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Study on Turbulent Non-Premixed Cool Flames of Dimethyl-Ether/Methane Mixtures
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Simulated cool flame: 
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 Methane inhibits the low-temperature oxidation of DME

 CH4 competes with the DME H-abstraction reaction for OH radicals 
 the reaction of QOOH <=> O2 + 2CH2O is significantly slowed down 

with the methane addition.
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Abstract 

In present work, the turbulent non-premixed cool flames of dimethyl-ether (DME)/methane mixtures are 

studied within the framework of flamelet/progress variable modelling and chemical kinetic analyses. The 

numerical setup is based on the Princeton CARAT burner configuration, and the accuracy of the hpmech-V3.3 

chemistry to model turbulent low-temperature combustion is validated against the reference experiments and DNS. 

The simulation results reveal that turbulent cool flame structures are modified (lifted) by methane addition owing 

to the decline of cool flame extinction limits. The different flame regions associated with differing thermochemical 

characteristics for the dual-fuel lifted cool flames are uncovered. The DME/methane consumption trends suggest 

that methane addition inhibits the DME low-temperature oxidation. Through the kinetic analyses, the mechanisms 

are identified to be two-fold: methane competes with the DME H-abstraction reaction for OH radicals and the 

reaction of QOOH <=> O2 + 2CH2O is significantly slowed down with the methane addition. The mechanisms 

also kinetically explain the finding that the formation of CH2O, CO, CO2 in cool flames decline in response to the 

increase of methane blending ratios. The correlation between temperature and key intermediate formation is 

discovered. 

 

Keywords 

DME/Methane; Turbulent cool flame; Large eddy simulation; Flamelet/progress variable; Flame lift. 
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Nomenclature 

CARAT Co-flow axisymmetric reactor-

assisted turbulent 

Cχ The coefficient of χ 

CCUS The carbon capture, utilization, and 

storage 

cp The isobaric specific heat capacity respectively 

CFE Cool flame extinction limit Dt
 The turbulent diffusivity 

CI Compression ignition Dz
 The molecular diffusivity of Z 

DME Dimethyl-ether 𝑓 Filtered scalar 

DNS Direct numerical simulation hk Specific enthalpy 

FPV Flamelet/progress variable P(Z) The probability density function  

G The filter kernel 𝑃(𝑌𝑐|𝑍) The conditional probability density function  

HCCI Homogeneous charge compression 

ignition 

p The pressure 

HTI Hot-temperature ignition limit ReD
 Reynolds number 

LES Large eddy simulation Rm
 The methane blending ratios  

LTC Low-temperature combustion Sc The Schmidt number 

LTI Low-temperature ignition limit T Temperature 

PDF Probability density functions t Represents time 

QOOH Hydroperoxyalkyl u The velocity vector 

R Hydrocarbon group X The mole fraction 

R2 The coefficients of determination in 

linear fits 

x The spatial coordinate 

RCCI Reactivity controlled compression 

ignition 

Yk Chemical species mass fractions 

RH Alkyl hydrocarbon Z The mixture fraction 

RMS Root-mean-square Δ The filter size using the cubic root of cell 

volume. 

RO2 Alkyl peroxy χ Quantifies instantaneous scalar dissipation rate 

SGS Subgrid-scale ω
•

k
 Chemical reaction source term 

  YC Progress variable 
￣

 Filtering operator ρ The density 

{} Time-averaged ～ Favre filtering 

 

1. Introduction 

In the recent decade, the global demand for energy diversity and the urgent imperative to mitigate greenhouse 

gas emissions have spurred the exploration of cleaner, more sustainable green fuels for next-generation internal 

combustion engines(Ge et al., 2025a, 2025b). Both Dimethyl ether (DME) and methane are recognized as attractive 

energy alternatives(Chai et al., 2016; Jiang et al., 2018; Lu et al., 2024; Moroshkina et al., 2025), since they can 

be widely obtained from biomass residues via catalytic conversion, organic waste by means of anaerobic digestion 

and CO2 through the carbon capture, utilization, and storage (CCUS) technology(Ajayi-Banji and Rahman, 2024; 

Nakyai and Saebea, 2019; Tang et al., 2023; Uddin et al., 2020; L. Wang et al., 2023; Zhu et al., 2024). While 

DME is featured by excellent atomizing performance, low-temperature reactivity, simplicity of liquefaction and 

storage, superior thermal efficiency, and low-soot formation (Deng et al., 2014; Lu et al., 2024; Park and Lee, 
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2013; Wan et al., 2019; Zhou et al., 2025), CH4 is characterised of low NOx and carbon dioxide emission, high 

auto-ignition temperature, low low-temperature reactivity, and short flammability limits, if applied alone to 

compression ignition (CI) engines(Gaipl et al., 2025; Li et al., 2025; Luo et al., 2023; Moroshkina et al., 2025). 

These combustion features have prompted consistent studies of DME/methane dual-fuel systems(Burke et al., 

2015; Gao et al., 2020; Hashemi et al., 2019; Kaczmarek et al., 2021; Li et al., 2020; Lowry et al., 2011; Lu et al., 

2024, 2021; Luo et al., 2017; Mohammad and Juhany, 2019; Nakamura et al., 2021; Porras et al., 2020; Sen et al., 

2016; Wang et al., 2018; Yu et al., 2014; Zhang et al., 2022). 

For the next-generation engine design, DME/methane binary fuels have also shown potential for feasibility 

in RCCI (Reactivity Controlled Compression Ignition) (Kokjohn et al., 2011), HCCI (Homogeneous Charge 

Compression Ignition)(Yao et al., 2009) and other promising low-temperature combustion (LTC) techniques. Jin 

et al. conducted an investigation into ignition behaviours of DME/methane blends with the RCCI regime by means 

of DNS (Direct Numerical Simulation). The multi-stage and multi-mode characteristics involving cool flames 

during the ignition stage are discovered (Jin et al., 2019). Ezoji et al. explored how DME addition influences the 

ignition timing in natural gas-fuelled HCCI engines. The findings showed that adding DME leads to the lower 

requirement for an injection temperature and the development of a dual-stage thermal release; meanwhile, the 

presence of dual fuels result in a rise in combustion chamber temperature and wall heat transfer (Ezoji et al., 2019). 

Banke et al. and Hegner et al. studied the use of DME/methane fuelled HCCI engines as reaction reactors to enable 

polygeneration. The outcome is favourable at fuel-rich conditions when equivalence ratios exceed 2 (Banke et al., 

2019; Hegner et al., 2017). Desai et al. investigate the auto-ignition propagation speed of DME/methane blends in 

stratified combustion. The inherent impacts of stratification on the low- and high-temperature chemistry are 

investigated for the instructions of dual-fuel RCCI engines (Desai et al., 2020). Such dual-fuel approaches have 

been proposed as a promising LTC technique to enhance thermal efficiency without compromising low emissions, 

which highlights the significance of low-temperature chemistry or cool flames(Ju, 2021; Ju et al., 2019).  

Cool flames(Ju, 2021; Ju et al., 2019) are intricately linked to ignition processes(Jin et al., 2019; Reuter et al., 

2016; Zhang and Ju, 2020; Zhao et al., 2016), combustion rate(Benteux et al., 2025; Liang and Law, 2017), 

extinction limits(Benteux et al., 2025; Reuter et al., 2017; Xu et al., 2022), engine knocking(Amann et al., 2011; 

Bradley and Kalghatgi, 2009; Qi et al., 2017; Sun et al., 2015), and pollutant formation(Dbouk et al., 2025; Reuter 

et al., 2018; Yan et al., 2022a). In diesel engines, for instance, autoignition and autoignition-assisted flame 
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propagation are the primary phenomena in combustion. Autoignition is triggered by first-stage ignition and the 

subsequent shift to a cool flame. The cool flames then spread from lean to rich mixtures. Afterward, second-stage 

(hot) ignition takes place in fuel-rich regions, where turbulent hot flames are established and spread back from the 

rich mixture toward the stoichiometric mixture location(Murakami et al., 2021). Recent research shows DME 

exhibits distinct LTC and cool flame characteristics: 1) High low-temperature oxidation reactivity: It easily triggers 

cool flames at 500–800 K (lower than conventional fuels like diesel), and there is no need for high compression 

to ignite; 2) Key cool flame reaction pathway: Dominated by "RH→R→RO₂→QOOH" reactions. QOOH 

(hydroperoxyalkyl radical) is the core intermediate, which decomposes to produce CH₂O (formaldehyde) and 

releases moderate heat (not enough for hot ignition); 3) Cool flame products: Mainly incomplete oxidation 

products (CH₂O, CO) instead of final CO₂/H₂O, with low heat release compared to hot flames(Z. Wang et al., 2023; 

Yan et al., 2022b). Comparatively, methane has weak LTC features, as its strong C-H bonds require higher 

temperatures to initiate low-temperature oxidation, making it hard to trigger reactions at typical "cool flame 

temperatures" (500–800 K) at atmosphere or moderate pressures or without mixing with reactive fuels like 

DME(Wang and Gou, 2019).  

Since cool flames in practical engines often occur at turbulent atmospheres, it is of significance to study the 

interaction between cool flames and turbulence. However, limited research literature focuses on the investigations 

of DME/methane cool flame dynamics, especially from the turbulent combustion modelling perspective. Cool 

flames are characteristic of low temperature chemistry behaviours that need detailed chemical mechanisms in 

turbulent simulation. Manifolds-based models such as FPV (Flamelet/Progress Variable) (Ihme et al., 2005; Pierce 

and Moin, 2004) and flamelet-generated manifolds (OIJEN and GOEY, 2000; van Oijen et al., 2016), building 

themselves on the flamelet concept of depicting a turbulent flame as a collection of laminar flamelets(Peters, 1988), 

enable an effective entry to complex thermochemistry at a substantially reduced computational cost. To examine 

the feasibility of reduced-order manifold modeling in turbulent cool flames, Novoselov et al. have carried out high-

fidelity DNS of non-premixed DME cool flames coupled with unsteady isotropic turbulence (Novoselov et al., 

2019a). It is found that such cool flames can be suitably represented by steady flamelets. To continue this work, 

Novoselov et al. have conducted experiments and DNS investigations into turbulent non-premixed DME cool 

flames established on the Princeton CARAT (Co-flow Axisymmetric Reactor-Assisted Turbulent) burner 

(Novoselov et al., 2019b). The findings strengthen the conclusion by comparing conditional averages, rather than 
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just analyzing instantaneous scalars, that manifold models can characterize turbulent non-premixed cool flames. 

Within the scope  of LES (Large Eddy Simulation), the first author and co-workers have carried out an LES on the 

same Princeton CARAT burner with the steady laminar flamelet method(Xiong et al., 2023) and FPV(Zeng et al., 

2026). The discoveries reveal that reduced-order manifolds modelling can effectively replicate the averaged values 

and RMS (Root Mean Square) tendencies of temperature, mixture fraction, and formaldehyde. In spite of the merits 

of manifolds-based models, their application to turbulent DME/ methane cool flames hasn`t been reported in the 

literature. 

Furthermore, the modelling of cool flames requires precise chemistry. To characterize DME/ methane low-

temperature oxidation reactions, the hpmech-V3.3 chemical scheme(Reuter et al., 2018) has been established. 

Tailored to the reactivity at both cool and hot flames, this dual-fuel chemistry is rigorously validated against a 

comprehensive suite of experimental targets: counterflow flames, homogeneous reactors, and plug flow reactors. 

It favourably delivers a well-verified chemistry scheme for simulating turbulent DME/methane cool flames. 

 Based on the discussions above, the current work intends to study the turbulent non-premixed cool flames of 

dimethyl-ether (DME)/methane mixtures with the approaches of both LES and chemical kinetic analyses. This 

paper is arranged in the following manner: Section 2 outlines the specifics of the computational methodologies. 

Section 3 describes flame configurations alongside computational setups. Section 4 delineates the results and 

discussion about the modelling accuracy of the employed chemistry and the effects of methane blending ratios on 

turbulent non-premixed methane/DME cool flames. Section 5 offers a synthesis of the research findings. 

2. The numerical methods 

2.1 LES  

In LES, large-scale eddies within the flow field are directly resolved, whereas subgrid-scale turbulence and 

chemistry effects are addressed through modeling(Smagorinsky, 1963). Scale segregation is facilitated through 

low-pass filtering of fluid domain variables. In combustion modelling, the mass-weighted Favre filtering scheme 

is actually implemented as follows:  

ψ̃(t,x)=
1

ρ̅
∫ ρ(t,y) ψ(t,y)G(t,x,y;Δ) dy 

(1) 

Here, 
￣

 is the filtering operator, 
～

 means Favre filtering, t represents time, x denotes the spatial coordinate, ρ is 

the density, and G stands for the filter kernel. Δ is the filter size using the cubic root of cell volume. 
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By applying the filtering operation to the Navier-Stokes equations under the low-Mach numbers assumption, 

the governing equations of LES can be formulated as 

Continuity: 

∂ρ̅

∂t
-
∂ρ̅uj̃

∂xj

=0 
(2) 

Momentum:  

∂(ρ̅uĩ)

∂t
+

∂(ρ̅uĩuj̃)

∂xj

=-
∂p̅

∂xi

+
∂

∂xj

[τij̅-ρ̅(uiuj̃ -uĩuj̃)] 
(3) 

Here, ρ denotes the density, u represents the velocity vector, p stands for the pressure. Given that the residual 

stress tensor ρ̅(uiuj̃ -uĩuj̃)  remains unresolved, a dynamic k-equation subgrid-scale model(Kim and Menon, 1995) 

is employed for its representation. This eddy viscosity model utilizes a formulated transport equation to assess the 

behavior of k, with a dynamic procedure applied to settle the coefficients. 

2.2 FPV model  

The FPV model is established upon the flamelet equations(Pierce and Moin, 2004). In these equations, a 

turbulent non-premixed flame is depicted as a collection of laminar flamelets(Peters, 1988). In terms of turbulent 

cool flames, the steady flamelet equations (Equations 4 and 5) are formulated under the presumption of unity 

Lewis numbers. It is extensively employed in high-temperature flames at large Reynolds numbers, in which 

viscosity is elevated by thermal gradients within the flame zone by a factor of 10, contributing to the same decade-

scale attenuation of the Reynolds number(Novoselov et al., 2019b). In spite of their much smaller Reynolds 

numbers, the validity for turbulent cool flames is supported in the DNS studies(Novoselov et al., 2019a, 2019b), 

owing to minimal variations in temperature and viscosity, consequently suppressing Reynolds number 

fluctuations(Novoselov et al., 2019b). 

1

2
ρχ

∂
2
Yk

∂Z2
+ω

•

k=0 
(4) 

1

2
ρχ(

∂
2
T

∂Z2
+

1

cp

∂cp

∂Z

∂T

∂Z
)-

1

cp

∑ hkω
•

k

n

k=1

=0 
(5) 

Here, Yk, T and cp  denote chemical species mass fractions, temperature and the isobaric specific heat capacity 

respectively;  hk and ω
•

k  correspond to specific enthalpy and chemical reaction source term. χ quantifies 
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instantaneous scalar dissipation rate. Z, representing the mixture fraction, adheres to the definition by Bigler(Bilger, 

1989). 

 Additional flow field scalars like species mass fractions can be retrieved through interpolation in the pre-

generated laminar flamelet database, with Z and YC serving as manifolds-based parameters: f=f(Z,Yc) .  

In LES of turbulent combustion, the filtered variable 𝑓 is typically reconstructed through presumed 

probability density functions (PDFs) of the filtered quantities YC̃  and  𝑍 ̃. 

𝑓 = ∬ 𝑓(𝑍, 𝑌𝑐)𝑃̃(𝑍, 𝑌𝑐)𝑑𝑍𝑑𝑌𝑐 
(6) 

𝑃̃(𝑍, 𝑌𝑐) = 𝑃(𝑌𝑐|𝑍)𝑃(𝑍) (7) 

Following the references(Ihme et al., 2005; Ihme and Pitsch, 2008a; Pierce and Moin, 2004; Xiong et al., 

2023), P(Z) adopts the beta distribution (β-PDF). Under the state-space independence assumption(Pierce and Moin, 

2004), the conditional probability density function 𝑃(𝑌𝑐|𝑍) can be mathematically represented by a Dirac delta 

function. Consequently, a tri-variate flamelet look-up table 𝑓 = 𝑓(𝑍, 𝑌𝑐̃, 𝑍′′
2̃

)  can be constructed for turbulent 

flames. The library-constructing parameters are solved by their individual transport equations: 

𝜕(𝜌𝑍)

𝜕𝑡
+

𝜕(𝜌𝑢𝑖̃𝑍 )

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑖
[𝜌̅(𝐷𝑧 + 𝐷𝑡)

𝜕𝑍

𝜕𝑥𝑖
] 

(8) 

𝜕 (𝜌𝑍′′
2̃

)

𝜕𝑡
+

𝜕 (𝜌𝑢𝑖̃𝑍
′′

2̃
)

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑖
[𝜌̅(𝐷𝑧 + 𝐷𝑡)

𝜕𝑍′′
2̃

𝜕𝑥𝑖
] + 2𝜌̅(𝐷𝑧 + 𝐷𝑡)

𝜕𝑍

𝜕𝑥𝑖

𝜕𝑍

𝜕𝑥𝑖
− 𝜌𝜒 

(9) 

𝜕(𝜌𝑌𝑐̃)

𝜕𝑡
+

𝜕(𝜌𝑢𝑖̃𝑌𝑐̃ )

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑖
[𝜌̅(𝐷𝑧 + 𝐷𝑡)

𝜕𝑌𝑐̃

𝜕𝑥𝑖
] + 𝜔̇𝑌𝑐̃ 

(10) 

Dz represents the molecular diffusivity of Z, postulated to be equivalent to the thermal diffusivity under unity 

Lewis number assumption, and Dt denotes the turbulent diffusivity, computed through the expression 

c
/ ( )

t t
S D = (Gicquel et al., 2012). The Schmidt number Sc commonly spans a range from 0.4 to 1(Pant et al., 

2019; See and Ihme, 2015). In current work, a value of 1 is employed, based on the sensitivity analysis in turbulent 

cool flame modelling reported in the prior study(Xiong et al., 2023). The filtered scalar dissipation rate adheres to 

the formulation following (Gao et al., 2020; Ihme et al., 2012a, 2012b; Ihme and Pitsch, 2008a), which breaks 

down the term into resolved-scale and subgrid-scale (SGS) components: 

Jo
urn

al 
Pre-

pro
of



9 

 

𝜒 = 2𝐷𝑍|𝛻𝑍|
2

+ 2𝐷𝑡

𝐶𝜒

2∆2
𝑍′′

2̃
 

(11) 

where the coefficient  Cχ is given a value of 2, consistent with (Gao et al., 2020; Ihme et al., 2012a, 2005; See and 

Ihme, 2015; Xiong et al., 2023). 

       Numerically, the FPV-LES framework is implemented in the open-source platform of OpenFOAM (Weller et 

al., 1998). Its applicability to turbulent cool flames has been validated against the experiments and DNS of the 

Princeton CARAT burner (Novoselov et al., 2019b) in the previous study (Zeng et al., 2026). 

3. Flame configurations and computational setups 

3.1. Experiment description 

The computational setup corresponds to the turbulent non-premixed cool flame configuration on the CARAT 

burner at Princeton University(Novoselov et al., 2019b), and the burner schematic is shown in Figure 1. The burner 

is equipped with three concentric flow paths: A central fuel nozzle (Stream 1) featuring a diameter of D=15mm, 

an annular pilot channel (Stream 2) supplying 2mm radial clearance around the primary outlet, and an external co-

flow conduit (Stream 3) for flow stabilisation. The fuel mixture in Stream 1 comprises N2, acetone, and DME with 

respective volume fractions of 78%, 2%, and 20%.  To maintain flame stability while inducing controlled 

turbulence at a Reynolds number of ReD=911 (𝑈̅=2.5m/s, 𝑈𝑅𝑀𝑆=0.42m/s) based on D, two perforated plates are 

incorporated upstream of the nozzle exit at Stream 1. Stream 2 delivers pure oxygen at a velocity of U2 = 1 m/s, 

while Stream 3 supplies ambient air with a reduced velocity (U3= 0.5 m/s) to minimize flow disturbances. All fluid 

inlets are maintained at 600 K through preheating.  

123
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Figure 1. Schematic of the CARAT burner. A photograph of the burner prototype is available in the referenced 
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study (Novoselov et al., 2019b). 

3.2. Computational domain and Mesh allocation 

Numerical computations are carried out above the x= 0 reference line (Figure 1). The cylindrical simulation 

domain is configured as follows: (1) A radial dimension of 6D is selected to minimize lateral boundary effects; (2) 

An axial dimension of 16D is implemented to accommodate flame propagation and thermal expansion of 

downstream. The computational mesh employs a polar coordinate system with a central square region (O-type 

grid) to prevent overly dense meshing along the axis. 

The specific grid allocation consists of 81 tangential, 48 azimuthal, and 200 axial cells, as well as the O-grid 

region covering 12×12 cells. Mesh stretch is deliberately applied in both axial and tangential orientations to address 

turbulent flow non-uniformity at the inlet region and sharp gradients arising in the vicinity between Stream 1 and 

Stream 2. The grid independence has been verified in the same CARAT burner in the earlier studies(Xiong et al., 

2023; Zeng et al., 2026). The specific grid distribution is shown in Figure 2.  

 

Figure 2. The grid allocation(Xiong et al., 2023). 

3.3 Boundary conditions and chemistry schemes 

To represent DME/methane oxidation reactions, the hpmech-V3.3 chemical scheme(Reuter et al., 2018), 

comprising 130 species and 876 reactions, is employed in turbulent cool flame modelling. Tailored to the reactivity 

at both low and high temperatures, this dual-fuel chemistry is rigorously validated against a comprehensive suite 

of experimental targets: counterflow flames, homogeneous reactors, and plug flow reactors. The progress variable 

is defined as YC= YCO2 +YH2O +YCO + YH2, following (Ihme and Pitsch, 2008a, 2008b; Pant et al., 2019; See and 

Ihme, 2015; Zeng et al., 2026). 

On the inlets, inflow turbulence at Stream 1 is generated with the random spots method(Kornev and Hassel, 

n.d.), employing the mean velocities, Reynolds stress tensor, and integral length scales corresponding to the 
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experimental conditions. It has been applied across multiple LES studies and has exhibited the capability to 

reproduce coherent vortices(Chen et al., 2020; Guo et al., 2018; Wu, 2017; Zhang et al., 2024). Streams 2 and 3 

are assigned with experimentally measured bulk flow velocities. Lateral boundaries adopt free-slip conditions, and 

non-reflective treatment is enforced at the domain exit plane. Nozzle walls are defined with adiabatic and no-slip.  

The specific scalar boundary conditions are detailed in Table 1. Before investigating the dual fuels, the 

accuracy of the hpmech-V3.3 chemical scheme(Reuter et al., 2018) to model turbulent cool flames is scaled against 

the experiments and DNS of the CARAT burner (Novoselov et al., 2019b). Notably, DNS employs the different 

chemistry of the Wang model(Wang et al., 2015), without the validated low-temperature CH4 sub-mechanisms. 

Scalar boundary profiles adopt uniform distributions from experimental data, with Stream 1 composition modified 

to XN2=0.8 and XCH3OCH3=0.2 (excluding the tracer acetone presented experimentally). This is identical to DNS 

configurations(Novoselov et al., 2019b). To be particularly noted, slight variation exists in thermal and species 

boundary implementations between numerical and experimental configurations. The original three-stream 

combustion system (distinct compositions in Stream 2: pure O2; Stream 3: air) is computationally simplified to a 

two-stream model by specifying identical oxidizer (pure O2) for both Streams 2 and 3. This simplification, justified 

by DNS evidence of minimal co-flow composition impact(Novoselov et al., 2019b), reduces computational 

expense associated with triple-stream interaction modeling. The validity of this assumption in LES is also proved 

in the previous analysis(Xiong et al., 2023; Zeng et al., 2026). In line with the DNS configuration, the temperature 

setting at the fuel inlet (Stream 1) is elevated to 610 K.  This temperature raise aims to replicate wall heat transfer 

effects and prevent flame detachment, a phenomenon observed under 600 K inlet conditions in the 

DNS(Novoselov et al., 2019b). Rm=0 (the methane blending ratios Rm, defined as Rm= XCH4 /(XCH4 + XDME)) in 

Table 1 corresponds to the validation simulation.  

Table 1. The inflow species boundary condition specifications 

Abbreviation Method 

Stream 1 

 
Stream 

2 

 

Stream 

3 
Composition Rm Xfuel XN2 

Experiment (Novoselov et 

al., 2019b) 
Experiment 

DME (18%vol) 

/Acetone(2%vol)/N2 
0 0.2 0.8  O2  Air 

DNS (Novoselov et al., 

2019b) 
DNS DME /N2 0 0.2 0.8  O2  Air 
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Rm=0 FPV-LES DME /N2 0 0.2 0.8  O2  O2 

Rm=0.1 FPV-LES CH4/ DME / N2 0.1 0.2 0.8  O2  O2 

Rm=0.2 FPV-LES CH4/ DME / N2 0.2 0.2 0.8  O2  O2 

Rm=0.3 FPV-LES CH4/ DME / N2 0.3 0.2 0.8  O2  O2 

Rm=0.4 FPV-LES CH4/ DME / N2 0.4 0.2 0.8  O2  O2 

 

To isolate the effects of methane addition, the mole fraction of the fuel mixture on Stream 1 is fixed at Xfuel=0.2, 

and the methane blending ratios in the fuel mixture vary from Rm=0 to Rm=0.4. The thermal boundaries for Streams 

2 and 3 are kept 600K, the same as the experiments. 

3.4. Numerical aspects 

The filtered governing equations are numerically resolved through a finite-volume discretization framework. 

Velocity-pressure coupling is resolved via the PIMPLE algorithm, with temporal discretization handled by the 

second-order implicit Crank–Nicolson method. The time step is adjusted adaptively in real time to maintain the 

Courant number at a value of 0.06. Spatial reconstruction adopts a hybrid approach: convective terms are 

discretized using multidimensional limited linear cell interpolation, whereas diffusive terms combine central 

differencing with gradient face interpolation. Statistical averaging processes cover seven flow-through periods, 

defined by the bulk velocity of Stream 1. Prior to data acquisition, four preliminary flow-through cycles are 

simulated to achieve fully established flow fields. 

        LES is carried out on the BSCC-A6 hypercomputing system with up to 320 2.35 GHz processors, while 

flamelet solutions and chemical kinetic analyses are calculated with the software FlameMaster (H.Pitsch, n.d.) on 

local serial nodes. 

4 Results and discussion 

4.1.  Chemical scheme accuracy 

In this part, the accuracy of the hpmech-V3.3 chemical scheme(Reuter et al., 2018) to model turbulent cool 

flames is scaled against the experiments and DNS of the CARAT burner (Novoselov et al., 2019b). Figure 3 

presents the time-averaged filtered temperature and formaldehyde mass fraction contours in central longitudinal 
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sections at Rm=0 from the FPV-LES using the hpmech-V3.3 chemistry, along with the solid iso-lines representing 

Zst=0.622. As can be seen, stabilized cool flames are attached near the burner tip, featuring the burning temperature 

varying between 600K and 790K and the substantial  CH2Õ formation up to 3 % mass fraction. To compare against 

experiments and DNS(Novoselov et al., 2019b), the radial profiles of temporally averaged temperature, mixture 

fraction, and formaldehyde mass fraction calculated by LES are illustrated in Figure 4. To mitigate measurement 

noise, experimental datasets are obtained within a confined spatial range (x/D=1.5–2.0) and averaging is performed 

in the axial direction(Novoselov et al., 2019b). The same procedures are implemented on the DNS and LES results 

for contrasting. Experimental measurements in both positive and negative radial directions were not averaged; 

instead, they are presented individually to highlight the degree of variability in the experiment. In terms of  𝑇 ̃ and  

CH2Õ mean distributions, the FPV predictions show closer agreement with DNS, while larger overestimations 

against experimental data are noted in the normalized radial interval of 0.7 < r/D < 1.3. Regarding  𝑍 ̃ mean profiles, 

the LES predictions match closely with both DNS and experiments across most of the radial domain, with a slight 

overestimation on the fuel-rich side (r/D < 0.9). Given that the LES setup raises the fuel inlet temperature to 610 

K (consistent with DNS), the FPV-LES captures reasonably well the qualitative and quantitative trends in line with 

DNS.  

 
Figure 3 Time averaged filtered temperature and formaldehyde contours in central longitudinal sections. The 

curly brackets {} means time-averaged here and in subsequent sections. 
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Figure 4 Comparison of temporally averaged temperature, mixture fraction and formaldehyde between LES, 

DNS(Novoselov et al., 2019b) and experiments(Novoselov et al., 2019b).  

The comparison of turbulent scalar fluctuations in mixture fraction and formaldehyde mass fractions is 

quantified by means of their respective root-mean-square (RMS) profiles, as illustrated in Figure 5. Concerning 

the  CH2Õ variance, the LES simulations demonstrate qualitative concordance with experiments and DNS, but in 

quantity, the discrepancy is two-fold. Firstly, DNS yields notably higher values at the centerline, as opposed to the 

almost zero predictions from LES. Secondly, a minor secondary peak is detected in LES within 1<r/D<1.3, where 

DNS exhibits a flat profile. There are three causes: firstly, to align with experimental configurations, DNS 

implements an extra simulation of a periodic box for Stream 1’s inflow turbulence, while the LES in the present 

study adopts a simpler synthetic turbulence generation approach(Kornev and Hassel, n.d.); Second, the filtered 

formaldehyde mass fraction for LES is obtained indirectly by looking up tables from FPV flamelet libraries, 

whereas in DNS, this scalar is directly solved by means of transport equations; Thirdly, the original three-stream 

combustion system (distinct compositions in Stream 2: pure O2; Stream 3: air) in experiments and DNS is 

computationally simplified to a two-stream model in LES by specifying identical oxidizer (pure O2) for both 

Streams 2 and 3. The different O2 content setup in the co-flow could influence the variance trend of CH2O near 

the Stream 3. The evidence and further explanation can be found in the Supplementary Material. 

The second reason is supported by comparing the  𝑍 ̃  RMS in Figure b. The LES results display strong 

agreement with DNS in quality and quantity. The subtle disparity exists in the peak prediction: the FPV-LES yields 

a peak over-prediction of 0.02. Thus, a significant enhancement in   𝑍 ̃ RMS prediction is realized by LES over  

CH2Õ RMS. As a manifold-constructing parameter,  𝑍 ̃  is directly solved by its governing equation in FPV-LES, 
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analogous to the resolution of CH2O species transport equations in DNS. 
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Figure 5 Comparison of mixture fraction and formaldehyde variance between LES, DNS(Novoselov et al., 

2019b) and experiments(Novoselov et al., 2019b). 

On the whole, FPV-LES with the hpmech-V3.3 chemistry yields results that agree reasonably well with DNS 

data, confirming the accuracy of the dual-fuel chemical mechanism to reproduce turbulent cool flames. 

4.2 Flame structures 

The LES-predicted instantaneous and time-averaged filtered temperature contours in central longitudinal 

sections at Rm=0-0.4 are shown in Figure 9, along with the white solid lines representing the iso-contours of the 

stoichiometric mixture fraction. As can be seen, stabilized cool flames are anchoring near the burner tip at lower 

methane proportions of Rm=0-0.2, where burning temperatures span from 610K to 790K. As Rm increases to 30%, 

the cool flames are becoming lifted off.  Looking at Figure 6d, a noticeably cold, non-reacting region is found 

within a height of 2D extending from x=0, implying that fuel and oxidizer mix inertly without significant reactions 

or heat release. Immediately downstream this inert mixing region, the flame base displays a diffusion-dominated 

flame structure, with a thin reaction layer separating fuel and oxidizer streams. This transition zone persists from 

x/D=2 to 6.7, until a turbulent, brush-shaped flame spreads downstream, featuring large-scale vortices. The same 

morphological feature of a lifted diffusion cool flame is also detected in the case of Rm=0.4 (Figure 6e). In contrast, 

the lift-off height, defined as the axial distance from the nozzle exit to the flame base, is larger (roughly 3.3D), and 

the transition zone is longer (from x/D=3.8 to 9.8).  
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 𝑇 ̃ { 𝑇 ̃}  𝑇 ̃ { 𝑇 ̃}  𝑇 ̃ { 𝑇 ̃} 

      

(a) Rm=0, Zst = 0.622 (b) Rm=0.1, Zst = 0.626 (c Rm=0.2, Zst =0.629 

 𝑇 ̃ { 𝑇 ̃}  𝑇 ̃ { 𝑇 ̃}   

    

 

(d) Rm=0.3, Zst =0.633 (e) Rm=0.4, Zst =0.637   

Figure 6 Instantaneous and averaged filtered temperature contours in central longitudinal sections under 

different Rm. 

To elucidate the impacts of methane addition on the cool flame structures, Figure 7 displays the scattered 

temperature maximums in each single laminar flamelet solution at different stoichiometric scalar dissipation rates 

for different methane blending ratios by FlameMaster. Notably, LTI denotes low-temperature ignition limit, CFE 

cool flame extinction limit, HTI hot-temperature ignition limit, and HFE hot flame extinction limit. As it presents, 

the temperature profile in the S-curve falls as methane blending ratios go up. It is in accordance with the findings 
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in the study(Reuter et al., 2018), that the heat release of methane/DME cool flames is primarily governed by the 

low-temperature chemistry of DME. This accounts for the observations in Figure 9 that, with the increase of 

methane blending ratios, the temperature distributions exhibit an overall decrease in both instantaneous and time-

averaged temperature distributions. 
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Figure 7 The scattered temperature maximums in each single laminar flamelet solution at different 

stoichiometric scalar dissipation rates for various Rm.  

 Meanwhile, Figure 7 also demonstrates that the CFE limits drop in response to the increase of methane 

blending ratios. It indicates that with identical inlet velocity settings, fuel with larger methane adding (Rm=0.3 and 

Rm=0.4) are more prone to extinguishing in the high-strain-rate regions adjacent to the nozzle, driving the flame 

into stabilizing further downstream in zones with lower strain rates (becoming lifted). Moreover, as the blending 

ratio rises, the lift-off height increases (Rm=0.4> Rm=0.3), demonstrating the impact of methane addition on the 

flame lift through CFE limit decline. 

Figure 8 depicts instantaneous scatter plots of   𝑇 ̃  as functions of  𝑍 ̃ under different Rm. The sampling space 

consists of all spatial cells throughout the entire computational domain, at a simulation time when turbulent flames 

are sufficiently established for every methane blending ratio. The instantaneous filtered temperature contours in 

central longitudinal sections corresponds to Figure 6. The solid lines within the figure correspond to the laminar 

flamelet solutions at different flame limits (LTI, CFE and HTI) of the S-curves in Figure 7. As observed in Figure 

8, with the increase of methane addition, the burning temperatures become lower in overall. It reinforces the 

findings in the study(Reuter et al., 2018), that the heat release from methane/DME cool flames is mainly controlled 
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by the low-temperature chemical processes of DME. Comparing Figures 8(a-c) with Figures 8(d-e), a notable 

distinction in their combustion modes can be recognized. With lower methane blending (Rm = 0-0.2), cool flames 

combust exclusively within the cool stable flame branches. When Rm rises to 30% and 40%, the fuel mixtures burn 

in both stable and unstable cool flame branches. This accords with the attached and lifted flame morphology 

displayed in Figure 6 and implies the occurrence of extinction/re-ignition events.  

   

a) Rm=0 b) Rm=0.1 c) Rm=0.2 

  

 

d) Rm=0.3 e) Rm=0.4  

Figure 8 Instantaneous scatter plots of   𝑇 ̃  as functions of  𝑍 ̃ under different Rm 

To further analyze these unstable events, Figure 8d is divided into 3 segments according to the different flame 

structures in Figure 6d, specifically the inert mixing region, flame base region and flame brush region. The detailed 

distributions are expressed in Figure 9, along with the corresponding temperature contours. As shown in Figure 

9a, all temperature scatters are exclusively confined to the unstable flame branches, indicating that the local 

thermochemical conditions in this region are essentially non-combusting or unable to maintain a stable diffusion 

flame structure. The highest recorded temperature of ~627 K (in contrast to the inlet temperature of 610 K) supplies 

critical evidence supporting the "inert" qualification: no significant chemical heat release, and then no active 

combustion. Such findings strongly confirm designating this upstream zone (0<x/D<2) as an "inert mixing region. 

For Figure 9b, the binary mixtures burn in both stable and unstable cool flame branches, which is a hallmark 
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of the “flame base”. The simultaneous existence of stable and unstable branches suggests that active combustion 

is taking place, along with local extinctions and reignitions phenomena. Within this region, the competition 

between ignition (propagating upstream) and extinction/quenching (propagating downstream) processes occurs 

dynamically, and this autoignition stabilizes the cool flames. 

 

Figure 9 The instantaneous  𝑇 ̃ scatters as functions of  𝑍 ̃ in different flame regions for Rm=0.3. The temperature 

contour is the same as Figure 6d. 

        Regarding the flame brush zone shown in Figure 9c, temperature points reside solely on the stable flame 

branch and a turbulent, brush-like flame spreads downstream of x/D=6.7, characteristic of large-scale vortices. 

This suggests that cool flame temperatures are sufficiently high, and low-temperature combustion is stably 

sustaining in the local turbulent atmosphere. These observations uncover the differing thermochemical 

characteristics across different flame structures for the methane/DME lifted turbulent cool flames. 

4.3 Fuel consumption and product formation 

To examine the impacts of methane addition on the low-temperature oxidation of fuel mixtures, the time-

averaged DME and methane mass fraction fields in central longitudinal sections is presented in Figure 10, along 

with the white solid lines representing the iso-contours of the stoichiometric time-averaged mixture fraction. 

Meantime, the centerline distributions of the time-averaged DME, methane and their mole fraction ratios are shown 
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in Figure 11 for all the investigated fuel mixtures. As indicated by Figure 10 and 11, both the DME and methane 

keep an obviously descending trend along the centerline roughly after x/D=4. However, Figure 10c reveals a 

significant upward trend in their mole fraction ratios, demonstrating that the low-temperature oxidation rate of 

methane is lower than that of DME. Meanwhile, this upward trend also varies with different methane proportions: 

as the methane proportion increases, the slope of the upward curve (downstream of x/D=6) significantly rises. This 

evidences that the increase in methane addition inhibits the low-temperature oxidation rate of DME. 

Rm=0 Rm=0.1 Rm=0.2 Rm=0.3 Rm=0.4  
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b) {𝑪𝑯𝟒̃} 

Figure 10 Time-averaged filtered mass fraction contours of reactants in central longitudinal sections 
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Figure 11 The centerline distribution of the time-averaged DME, methane and their mole fraction ratios 

To illustrate the kinetic interactions between methane and DME in cool flames, the chemical flux pathways 

of methane/DME cool flames at Rm =0/0.2/0.4 and χ
st

= 60 s-1 is calculated by FlameMaster and is shown in Figure 

12, along with the consumption proportions of OH in Table 2. As expressed in the figure, the major reaction flux 

pathways for DME/methane low-temperature oxidation can be briefly concluded as RH → R → RO2 → QOOH 

→ CH2O (DME) and CH4 → CH3 → CH3O2 → CH3O2H → CH3OH  → CH2OH  →CH2O (CH4) respectively. 

Evidently, the H-abstraction reaction serves a vital function during the initial stages of both fuels’ oxidation. 

According to Table 2, methane is in competition with DME for OH radicals through the reaction of 
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CH4+OH<=>CH3+H2O, suppressing the H-abstraction reaction of DME. In spite, the cool flames of DME/methane 

mixtures are dominated by the oxidation of DME, as the consumption proportions of OH is less than that of DME 

by orders of magnitude even at Rm =0.4.  Besides, the low-temperature oxidation of DME is dominated by "RH→

R→RO₂→QOOH" reactions. QOOH is the core intermediate, which either directly decomposes to produce CH2O 

or go through the key reaction of O₂QOOH <=> HO2CH2OCHO + OH to generate CH2O. The addition of methane 

would not alter the LTC pathways of DME, but would significantly inhibit the reaction of QOOH <=> O2 + 2CH2O. 

Although O2QOOH <=> HO2CH2OCHO + OH is promoted at larger methane blending ratios, the reactions of 

OCH2OCHO => HOCH2OCO is suppressed. These two mechanisms kinetically explain the different fuel 

consumption trends of methane and DME in Figures 10 and 11. 
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Figure 12 The chemical flux pathways of methane/DME cool flames at Rm =0/0.2/0.4 and χ
st

= 60 s-1. The other 

boundary conditions correspond to Table 1. 
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Table 2 The consumption proportions of OH at Rm =0/0.2/0.4 and χ
st

= 60 s-1 

Reaction 

Proportion 

Rm =0 Rm =0.1 Rm =0.2 Rm =0.3 Rm =0.4 

CH₃OCH₃ + OH → CH₃OCH₂+ H₂O 81.21% 80.59% 79.92% 79.22% 78.54% 

CH₄ + OH →CH₃ + H₂O / 0.42% 0.91% 1.53% 2.31% 
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b) {CÕ} 
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𝒄)    {𝑪𝑶𝟐
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𝒅)     {𝑯𝟐𝑶̃} 

Figure 13 Time-averaged filtered mass fraction contours of key products in central longitudinal sections 

As the key products of the DME/methane low-temperature oxidation, the time-averaged distribution of CH2O, 

CO, CO2 and H2O are presented in Figure 13. As can be seen, the distribution of CO2 is different from that of the 

other 3 species in the streamwise direction: CO2 accumulates in the upstream near the fuel nozzle and exhibit a 

declining trend downstream, while the trend is opposite for CH2O, CO, and H2O. On the other hand, the overall 

amount of all these four species is decreasing in response to the increase of methane blending ratios. By analyzing 

the reaction flux pathway in Figure 12, the formation of CH2O stem from two oxidation reaction pathways of DME 

and CH4. However, according to Table 2, the OH consumption proportion by DME oxidation is far larger than that 
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of CH4 oxidation, indicating that the low-temperature reactivity of methane is extremely low. Thus, the formation 

of CH2O is decisively determined by the reaction pathway of DME low-temperature oxidation. As explained in 

Figure 12, the addition of methane would significantly inhibit the reaction of QOOH <=> O2 + 2CH2O, a vital step 

in oxidation reaction pathways of DME. This kinetically explains why the formation of CH2O decrease with the 

increase of methane blending ratios. Furthermore, the formation of CO and CO2 are directly related to CH2O, as 

suggested by the reaction flux pathway. The drop of CH2O yielding leads to the decrease of CO and CO2, when 

the methane proportions decline.  

4.4 Correlation between temperatures and key intermediate formation 

In terms of cool flames, it is noteworthy to investigate the correlation between key intermediate formation 

and temperature distribution. Figure 14 displays scatter plots of time-averaged mass fractions of CH2O, CO, CO2 

and H2O as functions of { 𝑇 }̃ for different methane blending ratios and their linear-fitted lines. It is evident that 

the distributions of CH2O, CO, and H2O show a strong positive linear correlation with temperature across different 

methane blending ratios, as the coefficients of determination in linear fits, R2, are all greater than 95%. Besides, 

the correlation between T and the distributions of CO and H2O is not sensitive to the methane blending ratios, since 

the slope of their linear-fitted lines is close. As to CO2, it shows a weaker positive linear correlation with 

temperature at Rm=0 and 0.1 (R2<95%) until the correlation becomes strong at larger methane blending ratios 

(R2>95%). On the other hand, the correlation between T and the distributions of CH2O and CO2 is sensitive to the 

methane blending ratios, since the slope of their linear-fitted lines is obviously differentiated by methane addition. 
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Figure 14 Scatter plots of time-averaged mass fractions of CH2O, CO, CO2 and H2O as functions of { 𝑇 }̃ for 

different methane blending ratios 

5. Conclusion 

In present work, the turbulent non-premixed cool flames of dimethyl-ether (DME)/methane mixtures are 

studied within the framework of flamelet/progress variable modelling and chemical kinetic analyses. The 

numerical setup is based on the Princeton CARAT burner configuration, and the accuracy of the hpmech-V3.3 

chemistry to model turbulent low-temperature combustion is validated against the referenced experiments and 

DNS. The findings are summarized as follows: 

The FPV-LES results demonstrate that the turbulent cool flame structures are influenced by methane addition 

through the change of cool flame extinction limits and become lifted with the increase of methane blending ratios. 

The different flame regions associated with differing thermochemical characteristics for the lifted cool flames are 

revealed as inert mixing region (sparsely unstable cool flame branch), flame base region (coexistence of stable and 

unstable cool flame branches), and flame brush region (predominantly stable cool flame branch).  

The DME/methane consumption trends suggest that methane addition inhibits the DME low-temperature 

oxidation. Through the kinetic analyses, the mechanisms are identified to be two-fold: methane competes with the 

DME H-abstraction reaction for OH radicals and the reaction of QOOH <=> O2 + 2CH2O is significantly slowed 

down with the methane addition. The mechanisms also kinetically explain the finding that the formation of CH2O, 

CO, CO2 in cool flames decline in response to the increase of methane blending ratios. 

The distributions of CH2O, CO, CO2 and H2O show a positive linear correlation with temperature. While the 

correlation between T and the distributions of CH2O and CO2 is sensitive to the methane blending ratios, that 
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between T and the distributions of CO and H2O is not. 
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Highlights: 

⚫ Turbulent cool flame structures are modified (lifted) by methane addition through the 

decline of cool flame extinction limits.  

⚫ The different flame regions associated with differing thermochemical characteristics for 

the dual-fuel lifted cool flames are uncovered. 

⚫ Methane addition inhibits the DME low-temperature oxidation. 

⚫ The kinetic mechanisms behind are identified: CH4 competes with the DME H-abstraction 

reaction for OH radicals and the reaction of QOOH <=> O2 + 2CH2O is significantly slowed 

down with the methane addition. 
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