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ABSTRACT: Liquid chromatography is a pivotal purification
process widely used in pharmaceutical development and
manufacturing. Efficient optimal design and control of the process
rely heavily on mechanistic models such as the lumped pore
diffusion model (POR) and the Equilibrium Dispersion Model
(EDM), both popular choices owing to their simplicity and good
accuracy for a wide range of applications. However, the choice of
the functional form of the isotherm models, which describe the
component adsorption equilibria, strongly affects the predictions of
the chromatography model. While traditional isotherms perform
well for simple compounds (e.g., small molecules), they often fall
short for more complex separations (e.g., peptides), thus resulting
in process-model mismatch, even following rigorous parameter
estimation. As a remedy to this, recent advances have introduced hybrid models that integrate data-driven elements to improve the
predictive accuracy, although at the cost of loss of process insight, low interpretability, and increased complexity. To address the
process-model mismatch in chromatography, we have proposed a model diagnostic procedure, adapted from a diagnostic framework
in kinetic models, based on a Lagrange multiplier test, to refine isotherm models that initially underfit. The procedure is
demonstrated by three in-silico case studies, showing improved accuracy against experimental data without having to resort to black-
box models, thus providing models that retain physical insight.

■ INTRODUCTION
Liquid chromatography is one of the most established
separation processes used in pharmaceutical drug development,
employed for sample analysis in the early drug developments
stages as well as for purification in the scale-up and
manufacturing stages.1−3 Mathematical models can aid in the
optimal design and operation of chromatographic separations,
and thereby contribute to faster drugs-to-market by quickly and
accurately developing reliable and sustainable separations by
minimizing processing time, solvent usage, as well as maximizing
product quality.4,5

Modelers rely on mechanistic models to capture the
underlying phenomena of chromatographic separations.6−10

The existing literature has established a series of mechanistic, or
first-principles, models that differ in accuracy and complexity.
The most commonly employed models are the Equilibrium
Dispersion Model (EDM) and lumped pore diffusion model
(POR), which rely on a system of partial differential and
algebraic equations.11 These equations encapsulate the separa-
tion mechanism and predict the chromatograms of the
components under consideration. Separation of the components

occurs due to the different affinities of the components in the
mobile phase toward the stationary phase, and the affinity is
dependent on the different adsorption−desorption mechanism
of each component. Therefore, model-based development of the
process requires equations that are reliable and representative in
describing the underlying phenomena, e.g. adsorption and
desorption. For instance, the EDM usually assumes that
adsorption and desorption are instantaneous, and thus simply
described by an isotherm model.5 The EDM also assumes that
pore mass transfer is extremely fast and accounts for it in an
apparent dispersion coefficient.11 On the other hand, the POR
model, although it also relies on an isotherm model, does not
assume extremely fast mass transfer, and thus it describes the
mass transfer process via a differential equation; e.g., a linear
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driving force model.12,13 Overall, the adsorption and desorption,
and pore mass transfer are the focal point of model-based
chromatography method development.

For years, modelers have successfully used fundamental
isotherms (e.g., Langmuir) to capture the adsorption equili-
brium.14−16 Although fundamental isotherms are a good
approach for simple molecules vis-a-̀vis accuracy, more complex
molecules (e.g., amino-acids, small peptides, proteins, etc.)
might require isotherms (and potentially mass transfer
resistance models) that do not adhere to the classic model
structures that are so well established in the literature. Modelers,
in that case, must select less conventional isotherm model
structures (e.g., Moreau, bi-Moreau, quadratic),17−20 although
the isotherm model may still not be adequate to capture the
underlying physics properly. Modelers have therefore shifted
toward the use of hybrid models, which comprise physics-based
as well as data-driven components. Recent literature in the field
of chromatography has revealed that it is possible to replace the
isotherm model or the mass transfer kinetics model (or both) of
the POR or the EDM with a data-driven model. Specifically,
Narayanan et al.21,22 developed an approach, working with the
POR model, to replace established isotherms with Neural
Networks (NNs) that could outperform conventional isotherm
models in terms of interpolating and extrapolating simulated
breakthrough curves in Protein A columns. According to
Narayanan et al.,21 first-principle models can exhibit varying
degrees of hybridization. Specifically, Narayanan et al. proposed
that the knowledge-driven components of a PORmodel, namely
the mass transfer kinetics, mass transfer coefficient, and
adsorption isotherm, can be replaced byNNs, either individually
or by lumping these components into a single data-driven
equation for mass transfer kinetics. This approach can increase
the degree of hybridization up to 100%. The authors remarked
that hybrid models with an intermediate degree of hybridization
tend to outperform purely data-driven models in terms of
prediction accuracy and process interpretability. Although such
models may sacrifice some of the mechanistic insight of purely
knowledge-driven approaches, this trade-off is compensated by
their better versatility and practical applicability. In the same
context, Ding et al.23 proposed an approach to replace the
isotherm model of EDM with a NN in the complex paradigm of
salt-dependent Hydrophobic Interaction Chromatography
(HIC) columns. However, replacing an isotherm or mass
transfer kinetics model with a black box model loses its
interpretability and thereby the insight into the fundamental
principles of the separation process. In a system where the
governing phenomena are described by a POR model, Santana
et al.24 therefore replaced the mass transfer kinetics model with a
NN, although they retrieved an equation through sparse
regression to restore some of the lost interpretability.
Applications of hybrid modeling in chromatography are not
limited to replacing the isotherm or themass transfer model with
a surrogate (e.g., NNs), but also aim at integrating both themain
mass balances and the binding models (mass transfer and
adsorption) in a data-driven structure in order to make
computationally efficient predictions.25

Hybrid modeling in chromatography, although functional,
comes with certain limitations. Particularly, combining data-
driven and first-principle models increases the overall model
complexity, in terms of number of parameters. In addition, the
data-driven components of the hybrid models can prove to be
data hungry and pose the risk of overfitting. Moreover, regulated
environments such as the pharmaceutical industry are often

sceptical toward machine learning applications.26 Therefore,
first-principle models should be favored over hybrid models
unless the former cannot adequately capture the process
behavior, that is, where there is process-model mismatch. In
such cases, one could still rely on approximated models that are
only valid within specific regions of the design space.27 Process-
model mismatch is detected when the simulations underfit the
experimental data and goodness-of-fit tests fail. Quaglio et al.28

proposed a procedure that diagnoses potential mismatch
between kinetic models and experimental data and refines the
models iteratively until a level of appropriate complexity is
reached. If the proposed model underfits, the parameters of the
model undergo a Lagrange multiplier test29 that can indicate
which parameters can be substituted by state-dependent
functions. The procedure is then repeated until the model
simulations fit the experimental data satisfactorily. The method-
ology developed by Quaglio et al. is similar to the incremental
identification techniques30−32 developed to decompose a large
identification problem into smaller and simpler problems.

In this work, we have adapted the methodology proposed by
Quaglio et al.28 to the needs of isothermmodel identification for
chromatographic separations. We use the EDM coupled with
isotherm models that we modify iteratively according to what
the Lagrange multiplier test indicates in each iteration until the
model stops underfitting the experiments, resulting in a model
that accurately describes the elution profiles in question and that
can be used for optimal design and operation. The elution
profiles in question exhibit a nonclassical adsorption behavior.
Such profiles may belong to more complex molecules, such as
amino-acids, small peptides, and proteins.19,20,33 Therefore, the
use of conventional isotherms gives rise to process-model
mismatch. Our approach can remedy this mismatch by adding
additional degrees of complexity to the initial approximated
model. Alternatively, in a pure hybrid approach, to model the
adsorption isotherm, one uses an equation obtained via a data-
driven method. This equation usually contains no physical
meaning, while in our approach, we start from physically
meaningful adsorption isotherms and, if necessary, we generalize
them by replacing some of the parameters with functions of state
variables to increase the model complexity to the level required
to obtain accurate model predictions. Accurate and interpretable
mathematical representations of the isotherm models lead to
reliable and efficient model-based method development for
purifications in both research and industrial applications.

This manuscript is structured as follows: First, an overview of
the modeling components and the proposed diagnostic
procedure is presented. The proposed diagnostic procedure is
then implemented in three distinct case studies, and the results
are discussed. Finally, some concluding remarks and future
directions are offered.

■ METHODOLOGY
This section outlines the methodology adopted in the proposed
diagnostic procedure which is then subsequently used in the
following case studies. The methodology considers theoretical
foundations of the maximum likelihood estimation and the χ2

test, and expands further to the foundations of the Lagrange
multiplier test. In addition, we present the chromatographic
model used and explain notions of the isotherm models.
Parameter Estimation

Chromatographic models usually employ a set of one-dimen-
sional Partial Differential and Algebraic Equations (PDAEs).
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The set of equations involves an Ns dimensional vector of state
variables (e.g., the mobile phase concentrations within the
column), x(t, z), and three Ns dimensional vectors of the
derivatives of x(t, z), namely the first-order derivatives with
respect to time, ẋ(t, z), and space, xz(t, z), and the second-order
derivative with respect to space, xzz(t, z). A process setup
consists of anNu dimensional vector of manipulated inputs (e.g.,
the inlet solvent composition), u(t), and an Nw vector of time-
invariant inputs (e.g., the sample volume), w. The model also
includes an Nθ dimensional vector of parameters, θ. The
measured variables, ŷ, are grouped in an Ny dimensional vector
that represents the model outputs that can also be directly
measured through experiments (e.g., outlet mobile phase
concentrations). Thus, we can write

= [ ]t z t z t z t z ty f x x x x u w( , ), ( , ), ( , ), ( , ), ( ), ,z zz (1)

If we obtain a Y experimental data set, i.e. Y = [y1,..., yN], that
consists of N number of experiments, we can estimate the
parameters for the model under consideration. The exper-
imental measurements are assumed to be associated with noise
which can be described as Gaussian with Ny × Ny covariance Σy.
In this work, we estimate parameters through a maximum
likelihood approach,34 that is by maximizing the unconstrained
log-likelihood function:28

= |Yarg max ( ) (2)

The log-likelihood function reads:

| = [ + ]

[ ]

[ ]
=

Y N N

y y

y y

( )
2

ln(2 ) ln(det( ))

1
2

( , ..., )

( , ..., )

y y

i

N

i i N
T

y

i i i N

1
1

1

(3)

where ŷi is the model prediction for the i-th experiment. At the
maximum likelihood estimates, θ ̂ = [θ̂1,...,θ̂N dθ

], the gradient of
the objective function (i.e., the log-likelihood) with respect to
the parameters θ is zero:

| =Y( ) 0 (4)

The χ2 Test
When simulations are fitted to the experimental data set and the
maximum likelihood estimates are obtained, the goodness-of-fit
is assessed through a χ2 test.35 If the model under consideration
is assumed to be exact, then the normalized square residuals, χ2,
must be distributed as a χ2 distribution with a degree of freedom,
DoF = N · Ny − Nθ:

34

= [ ] [ ]
=

·y y y y( ) ( )
i

N

i i
T

i i N N Ny
2

1

1 2
y (5)

In this work, we only consider underfitting, that is, when amodel
is too simple to capture the experimental data accurately, and
thus we implement a single-tailed χ2 test with 95% significance
level. (We do not consider overfitting, since the models used are
just complex enough to represent the system.) If the calculated
χ2 lies above the 95% χc

2 critical value, the model is said to be
underfitting, and thus fails the test. If the χ2 is below the limit of
the 95% χc

2, then the model passes the test and is considered
accurate.
Diagnostic Procedure

When a model underfits, its complexity is not adequate enough
to capture the underlying physics of the given process. Silvey29

proposed a tailored Lagrange multiplier test to determine
whether the model parameters are independent of the state
variables of the system under consideration. Essentially,
underfitting can be explained if model parameters are in fact
functions instead of constants, i.e. there are hidden depend-
encies on state variables. Quaglio et al.28 introduced a
framework to remedy the underfit by increasing the model
complexity iteratively by employing the Lagrange multiplier test.
According to Figure 1, once parameter estimation has been
performed and the χ2 test has been assessed, if the considered
model fails the latter, one should proceed with the Lagrange
multiplier test. The Lagrange multiplier statistic aids in the
calculation of a heuristic metric, the Model Modification Index
(MMI). The MMI captures the expected improvement of the
goodness-of-fit of the model, with a “faulty” parameter (i.e., a
parameter that is not independent of the system state) being
replaced with a function of state variables. Faulty parameters
yield MMI values above 1. The modeler must then replace the
faulty parameter with a function dependent on state variables,
and repeat the procedure until an appropriate model complexity
has been reached. Generally, a single faulty parameter can cause
highMMI values in itself and in other, otherwise unproblematic,
model parameters. However, the MMI value of the “culprit”
parameter will be larger than those of the “benign” parameters.
Therefore, it is strongly recommended that modelers follow a
one-by-one modification procedure starting from the parameter
with the highest MMI value. To prevent an infinite loop of
model modifications, the modeler can define a maximum
number of iterations nmax, which serves to terminate the
procedure when a series of modifications fails to improve
model accuracy. The value of nmax is an intuitive threshold that
users can set and depends on the resources and time that can be
spent on a particular problem of model modification.

Figure 1. Proposed framework for model diagnosis and modification for underfitting models (n: number of iterations, MMI: Model Modification
Index).
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Lagrange Multiplier Test and MMI

According to the proposed procedure, when a model fails to
simulate an experimental data set accurately, the modeler needs
to revisit the model equation and replace candidate parameters
with a function of the state variables. But first, one needs to
identify which parameters are not independent and are in reality
functions of the state variables. In theory, the procedure can be
applied for any model parameter that is considered for
parameter estimation, but in our case we will consider isotherm
models that are constitutive equations of chromatographic
models. The Lagrange multiplier test28 assesses the following
null hypothesis, in the instance where the parameter under
consideration is the θi = θ1:

• H0: θ1 and θj ∀ j≠1 are all state-independent constants

with the alternative hypothesis stating:

• Ha: θ1 is a state-dependent function and θj∀ j≠1 are state-
independent constants

Different experimental conditions impact the state variables of
the system under consideration. Thus, the subvector of
manipulated variables or time-invariant inputs that are
considered for experiment design and parameter estimation,
so the design vector, φ, impacts the state of the system. If θ1 is
indeed a function g of the state variables, it is also a function of
experimental conditions affecting the states, that is θ1 = g(φ),
and θj ∀ j≠1 are fixed constants. To continue with the test, we
need not assume any functional form for the g function. Let us
also assume a theoretical N dimensional vector θd = [θ1,1,...,θ1,N]
wherein the i-th element represents the value of θ1 at the
different experimental conditions φi, that is θ1,i = g(φi) ∀ i = 1,...,
N. Under parametrization, θd, the log-likelihood function, reads:

| = [ + ]

[ ]

[ ]
=

Y N N

y y

y y

( )
2

ln(2 ) ln(det( ))

1
2

( , ..., )

( , ..., )

d d y y

i

N

i i i N
T

y

i i i N

1
1, 2

1

1, 2 (6)

Note that in the above eq (eq 6), all parameters θj ∀ j≠1 are fixed
to their max-likelihood values, while parameter θ1,i is assumed to
vary across N experimental data sets, for the sake of performing
the Lagrange multiplier test. To mathematically formalize the
null hypothesis, we first need to introduce the N − 1-
dimensional vector of functions:

= [ ]+s , ..., , ...,i i N N1,1 1,2 1, 1, 1 1, 1 1, (7)

If the null hypothesis H0 is satisfied, the parameter θ1 is a
constant, so that θ1,i is equal to θ1,i+1 for any value of i.
Consequently, all the components of the vector s would be zero.
Therefore, the null hypothesis is met if the condition (or
constraint) s = 0 is satisfied. Conversely, the alternative
hypothesis Ha is met if the condition s ≠ 0 is satisfied. Thus,
we can write

=H s: 00 (8)

H s: 0a (9)

Under the imposed constraints, s = 0, the constrained maximum
likelihood estimate is obtained by

= |

=

Y

s t s

arg max ( )

. 0

d d dd

(10)

The maximization problem of eq 10 under constraints s = 0
yields θ̂d that is equal to the unconstrained maximum likelihood
estimate (see eq 3), θ1, that is θ̂1,i = θ̂1 ∀ i = 1,..., N. At the
constrained maximum likelihood estimates, the following
equations are satisfied:

| + =
=

Y s

s

( ) 0

0
d d

(11)

where α̂ is the N − 1-dimensional vector of the Lagrange
multipliers associated with the constraints s. Given that the null
hypothesis holds, Aitchison and Silvey36 and Silvey29 proposed a
ξ1 statistic that is assumed to be asymptotically distributed as a χ2

distribution with DoF = N − 1, which is equal to the number of
constraints. The ξ1 statistic is given by

= s H sT
d N1

1
1

2
(12)

where Hd is the N × N expected Fisher Information Matrix that
is evaluated at θ̂d:

=
=

H y y( ) ( )d
i

N

i i y i i
T

1
1,

1
1,

(13)

Note that one does not have to solve eq 10 to calculate the ξ1
statistic; however, ξ1 can be calculated as a function of the log-
likelihood function evaluated at θ̂d:

= | |Y YH( ) ( )d d
T

d d d N1
1

1
2

(14)

The above formulation (eq 14) is convenient since the
calculation of the Lagrange multiplier vector α̂ is not required.
Consequently, Quaglio et al.28 proposed that the illustrated
procedure for the calculation of ξ is repeated for all the
associated parameters of the model, that is ξi ∀ i = 1,..., Nθ.
Hence, we can obtain a heuristic measure of model
misspecification, the Model Modification Index (MMI) that is
given by

= =i NMMI
(95%)

1, ...,i
i

N 1
2

(15)

The MMI is the ratio between the ξ statistic and the 95% χ2

distribution with N − 1 DoF. The MMI metric aids in assessing
the null hypothesis, that is, whether the parameters are state
independent constants. The MMI is valuable as it can quantify
the expected improvement in the log-likelihood function given a
relaxation in the constraints, s = 0. MMIi values above 1 signify
that the null hypothesis is not true, and therefore replacing a
parameter, θi, under consideration with a state dependent
function should improve the goodness-of-fit of the simulated
data against the experimental data set. However, if MMIi is
below 1, then we cannot justify the replacement of θi with a
function. We refer the reader to the original work of Quaglio et
al.28 for a more detailed description of the Lagrange multiplier
test.
Chromatography Modeling
The Equilibrium Dispersive Model (EDM) assumes instanta-
neous mass transfer, extremely fast adsorption and desorption,
fast convection, and slow dispersion.11 Since mass transfer is
extremely fast, the mass transfer resistances can be lumped into
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an apparent dispersion coefficient. The model for a single
analyte (component) consists of a mass balance that reads:

+ + = < <C
t

F
q
t

u
C
x

C
x

x L, 0m
int

m
app

m
2

2 (16)

whereCm and q are the concentrations of the analyte in the (bulk
of the) mobile and stationary phases, respectively, F is the
volumetric phase ratio between the stationary and the mobile
phases, uint is the hypothetical interstitial velocity, Dapp is the
apparent dispersion coefficient, and L is column length. The
volumetric phase ratio is given by F = (1 − ϵt)/ϵt where ϵt is the
total porosity of the column; the hypothetical interstitial velocity
is given by uint =Q/S ϵt, whereQ is the volumetric flow rate, and
S is the cross-sectional area of the column. The apparent
dispersion coefficient, app, can be estimated employing fluid
dynamics equations, but in this work we will use an
approximation based on the number of theoretical plates Np of
the column, a parameter that can be obtained experimen-
tally:10,11,37

= u L
N2 p

app
int

(17)

Note that eq 17 is a simplification of the original equation found
in Katsoulas et al.11 since the original expression also depends on
the isotherm. However, in this work we assume that the effect of

app is negligible, and thus we only seek an approximation of the
apparent dispersion.

At the column inlet (x = 0), a Danckwerts boundary condition
is adopted:

= = =
C C x t

u
C x t

x
( 0, )

( 0, )
m

m
in

app

int (18)

whereCin is the loading concentration at the column inlet, which
is initially zero, and when the sample is injected (at t = tinj), Cin is
equal to the concentration in the sample, Cin

★. The feed pulse
lasts for V/Qmin and thenCin is brought back to 0. In summary:

=

<

+

> +

l

m
ooooooo

n
ooooooo

C

t t

C t t t t V Q

t t V Q

0, if

, if and /

0, if /

in

inj

in inj inj

inj (19)

At the column outlet (x = L), the boundary condition reads:

=
=

C x L t
x

( , )
0m

(20)

The outlet boundary condition assumes that the concentration
at the outlet equals the concentration immediately before the
outlet.11

Since the mass transfer process between the mobile and
stationary phases are assumed to be extremely fast, the
concentration of the analyte in the bulk of the mobile phase is
assumed to be in equilibrium with the concentration of the
analyte in the stationary phase. Therefore, an algebraic equation
is required to establish a relation between the two concen-
trations, known as the adsorption isotherm:

=q f C( )m (21)

and is the functional relationship we seek to establish using the
proposed procedure.

■ CASE STUDIES
In the following, we will illustrate the application of the
diagnostic procedure, proposed in the Methodology section,
based on isotherm models commonly used for the simulation of
elution profiles in chromatographic columns. We will consider
three distinct case studies. Cases A and B start from an
approximated model (different in each case) and arrive at the
“ground truth” model via modification. The ground truth
represents the true underlying physics of a process. When
considering in-silico experimentation, the ground truth model is
the one used to generate the in-silico experiments. In Case C,
however, none of the commonly used isotherm models in
chromatography can accurately simulate the experimental data,
and we therefore resort to using a polynomial, which via a series
of modifications is able to accurately capture the underlying
physics of adsorption of the system under consideration, finally
matching the experimental elution profiles. In other words, in
Cases A and B, we modify existing approximate models, whereas
in Case C, we construct a model from scratch, assuming no prior
knowledge of the isotherm.

In lieu of real experiments, in-silico experiments are used for
all case studies. Using in-silico experiments rather than real
experiments means we have complete knowledge of the system
and can therefore accurately evaluate the appropriateness of the
procedure, which would obviously not be possible with real
experiments, as the adsorption isotherm would be unknown.
The case studies consider the chromatogram for a single
component in Reversed-Phase Liquid Chromatography
(RPLC) and assume the same experimental setup, the
parameters of which are given in Table 1. As the chromatograms

were generated in-silico, we introduced Gaussian distributed
measurement noise of 1% for each generated measurement
point. The value of the measurement noise is an educated guess
based on common practice in the field.38

For the simulation and maximum likelihood parameter
estimation, we used gPROMS ModelBuilder.39 The grid was
discretized into 100 elements using the first-order backward
finite differences method. Parameter estimation was solved via
the NLPMSO solver, which is a multistart algorithm that
samples the parameter space through a Sobol sequence40 to
construct sets of initial guesses for the parameters, θ. The Sobol
sequence considers lower and upper bounds (set by the
modeler) of the parameters as uniform distributions and
produces initial guesses that are distributed as evenly as possible
in the parameter space. NLPMSO next solves an optimization
problem employing the default solver, NLPSQP, for each of the
sets of initial guesses and updates the best solution. For the
following case studies, we set the number of initial guess points
to 10 in order to balance computational efficiency and
optimality. As highlighted later in the paper, we increased the
numbers of initial points when appropriate. For an optimization
run comprising 10 local searches, the CPU time varied between
approximately 320 s (∼5.3 min) and 940 s (∼15.6 min). When

Table 1. Experimental Setup Used for All Case Studies

parameter symbol value unit

column length L 15 cm
inner diameter D 0.46 cm
total porosity ϵt 0.635 -
apparent dispersion coefficient app 0.006 cm2/min
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the number of local searches was increased to, for instance, 50,
the total computation time rose to as much as 3400 s on an Intel
Core i7−1185G7 processor with 16 GB of RAM, while
employing the gPROMS parallel computation license.
Case A − Modulated Langmuir Isotherm

One of the most commonly employed techniques to optimize
RPLC chromatographic separations4 is to take into account a
varying mobile phase composition. Therefore, the commonly
employed Langmuir isotherm can be modulated according to
the Linear Solvent Theory (LSS) to capture the effect of the
fraction of the organic modifier of the solvent. There are two
prevailing models, the first assuming that the saturation capacity,
qsat, is not affected by changes in the solvent composition,10,15

where the LSS modulated Langmuir model reads:

=
+

q C
K S C

S C
( , )

exp( )

1 exp( )
m

a m
K

q a m
sat (22)

where K is the retention factor at infinite dilution (i.e., at φ = 0),
qsat is the saturation capacity, Sa is the solvent strength
parameter, and φ is the fraction of the organic modifier of the
solvent. (Note that for the sake of simplicity we will be referring
toK as the retention factor.) The second option assumes that the
saturation capacity depends on the fraction of the organic
modifier,19,41 and reads:

=
+
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exp( )

1 exp( )
m

a m
K

q b m
sat (23)

where Sb is the solvent strength parameter associated with the
effect of the solvent on the saturation capacity. Case A considers
that both the retention factor and the saturation capacity
parameters depend on the solvent composition, and thus the
“real” system described by in-silico model is the EDM coupled
with eq 23, withK = 118.58 (−), qsat = 34.45 (mg/mL), Sa = 9.36
(−), and Sb = 7.5 (−). These parameter values were determined
by considering the typical orders of magnitude reported in the
literature for the same parameters and by performing
simulations to assess whether the resulting chromatograms
were reasonable. In the following, we will consider eq 22 as the
proposed, or approximated, model and eq 23 as the actual (or
ground truth) system model.

The experimental design vector consists of two degrees of
freedom, the sample volume, V, and the fraction of the organic
modifier, ϕ, that is, φ = [V, ϕ], i.e. these are the variables that can
be manipulated in the system. For a time interval of V/Q min
(starts at t = 0), the inlet concentration jumps from Cin = 0 toCin
� Cin

★ = 5 mg/mL and then returns back to 0. Initially, we
employ five experiments, at conditions prescribed solely by
process intuition and not by any particular design of experiments
(DoE), in order to generate few but informative experiments.
(Onemight argue that a better solution would be to design those
experiments with a conventional DoE method such as latin
hypercube sampling (LHS), or Sobol sampling (SS). Our aim
was to design as few experiments as possible, but at the same
time informative enough to aid in an effortless parameter
estimation. Therefore, DoE methods that produce pseudoran-
dom samples such as LHS and SS do not always produce
informative experiments at small number of samples.) The
experimental conditions are given in Table 2.

After performing the experiments at the prescribed conditions
of Table 2, we obtained the corresponding chromatograms. To

start the modeling work, the modeler must first propose a likely
or approximate adsorption isothermmodel for the system under
consideration (since for a real system the modeler would not
know the underlying ground truth model), and then use the
initial experiments to estimate the associated parameter values.
In the following, we assume that the modeler has proposed the
modulated Langmuir isotherm model of eq 22 as the
approximated model in order to perform parameter estimation.
By maximizing the log-likelihood function (eq 3), we obtained
the vector of maximum likelihood parameter estimates, θ̂,
reported in Table 3, second row.

The corresponding goodness-of-fit test, conducted by the χ2

test, is reported in Table 4 (top row). The χ2 test for the assumed

model (top row), demonstrates a significant mismatch between
the simulated and experimental data, and the goodness-of-fit test
has clearly failed. Therefore, we now follow the diagnostic
procedure to examine whether any of the parameters allow for
modification.

The three MMI values associated with the parameters of the
approximated model are reported in Table 5 (top row). All three
values are greater than 1, thus all failing the Lagrange multiplier
test. However, looking closely, the MMI value of the qsat
parameter is an order of magnitude larger than the MMI values
for the other two parameters; therefore, qsat constitutes a good
modification candidate. Hence, we propose to replace qsat with
qsat = qsat exp(−Scϕ), since there could be a potential relation

Table 2. Case A: Experimental Conditions

experiment no.

control variable (Cin
★ =

5 mg/mL, Q = 1 mL/min) symbol 1 2 3 4 5

sample volume V (mL) 0.5 0.8 1 1 1.2
fraction of organic modifier ϕ (−) 0.1 0.2 0.3 0.4 0.5

Table 3. Case A: Maximum Likelihood Parameter Estimates
of the Approximated and Modified Models

maximum likelihood estimates

model structure K qsat Sa Sb
ground truth values 118.58 34.45 9.36 7.50
approximated model (eq 22) 122.14 27.94 9.58 −
modified model (eqs 23, 24) 118.60 34.44 9.36 7.50

Table 4. Case A: Goodness-of-Fit Test of the Approximated
and Modified Models

goodness-of-fit test

model structure χ2 (95%) χc2 outcome

approximated model (eq 22) 388,340 681 failed
modified model (eqs 23, 24) 639 681 passed

Table 5. Case A: Model Modification Index (MMI) for the
Associated Parameters of the Approximated and Modified
Models

MMI

model structure K qsat Sa Sb
approximated model (eq 22) 2837 19,709 2837 -
modified model (eqs 23, 24) 0.40 0.31 0.36 0.31
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between the solvent composition and the saturation capacity,
thereby turning it from a constant parameter to a function of the
state variables. Note that the selection procedure for the
modification at this stage is neither random nor based on trial
and error; rather, it relies on the modeler’s good knowledge and
physical understanding of the process. Therefore, we modify the
approximated model as follows:
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The outcome of the modification (as expected based on the
in-silicomodel) results in eq 24, which is identical to the in-silico
model of eq 23. Repeating the parameter estimation with the
now modified model leads to simulated profiles that accurately
match the experimental profiles, corroborated by the χ2 values
that are now within the acceptable range (Table 4, bottom row).
The mismatch between the approximated model and the
experiments has now been compensated by the modified model,
as observed for instance at the chromatogram of experiment no.
4 in Figure 2. The maximum likelihood estimates of the two
models, approximated and modified, are reported in Table 3.

Finally, we calculate the MMI values for the associated
parameters of the modified model (Table 5, bottom row). The
values now rest well below 1, thus rendering the new model
structure acceptable for further model activity. The radar charts
of Figure 3 visualize the value progression of the MMI from the
approximated model to the modified model, where the values
turned from completely asymmetric to symmetric, respectively.
Case B − Quadratic Relationships in Modulated Langmuir
Isotherm
Modelers in the field of chromatography consider the LSS
theory widely acceptable as a means to capture the effects of the

solvent composition on the isotherm parameters.42 It is
straightforward for low concentration systems to obtain a
trend between, for instance, the Henry coefficient of the linear
isotherm and the fraction of the organic modifier, by measuring
the retention time of Gaussian chromatographic peaks.4,37 But
when one needs to estimate parameters for systems that only
appear in overloaded conditions, finding a trend between those
parameters and the solvent composition might be more
intricate. First, one would have to propose a trend, e.g. LSS,
and then via curve-fitting ascertain if the model can capture the
assumed trend. Candidate models for separation at different
solvent composition conditions usually involve the above-
mentioned modulated Langmuir isotherms, eqs 22 and 23,
which assume the LSS theory. There are, however, cases where a
quadratic function might better explain the parameter depend-
ence on solvent composition.42−44 If only the saturation
capacity, qsat, depends quadratically on the organic modifier,
the modulated Langmuir reads as

=
+ +

q C
K S C

S S C
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exp( )

1 exp( )
m

a m
K

q b c m
2

sat (25)

where Sc is also a solvent strength parameter. We employed the
model of eq 25 as the ground truth model, and generated in-
silico experiments based on conditions given in Table 6, which
slightly differ in relation to the conditions used in Case A in
order to demonstrate the robustness of the methodology across
varying conditions.

After generating the in-silico experiments, we performed a
parameter estimation with the proposed approximated model of
eq 23 only to find that there is amismatch between the simulated
(at maximum likelihood estimates, θ̂, reported in Table 7) and
the experimental chromatograms, which was corroborated by
the very large χ2 values in Table 8, eventually resulting in the
approximated model failing the χ2 test.

Next, the MMI for each of the associated parameters of the
approximatedmodel was calculated, given in Table 9, to conduct
the Lagrange multiplier test. All of the parametric MMI values
are much greater than 1, and thus the model fails the Lagrange
multiplier test. Two of the MMI values stand out, observed also
on the radar charts of Figure 5, those of qsat and Sb, suggesting
that these parameters could be potential functions of the state
variables. Although theMMI of the two parameters are of similar
order of magnitude, we first proceeded with modifying the
parameter with the largest associated MMI value, that is Sb. Sb
can potentially be replaced with a function of ϕ, i.e. Sb = Sb + Scϕ.
This is a simple function that assumes that Sb is not constant but
rather a linear function of the organic modifier. Substituting the
said function in the approximated model of eq 23 gives

=
+

=
+ [ ]

=
+

= +
q C

K S C

S C

q C
K S C

S S C

q C
K S C

S S C

( , )
exp( )

1 exp( )

( , )
exp( )

1 exp ( )

( , )
exp( )

1 exp( )

m
a m

K
q b m

S S S

m
a m

K
q b c m

m
a m

K
q b c m

2

b b c

sat

sat

sat (26)

It is also interesting to instead examine potential modifications
in qsat, and evaluate the correspondingmodifiedmodel. Thus, we
again start from eq 23 and replace qsat with qsat = qsat exp(−Scϕ2):

Figure 2. Case A: Comparison between the chromatograms produced
by the approximated and the modified models at conditions prescribed
by experiment no. 4 (V = 1 mL, ϕ = 0.4).
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Note that the two distinct modifications resulted in models that
are equivalent, since only the sign of Sc is different between eqs
26 and 27. Moreover, eq 27 is, not surprisingly, identical to the
ground truth model of eq 25. The outcome of the two
modifications was somewhat anticipated, since the MMI values
alluded to a modification in the denominator of the original
approximated model.

eq 27 is carried forward for a new round of parameter
estimation against the same initial in-silico experiments of Table
6. The modified model simulates the experimental data
accurately and passes the χ2 test as reported in Table 8 (bottom
row). The modified model reduced the mismatch between the
initial approximated model and the experiments, as observed for
instance at the chromatogram of experiment no. 4 in Figure 4.
The optimal estimates of both the approximated and modified
models are reported in Table 7 (bottom row). Although the final
MMI values are not entirely symmetric according to the radar
chart of Figure 5, all of them rest below 1 (Table 9, bottom row),
thus successfully passing the Lagrange multiplier test.
Case C − Replacement with a Beyond-Isotherm Model

Cases A and B explored how the proposed diagnostic procedure
could aid in obtaining an accurate model by identifying
individual parameters that were not constants and replacing
them with functions. The procedure relied on the modeler
proposing models that, while potentially imperfect, offered a
reasonable approximation to reality, allowing the diagnostic
procedure to refine and identify better models. When proposing
models, a modeler aims to explain the underlying physical and

Figure 3. Case A: Radar chart of the MMI values associated with the parameters of the (a) approximated model and (b) the modified model.

Table 6. Case B: Experimental Conditions

experiment no.

control variable (Cin★ =
5 mg/mL, Q = 1 mL/min) symbol 1 2 3 4 5

sample volume V (mL) 0.5 0.8 1 1.2 1.2
fraction of organic modifier ϕ (−) 0.1 0.2 0.3 0.5 0.3

Table 7. Case B: Maximum Likelihood Parameter Estimates
of the Approximated and Modified Models

maximum likelihood estimates

model structure K qsat Sa Sb Sc
ground truth values 118.58 34.45 9.36 3.10 4.20
approximated model (eq 23) 118.90 37.87 9.41 1.84 −
modified model (eqs 25, 26,
27)

118.55 34.45 9.36 3.10 4.21

Table 8. Case B: Goodness-of-Fit Test of the Approximated
and Modified Models

goodness-of-fit test

model structure χ2 (95%) χc2 outcome

approximated model (eq 23) 76,374 791 failed
modified model (eqs 25, 26, 27) 691 791 passed

Table 9. Case B: Model Modification Index (MMI) for the
Associated Parameters of the Approximated and Modified
Model

MMI

model structure K qsat Sa Sb Sc

approximated model (eq 23) 350 4231 1198 4329 -
modified model (eqs 25, 26, 27) 0.45 0.7 0.66 0.86 0.37
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chemical phenomena with good enough mathematical approx-
imations; and there will inevitably be models that are more
accurate than others. For chromatography, isotherm models
often share a similar model structure because they are based on
physics described by first principles. Case C will explore
potential remedies in the case that none of the known isotherms
are able to simulate the experiments accurately.

Case C considers a quadratic isotherm14,45,46 to produce the
in-silico experiments:

=
+

+ +
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q bC b C

bC b C
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( 2 )

1m
sat m m

m m

2
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where b and b′ are retention factor parameters. The aim of this
particular case study is to consider an isotherm that is rarely
proposed in model identification procedures and does not
clearly produce a common, single type of chromatogram. The
quadratic isotherm is an excellent choice due to its complex
nature, which at low concentrations produces Langmuir-type
(tailing) peaks because of the dominating first-order term, while

at higher concentrations its peaks demonstrate anti-Langmuir-
ian behavior (fronting), depicted in Figure 6.

Case C involved only experiments under isocratic conditions
and capitalized on leveraging the sample volume, V, the sample
inlet concentration Cin

★, and the flow rate, Q. We designed eight
experiments via a full factorial design at the corners of the design
space, that is V = {0.5, 2} ml, Cin

★ = {1, 6} mg/mL, Q = {0.5, 2}
mL/min (Figure 7) and the experiments were executed at the
given conditions. Next, we proposed three candidate isotherm
models to proceed with the parameter estimation:

1. the Langmuir isotherm:4

=
+

q C q
bC

bC
( )

1m sat
m

m (29)

where the retention factor is =b K
qsat

,
2. the second-order Langmuir−Freundlich isotherm:5

Figure 4. Case B: Comparison between the chromatograms produced
by the approximated and the modified models at conditions prescribed
by experiment no. 4 (V = 1.2 mL, ϕ = 0.5).

Figure 5. Case B: Radar chart of the MMI values associated with the parameters of the (a) approximated model and (b) the modified model.

Figure 6. Case C: Comparison between the chromatograms produced
by the quadratic isotherm based on the maximum likelihood estimate
and the ground truth quadratic isotherm (V = 2 mL, Cin

★ = 6 mg/mL, Q
= 2 mL/min).

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.5c03704
Ind. Eng. Chem. Res. XXXX, XXX, XXX−XXX

I

https://pubs.acs.org/doi/10.1021/acs.iecr.5c03704?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.5c03704?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.5c03704?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.5c03704?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.5c03704?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.5c03704?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.5c03704?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.5c03704?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.5c03704?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.5c03704?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.5c03704?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.5c03704?fig=fig6&ref=pdf
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.5c03704?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


=
+

q C q
bC

bC
( )

( )
1 ( )m sat

m

m

2

2 (30)

3. and, last, the quadratic ground truth model, that is the
quadratic isotherm of eq 28 using parametric values of
Table 10.

Note that eqs 28 and 30 are commonly expressed with b
parametrization in the literature, and therefore we kept the same
parametrization for the Langmuir isotherm of eq 29 for this case
study (b instead of K).

The Langmuir and Langmuir−Freundlich isotherms with the
maximum likelihood parameter estimates failed to recreate the
experiments (see Table 11 for χ2 values), not only because they
failed the χ2 test by a large margin, but also because the trends
they produce are not representative of the process, an outcome
highly anticipated since there are fundamental differences
between the candidate models and the ground truth model.

The chromatogram produced by the quadratic isotherm with
parameters from the initial maximum likelihood estimates show
an offset of the peak width relative to the experiments, thus is
failing to recreate the experiments even though the isotherm
model is identical to that of the ground truth model (Figure 6).
This is quite an unexpected outcome since the two model
structures are identical, yet the maximum likelihood estimates
are poor. To potentially alleviate the mismatch, we re-executed
the experiments three times, also increasing the NLPMSO initial
points. Since the mismatch did not improve, this pointed to a
potentially problematic objective function. The most likely
explanation for this result is that the log-likelihood objective
function is flat with respect to the model parameters. Hence, we
need to employ a different strategy toward finding a model
structure that is not only representative of the process, but also
has estimable parameters.

Most known isotherms, if expanded around zero using a
Taylor series, result in a polynomial function. A polynomial
therefore makes a good candidate to replace classic isotherm
structures. Note, however, that a fundamental downside of using
a polynomial is that it lacks interpretability in relation to an
isotherm. Isotherm parameters are physical quantities whose
initial guesses can be potentially retrieved from the literature or
from previous experience. For instance, the qsat parameter
denotes where the concentration in the stationary phase stops
increasing with an increase in the mobile phase concentration.
Conversely, polynomial parameters have no physical meaning.
However, simple polynomials, such as the one used in this case,
have an interpretable model structure that can inform modelers
about, for instance, the curvature of the isotherm. Hence, the
polynomial approach still preserves some interpretability vis-a-
vis black-box models that tend to be very complex and lack
interpretability.

We first proposed a second-degree polynomial:

= +q C a C a C( )m m m1 2
2 (31)

where ai are the polynomial parameters. Note that since forCm =
0, it must be q = 0 (that is, the stationary phase concentration
that equilibrate a zero mobile phase concentration must be
zero), in the polynomial the parameter a0 must be zero. Next, we
executed a new parameter estimation using the new candidate
model against the full factorial experiments (see Figure 7), and
then evaluated the χ2 test (see Table 12, first row). Since the χ2

test failed, we had to evaluate the MMI of the associated
polynomial parameters to assess which of the parameters should
be further modified to improve the goodness-of-fit. According to
Table 13, the MMI value for a2 is much greater than 1, and 1
order of magnitude larger than the correspondingMMI value for
a1. Therefore, we proposed replacing a2 with a2 = a2 + a3Cm,
thereby arriving at a third-degree polynomial:

= + +q C a C a C a C( )m m m m1 2
2

3
3

(32)

Figure 7.Case C: Full factorial generated experimental conditions used
for parameter estimation.

Table 10. Case C: Ground Truth Values of the Quadratic
Isotherm Model

ground truth values

model structure b (mL/mg) b′ (mL/mg) qsat (mg/mL)

quadratic (eq 28) 0.04 0.02 123.2

Table 11. Case C: Goodness-of-Fit Test of the Approximate
Models

goodness-of-fit test

model structure χ2 (95%) χc2 outcome

quadratic (eq 28) 8.38 × 106 968.83 failed
Langmuir (eq 29) 7.37 × 106 969.87 failed
Langmuir−Freundlich (eq 30) 8.57 × 106 969.87 failed

Table 12. Case C: Goodness-of-Fit Test of the Proposed
Models

goodness-of-fit test

model structure χ2 (95%) χc2 outcome

a1Cm + a2Cm
2 (eq 31) 466,886 970 failed

a1Cm + a2Cm
2 + a3Cm

3 (eq 32) 1440 969 failed
a1Cm + a2Cm

2 + a3Cm
3 + a4 tanh(Cm)Cm

3 (eq 33) 1195 968 failed
a1Cm + a2Cm

2 + a3Cm
3 + a4Cm

4 (eq 34) 958 968 passed
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By repeating the parameter estimation and assessing the χ2 test,
we found that, although the χ2 value dropped significantly from
the considerable value of 466,886 to 1,440 (see Table 12), the
model still failed the goodness-of-fit test since the critical value
χc
2 equals 969. In accordance with the proposed procedure, we

re-evaluated the MMI values of the modified model of eq 32.
The MMI values of the associated polynomial parameters
decreased, yet they still violated the upper limit of 1. Therefore,
we selected parameter a3, as it had an MMI value slightly higher
than a2, and proposed two distinct modifications. First, we
proposed replacing a3 with a3 = a3 + a4 tanh(Cm)Cm

3 , which
resulted in the following modified model:

= + + +q C a C a C a C a C C( ) tanh( )m m m m m m1 2
2

3
3

4
3

(33)

and second, we proposed replacing a3 with a3 + a4Cm, which
resulted in the following modified quadratic model:

= + + +q C a C a C a C a C( )m m m m m1 2
2

3
3

4
4

(34)

In lieu of increasing the polynomial degree by adding a Cm
4

term, we opted for the tanh(Cm)Cm
4 term to mitigate potential

excessive polynomial growth. The hyperbolic tangent term can
damp high-order effects, potentially offering good numerical
stability and generalization. Similar damping can be achieved
using other nonlinear basis functions such as sigmoid,
arctangent, etc. Although eq 33 improved the predictions in
relation to eq 32, the χ2 test was not satisfied (see Table 12). The
Lagrange multiplier was also not satisfied, albeit the MMI values
of the associated parameters came closer to 1. On the other
hand, the fourth-degree polynomial of eq 34 improved the
predictions and satisfied the χ2 test. In terms of the Lagrange
multiplier test, the MMI values of the polynomial parameters of
eq 34 dropped significantly to ≈3, yet, since the values are still
above 1, they do not satisfy the test threshold. The radar chart of
Figure 8 summarizes the MMI values of the modified models
parameters, where we can observe the gradual decrease in the
MMI values considering the third-degree polynomial and its two
offsprings. Table 14 summarizes the optimal estimates of the
models considered for parameter estimation in Case C.

At this stage, modelers might encounter the following
dilemma: should they continue diagnosing and modifying the
model, or should they stop since the χ2 test is satisfied even if the
MMI is not? (Note that according the proposed procedure,
when the considered model passed the goodness-of-fit test, the
procedure can terminate.) The most sensible choice in Case C is
to accept the model and stop modifying it further, as not only do
the simulations fit the experiments well based on the χ2 test, but
also the MMI values do not point to a specific parameter that
could be considered for replacement with a function since the
MMI values are practically the same. Nevertheless, to show the
potential impact of further modification, we also explored the
outcome of a further potential replacement of one of the
parameters.

The most obvious modification is to replace a4 with a4 + a5Cm,
thereby considering a fifth-degree polynomial. Before discussing
the outcome of adding more terms to the proposed polynomial,
it is worth discussing the equivalence between a Taylor
expansion of the ground truth model and the proposed
polynomial functions. A Taylor expansion of the ground truth,
or in-silico, model (eq 28) around Cm = 0 results in the
polynomial (see the Supporting Information for the full
derivation):

= [ + + + +

+ + ]

q C q bC b b C bb b C

b b b C C

( ) ( 2 ) ( 3 )

(4 2 ) ( )

m m m m

m m

sat
2 2 3 3

2 2 4 5 (35)

The full Taylor expansion (involving an infinite number of
terms) converges under Cm ≈ 7 mg/mL, which is the radius of
convergence (see the Supporting Information for the derivation
of the convergence radius value). The notion of the convergence
radius is illustrated in Figure 9, where a 15th order Taylor
expansion of the initial model starts diverging close to Cm = 7
mg/mL.

Since in our in-silico experiments the analyte concentration is
bounded by the inlet value of 6 mg/mL, adding higher order
terms to the expansion would result in more accurate results.
Note that the Taylor expansion results in a polynomial of
specific coefficients that depend on the parameters of the true
function according to eq 35, while the polynomial parameters
(i.e., the coefficients) of, e.g. eq 31 through eq 34, always take the
maximum likelihood parameter estimates. Now, in the case
where Cm ≤ 7 mg/mL, the proposed polynomials are expected
to be equivalent to the corresponding (truncated) Taylor

Table 13. Model Modification Index (MMI) for the
Associated Parameters of the Proposed Models in Case C

MMI

model structure a1 a2 a3 a4

a1Cm + a2Cm
2 (eq 31) 1863 43,540 - -

a1Cm + a2Cm
2 + a3Cm

3 (eq 32) 12.24 20.94 21.57 -
a1Cm + a2Cm

2 + a3Cm
3 + a4 tanh(Cm)Cm

3

(eq 33)
6.43 10.41 10.82 10.92

a1Cm + a2Cm
2 + a3Cm

3 + a4Cm
4 (eq 34) 3.06 3.06 3.06 3.01

Figure 8. Case C: Radar chart of the MMI values of the associated
parameters of the proposed polynomials.

Table 14. Case C:Maximum Likelihood Parameter Estimates
of the Models Considered

maximum likelihood estimates

model structure a1 a2 a3 a4
a1Cm + a2Cm

2 (eq 31) 5.05 3.75 - -
a1Cm + a2Cm

2 + a3Cm
3 (eq 32) 4.92 4.83 −0.46 -

a1Cm + a2Cm
2 + a3Cm

3 + a4 tanh(Cm)Cm
3

(eq 33)
4.93 4.70 −0.078 −0.35

a1Cm + a2Cm
2 + a3Cm

3 + a4Cm
4 (eq 34) 4.93 4.77 −0.38 −0.02
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expansion; hence, higher-order terms in the polynomial would
render the results more accurate, but note that they cannot
predict the saturation effect that most isotherms entail. Figure 9
illustrates the inability of the polynomials (eqs 32 and 33) to
capture the saturation effect.

However, that (i.e., more accurate results) was not the
outcome we encountered for the higher order polynomial model
according to Figure 9. On the contrary, not only did the fifth-
degree polynomial model fail to yield more accurate chromato-
grams, but it essentially produced chromatograms not
representative of the process, where the peak maxima of the
experiments and simulations differed by few minutes on the
chromatogram. This could potentially be attributed to a flat or a
highly nonconvex objective function that is prone to local
optima, although we drastically increased the number of initial
points of the NLPMSO solver from 10 to 40.

Although the χ2 test has indicated that eq 34 is a better model
than eqs 31-33, we employ all of them to compare their
predictions and verify the superiority of the chromatograms
obtained with eq 34 within the design space, and compare it with
the parent models (eqs 31 and 32), as well as the competitor
model of eq 33. We therefore generated 24 new experiments
sampling from a Sobol sequence,40 thereby ensuring quasi-
randomness in the experimental conditions. The 24 Sobol
generated conditions, depicted in Figure 10, were used to
produce a new screening design that covers most of the design
space. The resulting goodness-of-fit test results are reported in
Table 15, and the χ2 values reveal an interesting outcome.

The second-degree polynomial (eq 31) underfitted the
experiments the most, as indicated by the χ2 values; an expected
outcome owing to its simplest structure. In terms of the total χ2,
the third-degree polynomial (eq 32) outperforms the rest of the
models, with the fourth-degree polynomial performing slightly
worse, and the hyperbolic tangent model (eq 33) coming third.
However, according to Figure 11 which shows the ratio between
the χ2 and χc

2 (in logarithmic scale) for each individual
experiment, the fourth-degree polynomial (Figure 11) general-
izes better for most of the experiments in relation with the third-
degree polynomial (Figure 11). Also, the hyperbolic tangent
modified polynomial (eq 33) performs well only in few of the
experiments (Figure 11), while the second-degree polynomial
(eq 31) is mostly inaccurate (Figure 11).

These final results were based on 24 in-silico Sobol
experiments, while in a real-world investigation, we would aim

to avoid having to perform that many experiments. Hence, we
would normally terminate the diagnostic methodology with the
model structure that passed the goodness-of-fit test, for Case C
that is the fourth-degree polynomial. Note that in a parameter
estimation exercise, more complex model structures are
expected to fit the experimental data best, as demonstrated
from the χ2 values in Table 12. However, such models are not
necessarily statistically more adequate across the overall design
space, as demonstrated by the χ2 values in Table 15, likely due to
limitations arising from the original sampling of the
experimental data (used for parameter estimation) and potential
loss in generalization. (Tomitigate the loss of generalization, the
modeler could potentially design a few additional, optimally
designed, experiments via an exploratory design criterion such as
G-Optimal.47)

It is crucial to acknowledge that all the evaluated models for
Case C failed the goodness-of-fit test against the 24 Sobol
generated experiments, albeit three of them are not far from the
associated critical value. But, as seen from Table 12, the fourth-
degree polynomial passed this test for the initial DoE considered
there, which is all one would have in a real application. We
therefore need to consider whether any of the models are
potentially still usable, despite failing the χ2 test. From Figure 12,
we can see that, while the second-degree polynomial does not
produce chromatograms of high fidelity to the experiments, the
rest of the models perform very well if just considering the
chromatograms, and sufficiently well for most model applica-
tions. The high χ2 values stem from the models predicting values

Figure 9. Case C: The initial isotherm (blue) vs its Taylor
approximation (red) vs two approximated polynomials (orange and
green).

Figure 10. Case C: The 24 Sobol sampled experimental conditions
used for validation.

Table 15. Case C: Goodness-of-Fit Test of the Proposed
Models against 24 Quasi-Random Sobol Sampled
Experiments

goodness-of-fit test

model structure χ2 (95%) χc2 outcome

a1Cm + a2Cm
2 (eq 31) 1,600,000 2198 failed

a1Cm + a2Cm
2 + a3Cm

3 (eq 32) 7365 2198 failed
a1Cm + a2Cm

2 + a3Cm
3 + a4 tanh(Cm)Cm

3 (eq
33)

15,475 2198 failed

a1Cm + a2Cm
2 + a3Cm

3 + a4Cm
4 (eq 34) 8537 2198 failed
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that are slightly higher or lower than it is accounted for in the χ2

distribution. These simulated points, although strictly speaking
“out-of-bounds”, can still accurately capture the chromatogram
trend for all the experiments. Hence, the χ2 test might not be the
best metric for chromatogram curve-fitting, as it can clearly
overpenalize. Practically, we could also accept the third-degree
polynomial as the final modified model, although above we
opted for a more conservative approach adhering to the original
procedure proposed for kinetic models by Quaglio et al.28 In
future work, alternative goodness-of-fit metrics, such as the ones
proposed in the work of Heymann et al.,48 might be considered.

■ CONCLUSIONS
This work has proposed a diagnostic procedure for identifying
suitable isotherm models in the development of liquid
chromatography models. The procedure is based on a maximum
likelihood inference framework, combined with a goodness-of-
fit test and a Lagrange multiplier test to evaluate model
performance. In particular, the Lagrangemultiplier test is used to
detect parameters that are not constant but instead vary as
functions of the system’s state variables.

A key contribution of this work is the application of the
procedure to chromatography, demonstrating its potential to be
extended toward automated identification of complex isotherm
models, particularly through the use of flexible representations
such as polynomials, or by implementing the method into
supervised search-based model building algorithms. This
capability is highly relevant to applications in pharmaceutical
purification, bioprocessing as well as chemical kinetics, where
accurate and interpretable modeling is essential.

We demonstrated the capabilities of the procedure by
exploring three case studies. In Cases A and B, the initial
isotherm models were modified according to the diagnostic
procedure, which gave rise to more complex but more accurate
models that passed the goodness-of-fit test. In Case C, no known
isotherm model could fit the experimental data set adequately
according to the tests used. It was shown how the procedure
could nevertheless be used to iteratively modify a quadratic
polynomial until a model structure was reached that passed the
goodness-of-fit test.

Although the proposed diagnostic procedure does not
consider any intuition in detecting faulty parameters, it still
relies on the expertise of the modeler in proposing appropriate

Figure 11. Case C: Schematic depiction of the logarithmic ratio between χ2 and χc
2 across the 24 Sobol sequence experiments.
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constitutive equations. Future work should focus on methods
that contribute to more informed decision making in parameter
substitution, in order to limit potential bias in the model
selection procedure, as well as exploring different methods for
evaluating the goodness-of-fit. Additionally, applying the
methodology to a real-world case study is of significant value
to evaluate the capabilities and limitations of the methodology.
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