

1 **International Network for Sinonasal Cancer Research (INSICA): A Collaborative Group to**
2 **Advance Research and Clinical Trials for Rare Sinonasal Malignancies**

3
4 Nyall R. London Jr., MD PhD^{1-4*}, Glenn J. Hanna, MD⁵, Neal S. Akhave, MD⁶, Garret Chobey,
5 MD⁷⁻⁸, Lot A. Devries, MD PhD⁹, François R. Ferrand, MD¹⁰, Gary L. Gallia MD PhD²⁻⁴,
6 Lifeng Li, MD¹¹, Antoine Moya-Plana, MD PhD¹², Umar Rehman, BMBS¹³, Teppei Takeda, MD
7 PhD¹⁴, Juliette Thariat, MD PhD¹⁵, Robbie S. R. Woods, MD¹⁶, Benjamin Verillaud, MD PhD¹⁷,
8 Matt Lechner, MD PhD^{13*}

9
10 **Affiliations:**

11 ¹Sinonasal and Skull Base Tumor Section, Surgical Oncology Program, Center for Cancer
12 Research, National Cancer Institute, National Institutes of Health; Bethesda, MD, USA

13 ²Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of
14 Medicine; Baltimore, MD, USA

15 ³Department of Neurosurgery, Johns Hopkins University School of Medicine; Baltimore, MD,
16 USA

17 ⁴Department of Oncology, Johns Hopkins University School of Medicine; Baltimore, MD, USA

18 ⁵Center for Head and Neck Oncology, Dana-Farber Cancer Institute; Boston, MA, USA

19 ⁶Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD
20 Anderson Cancer Center; Houston, TX, USA

21 ⁷Department of Otolaryngology – Head and Neck Surgery, University of Pittsburgh Medical
22 Center; Pittsburgh, PA, USA

23 ⁸Department of Neurological Surgery, University of Pittsburgh Medical Center; Pittsburgh, PA,
24 USA

25 ⁹Division of Imaging & Oncology, Department of Medical Oncology, University Medical Center
26 Utrecht, The Netherlands

27 ¹⁰Department of Head and Neck Oncology, Gustave Roussy – Cancer Campus, 94805 Villejuif,
28 France

29 ¹¹Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital
30 Medical University; Beijing, China

31 ¹²Head Neck and Skull Base Surgery Department, Gustave Roussy Cancer Center – Paris Saclay
32 University, Villejuif, France

33 ¹³Division of Surgery and Interventional Science & UCL Cancer Institute, University College
34 London, Charles Bell House,
35 43-45 Foley Street, London, W1W 7TS, United Kingdom

36 ¹⁴Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan

37 ¹⁵Centre François Baclesse, Department of Radiation Oncology, Caen, Unicaen, France;
38 Laboratoire de physique corpusculaire IN2P3/ENSICAEN, UMR6534, Unicaen, France

39 ¹⁶Department of Otolaryngology-Head and Neck Surgery, Beaumont Hospital & Royal College
40 of Surgeons in Ireland; Dublin, Ireland

41 ¹⁷Department of Otolaryngology-Head and Neck Surgery, Lariboisière Hospital, Inserm U1141,
42 Université Paris Cité; Paris, France

43 *These authors contributed equally as senior corresponding authors

44

45 **Corresponding author:**

46 Nyall R. London Jr, M.D., Ph.D., F.A.C.S.
47 Principal Investigator - Sinonasal and Skull Base Tumor Section
48 Surgical Oncology Program (SOP), Center for Cancer Research (CCR)
49 National Cancer Institute (NCI), National Institutes of Health (NIH)
50 Johns Hopkins University School of Medicine
51 Associate Professor of Otolaryngology – Head and Neck Surgery
52 INSICA President (2024-2026)
53 Email: nyall.london@nih.gov; nlondon2@jhmi.edu; Phone: +1-301-402-4216
54

55 **Funding:** This research was supported (in part) by the Intramural Research Program of the NIH,
56 Center for Cancer Research, National Cancer Institute (NRL). This research was supported [in
57 part] by the Intramural Research Program of the National Institutes of Health (NIH). The
58 contributions of the NIH author(s) were made as part of their official duties as NIH federal
59 employees, are in compliance with agency policy requirements, and are considered Works of the
60 United States Government. However, the findings and conclusions presented in this paper are those
61 of the author(s) and do not necessarily reflect the views of the NIH or the U.S. Department of
62 Health and Human Services. This research was supported in part by the Head and Neck Cancer
63 Research Fund (ML). The funders had no role in the design of the study; the collection, analysis,
64 or interpretation of the data; or the writing of the manuscript. Manuscript clearance for peer review
65 submission was obtained from the Intramural Research Program of the NIH.

66 **Conflicts of Interest**

67 N. London received research funding from Merck Sharp & Dohme, LLC regarding HPV-
68 associated sinonasal carcinomas. G. J. Hanna receives research support to institution and

69 advisory/consulting fees from Coherus. M. Lechner received academic funding and university
70 support for SSTR2 related research and serves as Pan-Cancer and Molecular Oncology Co-lead
71 for Genomics England. All other authors declare no competing interests.

72 **Data availability:** There was no data generated or analyzed in this manuscript.

73

74 **Abstract**

75 Development of evidence-based treatment recommendations for rare cancers is
76 challenging due to limited funding opportunities, spread of small numbers of patients across
77 multiple institutions, and other obstacles. Malignancies of the sinonasal cavity are particularly rare
78 with an overall incidence of approximately 0.56 cases per 100,000 population per year.
79 Additionally, clinical behavior varies with a reported 5-year overall survival rate ranging from
80 22% - 67%. Here we describe our initial efforts including formation of an international network
81 dedicated to sinonasal cancer research and highlight keys for successful study of rare tumors. This
82 network first began with large multi-institutional retrospective collaborations of rare sinonasal
83 tumors leading to improvements in staging for olfactory neuroblastoma and sinonasal melanoma.
84 These efforts have been followed by a new emphasis on development of collaborative
85 interventional trials as well as the development of position statements and recommendations to
86 guide use of emerging molecularly targeted therapies. In order to be successful in studying rare
87 malignancies, collaboration and teamwork is key along with an unrelenting drive for development
88 of evidence to help guide treatment for rare cancers. This manuscript serves as an outline that may
89 be applied by other interested groups to improve the study of other tumors in the human body.

90

91

92 **Introduction**

93 Sinonasal cancers arise from the nasal cavity and paranasal sinuses and comprise a wide
94 spectrum of distinct histopathologic entities¹. Diagnosis can be challenging due to the rare nature
95 of these tumors and overlapping histopathological features, frequently leading to misdiagnosis
96 which can result in poorer patient outcomes². The most common sinonasal malignancy at 51.6%
97 is sinonasal squamous cell carcinoma (SNSCC)³. Other sinonasal cancers include adenocarcinoma
98 (12.6%), melanoma (6.6%), olfactory neuroblastoma (6.3%), and adenoid cystic carcinoma
99 (6.2%)³. The clinical behavior of these malignancies varies with a 5-year overall survival rate
100 ranging from 22% - 67%³. These tumors may invade the orbit, brain, and cranial nerves leading to
101 numbness, visual changes, and other negative consequences on patients. Treatment strategies
102 including surgery, radiation, and chemotherapy can also have lasting morbidity and treatment
103 effects and may impact sense of smell, taste, and vision³. These rare tumors are best treated at
104 high-volume centers with experienced multi-disciplinary teams^{4,5}. Molecular advances and the
105 discovery of actionable targets are actively transforming both diagnostic and therapeutic
106 approaches for sinonasal malignancies⁶. Examples of recent molecular advances include the
107 identification of frequent isocitrate dehydrogenase-2 (*IDH2*) activating mutations in sinonasal
108 undifferentiated carcinoma (SNUC), characterization of a subset of aggressive sinonasal tumors
109 deficient in SWI/SNF Related, Matrix Associated, Actin Dependent Regulator of Chromatin,
110 Subfamily B, Member 1 (SMARCB1), and determining the biologic significance of the human
111 papillomavirus (HPV) and actionable targets in HPV-associated sinonasal squamous cell
112 carcinoma (HPV-associated SNSCC)⁷⁻¹⁰.

113 Translational and clinical research are accelerated when working together, and multi-
114 institutional and international collaborations are essential to make evidence-based advances for

115 rare malignancies such as sinonasal cancers. The starting key is innovation, teamwork, and an
116 unrelenting drive for evidence-based advances in our field. These collaborative efforts can take
117 many forms including retrospective and prospective case series, evidence-based treatment
118 recommendations, interventional clinical trials, multi-institution translational studies,
119 collaboration with patient organizations, and others. Many barriers and hurdles exist for
120 conducting translational and clinical research for sinonasal malignancies. Firstly, due to the rare
121 nature of these tumors, patient recruitment for clinical trials or for obtaining tumor tissue for
122 research studies can be challenging. There may also be less research funding available for rare
123 tumors compared to more frequently observed cancers. Both these challenges impact our ability
124 to create *in vitro* and *in vivo* models to study sinonasal malignancies, which models are sorely
125 lacking for this field. Significant tumor heterogeneity can also make treatment advances difficult
126 as each tumor type may respond differently to each treatment strategy. Regulatory hurdles can also
127 present additional challenges. Collectively, these barriers and hurdles underscore the importance
128 of collaboration and teamwork, particularly when it comes to rare cancers such as sinonasal
129 malignancies. Some potential solutions to these challenges include the formation of multi-
130 institutional networks of interested physicians and scientists, the formation of centralized
131 databases or tissue collection, and patient advocacy groups to help increase awareness.

132 Here, we describe the initial contributions of the International Network for Sinonasal
133 Cancer Research (INSICA) and the goal of establishing a network for multi-institutional,
134 international, interventional clinical trials for patients with sinonasal cancers. Our ultimate goal is
135 to inspire collaborative efforts to collectively achieve evidence-based advances for rare sinonasal
136 malignancies.

137 **Initial contributions**

138 The International Network for Sinonasal Cancer Research was initially founded in 2019
139 with a primary objective of facilitating large multi-institutional international collaborative
140 retrospective studies. INSICA is led by a steering group (insica.org/about-us), and annual meetings
141 have been held since 2022 combined with the European Network for Sinonasal Cancer Research
142 (EUSICA)¹¹ in Madrid, Copenhagen¹², London, and Paris with the 2026 annual meeting planned
143 for Bethesda, Maryland. The first study arising from INSICA collaborative efforts included 12
144 institutions from the United States, United Kingdom, and Europe and amassed clinical data from
145 404 patients with olfactory neuroblastoma (ONB), by far the largest retrospective study for this
146 rare sinonasal malignancy¹³. Importantly, harnessing the power of these large numbers, this study
147 showed the limitations of the currently used Kadish staging system, identified dural infiltration as
148 a strong prognostic factor, developed an updated staging system (Kadish-INSICA), and provided
149 stage-specific management recommendations. Furthermore, this study investigated the potential
150 role of targeting Somatostatin receptor 2 (SSTR2), which is highly expressed in the majority of
151 ONB and EBV-associated nasopharyngeal cancer and targetable with lutetium Lu 177 dotatate¹⁴.
152 This form of peptide receptor radionuclide therapy (PRRT) showed potential efficacy against
153 recurrent/metastatic ONB in a basket trial including 3 ONB patients reported as part of this study¹³.
154 This was followed up by a large multi-institutional, international, retrospective collaboration
155 including 505 patients with sinonasal melanoma and demonstrated survival benefit for patients
156 treated with immune checkpoint inhibition and recommended modifications to the current TNM
157 staging system¹⁴. Additional ongoing efforts are similarly aimed at SNUC, intestinal-type
158 adenocarcinoma (ITAC) and SNSCC¹⁵. These initial INSICA efforts highlight the value and
159 importance of multi-institutional collaborative studies for advancing evidence-based management
160 of rare sinonasal tumors.

161 **Establishment of a multi-institutional, international, clinical trial network**

162 Development of evidence through interventional clinical trials is essential to guide
163 treatment strategies and improve treatment options for our patients. However, there are many
164 barriers to completion of successful trials including low patient volume for rare tumors, trial design
165 flaws, funding, clinical trial staff support and turnover, collection and processing of patient
166 specimens and patient-reported outcomes, challenges in obtaining the intervention of interest, and
167 regulatory challenges that need to be considered. Prospective trials carry many advantages beyond
168 assessing efficacy of the treatment of interest and are a stronger level of evidence than retrospective
169 series. Scientific and clinical correlatives are a critical aspect of clinical trials and improve the
170 investigators' ability to determine mechanisms of action and factors predicting disease response in
171 a prospective manner. As sinonasal tumor patients are rare, it is important to carefully consider and
172 design trials as there are a limited number of opportunities. Inclusion of multiple institutions and
173 international institutions is also helpful as this assists in generating results that are broadly
174 applicable across multiple centers. Physicians face challenges when confronted with patients that
175 have failed standard treatments and are in dire need of alternatives. With the advent of genomics
176 and molecular analyses, therapeutic targets can be identified and targeted therapy offered to some
177 patients with recurrent or metastatic disease who have failed standard treatment approaches.
178 However, we need to work together to develop collaborative prospective trials to evaluate these
179 molecularly targeted therapies and develop evidence-based recommendations supported by larger
180 patient cohorts rather than single patient case reports. While few interventional trials specifically
181 for sinonasal malignancies have been reported, several have been completed or are currently in
182 process (**Table 1-2**)¹⁶⁻¹⁸.

183 On April 12, 2025, the INSICA group held the first international clinical trial planning
184 meeting at L'Hôpital Lariboisière in Paris, France. The clinical trial planning meeting was led by
185 Nyall R. London and Glenn J. Hanna with participating members also including Neal S. Akhave,
186 Lot Devriese, François R. Ferrand, Gary L. Gallia, Lifeng Li, Antoine Moya-Plana, Teppei Takeda,
187 Juliette Thariat, Benjamin Verillaud, Robbie S. R. Woods, and Matt Lechner (Figure 1). These
188 members included specialists from Otolaryngology, Medical Oncology, Radiation Oncology, and
189 Neurosurgery. The meeting was preceded by submission of trial ideas by attendees and selection
190 of clinical trial proposals and consensus recommendations to discuss. The methodology for
191 selection included trial design that was achievable to springboard towards future success,
192 prioritization of trials focused on molecularly actionable subgroups or strong biomarker rationale,
193 avoidance of overlap with currently ongoing trials, and commencing with the recurrent/metastatic
194 patient population. The following topics include the main areas discussed.

195 Inverted papilloma-related sinonasal squamous cell carcinoma (IP-SNSCC) is commonly
196 characterized by Epidermal Growth Factor Receptor (EGFR) exon 20 activation mutations in
197 ~77% of cases¹⁹⁻²¹. Previous studies using irreversible small molecule inhibitors targeting EGFR
198 exon 20 activating mutations have demonstrated efficacy *in vitro*²⁰. A common challenge with
199 targeted therapy is the tumor acquiring escape mechanisms to circumvent targeted pathway
200 inhibition leading to persistent tumor growth. One potential option discussed for targeting IP-
201 SNSCC is Amivantamab (Table 3). This is a bifunctional antibody targeting both EGFR as well
202 as c-MET which acts to block a potential downstream escape pathway²². We would recommend
203 assessing efficacy of Amivantamab or other similar compounds in available *in vitro* models of IP-
204 SNSCC with known EGFR exon 20 mutations^{20,23}. These tumors are very rare, thus multi-
205 institutional collaboration will be necessary to achieve adequate patient numbers to determine

206 whether EGFR blockade in IP-SNSCC demonstrates efficacy. One could consider utilizing this
207 approach in a neo-adjuvant rather than recurrent/metastatic setting. However, a small proportion
208 of IP-SNSCC are associated with low-risk human papillomavirus (HPV) without EGFR exon 20
209 mutations, and diagnostic confirmation of IP-SNSCC on a biopsy specimen alone can be difficult,
210 and many times is only made after surgical resection¹⁹. For these reasons and other challenges the
211 group recommended commencing with a recurrent/metastatic setting for this tumor type.

212 A rising proportion of SNSCC have been found to be associated with high-risk HPV^{24,25}.
213 A key mechanism of tumorigenesis in HPV-driven head and neck cancer is the PI3K/AKT/mTOR
214 pathway with characteristic hotspot mutations in PI3K having been identified particularly at
215 E542K or E545K. Importantly, a recent study demonstrated that HPV can drive SNSCC and does
216 not act as a neutral bystander in the sinonasal cavity¹⁰. PI3K hotspot mutations were noted in HPV-
217 associated SNSCC and combination PI3K and transcriptional enhanced associate domain (TEAD)
218 inhibition demonstrated synergistic reduction in colony formation. The clinical trial planning
219 group therefore discussed the potential of first targeting PI3K alone in HPV-associated SNSCC
220 with PI3K small molecule inhibitors demonstrating efficacy in pre-clinical models of head and
221 neck cancer as well as SNSCC^{10,26}.

222 Immune checkpoint blockade has demonstrated efficacy in head and neck cancer as well
223 as nasopharyngeal carcinoma²⁷⁻²⁹. However, the efficacy of immune checkpoint blockade in
224 sinonasal cancers has only been investigated in small cohorts^{30,31}. Multiple studies have been
225 performed investigating the tumor immune microenvironment of many sinonasal malignancies
226 including SNSCC, SNUC, and ONB³²⁻³⁷. The clinical trial planning group also discussed
227 investigating the impact of immune checkpoint blockade in sinonasal cancer in a multi-
228 institutional manner to accrue sufficient patient numbers to obtain a higher level of evidence

229 evaluating the efficacy of immune checkpoint blockade. The group concluded that it would be best
230 to first start with tumors with a PD-L1 combined positive score ≥ 1 . Many immune checkpoint
231 options are available but given findings in other clinical trials the group suggested utilization of
232 PD-1 inhibition as the initial point of investigation. Use of immune checkpoint blockade may also
233 be an important treatment strategy in the neoadjuvant setting with several trials ongoing (**Table 2**).

234 Another potential targetable sinonasal malignancy discussed was SWI/SNF related BAF
235 chromatin remodeling complex subunit B1 (SMARCB1)-deficient sinonasal carcinoma. These
236 tumors often present at an advanced stage with a poor clinical prognosis. Loss of SMARCB1 is
237 known to lead to epigenetic dysregulation and chromatin remodeling. It has been hypothesized
238 that inhibition of enhancer of Zeste homolog 2 (EZH2), a histone methyltransferase, may be able
239 to reverse this epigenetic dysregulation. Thus there has been interest in the use of an EZH2
240 inhibitor such as tazemetostat, which has shown efficacy in patients with epithelioid sarcoma³⁸⁻⁴⁰.
241 However, pre-clinical evaluation of this approach in SMARCB1-deficient sinonasal carcinoma
242 haven't yet been feasible due to a lack of available pre-clinical models. Another strategy discussed
243 was the combination of EZH2 inhibition with immune checkpoint blockade. Indeed, there is an
244 ongoing clinical trial exploring the combination of EZH2 inhibition with immune checkpoint
245 blockade ([NCT05407441](https://clinicaltrials.gov/ct2/show/NCT05407441)). The clinical trial planning group therefore discussed the possibility of
246 performing a similar interventional clinical trial with combinatorial EZH2 inhibition and immune
247 checkpoint blockade for SMARCB1-deficient sinonasal carcinoma.

248 ONB is a rare malignancy of the olfactory epithelium. Approximately 80% of ONB cases
249 express somatostatin receptor subtype 2 (SSTR2), enabling targeted treatment using peptide
250 receptor radionuclide therapy (PRRT)¹³. ¹⁷⁷Lu-DOTATATE (Lutathera®), a radiolabelled
251 somatostatin analogue, is approved for gastroenteropancreatic neuroendocrine tumours and has

252 demonstrated off-label efficacy in ONB based on case reports and small case series^{13,41}. The
253 INSICA group recommends considering ¹⁷⁷Lu-DOTATATE in patients with histologically
254 confirmed ONB and documented SSTR2 expression on ⁶⁸Ga-DOTATATE PET/CT and/or
255 immunohistochemistry, particularly in those with locally recurrent or metastatic disease classified
256 as Kadish-INSICA stage DM that have failed standard of care treatment strategies. It was
257 acknowledged that further multicenter trials on PRRT for ONB will be very challenging to perform
258 for such a rare disease across multiple sites for a variety of reasons. However, evidence from the
259 use in other disease types, results from basket trials and results from multicenter cohort studies
260 were reviewed for Kadish-INSICA DM and a position statement outlining the recommendations
261 of INSICA regarding the use of SSTR2-targeted PRRT/¹⁷⁷Lu-DOTATATE in the treatment of ONB
262 was created and reviewed as part of the clinical trial planning meeting (**Supplemental Materials**).
263 Key recommendations include: (1) patient management within a specialized tumor board
264 (multidisciplinary team) with access to nuclear medicine expertise; (2) SSTR2 status assessment
265 to guide PRRT eligibility; (3) pre-treatment renal and haematological evaluation to ensure
266 adequate physiological reserve; (4) use of renal protection protocols during ¹⁷⁷Lu-DOTATATE
267 administration; and (5) informed consent regarding off-label use.

268 Given the rarity of ONB, randomized clinical trial data on ONB specifically are unlikely
269 to evolve and data from a basket trial support its use. Thus, INSICA advocates its use for locally
270 recurrent or Kadish-INSICA DM disease that has failed standard of care treatment options and
271 advocates centers to use the standardized protocol outlined in this statement (**Supplemental**
272 **Materials**). This allows for the monitoring of clinical practice and clinical outcomes through
273 standardization and centers are encouraged to prospectively collect outcome data on the use of
274 PRRT/¹⁷⁷Lu-DOTATATE therapy for ONB at their respective institutions, under existing or newly

275 established IRB protocols. Centers may want to assess molecular changes that may occur
276 following treatment with ¹⁷⁷Lu-DOTATATE which may also help in identifying potential
277 combinatorial treatment options. All this will allow for refining therapeutic strategies and
278 guidelines for PRRT use in ONB in the future.

279 We also encourage members and supporters of INSICA to prospectively collect clinical
280 data and patient-reported outcome measures of all treated sinonasal cancers at their respective
281 institutions, under existing or newly established IRB protocols. This shall also include the
282 collection of clinical outcome data on the use of PRRT/¹⁷⁷Lu-DOTATATE therapy from ONB
283 patients, who were treated according to the recommendations outlined in the Position Statement
284 (**Supplemental Materials**) and from patients who were treated with targeted therapeutic agents
285 based on molecular profiling and/or immunotherapy approaches.

286

287 **Conclusions**

288 Collaborative work is necessary to create evidence upon which the field can draw to guide
289 treatment recommendations and improve patient outcomes for our patients with sinonasal
290 malignancies. Here we described initial efforts to advance evidence through large multi-
291 institutional collaborations. This has been followed by a new emphasis on development of
292 collaborative interventional trials as well as the development of recommendations to guide use of
293 emerging molecularly targeted therapies. We invite all interested members of the scientific
294 community with an interest in this challenging field of research to join us and engage in this highly
295 interesting field.

296

297 **Acknowledgements**

298 We would like to acknowledge and thank Ehab Hanna, Mario Hermsen, Peter Hwang,
299 Dame Valerie J. Lund, and Christian von Buchwald for important guidance and mentorship. The
300 authors would also like to acknowledge all the speakers and attendees at prior INSICA annual
301 meetings for their engagement making these meetings a success as well as the many colleagues
302 and friends who have supported INSICA initiatives and our multi-center work. We would like to
303 also thank the many organizations who have given us an opportunity to present our initiatives
304 through panel and talk invitations at meetings throughout the world. We would also like to
305 acknowledge the invaluable support by the Head and Neck Cancer Research Trust and Dr. Amie
306 Mertens (Chair of Trustees). This research was supported (in part) by the Intramural Research
307 Program of the NIH, Center for Cancer Research, National Cancer Institute (NRL). This research
308 was supported [in part] by the Intramural Research Program of the National Institutes of Health
309 (NIH). The contributions of the NIH author(s) were made as part of their official duties as NIH
310 federal employees, are in compliance with agency policy requirements, and are considered
311 Works of the United States Government. However, the findings and conclusions presented in this
312 paper are those of the author(s) and do not necessarily reflect the views of the NIH or the U.S.
313 Department of Health and Human Services. This research was supported in part by the Head and
314 Neck Cancer Research Fund (ML). The funders had no role in the design of the study; the
315 collection, analysis, or interpretation of the data; or the writing of the manuscript. Manuscript
316 clearance for peer review submission was obtained from the Intramural Research Program of the
317 NIH.

318

319

320

321 **Table 1.** Completed sinonasal malignancy-specific prospective interventional clinical trials of at
 322 least 10 patients

Name	Single or Multi-Institution	Tumor Type	Treatment of Interest	Results Summary
Phase 2 trial of induction chemotherapy for advanced sinonasal squamous cell carcinoma NCT00707473 ¹⁶	Single	Advanced SNSCC	Induction chemotherapy (docetaxel, cisplatin, 5-fluorouracil) with response directed chemoradiotherapy in responders and surgery with adjuvant radiation/chemoradiation in non-responders	1. Improved rates of organ preservation 2. No difference in overall survival
SINTART 1 NCT02099175 ¹⁸	Multi-institution	Resectable SNSCC, ITAC, SNUC, sinonasal neuroendocrine or small cell carcinoma, high grade ONB	Multi-modality treatment	1. 5-year progression free survival of 38% 2. Induction chemotherapy may select patients with favorable prognosis particularly SNUC
SINTART 2 NCT02099188 ¹⁷	Multi-institution	Unresectable SNSCC, ITAC, SNUC, sinonasal neuroendocrine or small cell carcinoma, high grade ONB	Multi-modality treatment	1. 5-year progression free survival of 26.8%
Phase 2 study of Bintrafusp Alfa in recurrent/metastatic olfactory neuroblastoma (BARON) NCT05012098	Single	Recurrent/metastatic ONB	Bintrafusp Alfa (Bifunctional blockade of PD-L1 and TGF- β)	Not yet reported

323

324 **Table 2.** Ongoing sinonasal malignancy-specific prospective interventional clinical trials of at
 325 least 10 patients

Name	Single or Multi-Institution	Tumor Type	Treatment of Interest	Trial Status
Enasidenib in IDH2-mutated malignant sinonasal and skull base tumors NCT06176989	Single	IDH2-mutated sinonasal and skull base tumors	Enasidenib (Small molecule inhibition of mutated IDH2)	Recruiting
PERI-SINO, Perioperative Chemoimmunotherapy with Toripalimab for Sinonasal Cancer NCT06940180	Single	Sinonasal SCC and SNUC	Chemoimmunotherapy prior to resection to assess pathologic response; followed by post-operative RT with immunotherapy or CRT	Recruiting
SANTAL (GORTEC 2016-02) Phase III Randomized Study of Chemo-radiotherapy Versus Radiotherapy Alone in the Adjuvant Treatment of Salivary Glands and Sinonasal Tumors NCT02998385	Multi-institution (France and Belgium)	Sinonasal non-squamous cell carcinomas	Concomitant cisplatin	Active, not recruiting
SinocaRT: Phase II Study of Intensity Modulated Radiotherapy in Dose Painting for Sinus Carcinomas After Endoscopic Surgery NCT05943119	Multi-institution (France)	Sinonasal carcinomas	Radiotherapy in painting dose on histoscannographic mapping	Recruiting
SNaC2 Study: Neoadjuvant Cemiplimab and Chemotherapy in Sinonasal Squamous Cell Carcinoma: A Phase 2 Trial ETCTN P10721 (NCT pending)	Multi-institution (NCI)	Sinonasal SCC	Two-arm randomized controlled trial of neoadjuvant chemotherapy vs. immunochemotherapy (cemiplimab); radiographic and pathologic response; followed by surgery + adjuvant therapy vs. definitive chemoradiotherapy	Approved; recruiting pending

I-NAPA study: Immunotherapy with chemotherapy and chemoradiation for advanced squamous cell cancer of nasal cavity/paranasal sinus NCT05027633	Single	Sinonasal SCC	Induction chemotherapy (cisplatin, docetaxel) with pembrolizumab with response directed chemoimmunoradiotherapy in responders and surgery with adjuvant radiation/chemoradiation in non-responders	Active, recruiting
Stereotactic Radiotherapy for Sinonasal Malignancy NCT06617910	Single	Sinonasal malignancies	Treatment outcomes and dosimetric analysis comparison between CyberKnife and volumetric modulated arc therapy based methods of stereotactic radiotherapy for sinonasal malignancy	Active, not recruiting
NeoScorch HN: Neoadjuvant Chemotherapy and Programmed Cell Death Protein 1(PD-1) Inhibition for Head and Neck Cancer Treatment De-escalation NCT07209189	Single	Advanced sinonasal malignancies	Neoadjuvant chemoimmunotherapy for advanced sinonasal malignancies	Approved; recruiting pending
Intensity-Modulated or Proton Radiation Therapy for Sinonasal Malignancy NCT01586767	Multi-institution (USA)	Advanced sinonasal malignancies	Intensity-modulated radiotherapy versus proton beam radiation for sinonasal malignancies	Active, not recruiting
PRISAM: Pre-Operative Radiotherapy and Immunotherapy for Sinonasal and Anorectal Melanoma NCT05546827	Single	Sinonasal melanoma	Pre-operative radiation therapy after starting immune checkpoint inhibition for sinonasal melanoma	Active, recruiting

326

327 **Table 3.** Proposed areas for intervention

Molecular target or disease subgroup	Potential intervention options
IP-SNSCC with EGFR exon 20 activation mutations	EGFR exon 20 inhibitor

SMARCB1-deficient sinonasal carcinoma	EZH2 inhibitor combined with immune checkpoint blockade
PD-L1 CPS ≥ 1	Immune checkpoint blockade
HPV-associated sinonasal carcinomas	PI3K inhibitor
ONB with SSTR2 expression	PRRT
Sinonasal adenocarcinoma and other sinonasal cancers	MEK inhibition

328

329

330

331 **Figure Legends**

332 **Figure 1.** Map of participants' home institution (red star) in the clinical trial planning meeting.

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351 **References**

352 1 Kuan, E. C. *et al.* International Consensus Statement on Allergy and Rhinology:
353 Sinonasal Tumors. *Int Forum Allergy Rhinol* **14**, 149-608 (2024).
<https://doi.org/10.1002/alr.23262>

354 2 Choi, K. Y. *et al.* Clinical Implication of Diagnostic and Histopathologic Discrepancies in
355 Sinonasal Malignancies. *Laryngoscope* **131**, E1468-E1475 (2021).
<https://doi.org/10.1002/lary.29102>

356 3 Turner, J. H. & Reh, D. D. Incidence and survival in patients with sinonasal cancer: a
357 historical analysis of population-based data. *Head Neck* **34**, 877-885 (2012).
<https://doi.org/10.1002/hed.21830>

358 4 Teitelbaum, J. I. *et al.* Sinonasal Squamous Cell Carcinoma Outcomes: Does Treatment
359 at a High-Volume Center Confer Survival Benefit? *Otolaryngol Head Neck Surg* **163**,
360 986-991 (2020). <https://doi.org/10.1177/0194599820935395>

361 5 Flukes, S., Sharma, R. K., Lohia, S. & Cohen, M. A. The Influence of Hospital Volume on
362 the Outcomes of Nasopharyngeal, Sinonasal, and Skull-Base Tumors: A Systematic
363 Review of the Literature. *J Neurol Surg B Skull Base* **83**, 270-280 (2022).
<https://doi.org/10.1055/s-0040-1721823>

364 6 Jurmeister, P. *et al.* DNA methylation-based classification of sinonasal tumors. *Nat
365 Commun* **13**, 7148 (2022). <https://doi.org/10.1038/s41467-022-34815-3>

366 7 Jo, V. Y., Chau, N. G., Hornick, J. L., Krane, J. F. & Sholl, L. M. Recurrent IDH2 R172X
367 mutations in sinonasal undifferentiated carcinoma. *Mod Pathol* **30**, 650-659 (2017).
<https://doi.org/10.1038/modpathol.2016.239>

368 8 Dogan, S. *et al.* Frequent IDH2 R172 mutations in undifferentiated and poorly-
369 differentiated sinonasal carcinomas. *J Pathol* **242**, 400-408 (2017).
<https://doi.org/10.1002/path.4915>

370 9 Agaimy, A. *et al.* SMARCB1(INI1)-deficient sinonasal basaloid carcinoma: a novel
371 member of the expanding family of SMARCB1-deficient neoplasms. *Am J Surg Pathol*
372 **38**, 1274-1281 (2014). <https://doi.org/10.1097/PAS.0000000000000236>

373 10 Zamuner, F. T. *et al.* Molecular patterns and mechanisms of tumorigenesis in HPV-
374 associated and HPV-independent sinonasal squamous cell carcinoma. *Nat Commun* **16**,
375 5285 (2025). <https://doi.org/10.1038/s41467-025-59409-7>

376 11 Hermsen, M. *et al.* The European Network for Sinonasal Cancer Research (EUSICA) - A
377 pan-European initiative targeting a group of orphan tumours. *Eur J Cancer* **202**, 113939
378 (2024). <https://doi.org/10.1016/j.ejca.2024.113939>

379 12 Hermsen, M. A. *et al.* EUSICA/COST IMMUNO-model workshop fostering collaboration
380 to advance sinonasal cancer research: A meeting report. *Oral Oncol* **146**, 106543
381 (2023). <https://doi.org/10.1016/j.oraloncology.2023.106543>

382 13 Lechner, M. *et al.* Clinical outcomes, Kadish-INSICA staging and therapeutic targeting of
383 somatostatin receptor 2 in olfactory neuroblastoma. *Eur J Cancer* **162**, 221-236 (2022).
<https://doi.org/10.1016/j.ejca.2021.09.046>

384 14 Lechner, M. *et al.* International Multicenter Study of Clinical Outcomes of Sinonasal
385 Melanoma Shows Survival Benefit for Patients Treated with Immune Checkpoint
386 Inhibitors and Potential Improvements to the Current TNM Staging System. *J Neurol
387 Surg B Skull Base* **84**, 307-319 (2023). <https://doi.org/10.1055/s-0042-1750178>

388 15 Anirudh Saraswathula , M. N. U., Jacklyn Liu , Yoko Takahashi , Arushi Mahajan ,
389 Simonetta Battocchio , Paolo Bossi , Paolo Castelnuovo , Carla Facco , Marco Ferrari ,
390 Dawn Carnell , Martin D. Forster , Alessandro Franchi , Amrita Jay , Davide Lombardi ,
391 Valerie J. Lund , Davide Mattavelli , Piero Nicolai , Vittorio Rampinelli , Fausto Sessa ,
392 Shirley Y. Su , Mario Turri-Zanoni , Laura Ardighieri , Erin McKean , Matt Lechner , Ehab
393 Hanna , Nyall R. London Jr. International, Multi-Institutional Evaluation of Practice

401 Patterns and Outcomes for Recurrent and Metastatic Sinonasal Undifferentiated
402 Carcinoma. *J Neurol Surg B Skull Base* (2024). <https://doi.org:DOI>: 10.1055/s-0044-
403 1791573

404 16 Contrera, K. J. *et al.* Phase II Trial of Induction Chemotherapy for Advanced Sinonasal
405 Squamous Cell Carcinoma. *Clin Cancer Res* **31**, 258-265 (2025).
<https://doi.org:10.1158/1078-0432.CCR-24-1416>

406 17 Bossi, P. *et al.* The SINTART 2 Study. A phase II non-randomised controlled trial of
407 induction chemotherapy, photon-, proton- and carbon-ion-based radiotherapy integration
408 in patients with locally advanced unresectable sinonasal tumours. *Eur J Cancer* **187**,
409 134-143 (2023). <https://doi.org:10.1016/j.ejca.2023.03.034>

410 18 Resteghini, C. *et al.* The SINTART 1 study. A phase II non-randomised controlled trial of
411 induction chemotherapy, surgery, photon-, proton- and carbon ion-based radiotherapy
412 integration in patients with locally advanced resectable sinonasal tumours. *Eur J Cancer*
413 **187**, 185-194 (2023). <https://doi.org:10.1016/j.ejca.2023.03.033>

414 19 Udager, A. M. *et al.* Human papillomavirus (HPV) and somatic EGFR mutations are
415 essential, mutually exclusive oncogenic mechanisms for inverted sinonasal papillomas
416 and associated sinonasal squamous cell carcinomas. *Ann Oncol* **29**, 466-471 (2018).
<https://doi.org:10.1093/annonc/mdx736>

417 20 Udager, A. M. *et al.* High-Frequency Targetable EGFR Mutations in Sinonasal
418 Squamous Cell Carcinomas Arising from Inverted Sinonasal Papilloma. *Cancer Res* **75**,
419 2600-2606 (2015). <https://doi.org:10.1158/0008-5472.CAN-15-0340>

420 21 Pacini, L., Cabal, V. N., Hermsen, M. A. & Huang, P. H. EGFR Exon 20 Insertion
421 Mutations in Sinonasal Squamous Cell Carcinoma. *Cancers (Basel)* **14** (2022).
<https://doi.org:10.3390/cancers14020394>

422 22 Neijissen, J. *et al.* Discovery of amivantamab (JNJ-61186372), a bispecific antibody
423 targeting EGFR and MET. *J Biol Chem* **296**, 100641 (2021).
<https://doi.org:10.1016/j.jbc.2021.100641>

424 23 Garcia-Inclan, C. *et al.* Establishment and genetic characterization of six unique tumor
425 cell lines as preclinical models for sinonasal squamous cell carcinoma. *Sci Rep* **4**, 4925
426 (2014). <https://doi.org:10.1038/srep04925>

427 24 London, N. R., Jr. *et al.* Evaluation of the Incidence of Human Papillomavirus-Associated
428 Squamous Cell Carcinoma of the Sinonasal Tract Among US Adults. *JAMA Netw Open*
429 **6**, e2255971 (2023). <https://doi.org:10.1001/jamanetworkopen.2022.55971>

430 25 Amanian, A., Ishii, M., Fakhry, C. & London, N. R., Jr. Epidemiologic Trends in Human
431 Papillomavirus-Associated Sinonasal Squamous Cell Carcinoma. *JAMA Otolaryngol
432 Head Neck Surg* **150**, 609-618 (2024). <https://doi.org:10.1001/jamaoto.2024.1311>

433 26 Keam, B. *et al.* In vitro anticancer activity of PI3K alpha selective inhibitor BYL719 in
434 head and neck cancer. *Anticancer Res* **35**, 175-182 (2015).

435 27 Chow, L. Q. M. *et al.* Antitumor Activity of Pembrolizumab in Biomarker-Unselected
436 Patients With Recurrent and/or Metastatic Head and Neck Squamous Cell Carcinoma:
437 Results From the Phase Ib KEYNOTE-012 Expansion Cohort. *J Clin Oncol* **34**, 3838-
438 3845 (2016). <https://doi.org:10.1200/JCO.2016.68.1478>

439 28 Harrington, K. J. *et al.* Pembrolizumab With or Without Chemotherapy in Recurrent or
440 Metastatic Head and Neck Squamous Cell Carcinoma: Updated Results of the Phase III
441 KEYNOTE-048 Study. *J Clin Oncol* **41**, 790-802 (2023).
<https://doi.org:10.1200/JCO.21.02508>

442 29 Liu, S. L. *et al.* Neoadjuvant and adjuvant toripalimab for locoregionally advanced
443 nasopharyngeal carcinoma: a randomised, single-centre, double-blind, placebo-
444 controlled, phase 2 trial. *Lancet Oncol* **25**, 1563-1575 (2024).
[https://doi.org:10.1016/S1470-2045\(24\)00504-7](https://doi.org:10.1016/S1470-2045(24)00504-7)

451 30 Park, J. C., Faquin, W. C., Durbeck, J. & Faden, D. L. Immune checkpoint inhibitors in
452 sinonasal squamous cell carcinoma. *Oral Oncol* **109**, 104776 (2020).
<https://doi.org/10.1016/j.oraloncology.2020.104776>

453 31 Hoshi, Y. *et al.* Efficacy of anti-PD-1 monotherapy for recurrent or metastatic olfactory
454 neuroblastoma. *Front Oncol* **14**, 1379013 (2024).
<https://doi.org/10.3389/fonc.2024.1379013>

455 32 Larkin, R. M. *et al.* Augmentation of tumor expression of HLA-DR, CXCL9, and CXCL10
456 may improve olfactory neuroblastoma immunotherapeutic responses. *J Transl Med* **22**,
457 524 (2024). <https://doi.org/10.1186/s12967-024-05339-9>

458 33 London, N. R., Jr. *et al.* Expression of Programmed Cell Death Ligand 1 and Associated
459 Lymphocyte Infiltration in Olfactory Neuroblastoma. *World Neurosurg* **135**, e187-e193
460 (2020). <https://doi.org/10.1016/j.wneu.2019.11.112>

461 34 Xue, E. *et al.* Characterization of Somatostatin Receptor 2 Gene Expression and
462 Immune Landscape in Sinonasal Malignancies. *Cancers (Basel)* **16** (2024).
<https://doi.org/10.3390/cancers16233931>

463 35 Garcia-Marin, R. *et al.* Prognostic and Therapeutic Implications of Immune Classification
464 by CD8(+) Tumor-Infiltrating Lymphocytes and PD-L1 Expression in Sinonasal
465 Squamous Cell Carcinoma. *Int J Mol Sci* **22** (2021).
<https://doi.org/10.3390/ijms22136926>

466 36 Riobello, C. *et al.* Programmed death ligand-1 expression as immunotherapeutic target
467 in sinonasal cancer. *Head Neck* **40**, 818-827 (2018). <https://doi.org/10.1002/hed.25067>

468 37 Hoke, A. T. K. *et al.* Targeting sinonasal undifferentiated carcinoma with a combinatory
469 immunotherapy approach. *Transl Oncol* **44**, 101943 (2024).
<https://doi.org/10.1016/j.tranon.2024.101943>

470 38 Gounder, M. *et al.* Tazemetostat in advanced epithelioid sarcoma with loss of
471 INI1/SMARCB1: an international, open-label, phase 2 basket study. *Lancet Oncol* **21**,
472 1423-1432 (2020). [https://doi.org/10.1016/S1470-2045\(20\)30451-4](https://doi.org/10.1016/S1470-2045(20)30451-4)

473 39 Lanzi, C., Arrighetti, N., Pasquali, S. & Cassinelli, G. Targeting EZH2 in SMARCB1-
474 deficient sarcomas: Advances and opportunities to potentiate the efficacy of EZH2
475 inhibitors. *Biochem Pharmacol* **215**, 115727 (2023).
<https://doi.org/10.1016/j.bcp.2023.115727>

476 40 Chi, S. N. *et al.* Tazemetostat for tumors harboring SMARCB1/SMARCA4 or EZH2
477 alterations: results from NCI-COG pediatric MATCH APEC1621C. *J Natl Cancer Inst*
478 **115**, 1355-1363 (2023). <https://doi.org/10.1093/jnci/djad085>

479 41 Hasan, O. K. *et al.* Efficacy of Peptide Receptor Radionuclide Therapy for
480 Esthesioneuroblastoma. *J Nucl Med* **61**, 1326-1330 (2020).
<https://doi.org/10.2967/jnmed.119.237990>

481

482

483

484

485

486

487

488

