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Diamagnetic microchip traps for levitated nanoparticle entanglement experiments
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The Quantum Gravity Mediated Entanglement (QGEM) protocol offers a novel method to probe
the quantumness of gravitational interactions at non-relativistic scales. This protocol leverages the
Stern-Gerlach effect to create O(um) spatial superpositions of two nanodiamonds (mass ~ 10~ '°
kg) with NV spins, which are then allowed to interact and become entangled solely through the
gravitational interaction. Since electromagnetic interactions such as Casimir-Polder and dipole-
dipole interactions dominate at this scale, screening them to ensure the masses interact exclusively
via gravity is crucial. In this paper, we propose using magnetic traps based on micro-fabricated
wires, which provide strong gradients with relatively modest magnetic fields to trap nanoparticles
for interferometric entanglement experiments. The design consists of a small trap to cool the center-
of-mass motion of the nanodiamonds and a long trap with a weak direction suitable for creating
macroscopic superpositions. In contrast to permanent-magnet-based long traps, the micro-fabricated
wire-based approach allows fast switching of the magnetic trapping and state manipulation potentials
and permits integrated superconducting shielding, which can screen both electrostatic and magnetic
interactions between nanodiamonds in a gravitational entanglement experiment. The setup also
provides a possible platform for other tests of quantum coherence in macroscopic systems and

searches for novel short-range forces.

I. INTRODUCTION

The nature of spacetime or the origin of the gravita-
tional interaction poses a stringent challenge for theoret-
ical physics. We still do not understand the quantum
origin of the gravitational interaction. Given the weak-
ness of the interaction, the direct detection of a graviton,
quanta similar to a photon in the case of quantum elec-
trodynamics (QED), is impossible [1].

However, a protocol known as the quantum- gravity-

induced entanglement of masses (QGEM) [2, 3], see
also [1], has provided a novel way of testing the quantum
features of gravity in a table-top experiment [2]. It does
so by witnessing the quantum entanglement [5], a sole

feature of quantum mechanics inherited in the quantum
uncertainty principle. Classical realism cannot mimic
entanglement between two quantum systems, e.g. in a
quantum spatial superposition. The most basic principle
of quantum gravity is that the gravitational interaction
can entangle the two masses through the quantum nature
of the graviton, which is impervious to how gravity is
quantised at the ultraviolet [6—8]. In the infrared, where
the QGEM experiment will be performed, the graviton
description of quantising the low energy fluctuations is
ideal; see [9, 10].

It has been rigorously demonstrated that the quantum
nature of gravity will induce entanglement even at the
level of Newtonian potential, where there are no A ef-
fects at the lowest order in the expansion of Newton’s
constant [2, 6=8, 11-15]. If the matter is in a quantum

superposition, and gravity is quantum, so is the change
in the gravitational potential; hence, the gravitational in-
teraction Hamiltonian at any order in Newton’s constant
is an operator-valued entity; therefore, the position and
momentum involved in the gravitational Hamiltonian are
all operator valued entity acting on the respective states
of the matter system [7]. Furthermore, a quantum mat-
ter can also entangle to photons, a quantum version of
the light bending experiment, which will further ensure
the spin-2 nature of the gravitational interaction [12, 16].

The QGEM protocol relies on creating the adjacent,
macroscopic quantum superposition for electrically neu-
tral masses and bringing them sufficiently close to each
other so that the two systems are entangled solely via
the gravitational interaction. However, realizing this in
a laboratory is a challenge in itself. The electromagnetic
interaction can dominate over the gravitational one due
to potentials such as electric and magnetic dipole [17-

|, Casimir-Polder [20, 21], and patch potentials [22-24].
Notably, an interesting observation was first made in[17]
that the electromagnetic interactions can be screened
while the gravitational interaction cannot be, leading to
various analyses on the designing aspects of the QGEM
experiment [18]. We further studied the role of dephas-
ing and decoherence due to Casimir-Polder potential and
an electric dipole in the case of creating spatial superpo-
sition in a free-falling setup [25, 26]. However, more cru-
cially, we realised that trapping and shielding the particle
simultaneously leads to further improvements in witness-
ing the entanglement due to quantum gravity between
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the two masses [18]. In particular, the superposition size
required to test the quantum nature of gravity is now
reduced by roughly two orders of magnitude for similar
mass scale with the insertion of a conducting plate [18].
Although optical trapping of silica nanoparticles has seen
several notable advancements [27, 28], nanodiamonds
have not yet been optically trapped in high vacuum, and
light scattering poses a technical challenge for maintain-
ing coherent quantum spatial superpositions. Addition-
ally, it has been shown that under certain conditions nan-
odiamonds can graphitize when optically trapped in vac-
uum [29]. Therefore, it is pertinent to explore “dark”
trapping schemes like the magnetic trapping approach
we suggest here.

FIG. 1. A schematic drawing of the two diamagnetically
trapped nanodiamonds on either side of a microfabricated
chip, which also functions as an electromagnetic screen, e.g.
as studied in Ref. [18]. Electric current passing through
wires on the chip surface generates high-gradient magnetic
fields that can be used in combination with external bias fields
to diamagnetically trap nanodiamonds within distances of or-
der ~ 10 pm from the surface. The rainbow-colored shapes
represent the trapping potentials. The shape of the potential
will differ slightly depending on whether wires or permanent
magnets create it. In the case of wires, the setup can also
be rotated horizontally; this schematic is purely for illustra-
tive purposes. Although the traps are illustrated to be flat in
the Z-direction, there can be some confinement based on the
exact profile. e.g., a pulsed magnetic field that can be used
to create spatial superpositions from the embedded spin su-
perposition in the diamond NVC via the Stern-Gerlach effect
can produce confinement in the Z-direction.

In this paper, we study a micro-fabricated wire-based
approach inspired by techniques developed in the atom-
chip community [30-33], where two nanodiamonds can
be magnetically trapped in a 'long’ trap with a flat direc-
tion, on either side of a microfabricated chip with an em-
bedded (super)conducting plate. While chip-based mag-
netic trapping of neutral atoms is typically accomplished
through the Zeeman effect i.e. U;p;= —p - B, where p is
the magnetic moment of the atom, diamagnetic trapping
of nanoparticles relies on their induced magnetic moment
in the presence of an external magnetic field, yielding an

interaction term oc yv|B|?, where xy < 0 is the volume
magnetic susceptibility of the nanoparticle.

Using wires rather than permanent magnets to cre-
ate the long trap has two useful features. First, strong
magnetic field gradients can be generated close to the
surface of the wires without requiring the nearby abso-
lute magnetic field to be as large as is typical in per-
manent magnet-based diamagnetic traps [34, 35]. This
is advantageous for the use of thin-film superconducting
(SC) magnetic shielding close to the trapping wires, as
the magnetic field perpendicular to the surface of the su-
perconductor should remain below the lower critical field
to ensure the shield operates in the Meissner state. Sec-
ond, the patterned-wire-based trap allows for fast switch-
ing of magnetic fields and gradients, which is impossible
with permanent magnet-based approaches.

For entanglement experiments in such a trap, a spatial
superposition of each nanodiamond can be realized in the
‘flat’ direction of a magnetic trap, with the entanglement
protocol carried out with the nanoparticles confined in
the transverse directions. The flat direction of the trap
is such that the superposition is created parallel to the
superconducting plate, as illustrated in Figure 1. A spa-
tial superposition could be accomplished, for example,
by applying a magnetic pulse to the spin superposition
in the Nitrogen-Vacancy Centre (NVC) in the diamond.
The superconducting screen shields electromagnetic in-
teractions between the superpositions, such that the in-
teraction between the superpositions is via the exchange
of a virtual graviton if gravity is quantum in nature. Our
trapping approach also provides a possible route towards
realizing large quantum superpositions of massive objects
for other tests related to quantum coherence in macro-
scopic systems [2, 17, 36-39].

The remainder of this paper is organized as follows.
In Sec. II, we describe the considerations for screen-
ing of electromagnetic backgrounds in nanoparticle en-
tanglement and superposition experiments. In Sec. III,
we discuss the diamagnetic trapping of the diamond
nanospheres using a novel wire setup, where the wires
are put on a chip parallel to the superconducting plate.
Here, the superconducting (conducting) plate is assumed
to be made out of niobium-coated (gold-coated) silicon-
nitride, and a few millimeters in length. We also discuss
the constraints on the wire magnetic field and its mir-
ror field and their backreaction on the trapping potential
in the presence of the superconducting plate. Finally,
in section IV, we discuss prospects for the general cre-
ation of large quantum superpositions in traps of this
type, identify sources of dephasing that would require a
detailed analysis in a realistic protocol for creating su-
perpositions in such a trapping setup, and discuss other
possible new physics searches enabled by the proposed
setup.



II. SCREENING ELECTROMAGNETIC
INTERACTIONS

To ensure gravity-induced entanglement, electromag-
netic interactions between the test masses need to be
screened, depending on the separation of the test masses.
The interactions between the two spherical test masses
(indicated by the superscript S — S) in the absence of
a (super)conducting screen are the electric dipole - elec-
tric dipole (DD), Casimir-Polder (CP), magnetic dipole
- magnetic dipole (MM) and gravitational (GR) interac-
tions: * [20, 41,
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where € = 5.7 the dielectric constant of the diamond test
mass, £ is the vacuum permittivity, po is the vacuum
permeability, A is the reduced Planck constant, and ¢
the speed of light. Also, G is the gravitational constant
and mi, mo the mass of the test particles 1 and 2,
respectively. Furthermore, r is the vector connecting the
center of masses of the two spheres with length |r| = r,
R is the radius of the test mass (which we assume to be
perfect spheres), d; (d2) is the electric dipole moment
of test mass 1 (2) which can consist of both a permanent
electric dipole moment and an induced electric dipole
moment in the case of diamond test masses, and m;
(m3) is the magnetic dipole moment of the test mass 1
(2), which is induced by an external magnetic field.

The electric dipole moment can be either induced or
inherent to the crystal. The permanent dipole can ap-
pear due to impurities on the surface or in the bulk. For
the diamond test masses considered here, this dipole mo-
ment has not been measured, and its scaling with mass
is unknown 2. In the previous paper we have taken the
dipole moment to be |d| ~ 0.1e pm for test-mass of radius

1 We have assumed that the separation between the test masses
is large compared to the radius of the spheres. Furthermore,
the test masses are assumed to be perfectly spherical and to
consist solely of diamonds. In a high vacuum environment,
the polarizability of a diamond sphere can be expressed as
o= R3(e —1)/(c +2) [10]

In Ref. [43] the electric dipole moment of SiO2 was measured
to have no clear scaling with the volume of the material. How-
ever, the measurements showed at least one order of magnitude
uncertainty in the dipole moment magnitude of spheres with ra-
dius 10 — 20 pm, showing that a volume scaling of the permanent
dipole is an open question.

»

R = 500 nm (corresponding to ~ 1071° kg for a spherical
diamond test mass), thus assuming a volume scaling, and
using the experimental data in [43] as a benchmark.
Additionally, the diamond can have an induced electric
dipole moment due to its dielectric properties. The in-
duced electric dipole of the diamond from some external
electric field E is given by its polarizability « (in SI-units)

via: 2

d=oE. (7)

We can consider the wires used in trapping such as dis-
cussed in section III, to be DC current carrying conduc-
tors such that no electric field is produced around them.

We consider the interaction of a spherical diamond of
radius R with the external magnetic field B generated
by our trap. Since diamond is a diamagnetic object, the
external magnetic field can induce magnetization. If R <
|B|/|VB|, we can approximate the diamond as a point
dipole. Under this approximation, the magnetization,
M and the total induced dipole moment m are given
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with xy the dimensionless volume magnetic susceptibil-
ity, which for diamond is —2.2 x 107° [15] and,

~ TPV R, 9)

Figure 2 shows the potentials in eqns. (1)-(4) as a
function of the separation r. The figure shows that
the gravitational interaction dominates at large separa-
tions, while the Casimir-Polder interaction dominates at
short distances. The orientation of the dipoles is as-
sumed to be along r such that the potential is maxi-
mized. We have considered a diamond test mass with
R = 500nm, a dipole of |d| = 0.1lepm (from [20], this is
the required electric dipole moment to have I' < 1072 Hz)
and |m| ~ 107 JT~! (induced in a nano-diamond by

3 Diamond has a local polarizability a., and a dipole can be in-
duced in the atoms of the crystal due to a local electric field [44]:

d = NacEjge. (5)

The local polarizability of the atoms is related to the polarizabil-
ity of the medium via the Claussius-Mossotti relation:
€ — 1
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with n, the number density of atoms, n, = 3N/47rR3 for spher-
ical masses (N the number of atoms, R the radius) and with
€, relative permittivity of the medium. Using the Claussius-
Mossotti relation in eq. (5) give eq. (7).

A full treatment of the interaction energy of a finite sized dia-
magnetic sphere with the external magnetic field is considered in
appendix V A.
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FIG. 2. A comparison of the potentials given in egs. (2)-
(4). The lines show the Casimir-Polder (CP), electric dipole-
dipole (DD), magnetic dipole-dipole (MM), and gravitational
(GR) interactions between two spheres with center-of-mass
separation r. The test masses are considered perfect di-
amond nanospheres (R = 500nm, p = 3513kg m~3, so
m ~ 107% kg) with a electric dipole moment of 0.1e pm and a
magnetic dipole moment with magnitude ~ 10718 JT~1 (the
induced dipole based on a 72mT field). The vertical grey line
indicates a difference of approximately five orders of magni-
tude between the GR and MM interactions at a separation of
36 pm.

a 72mT magnetic field. This value of |B| corresponds
to one of the trapping configurations considered later in
the text (see Sect. III A). The figure shows that for the
gravitational interaction to dominate the Casimir-Polder
interaction tenfold; a minimal distance of ~ 150 pm
needs to be introduced. This minimal distance would
be ~ 50 mm for the electric dipole assumed here.

In refs. [17-19] the shielding of these interactions via
a conducting screen was studied. This allowed for a re-
duction of the minimal separation; however, for small
distances, the magnetic dipole interaction becomes dom-
inant compared to 10xthe gravitational interaction, as
can be seen from figure 2 (although this depends on
the expected external magnetic field). To maximise the
gravitational interaction, the separation between the test
masses must be minimised. Therefore, we consider a
superconducting screen that shields the magnetic dipole
and other electromagnetic interactions between the test
masses. As a consequence, there is interaction between
the diamond spheres and the superconducting plate (in-

dicated by the superscript S-P):
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where 6, (6,,) is the angle between the vector going from
the plate to the test mass and the electric (magnetic)
dipole vector, zy is the distance between the plate and
the test mass (z9 = r/2 for an infinitesimally thin plate).
The magnitude of the electric (magnetic) dipole moment
is denoted |d| (Jm]).

We can also compare the sphere-plate interactions. For
gravity, we take the second mass to be that of the chip,
assuming a chip to consist of two 9.5 um thick Silicon
Nitride substrates with a thin 1 micron film of Niobium
(NDb). The magnitude of the different sphere-plate inter-
actions is shown in figure 4 as a function of the separation
z20-

For the test masses to be trapped diamagnetically, the
trapping potential needs to overcome the potentials given
in egs. (10)-(12). The trapping potential for diamagnetic
particles is given by:

1
Using egs. (9) and (8),
47 R3|B|?
Vp = XvATE'BI (14)
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Additionally, for the masses to be levitated, the trap-
ping potential in the g-direction (for the vertical chip
configuration in Fig. 1) needs to overcome the earth’s
gravitational potential, which is given by:

Ve =~ mgy, (15)

The nanoparticle dynamics in the trap are mainly deter-
mined by the action of diamagnetic force and the earth’s
gravitational pull mentioned above. To ensure that the
particle is stably trapped, we require our trap to have
a strong gradient in the y-direction (assuming a verti-
cally oriented chip). Electromagnetic perturbations to
the trapping potential of the form of egs. (10)-(12) are
much weaker compared to the diamagnetic interaction
and gravitational pull from the earth’s surface (see Ta-
ble I) and, hence, minimally affect the dynamics of the
particles in the trap.

The particle will be trapped at the (local or global)
minimum in the field. At this minimum, there is a force
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FIG. 3. Chip-based magnetic trap with micro-fabricated
wires. The chip has three trap configurations, each made
with wires of width w=5 pm. (1) Long Z-wire with dimen-
sions L = 5 mm and L., = 1 mm. (2) Cooling z-wire with
same L and L.,= 30pum and (3) Cooling u-wire with same
dimensions as 2). Total thickness of the chip, including Nb
thin film and Silicon Nitride substrate, "d"~ 20 pm (Origin
of the coordinate system is defined w.r.t. the center of the
Superconductor). The particle will be cooled to its motional
ground state in the stiff trap with higher frequencies. Af-
terwards, this trap will be switched off, and the particle will
be free to move in the flat direction of the long trap, where
its motional wavepacket can expand, and the Stern Gerlach
pulses can be applied to create spatial superpositions.
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which puts a minimal constraint on the strength of the
magnetic field gradient. Taking all interactions into ac-
count, we require a force balance as in eq. (16) and also
require the second derivative of the potential, which gives
the frequency, to be larger than zero, so that the mini-
mum is a stable point. We calculate the oscillation fre-
quency of the particle moving under the collective effect
of all the above-mentioned interactions; the frequency is
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FIG. 4. A comparison of the potentials given in egs. (10)-
(12) and eq. (4). The lines show the Casimir-Polder (CP),
electric dipole-dipole (DD), magnetic dipole-dipole (MM) and
gravitational (GR) interactions between the sphere and the
plate separated a distance zo (between center of mass). The
test masses are considered perfect diamond nanospheres (R =
500nm, p = 3513kgm™3, so m ~ 10" *® kg) with a electric
dipole moment of 0.1le pm and a magnetic dipole moment of
~ 107" JT~! (the induced dipole based on a 72mT field).
The chip is taken to have L = 5mm, and to consist of two
Silicon Nitride substrates of thickness 9.5 nm that squeeze a
1pm superconducting Niobium film. The dotted gray line
indicates zp = 18 pm.

given by:
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where Vi is the potential energy due to all interactions
and ¢ = (z,y, z). For stable trapping, w¢ > 0.

In the next section, we consider magnetic trapping
based on a chip design with Z and U-shaped wires. We
take into account the interaction between the magnetic
trapping field and a superconducting plate separating the
test masses and show that the above constraints are sat-
isfied leading to stable trapping conditions.

III. DIAMAGNETIC TRAPPING USING
MICRO-FABRICATED WIRES

Diamonds exhibit weak diamagnetism, which allows
them to be magnetically trapped. We can fabricate mag-
netic traps either using permanent magnets (see, for ex-
ample, [34, 35] ) or using current carrying wires, as is
done in BEC experiments [30, 31]. In this section, we
will discuss our micro-fabricated wire-based trap design



Interaction Relative strength w.r.t. dia-
magnetic trapping potential

Diamagnetic 1

Casimir-Polder 1077

Electric dipole-dipole 107°

Induced Mag dipole-dipole 10719

TABLE I. Relative strengths of various interactions of the
particle in short z trap in the vertically oriented chip (Fig. 1)
for I= 12A and Bpias=200 mT. The magnetic field |B| at the
equilibrium position is 72 mT, and the frequencies are given in
Table. II. The particle’s position in the trap is determined by
the force balance equations (16). Since EM interactions (10)-
(12) between the particle and the plate are much weaker than
the trapping potential, particle can be stably trapped under
small fluctuations in these interactions. We have assumed
Oc, 0m=0.

suitable for trapping, cooling, spin-manipulation, split-
ting the center-of-mass (COM) and rapid state expansion
schemes for nano to micron-sized diamonds or any other
diamagnetic particles. We will use the small case "z" and
"u" to represent the stiff traps and the upper case "Z"
to refer the long trap.
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FIG. 5. Magnetic Field Profile of the Z-trap: By ap-
plying a uniform magnetic bias field perpendicular to a long
current-carrying wire (parallel to the SC screen), the field
above the wire cancels at the center line of a long magnetic
trap. It takes the form of a 2-D quadrupole field. For a chip-
based magnetic trap, the magnetic trapping gradient perpen-
dicular to the trap center line is set by the wire current [
and applied bias field Bpias parallel to the chip surface. The
plots show the total Magnetic Field Profile (|B|) along the lon-
gitudinal(x) and transverse for the long Z trap (1mm) with
current 12A and bias fields 250 mT, including the perturba-
tion from the Meissner Image (solid red line). Height of the
particle from the screen shifts from 19.6 pm to 17 pm due to
this effect. The particles are free to move along the x-axis
and tightly confined along the other two directions.

Wire-based setup allows in-situ manipulation of trap-
ping parameters and provides very high magnetic field
gradients for modest values of current and bias magnetic

fields. In our setup, we consider "z" and "u" shaped

stiff traps for cooling the COM motion and a shallow
long "Z" trap for creating non-gaussian states of our
nano-diamonds (either spatial superpositions [2] or co-
herent motional wavepacket expansion [16]). The wires
can be fabricated onto a Silicon/Silicon Nitride substrate
~ O(10 pm). An identical setup will be used to trap the
second particle (Fig. 1), and to shield all EM interactions,
the particles will be separated by a thin film Niobium
screen operating in the Meissner state (see Fig. 3).

n

In order to fabricate such a thin substrate, a few mi-
cron thick SiN membrane of dimensions of a few square
mm could be fabricated by depositing a low stress SiN
film onto a thicker, e.g. 0.5 mm, Silicon-on-Insulator
(SOI) handle wafer and then etching a pit into the thick
Si handle wafer from the reverse side to form the thin SiN
membrane after wire deposition [47]. An insulating layer
and superconducting thin film magnetic shield could also
be deposited on top of the wire layer prior to releasing
the membrane. Since SiN can be deposited under ten-
sion, it can form a stiff mechanically stable layer with
fundamental mode frequency of order ~ 100 kHz [17] on
which to support the thin section of the chip. By affixing
two such wafers front-to-front, it may be possible to real-
ize an arrangement such as that shown in Fig. 1, where
two nanodiamonds can be trapped on opposing sides in
close proximity to the thin region of a chip.

Wires are arranged so that the currents flowing
through them are parallel to the superconducting (SC)
screen. We also carefully choose the current and bias field
values to ensure they do not exceed the critical values for
maintaining the Meissner state for thin film Niobium.
For bulk Nb, H., (T = 0) = 170 mT. The experiment
can be performed in a cryogenic setup where liquid He-
lium is used to cool the experiment to T=4.2 K (it is
possible to go to a lower temperatures). At this temper-
ature, given the critical temperature T, = 9.25 K for Nb,
H.(T) = He(0)(1 - (T/T.)?) = 135 mT. From Fig. 2, we
can see that the induced magnetic dipole-dipole interac-
tion between the nanospheres is 10° stronger than their
gravitational interaction at a separation of O(40pm).
Therefore, we need our Nb film to have a shielding ef-
ficiency of around 10°. This value depends on the ra-
tio of the film thickness to the film’s London penetra-
tion depth (A). For Nb, A &~ 4lnm at 4.2 K. We can
achieve this shielding efficiency by a film thickness of
about ~ 750nm [418]. The exact performance heavily
depends upon the experimental conditions in which the
film is deposited on the substrate and the amount of im-
purities in the film. To account for this, we have chosen
a conservative value of 1 pm for the film. Additionally, in
[19], it was shown that when the applied magnetic fields
are parallel to the surface of the SC, the critical field
value is much higher as compared to perpendicularly ap-
plied fields (for d/X >> 1,H., | < Hg | < 1.69H, ). We
can use a similar assumption for our film.

Due to the proximity of the wires to the SC, Meiss-
ner currents will be generated in the SC to oppose the



B-field generated due to the wires which will perturb the
trap (Fig. 6). Additionally, since micro-fabricated wires
tend to be more rectangular with height much less than
their width and length, we have considered wires with fi-
nite width and zero thickness in our calculations for our
traps (magnetic field profiles are obtained using simple
Biot-Savart Law calculations). Fig. 3 has been evaluated
with all these considerations. For currents O(12) A and
bias fields ©0(0.2) T, we can trap the particle O(10) pm
from the wires (by trapping close to the wires, we are
reducing the minimum separation between the two par-
ticles, thus maximizing the entanglement phase). We can
easily adjust the height 2o from the screen (origin is de-
fined w.r.t. to the center of the screen) by tuning the
applied bias field (since zg ~ f(I/Bpias), see eq. (19)).
The bias field can either be applied using Helmholtz coils
or "D" coils on a chip (see [18]). The exact method will
depend upon the particular nature of the experiment.
These traps have a flat direction, x, where the particle
is free to move around while being tightly confined in
transverse directions.

Consider a z-wire with central wire of length L, and
width w of O(5) nm along the x-y plane parallel to the SC
surface (see Fig. 3). The two particles will be positioned
along the z axis on either side of the chip. The bias field
and the magnetic field from the central wire will form a
minimum along the direction perpendicular to the center
of the wire at a height zy from the screen. Here, we
are only accounting for the diamagnetic potential of the
particle. In subsection III A, we will show how gravity
affects the particle’s equilibrium position (see also Fig. 7
and Table IT). The expressions for zy and magnetic field
gradient are complicated for the short traps but can be
approximated by the following expressions for the long
trap. The magnetic field magnitude at the center of the
long wire at a distance d/2 from the origin (same analysis
applies for the other trap at -d/2 from the origin) as
a function of z is given by (assuming an infinitely long
wire):

|B(0,0,2z—d/2)| = B(z) ~ ’uilcot_1 [Q(Z_d/Q)} (18)

Tw w

consistent with [33]. The minimum height 2y from the

screen is
w TW| Bhjas|
~d/2+ — t| ———— 19
20 /2 + 5 {co ( ol (19)

where By,s is the bias field applied along —y to create the
field minimum. The z-dependent magnetic field gradient
at the center of the thick wire is given by:

Ho I

0:-B(2) ~ — T T (w2

(20)

which is a Lorentzian as opposed to the 1/z? from the
infinitessimal width wire approx.

Clearly, for zp — d/2 < w (i.e., the separation between
the wire and the nanoparticle smaller than the width
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FIG. 6. When current flows through the Z-, z-and u-shaped
wires, Meissner currents are generated in the SC screen to
oppose the magnetic field due to the wires. This is illustrated
here for the central wire using the method of images (current
flows along x). (a): In the absence of SC screen, assuming
d/2 = 10pm, the field minimum is created at 19.6 pm from
the origin (denoted by the red star). (b): With the screen,
field from Meissner currents perturb the field from true wires,
due to which the new minimum is formed closer to the wire,
at 17.1um. (c): Plot shows how the height of the particle
from the wire decreases as the separation d/2 from the SC
screen decreases. Closer to the SC, Meissner currents are
stronger. As a result, the effective current due to the wires
decreases, and the particle gets trapped closer and closer to
the wire. The blue vertical line represents the thickness of the
chip (d/2 > 7.5pm) for which the perpendicular component
of the field from the wires (B.) is greater than or equal to H,
for Nb at T=4.2K (135 mT). Here, I=12A, Bhias=250 mT and
L,=1mm.

of the z-wire), it becomes important to account for the
width of the wire, while in another case, one can estimate
zo by modeling the z-wire as an infinitessimally wide wire
(z0=d/2+101/(27 Bhjias)). Incorporating the effect of SC
screening using the method of images (Fig. 6), we can
see that the Meissner currents reduce the field from true
wires such that the perturbed zq is smaller than the orig-
inal zg.

Key features of various traps will be discussed in the
following subsections.
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FIG. 7. 2D Contour plots (at respective equilibrium z) for
potential energy (U) of the particle in short (L., = 30pum)
traps in the vertical orientation of the chip (Fig. 1) in the lab
frame. Here Bpias=200 mT and I=12A. Figs. a) and c) show
the energy of the particle in the diamagnetic potential for u
and z traps, respectively. Figs. b) and d) show how gravity
(acting along y) changes the equilibrium configuration in the
u and the z settings.

A. Cooling traps

It is crucial to cool the COM motion of our levi-
tated nano-diamond for the quantum entanglement ex-
periments. This step could be carried out in the short "z"
or "u" traps as illustrated in Fig. 3. The traps are smaller
in length (~ 30um) to allow higher longitudinal and
transverse frequencies (~ 100Hz and O(500 — 800) Hz)
respectively as compared to the long traps. Feedback
cooling the COM motion could in principle be imple-
mented using time-dependent magnetic field gradients
applied using other wires in the chip surface or exter-
nal coils, as was done in Ref. [34]. Alternatively, optical
cooling of nanoparticles within micron range of a metallic
surface has also been recently performed [50, 51]. Such
high trap frequencies are advantageous for cooling closer
to the quantum ground state of motion, and the longi-
tudinal frequencies we estimate are approximately 10x
higher than achieved in other permanent magnet-based

long traps [34]. In principle, we can make the cooling
traps much shorter to get higher frequencies.

In the "z" configuration, we can control the |B| field
at the center by applying an offset "Ioffe" field without
changing the equilibrium position of the particle, see [52].
Due to gravity, the particle shifts downwards along the y
direction when the chip is oriented in the vertical con-
figuration (Fig. 1) and the new trap is formed closer
to the upper arm of the z wire (see Fig. 7 (d)).The
norm of the magnetic field |B| at the trap minimum
is 72 mT.The principal axes of the z -trap are tilted
w.r.t. to the coordinate axes (x,y) as seen in Figs. 7(c)
and (d) due to the orientation of the end cap wires.
Therefore, to calculate the oscillation frequencies of the
particle in the trap ( table II), we perform a coordi-
nate transform to the principal axes where the tilt angle
0 = —(dB,/dx)(dB,/dy)~[53].

In the case of the "u" configuration, in the absence of
gravity or other external forces, the |B| field is effectively
zero at the trap center. However, as stated above, the
equilibrium position of the particle is determined by the
combination of diamagnetic and gravitational forces and
the norm of the field at this point for our parameters is
~ 62 mT. Additionally, the potential is no longer tilted in
this configuration, and particle remains centered as both
end cap wires are positioned downwards and effectively
counter gravity. We can trap nanoparticle in either of
the two traps based on our requirements. We can also
switch between the two in-situ by switching the current
between top and bottom wires (2 and 3 in Fig. 3).

B. Long trap for creating superpositions and
motional wave packet expansion

Once the particle is cooled, the cooling trap can be
turned off to allow the motional state to expand in this
long “flat” trap of length 1mm. In this trap, consider-
ing only the diamagnetic potential, the nanoparticle os-
cillates with a frequency 27 x 0.01 Hz (in vertical (V)
config.) along the flat x direction. Due to gravity, simi-
lar to the small z wire case discussed previously (Fig. 7),
the potential minima shift closer to one of the end caps
(-490 pm). Therefore, the particle will roll down to this
new equilibrium (see Fig. 8), where it will oscillate with a
frequency of 27 x 110 Hz. The time taken by the particle
to roll down to this minima is (1/4)th of its period, i.e.,
25 seconds. However, in the long trap, we plan to apply
Stern Gerlach pulses to create spatial superpositions and
perform other operations on the particle at the center
with much higher gradients at a much shorter time scale
(~1 sec). Therefore, we can assume the particle doesn’t
roll down to this minimum. Instead, we can keep it cen-
tered while performing relevant operations on it. From
Fig. 8, we can see that the trap depth is quite high, about
1.5 eV ~ 10* K (> kgT at T=300 K). This means the
particle can be stably trapped for long durations without
getting kicked out by thermal fluctuations.
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FIG. 8. The minima of the long Z trap (L., =1 mm) along
x direction shifts from the center to one of the end wires
due to gravity (for the vertically oriented chip (Fig. 1)). It
takes about ~ 25s to roll down to the new minima. Here
Brias=250 mT and I = 12 A.

Trap Orientation (wx, wy, wz)/2m (Hz) 2zo(pm)

Bhias= 0.2 T

) (121.5,507, 585) 16.2

L (V) (62, 380.7, 336) 18.6

. (H) (191, 550, 785) 16.4

30pm z-wire iy (159, 351, 331) 18.3
Bpias= 0.25 T

. (H) (0.1%, 553, 685) 16.4

tmm Zewire -y (0.01%,491.5, 521)  16.7

TABLE II. Trap frequencies (along the principal axes of the
trap) considering perturbations from gravity and other EM
interactions for the three embedded traps. Here L=5 mm,
L., = 1mm and L., = 30 pm with Current I=12 A and d/2
= 10pm. Here 2o represents the equilibrium height of the
particle from the center of the SC plate. The orientations (V)
and (H) correspond to whether the chip is placed vertically
as per Fig. 1 or horizontally as per Fig. 3. *Although the
frequency of the particle in a long trap is given as 27 x 0.1 Hz
(for H) and 27 x 0.01 Hz (for V) , we consider the case where
the particle dynamics are instead determined by applied mag-
netic pulses.

IV. DISCUSSION

Entanglement and superposition are fundamental fea-
tures of quantum mechanics, with no counterpart in clas-
sical physics. Using the LOCC theorem (local operations
and classical communication) [54], probing whether an
interaction can entangle two massive systems prepared
in quantum superpositions would prove this interaction’s
quantum nature. To experimentally test this idea for
gravity [2] requires advances in the state of the art for
creating macroscopic superpositions, scaling up from the
scale of large molecules [55] to micron-size particles, long

spin coherence times and exquisite control over currents
and magnetic fields. In this work, we proposed an inte-
grated magnetic chip-based trap, with higher-frequency
short traps (e.g. O(10x) higher in the longitudinal di-
rection as compared to the permanent magnet trap re-
ported in Ref. [34]), suitable for cooling the center-of-
mass motion of a nanodiamond, and a long trap with
a flat direction for coherent state expansion of this mo-
tional wavepacket beyond the physical dimensions of the
particle and creating spatial superpositions, for example,
using a Stern Gerlach pulse sequence [56]. The chip in-
corporates an embedded superconducting shield to screen
electromagnetic interactions. Particles can be trapped
within a few microns of the chip wires, and the chip’s
dimensions are adjustable based on the experimental re-
quirements. We have selected experimental parameters
that are suitable for fabrication and theoretical consider-
ations.

An entanglement experiment in such a setup would still
be demanding technologically. We envisage typically the
following stages: 1) trapping and cooling, 2) creating a
macroscopic superposition and recombining the trajecto-
ries, and 3) investigating gravity-mediated entanglement
with two adjacent nanodiamond superpositions. At each
stage of the experiment, it is essential to account for the
relevant noise sources and design appropriate mitigation
strategies. In the first stage of the experiment i.e. trap-
ping and cooling using our chip-based setup, vibrational
and technical noise can couple from the mechanical teth-
ering of the chip and affect the dynamics of the parti-
cle. It is possible to substantially mitigate this vibra-
tional noise using inverted pendula and geometric anti-
spring filter-based vibrational isolation systems (e.g. see
[51]). We do not provide any detailed estimates here
since the requirements on the initial conditions depend
upon the final strategies for implementing steps 2) and
3) which are currently under development. Furthermore,
we should also take into account of the current fluctu-
ations, which will be among the main noise sources for
the trap as well as a point of concern from the dephasing
the interferometer [57]. Having a trapping and screening
approach in principle permits having the two nanodia-
monds to be closer together resulting in a larger entan-
glement rate and thus requiring a smaller superposition
size [18, 19]. However, dephasing due to interactions with
the superconducting screen via the Casimir-Polder, Van
der Waals, electric and magnetic dipole, current fluctu-
ations and thermal fluctuations have to be considered.
Such an analysis of the experimental parameters and re-
quirements on control and fluctuations in the state prepa-
ration was performed in Ref. [19] for an electromagnet-
ically screened configuration, and a similar analysis for
the trapped and screened protocol for a nanodiamond
entanglement experiment in present setup is left for fu-
ture work. Analysis for a Stern-Gerlach pulsed sequence
is also left for future study, including designing a wire-
based Stern-Gerlach magnetic pulse sequence for creating
spatial superposition of the nanodiamond, evaluating the



trajectories of these particles, and analyzing fluctuations.
The mathematical framework for the noise analysis in
similar setups is well-known [57]. However, tuning that
to our requirements for a particular nanoparticle entan-
glement experiment will need further analysis, which we
leave for a future investigation.

While we have mainly discussed the features of the
chip-based approach in the context of gravity-mediated
entanglement experiments, the idea can be extended to
other entanglement-based experiments (e.g. magnetic
dipole mediated entanglement [56]), tests of quantum co-
herence [36], search for fifth forces and axions [58], mod-
ified theories of gravity [15, 59] and in general, to the ex-
periments for creating non-gaussian motional states of a
particle. The wire-based chip design also provides a pos-
sible route to implement Stern-Gerlach pulses and expo-
nential expansion of a nanodiamond wavepacket by creat-
ing an inverted harmonic potential [60] (see also [61]-[62])
using tailored magnetic fields and magnetic field gradi-
ents produced by appropriately patterned circuits.

Finally, the present setup can be used to investigate
new short-range forces predicted to occur in some the-
ories of physics beyond the standard model [15, 63, 64].
There is a vast 17-order-magnitude disparity between the
apparent energy scale of quantum gravity and that of
the other Standard Model (electro-weak) forces. How-
ever, several recent theories have suggested that impor-
tant clues related to this “hierarchy problem” can be ob-
tained in low-energy experiments by measuring how grav-
ity behaves at sub-millimeter distances [65]. Another mo-
tivation for novel short-range forces comes from the dark
energy length scale [66, 67].

V. APPENDIX
A. Beyond point dipole approximation

In this section, we will perform a more rigorous analy-
sis to understand the interaction of a finite diamagnetic
sphere with the non-uniform external field B.

If the scale at which the norm of the magnetic field
changes is larger than the physical dimension of the parti-
cle, dipole approximation holds. In our case, we quantify
this by constructing a magnetic length scale Lp,

1Bl

L
P IvB]|

>> R (21)

where |B| is the norm of the magnetic field. For the cool-

10

ing z wire, Lg = 1.8 pum >> R (0.5um), so the dipole
approximation should hold. We again note that the trap
location is mainly determined by the force balance be-
tween diamagnetic energy and gravity and at this point
|VB| # 0.

In the next section, we will derive the potential energy
and the frequencies of a finite sized diamond nanosphere
in an external B field and study the case where finite size
effects become important.

1. FEwaluating Potential Energy

General expression for the interaction energy of a local-
ized magnetization with the field that induces the mag-
netization is given by [44] :

U:—E/dVM.BzJLV
2 v 240

av |B|*  (22)
1%
where M is the magnetization (magnetic moment per unit
volume), M = ’;—‘SB and B is the static external field
from the wire configuration. The integration is over the
volume of the sphere. Assuming the B field varies slowly
over the scale of the particle, we can therefore expand the
magnetic field about the trap center, keeping only upto
the second order terms:

0B;
Bi(Q7Qe) %Bi(qe) + E 6(]' (Qj - QE,j) (23)
. j

Z 861] 8Qk

where ¢. = {Z¢, Ye, 2o } are the equilibrium coordinates
calculated from the point dipole force balance (II), B;
represents the ith component of the magnetic field, and
i,j,k € 1,2,3 run over the spatial directions {xz,y, z}.

Assume the particle is slightly displaced to (2,7, 2)
from the equilibrium position (e, ye, z.) such that dz =
(ze—a'), oy = (y.—y') and §z = (2, —2’) represent small
displacements from the equilibrium point. To obtain the
energy U, we perform a coordinate transform from carte-
sian to spherical polar coordinate system centered around
(2',y,2’) such that

— Ge,j)(qk — Gek)

x =r sin(0)cos(p) + 2’ (24)
y =r sin(0)sin(¢p) + v’
z =r cos(0) + 2’

where r € [0,R],0 € [0,7],¢ € [0,2n]. Using this, we

can evaluate the integral over the volume of the sphere
of radius R. Keeping terms upto O(6x2,0y?, 622),
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Definitions: The potential U describes the interaction
energy of a diamagnetic object in an inhomogeneous mag-
netic field, expanded to second order in displacements
dx, 0y, 6z from the equilibrium point (z., Y, z¢). The fol-
lowing definitions apply:

e The indices i,j,k run over the spatial distances x,y,z.
dx, 0y, 0z represent small displacements from the
equilibrium position along the z, y, and z axes,
respectively.

e By;: Components of the magnetic field B,, By, B.
evaluated at the equilibrium point (z., Ye, 2¢)-

e B; ;: First partial derivative of the i-th magnetic
field component with respect to the j-th spatial co-
ordinate, evaluated at equilibrium. For example,
B, , = 0B,/0x|

(Te\Yerze)

Win =

Here (n,1) run over the physical dimensions (x,y,z). . is
the Kronecker delta (not to be confused with the notation
for displacements §5) and is non-zero only when n=1. °
In Fig. 9, we consider the particle in the short z trap
and compare the frequencies obtained using dipole ap-
proximation and the method above. For our case, there
is agreement between the two methods and hence, we
can neglect the finite size effects. However, as the size of

5 Note that Eq. 26 gives us the three dimensional matrix ele-
ments for the frequency of the nanoparticle in a lab frame.
However, for brevity, throughout the paper, we recast the
frequency modes as wg, wy,w.. The correct interpretation
for a rigid body should be w; = w;;, where i = x, y, z

e B; ;i Second partial derivative of the i-th field
component with respect to j and k, also eval-
uated at equilibrium. For example, Bg,, =

2 2

a BI/ay |(f€c,ye,2e)'

The expansion includes all terms up to second order
in displacements. Linear terms represent force contribu-
tions, while second-order terms determine the curvature
of the potential and relate to effective trapping frequen-
cies.

2. Trap frequencies

The frequency is defined by Eq. (II). Using the ex-
pression for the potential energy above, we can see the
explicit dependence of R in the frequencies:

1/2
_25;: {42; B;nBiy(1—6,,) + 22 (Boz inn + Bfn) il + ( ZBz an Y Binn Bi,kk>5n,l}‘|

ik
k#n
(26)

(

the particle gets comparable or larger than the charac-
teristic length scale of the field Lg, dipole approximation
starts to fail and it becomes important to consider the
full interaction energy.
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