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Abstract—Silent speech interfaces (SSIs) promise
private and noise-immune communication, but current
solutions often sacrifice user comfort, mobility, or pri-
vacy. This paper introduces PPGSpeech, a novel SSI
that overcomes these limitations by pioneering the
use of photoplethysmography (PPG) acquired from a
comfortable, necklace-style wearable device. Our core
discovery is that subtle neck muscle movements during
silent articulation induce distinct, measurable mod-
ulations in the underlying PPG signal. To harness
this phenomenon, we developed a complete end-to-end
system featuring (1) a custom neck-worn sensor for
multi-wavelength PPG acquisition, (2) a deep learning
pipeline that converts 1D PPG signals into 2D time-
frequency images via Continuous Wavelet Transform
(CWT) and classifies them using a lightweight CNN,
and (3) a Pix2Pix GAN model to reconstruct audible
speech from the captured signals. In a 16-participant
study covering a vocabulary of 15 commands and
four confounding actions, our user-dependent model
achieved a recognition accuracy of 81.41% = 9.74. Fur-
thermore, our speech reconstruction achieved a Mean
Opinion Score (MOS) of 3.48 and a Word Correct
Rate (WCR) of 60.67%, demonstrating that the PPG
signal is sufficiently rich to recover intelligible speech.
By establishing the viability of neck-based PPG for
silent speech, PPGSpeech offers a discreet, privacy-
preserving, and continuously wearable paradigm for
next-generation human-computer interaction.

Indexr Terms—PPG, Wearable, Neck-worn Sensor,
Silent Speech Recognition.
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Fig. 1. The system framework of PPGSpeech.

I. INTRODUCTION

ILENT Speech Interfaces enable users to communi-

cate without vocalizing, offering significant advan-
tages in privacy, noise immunity, and accessibility. These
benefits are particularly valuable in public environments,
assistive technologies, and scenarios demanding discreet
interaction. Conventional SSIs typically rely on either
contactless or contact-based sensing modalities.

Contactless approaches, including acoustic sensing [,
millimeter-wave radar [2], depth cameras [3], and RGB
cameras [4], infer speech from visual or physical move-
ments. However, these systems often require bulky exter-
nal devices and are susceptible to privacy concerns and
environmental disturbances such as lighting or background
noise. For example, Wang et al. [3] achieved high-precision
recognition using depth-based point clouds, but users must
face the sensor directly, which limits mobility and comfort.

Contact-based methods, such as those using electromyo-
graphy (EMG) [B], inertial sensors (IMU) [6], or EEG [[],
capture muscle or neural activity during silent articula-
tion. While accurate, these solutions often require expen-
sive equipment, high skin contact, or motion sensitivity,
limiting their long-term usability. For instance, Chen et al.
[8] used a dense EMG array covering the face and neck,
compromising comfort and wearability.

Inspired by the common practice of wearing accessories
such as necklaces or scarves, we propose a lightweight,
neck-worn solution that leverages PPG signals. PPG is
an optical sensing technique that detects changes in blood
volume and has been widely used for monitoring heart rate
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and respiration. Compared to EMG and IMU, PPG is a
low-cost, more comfortable option for long-term wear, and
is less affected by transient body motion. Recent studies
demonstrate that PPG can also reflect muscle activity,
enabling facial expression recognition [H]7 gesture detec-
tion [lﬁ, and strength estimation [L1]. Building on these
insights, we propose PPGSpeech, the first system that
leverages neck PPG for silent speech interaction. As illus-
trated in Fig. [, PPGSpeech captures multi-wavelength
PPG signals from the suprasternal notch to sense sub-
tle hemodynamic changes induced by articulation. The
system performs two tasks: (i) recognizing silent speech
commands, and (ii) reconstructing audible speech from the
PPG signal.
Our contributions are summarized as follows:

1) We demonstrate that neck-worn PPG alone enables
both silent-speech command recognition and audi-
ble speech reconstruction; it reveals phrase-specific
hemodynamic modulation at the suprasternal notch.

2) End-to-end PPG-to-speech pipeline: CWT con-
verts 1-D PPG to 2-D time—frequency images;
lightweight CNN encoder-decoder achieves 81.41 %
user-dependent accuracy; Pix2Pix GAN first re-
covers high-frequency acoustic features from low-
frequency physiological signals.

3) Collar form-factor eliminates facial privacy risks,
works under mask occlusion, and shifts the paradigm
from facial EMG, cameras, or IMUs to a privacy-
preserving, mask-compatible collar.

II. RELATED WORK
A. PPG Sensing in HCI

PPG is a non-invasive optical sensing technology that
detects changes in blood volume in human tissue, primar-
ily used in health monitoring and biomedical applications.
Traditional studies have focused on extracting cardiovas-
cular metrics. For instance, Xiao et al. [12] proposed a
multi-task learning model (MDLG-MTLNet) for cuffless
blood pressure estimation, and Alessio et al. [13] achieved
energy-efficient heart rate monitoring through neural ar-
chitecture search and model quantization.

While motion artifacts were traditionally considered
noise, recent studies have begun to explore their infor-
mative potential. Li et al. [10] used a wristband with tri-
wavelength PPG sensors to classify four pinch gestures and
three force levels. Choi et al. [@] introduced PPGface, an
ear-worn device for facial expression recognition, achieving
93.5% accuracy across seven expressions.

B. Neck-worn Device Interaction Application

Despite the popularity of wristbands and earbuds, neck-
worn devices remain underutilized. Yet, the neck provides
rich physiological signals, such as the carotid pulse and
temperature. Huang et al. [[15] used a skin-mounted ac-
celerometer at the suprasternal notch to classify cervical
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spine movements. Zhang et al. [@] identified swallowin
activities via inertial and PPG sensors. Grasso et al. [ﬁ
reduced motion artifacts in neck-based heart monitoring.
Zhang et al. [@] enhanced eating detection via multimodal
sensing integrated into a neckband.

C. Silent Speech Interfaces

SSIs capture inaudible articulatory activity to recon-
struct or recognize speech. SSIs can be categorized into
contactless and contact-based approaches.

Contactless methods rely on visual or wireless sensing.
Jin et al. [@] used ear-canal ultrasound to recognize 32
commands with 89.98% accuracy. Gao et al. [[l]] captured
micro-Doppler shifts via ultrasound for 45-word recog-
nition. Wang et al. [E] used depth point clouds with
PointVSR for high-accuracy recognition. Zeng et al. [E]
applied mmWave radar for SSI. In contrast, Kimura et
al. [@] and Zhang et al. [@] used wearable cameras
and infrared (IR) imaging, respectively, for silent speech
decoding. EarSSR [22] repurposes off-the-shelf headphones
to emit 16-22 kHz ultrasound and decode sub-millimeter
ear-canal deformations for silent letter/word recognition.
EchoSpeech [@] embeds a minjature ultrasonic array on
glasses, capturing lip/facial skin motion via active acous-
tics for continuous silent ASR. Garashi et al. [24] mount
IR distance sensors on glasses and ear hooks for silent
interaction during wear. SilentMask [@] affixes dual 6-
axis IMUs inside a disposable mask to record 12-D mouth-
region motion for 21 Alexa commands and mute detection.
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Fig. 4. The continuous wavelet transform of PPG samples collected
from different volunteers, LEDs, and Chinese phrases.

Contact-based SSIs rely on body-mounted sensors: Chen
et al. [8] used a high-density EMG array on the face/neck;
Rekimoto et al. [6] placed 6-axis IMUs under the chin
and on the neck to achieve 98.28 % accuracy on 35
commands; Brumberg et al. [26] investigated BCTI for silent
speech; Kimura et al. [27] developed an EPG-based text-
entry system. JawSense [28 employs a low-cost three-
axis accelerometer placed on the temporomandibular joint
to capture jaw micro-vibrations during silent articulation
while Mutelt [29] mounts dual IMUs on the ear to track
mandibular micro-movements relative to the temporal
bone and reconstruct the signals into complete words via
linguistic rules and QuietSync [30] integrates an IMU
with novel dry ExG electrodes into off-the-shelf headsets
such as headphones glasses and VR headsets to attain 94
% accuracy across 12 commands and Tang [31] presents
a necklace-type silent-speech system based on ordered
cracked-graphene textile strain sensors that achieves 95.25
% recognition on 20 high-frequency words. Tang et al. [32]
further embed four textile-based dry EMG electrodes into
standard headphone earmuffs and achieve 96% accuracy
on ten control words.

III. BACKGROUND AND FEASIBILITY STUDY
A. Speech Production Overview

Human speech production involves the coordinated ac-
tion of the respiratory system, vocal cords, and articula-
tory organs. Airflow from the lungs causes the vocal cords
to vibrate, generating a sound that resonates through the
oral and nasal cavities. While this vocal cord vibration
defines voiced speech, silent speech depends solely on the
movements of articulators such as the lips and tongue.

B. Neck Muscle and Vascular Dynamics

As illustrated in Fig. E, speech production requires the
coordinated activation of intrinsic (e.g., cricothyroid) and
extrinsic (e.g., sternohyoid, digastric) laryngeal muscles.
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Fig. 5. The overview of PPGSpeech.

These movements alter the shape and tension of the neck,
which, in turn, affect the local vasculature, including the
carotid arteries and jugular veins. The resulting muscle
contractions exert mechanical pressure on these blood
vessels, modulating local blood flow patterns in a manner
unique to each speech act.

C. PPG Sensing on Neck

PPG sensors emit light absorbed by hemoglobin and
measure the reflected light to derive cardiovascular met-
rics. Light penetration depth varies by wavelength—green
light reaches superficial layers, while red and IR light
penetrate deeper. Fig. P illustrates the working principle.

Compared to finger and wrist sites, the neck provides
stable placement with fewer motion artifacts and stronger
respiratory components [B3]. Neck PPG supports SpOs
estimation [B4] and jugular pulse extraction [35].

During silent speech, articulatory muscle movements
deform surrounding tissues and blood vessels, altering
optical paths and PPG signals. We hypothesize that such
physiological changes produce phrase-specific signatures in
neck PPG, enabling silent speech recognition.

IV. SysTEM DESIGN
A. Feasibility Analysis

To assess the feasibility of neck-worn PPG for silent
speech recognition, we conducted a pilot study with two
volunteers. Participants wore a PPG sensor with green,
red, and IR LEDs placed at the suprasternal notch and
silently articulated six Chinese phrases. The PPG signals
were converted into 2D time-frequency representations
using CWT, as shown in Fig.

Our analysis of the CW'T patterns revealed three key
findings. First, different phrases produced distinct pat-
terns, indicating that phrase-specific muscle activation
modulate the PPG signal. Second, signals captured at
different LED wavelengths exhibited unique character-
istics, reflecting their varying tissue penetration depths
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and sensitivities to different vascular responses. Third,
we observed inter-user variability, where patterns for the
exact phrase differed between individuals, likely due to
anatomical and pronunciation differences.

Collectively, these findings confirm that neck PPG sig-
nals contain rich, speech-specific patterns, thereby validat-
ing the core hypothesis of our work. They also emphasize
the need for a user-dependent modeling approach to ac-
commodate individual variations.

B. System Overview

As shown in Fig. E, PPGSpeech consists of two modules:
silent speech recognition and speech reconstruction.

For recognition, raw PPG signals are processed through
a multi-stage filtering pipeline and segmented into phrase-
level samples. Each segment is converted into a two-
dimensional CWT image for the extraction of spatial-
temporal features. These images are fed into a custom
CNN-based encoder-decoder architecture, which outputs
the predicted phrase label.

The reconstruction module synthesizes audible speech
from silent input. Ground-truth voiced audio is denoised
and converted to a mel-spectrogram. The system utilized
a U-Net-based image-to-image model (Pix2Pix GAN) to
generate a mel-spectrogram directly from the PPG-derived
CWT image. Finally, the Griffin-Lim algorithm recon-
structs the waveform from the estimated mel-spectrogram.

C. Signal Processing

We implement a multi-stage pipeline to extract infor-
mative features from raw PPG and audio signals.

1) Differential Filtering: To eliminate low-frequency
baseline drift induced by respiration, temperature, or EM
interference, we apply differential filtering:

Sj(t) = S;(t) — S;(t — At) (1)
where S;(t) represents the raw PPG measurements at
time ¢, At is a short time interval representing the time
difference of the filter, and S is the filtered signal of the
j-th channel. The At in this experiment is 10 ms.

2) Gaussian Filtering: To further remove signal noise,
we use a Gaussian filter to smooth the PPG signal.
Gaussian filtering suppresses high-frequency noise while
preserving meaningful low-frequency signal components.
The filtering operation is defined as follows:

= G(85(t),0) (2)

where S7(#) is the differentially filtered PPG signal at time
t, G(-,0) is a Gaussian smoothing function with standard
deviation o, and S7(t) is the smoothed signal of the j-th
channel. The standard deviation is set to ¢ = 1 to balance
noise suppression and signal preservation.

S5 (t)

indino

MLP-Softmax

Transformed
__ B ) . s
3 3 : -3

Mel Spectrogram
PatchGAN Discriminator
——Conv-BN-ReLU —>upConv-BN-RelU —*Concat —* Conv-RelLU

—— Conv-BN-RelLU-Maxpool

Conv-BN-ReLU-Upsample Flaten

(a) Recognition model.

ﬁill.

_f

Input CWT Image UNet Generator

Mel Spectrogram
Conv-Tanh — Conv-Sigmoid

(b) Reconstruction model.

Fig. 6. Recognition model and reconstruction model architecture.

8) Segmentation: To isolate the relevant signal por-
tions, an energy-based thresholding method is applied
to the filtered signal S7(¢) to detect periods of activity
corresponding to silent speech. The detected activity is
then segmented into fixed-length windows of 288 samples
(2.88 seconds), ensuring consistent input dimensions for
the subsequent feature extraction and accommodating the
duration of all phrases in our command set.

4) Continuous Wavelet Transform: In silent-speech
recognition, PPG waveforms exhibit subtle haemodynamic
fluctuations—from ultra-low cardiovascular rhythms
(<0.5 Hz) to brief articulatory bursts (>2 Hz)—that
demand simultaneous resolution of slow trends and fast
transients. The CWT meets this need through scale-
dependent windows: wide at low frequencies for precise
spectral estimation and narrow at high frequencies for
sharp temporal localisation. Hence, CWT is expected to
surpass STFT in capturing the nuanced PPG signatures
of silent speech [36].

To capture the rich time-frequency characteristics of the
PPG signal for image-based classification, we transform
each 1D signal segment S7(t) into a 2D representation
using CWT. We employ a Morlet wavelet and compute
the transform over 288 scales, yielding a (288, 288) time-
frequency image. The transformation is defined as:

/ St ( b) i (3)

where W (a,b) denotes the wavelet coefficients at scale a
and translation b, and 1 (t) is the Morlet wavelet.

5) Spectral Subtraction: To prepare the ground-truth
audio for the reconstruction task, we use spectral sub-
traction to remove background noise from the original
recordings. The process involves transforming the signal
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and estimated noise to the frequency domain, subtracting
the noise spectrum, and transforming the result back to
the time domain:

Y'(t) = FHFY ()} - F{n(®)}) (4)
where Y (t) is the original audio waveform, n(t) is the
estimated noise, F is the Fourier Transform, and F~!
its inverse.

6) Mel spectrum transform: We convert the clean audio
signal Y’(t) into a log-Mel spectrogram representation
through the following four steps:

(1) Short-Time Fourier Transform (STFT): The
signal is windowed and transformed to the frequency
domain. We use a Hanning window with an ‘nfft of 2048
and a hop length of 512.

/ Y'(tyw(t —7)e 7> dt
()

(2) Compute Magnitude: The power of the signal at
each frequency bin is calculated by taking the magnitude
of the complex STFT result.

M(t, f) = |X(t, f)] (6)
(3) Apply Mel-Scale Mapping: The frequency axis

is converted to the Mel scale, which better reflects human
auditory perception, using a Mel filter bank.

L) )

X(t, f) = STFT(Y

fmel = 2595 log;, (1 +

Fig. 9. Experimental setup of the PPGSpeech prototype worn by
the user.

(4) Logarithmic Compression: Finally, the ampli-
tude is log-compressed to balance the dynamic range and
create the final feature representation.

M(t, f) +e) (8)

where € is a small constant to avoid numerical instability.

Smel(t, m) = log(

D. Silent Speech Recognition Module

To classify silent speech from multi-channel PPG sig-
nals, we design a CNN-based encoder-decoder network,
illustrated in Fig. @ The input consists of eight CWT
images with shape (8, 288, 288), representing multi-
wavelength and multi-channel features.

The encoder comprises three convolutional blocks, each
containing a convolutional layer, batch normalization,
ReLU activation, and max pooling. These layers compress
spatial features while expanding channel capacity, reduc-
ing the feature map to (64, 1, 1). The decoder mirrors
this process with upsampling layers to recover temporal
resolution, resulting in an output shape of (4, 16, 1). The
final fully connected layer flattens the output and maps it
to softmax probabilities over silent speech classes.

This architecture captures both spatial and spectral
patterns embedded in the CWT image, enabling robust
classification across users and phrases.

E. Silent Speech Reconstruction Module

To reconstruct audible speech from PPG, we employ
the Pix2Pix framework [@], a conditional Generative
Adversarial Network (cGAN) designed for image-to-image
translation tasks (see Fig. @)

Pix2Pix GAN: The Pix2Pix GAN of PPGSpeech
consists of a discriminator and a generator. The CWT
image of PPG is used as the input of the generator, and
the generated mel spectrogram is output. At the same
time, the real mel spectrogram is used as the input of
the discriminator to distinguish between true and false
images. During the training process, the generator and the
discriminator constantly compete with each other, and the
network’s ability is continuously improved, allowing the
generator to establish a mapping between the PPG CWT
image and the audio mel spectrogram.

Generator: We employ a U-Net with a symmetric
encoder—decoder and skip connections. The encoder ex-
tracts deep features from the input CWT image, while
the decoder progressively upsamples and reconstructs the
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TABLE I
THE COMMANDS SELECTION.

Pronunciation in

Number Chinese Chinese Pinyin English

1 TRl [ni’hao] Hello

2 NN [dui’bu’qi] Sorry

3 s [xie'xie] Thank you

4 LN [zao’shang’hao] Good morning
5 jiEn 554 [wel’xian] Dangerous

6 EBAT [zen’me’le] What’s wrong
7 HiE [gian’jin] Go ahead

8 JEiR [hou’tui] Back

9 st [zuo’zhuan) Turn left
10 i [you’zhuan] Turn right
11 ik [jia’su] Accelerate
12 &Ik [bo’fang] Play
13 KA [guan’ji] Shut down
14 IINE: [F) 2 [xiao’ai’tong’xue]  Xiaoaitongxue
15 T4 [xia’yi’ge] Next

16 (MEmE) - Chew

17 (W &) - Sniffing
18 (nZ ) - Cough
19 (1) - Keep still

corresponding mel-spectrogram. Skip connections preserve
local detail, enhancing spectrogram resolution.

Discriminator: A PatchGAN discriminator assesses
local regions within the generated spectrogram. It divides
the spectrogram into patches and performs binary classi-
fication on each patch to encourage local realism.

Loss Functions: The Pix2Pix GAN objective combines
three terms: the reconstruction loss Ly, the perceptual loss
Lpaps, and the adversarial loss Lgan.

To ensure pixel-wise similarity between the generated
spectrogram and the original spectrogram, we employ the
L loss, defined as:

Ly = [|G(z) — P(2)] 9)

where G(z) is the generated image and P(z) the target.
To reconstruct more realistic audio features, we use the
pre-trained VGG to extract feature representations and
define the perceptual loss as:
Loars = E | S 6:(G@) — ss)lls|  (10)
i
where ¢;(-) represents the feature map extracted from the
i-th layer of the network.
The adversarial loss follows the standard GAN loss to

ensure the consistency of the generated mel-spectrogram
with the real mel-spectrogram:

Leax = Eq y[log D(z,y)] + Eoflog(1 — D(z, G(x)))] (11)

where D(z,y) is the discriminator output for the real
image pair, and D(z,G(z)) is the discriminator output
for the generated image.

The final objective function of Pix2Pix GAN is a
weighted combination of the above losses:

L* = arg mcgn max Loan(G, D) + MLy + AoLpaps (12)

where A\; and A, are hyperparameters controlling the
trade-off between different loss components.

Audio Generation. To recover the audio signal from
the reconstructed mel spectrogram, we use the Griffin-
Lim (GL) algorithm. The Griffin-Lim algorithm estimates
the phase and synthesizes the audio through an iterative
optimization method. The iterative process is as follows:

Xn+1 (f7 t) _ M(f, t)ejéSTFT(ISTFT(X"(ﬁt))) (13)
where X, 11(f,t) is the frequency domain signal updated
after the n+ 1 th iteration, which contains amplitude and
phase information.M (f,t) is the target amplitude spec-
trum, which usually comes from the amplitude spectrum
of the input audio signal and represents the intensity
information of the audio signal. e/<STFTUSTET(X.(f.1)))
indicates that the phase information is obtained by per-
forming an inverse short-time Fourier transform (ISTFT)
on the current frequency-domain signal X, (f,¢) and then
applying a short-time Fourier transform (STFT) to the
result. This phase information is extracted by and is used
to construct the updated frequency-domain signal.

V. EXPERIMENTAL SETUP

A. PPG Sensor

As shown in Fig. @, we employ the ADI
MAXMS86146 [B8] PPG sensor module, featuring two
photodiodes and four LEDs (two green, one red, and one
IR). The sensor is integrated into a 3D-printed enclosure
from the official evaluation kit and connects wirelessly via
Bluetooth. We set the sampling rate to 100 Hz, exposure
integration time to 117.3 s, and LED wavelengths to 536
nm (green), 655 nm (red), and 940 nm (IR). The drive
currents for green, red, and IR LEDs are 1.95 mA, 10.21
mA, and 10.21 mA, respectively.

B. Wearable Form Design

The neck is a sensitive and highly mobile region, making
the device form factor critical for stable, comfortable PPG
acquisition. We evaluated three neck-wear designs:

(1) Fitting type, commonly used in ECG sensors, offers
tight skin contact but suffers from poor durability and
potential detachment; (2) Surrounding type, used in bone-
conduction headphones, offers less skin contact and suffers
from signal instability during motion; (3) Collar type,
which tightly fits the neck and provides consistent skin
contact and high signal fidelity.

Based on this comparison, we adopt a collar-style form
factor for PPGSpeech to ensure robust PPG capture.

For materials, we selected a commercial antiperspirant
neckband [B9] composed of 92.2% nylon and 7.8% spandex.
It is breathable, skin-friendly, sweat-resistant, and elastic.
To ensure user comfort and adaptability, we integrated an
adjustable buckle and a knitted non-slip design (Fig. @)7
allowing a stable and customizable fit for users with
different neck sizes.
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PPG-Green sat upright with feet flat on the floor and wore the
100 - N PPG-Red PPGSpeech system at the suprasternal notch via a 3-
= igg:ﬁl D-printed jig, as shown in Fig. E A MAXMS86146 PPG
sensor (100 Hz, green/red/IR LEDs) streamed data to a
80 4 PC over Bluetooth, while an OnePlus Ace3 phone recorded

48 kHz/16-bit audio.
For the 15 Chinese phrases and four confounding actions
§ 601 (chew, sniff, cough, rest), each participant performed 30
§ silent repetitions, following the on-screen sequence: text
$ 40 with pinyin (1 s), blank (0.5 s), 1 kHz beep (0.2 s), 2.8
s acquisition window. A 3-second inter-trial rest and 30-
second breaks every 10 trials prevented fatigue. Immedi-
20 4 ately after the silent sessions, participants produced 30
voiced repetitions of each phrase in the same posture,
ol speaking clearly at their natural loudness and pace. These

123 456 7 8 9101112131415 16ave.
users

Fig. 10. Comparison of classification results across users and LEDs.

C. Collection Position Selection

As shown in Fig. E, we evaluated several neck-worn
sensor positions. The area above the Adam’s apple is
susceptible to motion artifacts from swallowing and neck
flexion—especially in males due to its prominence—which
compromises sensor stability. The left and right sides of
the Adam’s apple are also susceptible to lateral head
rotation and contain thicker subcutaneous tissue, resulting
in reduced PPG signal quality and increased noise.

In contrast, the suprasternal notch provides a stable
site with thinner skin and less motion interference. It also
aligns with common wearable locations such as necklaces,
enhancing user comfort and social acceptability. There-
fore, PPGSpeech selects the suprasternal notch as the
optimal location for PPG signal acquisition.

D. Command Set Selection

We constructed a command set comprising 15 Chinese
phrases, as listed in Table [[, designed to cover three
categories of real-world interaction:

o Phrases 1-6: for daily interpersonal communication;

e Phrases 7-11: for control of smart devices (e.g.,
drones, robots);

e Phrases 12-15: for interaction with consumer elec-
tronics (e.g., phones, speakers).

To evaluate robustness against non-speech activities,
we additionally included three everyday actions—chew-
ing, sniffing, and coughing—which involve neck muscle
movement and may introduce interference to silent speech
recognition. We also recorded baseline signals during rest
to test false trigger behavior and system energy efficiency
during user inactivity.

E. Data Collection

We recruited 16 healthy volunteers (eight males, eight
females; age 18-30 years) in a quiet room. Each participant

recordings were captured with the same OnePlus Ace3
phone (48 kHz/16-bit) and served as the ground-truth
audio for PPG-to-speech reconstruction.

All procedures were approved by the Institutional Re-
view Board (IRB) of the host university.

VI. SYSTEM EVALUATION
A. Recognition Performance

1) Evaluation Metrics.: We evaluate silent speech
recognition performance using classification accuracy. For
each subject, 80% of the samples were randomly selected
for training, and 20% for testing. The model was optimized
using the AdamW optimizer with a learning rate of 0.001
and weight decay of 0.0001.

2) Within-user Performance.: To assess personalized
performance, we conducted within-user classification on 16
participants. Each participant had a user-specific model,
and accuracy was computed separately. As shown in
Fig. [10, the average within-user accuracy reached 81.41%
+ 9.74. Notably, 13 out of 16 users achieved an accuracy
rate of 75% or higher, highlighting the system’s effective-
ness in capturing individual PPG patterns.

This user-dependent strategy is essential in real-world
wearable HCI systems, where inter-user variability can
challenge generalization. Fig. presents the confusion
matrix for User 9, further illustrating the system’s high
recognition fidelity.

3) Comparison Across Genders: Owing to pronounced
anatomical differences in the neck—skin thickness, muscle
composition, and the presence or absence of a prominent
larynx—we conducted a focused analysis of gender-specific
effects on PPG-based silent-speech classification. Female
participants attained a mean accuracy of 83.32 %, out-
performing their male counterparts who averaged 79.49
%. This modest yet consistent gap suggests that females
benefit from smoother, less perturbed PPG signals, likely
because the absence of a pronounced Adam’ s apple
minimizes sensor displacement and tissue-vibration arti-
facts. These observations highlight the need to integrate
physiological diversity into wearable HCI design; future
iterations could incorporate gender-aware calibration or
adaptive models to maintain high recognition fidelity
across all user demographics.
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Fig. 11. Confusion Matrix of user 9.
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Fig. 12. Comparison of classification results of different models.

4) Comparison Across LED Wavelengths: We compared
PPG signals captured from three wavelengths—Green
(PPG-Green), Red (PPG-Red), and IR (PPG-IR)—as
well as their fusion (PPG-All). As shown in Fig. [L(,
the fusion model (PPG-All) consistently outperformed
all single-wavelength settings. Among individual channels,
PPG-Red delivered the best performance, likely due to
its deeper tissue penetration. In contrast, PPG-Green,
which performs well in wrist-based applications, showed
reduced accuracy in this neck-based setup, possibly due to
its limited penetration depth. These findings confirm that
multi-wavelength fusion provides complementary depth
information and enhances robustness.

5) Comparison Across Classification Models: We com-
pared our encoder-decoder CNN with popular deep learn-
ing models, including EfficientNet (V1/V2), ResNet-50,

VGG_(16/19), and MobileNet (V1/V2). As shown in
Fig. [12, our tailored CNN achieved the highest accuracy
(81.41%), outperforming deeper architectures. To assess
the benefit of the CWT-based two-dimensional represen-
tation, we re-implemented TCN, Bi-LSTM, and a compact
Transformer directly on the filtered one-dimensional PPG
streams (288 time-steps, 8 channels); these achieve 76.6
%, 74.1 %, and 79.5 %, respectively, all trailing the 81.4
% of our CWT-CNN pipeline. While MobileNet variants
demonstrated competitive performance and efficiency,
they fell short of our design. These results demonstrate
that lightweight architectures tailored to spatial-temporal
features in CWT images are better suited for neck-worn
PPG-based SSI tasks than generic image classifiers.

6) Comparison of 1D-to-2D Signal Transformation
Methods: To validate the effectiveness of CWT-based fea-
ture extraction, we compared it with several alternatives
for converting 1D signals into 2D representations: STFT,
Recurrence Plot (RP), Markov Transition Field (MTF),
and Gramian Angular Field (GAF).

As shown in Table [, the CWT-based approach
achieved the highest recognition accuracy and lowest
variance, confirming its superior ability to capture local-
ized frequency dynamics and transient patterns. In con-
trast, GAF exhibited high subject-wise variance (£15.14),
whereas STFT struggled with the trade-offs of fixed reso-
lution. RP and MTF, although helpful in visualizing tem-
poral recurrence and transitions, yielded lower accuracy
and consistency. These results underscore the advantage
of CWT in preserving the rich time—frequency structure
of neck PPG signals.

B. Reconstruction Performance

1) Evaluation Metrics.: To evaluate the performance of
audio reconstruction, we adopted five metrics: MOS (Ta-
ble ), Speaker Mean Opinion Score (SMOS) (Table E),
WCR, Short-Time Objective Intelligibility (STOI), and
Extended Short-Time Objective Intelligibility (ESTOI).
MOS reflects the perceived audio quality, based on a 1-5
subjective rating scale, assessing the degree of restoration
of the original speech. SMOS, similar to MOS, focuses
on speaker similarity—that is, whether the reconstructed
speech retains the original speaker’s vocal characteris-
tics. WCR quantifies linguistic intelligibility by measur-
ing the percentage of correctly recognized words in the
reconstructed speech. STOI and ESTOI provide objec-
tive intelligibility scores ranging from 0 (unintelligible)
to 1 (perfectly intelligible), with STOI evaluating short
segments and ESTOI extending this to longer durations.
To ensure an objective and comprehensive evaluation, we
recruited 10 independent raters, each of whom assessed re-
constructed samples from all 10 original speakers, thereby
ensuring balanced exposure to speaker variability.

2) Within-user Performance.: As shown in Table
The reconstructed speech achieved a MOS score of 3.48,
indicating that the overall audio quality was perceived as
intelligible and moderately natural by human raters. The
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TABLE II
COMPARISON OF 1D-10-2D CONVERSION METHODS
Method CWT (ours) STFT GAF RP MTF
Accuracy (%) 8141+ 9.74 7118 + 1149 69.06 £ 15.14 62.49 + 17.96  66.27 & 16.93
TABLE III
MOS
Original Reconstructed Original Reconstructed
Score Level
1 Recovered none of the original speech Fig. 13. Comparison of original and reconstructed Mel spectrograms.
2 Recovered little of the original speech
3 Recovered half of the original speech
4 Recovered most of the original speech TABLE V
5 Recovered all of the original speech PERFORMANCE OF SILENT SPEECH RECONSTRUCTION
STOI  ESTOI MOS SMOS WCR
Perfomance 0.7172  0.6141 3.48 3.21 60.67

SMOS score of 3.21 further demonstrates that the recon-
structed audio preserved specific speaker-specific charac-
teristics, although some degradation in speaker identity
was noted, likely due to the physiological limitations
of PPG signals in conveying fine-grained vocal features.
Objective metrics corroborate this impression: the system
obtained an STOI of 0.7172 and an ESTOI of 0.6141,
both well within the range typically considered acceptable
for intelligible speech. In addition, the system achieved
a WCR of 60.67%, reflecting a reasonable level of in-
telligibility from an automatic recognition perspective.
This level of performance suggests that the reconstructed
speech carries sufficient linguistic information to be useful
for downstream tasks. Fig. illustrates the spectro-
gram comparisons between the original and reconstructed
speech for two representative phrases, “4R#F” (hello)
and “X}AF” (sorry). The reconstructed spectrograms
closely resemble their original counterparts in terms of
temporal structure and spectral distribution, indicating
that the proposed system can effectively preserve both
phonetic content and speaker-specific acoustic patterns
during silent speech reconstruction.

3) Comparison Across Genders: In the speech recon-
struction task, female participants outperformed male par-
ticipants across all speech reconstruction metrics: MOS
(3.60 vs. 3.36), SMOS (3.40 vs. 3.02), and WCR (63.4% vs.
57.91%). Objective intelligibility also showed this trend,
with STOI improving from 0.687 to 0.747 and ESTOI
from 0.5908 to 0.6374. This difference is attributed to
the thinner neck anatomy and less pronounced Adam’s
apple in women, which provides cleaner input for Pix2Pix,
generating mel-spectrograms that preserve finer harmonic
structure and speaker characteristics.

TABLE IV
SMOS

Level
Recovered none of the speaker characteristics
Recovered little of the speaker characteristics
Recovered half of the speaker characteristics
Recovered most of the speaker characteristics
Recovered all of the speaker characteristics

Score

CU s W N =

C. User Experience Survey

To assess user acceptance of PPGSpeech, we conducted
a user questionnaire focusing on participants’ experiences
during prototype usage. The results indicate that 93% of
participants found the prototype to be lightweight and
easy to wear. Furthermore, 75% expressed willingness to
use the device in daily life for silent speech interaction.
Several participants noted that improvements in the aes-
thetic design could enhance its suitability for everyday
use. Regarding wearability, 80% of users found the device
comfortable to wear, and 69% expressed a willingness to
wear the prototype for extended periods. However, some
participants reported minor discomfort associated with
prolonged use. Additionally, 87% of users believed that
silent speech interaction via the PPGSpeech device could
bring practical benefits to their daily lives.

VII. DISCUSSIONS AND LIMITIONS
A. Discussion

1) Robust Triggering of Silent Speech.: A critical chal-
lenge for real-world silent speech interfaces is distinguish-
ing intentional commands from other natural neck muscle
activities. Our evaluation demonstrates that PPGSpeech
can accurately classify confounding activities such as
coughing, chewing, and sniffing, thereby preventing them
from being misinterpreted as speech commands. Further-
more, the system robustly differentiates between silent
speech and a resting state, which is crucial for avoiding
false positives and unintended activations. This dual ca-
pability enhances both interaction reliability and user ex-
perience. It also improves power efficiency by minimizing
energy consumption during user inactivity.

2) Privacy Concerns of PPG Sensing.: A significant
advantage of PPGSpeech over visual or wireless sensing-
based SSIs is its inherent preservation of privacy regarding
facial information. Conventional methods that rely on
cameras or sensors aimed at the user’s mouth run the risk
of capturing facial expressions, identity, or other sensitive
visual data. PPGSpeech obviates the need for any facial
tracking by capturing signals exclusively from the neck.
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TABLE VI
COMPARISON WITH EXISTING SOLUTIONS

Attribute Uigz:n:;;gz;e[gﬁle W\Za};:&izn[lfc] Chen et al. [§] Mutelt [29] TieLent [20] PPGSpeech (ours)
Sensing Modality Crack-textile strain ~ IMU4-EXG HD facial-neck EMG Dual IMU Single camera PPG
Placement Necklace Ear-/head-worn Face + neck Behind- /in-ear Necklace pendant Neck front
Language English English Mandarin English English Mandarin
Vocabulary Size 20 high-freq. words 12 commands 33 words 100 words 15 words 15 commands
Accuracy 95.25% 94.2% 82.3% 94.8% 94% 81.4%
Speech Reconstruction X X X X X v (MOS 3.48)
Motion Rejection Only speech Only speech 9 (e.g., swallow, cough) Only speech Only speech chew /sniff/cough
Privacy Level High Low Low Medium Low High (no visual leak)
User Good Fair Poor Fair Fair Good
Friendliness (soft textile) (cabling) (64 electrodes) (ear clips)  (pendant swing) (collar)
Subjects 6 9 11 20 3 16

However, the PPG signal itself is a rich source of personal
health information, containing sensitive physiological data
such as heart rate and potentially blood oxygen satura-
tion. Therefore, while our approach mitigates the risks
associated with facial privacy leakage, it underscores the
need for robust data governance and security measures to
protect users’ physiological data during storage, transmis-
sion, and processing.

3) Application.: PPGSpeech offers significant practical
advantages over conventional silent speech interfaces that
rely on mouth-based visual features. Its reliance on neck-
based signals, rather than lip movements, ensures robust
operation even when the user’s mouth is occluded—such
as when wearing a face mask or covering the mouth
—scenarios where visual-based SSIs would fail. Further-
more, as a self-contained, neck-worn wearable, PPGSpeech
enables hands-free interaction, independent of holding
a terminal device, such as a smartphone. This design
is particularly advantageous in situations where manual
operation is complex or socially inappropriate, such as on
a crowded subway or in a formal meeting, allowing for
discreet interaction in complex environments. In addition
to its implications for HCI, PPGSpeech contributes to
the broader field of Al-enabled medicine. Because PPG
is widely used for clinical monitoring, our findings sug-
gest that articulatory-induced vascular modulation may
support future applications in speech rehabilitation, voice
disorder assessment, or assistive communication for pa-
tients with impaired phonation. Looking forward, the
technology can be further miniaturized and integrated into
everyday decorative accessories, such as necklaces. Such an
implementation would maximize its social acceptability,
discretion, and long-term comfort, realizing the vision of
a truly seamless and unobtrusive silent speech interface.

4) Comparison with  existing  solutions.:  While
PPGSpeech is still in its early stages, it distinguishes

itself from the prior art summarized in Table through
a balanced set of practical merits. By relying on an
unobtrusive photoplethysmography collar placed at

the neck front, the system avoids
risks of camera-based approaches
[20] and the cabling or electrode

the visual privacy
such as TieLent
burden associated

with Whispering Wearables [40], Chen et al. [§], and
Mutelt [29]. PPGSpeech introduces a capability: direct
reconstruction of intelligible speech, validated by an
MOS of 3.48. Furthermore, the modality naturally
tolerates common non-speech artifacts—such as chewing,
sniffing, and coughing—without requiring additional
hardware. Combined with a comfortable collar form
factor evaluated on sixteen Mandarin speakers, these
characteristics make PPGSpeech a discreet, user-friendly,
and privacy-preserving silent-speech interface.

B. Limitations and Future Work

1) Device Prototype and Form Factor.: While the cur-
rent prototype, which utilizes a hand-cut sports strap
with preset buckles, successfully validates our approach,
its form factor presents opportunities for improvement.
The current design offers limited adjustability and could
be improved in terms of ergonomics and long-term com-
fort. Future iterations should explore advanced, flexible,
or elastic fabrics to improve wearability. Furthermore,
incorporating adjustable structures, such as magnetic clo-
sures or sliding mechanisms, alongside the potential use of
flexible electronics, could provide a more precise, stable,
and comfortable fit for a broader range of users.

2) Vocabulary and Language Ezrpansion.: The current
study utilized a command set of 15 Chinese phrases and
four actions to validate the feasibility of PPGSpeech. To
enhance its practical utility, future work should focus
on three key areas of expansion. First, the vocabulary
size should be increased to include a broader range of
phrases and complete sentences. Second, the system’s
generalizability should be tested by collecting multilingual
data, including English and other languages. Finally, to
improve robustness in real-world environments, the set of
confounding movements should be expanded to include
more non-speech neck gestures (e.g., nodding, shaking
the head) and environmental interference factors (e.g.,
adjusting a collar, wearing headphones).

3) Ewvaluation with Diverse Populations and Scenarios.:
Our 16-participant study provided strong proof of concept,
but a broader evaluation is needed for generalizability.
Future work should recruit a larger and more diverse
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cohort to account for physiological differences such as skin
tone, neck anatomy, and muscle dynamics. The system
should also be tested in more dynamic, ecologically valid
settings (e.g., walking or exercise) to assess robustness to
motion artifacts. Finally, exploring the system’s adaptabil-
ity across different demographic groups, including children
and older adults, will be crucial for understanding its
potential as a universal communication aid.

VIII. CONCLUSION

In this paper, we introduce PPGSpeech, pioneering a
method for silent speech recognition using PPG signals
from a custom neck-worn device. Our work establishes a
new modality for human-computer interaction that prior-
itizes user comfort, privacy, and discretion. Through our
carefully designed wearable system and a lightweight deep
learning pipeline, we achieved a user-dependent accuracy
of 81.41% in classifying 15 Chinese phrases and four con-
founding actions. Furthermore, we demonstrated the rich-
ness of the captured signal by successfully reconstructing
intelligible voiced speech from silent articulations, yielding
a MOS of 3.48 and a WCR of 60.67%. These results reveal
the significant, previously untapped potential of recover-
ing high-frequency acoustic features from low-frequency
physiological signals. PPGSpeech opens new avenues for
developing unobtrusive and continuously available inter-
faces, expanding the possibilities for wearable computing
and accessible communication.
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