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MANUSCRIPT 

 

Introduction: 

Brain Plasticity (BP) represents a pivotal concept in modern Neuroscience, whose 

measurability is still challenging, although the technological advances. Neuroplasticity 

represents the ability of neural networks to activate compensation mechanisms for the 

functional consequences of an injury to the brain architecture1. In case of Gliomas, different 

biochemical, paracrine, and synaptic transmission are involved in parallel to macroscale 

network remodeling2, including local and extended modulations of functional brain 

activities 3,4 and tumor volume  within associated cortical areas3,5,6. Three principle BP 

biomarkers have been identified1: 3D tumor location and white matter (WM) infiltration, 

velocity of expansion over time, and cognitive compensation (i.e.Metaplasticity). Brain-

to-glioma cross-talk determines the type of brain networks rearrangement, and  strictly 

depends on the histological diagnosis [according to the World Health Organization 

Classification (WHO)20217], speed of progression and WM-fiber-tracts infiltration, with 

an evolving framework of plasticity potential. Modulation of the Metaplasticity, according 

to individual characteristics, represents a challenge  to propose dynamic therapeutic 

strategy for individual BP profiling, inspired by previous relevant works8, and to 

understand the prospective cognitive compensation and functional reshaping9. Based on 

this background, Brain Plasticity Index (BPI) has not been specified so far, although several 

models have been proposed. Considering noninvasive system of brain stimulation and 

cognitive study, Navigated TMS (nTMS) is a noninvasive, well-tolerated, safe, and reliable 

method to investigate cortical activity, commonly used for preoperative mapping and 

integration in the neurosurgical setting. Cognitive functions, have been explored with 

nTMS to optimize its potential: Motor function10-15, Language12,16-18, and also rehabilitation 

programs for postoperative motor functions’ recovery19; Calculation20-22 and Visuo-Spatial 

networks23,24 have been investigated with the use of nTMS to map and preserve cognitive 

functions, with comparison of nTMS data and intraoperative Direct Cortical Stimulation 

(DCS), i.e. the gold standard.  

Objectives: This study aims at identifying a possible cortical Brain Plasticity Index (BPI) 

that accounts for the cortical variation in Language function, based on the pre-op/post-

operative nTMS mapping, determining the quantitative-qualitative displacement of cortical 

areas, and investigating the potential correlation between BPI and cognitive performance 

status. An innovative method to calculate BPI is illustrated.  
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Methods:  

To achieve these objectives, we designed a monocentric prospective clinical observational 

study, approved by the ethics committee CEAVC (Comitato Etico Area Vasta Centro), 

section of the Regional Ethics Committee of the Region of Tuscany, in compliance with 

the Declaration of Helsinki. We enrolled 40 neuro-oncological patients who were followed 

from January to December 2024 at the Neurosurgical Department of the University 

Hospital of Florence, harboring primitive (intra-axial/extra-axial tumors) or secondary 

brain lesions (i.e. Brain metastases) or vascular lesions (i.e. cavernomas, lymphomas) or 

Focal Cortical Dysplasia (FCD), inducing epilepsy. All surgeries were performed by the 

same senior neurosurgeon (ADP). The surgical goal was Gross Total Resection 

(GTR; >90% tumor removal), with subtotal resection reserved for cases involving 

functional boundaries to prevent neurological deficits25. We collected pre- and post-

operative imaging data (MRI DTI scans and tractography based on DTI sequences), nTMS 

data for Language (Ln), Calculation (C) and Neglect (N) (acquired bilaterally whenever 

possible, according to patients’ compliance and tolerability), evaluation of logopedic and 

cognitive performance.  

Imaging and MRI sequences: preoperative magnetic resonance imaging (MRI) was 

performed at our Neuroradiological Department, using a 3T Tesla M.R.I. machine (Ingenia 

3T, Philips Medical Systems, Best, The Netherlands) with Diffusion Tensor Imaging (DTI) 

sequences. Multiple Regions-of-Interest (ROIs) were used to create subcortical pathways, 

based on nTMS preoperative mapping. 

Motor evaluation: we used the Muscle Power Assessment (MRC Scale)26 for testing 

strength on the upper and lower limbs during clinical evaluation.  

Cognitive Assessments: 

The cognitive tests included: MiniMental State Examination (MMSE)27, Aachener 

Aphasie Test (AAT)28, Neuropsychological test for aphasia (ENPA)29, items for written 

calculations, additions, subtractions and multiplications, the Oxford Cognitive Screen 

(OCS), item Barrage 30, the Bells test 31, Wechsler adult Intelligence Scale IV (WAIS)32, 

Frontal Assessment Battery(FAB)33,  Babcock Test, Italian version34. All tests were 

performed by our logopaedist (FF).  

 

I) nTMS Data acquisition 
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We used the rnTMS system (Galileo NetBrain Neuronavigator 9000, EB Neuro Corp., 

Florence, Italy). The mapping method and the protocol were the same illustrated in our 

previous works11,22. Volumetric T1-weighted MRI sequences were used to reconstruct the 

patient's 3D brain model. The search for the hand-hotspot (regularly on the first dorsal 

interosseous_FDI) began from the anatomically identified hand-motor-area within the 

precentral gyrus. The Resting Motor Threshold (RMT) was then determined (i.e. the lowest 

nTMS intensity capable of eliciting a MEP amplitude ≥100μV in the relaxed FDI muscle, 

in at least 5/10 stimulations). Preoperative Cognitive Mapping (PCM) was then performed 

with a stimulation intensity of 105% of the RMT for the upper limbs, and 110% of the 

RMT for the lower limbs. 

The mapping of eloquent cortical areas for Language was performed through the object 

naming task (D080), using a repetitive nTMS pulse trains (5 pulses/5Hz; inter-picture 

presentation interval (IPI) of 1000 ms; pictures presentation time (PPT) of 4000 ms).  

 

II) Data processing pipeline for the calculation of the Brain Plasticity Index 

Pre- and post-operative nTMS mapping data were acquired and processed with application 

of an image processing pipeline, see Figure 1. The pipeline has been developed with 

Python with open-source frameworks itk v5.435,36 [1,2], itk-elastix v0.19.137,38 [3,4], 

opencv v4.9 39[5], scipy v1.12 40[6] and scikit-image v0.22 41[7]. First, negative and 

positive TMS points (x, y, z locations) were used to generate two binary volumes indicating 

the location of the TMS data in the MRI volume. This volume was then registered (affine 

transform) on the T1 volume. For each cerebral function, we considered if nTMS tests have 

been performed for both hemispheres. Using the registered binary nTMS volume, two 2D 

maps were created with an orthogonal projection of the volume on the sagittal plane of Rh 

and Lh. 

To provide an example of how we used the presented pipeline, for patient 17, we 

represented in Figure 2 the orthogonal projection on the Rh obtained for the language task. 

Using this projection, we removed the false-positive nTMS points from the analyses (i.e. 

those for which both negative and positive nTMS identifications were found). The 

comparison was made separately for points obtained pre-and post-operatively. In Figure 

2, the dotted black rectangle indicates the region of interest in which both pre- and post-

operative tests have been performed. All points not included in this rectangle were 

excluded from our analysis. This is because it is not possible to calculate a brain plasticity 

metric for points that have not been identified in a common region (since mapping areas 

were not adequately comparable/overlaying between pre and post operative phases).  
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Then, negative/ positive nTMS points were used for calculating a map of the specific 

function for each hemisphere. For this purpose, a 2D nearest-neighbor interpolation was 

separately performed for pre- and post-operative TMS points. The objective of this 

interpolation is to create an image that delineates the extent of the tested function. For the 

interpolation, the input data was negative TMS points (identified with an intensity of 0) 

and the positive points (identified with an intensity of 1). Using this input data, pixels in 

the entire sagittal plane were interpolated based on the intensity of their “nearest” 

neighboring pixel, see Figure 3. 

Using these maps delineating the preoperative and postoperative brain functions, BPI can 

be calculated as a displacement metric (DM) to evaluate the displacements between 

preoperative and postoperative functions. As we can see in Figure 3, the preoperative and 

postoperative functions are identified with Npreop and Npostop blobs. For this patient, 

Npreop=4, = Npostop =2, however the numbers could be different depending on the patient 

or the tested function. The BPI consists of indicating the displacement (in millimeters, mm) 

of the Npreop blobs measured before the operation into Npostop blobs identified after the 

operation. 

For each Npreop blob, we calculated Npostop translation maps (affine transform) to 

independently match each postoperative blob. The deformation map represents the 

magnitude of displacement (in mm) of the preoperative blob to match a postoperative blob. 

A mean deformation map was calculated by averaging all deformation maps. This 

operation was repeated on each preoperative blob. The BP deformation maps were then 

projected on the cerebral surface of the T1 volume, computed with the open-source tool 

HD-Bet42.  

III) The Brain Plasticity Maps:  

• Quantitative displacement: BP maps were then registered on a neuro-anatomy 

atlas (NMI) space by combining affine and non-rigid (b-spline) registration 

procedures. When applying the b-spline transform, a binary volume masking the 

location of the tumor in the T1 volume was necessary to ensure a correct 

registration on the neuro-anatomy atlas. The tumor segmentation was performed 

with BRATS toolkit 43. Then, a normalized BP map for all patients was defined by 

the weighted sum of all brain plasticity maps. The weight attributed for each voxel 

was defined by 1/M, with M, the number of overlaps (number of patients having 

an identification at the same pixel area). 
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• Qualitative displacement: the use of HarvardOxford atlas overlay on the brain 

cortical surface allowed identifying specific cortical regions44. We graphically did 

overlay the atlas regions on the brain parenchyma (Lh/Rh) and identified the 

regions where nTMS blobs were located (either preoperatively or postoperatively). 

The results were obtained with an average of couple of cortical regions’ numbers, 

according to the displacement from one area to another.  

All statistical and bioengineering results were performed and controlled by Dr E.P and Dr 

C.C, according to the details of the pipeline.  

Results:  

During the period between January 2024 and December 20204, we conducted a prospective 

monocentric observational study on 40 patients operated on at the Neurosurgical 

Department of Careggi in Florence. They were selected based on pathology, and the 

preoperative logopedic/neuropsychological evaluation was done to let them access the 

nTMS motor and cognitive pre-operative mapping. The aim was to acquire a preoperative 

functional mapping to integrate in the neuronavigational system, used during surgery, 

relying especially on the Negative Predictive Value of nTMS, to spare active 

areas11,12,21,22,24,45,46. All clinical, radiological, pre-, intra- and post-operative data were 

collected and analyzed. Mapping with nTMS was also used for tractography, based on 

nTMS functional maps16,46-50 . 

According to the adopted protocol, our patients underwent a preoperative evaluation 

around 48-72 hours before surgery, then nTMS mapping. Considering the location and 

nature of the lesion, awake or asleep procedure was privileged, the postoperative re-

evaluation was performed immediately after surgery and before discharging the patient, 

after 30±10 days, 90±10 days with repetition of rnTMS. Among about 100 patients studied 

with preoperative nTMS, we finally selected those who had either pre- and post-operative 

mapping to study the functional reorganization induced by tumors first, and surgery 

secondly.  

The final number of patients enrolled was n=40, with final number of nTMS mapping 

procedures=41, since one patient who was operated on twice for a relapse of an 

Astrocytoma Grade II.  

General characteristics: M: F=22:19, level of scholarship 8-15 years.  

We enrolled mainly oncological patients:  

Lesions Characteristics: 

LGG (n=15): 12 astrocytomas, 7 oligodendrogliomas (1 G2-G3). 

HGG (n=22): 10 IDH-wildtype glioblastomas, 2 gliosarcomas, 7 G3, 3 other. 
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Non-glial (n=6): 3 FCD, 2 meningiomas (1 atypical), 1 lymphoma, 1 cavernoma. 

Surgical Procedures:  

Awake: 20/41 (48.78%); asleep: 21/41 (51.22%). 

First-time surgeries: 33 (80.48%); repeated surgeries: 8 (19.52%). 

Concerning nTMS mapping, 63.4% (26/41) was bilateral cognitive mapping. More in 

detail, the motor mapping was only monolateral (on the affected side of the tumour), 

whereas the language mapping was bilateral (i.e. either affected or contralateral healthy 

side) in ~63% of cases.   

Considering the lesions’ volumes, we obtained average: Mean ± SD: 60.9 ± 66.0 cm³; 

median: 35.0 cm³. To evaluate the BPI specific to Language function, a subcategory of 14 

patients was investigated more accurately because of the highest overlay between pre- and 

post-operative mapping. We distinguished and compared LGG and HGG. According to 

Table1, we finally considered 14 patients, slipped up into two groups: 7 HGG (5 left, 1 

right, 1 bilateral splenium CC), 7 LGG (6 left, 1 right). Among 7 LGG, 6 were left lesions 

(P1-P19-P29-P31-P32-P36), and 57.14% (4/7) was operated on in awake surgery, whereas 

among 7 HGG, 5 were on the Lh (P5-P10- P11- P16- P25), 1 was bilateral because of the 

involvement of the Corpus Callosum (P17), 1 was in Rh (P30). The median age is 47.28 

years (24-70). Age of scholarship between 8 and 16 years. All the selected 14 analysed 

patients completed the follow up period up to 90±10 days. All patients enrolled in the study 

received a post-operative rnTMS during the follow-up period.  

 

1) Quantitative displacement 

We identified a metric for Rh/Lh and then for the whole functional displacement. Figure 

4. As we can be observed (Figure 5, Table 2), for Language function, for LGG from the 

Lh an average BPI of 21.81 mm (median 22.39 mm and std 8.61 mm) was obtained, while 

for HGG a mean value of 54.65 mm (median 46.07 mm and std 35.63 mm). Instead, in the 

Rh, for patients with LGG a mean BPI of 57.58 mm was obtained (median 57.58 mm and 

std 2.11 mm), while for HGG a mean value of 33.30 mm (median 33.30 mm and std 25.65 

mm). In most cases, both the average and median BPI values resulted higher in the Rh than 

in the Lh in patients with HGG.  In patients with LGG, the trend seemed reversed. 

Analyzing these images, for linguistic functions the high displacement of functional 

reorganizations mirrors the complexity of a multilevel function, whose coordination 

implies several cortico-subcortical circuits (i.e.AF, ILF, SLF, IFOF, FAT), with 

predominancy on the Lh, for HGG cases, and on the Rh for LGG, according to our results. 

These were reported graphically for each patient, considering the final map (deriving from 

the comparative analyses of the pre-op and post-op maps) with a false color map: yellow 
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blobs indicated preoperative functional areas, and red blobs indicated preoperative 

functional areas. The white arrows indicated the mean displacement direction. Figure4.  

We reported images for the projection of BPI metrics on the NMI atlas and the 

HarvardOxford parcellation system (areas contoured in black and indicated with numbers) 

(Figure 5). The corresponding names are given in HarvardOxford.csv file 

(Supplementary Materials). 

1.1) Distinction between BPI for patients with LGG and HGG in correlation with tumor 

volume: the correlation between BPI and lesion volume was evaluated, dividing LGG 

from HGG. For Language, given the limited number of patients for whom BPI for the 

Rh was estimated, only data relating to the Lh were considered. The correlation value 

between BPI and lesion volume resulted low (𝑅 = 0.28 for LGG, and 𝑅 = 0.31 for 

HGG, linear regression), presumably due to the limited sample. However, the 

correlation value is higher for HGG than for LGG.  

2) Qualitative displacement 

Since we knew the metrics (in mm) and the average of displacement (quantitative 

representation), our purpose was achieving the qualitative representation of the anatomic 

areas involved by displacement of Language (i.e. where the function goes, based on the 

cps). We identified the reiterative couples of numbers in the brain parenchyma surface and 

the results were translated into histograms (Supplementary Materials).  

For Language functions the most reported couples of regions involved in cortical reshaping 

were on the Lh: 42-6,42-20, 46-41, on the Rh 20-41, 42-41, 43-41, 46-6, 46-20, 46-21. 

According to the cps anatomical categorisation (HarvardOxford Atlas), it means on the Lh 

displacement from central opercular cortex to the pars opercularis of the IFG, the SMG of 

the parietal cortex, and to the temporal area of the planum. On the Rh: from the SMG and 

central opercular cortex to the frontal operculum cortex, from the parietal operculum cortex 

to the frontal operculum cortex, from temporal planum to the pars opercularis of IFG, from 

the temporal planum to the SMG and AG of the parietal cortex. The cortical front-parieto-

temporal circuits are inter-connected and subcortically related with WM fiber tracts. 

3) Clinical results and correlation with BPI  

Finally, we evaluated the clinical results and the average of functional recovery 

immediately after surgery and during the follow-up period, to evaluate any correlation 

between BPI and age of scholarship/ intellectual status of each patient, distinguishing 

patients harbouring LGG or HGG. We searched for any correlation between the final 
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performance in the AAT test and histology. We collected clinical evaluation and 

neuropsychological assessment with Language, summing the results and correlating with  

BPI for each patient. Then we correlated the previous results with the MMSE.  

First, we evaluated the correlation between the estimated BPI and the variation of the 

MMSE test values (expressed in percentage, considering the maximum value of the test). 

Only for Lh, results were counted (because of l not enough data on Rh). For HGG patients: 

there was a good correlation between BPI value and MMSE variation (R = −0.80): the 

higher the BPI, the more difficult cognitive recovery was (R = −0.80). Coherently, for LGG 

the trend was the same, although the correlation was much lower (R=-0.17).  

Clinical performance on the AAT test for LGG and HGG: once more, the distinction 

between LGG and HGG was considered. We analyzed the clinical results at the different 

linguistic items (Language comprehension, production, semantic, phonological, 

denomination, repetition, written language). Clinical evaluations were performed by our 

Speech Therapist (Dr F.F.) following our protocol. The last evaluation was performed 

using rnTMS. We designed a score between 0 and 6 (i.e. 0=complete aphasia, 6=normal 

performance). The clinical data results were normalized, with the min-max scaling method, 

respecting the minimum and maximum values, test threshold values, to ensure that higher 

test values correspond to better cognitive functioning. All clinical results were reported as 

percentages, to make test results comparable. Figure 6 Spider plots summarize data sets of 

patients with glioma. Considering the variation in different linguistic components at the 

AAT test: for LGG there was an average variation of Language function from 91.1% (pre-

op), to 78.66% (post op at 30±10 days FU), with final recovery to 90.67% (post op at 90±10 

days FU). For HGG the average variation counted form 91% (pre-op), to 87.34%% (post 

op at 30±10 days FU), with final recovery to 90% (post op at 90±10 days FU). Although 

the linguistic performance had an average higher value for HGG patients, the final recovery 

was comparable (90.67% vs 90%). 

Discussion: 

❖ Neuroplasticity and Metaplasticity  

Neuroplasticity represents a pivotal concept in modern neuroscience, and it has been 

described as the brain's capacity to reorganize itself by forming new neural connections51. 

The innovative idea of ‘Metaplasticity’, recently introduced by Professor Duffau52, refers 

to the flexible and re-shaping functional architecture of the brain parenchyma, able to 
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activate parallel and interactive large-scale neural networks. This idea goes beyond the 

localizationist theory, based on the inflexible cerebral architecture relying on discrete 

specialized areas, each of them being supposed to correspond to a specific function. Indeed, 

the dynamic “meta-networking” (network-of-networks) framework, with perpetual 

modulation of within- and between-circuit spatiotemporal integration, opens the door to 

neuroplasticity.  

 

This work aims at proposing a method to calculate a cortical BPI, based on nTMS data, to 

customise the surgical approach and the postoperative rehabilitation program. Analysing 

the cortical plasticity through the non-invasive method of nTMS represent a beneficial 

strategy to modulate plasticity and predict the functional reorganisation of cortical circuits.  

 

❖ BPI Patterns in LGG vs. HGG 

BPI values specific for Language resulted higher in the Lh (46.07 mm) than in the Rh 

(33.30 mm). Conversely, for LGG a higher BPI was in Rh (57.58 mm) than in the Lh (22.39 

mm). However, the overall higher BPI value was obtained for HGG (46.70 mm) than for 

LGG (28.19 mm). The correlation between BPI and tumor volume was estimated from a 

linear regression (only for Lh: LGG R=0.28, HGG R=0.31) and documented an irrelevant 

role of tumor volume on conditioning the final BPI, meaning that correlations 

(R=0.28/0.31) were non-significant.  Qualitative displacement showed linguistic pathway 

reshaping from temporo-parietal areas to the inferior frontal gyrus and specific cortical 

areas highlighted with the HarvardOxford cps.  

 

❖ Clinical Correlations (MMSE, AAT) 

Moreover, we analyzed the relation between BPI and MMSE: either for HGG and LGG, 

the higher the BPI, the more difficult cognitive recovery was, although the correlation 

resulted lower for LGG (R=-0.17 vs R=-0,80).  

We finally considered the variation in different linguistic components at the AAT test: 

Although the linguistic performance had an average higher value for HGG patients, the 

final recovery was comparable in the two groups (90.67% vs 90%). 

 

❖ Language function: a complex network  

Language is the most complex function whose impairment may have a serious impact on 

the routine life of a patient and several studies have demonstrated the WM fibre tracts 

underneath this function9,53,54.  In this study we have proposed a model, completely based 

on nTMS data, to compute functional re-shaping of Language in Lh/ Rh, according to the 
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adequate tests provided, and making a distinction between LGG and HGG, reducing bias 

of selection.  

 

❖ Tumor Biology & Plasticity Mechanisms 

LGG and HGG exhibit distinct growth patterns and connectivity disruptions, necessitating 

tumor-specific approaches to preserve plasticity.  

▪ LGG have been studied considering the mechanism of growth and relationship 

with WM. The presence of a dynamic functional dialogue between brain 

parenchyma and tumoral lesion implies induction of plasticity and network re-

organization, since there is a bidirectional relationship1: (i) the glioma proliferation 

is triggered by microstructural electrical-functional activities and further affected 

by whole-brain network dynamics; (ii) the functional connectivity between 

gliomas and other brain areas, and in-between remotely situated brain areas, is 

intensely reshaped to maintain network efficiency and cognitive performances (i.e. 

the compensatory mechanisms of lesion-induced neuroplasticity). The surgical 

treatment of oncological patients’ needs to consider these aspects, distinguishing 

between HGG vs LGG, to preserve quality of life (QoL) or accessing the 

postoperative treatment with a satisfactory outcome. Moreover, every therapeutic 

step may play a role in the modulation of BPI, fragilizing microcircuits that convey 

functional remodeling, and surgery is one of the first-line-treatment whose aims 

are removing the lesion (extent of resection strictly connected with Overall 

Survival_OS_ and Progression Free Survival_PFS55,56), obtaining seizure 

control57. Our cortical BPI aligns with the 'minimal connectome' theory, where 

low-plasticity regions (e.g., unimodal cortex, associative tracts) limit functional 

reshuffling: unimodal cortical areas and WM structures (especially associative 

WM tracts) were found to represent a major limitation of plastic potential, with 

low plastic indices. Delineating the pattern of tumor diffusion within critical WM 

tracts is necessary to predict the expected extent of resection in a surgical 

perspective and the expected neurocognitive declines following surgery or 

radiotherapy. The next step of our research is aimed at WM infiltration pattern 

analysis,  

▪ For HGG and GBM, connectome has been demonstrated to play a role for 

structural and functional connections within hierarchical networks,58. Considering 

HGG as intrinsic entities, inducing structural-functional alterations in the brain 

parenchyma, implies a radical change for therapeutic options, which could 
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optimize surgical strategies and adjuvant treatments. Not only for LGG but also 

for HGG, connectivity must be considered, as we did in our work, obtaining 

comparable results in terms of quantitative-qualitative BPI. Then, non-invasive 

brain stimulation could disrupt pathological neuron–glioma interactions within 

specific networks, and nTMS may play a role not only for functional mapping but 

also to induce a functional reshaping of circuitry. Other authors have already 

proposed to use of priming nrTMS compared to unprimed nrTMS, to modulate 

plasticity and optimize recovery time59. Finally, like Krieg et al.18,60, we observed 

nTMS-driven language plasticity, but our BPI metric further quantifies reshuffling 

by tumor type; plastic reshaping of cortical language areas was evaluated by 

navigated transcranial magnetic stimulation in a surgical case of GBM61. Our study 

has the innovative role of creating a nTMS-based BPI, conversely to prior 

DCS/tractography studies.  

▪ Studies on brain plasticity have important practical implications. To the best of our 

knowledge, our work is the first one that offers a qualitative and quantitative 

analysis of Brain Plasticity based on nTMS data, relying on the functional cortical 

map, comparing pre- and post-operative results. Different studies have discussed 

about the concept of brain connectivity and functional reshaping after surgery on 

oncological neurosurgical patients1,51,62,63. In Price et al63, nTMS language 

mapping was performed for a 56-year-old lady presented with a recurrent speech 

deficit seventeen months after her initial craniotomy for a language eloquent 

glioblastoma (GBM). During the second awake surgery, speech arrest was found 

(during Direct Cortical Stimulation) in a new position posterior to the previous 

surgical cavity and away from tumour recurrence (where speech arrest was 

previously located). This case report shows language function neuroplasticity in 

glioblastoma. Recently, some authors64 focused the attention on the  possible 

hallmarks of brain plasticity, such as molecular characteristics of changes in brain 

plasticity which may reveal disease course and the rehabilitative potential of 

patients. The authors published a review about the association of brain plasticity 

and its homeostasis with cerebral non-coding RNAs (ncRNAs) microRNAs, which 

make them putative targets for RNA-based diagnostics and therapeutics.  

However, all these studies used techniques that are different from ours to 

‘calculate’ the plasticity.  

❖ Therapeutic Implications & Future Directions 
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We can easily understand that we are facing a very crucial topic in the neuroscientific 

domain, which involves physicians, surgeons, oncologists and radiotherapist who are 

committed to optimise the type of treatment and the quality of life of oncological 

patients. However, the value of the present work is the proposal of a non-invasive 

technique to study cortical plasticity, analysing pre- and post-operative data that could 

easily be obtained at different times during the follow-up period, allowing analysing an 

immediate post-operative functional reshaping and a secondary (longer) response over 

time.  

Limitations: 

1) Number of patients analyzed for estimation of BPI: the number of patients 

available was limited (n=40) and not all harbored a glioma (7 had different 

histological diagnoses). The subgroup of 14 patients whose pre-and postoperative 

mapping were overlapping properly were analyzed in detail with the pipeline 

created.  

2) Clinical evaluation results: the results of the clinical assessments for AAT were 

divided into classes, rather than reporting the absolute value of the scores. 

Conversely, in the case of the MMSE test we had absolute values of the scores 

reported.  

Conclusions: 

This preliminary work proposed an innovative and original model to ‘measure’ BP at a 

cortical level, creating a quantitative-qualitative metric of functional displacement, to 

evaluate the correlation between BPI and linguistic outcome of oncological patients. Based 

on our promising results, we have created an original pipeline to process data, we have 

learnt how to use the 3D volume of cortical functionally active nTMS points, and finally 

designed a metric, distinguishing between HGG and LGG.  The adaptative mechanisms for 

LGG and HGG are timely different and might justify the differences between BPI and 

clinical results for those pathological categories. Identifying a subject-specific BPI may 

non-invasively define functional reshaping of cortico(-subcortical) circuits after surgery, 

providing personalised surgical-therapeutic approach. Further data is needed to study other 

functions and corroborate our results.  
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Figure Legend:  

Figure 1: Image processing pipeline for the calculation of the nTMS-based-Brain Plasticity 

Index (BPI). As explained in the chapter Materials&Methods: first, negative and positive 

TMS points (coordinates x, y, z, acquired in CSV files from the EB Neuro system) were 

used to generate two binary volumes indicating the location of the TMS data in the MRI 

volume. This volume was then registered (affine transform) on the T1 volume. For each 

cerebral function, we considered if nTMS tests have been performed for both hemispheres. 

Using the registered binary nTMS volume, two 2D maps were created with an orthogonal 
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projection of the volume on the sagittal plane of Rh and Lh. We obtained Orthogonal 

projection on the right hemisphere of the TMS points for the language task; subsequentially 

a nearest neighbor interpolation for the language tasks was performed to acquire volumes 

(blobs): red blobs are nTMS pre-op volumes, whereas green blobs are nTMS post-op 

volumes. The average distance of pre- and post-operative blobs defines the metric of 

displacement, defined as BPI.  

Figure 2: Orthogonal projection on the right hemisphere of the TMS points for the 

language task (patient 17). 

Figure 3: Nearest neighbor interpolation for the language tasks for patient 17 in the Right 

Hemisphere (Rh). The interpolation was calculated with data presented in Figure 2. 

Figure 4: Brain plasticity metric (in mm) represented in false color maps on functions 

identifying before the surgical operation. The red contours indicate the delineation of the 

postoperative identifications. The white arrows indicate the mean displacement direction. 

A: we represented the BPI of Language function for patient P17 on the Right Hemisphere. 

B: we represented the BPI of Language function for patient P31 on the Left Hemisphere.  

Figure 5: BPI for Language Function (complete cumulative results) for patients with 

low-grade and high-grade gliomas. Right and Left hemisphere are represented with 

overlay of the anatomical atlas HavardOxford. The darker the violet is, the closer the 

cortical functional displacement is, whereas the more yellow area corresponds to those 

that had a higher displacement. It is possible to notice the higher functional complexity 

and re-organization present on the left rather than on the right side, either for HGG and 

LGG, since language networks are more developed in the dominant hemisphere. A: BPI 

fro LGG, B: BPI for HGG. Our approach consisted of calculating a weighted sum of the 

plasticity metrics weighted by the number of patients having a non-null metric at the 

voxel position. For example, if only one patient (among n patients) has a plasticity 

displacement of 2 mm in the motor cortex, the value of (2 mm/1) appears in the final 

image.If 10 patients have a plasticity displacement of 4 mm in the visual cortex, the value 

of (4 mm/10) appears in the final image. 

Figure 6: Dataset of individual cognitive test results administered to assess language 

function. The test results were divided into patients with LGG and HGG. In green, the 

values of the tests administered in the pre-operative trial; in orange, the results obtained in 

the immediate post-operative period; in red, the results obtained after 3 months from the 

operation. All test results were normalized by transforming them into percentages, 

considering the maximum value and range of the individual tests.  

Table 1: Patients’ characteristics 

Table 2: Summary table of BPI metrics for Language function. The average, median and 

standard deviation values are reported, divided into patients with Low Grade (LGG) and 

High Grade Gliomas (HGG)  and with respect to the left and right-brain hemispheres. 
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Table 1: Patients’ characteristics 

P 

Code Operation Type Lobe  

Site 

(L/R) 

Grade 

WHO 

2021 

IDH 

(0=wt, 

1=muted) 

Hystology 

WHO2021 

nTMS 

functional 

mapping 

nTMS 

side 

1 1° Awake T L 2 1 Astrocytoma M/L/C Bilat 

4 1° Asleep F R 2   Oligodendroglioma M*no post/L Bilat 

5 1° Awake F L 4 0 GBM M/L Left 

10 1° Awake P L 3 1 

Astrocytoma (focal 

anaplasia) 

M/L/C*no 

post op/N Left 

11 1° Asleep T L 4 0 GBM M (*R)/L Left 

16 1° Asleep P L 4   GBM 

M/L/C/N *No 

post op Left 

17 1° Asleep 

Splenium 

CC 

L and 

R  3 1 

Diffuse 

Astrocytoma M/L/C Bilat 

19 1° Awake F -T- In   2 1 Oligodendroglioma 

M *No pre 

op/L Left 

25 1° Awake P L 3 1 Astrocytoma M/L/C/N Bilat 

29 2° Awake F L 2 1 Oligodendroglioma M/L/C/N Bilat 

30 1° Asleep F-I R 4 0 GBM 

M/L/N/C*Not 

possible Bilat 

31 2° Asleep T-I L 2 1 Astrocytoma M/L/C Bilat 

32 1° Asleep T-I L 2 1 Oligodendroglioma 

M*no post 

op/L/N/C*Not 

possible Bilat 

36 1° Awake T L 2-->3 1 

Low grade glioma 

(focal anaplasia) M/L/C Left 
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Table 2: Summary table of BPI metrics for Language function. The average, median and standard deviation 

values are reported, divided into patients with Low Grade (LGG) and High Grade Gliomas(HGG)  and with 

respect to the left and right-brain hemispheres. 

 

LOW GRADE  

GLIOMAS 

 (6L, 1 R)  
  

HIGH GRADE  

GLIOMAS  

(5L, 1 R, 1 BILATERAL) 

Average 

[mm] 
Median 

[mm] 
Std  

[mm] 
 

Average 

[mm] 
Median 

[mm] 
Std 

[mm] 

LEFT HEMISPHERE  LEFT HEMISPHERE 

21.81 22.39 8.61  54.65 46.07 35.63 

RIGHT HEMISPHERE  RIGHT HEMISPHERE 

57.58 57.58 2.11  33.30 33.30 25.65 
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Abbreviations’ List 

BPI: Brain Plasticity Index  

Lh: Left Hemisphere 

Rh: Right Hemisphere 

AAT: Aachener Aphasia Test  

nTMS: navigated Transcranial Magnetic Stimulation  

rnTMS: repetitive navigated Transcranial Magnetic Stimulation  

FCD: Focal Cortical Dysplasia  

Ln: Language 

C: Calculation  

N: Neglect 

RMT: Resting Motor Threshold 

HGG: High Grade Glioma  

LGG: Low Grade Glioma  
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