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Summary

Urban thermal modeling is often constrained by the limited availability of high-resolution
spatiotemporal data. In London’s Queen Elizabeth Olympic Park, we deployed a network of 15 bespoke
IoT temperature sensors across various land cover types. We compared the measured air temperature
(Tair) with UMEP modeled mean radiant temperature (Tmr). A rank analysis indicated a significant
positive correlation for daytime which confirms the sensors’ ability to resolve microclimate variations,
but a weaker correlation for nighttime, indicating limitations of current thermal modelling methods.
Results demonstrate the value of the cost-effective 10T sensors in detecting, monitoring and remediating
thermal hotpots.
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1. Introduction

Rapid urbanization and climate change have intensified the need for fine-scale thermal modeling to
inform urban planning, mitigate extreme heat, and promote public health. While satellite-derived land
surface temperature data provides spatially explicit insights and serves as a boundary condition for
urban energy balance, it is often employed in health risk assessments more for its ease of mapping than
its relevance to human heat exposure (Ho et al., 2016). In contrast, mean radiant temperature (Tmr) and
near-surface air temperature (Tair) offer finer resolution and direct relevance to human thermal comfort,
making them indispensable for capturing hyperlocal temperature dynamics (Venter et al., 2020).
Previous research (Ma, 2024) in east London demonstrated that 10T sensor networks’ ability in
providing real-time, high spatiotemporal T, data. Additionally, the Urban Multi-scale Environmental
Predictor (UMEP), is available for modeling the influence of urban morphology and vegetation on
thermal comfort and estimating Tmi (Lindberg et al., 2018). In this paper, we compare sensor measured
Tar and UMEP-modeled Tmr data for 15 zones in London’s Queen Elizabeth Olympic Park on 12
August 2024 to explore their utility for advancing GIS-based microclimate modeling and urban thermal
comfort assessments.
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2. Methodology
2.1. Direct Measurement of Ta

The study focuses on Queen Elizabeth Olympic Park (QEOP) in London, a diverse urban park with
varying land cover types, including green spaces, paved surfaces, and built-up areas. A network of 15
bespoke, solar powered devices have been deployed across the park since 1%t August 2024, on a variety
of land cover types, utilizing existing infrastructure like lamp posts, trees, and bridges. These sensors
collect real time air temperature and humidity data at five-minute intervals and communicate directly
with the cloud via a citywide Long Range Wide Area Network (LoRaWAN) (Figure 1).

Figure 1 Solar-Powered lIoT Sensor Deployed in QEOP for Microclimate Monitoring

2.2 UMEP Modelling of Tmit

UMEP and its processor SOLWEIG (Solar and Longwave Environmental Irradiance Geometry) were
used to model Tmr across the QEOP using QGIS. SOLWEIG requires five categories of land cover
types: paved, buildings, grass, bare soil, and water. Tree cover is integrated via a separate canopy digital
surface model. Classifications of land cover used OpenStreetMap data and Bluesky tree data (location,
height, canopy size, and type). Sky view factors (SVF) quantify the openness of the sky at each location,
accounting for shading effects from buildings and trees. Meteorological inputs including air
temperature, humidity, wind speed, and solar radiation, were obtained from the Copernicus ERAS5
dataset for 12" August 2024, a hot day selected for its high thermal variability. SOLWEIG then
calculates Tmr by simulating the effects of both solar and longwave radiation under varying urban
geometry and surface properties. A 30m x 30m zone was defined around each sensor location to
facilitate the Tm comparison, aligning with Landsat satellite image resolution for potential future work.
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Figure 2 Land Cover Classification Map of QEOP for UMEP Modelling

3. Preliminary Results

The zonal mean Tmq across the 15 zones was calculated (Figure 3) and compared with actual T
measured by the sensors using rank analysis (Table 1). Spearman’s Rank Correlation showed
significant positive correlation for daytime (Rs = 0.5714, p=0.05), with weaker correlation at night (Rs=
0.2929, p=0.5).

Il Sensor Location (30m x 30m) Il Sensor Location (30m x 30m)
Tmrt_daytime_mean Tmrt_nighttime_mean

Band 1 (Gray) Band 1 (Gray)
D Tmrt Daytime56.62°C ! Tmrt Night time17.13°C

Tmrt Daytime24.04°C Tmrt Night time13°C

Figure 3 Heat Map of QEOP on 12" August 2024 using SOLWEIG modelled T
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Table 1 Rank Analysis (from hottest to coldest) of Tmr and T for daytime and night time

Zone  Mean Daytime Tair (6am-9pm) (°C)  Tair Rank Mean Daytime Tt (6am-9pm) (°C) | Tmrt Rank

sensorl 28.206 15 38.572 15
sensor2 28.534 12 40.969 14
sensor3 28.641 9 51.104 4

sensor4 28.250 14 41.006 13
sensorb 28.499 13 47.204 7

sensoré 28.867 7 52.545 2

sensor7 29.022 5 51.342 3

sensor8 28.553 11 46.701 8

sensor9 28.963 6 48.976 5
sensorl0 29.179 3 54.276 1
sensorll 28.833 8 43.349 12
sensorl2 28.607 10 43.740 11
sensorl3 29.813 1 48.269 6
sensorl4 29.174 4 44.483 9
sensorl5 29.365 2 43.888 10

Rs=0.5714, p=0.05

Zone Mean Nighttime T jr (Oam-6am, 9pm- Tair Mean Nighttime T mr (Oam-6am, 9pm- Tt

11pm) (°C) Rank 11pm) (°C) Rank
sensorl 20.061 12 14.324 5
sensor2 20.449 1 14.653 2
sensor3 20.267 6 13.810 11
sensor4 20.271 5 14.958 1
sensors 20.204 10 14.049 7
Sensoré 20.389 3 14.010 9
sensor7 20.372 4 13.648 14
sensor8 20.249 7 14.548 3
sensor9 20.420 2 14.306 6
sensorl0 20.034 13 13.438 15
sensorll 20.247 8 14.041 8
sensorl2 19.983 14 13.776 13
sensorl3 20.227 9 13.942 10
sensorl4 20.129 11 13.779 12
sensorl5 19.898 15 14.506 4

Rs=0.2929, p=0.5

4. Discussion

Tair and T are both key variables in urban thermal studies but measure different thermal dynamics.
Tair refers to ambient air temperature at pedestrian level (normally 1.5-2m), influenced by atmospheric
conditions, surface heat exchange, and convection (Liu et al., 2017). Tm: quantifies the radiant heat
exchange between a human body and its surroundings, incorporating both shortwave and longwave
radiation, making it a better measure of the thermal comfort than macroscopic air temperature (Lindberg
et al., 2016). Thus, the absence of quantitative agreement between Tair and T is expected. However,
at the hyperlocal scale, the radiation fluxes underlying Tmq will also influence the local air temperature,
which explains the observed correlation, which does give confidence that the sensors are capturing
hyperlocal thermal dynamics rather than fluctuations caused by measurement uncertainty (£0.3°C) of
the sensors.

Differences between thermal modelling of Tm: and the Tar measurements highlight limitations in

SOLWEIG, which is primarily a radiation model; tree canopy data is used to calculate shadows, but
not evapotranspiration effects. The effect of different land cover types is incorporated via their albedo
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(Lindberg et al., 2016), but not their heat storage capacities. In addition, no account is taken of heat
generated by human activities. These latter factors may explain the weaker correlation between T and
Tair at night. The T4 Sensor data suggests SOLWEIG underestimates the cooling effect of bodies of
water, perhaps due to the omission of evapotranspiration. This limitation is important because it affects
the accuracy particularly for modelling nighttime heat stress and urban heat islands. One potential
approach for improving accuracy is integrating sensor data to refine modeled T estimates to improve
the accuracy of urban heat modeling. This could help create a more consistent temperature
representation across the entire study area, improving its applicability for urban heat risk assessments
and climate-responsive urban design.

5. Conclusion

This study validates the bespoke IoT sensor network’s ability to capture microclimate variations,
identifies limitations in SOLWEIG, and demonstrates the strong cooling effect of water on air
temperature. Future work will explore different land covers’ impact on thermal environment and to
further investigate the relationship between Tar and Ty in this urban park. Overall, we explored how
10T sensing can enhance urban microclimate modeling, providing hyperlocal insights in detecting,
monitoring and remediating thermal hotpots. Our findings highlight the potential of our cost-efficient
bespoke heat sensors as a complementary tool to GIS analysis on urban heat modeling and supporting
the development of future climate-resilient cities.
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