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Introduction
Epidemiology is concerned with understanding the distribu
tion and determinants of health in the population. A sizable 
fraction of epidemiological research involves secondary data 
analysis: statistically analysing data collected from cohorts, 
cross-sectional studies, or other data sources. Such research 
comprises a series of cognitive tasks currently conducted, or 
at least overseen, by humans.

Historically, conducting epidemiological research was a 
slow, manual endeavor: scanning library shelves, reading 
physical papers, and manually collecting, coding, and analy
sing data (Fig. 1). Technological progress has now led to 
much of this work being done electronically, yet actual scien
tific progress arguably remains slow; e.g. despite the surge in 
large cohorts and ballooning data volumes—omics, wear
ables, administrative linkages, etc.—progress in identifying 
modifiable causes of disease has proved elusive [1, 2].

Artificial intelligence (AI) represents the next step in the 
technological evolution of epidemiology (Fig. 1); it can accel
erate—or even automate—cognitive tasks, boosting the effi
ciency of current practice and creating new opportunities for 
discovery. Epidemiologists often use AI-based tools—some
times without explicitly knowing it—such as Google Scholar 
for paper discovery, spell-checkers for writing, and GitHub 
Copilot for coding.

Despite previous AI “winters”, its current era of development, 
built around the transformer deep-learning architecture [3] that 
powers modern large language models (LLMs), has generated re
markable progress. LLMs shot into public consciousness in 
November 2022 with the release of ChatGPT, reportedly the 
fastest-growing consumer product of all time. Many scientists, 
particularly younger researchers, now use ChatGPT [4]. Other 
LLMs have since become publicly available and widely used, and 
billions of dollars are invested in their training. LLMs predict the 
next token (typically, a small piece of text) in a sequence and, 
when developed at a massive scale, have surprisingly useful prop
erties. Productivity increases in tasks relevant to epidemiology 
have recently been suggested—writing [5], cognitive tasks [6], de
bating/reasoning [7], and coding [8].

Here, we map the landscape of epidemiological tasks that 
rely on existing datasets—from literature review through to 

idea generation, data access, analysis, write-up, and dissemi
nation. We provide a snapshot of AI tools and a repository 
containing examples of AI-generated epidemiological output, 
along with prompt and model details (https://github.com/ 
edlowther/automated-epidemiology). The tools were chosen 
to present an illustration of what, at the time of writing, fron
tier AI models were capable of. (We use the term AI to refer 
to computational systems that can perform cognitive tasks 
relevant to epidemiological research.) Finally, we discuss bar
riers to deeper AI integration and broader implications for 
the field, including how epidemiologists can contribute to AI 
development, addressing recent calls [9]. We note that the 
issues discussed apply to other fields, e.g. social sciences 
[10, 11].

Conducting literature reviews
Systematic reviews generally take ≥1 year to undertake [12], 
with much of this time spent on pain-staking and often tedious 
screening—manually removing the vast majority of irrelevant 
articles from the selected pool by comparing them against the 
same inclusion/exclusion criteria. At face value, this breaks the 
software engineering principle to “automate repetitive tasks,” 
but an additional motivation for automation is to 
reduce errors: humans do not screen without error [13].

In recent years, machine-learning tools have become avail
able to speed up screening: authors manually screen a smaller 
subset of abstracts to train models, which then automatically 
screen the remainder [14]. Such tools appear to increase effi
ciency [15, 16], widening the scope to produce or update 
reviews more rapidly (possibly continuously) and undertake 
more ambitious evaluations. LLMs can help in other review- 
related tasks, such as creating synonym/search-term lists and 
extracting data. Could the entire process of reviewing be au
tomated? Using an agentic AI system (Otto-SR), a 2025 study 
claimed to have reproduced and updated a Cochrane issue in 
2 days—the equivalent of 12 work-years of traditional sys
tematic review work (assuming 1 year per review) [17].

For more ad-hoc literature searches, systematic reviews are 
typically prohibitively costly, e.g. when informing introduc
tions or discussion sections in original research articles. 
Researchers are increasingly using AI-augmented search 
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tools such as Google Scholar to undertake literature 
searches—unlike PubMed, it indexes non-health publications 
(e.g. economics articles), as well as grey literature. 
Nevertheless, both tools require conversion of the search ques
tion (e.g. “What effect does X have on Y?”) into terms that are 
more likely effective for such databases (e.g. “associations be
tween X and Y,” a “randomized controlled trial of X on Y,” 
etc.), in addition to a continued manual search of “cited 
by” articles.

LLMs can answer such single questions directly and recent 
reasoning LLMs enable AI “sense checks” before a response 
is produced. Hallucinations—which raised considerable con
cern in early models—appear to have been reduced [18]. 
“DeepResearch” capabilities, made available in several lead
ing LLM tools in recent months, enable more extended 
searches of scholarly literature; users can check the sources 
provided via links to the full text.

The generality of LLMs means they can usefully sift, con
nect, and summarize evidence from far-flung disciplines—a 
task that has otherwise become progressively harder as scien
tific output has surged [19]. For epidemiologists, such sources 
range from mechanistic studies in cells, animal models, hu
man autopsy studies, and the social sciences (e.g. psychology, 
economics, sociology). AI tools could thus make cross- 
disciplinary triangulation more feasible.

Hallucinations remain a barrier to the trustworthiness of 
LLMs, but a human barrier exists in accessing research 
articles. Since the 1970s, the five largest for-profit publishers 
have steadily increased their market share, accounting for 
more than half of all papers by 2013 [20]. Papers—and even 
their abstracts—are copyrighted. This creates a particular 
barrier for open-source AI systems [21].

Partial access to research articles, limited performance with 
longer “context windows” (the amount of data the LLM uses 
from memory), and the capacity of LLMs to provide highly 
compelling but unsupported narratives mean LLMs may mis
lead [22]. Ongoing evaluation of such systems is required: 
empirical study of their sensitivity and specificity in searches, 
for example. This is a challenge given their rapid develop
ment—closed-source frontier LLMs can be rapidly updated 
or decommissioned.

Creativity and generating hypotheses
It is often assumed that AI systems (particularly LLMs) sim
ply interpolate between data points contained within their 
training set and are thus not capable of being creative or gen
erating novel ideas—i.e. they are “stochastic parrots” [23]. 

Setting aside the “incremental” nature of modern science, 
such claims are at least partly empirically testable: an emerg
ing literature suggests that the creative capability of frontier 
models may match those of humans in discrete small-scale 
creative tasks [24]. Their abilities in real-life scientific creativ
ity remain uncertain, as do the comparisons of humans alone 
versus human–AI collaborations in (i) forming hypotheses 
that advance epidemiology or (ii) selecting hypotheses that 
are tractable and falsifiable [25] given the existing data. In 
other disciplines, such as drug discovery, new scientific find
ings are seemingly being discovered via AI systems [26].

We prompted a recently developed AI tool (the AI Scientist 
[27]) to suggest novel hypotheses across two topics: (i) the 
links between birthweight and subsequent body mass index 
(BMI) and (ii) social inequalities in mental health (see github. 
com/edlowther/automated-epidemiology). Many hypotheses 
appear to have face validity, e.g. suggesting generally underu
tilized approaches to causal inference (sibling comparison 
studies and natural experiments). We note that such sugges
tions were created in “one shot” and are thus the equivalent of 
a human’s first draft. Even if only a fraction of AI-suggested 
hypotheses are promising, the number that can be created 
quickly is large and may be especially valuable with discerning 
humans “in the loop” to select them: an AI-augmented process 
akin to human brainstorming.

Identifying and accessing data
A common approach in epidemiological research is that 
groups running specific epidemiological studies (e.g. cohorts 
or health surveys) publish research focused on using that spe
cific dataset. In this scenario, multiple publications in the lit
erature from different research groups address the same 
question; yet, subsequently synthesizing such evidence (e.g. 
via meta-analysis) is not always possible due to methodologi
cal differences. Consortia integrating multiple studies are one 
manual approach to circumventing this, but they are typically 
set up for specific research questions and are hard to main
tain in the long run; when their funding ends, they may cease 
to operate.

AI may enable a bolder default for epidemiological re
search, enabling us to ascertain, for each research question, 
the possible available datasets that could contribute evidence. 
Of these, which have harmonizable data? And what does that 
evidence collectively show?

Current barriers to this include the high fixed costs of be
coming familiar with datasets and the fragmented approaches 
to data discovery and access. Platforms to aid cohort 

Figure 1. Technological progress in two key epidemiological tasks (literature reviews and data analysis): from manual work and computerization to 
artificial intelligence (AI)-augmented research. Note that, in some senses, the final tasks listed (e.g. plain-language analysis) are already possible with 
current AI systems, yet the quality of the outputs is of mixed or as-yet undetermined quality.
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discovery, e.g. the recent Atlas of Longitudinal Data (https:// 
atlaslongitudinaldatasets.ac.uk), are a step forwards in help
ing to identify datasets; yet, using them highlights our bar
riers: 10 different cohorts may involve 10 separate access 
systems, with considerable overlap in the informa
tion requested.

The challenge for data providers is whether a single point 
of entry can be provided—a cohesive streamlined data-access 
system with interoperable data and necessary safeguards. 
ORCID provides a centralized and broadly accepted system 
for verifying researcher identity—could existing centralized 
systems for data documentation and access be expanded (e.g. 
UK Data Service for UK cohorts; or the Gateway to Global 
Aging Data, for older adults) or newly created? Within such 
systems, AI tools can also facilitate the historically slow and 
manual process of harmonizing data across different datasets 
[28] (e.g. the Harmony tool [29]).

Finally, AI tools can aid in the creation of new epidemio
logical data. In existing cohorts, for example, data held in 
historic non-electronic form (e.g. paper questionnaires or mi
crofiche) can be digitized by using automated optical charac
ter recognition tools. Such tools can also be used to create 
new retrospective cohorts: many hundreds of papers have 
now cited the cohort profiles that arose from the discovery 
and digitization of records, which formed the basis for the 
Hertfordshire [30] and Lothian [31] cohort studies. AI tools 
could also improve existing metadata (e.g. annotating ques
tionnaires with associated variable names).

Analysing data
Much like in the literature reviews, epidemiologists are in
creasingly supported by AI when analysing data. Rather than 
manually typing out each letter when coding, AI autocomp
leters such as GitHub Copilot can speed up code writing. For 
a guide, see https://www.ncrm.ac.uk/resources/online/all/? 
id=20859. Frontier LLMs are now able to create a complete 
draft of code in response to a plain-language prompt and 
then execute this code. The promise is that the rapid, autono
mous generation of research code will enable human 
researchers to spend more time at higher levels of abstraction, 
e.g. thinking carefully about designing research strategies.

We prompted an agentic AI framework (Data Analysis 
Crow) to address two research questions and provided simu
lated data. The responses yielded an analytical plan, analyti
cal code, execution of this code, and visualizations—see 
github.com/edlowther/automated-epidemiology for full 
workbooks and Table 1 for a summary. While the outputs 
were (in our view) impressive, they did contain errors and, in 
some cases, failed entirely, depending on the underlying LLM 
used. This suggests that (i) the choice of LLM is important 
and (ii) code review remains essential.

Often, epidemiologists specialize in one piece of software 
or programming language (e.g. SAS, SPSS, Stata, R). In one 
sense, specialization is increasingly not needed, as the barrier 
to entry lowers to code in multiple languages. What will re
main important is the clear articulation of the goals in plain 
language and code review. The fact that AI systems provide 
analytical syntax also aids in reproducibility: something that 
<2% of health researchers currently do [32].

The more mundane aspects of data analysis could also be 
accelerated by AI. Data cleaning, for example, is often a 
highly manual and time-intensive task that is required even 
for well-used datasets, leading to considerable duplication of 
work. Assuming that data cleaning involves 1 month of un
necessary work (cleaning data that should have otherwise 
been centrally cleaned)—a task ordinarily repeated across 
1000 papers—1000 months (83 years) of scientists’ time 
could be saved in the future. A cursory look at the literature 
suggests at least six distinct AI data-cleaning tools from 2024 
onwards that claim varying levels of accuracy in data clean
ing [33–38]. Whether such tools are useful in epidemiological 
applications remains to be seen. A challenge for epidemiolo
gists will be to make sense of the bewildering numbers of 
tools released in AI-related fields: the creation and curation 
of epidemiological benchmarks could provide objective crite
ria by which they can be continually evaluated.

Barriers to the use of AI in data analysis include the current 
frequent need for uploading data to cloud providers: this is 
not possible for many health-related datasets held in sand
boxed secure computing environments. Researchers could 
instead use local open-source models—such models have his
torically been weaker than the closed-source models, yet, in 
recent months, the gap has narrowed considerably [39]. 

Table 1. Evaluating AI-generated analysis: illustrative results from the Data Analysis Crow

LLM evaluated

Association Challenge GPT-4.1 Claude Sonnet 4

Birthweight ! BMI Data cleaning ✓ Derived BMI 
✓ Removed implausible values 

✓ Derived BMI 
⚠️ Removed some but not all 

implausible values 
Designing and executing analyti

cal plan
✓ Created analytical plan 
⚠️ Errors (e.g. <1.2 metre  cases 

excluded, not <1 metre) 
✓ Executed results: tables/figures 

✓ Created analytical plan 
⚠️ Partial results (API crash) 

Analysis outcome ✓ Interpreted regression output ⚠️Analysis incomplete
Income !mental health Data cleaning ⚠️ Identified sex, assumed 

value labels 
✓ Log-transformed income 

⚠️ Identified sex, assumed 
value labels 

✓ Rescaled income 
Designing and executing analyti

cal plan
✓ Created analytical plan 
✓ Executed results: tables/figures 

✓ Created analytical plan 
⚠️ Partial results (API crash) 

Analysis outcome ✓ Interpreted regression output ⚠️Analysis incomplete

Each item was evaluated as follows: ✓: correct or plausible output; ⚠️: error or concern identified. A simulated dataset was provided, available on the 
accompanying repository: https://github.com/edlowther/automated-epidemiology. The Data Analysis Crow is available at https://github.com/Future-House/ 
data-analysis-crow. API, application programming interface.
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Alternatively, the AI tools could be restricted to accessing 
metadata (e.g. variable names, labels, and result output) 
rather than the raw data, or data owners could release syn
thetic versions of their data.

Epidemiologists will, as ever, need to balance two sets of 
competing risks. The first is a risk of high-profile data leaks if 
AI tools are used irresponsibly; the second is a risk that scien
tific discovery is restricted if such tools are not used. The lat
ter risk is often overlooked in our view, despite threats to the 
continued existence of epidemiological studies (e.g. funding 
uncertainty and declining response rates) and the ever- 
increasing volumes of data collected, which often remain un
der-researched.

Writing up
Remarkably, given a simple plain-language prompt, frontier 
LLMs can produce entire epidemiological research papers; 
github.com/edlowther/automated-epidemiology shows exam
ples of this by using multiple LLMs, each instructed to write 
a paper on the association between birthweight and adult 
BMI by using a simulated dataset that we provided.

Where do such papers sit in the current distribution of 
human-created epidemiological research papers? Despite be
ing given very little contextual background, the highest qual
ity amongst our AI-created outputs (produced by ChatGPT’s 
o3 model) at face value appeared to satisfy the most com
monly used consensus criteria for the reporting of epidemiol
ogy studies (STROBE guidelines [40], available on the 
accompanying repository). It also showed signs of reasoning: 
it identified a sex interaction (associations differed in direc
tion by sex) that we had introduced into the simulated data, 
despite the prompt instructing the LLM to analyse “adjusted 
by sex.”

In other respects, the AI-produced papers are of low qual
ity, e.g. incorrect referencing and the omission of result items. 
Yet, as demonstrated in the “Analysing data” section, LLMs 
can (with tool calling) produce compelling figures and tables. 
Thus, current barriers to producing high-quality AI-generated 
manuscripts may partly reflect limitations in how effectively 
the model is prompted or integrated with tools.

Full (end-to-end) automation
Full automation of epidemiological research papers—from 
generating the idea all the way through to write-up—is a logi
cal consequence of the capability of AI in each component 

chained together. Such tools as AI Scientist [27] and data-to- 
paper [41] are recent open-source examples of this. A fruitful 
avenue of future research is the evaluation of such systems 
tailored for epidemiology, e.g. relative to human-generated 
and AI-with-human-in-the-loop-generated papers.

Dissemination
Researchers are increasingly encouraged to share their re
search with non-specialist audiences such as the public and 
government policymakers, and more generally engage in con
tinued public discourse. From the perspective of scientists 
who are already struggling with a “mountain of small things” 
[42] (including recent requirements on the reporting of AI 
use), such tasks may be unwelcome—yet, if public discourse 
is dominated by a small, vocal, and unrepresentative minority 
of scientists, then evidence-based policy may suffer [43]. 
LLMs can speed up the creation of blogs, lay summaries, and 
social media content if provided with prompts and context 
(e.g. the research paper), though human oversight may be 
necessary to ensure accuracy and appropriate nuance. Entire 
podcasts can now be completely automated; an AI-generated 
podcast based on this article can be found at github.com/ 
edlowther/automated-epidemiology. If AI increases efficiency, 
then researchers may be able to move towards a deeper 
engagement with evidence-based policy—rather than simply 
advocating that their own work should change policy, creating 
unbiased evidence across the entire evidence landscape, for 
example, and carefully considering policy trade-offs [44].

Overall utility
In our judgment, the current capability of AI suggests a prom
ising future to accelerate epidemiology. This is the case 
whether AI is used for narrow tasks under close human 
supervision; as a research assistant or collaborator [45, 46] 
with human oversight; as an expert; or—more controver
sially—as a semi- or fully autonomous research agent [47]. 
Each may bring benefits to epidemiology, with further inte
gration an evolving combination of both human-system and 
AI-capability barriers.

A promise of AI in the short to medium term is that it could 
enable more time to be spent on high-level tasks (e.g. design
ing new research questions or data collections) rather than on 
low-level tasks that are often undesired (e.g. repetitive admin 
tasks) or uninspiring (e.g. writing code to recode variables) 
(see Fig. 2). The blend is at our discretion: some investment in 

Figure 2. Could AI help to liberate epidemiologists to focus on higher-level tasks? Simplified illustration of our suboptimal current time allocation (left) 
versus idealized AI-augmented allocation (right).
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low-level tasks is likely to be helpful or even necessary to learn 
(e.g. to deeply understand data, to comprehend statistical 
methods) and build the foundations needed for higher-level 
tasks. Future training should seek to optimally balance this 
and avoid an overreliance on AI, which could enervate the 
skills required to evaluate and use their outputs judiciously.

If the quality rather than the quantity of our outputs is in
centivized, then the net result could be higher-quality science 
and a bolstering of our discipline. We live in an era that 
incentivizes scientists to produce masses of papers of ques
tionable quality, including their direct purchase online [48]; 
this is a human, not an AI, problem.

Existential risks and concluding thoughts
AI developments are rapidly lowering the costs of cognitive 
tasks and may ultimately lower demand for human epidemi
ologists—particularly junior epidemiologists, who tradition
ally lead on writing and analysis tasks, overseen by a senior 
colleague. If unchecked, this trend could damage the training 
pipeline, leading to fewer epidemiologists across all levels and 
thus a collapse in the discipline.

Scientific careers are already uncertain, with rates of pay 
for epidemiologists generally lower than those in other tech
nical sectors (e.g. tech/pharma/finance). Will our brightest 
minds wish to become epidemiologists in the future? 
Addressing structural problems (pay, security) is one route 
for attracting talent. Another is the appeal of working on in
teresting and important problems—the integration of AI with 
epidemiology is one. For example, can AI accelerate or auto
mate epidemiology? How can we use AI to improve epidemi
ology and avoid a vast expansion of “AI slop”? Can AI 
benchmarks be tailored/newly created for epidemiology? 
What biases and risks can AI systems introduce? Can the 
methods proposed in the AI literature be used to improve pre
diction [49] and inference [50] in epidemiology? How will AI 
influence population health?

AI could assist, augment, and automate aspects of epidemi
ology in the future. If AI in its current iteration were to take 
over human intelligence entirely, our existential role could be 
temporary: to produce new “tokens” (data, papers), which 
vast multibillion-dollar companies use to train AI systems 
without our consent. Whether such scenarios are good or bad 
for scientific discovery or humanity at large remains an open 
question, which epidemiologists can and should contribute 
to. Realizing the potential of AI for epidemiology will require 
two-way engagement between epidemiologists and engineers.
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