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Summary 

 

Urban thermal modeling is often constrained by the limited availability of high-resolution 

spatiotemporal data. In London’s Queen Elizabeth Olympic Park, we deployed a network of 15 bespoke 

IoT temperature sensors across various land cover types. We compared the measured air temperature 

(Tair) with UMEP modeled mean radiant temperature (Tmrt). A rank analysis indicated a significant 

positive correlation for daytime which confirms the sensors’ ability to resolve microclimate variations, 

but a weaker correlation for nighttime, indicating limitations of current thermal modelling methods. 

Results demonstrate the value of the cost-effective IoT sensors in detecting, monitoring and remediating 

thermal hotpots. 
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1. Introduction 

 

Rapid urbanization and climate change have intensified the need for fine-scale thermal modeling to 

inform urban planning, mitigate extreme heat, and promote public health. While satellite-derived land 

surface temperature data provides spatially explicit insights and serves as a boundary condition for 

urban energy balance, it is often employed in health risk assessments more for its ease of mapping than 

its relevance to human heat exposure (Ho et al., 2016). In contrast, mean radiant temperature (Tmrt) and 

near-surface air temperature (Tair) offer finer resolution and direct relevance to human thermal comfort, 

making them indispensable for capturing hyperlocal temperature dynamics (Venter et al., 2020). 

Previous research (Ma, 2024) in east London demonstrated that IoT sensor networks’ ability in 

providing real-time, high spatiotemporal Tair data. Additionally, the Urban Multi-scale Environmental 

Predictor (UMEP), is available for modeling the influence of urban morphology and vegetation on 

thermal comfort and estimating Tmrt (Lindberg et al., 2018). In this paper, we compare sensor measured 

Tair and UMEP-modeled Tmrt data for 15 zones in London’s Queen Elizabeth Olympic Park on 12th 

August 2024 to explore their utility for advancing GIS-based microclimate modeling and urban thermal 

comfort assessments. 
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2. Methodology 

 

2.1.  Direct Measurement of Tair  

 

The study focuses on Queen Elizabeth Olympic Park (QEOP) in London, a diverse urban park with 

varying land cover types, including green spaces, paved surfaces, and built-up areas. A network of 15 

bespoke, solar powered devices have been deployed across the park since 1st August 2024, on a variety 

of land cover types, utilizing existing infrastructure like lamp posts, trees, and bridges. These sensors 

collect real time air temperature and humidity data at five-minute intervals and communicate directly 

with the cloud via a citywide Long Range Wide Area Network (LoRaWAN) (Figure 1).  

 

 

 
 

Figure 1 Solar-Powered IoT Sensor Deployed in QEOP for Microclimate Monitoring 

 

 

2.2 UMEP Modelling of Tmrt 

 

UMEP and its processor SOLWEIG (Solar and Longwave Environmental Irradiance Geometry) were 
used to model Tmrt across the QEOP using QGIS.  SOLWEIG requires five categories of land cover 

types: paved, buildings, grass, bare soil, and water. Tree cover is integrated via a separate canopy digital 

surface model. Classifications of land cover used OpenStreetMap data and Bluesky tree data (location, 

height, canopy size, and type). Sky view factors (SVF) quantify the openness of the sky at each location, 

accounting for shading effects from buildings and trees. Meteorological inputs including air 

temperature, humidity, wind speed, and solar radiation, were obtained from the Copernicus ERA5 

dataset for 12th August 2024, a hot day selected for its high thermal variability. SOLWEIG then 

calculates Tmrt by simulating the effects of both solar and longwave radiation under varying urban 

geometry and surface properties. A 30m x 30m zone was defined around each sensor location to 

facilitate the Tmrt comparison, aligning with Landsat satellite image resolution for potential future work.  
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Figure 2 Land Cover Classification Map of QEOP for UMEP Modelling 

 

3. Preliminary Results 

The zonal mean Tmrt across the 15 zones was calculated (Figure 3) and compared with actual Tair 

measured by the sensors using rank analysis (Table 1). Spearman’s Rank Correlation showed 

significant positive correlation for daytime (Rs = 0.5714, p=0.05), with weaker correlation at night (Rs= 

0.2929, p=0.5).  

 

 
Figure 3 Heat Map of QEOP on 12th August 2024 using SOLWEIG modelled Tmrt 
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Table 1 Rank Analysis (from hottest to coldest) of Tmrt and Tair for daytime and night time 

  

  
Zone Mean Daytime Tair (6am-9pm) (°C) Tair Rank Mean Daytime Tmrt (6am-9pm) (°C) Tmrt Rank 

sensor1 28.206 15 38.572 15 

sensor2 28.534 12 40.969 14 

sensor3 28.641 9 51.104 4 

sensor4 28.250 14 41.006 13 

sensor5 28.499 13 47.204 7 

sensor6 28.867 7 52.545 2 

sensor7 29.022 5 51.342 3 

sensor8 28.553 11 46.701 8 

sensor9 28.963 6 48.976 5 

sensor10 29.179 3 54.276 1 

sensor11 28.833 8 43.349 12 

sensor12 28.607 10 43.740 11 

sensor13 29.813 1 48.269 6 

sensor14 29.174 4 44.483 9 

sensor15 29.365 2 43.888 10 

 Rs = 0.5714, p = 0.05 

 
Zone Mean Nighttime Tair (0am-6am, 9pm-

11pm) (°C) 

Tair 

Rank 

Mean Nighttime Tmrt (0am-6am, 9pm-

11pm) (°C) 

Tmrt 

Rank 

sensor1 20.061 12 14.324 5 

sensor2 20.449 1 14.653 2 

sensor3 20.267 6 13.810 11 

sensor4 20.271 5 14.958 1 

sensor5 20.204 10 14.049 7 

sensor6 20.389 3 14.010 9 

sensor7 20.372 4 13.648 14 

sensor8 20.249 7 14.548 3 

sensor9 20.420 2 14.306 6 

sensor10 20.034 13 13.438 15 

sensor11 20.247 8 14.041 8 

sensor12 19.983 14 13.776 13 

sensor13 20.227 9 13.942 10 

sensor14 20.129 11 13.779 12 

sensor15 19.898 15 14.506 4 

 Rs = 0.2929, p = 0.5 

 

 

 

4. Discussion 

 

Tair and Tmrt are both key variables in urban thermal studies but measure different thermal dynamics. 

Tair refers to ambient air temperature at pedestrian level (normally 1.5-2m), influenced by atmospheric 

conditions, surface heat exchange, and convection (Liu et al., 2017). Tmrt quantifies the radiant heat 

exchange between a human body and its surroundings, incorporating both shortwave and longwave 

radiation, making it a better measure of the thermal comfort than macroscopic air temperature (Lindberg 

et al., 2016). Thus, the absence of quantitative agreement between Tair and Tmrt is expected. However, 

at the hyperlocal scale, the radiation fluxes underlying Tmrt will also influence the local air temperature, 

which explains the observed correlation, which does give confidence that the sensors are capturing 

hyperlocal thermal dynamics rather than fluctuations caused by measurement uncertainty (±0.3°C) of 

the sensors. 

 

Differences between thermal modelling of Tmrt and the Tair measurements highlight limitations in 

SOLWEIG, which is primarily a radiation model; tree canopy data is used to calculate shadows, but 

not evapotranspiration effects. The effect of different land cover types is incorporated via their albedo 
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(Lindberg et al., 2016), but not their heat storage capacities. In addition, no account is taken of heat 

generated by human activities. These latter factors may explain the weaker correlation between Tmrt and 

Tair at night. The Tair sensor data suggests SOLWEIG underestimates the cooling effect of bodies of 

water, perhaps due to the omission of evapotranspiration. This limitation is important because it affects 

the accuracy particularly for modelling nighttime heat stress and urban heat islands. One potential 

approach for improving accuracy is integrating sensor data to refine modeled Tmrt estimates to improve 

the accuracy of urban heat modeling. This could help create a more consistent temperature 

representation across the entire study area, improving its applicability for urban heat risk assessments 

and climate-responsive urban design. 

 

5. Conclusion 

 

This study validates the bespoke IoT sensor network’s ability to capture microclimate variations, 

identifies limitations in SOLWEIG, and demonstrates the strong cooling effect of water on air 
temperature. Future work will explore different land covers’ impact on thermal environment and to 

further investigate the relationship between Tair and Tmrt in this urban park. Overall, we explored how 

IoT sensing can enhance urban microclimate modeling, providing hyperlocal insights in detecting, 

monitoring and remediating thermal hotpots. Our findings highlight the potential of our cost-efficient 

bespoke heat sensors as a complementary tool to GIS analysis on urban heat modeling and supporting 

the development of future climate-resilient cities. 
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