

Viral Suppression, Viral Failure, and Safety Outcomes in Children and Adolescents With HIV on Dolutegravir in Europe and Thailand

Karen Scott,^{1,2} John O'Rourke,¹ Charlotte Jackson,¹ Luminita Ene,² Luisa Galli,^{3,4} Tessa Goetghebuer,⁵ Cassidy Henegar,⁶ Christoph Königs,⁷ Magdalena Marczyńska,⁸ Lars Naver,^{9,10} Antoni Noguera-Julian,^{11,12,13} Paolo Paioni,^{14,2} Jose T. Ramos,^{15,16,17} Birgitte Smith,¹⁸ Wipaporn Natalie Songtaweesin,¹⁹ Vana Spoulou,²⁰ Nattakarn Tantawarak,²¹ Anna Turkova,¹ Vani Vannappagari,⁶ Alla Volokha,²² Alastair Bamford,^{1,2,3,24} Hannah Castro,^{1,2} Elizabeth Chappell,¹ Giorgia Dalla Valle,²⁵ Caroline Foster,²⁶ Sara Guillén Martín,²⁷ Luis Manuel Prieto Tato,^{15,16,17} Thanyawee Puthanakit,¹⁹ Halyna Sherstiuk,²⁸ Irina Shkurka,²⁹ Sandra Soeria-Atmadja,^{10,11} Ali Judd,^{1,25} Siobhan Crichton,¹³ and Intira Jeannie Collins¹, The European Pregnancy and Paediatric Infections Cohort Collaboration (EPPICC) study group^a

¹MRC Clinical Trials Unit at University College London, London, United Kingdom; ²HIV Department, "Dr. Victor Babes" Hospital for Infectious and Tropical Diseases, Bucharest, Romania; ³Infectious Disease Unit, Meyer Children's Hospital, IRCCS, Florence, Italy; ⁴Department of Health Sciences, University of Florence, Florence, Italy; ⁵Hospital St Pierre Cohort, Université libre de Bruxelles, Brussels, Belgium; ⁶Epidemiology and Real World Evidence, ViiV Healthcare, Durham, North Carolina, USA; ⁷Goethe University, University Hospital Frankfurt, Department of Pediatrics and Adolescent Medicine, Frankfurt, Germany; ⁸Department of Children's Infectious Diseases, Medical University of Warsaw, Warsaw, Poland; ⁹Department of Pediatrics, Karolinska University Hospital, Stockholm, Sweden; ¹⁰Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden; ¹¹Malalties Infectioses i Resposta Inflamatorià Sistèmica en Pediatria, Servei de Malalties Infectioses i Patologia Importada, Institut de Recerca Pediàtrica Sant Joan de Déu, Barcelona, Spain; ¹²Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; ¹³Departament de Cirurgia i Especialitats Medicocirúrgiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; ¹⁴Division of Infectious Diseases and Hospital Epidemiology, University Children's Hospital Zurich, Zurich, Switzerland; ¹⁵Hospital 12 de Octubre Instituto de Investigación Sanitaria (i+12), Madrid, Spain; ¹⁶CIBERINFEC, ISCIII, Madrid, Spain; ¹⁷Universidad Complutense, Madrid, Spain; ¹⁸Department of Pediatrics, Hvidovre University Hospital, Copenhagen, Denmark; ¹⁹Department of Pediatrics, and School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; ²⁰First Department of Pediatrics, "Agia Sofia" Children's Hospital, Athens, Greece; ²¹Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; ²²Shupyk National Healthcare, University of Ukraine, Kyiv, Ukraine; ²³Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom; ²⁴UCL Great Ormond Street Institute of Child Health, London, United Kingdom; ²⁵Fondazione Penta ETS, Padua, Italy; ²⁶Department of Pediatric Infectious Diseases, Imperial College Healthcare NHS Trust, London, United Kingdom; ²⁷Hospital Universitario de Getafe, Getafe, Spain; ²⁸Department of Infectious Diseases, Dnipropetrovsk Regional Medical Center for Socially Significant Diseases, Dnipro, Ukraine; and ²⁹Center for the Prevention of HIV Infection/AIDS and Hepatitis, Chernihiv Regional Hospital, Chernihiv, Ukraine

Background. Dolutegravir (DTG) is a preferred anchor antiretroviral therapy (ART) for children and adolescents with HIV (CAWH).

Methods. We assessed the effectiveness and safety of DTG in CAWH aged 0–18 years at DTG start in routine care in Europe and Thailand, evaluating viral suppression (viral load [VL] <50 copies/mL), cumulative incidence and associated factors of viral failure (VF; confirmed VL ≥400 copies/mL) and safety outcomes.

Results. Of 1230 CAWH on DTG, 49% were female. At DTG start, median (IQR) age was 14 (11–16) years, 10% were ART-naïve, 49% ART-experienced/suppressed (VL <200 copies/mL), 13% ART-experienced/viremic (VL ≥200 copies/mL), and 28% ART-experienced/unknown VL. Median duration on DTG was 93 (49–163) weeks. Viral suppression was 88%–91% throughout follow-up. Cumulative incidence (95% CI) of VF at weeks 96 and 144 was 4.3% (3.1%–6.1%) and 8.3% (6.2%–11.1%). Increased risk of VF was associated with female sex, ART-experienced/viremic, advanced/severe immunosuppression, previous treatment failure, and region ($P < .05$, adjusting for age, sex and ART/VL status). The risk of VF was lower on DTG than CAWH on protease-inhibitor-based regimens ($P < .001$). Among 1146 with clinical data, 26 (2%) experienced 52 DTG-related adverse events, including 5 serious adverse events. Of 849 with laboratory data, 44 (5%) had 54 grade ≥3 events (<1 per 100 person-years). DTG discontinuation by weeks 96 and 144 was 5.0% (3.8%–6.7%) and 9.5% (7.5%–12.0%).

Conclusions. DTG was well tolerated, with ~90% virally suppressed <50 copies/mL. VF was low overall but was significantly higher in children/adolescents ART-experienced and viraemic at DTG start, requiring close monitoring.

Keywords. HIV; effectiveness; dolutegravir; children/adolescents; ART.

Received 20 December 2024; editorial decision 02 April 2025; published online 11 April 2025

^aThe names of the authors of the EPPICC study group are listed in the Notes section.

Correspondence: K. Scott, MRC Clinical Trials Unit at University College London, 90 High Holborn, London, WC1V 6LA, UK (karen.scott@ucl.ac.uk).

Clinical Infectious Diseases® 2025;81(4):e115–27

© The Author(s) 2025. Published by Oxford University Press on behalf of Infectious Diseases Society of America.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<https://creativecommons.org/licenses/by/4.0/>), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. <https://doi.org/10.1093/cid/ciaf191>

Dolutegravir (DTG), an integrase strand transfer inhibitor (INSTI), is a World Health Organization (WHO) preferred anchor drug for first- and subsequent-line antiretroviral therapy (ART) for children and adolescents with human immunodeficiency virus (HIV; CAWH) [1]. Dolutegravir has a high barrier to resistance and adult studies have reported long-term viral suppression (VS) [2, 3], low levels of viral failure (VF) (ranging from 0% to 8% at different durations of follow-up) [4], and good tolerability [5, 6]. While DTG has been rolled

out to children globally, there remain limited comparable data on long-term outcomes in routine-care settings.

Two large pediatric clinical trials provided early data on DTG outcomes in CAWH. The ODYSSEY trial included 707 CAWH weighing 14 kg or more and aged less than 18 years, with 350 randomized to DTG as part of their first- or second-line ART. At 96 weeks on DTG, 81% were virally suppressed at fewer than 50 copies/mL (c/mL), treatment effects were similar among those receiving first- and second-line therapies [7]. Cumulative incidence of VF (confirmed viral load [VL] ≥ 400 c/mL) on DTG was 11.4% and 13.7% by 96 and 144 weeks, respectively, with a higher incidence on second-line ART [7]. In the CHAPAS-4 trial, 919 children aged 3–15 years experiencing first-line treatment failure were randomized to different second-line regimens. Among 229 children randomized to DTG, 83% were suppressed to less than 60 c/mL at 96 weeks [8]. Both trials reported low numbers of adverse events (AEs) and few DTG discontinuations.

Large pediatric observational cohorts in sub-Saharan Africa have reported 85%–93% VS (VL <400 or <1000 c/mL) on DTG in routine-care settings [9–11]. However, these studies had relatively short follow-up on DTG (<24 months), did not assess VF, and included limited safety data. European cohorts have reported good tolerability on DTG but were based on small samples (N = 150) [12, 13].

This study assesses the effectiveness and safety of DTG-based ART among CAWH in routine-care settings across Europe and Thailand, using data from the European Pregnancy and Pediatric Infections Cohort Collaboration (EPPICC).

METHODS

Individual patient data from 15 observational cohorts across 14 countries were pooled using a modified HIV Cohorts Data Exchange Protocol (www.hicdep.org), as described elsewhere [14]. EPPICC ([ClinicalTrials.gov](https://clinicaltrials.gov) ID: NCT04677842) has ethics approval from University College London (reference 17493/001) and cohorts received local ethics approvals or waivers. Children and adolescents with HIV aged less than 18 years at DTG start were included. Time on DTG as part of a clinical trial was censored. The date of last follow-up varied by cohort (December 2020–May 2023).

Outcomes on DTG

Effectiveness outcomes were as follows: (1) VS, defined as VL less than 50 c/mL at 24, 48, 96, 144 and 192 (± 12) weeks after DTG start, in accordance with European guidelines [15]; (2) VF, defined as 2 consecutive VL results of 400 c/mL or greater or 1 VL result of 400 c/mL or greater followed by discontinuation of DTG within 4 months, after 24 weeks on DTG (the ≥ 400 -c/mL threshold was used to align with definitions used in other pediatric HIV studies including the ODYSSEY trial).

In sensitivity analysis, VF was defined as confirmed VL greater than 50 c/mL.

Safety outcomes were as follows: (1) clinical AEs causally related to DTG (as reported by the treating physician) and all serious AEs (SAEs); (2) laboratory abnormalities for lipids (total cholesterol, serum high-density lipoprotein [HDL], serum low-density lipoprotein [LDL], triglycerides), glucose (fasting plasma glucose [FPG] and non-FPG), other biochemistry (alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, gamma-glutamyl transferase, total bilirubin, plasma amylase, lipase, serum calcium, serum creatinine, serum phosphate), and hematology (absolute neutrophil count, hemoglobin, platelets); and (3) discontinuation of DTG, defined as stopping DTG for more than 30 consecutive days (all-cause and treatment-related [failure or toxicity]).

Statistical Methods

Analysis of Effectiveness

Viral suppression analyses were restricted to CAWH in follow-up and on DTG for 24 weeks or more, with a VL measurement available at 1 or more time point (24–192 weeks). The percentage (95% binomial CI) with VS was estimated overall and by subgroups based on characteristics at DTG start: age (0 to <6 , 6 to <12 , 12 to <18 years), weight band (<20 kg, ≥ 20 kg), and ART/VL status (ART-naive, ART-experienced and viremic [VL ≥ 200 c/mL], ART-experienced and suppressed [defined as VL <200 c/mL to allow for transient viremia], and ART-experienced with unknown VL).

Viral failure analysis was restricted to CAWH on DTG with 2 or more VL measurements at 24 weeks or more after DTG start. Time to VF was estimated using Kaplan-Meier methods. Follow-up was censored at the earliest of last suppressed VL, death, or 7 days after DTG discontinuation. Cox proportional hazards models were used to explore associations between VF and characteristics at DTG start, including sex, age, ART/VL status, previous treatment failure, WHO immune stage for age [16] (none/mild, advanced/severe), prior AIDS diagnosis, duration on ART, and geographic region (United Kingdom/Ireland, Ukraine, Thailand, rest of Europe). The effect of nucleoside or nucleotide reverse transcriptase inhibitor (NRTI) backbone at DTG start was explored comparing tenofovir alafenamide (TAF), tenofovir disoproxil fumarate (TDF), and abacavir (ABC) within a subset of cohorts with availability of TAF. Children and adolescents receiving none of these NRTIs or 2 or more of these NRTIs simultaneously were excluded. Univariable and partially adjusted multivariable models (adjusted a priori for age, sex, and ART/VL status) were used as there were insufficient VF events for a fully adjusted analysis. Missing data were imputed for exposure variables with less than 30% missing using multiple imputation by chained equations using 20 datasets [17]. A sensitivity analysis used a complete case analysis without imputation.

Comparative Effectiveness of DTG

We compared time to VF on DTG with CAWH on protease inhibitor (PI)-based regimens in EPPICC. To maximize comparability of these groups, analysis was restricted to CAWH aged 6 to less than 18 years at start of PI or DTG combined with 2 or 3 NRTIs from 2012 onwards. Propensity score weighting was used to balance differences within each ART/VL subgroup in age, sex, ethnicity, and prior AIDS diagnosis, and in ART-experienced patients, time on ART, and previous treatment failure (a priori factors, insufficient numbers for additional factors). Propensity scores were estimated in those with 24 weeks or more on a regimen using logistic regression. Weighted Cox models (with robust standard errors to allow for clustering where CAWH contributed time on both PI- and DTG-based regimens) compared time to VF on DTG with PI-based regimens, overall and by ART/VL status at DTG/PI start. Follow-up was censored at last suppressed VL or discontinuation of DTG/PI for more than 30 days or 96 weeks. This was a complete case analysis with no imputation of missing data.

Analysis of Safety

Safety outcomes were assessed from DTG start until 30 days after discontinuation. Children and adolescents with HIV may have multiple episodes on DTG, while effectiveness analyses focused on the first episode all episodes were included in safety analyses.

Laboratory measurements were graded according to the Division of AIDS (DAIDS) 2014 criteria [18]. The DAIDS does not include HDL grading; therefore, US National Heart, Lung, and Blood Institute pediatric guidelines were used, with “acceptable” considered normal, “borderline” as grade 1, and “low” as grade 2 [19]. Laboratory events were defined according to the highest grade reached and included new events after DTG start, or an increase in severity for pre-existing abnormalities at DTG start. Frequency of events was described and rates of first events estimated per 100 person-years overall and over time from DTG start (<12, 12 to <24, ≥24 months). Person-years were censored at the start of the first event of that grade or higher or, if no event, then censored at the last visit. For laboratory markers with events in all time periods, Poisson models were used to assess differences in rates over time.

Cumulative incidence of all-cause DTG discontinuation was calculated using Kaplan-Meier methods. Treatment-related discontinuation was calculated with discontinuations for “other reasons” treated as a competing risk, using the Fine-Grey method [20]. Follow-up was censored at the last visit.

Analyses were conducted using Stata version 18 (StataCorp, College Station, TX, USA).

RESULTS

Overall, 1230 CAWH ever on DTG were included: 606 (49%) females, 1019 (83%) with perinatally acquired HIV, 519

(42%) Black, and 382 (31%) from the United Kingdom/Ireland, 282 (23%) from Ukraine, 466 (38%) from the rest of Europe, and 100 (8%) from Thailand (Table 1).

At DTG start, the median (interquartile range [IQR]) age was 14 (11, 16) years; 120 (10%) were ART-naïve, 163 (13%) ART-experienced and viremic, 602 (49%) ART-experienced and suppressed at less than 200 c/mL, and 345 (28%) were ART-experienced with unknown VL. Among those who were ART-experienced, the median duration on ART at DTG start was 9 (5, 12) years.

Among those who were ART-naïve at DTG start, the median (IQR) age was 15 (11, 16) years; a higher proportion had non-perinatal or unknown mode of transmission (48%), 26% had severe immunosuppression, but a lower proportion had a prior AIDS diagnosis (8%) compared with those who were ART-experienced (Table 1).

Among those taking 2 or more NRTIs plus DTG, 707 (66%) were on ABC, 257 (24%) on TDF, 80 (7%) on TAF, and 25 (2%) were receiving other/mixed combinations. Overall, the median (IQR) duration on DTG was 93 (49, 163) weeks.

Effectiveness Outcomes

Viral Suppression

Overall, 88%–91% were suppressed at less than 50 c/mL at each time point on DTG (Figure 1, Table 2). The percentage suppressed was highest (92%–94%) among those who were ART-experienced/suppressed at DTG start and lowest (72%–83%) among those who were ART-experienced/viremic at DTG start. Viral suppression varied less by age and weight band at DTG start (Supplementary Tables 1 and 2, Supplementary Figure 1).

Viral Failure

Among 777 CAWH meeting the criteria for VF analysis, 57 (7%) experienced VF at a median (IQR) of 79 (37, 123) weeks after DTG start. Of these, 3 of 57 (5%) never achieved VS of less than 400 c/mL after DTG start (all were ART-naïve).

The cumulative incidence (95% CI) of VF by 96 and 144 weeks was 4.3% (3.1%–6.1%) and 8.3% (6.2%–11.1%), respectively (Figure 2A). Incidence was lowest in those who were ART-experienced/suppressed at DTG start, at 1.8% (0.9%–3.8%) and 3.1% (1.6%–5.8%), and highest among those who were ART-experienced/viremic, at 12.1% (6.9%–21.1%) and 21.1% (13.2%–32.7%), respectively (Figure 2B). The corresponding estimates for those who were ART-naïve were 7.0% (3.0%–15.9%) and 16.4% (8.5%–30.1%), respectively, and for those who were ART-experienced/unknown VL were 5.2% (2.6%–10.2%) and 10.7% (6.0%–18.9%), respectively.

In univariate analysis, VF was associated with sex, age, ART/VL group, immunosuppression status, previous treatment failure, and region (all $P < .05$) (Table 3). In models adjusted for sex, age, and ART/VL status at DTG start, female sex was

Table 1. Demographic and Clinical Characteristics by ART and Viral Load Status at DTG Start

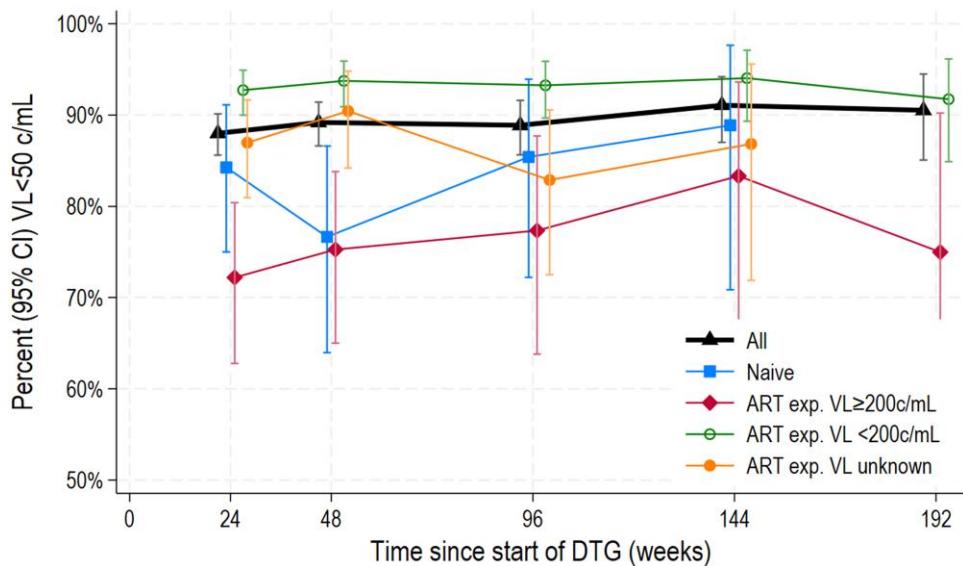
	Total (N = 1230)	Naïve (n = 120)	ART and VL Status		ART Experienced, VL Unknown (n = 345)
			ART Experienced, VL ≥200 Copies/mL (n = 163)	VL <200 Copies/mL (n = 602)	
Demographic characteristics					
Sex					
Male	597 (49%)	64 (53%)	73 (45%)	305 (51%)	155 (45%)
Female	606 (49%)	56 (47%)	90 (55%)	289 (48%)	171 (50%)
Unknown	27 (2%)	0 (<1%)	0 (<1%)	8 (1%)	19 (6%)
Ethnicity					
Black	519 (42%)	68 (57%)	72 (44%)	305 (51%)	74 (21%)
White	451 (37%)	15 (12%)	48 (29%)	181 (30%)	207 (60%)
Asian	130 (11%)	27 (22%)	18 (11%)	45 (7%)	40 (12%)
Other	105 (9%)	6 (5%)	23 (14%)	58 (10%)	18 (5%)
Unknown	25 (2%)	4 (3%)	2 (1%)	13 (2%)	6 (2%)
Region					
United Kingdom/Ireland	382 (31%)	33 (28%)	56 (34%)	232 (39%)	61 (18%)
Thailand	100 (8%)	26 (22%)	14 (9%)	23 (4%)	37 (11%)
Ukraine	282 (23%)	5 (4%)	26 (16%)	80 (13%)	171 (50%)
Rest of Europe ^a	466 (38%)	56 (47%)	67 (41%)	267 (44%)	76 (22%)
Characteristics at HIV diagnosis/ART initiation					
Age at HIV diagnosis (n = 1053), y	2 [0, 6]	11 [6, 16]	2 [1, 5]	2 [0, 5]	2 [0, 4]
Route of HIV acquisition					
Perinatal acquisition	1019 (83%)	63 (52%)	149 (91%)	522 (87%)	285 (83%)
Other	53 (4%)	33 (28%)	2 (1%)	12 (2%)	6 (2%)
Unknown	158 (13%)	24 (20%)	12 (7%)	68 (11%)	54 (16%)
Age at ART initiation (n = 1197), y	3 [1, 8]	15 [11, 16]	3 [1, 9]	2 [0, 7]	3 [1, 7]
Characteristics at start of DTG					
Age, y					
Age group					
0 to <6 y	69 (6%)	7 (6%)	16 (10%)	37 (6%)	9 (3%)
6 to <12 y	319 (26%)	34 (28%)	26 (16%)	173 (29%)	86 (25%)
12 to <18 y	842 (68%)	79 (66%)	121 (74%)	392 (65%)	250 (72%)
Duration on ART (n = 1077), ^b y	9 [5, 12]	...	7 [4, 13]	9 [5, 12]	10 [6, 12]
Viral load (n = 851), ^c copies/mL	40 [20, 532]	30 550 [1890, 85 756]	56633 [1285, 35 558]	38 [20, 40]	...
CD4% (n = 867) ^d	33 [26, 40]	20 [14, 30]	26 [18, 32]	36 [31, 42]	35 [29, 40]
CD4 count (n = 910), ^d cells/mm ³	710 [492, 972]	424 [242, 622]	521 [338, 791]	806 [619, 1036]	725 [528, 942]
BMI-for-age z score (n = 921) ^d	0.28 [-0.65, 1.16]	0.38 [-1.01, 1.22]	0.55 [-0.51, 1.21]	0.34 [-0.56, 1.25]	0.01 [-0.90, 0.75]
Weight band					
<20 kg	76 (6%)	8 (7%)	19 (12%)	38 (6%)	11 (3%)
≥20 kg	857 (70%)	87 (72%)	119 (73%)	479 (80%)	172 (50%)
Unknown	297 (24%)	25 (21%)	25 (15%)	85 (14%)	162 (47%)

Table 1. Continued

	Total (N = 1230)	ART and VL Status			ART Experienced, VL Unknown (n = 345)
		Naïve (n = 120)	VL ≥200 Copies/mL (n = 163)	VL <200 Copies/mL (n = 602)	
WHO immune stage ^d					
None	663 (54%)	37 (31%)	77 (47%)	457 (76%)	92 (27%)
Mild	120 (10%)	18 (15%)	32 (20%)	51 (8%)	19 (6%)
Advanced	53 (4%)	17 (14%)	20 (12%)	9 (1%)	7 (2%)
Severe	74 (6%)	31 (26%)	29 (18%)	11 (2%)	3 (<1%)
Unknown	320 (26%)	17 (14%)	5 (3%)	74 (12%)	224 (65%)
Prior AIDS diagnosis					
No	951 (77%)	111 (92%)	125 (77%)	454 (75%)	261 (76%)
Yes	262 (21%)	9 (8%)	37 (23%)	141 (23%)	75 (22%)
Unknown	17 (1%)	0 (<1%)	1 (<1%)	7 (1%)	9 (3%)
Previous treatment failure					
Year of DTG initiation	2018 [2017, 2020]	269 (22%)	3 (2%)	75 (46%)	63 (18%)
Initial DTG regimen	2019 [2017, 2019]	1209 [2017, 2021]	2017 [2016, 2019]	2018 [2017, 2019]	2020 [2018, 2021]
Initial DTG regimen					
1 NRTI + DTG (3TC + DTG)	11 (<1%)	1 (<1%)	1 (<1%)	7 (1%)	2 (<1%)
≥2 NRTIs + DTG	1083 (88%)	117 (98%)	128 (79%)	519 (86%)	319 (92%)
PI + DTG	49 (4%)	1 (<1%)	7 (4%)	32 (5%)	9 (3%)
≥1 NRTI + PI + DTG	66 (5%)	1 (<1%)	18 (11%)	34 (6%)	13 (4%)
NNRTI + DTG	2 (<1%)	0 (<1%)	0 (<1%)	2 (<1%)	0 (<1%)
≥1 NRTI + NNRTI + DTG	9 (<1%)	0 (<1%)	3 (2%)	5 (<1%)	1 (<1%)
Other combination	10 (<1%)	0 (<1%)	6 (4%)	3 (<1%)	1 (<1%)
NRTI backbone (n = 1069) ^e					
ABC containing	707 (66%)	73 (62%)	71 (56%)	396 (78%)	167 (53%)
TDF containing	257 (24%)	32 (27%)	33 (26%)	63 (12%)	129 (41%)
TAF containing	80 (7%)	10 (9%)	20 (16%)	42 (8%)	8 (3%)
Other/mixed	25 (2%)	2 (2%)	3 (2%)	9 (2%)	11 (3%)
Duration of DTG exposure, wk	93 [49, 163]	106 [51, 171]	100 [47, 173]	108 [60, 182]	68 [30, 126]

Characteristics are summarized as n (%) or median [IQR]. Sample sizes are given for variables with incomplete data.

Abbreviations: ABC, abacavir; ART, antiretroviral therapy; BMI, body mass index; DTG, dolutegravir; HIV, human immunodeficiency virus; IQR, interquartile range; NNRTI, non-nucleoside reverse transcriptase inhibitor; PI, protease inhibitor; TAF, tenofovir alafenamide; TDF, tenofovir disoproxil fumarate; VL, viral load; WHO, World Health Organization; 3TC, lamivudine.


^dCountries include Belgium, Denmark, Germany, Greece, Italy, Poland, Romania, Spain, Sweden, and Switzerland.

^eART-experienced only.

^fClosest within 12 wk before and 1 wk after DTG start.

^gClosest within ± 12 wk of DTG start.

^hAmong those on 2 NRTIs + DTG.

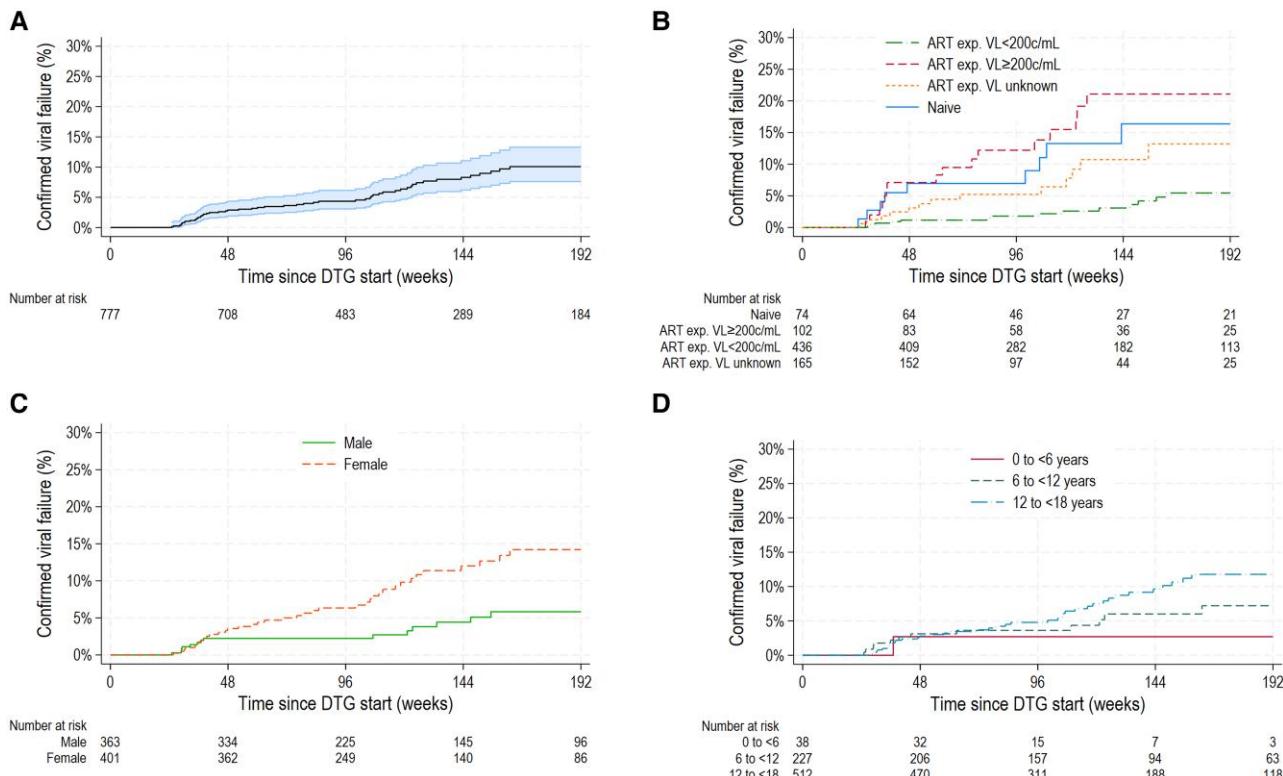
Figure 1. Viral suppression (<50 c/mL) over time, overall, and by ART experience/viral suppression at DTG start. Abbreviations: ART, antiretroviral therapy; c/mL, copies/mL; exp, experienced; DTG, dolutegravir; VL, viral load.

Table 2. Viral Suppression by Duration on DTG by ART and Viral Load Status at DTG Start

	ART and Viral Load Status at DTG Start														
	All			Naive			ART Experienced, VL ≥200 Copies/mL			ART Experienced, VL <200 Copies/mL			ART Experienced, VL Unknown		
	n/N ^a	%	(95% CI)	n/N ^a	%	(95% CI)	n/N ^a	%	(95% CI)	n/N ^a	%	(95% CI)	n/N ^a	%	(95% CI)
Viral load <50 copies/mL															
At 24 wk	734/834	88	(86, 90)	75/89	84	(75, 91)	78/108	72	(63, 80)	434/468	93	(90, 95)	147/169	87	(81, 92)
At 48 wk	611/685	89	(87, 91)	46/60	77	(64, 87)	67/89	75	(65, 84)	375/400	94	(91, 96)	123/136	90	(84, 95)
At 96 wk	408/459	89	(86, 92)	41/48	85	(72, 94)	41/53	77	(64, 88)	263/282	93	(90, 96)	63/76	83	(73, 91)
At 144 wk	245/269	91	(87, 94)	24/27	89	(71, 98)	30/36	83	(67, 94)	158/168	94	(89, 97)	33/38	87	(72, 96)
At 192 wk	153/169	91	(85, 94)	19	18/24	75	(53, 90)	100/109	92	(85, 96)	17

Abbreviations: ART, antiretroviral therapy; DTG, dolutegravir; VL, viral load.

^aPatients in follow-up, still on DTG with VL data available at each time point (± 12 wk) were included (if $n \geq 20$).


associated with a 2-fold increase in hazard of failure (adjusted hazard ratio [aHR] = 2.30 [95% CI: 1.26–4.19] vs males; $P = .006$), as was previous treatment failure (aHR = 2.86 [1.57–5.18]; $P < .001$) (Table 3). There was a significant association with ART/VL status at DTG start: those who were ART-experienced/viremic had the highest hazard of VF (aHR = 4.38 [2.27–8.47]), followed by those who were ART-naive (aHR = 2.93 [1.32–6.51]) compared with those who were ART-experienced/suppressed ($P < .001$). There was also increased hazard with advanced/severe WHO immunosuppression (aHR = 2.22 [1.11–4.45] vs none/mild; $P = .025$) and region ($P = .004$). There was no association with age ($P = .193$) or duration on ART ($P = .871$). In analyses restricted to cohorts with access to TAF, there was no association with NRTI backbone ($P = .227$). Findings were similar using

complete case analysis (Supplementary Table 4). The relationship between sex and VF was further explored, stratified by age at DTG start, and the increased hazard among females was only observed among adolescents (Supplementary Figure 2).

In sensitivity analysis of VF using the more stringent threshold of confirmed VL of 50 c/mL or greater, the overall cumulative incidence was 10.0% (8.0%–12.5%) and 16.7% (13.7%–20.2%) by 96 and 144 weeks, respectively (Supplementary Table 3).

Comparative Effectiveness of DTG- vs PI-Based Regimen

A subset of 725 CAWH who started DTG at age 6 to <12 years on DTG + 2/3 NRTIs were compared with 572 who started a PI + 2/3 NRTIs regimen (274 [48%] on darunavir, 196 [34%] atazanavir, 100 [17%] lopinavir, 2 [$<1\%$] fosamprenavir).

Figure 2. Time to viral failure on DTG (A) overall and by (B) ART and VL status, (C) sex, and (D) age group. Viral failure was defined as 2 consecutive VLs ≥ 400 c/mL after 24 weeks of treatment or 1 VL ≥ 400 c/mL after 24 weeks of treatment followed by discontinuation of DTG within 4 months. Incidence of failure was estimated using Kaplan-Meier methods. Follow-up was censored at the earliest of last suppressed VL or discontinuation of DTG in patients who did not experience viral failure. Analysis was restricted to patients with at least 24 weeks of follow-up after DTG start. Patients who initiated DTG in a trial are excluded. Abbreviations: ART, antiretroviral therapy; c/mL, copies/mL; DTG, dolutegravir; exp, experienced; VL, viral load.

Characteristics at DTG/PI start were similar, although those on DTG were more likely to start the regimen suppressed and without previous treatment failure (Supplementary Table 5). After propensity score weighting, the 2 groups were well balanced (Supplementary Table 6). The hazard of VF by 96 weeks was significantly lower on DTG- vs PI-based regimens (HR = .24; 95% CI: .16, .40; $P < .001$). When stratified by ART/ VL status at DTG/PI start, the hazard of VF was significantly lower on DTG for ART-experienced subgroups (naive: HR = .39 [.12–1.24], $P = .110$; ART-experienced/suppressed: HR = .07 [.02–.33], $P = .001$; ART-experienced/viremic: HR = .31 [.16–.62], $P = .001$; ART-experienced/VL unknown: HR = .25 [.08–.81], $P = .019$) (Supplementary Figure 3). In sensitivity analysis restricted to those on ritonavir boosted darunavir (DRV/r)-based regimens compared with DTG, findings were similar, with a significantly lower hazard of VF on DTG (HR = .22; 95% CI: .13–.39; $P < .001$).

Safety Outcomes on DTG

Of 1146 of 1230 (93%) CAWH on DTG with clinical data, 26 (2%) experienced 52 AEs related to DTG, including 5 SAEs. Four SAEs led to DTG discontinuation. An additional 5 SAEs occurred on

DTG that were unrelated, or a causal relationship to DTG was unknown (Supplementary Table 7). There were no deaths.

Eleven CAWH experienced 15 neurological/neuropsychiatric AEs reported as possibly, probably, or definitively related to DTG: 3 SAEs (acute psychosis, headache and tiredness, headache during hospitalization for a central nervous system [CNS] lymphoma), headache ($n = 5$), insomnia ($n = 2$), dizziness/giddiness ($n = 1$), drowsiness ($n = 1$), depressed mood ($n = 1$), Bell's palsy ($n = 1$), and unspecified neurological event ($n = 1$). Five of these patients discontinued DTG during or 10 or fewer days after the event; 1 of the 15 events did not resolve (headache considered possibly related to DTG in a child with CNS lymphoma).

Among the 849 of 1230 (69%) CAWH with laboratory data, 44 (5%) experienced 54 DAIDS grade 3 or higher events. For all markers, the rates were less than 1 per 100 person-years (Figure 3, Supplementary Table 8). There were grade 3 or higher events in all time periods after DTG start (<12, 12 to <24, ≥ 24 months) for 4 markers (raised triglycerides, low absolute neutrophil count, low hemoglobin, raised bilirubin). There were significant differences in the rates of grade 3 or higher events over time for absolute neutrophil count and

Table 3. Associations Between Participant Characteristics at DTG Start and Viral Failure

	Unadjusted			Adjusted for Age, Sex, and ART/VL Status at DTG Start		
	Hazard Ratio	(95% CI)	P	Hazard ratio	(95% CI)	P
Age (per year increase)	1.10	(1.00, 1.19)	.039	1.06	(.97, 1.15)	.193
Female sex (vs male)	2.66	(1.47, 4.79)	.001	2.30	(1.26, 4.19)	.006
Weight <20 kg (vs ≥20 kg) ^a	.92	(.23, 3.68)	.901	
Region						
United Kingdom/Ireland	1.00003	1.00004
Thailand	2.23	(.67, 7.45)		1.39	(.38, 5.12)	
Ukraine	.23	(.05, .98)		.18	(.04, .79)	
Rest of Europe	.44	(.25, .79)		.41	(.22, .74)	
ART and viral load status						
ART experienced, VL <200 copies/mL	1.00	...	<.001	1.00	...	<.001
ART experienced, VL ≥200 copies/mL	5.18	(2.73, 9.85)		4.38	(2.27, 8.47)	
Naïve	3.18	(1.44, 7.02)		2.93	(1.32, 6.51)	
Advanced/severe immunosuppression (vs none/mild)	4.04	(2.28, 7.16)	<.001	2.22	(1.11, 4.45)	.025
Prior AIDS diagnosis (vs none)	.66	(.32, 1.34)	.245	.64	(.31, 1.31)	.221
Previous treatment failure (vs none)	4.12	(2.33, 7.29)	<.001	2.86	(1.57, 5.18)	<.001
Duration on ART (per year increase) ^b	1.03	(.97, 1.10)	.303	.99	(.93, 1.06)	.871
Backbone ^c						
ABC containing	1.00192	1.00227
TDF containing	1.32	(.31, 5.53)		.68	(.16, 2.99)	
TAF containing	2.27	(.93, 5.51)		2.08	(.84, 5.14)	

Multiple imputation was used to impute missing data for the following variables (n [%] missing): sex (n = 13 [2%]); weight band (n = 9 [1%]); viral suppression status at DTG start (n = 177 [23%]); WHO immune stage (n = 155 [20%]); prior AIDS diagnosis (n = 8 [1%]); duration on ART (n = 17 [2%]).

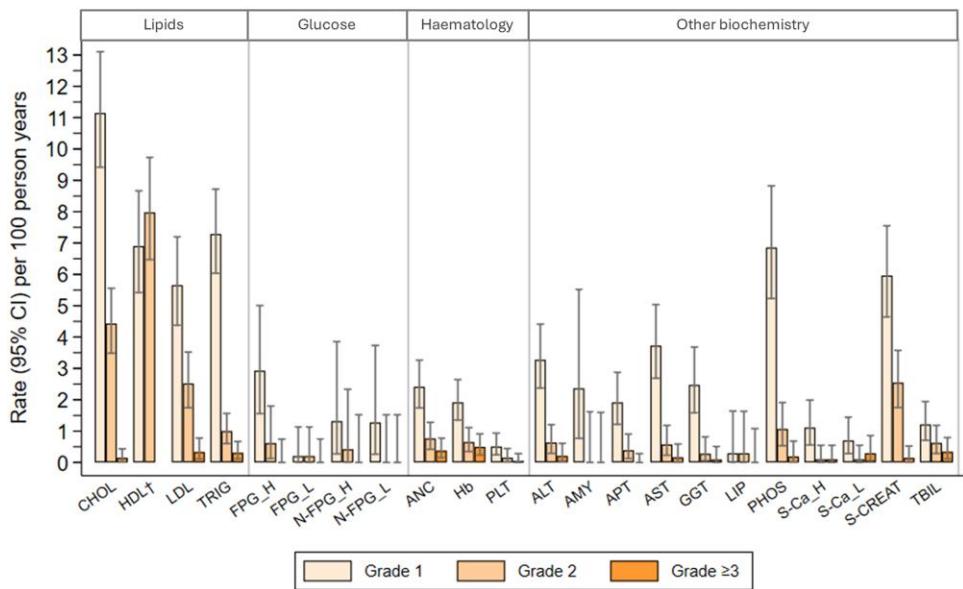
Abbreviations: ABC, abacavir; ART, antiretroviral therapy; CAWH, children and adolescents with HIV; DTG, dolutegravir; TAF, tenofovir alafenamide; TDF, tenofovir disoproxil fumarate; VL, viral load; WHO, World Health Organization.

^aOmitted from adjusted model due to collinearity with age and ART/VL status.

^bAmong treatment-experienced CAWH at DTG start.

^cAnalysis of the backbone was in a subset of CAWH from cohorts where TAF was available.

hemoglobin, with the highest rates in the first 12 months on DTG (Supplementary Figure 4). Rates of grade 2 laboratory AEs were highest for lipid markers and serum creatinine (Figure 3, Supplementary Table 8). Rates of grade 1 and 2 events were highest in the first 12 months for most markers (Supplementary Figure 4, Supplementary Table 9).


Overall, 95 (8%) CAWH discontinued DTG at a median (IQR) of 90 (36, 138) weeks, including 5 (5%) for VF, 17 (18%) for toxicity, 17 (18%) for treatment simplification/more effective treatment options, and 56 (59%) for other/unknown reasons (Supplementary Table 10). The cumulative incidence of discontinuation by 96 and 144 weeks was 5.0% (95% CI: 3.8%–6.7%) and 9.5% (7.5%–12.0%), respectively (Supplementary Figure 5). The incidence of treatment-related discontinuation (failure/toxicity) was 1.3% (0.7%–2.2%) and 1.7% (1.0%–2.8%), respectively.

DISCUSSION

Our large study, spanning multiple countries in Europe and Thailand, included primarily treatment-experienced adolescents, with a median of 9 years on ART at DTG start. There were 3 key findings. First, DTG was generally well tolerated, with low rates of laboratory grade 3 or higher events and few

clinical AEs causally related to DTG. The events reported included neurologically related symptoms, which were consistent with findings from previous studies [9, 12]. Second, high levels of effectiveness were observed overall, with approximately 90% VS throughout time on DTG. The overall incidence of VF was 8.3% by 144 weeks. However, among children/adolescents who were ART-experienced/viremic at DTG start, almost one quarter experienced VF. Third, in our comparative analysis of VF on DTG compared with PI-based regimens, there was significantly a lower hazard of VF on DTG by 96 weeks.

Large pediatric cohorts in sub-Saharan Africa have reported similarly high levels of VS, although we used a lower VL threshold (<50 c/mL vs <400 or <1000 c/mL in most African cohorts). In EPPICC, VS was highest among those who were ART-experienced and virally suppressed at DTG start, which constituted half of our cohort and may infer good adherence. In contrast, VS was lowest among those who were ART-experienced/viremic at DTG start, at 77% at less than 50 c/mL at 96 weeks, which is similar to the 73%–89% reported in comparable adult studies [21, 22] and is slightly lower than CAWH on DTG second-line ART in ODYSSEY (81% at <50 c/mL at 96 weeks in the ≥14-kg cohort) [7] and CHAPAS-4 [8] (83% at <60 c/mL at 96 weeks). This may be partly due to the inclusion of children/adolescents

Figure 3. Rates of first grade 1, grade 2, and grade ≥ 3 laboratory events while on a DTG-based regimen stratified by laboratory marker. Event rates were calculated for episodes on DTG (CAWH could have >1 episode if they discontinued DTG for >30 days and then restarted DTG). Abbreviations: ALT, alanine aminotransferase; AMY, amylase; ANC, absolute neutrophil count; APT, alkaline phosphatase; AST, aspartate aminotransferase; CAWH, children and adolescents with HIV; CHOL, total cholesterol; DAIDS, Division of AIDS; DTG, dolutegravir; FPG_H, high fasting blood glucose; FPG_L, low fasting blood glucose; GGT, gamma-glutamyl transferase; Hb, hemoglobin; HDL, high-density lipoprotein; LDL, low-density lipoprotein cholesterol; LIP, lipase; N-FPG_H, high nonfasting blood glucose; N-FPG_L, low nonfasting blood glucose; PHOS, serum phosphate; PLT, platelets; S-Ca_H, high serum calcium; S-Ca_L, low serum calcium; S-CREAT, serum creatinine; TBIL, total bilirubin; TRIG, triglycerides.[†] There are no DAIDS definitions for HDL abnormalities, instead the guidelines from the US Agency for Healthcare Research and Quality were used. "Borderline low" is presented as grade 1 and "low" as grade 2. There is no grade 3 or 4 category for HDL.

receiving DTG as part of their third- or subsequent-line treatment who were excluded from the above trials. While VS on DTG in EPPICC was high overall at approximately 90%, it is below the UNAIDS (Joint United Nations Programme on HIV and AIDS) target of 95% VS for all on ART by 2025 [23].

The low incidence of VF in our cohort was largely driven by very low incidence ($\sim 3\%$ at 144 weeks) among those who were ART-experienced and virally suppressed at DTG start; this population was not included in the ODYSSEY trial. Among those who were ART-naïve at DTG start, 16.4% had VF by 144 weeks in EPPICC compared to 8.4% in ODYSSEY. Among those who were ART-experienced/viremic at DTG start, VF was 21.1% versus 17.9%, respectively. The higher incidence in our cohort may be partly due to the older age at DTG start (median: 14 years vs 12 years in ODYSSEY) and our ART-experienced/viremic group being more heavily treatment-experienced. Nonetheless, these findings highlight the need for close monitoring, particularly of outcomes following VF.

Few small observational studies [13, 24–26] have reported VF in CAWH on DTG, with estimates ranging from 4% to 17%, but these studies have used different definitions and time points for VF, making direct comparisons difficult. In our analysis, being female, being ART-experienced/viremic or ART-naïve at DTG start, and having advanced or severe

immunosuppression and previous treatment failure were associated with the highest hazard of VF. The 2-fold increase in hazard in females was unexpected, and on further analysis, this association appears to be driven by the adolescent group. While most studies to date have reported poorer virological outcomes in males [27, 28], a recent cohort study in Thailand reported poorer viral responses in females [29]. The reasons for this remain unclear and warrant further investigation.

Our third key finding was that our comparative analysis using propensity scoring methods showed a significantly lower risk of VF on DTG compared with PI-based regimens, consistent with findings from ODYSSEY, and supports the global roll-out of DTG. We also compared outcomes on DTG with DRV/r-based regimens only, and our findings were similar, with a significantly lower hazard of VF on DTG. This contrasts with findings from the CHAPAS-4 trial, where children on DRV/r- or DTG-based second-line ART had superior efficacy outcomes as compared with atazanavir or lopinavir-based regimens. However, the CHAPAS-4 primary outcome was VS at 96 weeks rather than confirmed VF used in our analysis. Also, our study did not have sufficient numbers to directly compare across individual PI-based regimens and we included children on second- and subsequent-line ART.

There are ongoing debates regarding excess weight gain after DTG start, with conflicting findings in adult studies and limited

data in children/adolescents. Growth trends on DTG within this cohort were assessed in separate analyses, which showed weak evidence of greater increases in BMI-for-age *z* score (zBMI) in the 48 weeks after DTG start compared with the 48 weeks before. However, zBMI gains over 96 weeks on DTG were comparable to those observed in children/adolescents on PI-based regimens [30].

There are important study strengths and limitations to consider. Our cohort offers robust real-world evidence on the long-term safety and effectiveness of DTG in children/adolescents in routine-care settings and is one of the largest studies to date to estimate VF and associated factors. Due to the small number of VF events, we were limited to partially adjusted models, which may be subject to residual confounding. The effect of an NRTI backbone could not be fully assessed in this analysis due to the limited number of cohorts with access to TAF (see other analyses on NRTI backbone in EPPICC [31]). Outcomes after VF were not assessed due to insufficient follow-up time. Such data are needed to understand if children/adolescents are likely to re-suppress or remain viremic on DTG and the risk of accumulating INSTI resistance. Last, our cohort had limited data in young children (<6 years) on DTG. Data on longer-term outcomes across the age groups are needed to inform future care.

Supplementary Data

Supplementary materials are available at *Clinical Infectious Diseases* online. Consisting of data provided by the authors to benefit the reader, the posted materials are not copyedited and are the sole responsibility of the authors, so questions or comments should be addressed to the corresponding author.

Notes

Author contributions. All members of the Project Team participated in discussions about the study design, choice of statistical analyses, and interpretation of the findings, and were involved in the preparation and review of the final manuscript. Additionally, K. S. and J. O. drafted the manuscript, and K. S., J. O., and S. C. performed all statistical analyses. All members of the Writing Group were involved in the collection of data and interpretation of the findings.

Acknowledgments. The authors thank all the patients, families, and clinic staff who contribute to cohorts in the European Pregnancy and Pediatric Infections Cohort Collaboration (EPPICC). EPPICC is a collaborative study coordinated by the Penta Foundation (<http://penta-id.org>) and University College London.

Financial support. This work was supported by ViiV Healthcare. The MRC Clinical Trials Unit at University College London (UCL) is supported by the Medical Research Council (UK) (program number: MC_UU_00004/03). Other EPPICC activities received industry funding from Gilead Sciences during the time this work was carried out.

Potential conflicts of interest. A. T. reports research support from the UK Research and Innovation MRC grant outside of the submitted work. A. T., E. C., C. F., C. J., M. M., and T. P. report support from ViiV Healthcare outside of the submitted work. H. C., I. J. C., L. C., C. F., T. G., S. C., A. J., C. J., M. M., L. M. P. T., and T. P. report support from Gilead Sciences outside of the submitted work. I. J. C. reports support from AbbVie outside of the submitted work. L. C. and C. J. report support from the European Union outside of the submitted work. L. C. reports support from European and Developing Countries Clinical Trials Partnership (EDCPT) and Janssen Pharmaceuticals outside of the submitted

work. C. K. reports support from Bayer, Biotest, CSL Behring, Hämophilie Stiftung, Intersero, Novo Nordisk, Pfizer, Roche/Chugai, Takeda, Sobi/Sanofi, EU H2020 ITN, FUSE e.V., and State Hesse outside of the submitted work. A. N.-J. reports support from Biomérieux outside of the submitted work. A. B. and J. O. report support from the World Health Organization (WHO) outside of the submitted work. J. O. reports support from the United Nations Children's Fund (UNICEF) outside of the submitted work. C. H. and V. V. are employees of ViiV Healthcare, the sponsor of the research presented in the manuscript. As employees of ViiV Healthcare, C. H. and V. V. receive GlaxoSmithKline stocks. All other authors report no potential conflicts. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

Author contributors. Writing Group (consisting of the lead authors, Project Team members, followed by Writing Group members (ordered alphabetically) and senior authors: lead authors and Project Team: Karen Scott, John O'Rourke, Charlotte Jackson, Luminita Ene, Luisa Galli, Tessa Goetghebuer, Cassidy Henegar, Christoph Königs, Magdalena Marczyńska, Lars Naver, Antoni Noguera-Julian, Paolo Paioni, Jose T. Ramos, Birgitte Smith, Wipaporn Natalie Songtaweesin, Vana Spoulou, Nattakarn Tantawarak, Anna Turkova, Vani Vannappagari, Alla Volokha, and Ali Judd; Writing Group members: Alastair Bamford, Hannah Castro, Elizabeth Chappell, Giorgia Dalla Valle, Caroline Foster, Sara Guillén Martín, Luis Manuel Prieto Tato, Thanyawee Puthanakit, Halyna Sherstiuk, Irina Shkurka, and Sandra Soeria-Atmadja; joint senior authors: Siobhan Crichton and Intira Jeannie Collins. The author contributors thank all collaborating partners.

Declaration of interests. Cassidy Henegar and Vani Vannappagari are employees of ViiV Healthcare and receive GSK stock are part of their employment.

EPPICC/Penta Coordinating Team. Elizabeth Chappell, Siobhan Crichton, Intira Jeannie Collins, Giorgia Dalla Valle, Charlotte Duff, Kate Edgar, Carlo Giaquinto, Charlotte Jackson, Ali Judd, Laura Mangiarini, John O'Rourke, Karen Scott, and Claire Thorne.

Collaborating cohorts. Belgium: Hopital St Pierre Cohort, Brussels: Tessa Goetghebuer, MD, PhD; Marc Hainaut, MD PhD; Vivine Tremerie, Research nurse; Marc Delforge, data manager.

Denmark: Copenhagen, Denmark: Thomas Ulrik Hoffmann, Sannie Brit Nordly, Birgitte Smith.

Germany: Frankfurt, Germany: Christoph Königs.

Greece: Greek cohort: Vana Spoulou.

Italy: Infectious Disease Unit, Meyer Children's Hospital, IRCCS, Florence Italy; Department of Health Sciences, University of Florence, Florence, Italy: Luisa Galli, MD; Elena Chiappini, MD, PhD; Catiuscia Lisi, DStat; Carlotta Montagnani, MD PhD; Elisabetta Venturini, MD, PhD.

Poland: Polish pediatric cohort: Head of the team: Prof Magdalena Marczyńska, MD, PhD. Members of the team: Jolanta Popielska, MD, PhD; Maria Pokorska-Śpiewak, MD, PhD; Agnieszka Oldakowska, MD, PhD; Konrad Zawadka, MD, PhD; Magdalena Pluta MD, PhD. Administrative assistant: Małgorzata Doroba. Affiliation: Medical University of Warsaw, Poland, Department of Children's Infectious Diseases; Hospital of Infectious Diseases in Warsaw, Poland.

Romania: "Victor Babes" Hospital Cohort, Bucharest: Dr Luminita Ene.

Spain: CoRISPE-S and Madrid cohort: Received funding from Estudio del Análisis Clínico-Epidemiológico de la Infección por el Vih en Niños y Adolescentes, Mujeres Embarazadas y Sus Hijos a Nivel Nacional. Ministerio Sanidad; Project 202007PN0002. Pediatrics units: María José Mellado, Luis Escosa, Milagros García Hortelano, Talfá Sainz, Carlos Grasa, Paula Rodríguez (Hospital Universitario La Paz, Madrid); Jose Tomás Ramos, Pablo Rojo, Luis Manuel Prieto Tato, Cristina Epalza, Alfredo Tagarro, Sara Domínguez, Álvaro Ballesteros (Hospital Universitario Doce de Octubre, Madrid); Marta Illán, Arantxa Berzosa, (Hospital Clínico San Carlos, Madrid); Sara Guillén, Beatriz Soto (Hospital Universitario de Getafe, Madrid); María Luisa Navarro, Jesús Saavedra, Mar Santos, Elena Rincón, David Aguilera, Begoña Santiago, Beatriz Lázaro Martín, Andrea López Suárez (Hospital Universitario Gregorio Marañón, Madrid); Amanda Bermejo (Hospital Universitario

de Móstoles, Madrid); María Penín (Hospital Universitario Príncipe de Asturias de Alcalá de Henares, Madrid); Jorge Martínez (Hospital Infantil Universitario Niño Jesús, Madrid); Katie Badillo (Hospital Universitario de Torrejón, Madrid); Ana Belén Jiménez (Hospital Fundación Jiménez Díaz, Madrid); Adriana Navas (Hospital Universitario Infanta Leonor, Madrid); Eider Oñate (Hospital Universitario Donostia, Guipúzcoa); Itziar Pocheville (Hospital Universitario Cruces, Vizcaya); Elisa Garrote (Hospital Universitario Basurto, Vizcaya); Elena Colino, Olga Afonso (Hospital Insular Materno Infantil, Gran Canaria); Jorge Gómez Sirvent (Hospital Universitario Virgen de la Candelaria, Tenerife); Mónica Garzón, Vicente Román (Hospital General, Lanzarote); Raquel Angulo (Hospital de Poniente de El Ejido, Almería); Olaf Neth, Lola Falcón (Hospital Universitario Virgen del Rocío, Sevilla); Pedro Terol (Hospital Universitario Virgen de la Macarena, Sevilla); Juan Luis Santos, Álvaro Vázquez (Hospital Universitario Virgen de las Nieves, Granada); Begoña Carazo, Antonio Medina (Hospital Regional Universitario, Málaga); Francisco Lendínez, Mercedes Ibáñez (Complejo Hospitalario Torrecárdenas, Almería); Estrella Peromingo, María Isabel Sánchez (Hospital Universitario Puerta del Mar, Cádiz); Beatriz Ruiz (Hospital Universitario Reina Sofía de Córdoba); Ana Grande (Complejo Hospitalario Universitario Infanta Cristina, Badajoz); Francisco José Romero (Complejo Hospitalario, Cáceres); Carlos Pérez, Alejandra Méndez (Hospital de Cabueñas, Asturias); Laura Calle (Hospital Universitario Central de Asturias); Marta Pareja (Complejo Hospitalario Universitario, Albacete); Begoña Losada (Hospital Virgen de la Salud, Toledo); Mercedes Herranz (Hospital Virgen del Camino, Navarra); Matilde Bustillo (Hospital Universitario Miguel Servet, Zaragoza); Pilar Collado (Hospital Clínico Universitario Lozano Blesa, Zaragoza); José Antonio Couceiro (Complejo Hospitalario Universitario, Pontevedra); Leticia Vila (Complejo Hospitalario Universitario, La Coruña); Consuelo Calviño (Hospital Universitario Lucus Augusti, Lugo); Ana Isabel Piquer, Manuel Oltra (Hospital Universitario La Fe, Valencia); César Gavilán (Hospital Universitario de San Juan de Alicante, Alicante); Elena Montesinos (Hospital General Universitario, Valencia); Marta Dapena (Hospital General, Castellón); Beatriz Jiménez (Hospital Universitario Marqués de Valdecilla, Cantabria); Ana Gloria Andrés (Complejo Hospitalario, León); Víctor Marugán, Carlos Ochoa (Complejo Hospitalario, Zamora); Ana Isabel Menasalvas, Eloísa Cervantes (Hospital Universitario Virgen de la Arrixaca, Murcia) and Pediatric HIV-BioBank integrated in the Spanish AIDS Research Network and collaborating centers. Adult units: Cristina Díez, (Hospital Universitario Gregorio Marañón, Madrid). Ignacio Bernardino, María Luisa Montes, Eulalia Valencia, Ana Delgado (Hospital Universitario La Paz, Madrid); Rafael Rubio, Federico Pulido, Otilia Bisbal (Hospital Universitario Doce de Octubre, Madrid); Alfonso Monereo Alonso (Hospital Universitario de Getafe, Madrid); Juan Berenguer, Cristina Díez, Teresa Aldamiz, Francisco Tejerina, Juan Carlos Bernaldo de Quirós, Belén Padilla, Raquel Carrillo, Pedro Montilla, Elena Bermúdez, Maricela Valerio (Hospital Universitario Gregorio Marañón, Madrid); Jose Sanz (Hospital Universitario Príncipe de Asturias de Alcalá de Henares, Madrid); Alejandra Gimeno (Hospital Universitario de Torrejón, Madrid); Miguel Cervero, Rafael Torres (Hospital Universitario Severo Ochoa de Leganés, Madrid); Santiago Moreno, María Jesús Pérez, Santos del Campo (Hospital Universitario Ramón y Cajal, Madrid); Pablo Ryan, Jesus Troya (Hospital Universitario Infanta Leonor, Madrid); Jesus Sanz (Hospital Universitario La Princesa, Madrid); Juan Losa, Rafael Gomez (Hospital Universitario Fundacion Alcorcon, Madrid); Miguel Górgolas (Hospital Fundacion Jimenez Diaz, Madrid); Alberto Diaz, Sara de la Fuente (Hospital Universitario Puerta de Hierro de Majadahonda, Madrid); Jose Antonio Iribarren, Maria Jose Aramburu, Lourdes Martinez (Hospital Universitario Donostia, Guipuzcoa); Ane Josune Goikoetxea (Hospital Universitario Cruces, Vizcaya); Sofia Ibarra, Mireia de la Peña (Hospital Universitario Basurto, Vizcaya); Víctor Asensi (Hospital Universitario Central de Asturias); Michele Hernandez (Hospital Universitario Insular, Gran Canaria); María Remedios Alemán, Ricardo Pelazas, Maria del Mar Alonso, Ana María López, Dácil García,

Jehovana Rodriguez (Hospital Universitario de Canarias, Tenerife); Miguel Angel Cardenes (Hospital Universitario Doctor Negrin, Gran Canaria); Manuel A. Castaño, Francisco Orihuela, Inés Pérez, Ma Isabel Mayorga (Hospital Regional Universitario, Málaga); Luis Fernando Lopez-Cortes, Cristina Roca, Silvia Llaves (Hospital Universitario Virgen del Rocío, Sevilla); Maria Jose Rios, Jesus Rodriguez, Virginia Palomo (Hospital Universitario Virgen de la Macarena, Sevilla); Juan Pasquau, Coral Garcia (Hospital Universitario Virgen de las Nieves, Granada); Jose Hernandez, Clara Martinez (Hospital Universitario Clínico San Cecilio, Granada); Antonio Rivero, Angela Camacho (Hospital Universitario Reina Sofia, Cordoba); Dolores Merino, Miguel Raffo, Laura Corpá (Hospital Universitario Juan Ramon Jimenez, Huelva); Elisa Martinez, Fernando Mateos, Jose Javier Blanch (Complejo Hospitalario Universitario, Albacete); Miguel Torralba (Hospital Universitario, Guadalajara); Piedad Arazo, Gloria Samperiz (Hospital Universitario Miguel Servet, Zaragoza); Celia Miralles, Antonio Ocampo, Guillermo Pousada (Hospital Alvaro Cunqueiro, Pontevedra); Alvaro Mena (Complejo Hospitalario Universitario, La Coruña); Marta Montero, Miguel Salavert, (Hospital Universitario La Fe, Valencia); Maria Jose Galindo, Natalia Pretel (Hospital Clínico Universitario, Valencia); Joaquín Portilla, Irene Portilla (Hospital General Universitario, Alicante); Felix Gutierrez, Mar Masia, Cati Robledano, Araceli Adsuar (Hospital General Universitario de Elche, Alicante); Carmen Hinojosa, Begoña Monteagudo (Hospital Clínico, Valladolid); Pablo Bachiller (Hospital General, Segovia); Jesica Abadía (Hospital Universitario Rio Hortega, Valladolid); Carlos Galera, Helena Albendín, Marian Fernandez (Hospital Universitario Virgen de la Arrixaca, Murcia); Jose Ramon Blanco (Complejo Hospitalario San Millan-San Pedro, la Rioja). Spain: CoRISPE-cat, Catalonia: CoRISPE-cat receives financial support from the Instituto de Salud Carlos III through the Red Temática de Investigación Cooperativa en Sida (grant numbers RED RIS RD06/0006/0035 yRD06/0006/0021). Members: Hospital Universitari Vall d'Hebron, Barcelona (Pere Soler-Palacín, Beatriz Álvarezand Santiago Pérez-Hoyos [statistician]), Hospital Universitari del Mar, Barcelona (Núria López), Hospital Universitari Germans Trias i Pujol, Badalona (María Méndez, Clara Carreras), Hospital Universitari Josep Trueta, Girona (Borja Guarch), Hospital Universitari Arnau de Vilanova, Lleida (Teresa Vallmanya, Laura Mingueñ-Domingo), Hospital Universitari Joan XXIII, Tarragona (Olga Calavia), Consorci Sanitari del Maresme, Mataró (Lourdes García), Hospital General de Granollers (Maite Coll, Berta Pujol), Corporació Sanitària Parc Taulí, Sabadell (Valentí Pineda), Hospital Universitari Sant Joan, Reus (Neus Rius), Fundació Althaia, Manresa (Núria Rovira), Hospital Son Espases, Mallorca (Joaquín Dueñas) and Hospital Sant Joan de Déu, Esplugues (Clàudia Fortuny, Anna Gamell, Antoni Noguera-Julian).

Sweden: Karolinska University Hospital, Stockholm, The Swedish InfCareHIV cohort (Lars Navér, Sandra Soeria-Atmadja, Vendela Hagås, Johanna Rubin, Nora Einarsson).

Switzerland: Members of the Swiss HIV Cohort Study (SHCS) and the Swiss Mother and Child HIV Cohort (MoCHiV) Study: I. A. Abela, K. Aebi-Popp, A. Anagnostopoulos, M. Battegay, M. Baumann, E. Bernasconi, D. L. Braun, H. C. Bucher, A. Calmy, M. Cavassini (Chairman of the Clinical and Laboratory Committee), A. Ciuffi, P. A. Crisinel, K. E. A. Darling, G. Dollenmaier, A. Duppenthaler, M. Egger, L. Elzi, J. S. Fehr, J. Fellay, K. Francini, H. Furrer, C. A. Fux, H. F. Günthard (President of the SHCS), A. Hachfeld, D. H. U. Haerry (deputy of "Positive Council"), B. Hasse, H. H. Hirsch, M. Hoffmann, I. Hösli, M. Huber, D. Jackson-Perry (patient representatives), C. R. Kahlert (Chairman of the Mother and Child Substudy), O. Keiser, T. Klimkait, M. Kohns, L. Kottanattu, R. D. Kouyos, H. Kovari, K. Kusejko (Head of Data Center), N. D. Labhardt, Karoline Leuzinger, B. Martinez de Tejada, C. Marzolini, K. J. Metzner, N. Müller, J. Nemeth, D. Nicca, J. Notter, P. Paioni, G. Pantaleo, M. Perreau, Ch. Polli, E. Ranieri, A. Rauch, L. P. Salazar-Vizcaya, P. Schmid, O. Segeral, R. F. Speck, M. Stöckle, P. E. Tarr, M. Thanh Lecompte, A. Trkola, N. Wagner, G. Wandeler (Chairman of the Scientific Board), M. Weisser, S. Yerly.

This study was financed within the framework of the Swiss HIV Cohort Study, supported by the Swiss National Science Foundation (grant number 201369).

Thailand: Center of Excellence for Pediatric Infectious Diseases and Vaccines, Faculty of Medicine, Chulalongkorn University: Rachaneekorn Nadsasarn, Chutima Saisaengjan, Patama Deeklum, Phattharapa Khamkhen, Lucksanapon Pitikawinwong. Infectious Disease Unit, Department of Pediatrics, Faculty of Medicine, Khon Kaen University: Nattakarn Tantawarak, MD, Pope Kosalaraka, MD, Chanasda Kakkawee, Piangjit Tharnprisan.

United Kingdom/Ireland: Collaborative HIV Paediatric Study (CHIPS): CHIPS was funded by the NHS (London Specialized Commissioning Group) and received additional support from Abbott, Boehringer Ingelheim, Bristol-Myers Squibb, GlaxoSmithKline, Gilead Sciences, Janssen, and Roche. The MRC Clinical Trials Unit at UCL is supported by the Medical Research Council (<https://www.mrc.ac.uk>) program number MC_UU_00004/03.

CHIPS Steering Committee: Hermione Lyall (chair), Alasdair Bamford, Karina Butler, Katja Doerholt, Conor Doherty, Caroline Foster, Ian Harrison, Julia Kenny, Nigel Klein, Gillian Letting, Paddy McMaster, Fungai Murau, Edith Nsangi, Katia Prime, Andrew Riordan, Fiona Shackley, Delane Shingadia, Sharon Storey, Gareth Tudor-Williams, Anna Turkova, Steve Welch. MRC Clinical Trials Unit: Intira Jeannie Collins, Claire Cook, Siobhan Crichton, Donna Dobson, Keith Fairbrother, Diana M. Gibb, Ali Judd, Marthe Le Prevost, Nadine Van Looy. Integrated Screening Outcome Surveillance Service (ISOSS), UCL: Helen Peters, Kate Francis, Claire Thorne.

Hospitals participating in CHIPS in 2019/2020: University Hospitals Birmingham NHS Foundation Trust, Birmingham: L. Thrasyvoulou, S. Welch; Brighton and Sussex University Hospitals NHS Trust: K. Fidler; University Hospitals Bristol NHS Foundation Trust, Bristol: J. Bernatoniene, F. Manyika; Calderdale and Huddersfield NHS Foundation Trust, Halifax: G. Sharpe; Derby Teaching Hospitals NHS Foundation Trust: B. Subramaniam; Glasgow Royal Hospital for Children, Glasgow: R. Hague, V. Price; Great Ormond Street Hospital for Children NHS Foundation Trust, London: J. Flynn, N. Klein, A. Bamford, D. Shingadia, K. Grant; Oxford University Hospitals NHS Foundation Trust, Oxford: S. Yeadon, S. Segal; King's College Hospital NHS Foundation Trust, London: S. Hawkins; Leeds Teaching Hospitals NHS Trust, Leeds: M. Dowie; University Hospitals of Leicester NHS Trust, Leicester: S. Bandi, E. Percival; Luton and Dunstable Hospital NHS Foundation Trust, Luton: M. Eisenhut, K. Duncan; Milton Keynes General University Hospital NHS Foundation Trust, Milton Keynes: L. Anguva, L. Wren, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle: T. Flood, A. Pickering; The Pennine Acute Hospitals NHS Trust, Manchester: P. McMaster, C. Murphy; North Middlesex University Hospital NHS Trust, London: J. Daniels, Y. Lees; Northampton General Hospital NHS Trust, Northampton: F. Thompson; London North West Healthcare NHS Trust, Middlesex: A. Williams, B. Williams, S. Pope; Barts Health NHS Trust, London: Dr S. Libeschutz; Nottingham University Hospitals NHS Trust, Nottingham: L. Cliffe, S. Southall; Portsmouth Hospitals NHS Trust, Portsmouth: A. Freeman; Raigmore Hospital, Inverness: H. Freeman; Royal Belfast Hospital for Sick Children, Belfast: S. Christie; Royal Berkshire NHS Foundation Trust, Reading: A. Gordon; Royal Children's Hospital, Aberdeen: D. Rosie Hague, L. Clarke; Royal Edinburgh Hospital for Sick Children, Edinburgh: L. Jones, L. Brown; Royal Free NHS Foundation Trust, London: M. Greenberg; Alder Hey Children's NHS Foundation Trust, Liverpool: C. Benson, A. Riordan; Sheffield Children's NHS Foundation Trust, Sheffield: L. Ibberson, F. Shackley; University Hospital Southampton NHS Foundation Trust, Southampton: S. Patel, J. Hancock; St George's University Hospitals NHS Foundation Trust, London: K. Doerholt, K. Prime, M. Sharland, S. Storey; Imperial College Healthcare NHS Trust, London: E. G. H. Lyall, C. Foster, P. Seery, G. Tudor-Williams, N. Kirkhope, S. Raghunanan; Guy's and St Thomas' NHS Foundation Trust, London: Dr Julia Kenny, A. Callaghan; University Hospitals of North Midlands NHS Trust, Stoke on Trent:

A. Bridgwood, P. McMaster; University Hospital of Wales, Cardiff: J. Evans, E. Blake; NHS Frimley Health Foundation Trust, Slough: A. Yannoulias.

Ukraine: Pediatric HIV Cohort: Dr T. Kaleeva, Dr Y. Baryshnikova (Odessa Regional Centre for HIV/AIDS); Dr S. Soloha (Donetsk Regional Centre for HIV/AIDS); Dr N. Bashkatova (Mariupol AIDS Center); Dr I. Raus (Kiev City Centre for HIV/AIDS); Dr O. Glutshenko, Dr Z. Ruban (Mykolaiv Regional Centre for HIV/AIDS); Dr N. Prymak (Kryyyi Rih); Dr G. Kiseleva (Simferopol); Dr Alla Volokha (Shupyk National Medical Academy of Postgraduate Education); Dr Ruslan Malyuta (Perinatal Prevention of AIDS Initiative, Odessa); Dr H. Bailey, Prof Claire Thorne (UCL, London, United Kingdom). Funding acknowledgment: PENTA Foundation.

Data sharing statement. The EPPICC data are held at MRC Clinical Trials Unit at UCL, which encourages optimal use of data by employing a controlled access approach to data sharing, incorporating a transparent and robust system to review requests and provide secure data access consistent with the relevant ethics committee approvals. The rationale for this approach has been published (doi: 10.1186/s13063-015-0604-6). Ethics committee approval for use of EPPICC data restricts the ability for EPPICC data to be shared publicly without request. Rather, ethics approval does allow a controlled access approach. All requests for data are considered and can be initiated by contacting mrcctu.datareleaserequest@ucl.ac.uk.

References

1. World Health Organization (WHO). Consolidated guidelines on HIV prevention, testing, treatment, service delivery and monitoring: recommendations for a public health approach. July 2021. Available at: <https://www.who.int/publications-detail-redirect/9789240031593>. Accessed 25 July 2022.
2. Kanter S, Vitoria M, Zoratti M, et al. Comparative efficacy, tolerability and safety of dolutegravir and efavirenz 400 mg among antiretroviral therapies for first-line HIV treatment: a systematic literature review and network meta-analysis. *EClinicalMedicine* 2020; 28:100573.
3. Nickel K, Halfpenny NJA, Snedecor SJ, Punekar YS. Comparative efficacy, safety and durability of dolutegravir relative to common core agents in treatment-naïve patients infected with HIV-1: an update on a systematic review and network meta-analysis. *BMC Infect Dis* 2021; 21:222.
4. Blanco-Arévalo JL, García-Deltoro M, Torralba M, et al. HIV-1 resistance and virological failure to treatment with the integrase inhibitors bictegravir, cabotegravir, and dolutegravir: a systematic literature review. *AIDS Rev* 2024; 26:67-79.
5. Peñafiel J, de Lazzari E, Padilla M, et al. Tolerability of integrase inhibitors in a real-life setting. *J Antimicrob Chemother* 2017; 72:1752-9.
6. Greenberg L, Ryom L, Wandeler G, et al. Uptake and discontinuation of integrase inhibitors (INSTIs) in a large cohort setting. *J Acquir Immune Defic Syndr* 2020; 83:240-50.
7. Turkova A, White E, Mujuru HA, et al. Dolutegravir as first- or second-line treatment for HIV-1 infection in children. *N Engl J Med* 2021; 385:2531-43.
8. Bwakura-Dangarembizi M, Szubert AJ, Mumbiro V, et al. CHAPAS-4 trial: second-line anchor drugs for children with HIV in Africa. *medRxiv* [Preprint]. April 15, [Cited 2024 Jun 19]. Available at: <https://doi.org/10.1101/2024.04.12.24305333>.
9. Bacha JM, Dlamini S, Anabwani F, et al. Realizing the promise of dolutegravir in effectively treating children and adolescents living with HIV in real-world settings in 6 countries in eastern and southern Africa. *Pediatr Infect Dis J* 2023; 42:576-81.
10. Devendra A, Kohler M, Letsika M, et al. HIV viral suppression in children and adolescents 2 years after transition to dolutegravir: a multicentre cohort study. *AIDS* 2024; 38:1013.
11. Gill MM, Herrera N, Guilaze R, et al. Virologic outcomes and ARV switch profiles 2 years after national rollout of dolutegravir to children less than 15 years in southern Mozambique. *Pediatr Infect Dis J* 2023; 42:893-8.
12. Frange P, Avettand-Fenoel V, Veber F, Blanche S. Similar efficacy and safety of dolutegravir between age groups of HIV-1-infected paediatric and young adult patients aged 5 years and older. *HIV Med* 2019; 20:561-6.
13. Torres-Fernandez D, Jiménez de Ory S, Fortuny C, et al. Integrase inhibitors in children and adolescents: clinical use and resistance. *J Antimicrob Chemother* 2022; 77:2784-92.
14. Judd A, Chappell E, Turkova A, et al. Long-term trends in mortality and AIDS-defining events after combination ART initiation among children and adolescents with perinatal HIV infection in 17 middle- and high-income countries in Europe and Thailand: a cohort study. *PLoS Med* 2018; 15:e1002491.

15. European AIDS Clinical Society (EACS). *European AIDS Clinical Society Guidelines Version 12.1*; 2024. Available at: <https://eacs.sanfordguide.com/>. Accessed 24 February 2025.
16. World Health Organization. WHO case definitions of HIV for surveillance and revised clinical staging and immunological classification of HIV-related disease in adults and children. Geneva, Switzerland: World Health Organization; 2007. Available at: <https://iris.who.int/handle/10665/43699>. Accessed 11 October 2024.
17. Azur MJ, Stuart EA, Frangakis C, Leaf PJ. Multiple imputation by chained equations: what is it and how does it work? *Int J Methods Psychiatr Res* **2011**; 20:40–9.
18. Division of AIDS (DAIDS) table for grading the severity of adult and pediatric adverse events. 2017. Available at: <https://rsc.cnaid.nih.gov/sites/default/files/daidsgradingcorrectedv21.pdf>. Accessed 10 November 2023.
19. Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents, National Heart, Lung, and Blood Institute. Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents: summary report. *Pediatrics* **2011**; 128(Suppl 5):S213–56.
20. Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. *J Am Stat Assoc* **1999**; 94:496–509.
21. Tschumi N, Lerotholi M, Motaboli L, Mokete M, Labhardt ND, Brown JA. Two-year outcomes of treatment-experienced adults after programmatic transitioning to dolutegravir: longitudinal data from the VICONEL human immunodeficiency virus cohort in Lesotho. *Clin Infect Dis* **2023**; 77:1318–21.
22. Schramm B, Temfack E, Descamps D, et al. Viral suppression and HIV-1 drug resistance 1 year after pragmatic transitioning to dolutegravir first-line therapy in Malawi: a prospective cohort study. *Lancet HIV* **2022**; 9:e544–53.
23. UNAIDS. Understanding measures of progress towards the 95–95–95 HIV testing, treatment and viral suppression targets. 2024. Available at: https://www.unaids.org/sites/default/files/media_asset/progress-towards-95-95-95_en.pdf. Accessed 30 September 2024.
24. Frange P, Blanche S, Veber F, Avettand-Fenoel V. Dolutegravir in the long term in children and adolescents: frequent virological failure but rare acquired genotypic resistance. *HIV Med* **2021**; 22:958–64.
25. Kouamou V, Mavetera J, Manasa J, Ndhlovu CE, Katzenstein D, McGregor AM. Pretreatment HIV drug resistance among adults initiating or re-initiating first-line antiretroviral therapy in Zimbabwe: fast-tracking the transition to dolutegravir-based first-line regimens? *AIDS Res Hum Retroviruses* **2021**; 37: 776–83.
26. Mutagonda RF, Mlyuka HJ, Maganda BA, Kamuhabwa AAR. Adherence, effectiveness and safety of dolutegravir based antiretroviral regimens among HIV infected children and adolescents in Tanzania. *J Int Assoc Provid AIDS Care* **2022**; 21:23259582221109613.
27. Fokam J, Nka AD, Mamgue Dzukam FY, et al. Viral suppression in the era of transition to dolutegravir-based therapy in Cameroon: children at high risk of virological failure due to the lowly transition in pediatrics. *Medicine (Baltimore)* **2023**; 102:e33737.
28. UNAIDS Joint United Nations Programme on HIV/AIDS. The urgency of now: AIDS at a crossroads. 2024. Available at: https://www.unaids.org/sites/default/files/media_asset/2024-unaids-global-aids-update_en.pdf. Accessed 1 January 2025.
29. Putcharoen O, Lertpiriyasuwat C, Noknoy S, et al. High viral suppression after transition from nonnucleoside reverse transcriptase inhibitor- to dolutegravir-based antiretroviral therapy in the Thai National Treatment Programme. 2024. Available at: <https://programme.aids2024.org/mobile/people/index>. Accessed 21 August 2024.
30. Crichton S, Edgar K, Scott K, et al. Changes in body mass Index in children and adolescents living with HIV in Europe and Thailand before and after starting dolutegravir and compared to protease inhibitors. Presented at: International Workshop on Pediatrics & HIV, Munich, Germany, July 2024.
31. Chappell E, Castro H, Jackson C, et al. Effectiveness and safety of tenofovir alafenamide fumarate (TAF)-based therapy compared to tenofovir disoproxil fumarate (TDF)- and abacavir (ABC)-based therapy in children and adolescents living with HIV (CALHIV) in the European Pregnancy and Paediatric Infections Cohort Collaboration (EPPICC). International Workshop on Pediatrics & HIV, Munich, Germany, July 2024.

Managing multidrug-resistant HIV-1 presents unique challenges¹

Rukobia, in combination with other antiretrovirals, is indicated for the treatment of adults with multidrug resistant HIV-1 infection for whom it is otherwise not possible to construct a suppressive antiviral regimen

Rukobia▼ (fostemsavir) provides an option to be added in or used as a replacement ARV in people who are experiencing difficulty achieving viral suppression on their current ART. Here, you'll learn how Rukobia works differently from other ARVs and about its durable efficacy and robust CD4+ T-cell outcomes from the BRIGHTE trial over 5 years. Are you ready to see how Rukobia could help you meet the needs of eligible people living with MDR HIV-1?

Discover what's possible with RUKOBIA:

Leads to a promotional ViiV website

Durable virologic suppression, demonstrated over 5 years of follow-up in the BRIGHTE Study.³

Robust CD4+ T-cell recovery, as per the BRIGHTE study.³

Low potential for clinically significant DDIs, as RUKOBIA can be co-administered with most common treatments for HIV and frequently prescribed medicines for comorbidities²

Consistent safety and tolerability profile, with 5 years of follow-up data, as per the BRIGHTE study^{2,3}

Adverse events should be reported. Reporting forms and information can be found at <https://yellowcard.mhra.gov.uk/> or search for MHRA Yellowcard in the Google Play or Apple App store. Adverse events should also be reported to GSK via the [GSK Reporting Tool](#) or on 0800 221441.

Prescribing Information

ART, antiretroviral therapy; ARV, antiretroviral; CD4, cluster of differentiation 4; DDI, drug–drug interaction; HIV-1, human immunodeficiency virus type 1; MDR, multidrug-resistant.

References

1. Ackerman P, Thompson M, Molina JM, et al. Long-term efficacy and safety of fostemsavir among subgroups of heavily treatment-experienced adults with HIV-1. AIDS. 2021;35(7):1061-1072.
2. RUKOBIA Summary of Product Characteristics.
3. Aberg J et al. Infect Dis Ther 2023; 12:2321-2335.