peter Newberry, and Katja Seim. Nexus tax laws and

economies of density in e-commerce: A study of amazon’s fulfillment center

network. Econometrica, 91(1):147–190, 2023.

[44] Cheng-Ta Hsieh, Sheng-Chi Lin, Chih-Hung Lee, Ching-Fang Liu, and Chi-

Chang Hu. Designing multifunctional polyethylene-polyimide composite sepa-

rators for rechargeable lithium-ion batteries. Journal of The Electrochemical

Society, 166(14):A3132, 2019.

[45] Jonathan E Hughes and Molly Podolefsky. Getting green with solar subsi-

dies: evidence from the california solar initiative. Journal of the Association of

Environmental and Resource Economists, 2(2):235–275, 2015.

[46] Koichiro Ito and James M Sallee. The economics of attribute-based regulation:

Theory and evidence from fuel economy standards. Review of Economics and

Statistics, 100(2):319–336, 2018.

[47] Matthew O Jackson and Asher Wolinsky. A strategic model of social and

198



economic networks. Journal of economic theory, 71(1):44–74, 1996.

[48] Thomas Klier and Joshua Linn. New-vehicle characteristics and the cost of the

corporate average fuel economy standard. The RAND Journal of Economics,

43(1):186–213, 2012.

[49] Jing Li. Compatibility and investment in the us electric vehicle market. Tech-

nical report, Berkerly Haas, 2019.

[50] Joshua Linn. Balancing equity and effectiveness for electric vehicle subsidies.

Technical report, Resources for the Future, 2022.

[51] Marleen Marra. A market for airport slots. Available at SSRN, 2024.

[52] W Ross Morrow and Steven J Skerlos. Fixed-point approaches to comput-

ing bertrand-nash equilibrium prices under mixed-logit demand. Operations

research, 59(2):328–345, 2011.

[53] Erich Muehlegger and David S Rapson. Subsidizing low-and middle-income

adoption of electric vehicles: Quasi-experimental evidence from california.

Journal of Public Economics, 216:104752, 2022.

[54] Aviv Nevo. Measuring market power in the ready-to-eat cereal industry.

Econometrica, 69(2):307–342, 2001.

[55] Volker Nocke and Nicolas Schutz. Multiproduct-firm oligopoly: An aggregative

games approach. Econometrica, 86(2):523–557, 2018.

[56] Ariel Pakes, Jack Porter, Kate Ho, and Joy Ishii. Moment inequalities and their

application. Econometrica, 83(1):315–334, 2015.

[57] Yongjoon Park. Structural remedies in network industries: An assessment of

slot divestitures in the american airlines/us airways merger. US Airways Merger

(October 12, 2020), 2020.

[58] Amil Petrin. Quantifying the benefits of new products: The case of the minivan.

Journal of political Economy, 110(4):705–729, 2002.

199



[59] Jacquelyn Pless and Arthur A Van Benthem. Pass-through as a test for market

power: An application to solar subsidies. American Economic Journal: Applied

Economics, 11(4):367–401, 2019.

[60] David Rapson and Erich Muehlegger. Global transportation decarbonization.

Journal of Economic Perspectives, 37(3):163–188, 2023.

[61] Kevin Remmy. Adjustable product attributes, indirect network effects, and

subsidy design: The case of electric vehicles. Technical report, University of

Bonn and University of Mannheim, Germany, 2022.

[62] Mathias Reynaert. Abatement strategies and the cost of environmental regula-

tion: Emission standards on the european car market. The Review of Economic

Studies, 88(1):454–488, 2021.

[63] Mathias Reynaert and Frank Verboven. Improving the performance of ran-

dom coefficients demand models: The role of optimal instruments. Journal of

econometrics, 179(1):83–98, 2014.

[64] Jo Reynaerts, R Varadha, and JC Nash. Enhencing the convergence properties

of the blp (1995) contraction mapping. Technical report, KU Leuven, Faculty

of Economics and Business (FEB), VIVES-Research Centre . . . , 2012.

[65] Stephen P Ryan. The costs of environmental regulation in a concentrated

industry. Econometrica, 80(3):1019–1061, 2012.

[66] Alejandro Sabal. Product entry in the global automobile industry. Technical

report, National Bureau of Economic Research, 2025.
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