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Abstract 

The ventral hippocampus (vHPC), initially implicated in anxiety regulation, is now recognized for 

its broader role in integrating emotional, motivational, and contextual information. This review 

synthesizes recent insights presented at our 2025 Society for Neuroscience minisymposium, 

detailing how local inhibitory microcircuits, long-range projection-defined pathways, and 

neuromodulatory inputs interact to shape fear, anxiety and reward behaviors. We emphasize how 

distinct circuits segregate fear and anxiety, resolve approach avoidance conflicts and integrate 

reward history. Serotonergic modulation, particularly from the median raphe, emerges as a critical 

regulator of vHPC dynamics, with pronounced sex-specific functional implications. Finally, we 

examine how vCA1 ensemble activity encodes emotionally salient stimuli and supports latent 

state inference, thereby enabling flexible decision making under uncertainty. Collectively, these 

findings recast the vHPC as a modular, computationally rich structure essential for adaptive 

behavior, which may provide new insights into circuit level dysfunction in affective disorders. 

 

Introduction  

While early research emphasized the role of the dorsal hippocampus (dHPC) in spatial memory 

and navigation (Scoville and Milner, 1957; O’Keefe and Nadel, 1978), growing evidence highlights 

a distinct set of functions for the ventral hippocampus. Beyond mapping space, the vHPC is 

critically involved in threat detection, approach-avoidance regulation, and reward processing 

(Bannerman et al., 2004; Ciocchi et al., 2015; Turner et al., 2022). Recent work has begun to 
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illuminate how specific microcircuits, projection-defined pathways, neuromodulatory inputs, and 

ensemble dynamics within the vHPC contribute to highly complex emotional and motivational 

processes (Turner et al., 2022; Biane et al., 2023; Li et al., 2024; Mishchanchuk et al., 2024; Iyer 

et al., 2025; Patterson et al., 2025). These investigations collectively position the vHPC as a 

computational hub that encodes internal states and context, thereby shaping behavioral outputs 

across changing environmental demands. 

This minisymposium review synthesizes new insights into the structure and function of vHPC 

circuits. Drawing on approaches including in vivo imaging, optogenetics, chemogenetics, and 

computational modeling, the work described here dissects how the vHPC mediates core 

components of affective behavior. We begin at the microcircuit level, where distinct interneuron 

populations shape pyramidal neuron output and contribute to the differentiation of fear and 

anxiety. We then transition to how the vHPC orchestrates behavioral responses in approach-

avoidance conflict through parallel long-range pathways. Next, we examine how oscillatory 

dynamics and neuromodulation, particularly serotonergic tone, coordinate these computations 

and exhibit sex-specific tuning. From here, we explore how the vHPC integrates reward history 

trough its projections to the nucleus accumbens. We conclude with emerging evidence that, at 

the assembly level, vHPC encodes emotionally salient stimuli, and supports abstract 

representations of latent task states. This progression—from microcircuits to population level 

representations, and from anxiety to broader domains of motivation and behavioral flexibility, 

illustrates our expanding insight in the vHPC's role in shaping adaptive behavior. 

vHPC microcircuits for emotional discrimination of fear and anxiety  

Specifically, scientific insight in the vHPC has evolved substantially since early lesion and 

manipulation studies identified this region as a key regulator of unconditioned fear and anxiety-

like behaviors (Kjelstrup et al., 2002; Fanselow and Dong, 2010). Although fear and anxiety were 

traditionally considered as overlapping in both behavioral manifestation and neural circuitry - 

particularly involving the amygdala, medial prefrontal cortex and hippocampus (Maren et al., 

2013; Calhoon and Tye, 2015; Tovote et al., 2015), emerging evidence suggests that the vHPC 

supports partially dissociable computations underlying these affective states. This refinement has 

been driven in part by work revealing distinct patterns of local circuit recruitment depending on 

behavioral context (Li et al., 2024). 

The activity of the main output neurons of the hippocampus, pyramidal cells (PCs), is tightly 

regulated by a diverse array of local interneurons (Klausberger and Somogyi, 2008; Pelkey et al., 

2017; Soltesz and Losonczy, 2018). The different classes of interneurons provide direct inhibition 

onto PCs or onto other interneurons, enabling forms of disinhibition that shape HPC activity, 

oscillatory dynamics and behavioral output in precise and complementary ways (Lee et al., 2014; 

Amilhon et al., 2015; Dudok et al., 2021). 

 

In fear-related behaviors, a specific disinhibitory circuit composed of vasoactive intestinal peptide 

(VIP) and somatostatin (Sst) interneurons is engaged (Fig. 1A). VIP interneurons inhibit Sst 

interneurons, which normally suppress pyramidal neuron activity. This disinhibition permits a 

selective population of pyramidal neurons to become active during conditioned stimulus 
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presentation, facilitating the encoding of associations between conditioned and unconditioned 

stimuli and thereby supporting the formation of stable fear memories. This disinhibitory 

mechanism appears to serve as a gating system, allowing excitatory inputs from upstream brain 

regions, such as the entorhinal cortex and CA3 hippocampus, to activate the precise populations 

of pyramidal neurons necessary for fear learning.  

In contrast, anxiety-related behaviors are regulated by a separate inhibitory circuit centered 

around parvalbumin (PV) interneurons (Fig. 1A). PV interneurons exert strong perisomatic 

inhibition onto pyramidal neurons, regulating their activation during states of uncertainty or 

potential threat. Optogenetic inhibition of PV interneurons increases activity of pyramidal neurons, 

resulting in heightened anxiety behaviors, such as reduced exploration of anxiogenic 

environments. Thus, PV interneurons appear critical for maintaining an activity balance, ensuring 

that anxiety responses are appropriately scaled.  

Although both the fear and anxiety circuits reside within the vHPC, their influence is mediated 

through distinct downstream projections: Whereas the vHPC fear microcircuit primarily interfaces 

with structures such as the basolateral amygdala, central amygdala, and prelimbic cortex to 

orchestrate fear learning and expression (Sotres-Bayon et al., 2012; Xu et al., 2016; Jimenez et 

al., 2020; Kim and Cho, 2020), the vHPC anxiety circuit modulates projections to the medial 

prefrontal cortex, lateral hypothalamus and lateral septum (Adhikari et al., 2010, 2011; Ciocchi et 

al., 2015; Padilla-Coreano et al., 2016; Parfitt et al., 2017; Jimenez et al., 2018; Sánchez-Bellot 

et al., 2022). These projection-specific activity patterns highlight a modular and flexible 

organizational scheme in the hippocampus, enabling one region to mediate distinct behavioral 

outcomes depending on outputs and contextual demands. 

Overall, these findings emphasize that the ventral hippocampus is not a homogeneous emotion-

processing hub but rather a highly specialized and adaptable region that orchestrates complex 

behavioral responses. By delineating how different subclasses of interneurons selectively 

regulate pyramidal neuron activity to drive either anxiety or fear behaviors, this work furthers our 

understanding of the microcircuit dynamics underlying emotional regulation.  

Dissecting vHPC circuits in the regulation of approach avoidance conflict  

Building on this foundation, others have begun to investigate how vHPC interactions with 

downstream targets regulate approach avoidance (AA) conflict, a type of conflict where animals 

must weigh potential rewards against the risk of aversive outcomes. Seminal lesion studies from 

the 1950s and 1960s demonstrated that hippocampal damage leads to disinhibited behavior in 

the face of competing motivational drives (Kimura, 1958; Isaacson et al., 1961; Kimble, 1963; 

Jarrard et al., 1964), laying the foundation for the Behavioral Inhibition System (BIS) theory (Gray 

and McNaughton, 2003). According to BIS theory, the hippocampus detects AA conflicts, 

amplifies negative or conflicting information, engages risk assessment, and subsequently biases 

behavior toward avoidance.  

A non-spatial, mixed-valence Y-maze conflict task has been instrumental in modeling these 

learned forms of conflict (Ito and Lee, 2016). In this paradigm, rats learn to associate visuotactile 
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cues with positive (sucrose), negative (footshock), or neutral outcomes (Fig. 1B). When appetitive 

and aversive cues are presented together, rats with global vHPC lesions exhibit a pronounced 

approach bias toward the conflict-paired arm of the maze, a behavioral pattern not observed in 

rats with dHPC lesions (O’Neil et al., 2015; Ito and Lee, 2016; Schumacher et al., 2016; Duc et 

al., 2025). Subsequent studies have identified distinct subfield-specific functions within the vHPC 

that exert bidirectional control over conditioned AA behaviors, showing that vCA3 and DG 

subfields suppress approach, while vCA1 promotes approach during AA conflict (Schumacher et 

al., 2018; Yeates et al., 2020). 

To clarify the pathways through which these vHPC subfields influence AA behavior under conflict, 

key efferent projections from vCA3 and vCA1 were selectively inhibited. The caudodorsal region 

of the lateral septum (LS) is a major and possibly exclusive output of the vCA3 (Risold and 

Swanson, 1997; Bienkowski et al., 2018). Using the same Y-maze cued conflict task, 

chemogenetic inhibition of the vCA3→LS circuit resulted in a pronounced approach bias toward 

the conflict-associated cue and a reduction in retreat behaviors (Yeates et al., 2022). Interestingly, 

inactivation of vCA1 projections to the LS led to a non-specific increase in the exploration of, and 

decreased retreat behaviors in, both conflict and neutral arms. The effect of manipulating these 

LS-projecting vHPC circuits diverged in the novelty suppressed feeding task: vCA3→LS 

inactivation decreased latency to approach familiar food in a novel environment, while vCA1→LS 

inactivation increased this latency. Together, these findings suggest that the vCA3→LS circuit 

plays a central role in suppressing approach towards motivationally salient stimuli under conflict. 

In contrast, the vCA1→LS circuit contributes to the inhibition of general approach or exploratory 

drive under conflict, potentially to direct approach to salient stimuli. 

Chemogenetic inactivation of vCA1 projections to the nucleus accumbens (NAc) also caused 

distinct behavioral alterations in the AA conflict test (Patterson et al., 2025). vCA1→NAc 

inactivated rats displayed decision making deficits and an overall avoidant phenotype. These 

animals spent more time in the central compartment, engaged in prolonged risk-assessment 

before choosing an arm, and retreated more frequently in both conflict and neutral arms. In line 

with previous reports of disrupted social memory (Bagot et al., 2015; Okuyama et al., 2016; Muir 

et al., 2020), vCA1→NAc inactivated animals consistently avoided interaction with an unfamiliar 

conspecific. Together, these data suggest a role for vCA1→NAc in regulating risk assessment 

behavior and approach decisions under AA conflict, extending to socially relevant contexts. 

Together with prior findings, these results suggest a functional division of labor within vHPC 

circuits: the vCA3→LS circuit appears to implement a core BIS function, suppressing approach 

when approach avoidance conflict is high. In contrast, vCA1 circuits may act as a BIS override 

mechanism when approach becomes adaptive. Specifically, the vCA1→LS circuit may suppress 

environmental scanning under AA conflict to enable approach, whereas the vCA1→NAc circuit 

may inhibit risk assessment behavior to promote approach decisions. In sum, parallel vHPC 

subcircuits exert dissociable and complementary control over behavior during conflict, enabling 

dynamic resolution of competing motivational drives. 

Neuromodulatory and sex-dependent tuning of vHPC circuit function  
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Approach-avoidance conflict tasks provide powerful behavioral assays for probing how animals 

resolve competing drives. While these tasks primarily index decision making under conflict, they 

also robustly elicit anxiety like behaviors: hesitation, risk assessment and behavioral inhibition. 

The functional output of vHPC pathways, whether suppressing or promoting approach, depends 

critically on the animal's internal state. Neuromodulatory systems, particularly serotonergic tone, 

provide a flexible mechanism for dynamically tuning vHPC activity in response to arousal, novelty 

or perceived threat.  

These influences act in part through modulation of local network excitability and oscillatory 

dynamics. Hippocampal theta oscillations (4-12 Hz), prominent across the entire dorso-ventral 

axis of all hippocampal subfields (Buzsáki, 2002; Colgin, 2013), play a central role in coordinating 

long range communication (Fries, 2005; Buzsáki and Vöröslakos, 2023), for example between 

the vHPC and PFC during anxiety (Adhikari et al., 2010; Jacinto et al., 2016; Padilla-Coreano et 

al., 2016), and amygdala during fear (Likhtik et al., 2014). 

Theta frequency increases systematically with running speed (Rivas et al., 1996; Maurer et al., 

2005; Jeewajee et al., 2008), but this relationship is mediated by behavioral state: novelty flattens 

the slope (Jeewajee et al., 2008; Wells et al., 2013; Hines et al., 2023), and anxiolytics shift the 

intercept downward (McNaughton and Gray, 2000; McNaughton et al., 2007; Engin et al., 2008; 

Siok et al., 2009; Yeung et al., 2012, 2013). These parameters serve as sensitive readouts of 

hippocampal computation under varying internal states (Korotkova et al., 2017). Serotonergic 

input from the median raphe nucleus (MnR) has long been recognized as a potent regulator of 

hippocampal theta activity. Early studies showed that disrupting MnR input enhances 

hippocampal theta (Maru et al., 1979; Yamamoto et al., 1979), while increasing serotonin (5-HT) 

tone suppresses it (Kudina et al., 2004; Jackson et al., 2008).  

Recent work has expanded this framework by identifying a population of serotonergic neurons in 

the median raphe region that targets the vHPC (5-HTvHP). In vivo fiber photometry recordings 

confirmed functional sex differences in these neurons during anxiety-related behavior. During 

exploration of the elevated plus maze (EPM), a classic assay of approach-avoidance conflict, 5-

HTvHP neurons from male mice showed a decrease in their activity upon the animal entering the 

closed arm, whereas cells from female mice showed an attenuated decrease, suggesting 

prolonged engagement of 5-HTvHP neurons when transitioning from aversive to safe.  

To directly test whether 5-HTvHP neurons modulate hippocampal activity, optogenetic activation 

was used during open field exploration while recording local field potentials from the ventral 

hippocampus. In female mice, activation of  5-HTvHP neurons flattened the theta frequency-speed 

relationship, suggesting impaired familiarization to the environment, whereas no such effect was 

observed in males. Behaviorally, this manipulation increased anxiety-like behaviors and 

decreased risk-assessment, predominantly in females. Electrophysiological recordings revealed 

that 5-HTvHP neurons in the median raphe region from female mice exhibit more depolarized 

resting membrane potentials and higher firing rates than those from males.  

Consistent with longstanding models implicating serotonergic modulation in behavioral inhibition 

(McNaughton and Gray, 2000), these findings position 5-HTvHP neurons as key modulators of 
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state-dependent hippocampal network activity. These sex-specific differences in circuit function 

are especially relevant given the marked disparity in anxiety disorder prevalence and expression 

between males and females (Kessler et al., 2009). Understanding how serotonergic modulation 

interacts with projection-specific vHPC circuits could shed light on the neural basis of anxiety and 

its possible dysregulation in psychiatric conditions. 

Reward Integration in vCA1-NAc circuits  

The rich heterogeneity of the vHPC is further exemplified by its involvement in functions beyond 

behavioral inhibition, with growing evidence implicating the vHPC as a key structure in reward-

guided behavior and motivational salience (Ciocchi et al., 2015; Lafferty et al., 2020; Yoshida et 

al., 2020; Hamel et al., 2022; Nguyen et al., 2024; Iyer et al., 2025; Patterson et al., 2025). Both 

the dorsal and ventral hippocampus project to the NAc, where they modulate goal-directed 

navigation, influence hedonic processing, and contribute to the regulation of feeding behavior 

(Ciocchi et al., 2015; Reed et al., 2018; Trouche et al., 2019; Yang et al., 2020; Sosa and 

Giocomo, 2021; Wee et al., 2024; Iyer et al., 2025).  

Alterations in the function of the vHPC→NAc projection have been implicated in a range of 

disorders involving disrupted reward processing. vHPC→NAc has been implicated in stress-

induced deficits in reward processing (LeGates et al., 2018; Pignatelli et al., 2021). Stress 

modifies activity within this pathway, and pathway-specific manipulations bidirectionally modulate 

susceptibility to depression-like behavior (Bagot et al., 2015; Muir et al., 2020; Williams et al., 

2020). Individual differences in vHPC→NAc activity also predict differential adaptation to chronic 

stress in male and female mice (Muir et al., 2020), suggesting functional importance in 

understanding differential vulnerability. Moreover, exposure to various addictive substances, 

known to ‘hijack’ reward systems and recognized as risk factors for depression (Covington et al., 

2011), modulate synaptic and structural plasticity within the vHPC→NAc pathway (Bossert et al., 

2016; Marchant et al., 2016; Barrientos et al., 2018; Kircher et al., 2019; Pascoli et al., 2014). 

Additional evidence points to a functional contribution of this pathway in integrating information 

about threat to modulate reward motivated behavior, particularly in male mice (Muir et al., 2024).  

Taken together, these findings suggest that the vHPC→NAc may play a role in reward processing, 

a function most often associated with medial prefrontal cortical inputs to NAc (mPFC→NAc) 

inhibition (Bagot et al., 2015; Otis et al., 2017; Barker et al., 2019; Muir et al., 2020; Yoshida et 

al., 2020; Spellman et al., 2021; Hamel et al., 2022; Lindenbach et al., 2022; Parker et al., 2022; 

Wenzel et al., 2023). Pathway-specific in-vivo fiber photometry recordings have demonstrated 

that population-level calcium dynamics in vHPC→NAc, as well as mPFC→NAc, are robustly 

suppressed by reward outcomes in a two-armed bandit task (Iyer et al., 2025); Fig. 1B). This 

suppression persists beyond a single trial, with subsequent non-reward gradually increasing 

activity such that the relative degree of suppression represents an integrated history of recent 

outcomes. Intriguingly, vHPC→NAc pathway preferentially encodes outcomes under conditions 

of variable reward, suggesting this neural signal may be tuned to reward omission or loss. 

Contextual modulation further differentiates these two pathways: vHPC→NAc encoding is 

sensitive to behavioral context, preferentially encoding outcomes contingent upon actions. When 
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outcomes are delivered passively, the vHPC→NAc shifts encoding toward representing surprising 

rewards, further suggesting its role is anchored in signaling loss or deviations from expectations. 

In contrast, the mPFC→NAc consistently encodes reward outcomes, irrespective of trial history 

or task demands. Despite these differences, activity in both pathways similarly predict task 

engagement. Optogenetic activation of either pathway—alone or in combination—suppresses 

task engagement in an additive manner. These findings suggest that while mPFC→NAc conveys 

stable reward value, the vHPC→NAc acts as a dynamic signal of recent reward history.  

While the NAc’s involvement in reward processing has long been recognized (Xu et al., 2024), 

the specific neural mechanisms remain incompletely understood. Probing encoding across trial 

histories and varying task demands suggests that while both mPFC→NAc and vHPC→NAc serve 

this function, they are engaged in distinct settings such that the vHPC-NAc may serve to amplify 

surprising rewards. Previous work established that stimulating glutamatergic inputs to the NAc 

broadly suppresses reward-motivated behavior (Millan et al., 2017; Reed et al., 2018; Lafferty et 

al., 2020). A temporally integrated reward-induced neural signal may harness this inhibitory 

mechanism to finely adjust ongoing behavior. Thus, vHPC→NAc translates recent reward history 

to tune behavioral engagement to prevailing environmental conditions.  

As the most robust glutamatergic input to the medial shell of the NAc, the vHPC→NAc pathway 

plays a critical role in regulating behavioral engagement. Failure to appropriately disengage this 

circuit may suppress reward-driven behavior, potentially manifesting as anhedonia. Indeed, 

disruption of input balance is observed following chronic stress (Bagot et al., 2015; Muir et al., 

2020; Williams et al., 2020; Pignatelli et al., 2021), as well as after exposure to substances such 

as alcohol (Kircher et al., 2019; Griffin et al., 2023) and cocaine (Pascoli et al., 2014; Cahill et al., 

2016; Barrientos et al., 2018; Zinsmaier et al., 2022), all of which are associated with aberrant 

reward processing. Together, these findings position the vHPC→NAc circuit as a flexible 

integrator of motivational history, adjusting behavioral engagement based on recent outcomes 

and environmental demands.  

Ensemble representations in vHPC  

While lesion, inactivation and anatomical tracing studies have established the vHPC as central to 

controlling diverse behaviors, recent research has begun to uncover the precise neural codes 

within vCA1 that underlie these functions. A model has emerged that suggests that vCA1 neurons 

encode stimuli with immediate behavioral relevance, forming a ‘map’ that integrates sensory 

information from the environment with internal drive states (Turner et al., 2022). This organization 

is akin to the spatial mapping function of dorsal CA1 (dCA1), where ensembles exhibit location-

stimulus- and temporal specific firing patterns that generate a cognitive map of space (O’Keefe 

and Nadel, 1978; McNaughton et al., 2006). The vCA1 map represents stimuli not only for where 

or when they occur, but for what they mean to the animal - whether they signal potential threat, 

opportunity for reward, or even social salience.   

Electrophysiological and calcium imaging studies have consistently shown selective engagement 

of vCA1 neurons, but not those in dCA1, during exploration of threatening environments like the 

elevated plus maze (Ciocchi et al., 2015; Jimenez et al., 2018). The activity of these neurons 
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correlates with individual differences in baseline anxiety and with the aversiveness of contextual 

cues (Ciocchi et al., 2015; Jimenez et al., 2018). Within vCA1, functional heterogeneity is 

organized along projection-defined output channels (Fig. 1B): neurons projecting to the lateral 

hypothalamus (LH) and medial prefrontal cortex (mPFC) are preferentially activated during threat 

exposure, whereas populations targeting the nucleus accumbens (NAc) exhibit comparatively 

reduced engagement by aversive stimuli (Adhikari et al., 2010; Ciocchi et al., 2015; Padilla-

Coreano et al., 2016; Jimenez et al., 2018, 2020; AlSubaie et al., 2021).  

Moreover, distinct aversive cues, such as footshocks and predator odor, are represented by 

separable ensembles in vCA1, indicating that this region encodes the specific identity of 

threatening stimuli rather than a generalized valence signal (Biane et al., 2024). This specificity 

persists even when stimulus relevance is altered through learning: in a conditioned taste aversion 

paradigm, the vCA1 representation of an initially appetitive stimulus does not converge with those 

of innately aversive stimuli following its pairing with malaise. These findings suggest that vCA1 

encodes the unique identity of salient stimuli, with valence-specific generalization perhaps 

occurring downstream, particularly within the amygdala, a region densely innervated by vCA1 and 

well-known for encoding and transforming valence-related information (Felix-Ortiz et al., 2013; 

Gore et al., 2015; Beyeler et al., 2016; Namburi et al., 2016; Tye, 2018; Zhang et al., 2019; O’Neill 

et al., 2024; Xia et al., 2025). 

Beyond its role in threat processing, vCA1 ensembles also contribute to reward-related learning 

displaying pronounced plasticity during associative learning. For instance, a recent imaging study 

(Biane et al., 2023) demonstrated that vCA1 neurons initially showed minimal responsiveness to 

neutral cues but rapidly reorganized their activity to represent odor stimuli predicting reward. 

These representations were stable across days, after extinction and reinstatement, and even after 

reversal of the valence of the outcome paired with the odor, indicating the formation of a persistent 

neural code for salient stimuli (Biane et al., 2023).  

Together, these data raise the intriguing possibility that the discrimination observed in vCA1 

between stimuli of similar valence may reflect the encoding of the distinct internal bodily or 

behavioral states elicited by these stimuli.  

Latent state inference in vHPC  

Building on this framework, we explore the hypothesis that the vHPC, and vCA1 in particular, 

supports latent state inference: the construction of abstract internal models that guide decision-

making under uncertainty, analogous to how dorsal hippocampal circuits distinguish between 

spatial contexts (O’Keefe and Nadel, 1978; Komorowski et al., 2013; Hartley et al., 2014; Kubie 

et al., 2020; Courellis et al., 2024).  

 

To investigate this possibility, a recent study employed a dynamic two-armed bandit task in mice 

(Mishchanchuk et al., 2024); Fig. 1D). In this task, mice choose between two levers with 

probabilistic reward schedules that reverse unpredictably (Tai et al., 2012; Parker et al., 2016). 

Mice could be solving this task using one of two main strategies: a subject might rely on simple 

reinforcement (e.g. increasing the likelihood of repeated a rewarded action, a common 

https://www.zotero.org/google-docs/?nf1VQJ
https://www.zotero.org/google-docs/?hfNKYO
https://www.zotero.org/google-docs/?hfNKYO
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https://www.zotero.org/google-docs/?Hbotts
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https://www.zotero.org/google-docs/?7I6MIE
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implementation of this is called Q-learning) or alternatively, a subject can instead aim to form an 

understanding of the underlying environment that produces such outcomes – a strategy known 

as hidden state inference (SI) (Costa et al., 2015; Adams et al., 2016; Qü et al., 2024). 

Computational modelling showed that SI models consistently outperformed Q-learning models in 

explaining mouse behavior, suggesting that animals use latent, contextual representations to 

solve the task (Costa et al., 2015; Vertechi et al., 2020; Qü et al., 2024).  

To assess the contribution of vCA1 to this process, targeted lesions of excitatory neurons in vCA1 

were performed. These lesions impaired the use of SI strategies while sparing reinforcement 

learning, providing causal evidence that vCA1 is required for the formation and use of latent 

context representations during decision-making.  

Microendoscopic calcium imaging was used to examine how vCA1 neurons represent different 

aspects of the task. It was found that individual neurons in vCA1 encoded not just choices and 

outcomes, but also the latent context of each trial. Strikingly, these context representations were 

abstracted across specific actions and outcomes, suggesting a high-level, generalisable state 

representation. At the population level, neural activity in vCA1 reliably decoded choice, outcome 

and latent context with high accuracy, even before the outcome was known.  

Together, these findings show that vCA1 supports decision-making by forming stable, abstract 

representations of latent task contexts (Gershman et al., 2010; Duvelle et al., 2023; Mishchanchuk 

et al., 2024). These representations are necessary for optimal behaviour and are also reflected 

downstream. These findings may have implications for understanding psychiatric conditions, such 

as depression and schizophrenia, where contextual inference is often impaired (Servan-Schreiber 

et al., 1996; Holmes et al., 2005). 

More broadly, this role for the vHPC in hidden state inference role may reflect a general 

computational principle of the hippocampus, potentially offering a unified framework for 

understanding the dramatic differences in function across the dorsal-ventral axis with one overall 

circuit computation. For example, a circuit optimized for hidden state inference would be ideally 

suited for estimating the likelihood of future negative outcomes, a key function of vCA1 models of  

anxiety. At the same time, this same computational framework can account for the role of dorsal 

hippocampus circuits in spatial inference, where animals estimate location through the integration 

of self-motion and visual cues. Viewing hippocampal functions through this framework may open 

new avenues for understanding how diverse hippocampal functions emerge from a shared 

underlying mechanism of latent state inference. 

Conclusion 

Together, the studies reviewed here show the ventral hippocampus as a modular and 

computationally dynamic structure that integrates emotional, motivational and contextual 

information to shape behavior. Once thought to function as a uniform center for anxiety, the vHPC 

is now understood to comprise anatomically distinct microcircuits and projection-defined 

pathways that differentially regulate fear, anxiety and reward learning. These circuits are 

embedded within neuromodulatory and oscillatory networks that flexibly tune vHPC output 

https://www.zotero.org/google-docs/?EQDr9N
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according to internal states. At the population level, vCA1 ensembles form behaviorally relevant 

representations that support not only emotional discrimination but also latent state inference 

during uncertainty.  

This reconceptualization of vHPC function has broad implications for understanding psychiatric 

vulnerability, particularly disorders characterized by impaired threat evaluation, behavioral 

inhibition, or reward sensitivity. Emerging evidence suggests that dysregulation within specific 

vHPC subcircuits—rather than global dysfunction—may underlie selective cognitive and affective 

symptoms across conditions such as anxiety, depression, and PTSD (Abdallah et al., 2017; 

Lazarov et al., 2017; Kirkby et al., 2018; Hu et al., 2021). This perspective opens new avenues 

for targeting circuit-specific vulnerabilities, informed by projections, ensemble activity, 

neuromodulatory tone, and sex-specific dynamics.  

Future work will tease out how vCA1 integrates information related to stimulus identity, meaning 

and the internal state of the animal when these stimuli were encountered and learned. In addition, 

the functional interactions between vCA1 ensembles encoding opposing behavioral states, such 

as approach and avoidance, remain to be fully understood. It is still unclear whether these 

ensembles act independently, competitively, or in coordination and how their dynamics align with 

vCA1’s projection-defined architecture (Jin and Maren, 2015; Jimenez et al., 2018, 2020; Gergues 

et al., 2020; Wee and MacAskill, 2020). In parallel, recent studies are beginning to reveal how 

altered emotional states, such as those induced by chronic stress, reshape the encoding 

properties of anatomically defined vCA1 circuits (Bagot et al., 2015; Anacker et al., 2018; Hultman 

et al., 2018; Xia et al., 2025). Although vHPC activity shifts under these conditions are well 

documented, how these changes affect stimulus coding, ensemble recruitment, and behavioral 

output in vCA1 remains largely unexplored. 

Finally, because anxiety often involves anticipation of uncertain or future threats, it is critical to 

understand how prospective coding in vCA1 contributes to this process. Human imaging studies 

have implicated the anterior hippocampus in constructing imagined future scenarios (Schacter et 

al., 2008; Addis and Schacter, 2012), and rodent studies have shown that dorsal CA1 exhibits 

rapid alternation between potential future paths (Kay et al., 2020). Whether and how vCA1 may 

support analogous prospective coding, distinguishes safe from aversive outcomes, or may 

differentially replay past experiences based on the emotional significance, remain open and 

important questions. Pursuing these lines of inquiry will not only further refine fundamental models 

of hippocampal processing but also advance translational pathways for developing targeted 

interventions aimed at restoring adaptive computation in disrupted vHPC networks. 
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Figure 1: Multi-level organization of vHPC computations supporting adaptive behavior. 

Schematic overview illustrating the multi-level organization of vHPC function, providing an insight 

in how anatomically and functionally distinct vHPC circuits interact to orchestrate behavior. 

 

A Within vCA1, distinct inhibitory microcircuits gate the expression of fear and anxiety. A 

disinhibitory circuit involving VIP and Sst interneurons support fear, whereas PV interneurons 

regulate anxiety-related activity through strong perisomatic inhibition of pyramidal neurons. 

Modified from Li et al., 2024. 

B Representation of anatomically segregated outputs from vHPC, color coded for behavioral 

function this projection underlies. Notably, vHPC sends output to several downstream targets not 

depicted here. Examples of this scenario include vCA1→LS role in approach avoidance behavior 

(Yeates et al., 2022) and vHPC→NAc in adaptive, reward guided behavior (Iyer et al., 2025).  

https://www.zotero.org/google-docs/?I8V8j0
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C Serotonergic input from the MRR modulates vHPC activity and anxiety in a sex-specific manner. 

D Single-unit recordings and calcium imaging reveal that vCA1 pyramidal neurons encode diverse 

emotionally salient stimuli through stable and selective ensemble activity. Schematic 

representation of these anatomical-functional relationships, with circles depicting vHPC pyramidal 

neurons. vCA1 ensemble activity supports the formation of abstract representations that guide 

decision making under uncertainty. Modified from Turner et al., 2022; Mishchanchuk et al., 2024; 

5-HT: serotonin; Amy: amygdala; BLA: Basolateral amygdala;  EC: entorhinal cortex; LH: lateral 

hypothalamus; LS: lateral septum; PFC: prefrontal cortex; PrL: prelimbic cortex; Pyr: pyramidal 

neuron; MRR: median raphe region, Sst: somatostatin; vHPC: ventral hippocampus; VIP: 

vasoactive intestinal peptide; θ: theta;  
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