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Abstract—Classical current control strategies in electric propulsion
systems often suffer from degraded performance under periodic and
aperiodic disturbances. To overcome these limitations, this paper
proposes a novel current control framework that combines an
adaptive fractional-order resonant controller (AFRC) with a fixed-
time augmented extended state observer (FXTAESQO), aiming to
enhance disturbance rejection and dynamic robustness. Firstly, the
proposed AFRC introduces a self-tuning fractional-order operator,
which adaptively adjusts in real-time according to load current,
harmonic rejection strength, and desired phase margin. This adaptive
mechanism enables precise harmonic compensation while ensuring
stability and robustness across the varying operating conditions.
Subsequently, the FXTAESO incorporates a current integral term as
system augmented variable to decouple the coupling effect between
current measurement noise and high observer gains. Additionally, by
embedding an improved nonlinear fixed-time convergence law, the
observer ensures that the estimation error converges to a bounded
neighborhood of the equilibrium point within a predetermined time,
independent of initial conditions. Finally, experimental validation on
a PMSM drive platform demonstrates that the proposed FxXTAESO-
AFRC scheme achieves superior steady-state accuracy, faster
transient response, and stronger disturbance suppression compared
to conventional methods.

Index Terms—Augmented extended state observer, adaptive
fractional-order, current control, electric propulsion system, fixed-
time convergence, permanent magnet synchronous motor.

1. INTRODUCTION

ERMANENT magnet synchronous motors (PMSMs) have
emerged as a cornerstone technology in modern electric
propulsion architectures due to their high energy conversion
efficiency, compact structure, and reduced maintenance demands.
These advantageous characteristics have facilitated their extensive
deployment in a wide range of transportation electrification

This work was supported in part by the National Natural Science Foundation of
China under Grant 52477039, Grant 52450227, and Grant 52421004; in part by the
China Postdoctoral Science Foundation under Grant GZC20252692; and in part by
the China Scholarship Council under Grant 202406120161. (Corresponding author:
Mingyi Wang).

Jiaxing Ye, Sihang Cui, Junchi Li, Jinrui Xie, Zihan Hu, Chengming Zhang and
Liyi Li are with the Department of Electrical Engineering, Harbin Institute of
Technology, Harbin, 150001, China. (e-mail: yejiaxing@stu.hit.edu.cn;
210906034@stu.hit.edu.cn; lijunchi@stu.hit.edu.cn; 24B906014@stu.hit.edu.cn;
245106230@stu.hit.edu.cn; cmzhang@hit.edu.cn; liliyi@hit.edu.cn).

Mingyi Wang is with the Department of Electrical Engineering, Harbin Institute of
Technology, Harbin 150001, China, and also with Suzhou Research Institute of HIT,
Suzhou 215104, China. (email: wangmingyi@hit.edu.cn).

Shun Cai is with the College of Electrical Engineering, Zhejiang University,
Hangzhou 310027, China. (e-mail: caishun@zju.edu.cn).

Chaoyu Zhang is with the School of Robotics and Advanced Manufacture, Harbin
Institute of Technology, Shenzhen 518052, China (email: zhangchaoyu@hit.edu.cn).

Pedram Asef is with the Department of Mechanical Engineering, University
College  London, London E20 2AE, United Kingdom. (email:
Pedram.asef@ucl.ac.uk).

platforms, including electric and hybrid-electric aircraft, electric
vehicles (EVs), and unmanned aerial and robotic systems [1], [2].
Within PMSM-based propulsion systems, the current control loop
forms the innermost feedback path and plays a pivotal role in
directly regulating the electromagnetic torque output. Hence, the
precision and robustness of current regulation critically affect the
dynamic performance, torque fidelity, and overall stability of the
electric propulsion systems. However, conventional current
controllers often face significant challenges in mitigating adverse
effects caused by parameter uncertainties, inverter nonlinearities
[3], and external disturbances [4]. These nonlinear disturbances
can induce steady-state torque ripples, speed oscillations, and
degraded the transient responses, which are especially detrimental
to the high-performance electrified transportation applications.
Therefore, the development of advanced current loop control
strategies, particularly those capable of real-time disturbance
rejection and robust performance enhancement, is essential for
ensuring reliable and efficient operation of PMSM electric
propulsion systems.

Based on the underlying mechanism of uncertainties, the
disturbances within the current loop of PMSM drive system can be
broadly categorized into two primary subtypes [5]. The first
subcategory encompasses aperiodic ones. To attenuate these
disturbances, a wide range of advanced control theories and
strategies have been developed over recent years to enhance the
current performance of PMSM [6]-[10]. The approach outlined in
[6] demonstrates capability to dynamically adapt to the disturbance
based on the actual system. However, the developed technique
remains to be a model-based control strategy, heavily relying on
high precision of the prior model information. A composite
extended Kalman filter (EKF) control strategy was introduced for
disturbance estimation in [7]. As EKF operates as a variable gain
observer, it provides effective observation performance. While it
is computationally overloaded and presents challenge to tune
control parameters. This makes its application particularly difficult
in high-performance scenarios with short control cycle. Ref. [8]
achieves precise current regulation by introducing a stator current
self-adjustment model using model predictive control (MPC).
Whereas classic MPC faces challenges, including high complexity
of optimization calculation and sensitivity to model parameters. A
sliding mode observer (SMO) based on adaptive reaching law was
proposed in [9]. Although the chattering problem is mitigated,
there are still significant current ripples and large overshoots due
to parameters mismatch. Recently, extended state observer (ESO)
has gained widespread research and adoption in PMSM drive
because of its simple structure, ease of parameters tuning, and less
dependency on the system model information [10]. However, the
observation error of state variables in classic ESO can only
converge asymptotically. This will have certain disturbances’
estimation errors for motor systems with fast control cycles and



high real-time requirements, which in turn affects the high-
performance current control of PMSMs. Also, the coupling
characteristic between the current sampling noise and high
observer gain is also a major point of consideration. Therefore, it
is important to develop an method for ESO to tackle these
undesired deficiencies.

The second subcategory of current disturbances is periodic ones.
However, due to the limitations of bandwidth and other factors,
classic ESO struggles to effectively predict periodic disturbances.
The conventional observer focuses more on the accurate
observation of direct-current (DC) and slow time-varying signals.
Hence, it is imperative to develop composite control strategies to
enhance the rejection abilities of periodic harmonics. Iterative
learning control (ILC) has been extensively used in repeated
motion control and periodic disturbances suppression in PMSM
drives [11], but it requires large amounts of data storage and is
dependent on the specific initial state. In [12], repetitive control
was utilized to process the periodic reference signals. However, the
algorithm has a long convergence time and is challenging to
implement when the frequency of disturbances is variable. For
these reasons, resonant controller has received much attention
recently in both academia and industrial communities for their
structural flexibility and superior computational efficiency. In [13],
the method of introducing resonant components to the PI controller
was proposed to achieve smooth speed control and to avoid speed
overshoots during transients by mode switching. Ref. [14]
achieved sinusoidal disturbances tracking with fast time-varying
characteristics in grid-connected inverter using a generalized
integrator-based ESO. Similarly, the Ref. [15] achieved smooth
speed control by embedding an adaptive generalized integrator in
the ESO. However, none of the above schemes consider the
constraints between resonant gain and system stability. Moreover,
system stability may be degraded due to the delay property of the
controlled plant. Therefore, in [16], a vector resonant control
(VRC) was developed to remove the phase delay by introducing
the controlled plant information. Unfortunately, the amplitude-
phase characteristics as well as the immunity of VRC are
compromised when the system model parameters are mismatched.

In the existing literatures, recent advances related to fixed-time
and noise-tolerant ESOs have been further proposed to improve
systems’ convergent speed and anti-disturbance performance. Ref.
[17] designs a cascaded ESO combined with sliding mode control
(SMC) to suppress noise and reduce chattering via disturbance-
based switching gain adjustment. Ref. [18] employs a cascaded
finite-time SMO with terminal SMC to achieve fast convergence
and strong noise rejection for underactuated systems. Ref. [19]
develops a fixed-time SMC scheme with a cascaded SMO ensuring
convergence independent of initial conditions and low sensitivity
to noise. Ref. [20] integrates a fixed-time ESO with an adaptive
integral SMC to realize fixed-time stability while effectively
mitigating chattering and measurement noise. Inthe field of motor
and precision motion control system, it has introduced diverse
advanced control schemes to improve dynamic performance and
system robustness. An improved deadbeat predictive current
control (DPCC) incorporating a repetitive control-based
disturbance correction observer enhances steady-state accuracy
and harmonic rejection for PMSM current loop [21]. A model-free
finite control set MPC based on an ultra-local model reduces model
dependence while increasing computational burden and tuning
sensitivity [22]. For robust control, a variable-structure active
disturbance rejection control (ADRC) with interconnected ESOs
provides strong disturbance rejection and noise suppression [23].
Likewise, a composite super-twisting SMC with a novel
disturbance observer achieves high robustness and reduced

chattering, yet depends heavily on precise observer calibration
[24]. Adaptive and learning-based approaches have been employed
to enhance tracking under uncertainty. Ref. [25] combines a fixed-
time observer with a fractional-order phase-compensated repetitive
controller, enabling efficient suppression of current loop
disturbances and harmonics; however, its complex formulation
leads to considerable computational burden. An adaptive repetitive
learning control effectively compensates bounded periodic
uncertainties but exhibits poor generalization to non-repetitive
tasks [26]. A cross-coupled ILC with adaptive gain scheduling
achieves nanoscale synchronization for wafer scanners but suffers
from high implementation complexity [27]. For coupled or high-
order systems, a high-order SMC ensures finite-time convergence
and strong robustness at the cost of significant computational
demand [28]. A decoupled current control with adaptive quasi-
resonant and linear ESO separates the disturbances effectively,
though complicating tuning and stability analysis [29]. Moreover,
a cross-decoupled harmonic suppression method combining notch
filters and second-order generalized integrator enhances current
regulation but is frequency-sensitive [30], while a modified
discrete proportional-integral-resonant (PIR) controller with
prefiltering and active damping improves transient response yet
relies on accurate z-domain modeling [31]. Overall, these hybrid
structures combining predictive, adaptive, and observer-based
designs substantially improve motor performance but remain
limited by computational complexity, fast observer convergence,
strong noise immunity, high parameter robustness, superior
suppression of both aperiodic disturbances and periodic
harmonics, and adaptive balancing of system stability margins
under time-varying and complex conditions.

In this article, unlike conventional VRC, the proposed scheme
introduces an adaptive fractional-order operator, which is
dynamically tuned in real-time according to the load current
amplitude, harmonic rejection strength, and desired phase margin.
Then, compared with existing ESOs, the proposed method
augments the integral of the measured current as an additional
system state variable, leveraging the intrinsic low-pass filtering
characteristic of the integral operator to effectively suppress high-
frequency measurement noise. Moreover, a modified nonlinear
error correction law is designed to ensure fixed-time convergence
of the observer. Finally, the convergent behavior, system stability,
disturbances and noise suppression performance are analyzed in
the PMSSM drive system. The main motivations of this research can
be summarized as follows.

1) An adaptive fractional-order resonant controller (AFRC) is
developed, featuring a self-tuning fractional-order operator
that dynamically adjusts to load current amplitude, harmonic
rejection strength, and desired phase margin.

2) A fixed-time augmented extended state observer (FXTAESO)
is proposed, introducing an augmented current integral term to
decouple the interaction between measurement noise and high
observer gain.

3) A nonlinear fixed-time correction law is introduced to ensure
that the state estimation error converges within a predefined
time, regardless of the state initial conditions, improving both
robustness and convergence rate.

4) The integrated FXTAESO-AFRC current control framework
achieves enhanced harmonic suppression abilities, superior
steady-state accuracy, and fast transient dynamics under both
periodic and aperiodic disturbances in motor drive systems.

This paper is organized as follows. In Section II, the dynamic
mathematical model and the types of current disturbances of
PMSM are briefly described. In Section III, the FXTAESO-AFRC
strategy is proposed to simultaneously suppress periodic and



aperiodic disturbances in the PMSM current loop. Afterwards, the
corresponding proof of convergent time for FXTAESO is derived.
Section IV analyzes the performance of the proposed strategy for
disturbances suppression, current tracking, anti-noise capability,
adaptive function design and the global system stability. Section V
completes the verification for the feasibility of the algorithm
through experiments. In Section VI, the conclusion is given.

1I. PMSM MODEL DESCRIPTION AND DISTURBANCE ANALYSIS
A.  Dynamic Mathematical Model

Generally, by neglecting the complex nonlinearities, such as
hysteresis losses, eddy currents, and iron core saturation of PMSM,
dynamic mathematical equations of electrical system in the dg-
axes are given by:
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where g, Ug, iy, iq, Ly and L, are the voltages, currents, and
stator inductances of the dg-axes, respectively; R, represents the
stator resistor; p, denotes the number of pole pairs; @, is the
actual mechanical angular velocity; ¥ is the permanent magnet
flux. In this study, the surface-mounted PMSM is investigated, on

account of this, it holds Ly = L, = L.
B.  Current Disturbances Analysis

During the operation of an actual electrical motor, the PMSM
drive system will inevitably be subjected to a range of internal and
external disturbance. Before implementing the suppression
techniques for these disturbances, it is essential to theoretically
analyze and classify the underlying causes and characteristics of
these disturbances. To enable the development of a more accurate
and effective suppression strategy, these can be categorized into
periodic and aperiodic types.

1) Periodic disturbances: The periodic disturbances €4(q)pq are
primarily associated with £4(g)sn introduced by motor air-gap flux
harmonics, €g4(on caused by inverter nonlinearities, current
sampling error €4(g)cs and other unknown disturbances €(g)uq. The
expressions for the periodic disturbances in the dg-axes voltage
equations can be summarized as:
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where T, T, and U,. denote the deadtime interval, switching
period and bus voltage of the inverter; Wusn and Wgp, are
amplitudes of the 6n™-order flux harmonics; @, = p,®,, is the
electrical angular velocity; Aiy and Ai, are the dg-axes current
harmonics caused by scaling and offset error in current sampling
process. The specific forms of harmonics are denoted as:
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where K, K;, Ai,, and Ai,, are scaling coefficients and offset
errors between actual and measured currents of phase-A and B.
Ideally, these should meet the condition of K, = K, =1, and
Ai,, = Aip, = 0. [ represents the phase current amplitude.

Based on the above analysis, it can be concluded that the
periodic disturbances are mainly concentrated at the 1%, 2", and 6"
harmonics of the fundamental frequency, which provides
theoretical guidance for harmonic suppression scheme.

2) Aperiodic disturbances: The aperiodic disturbances €4(g)ad
primarily include cross-coupling £4(g)cc, the known disturbances
€4(g)kd, parameters mismatch €(g)pm, abrupt changes terms €g4(g)ac
in reference or load, and other external uncertainties €4(gjex. The
aperiodic disturbances in the dg-axes voltage equations can be
obtained as follows:
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where ALy = L, — Ly,, AL,=L,— Lg,, AR; = R; — R, and A
V,=w,—W,. Ly, Ry, and ¥y, denote the nominal values of
corresponding variables.

Building upon the above disturbances analysis, the dynamic
mathematical model of the current loop considering both periodic
and aperiodic disturbances can be restructured as:
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where £, = €4(g)pa + ed(q)ad denotes the total disturbances of
dg-axes, respectively. b, = 1/L, is the control gain. From Eq. (5),
it can be concluded that the structure of dg-axes dynamic model is
the same. Then, this paper focuses on the g-axis as a typical case
to facilitate the introduction of proposed algorithm. It is worth
mentioning that the proposed current control strategy is still
applicable for interior permanent magnet motors. According to Eq.
(5), the only difference between the interior and the surface-
mounted motors is that the dg-axis control gains are not equal, and
the rest of the parts are consistent.

III. PROPOSED FXTAESO-AFRC CONTROLLER
To suppress the PMSM current loop periodic and aperiodic
disturbances, this work proposes the novel FXTAESO-AFRC
algorithm. Additionally, the stability and convergence proofs are
comprehensively derived and a systematically implementation of
the current control strategy is provided.
A. Design and Convergence Proof of Proposed FXTAESO

Phase currents acquisition is essential in the current control of
the motor drive system. However, the acquisition process is highly



susceptible to current measurement noise arise from current
sensors, analog-to-digital conversion circuits, quantization errors,
and other external interference, which will be introduced into the
close-loop system. Additionally, when designing a classical
observer, the noise-laden current captured as an input term is also
multiplicatively coupled to the high observer gain, which further
exacerbates the detrimental effect of noise on observer
performance. To decouple the interaction properties between
current sampling noise and high observer gain, and reduce the
noise sensitivity of close-loop system, the current integral term is
incorporated as an augmented variable to filter measurement noise.
The following augmented variable is defined as:

i) = [i (iq(‘[) + oq(r)>d‘r (6)
where i,(?) and 0,(?) are the actual g-axis current except noise and
measurement noise, respectively; i4,(?) is the integral term of the
noisy current. It is worth mentioning that, according to Eq. (5) and
Eq. (6), this integral augmented variable contains all information
about disturbances and noise in the current loop. Augmenting this
dummy state to a system variable and considering the higher-order
derivatives of the total disturbances yield the following system
state equations as:
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as well as |O' | <o where Ep and Oymax represent

the upper limitations.
Based on this augmented state space model of PMSM [32], [33],
the proposed FXTAESO is shown by:
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where z = [zl Zy Z3 zn]lT*n is the estimation value of x, e; =
x; — z; is the observation error of state variable x;, w, is a
variable associated with the observer bandwidth, 0 < p < 1 is the

switching point, [-|*=sign()|-|* , qy=ia—i+1l,a € (-

l/n,1), p;=ip—i+1,p€ (1,1 +1/n), and the observer gain
L= [l 11y e ln]lT*,, makes the following matrix A, to be Hurwitz
matrix that can be expressed by:
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This work will be divided into two scenarios for the convergence
proof of proposed FXTAESO.

Case I: When |e;| = p, the FXTAESO is nonlinear. Defining
A= liwg,i =1,2,...,n, thus yields e £ [el ey - en]lT*n by:
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The system (11) can be further expressed as:
é=re), e)=e, (12)

where r;(e) =¢,, T (e)l D=0 denotes undisturbed system (12).
The upcoming demonstration will be organized into three parts.
In the first two parts, the asymptotic stability and fixed-time
convergence of undisturbed system ” (e)|gfl”‘2):o will be discussed.
In the third part, the analysis will extend to actual fixed-time

stability of the disturbed system when e(" D % 0.

Part 1: When 551"_2) = 0, system (12) can be rewritten as:
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e€ {e€R"/{0}:|e;| =1}, then y = f,m = |e;|*P. By using
the Definitions 2 and 3 in the Appendix, the system r(e)| 52"_2)=0 is
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Based on the relationship between the linear and nonlinear
systems [34], stability analysis of homogeneous system [35], and
the Hurwitz matrix A, it can be obtained that é = ryand é = r
are globally asymptotically stable. Similarly, the origins of
r (e)|5;"‘2)=0 is globally asymptotically stable.

Part 2: The origin of r(e)|£;n-z>=0 is globally asymptotically

=f-1>0>a—-1=4d,.

system is fixed-time convergent according to Lemma 1 in
Appendix. There exists a continuous, positive definite and proper
Lyapunov function V' (e). Defining by:

stable. Moreover, d ,, So, the origin
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The 6(e) and p(e) are bi-limit homogeneous. Based on Lemma
2 in Appendix, a positive real number py makes:
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Thus, the convergence time #; of system I (e)|gfl"‘2)=o meets:
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where ?;,,; is a positive real number associated with V (e).
_ -2
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Then the bi-limit homogeneous functions can be defined based
on Lemma 1 in Appendix as:
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Combining Eq. (14) and Eq. (21) in Eq. (18) yields:
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If 2pp\O/py =1, then V| = 1 and V, = 1. By combining Egq.
(22), Eq. (24), the Eq. (25) can be obtained by:

Vi(e) < _pVV(e)(de“Ldoo)/dVoo, Ve >V,
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Therefore, the error e will gradually converge to the vicinity of
the origin O, ={e€ R"| V(e) < V;} within finite time 7;.
On the other hand, if 2ppQ/py <1, then V; <1 and V, < 1.
The Eq. (22) can be rewritten as:
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The convergence time 3 from V (ey) to V5 is:
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Thus, the vector e will gradually converge to the vicinity of
origin ©, = {e € R"| V(e) < V,} within finite time #5.

In brief, the observation error e will converge to 0 gradually
(n=2)
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within finite time t; <1, when ¢ = 0. Otherwise, it will

converge to the vicinity of origin @ = {e ER"|e € 61} U {e €
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bounded by max{t,,,.2, tmax3}-

Based on the above convergent proofs, it’s known that the
observation error vector e of the FXTAESO can converge to the
switching point |e;| = p in a fixed time when 2p,Q/p,, < 1 and
Vo <V([pey -+ el ) is setartificially.

Case II: When 0<|e| <p, the FXxTAESO is linear.
Combining Eq. (7) and Eq. (8), we can deduce that:

¢=Ae+Ee) " + Fo,
-AY 1 0 0
-AY, 0 1
A, = : 0
A1 O 0 1
“nln 0 - 0 0 nxn
Y, = (8% + 8P s h i=12,..,n (29)
And the observer gain matrix L can be chosen as:
_ nl .
i = T i=12,...,n (30)
Apparently, A, is a Hurwitz matrix. Therefore, e is

(n=2)

asymptotically stable when & = 0. And e is bounded-input

q
bounded-output (BIBO) stable if 551"_2) # 0. Based upon the

deliberations of Case I and II, the proposed FXTAESO has global
convergence. When the observation error e; is large, it will
initially converge to the switching point |e;| = p within a fixed-
time by the proposed nonlinear correction term. Subsequently, it
will converge to the equilibrium points or their vicinities with a
linear correction term. This approach improves both dynamic
response and steady-state anti-disturbance performance.

B. Design and Rational Approximation of Proposed AFRC

The quasi-vector resonant controller (QVRC) introduces the
plant information and eliminates the poles of controlled object,
which enhances the phase margin of system to some extent and
expands the resonant bandwidth. However, the resonant gain is still
insufficient. The limitation reduces controller’s ability to reject
periodic disturbances and weakens the system stability. To address
these issues, this paper proposes an optimization of the QVRC by
introducing an adaptive fractional-order term into the numerator of
the controller. According to the controller form, the resonant gain
is proportional to the fractional-order exponential term, but the
system stability margin is inversely proportional to it. Building
upon the analysis of disturbance in Section II-B, when the load
current is large, the amplitudes of harmonics are large, and then the
fractional-order exponential term will be increased to enhance the
harmonics suppression capability. Additionally, when the load
current is small, the harmonic amplitudes are also reduced
accordingly, so the fractional-order exponential term can be
decreased to improve the system stability. Thus, the proposed
AFRC scheme can adaptively adjust the resonant gain and stability
margin according to the load conditions, and AFRC is denoted by:

k,w,5°(L,s+R
Glrnc(s) = 5 e
&= f(i,, HRS,DPM)
where w, and w, are damping and resonant frequencies,
respectively. k, is the resonant gain. ¢ € [1,2] denotes adaptive
fractional-order exponential term, which is determined by g-axis
output current i;, harmonic rejection strength (HRS), and close-
loop system desired phase margin (DPM) in f(x) function
adaptively. The specific design solutions will be given in Section
IV-F below.
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Fig. 3. The block diagram of control structure for PMSM based on field-oriented control (FOC) and proposed FxXTAESO-AFRC.

Given computational challenges of implementing fractional-
order calculus on a digital system, a rationalized approximation of
fractional-order differential term s*,7 = & — 1 € [0,1] is required
for the physical implementation of the actual system. To achieve
this, Oustaloup Recursive Approximation (ORA) representation
with high accuracy is used [36], denoted as:

!
=¥ = Jim @)" TIL 775

(k—2-7)/2N

co,/c =, <%‘1‘) (32)
w,\ Ck+)/2N

o= (%)

where N is the ORA approximation order. w, and w, are upper
and lower limitations of the frequency band for the ORA.

Fig. 1 compares the ORA fitting results and their theoretical
amplitude-phase-frequency characteristics curves for s*> with
different orders N, where the frequency band is chosen as 2x *
(10_1, 104)rad/s. The fitting accuracy improves as the order N
increases, but the resulting transfer function becomes more
complicated. The amplitude-frequency characteristic slope of the
fitting result closely approximates +10dB/dec for N =5, and
phase-frequency characteristic remains nearly to 45° within fitting
frequency band, aligning with the theoretical behavior. In Fig. 2,
the influence of varying & when w, = 10rad/s and k, = 300 to
AFRC is exhibited. The resonant gain is greatly improved by the
introduction of fractional-order term &, but it will also change the
closed-loop system stability margin. Thus, unlike the previous two
parameters @, and k,., £ can adjust both gain and phase margin of
the entire system, providing an additional degree of freedom for
resonant controller design. The above analysis further highlights
the advantages of proposed AFRC over the conventional QVRC.
C. Implementation of FxTAESO-AFRC in Control System

Building upon previous analysis, it is apparent that increasing
the order n of the FXTAESO improves the prediction accuracy and
rejection capabilities for aperiodic disturbances. However, this
comes at the cost of increasing computational complexity of the
algorithm. Therefore, there is a trade-off in the selection of order
n. In this paper, n = 4 has been selected to construct the observer,
which can be redesigned as:

Zy =z + LiogAp, ay, By, ey)

2y = 23+ byt + LhogA(p, @, B, ep)

23 = 24 + oA, a3, B, e1)

l754 = LwgA(p, oy, fy. e))
where Iy =4, I, =6, I3=4 and I[;=1. For the periodic
disturbances, Section II-B has been derived analytically that
harmonics of the 1%, 2" and 6" fundamental frequencies are
predominantly present in the current loop of the dg-axes. Hence
the proposed AFRC can be rewritten as:

Si

Garrc(8) = X126 ‘k”a;;iw(;ﬁigw)
where k,;, @, &, and @y; = iw, are the 1%, 2", and 6™ resonant
gains, damping frequencies, fractional-order term, and resonant
frequencies, respectively. Based on feedback control law,
estimated disturbances, resonant controller output above, and
simultaneously considering the bus voltage limitations of the
inverter within the linear modulation zone during practical
engineering applications [37], the generalized control law of the
PMSM current loop is:

(33)

(34)

_ lares +hop llgrey=72) ~Z3+bottyy
uq_ini - b,
gmax — > >
J V3 \ “a_ini T _ini (35)
— 2 2
J”q =g iniv \/Uq_imi Uy ini < Uae/ V3
— 2 2
L l”q = Ugmax> \/Ug_ini T Uy _ini > Ude/ V3

where kg, and U are feedback gain and the form of G4 pgc(s)
eq(S) in time-domain, respectively. Ug i, and 4, jn; denote the
preliminary calculation of the dg-axis reference voltage. Ugmax 1s
g-axis maximum saturation voltage. And U, is the reference
voltage that is ultimately applied to the motor. The block diagram
of control structure for PMSM based on field-oriented control
(FOC) and proposed FXTAESO-AFRC is shown in Fig. 3. The
FxTAESO and AFRC are configured in parallel to form the
generalized control law, which produces voltage to drive motor.
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Fig. 4. The equivalent structural block diagram of the proposed FXTAESO-AFRC.

IV. PERFORMANCE ANALYSIS OF THE FXTAESO-AFRC

This section comprehensively analyzes the stability of entire
current closed-loop control system, disturbance suppression
performance, current tracking, anti-noise capability, parameters
robustness and adaptive function design guidelines in & =
f(i,» HRS, DPM) of the proposed FXTAESO-AFRC strategy.

A.  Stability Analysis of Current Closed-loop System

Referring to Eq. (33)-Eq. (35), the transfer function between
current controller output u, and reference current i, » and integral
augmented variable i,, can be obtained as Eq. (36). Where the
transfer  function  A(s) = s* + A, M (E))s> + 2, M,(E,)s +
A3M3(E))s + A,M4(E)); M(E)),i=1234is the descriptive
function of nonlinear correction term A(p, o;, f;, e1),i = 1,2,3,4. In
deriving a descriptive function, it is necessary to find the integral value
of a sinusoidal function with different powers. And since «; and f; in
function A(p, a;, f;,e;) are fractional-order operators, directly
calculating its integral value during the derivation process of
descriptive function is challenging. Therefore, the value of the
partial integral is approximated by the area enclosed by this
nonlinear fractional-order function, then represented by a
polynomial approximation fitting [38].

Based on this, the equivalent structural block diagram of the
proposed FXTAESO-AFRC can be simplified as shown in Fig. 4.
In Fig. 4, P(s) is the reference prefilter, and Q(s) denotes the
equivalent current controller. They can be deduced as Eq. (37).
Then the open-loop transfer function of the current control system
based on the FXTAESO-AFRC can be displayed as follows:

G,,(5) = O(s)b,/s> (38)

The closed-loop system stability is closely related to the variable
parameters k., @., &, kg, @, and E;. The Nyquist diagram of
open-loop transfer function is used to demonstrate in detail the
influence of each variable on the stability. Fig. 5 shows the Nyquist
curves of equivalent current loop based on proposed strategy under
different parameters variation. The following parameters satisfy
ky =ik, o,; =iw,, and @y = iwy;,i = 1,2,6. From Nyquist
stability criterion, the number of clockwise and counterclockwise
revolutions around the critical point (-1, 0) should strictly satisfy
that P = 2(N, — N_) if the closed-loop system is to be stable,
where P is the number of poles of G,,,(s) in right half s-plane, N
and N_ represent the laps of clockwise and counterclockwise. The
above stability criterion is satisfied for all six parameter variations
shown in Fig. 5, indicating that the closed-loop system is
absolutely stable with low sensitivity to individual adjustable
parameters. This also verifies that the proposed FxTAESO-AFRC

AG)(5+kgy+5,G 4 FRC(s>)

Imaginary Axis

Imaginary Axis
=

-600 -500 -400 -300 -200 -100 0
Real Axis

(a) (b)

1000

n
S
=

Imaginary Axis
|
B

S
S

Imaginary Axis
- .

n
S
=5

»

S

=

-300
-1000

-600 -500 -400 -300 -200 -100 0
Real Axis

S — £
-1500 -1000 -500
Real Axis

()
) — o =10me-4
300 e — — & =20me-4

'y Axis
=
S
S

Imaginary Axis
=

Imaginary

3
S

-2000)

D
S
S

-3000

-4000

@
=3
S

-600 -500 -400 -300 -200 -100 0 -5000

Real Axis 8000 -6000  -4000  -2000 0
eal Axi

R xis

e

Fig. 5. The Nyquist c1§r\)/es of the equivalent current loop(gased on proposed
FXTAESO-AFRC. (a) k,; = 100, o, = 0.002x, & = 1.5, 0y = 2007, @y, = 207,
and E, =1; (b) k,; =100, @, =0.0027, £ = 1.5, k,, = 100, w;; = 207, and
E, =15 (¢) k,; = 100, o, = 0.0027, & = 1.5, kg, = 100, »,; = 207, and wy =
200m; (d) @y = 200z, w, = 0.0027, & = 1.5, kg, = 100, @, =20z, and E; = 1;
(&) k,y = 100, k,, = 100, & = 1.5, wy = 2007, w,; =207, and E; = 1; (f) k,y =
100, &,

s kgp =100, @, = 0.0027, wy = 2007, @), = 20z, and E; = 1.

can maintain current closed-loop system stability while effectively
suppressing the current disturbances and uncertainties.
B. Disturbances Suppression Capability of FxXTAESO

As the core part of the proposed disturbance suppression
approach, the ability of FXTAESO to predict the aperiodic
disturbances and the slow-varying disturbances determines the
accuracy of the feedforward compensation in the control law. This
in turn affects the final disturbance rejection performance.
Therefore, based on Eq. (5) and Eq. (33), the transfer function of
disturbance prediction error can be deduced as:

u.s)=
o9 bosz[(s+kqp+boGAFRC(s))(s+/11M1(E1))+22M2(E1)]

P(s) =

(A3 M5(Eq)s+iy My(Ey)) (s+kqp+boG . FRC(s))s+22M2(E1)(kqp+b,,G . FRC(s>)s3

_ 23(0=eg(8) _ stA M (EDsP+ A My(Ey)s?

Cee) =" = AS) (39)
S (A3M3(E1)S+A4M4(El))(s+kqp+boGAFRc(s))s+22M2(E1)(kqp+boGAFRC(s)>s3_ )
1 S)— 1 N

aref b()sz[(s+kqp+boG AFRC(s))(s+/11M1(E1))+22M2(E1)] ®
(36)

AG)(5+kgp+boGarrc(®))

(A3M3(E1)S+A4M4(El))(s+kqp+boGAFRc(s))s+22M2(E1)(kqp+boGAFRC(s))s3 7

(
|
|
1
lQ(s) =

bys2 [(s+kqp+boGAFRC(s)> (s+4; MI(EI))+/12M2(E1)]
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Building upon Eq. (39), the final value theorem can be used to

analyze as follows: If £,(r) is a constant disturbance or ramp

uncertainty, it can be deduced that disturbance prediction error

lim e, (f) = lin(1) 5G(5)g,(s) = 0. When £4(1) is an accelerated
t> s=

disturbance, then disturbance prediction error will ultimately have
a steady-state error. This also verifies that FXxTAESO can be used
to estimate aperiodic and slow-varying disturbances accurately.
It’s worth mentioning that the periodic disturbances are handled by
the AFRC part, which has been discussed above.

To further assess the effect of different parameters on the
disturbances prediction, Fig. 6 illustrates the Bode plots of G,,(s)
for different error amplitudes E; and observer bandwidths @
using traditional ESO (TESO) and the proposed FXxTAESO,
respectively. From Fig. 6, it can be seen that for the estimation
error amplitude, the proposed FXTAESO demonstrates a lower
estimation error compared to TESO under the same observer
bandwidth. And as the observer bandwidth @, and estimation error
magnitude E| increase, the disturbances estimation performance
of FXTAESO strengthens, resulting in a reduced estimation error
magnitude. This further validates the superior disturbances
estimation performance of the proposed FXTAESO strategy.

To evaluate immunity performance of proposed FxTAESO-
AFRC strategy, based on the equivalent control block diagram
identified in Fig. 4, the transfer function from composite
disturbances ¢ ,,(7) to output current i (f) can be obtained as:

ig(s) 1/s s
Gi(9) = 25 = Trowmby s — 750000, (40)

Fig. 7 draws comparison of the Bode plots of disturbances on
output G,;(s) for FXTAESO alone and the proposed composite
method FXTAESO-AFRC for different parameters variation. It’s
found that high-frequency characteristics of both controllers are
identical while low-frequency parts have some difference. As
demonstrated in the previous analysis, the FXTAESO has strong
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rejection capability for aperiodic and slow-varying disturbances,
but its performance in suppression periodic disturbances is less
effective. Therefore, the proposed FXTAESO-AFRC demonstrates
enhanced suppression capability for harmonics at specific
frequency points, while maintaining the same rejection features as
FxTAESO at other frequency points. Additionally, the rejection
ability of the controller is proportional to observer bandwidth wy
and proportional gain k. In conclusion, the proposed FXTAESO-
AFRC has superiority in suppressing both periodic and aperiodic
current disturbances and harmonics.

C. Performance of Current Tracking

While maintaining the excellent periodic and aperiodic
disturbances and uncertainties rejection capabilities of the current
loop of PMSM system, the current tracking performance should
not be neglected, which is critical to achieve the high-precision and
fast-dynamic current response. Additionally, based on the
equivalent control block diagram determined in Fig. 4, the transfer
function of the current closed-loop system can be derived as

_ 4 _ _ P6&O®)s
Guls) = igrer(8)  Lgos+Ry,s+0(s) (4D

Similarly, the Bode plots of TESO, FXTAESO alone, and the
proposed FXTAESO-AFRC are compared in the Fig. 8§ to validate
the superior current tracking ability of the proposed strategy in
wider frequency-domain.

As can be seen from Fig. 8, the command current is accurately
tracked by all three schemes at low frequencies. However, within
the frequency band of 10-100Hz, both TESO and FXTAESO alone
exhibit large tracking amplitude fluctuations, while the proposed
FXTAESO-AFRC method has the smallest amplitude and phase
fluctuations. This indicates that the proposed method can track the
reference signal better in this frequency band with close to unit
gain and 0" phase. In addition, increasing the observer bandwidth
can further improve the current tracking performance, while
adjusting the controller proportional has minor effect. Therefore,
the proposed FXTAESO-AFRC offers superior current tracking
performance across wider frequency-domain through the above
analysis.

D. Anti-noise Performance Comparison of FxTAESO

This section concentrates on evaluating the enhancement of
noise-rejection capability achieved by the proposed integral
augmented scheme in comparison with the conventional observer
approach. The s-domain transfer function that characterizes the
relationship between the measurement noise aq(s) and the output
current i,(s) can be obtained from Fig. 4 and is expressed as
follows:

b
Gyls) = — 220

s2+byO(s) (42)
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The corresponding Bode plot of the anti-noise transfer functions
for both the proposed and conventional methods are illustrated in
Fig. 9. As observed, the traditional observer exhibits minimal
attenuation of noise amplitude below 10kHz, indicating its limited
noise-suppression capability. In contrast, the proposed integral
augmented strategy exhibits a gradual decay in noise magnitude,
reaching approximately —100dB, thereby demonstrating its
superior robustness against measurement noise. Specifically, at
1kHz and 3kHz, the proposed scheme achieves additional noise
attenuation of 21.74dB and 32.61dB, respectively, compared with
the conventional approach. Moreover, as the frequency increases,
the proposed strategy exhibits progressively stronger noise
suppression, confirming its remarkable anti-noise performance.

E. Parameters Robustness Analysis

During the long-term operation of PMSM system, the motor
resistance and inductance will change with temperature and
varying working conditions. And in the controller, b, depends on
the inductance parameter. The effect of other controller parameters
on the performance such as disturbance suppression and current
tracking has been discussed separately in the previous subsections.
Therefore, it’s necessary to analyze the effect of varying b, over a
certain range on the disturbance rejection capability and current
tracking performance of the control system to verify the parameters
robust characteristics of the designed scheme. Then, the robustness
of the b, at 0.8-1.2 times nominal value 1/L, is explored for Eq.
(40) and Eq. (41), respectively. The corresponding Bode plots are
shown in Fig. 10.

It can be noticed that the value of b, is proportional to the system
disturbance suppression capability and inversely proportional to
the current tracking performance. However, the system still
maintains superior disturbance rejection and current tracking
performance. The current can remain close to the tracking
characteristics of unit gain and 0" phase. Therefore, the proposed
FxTAESO-AFRC is proved to exhibit good parametric robustness.

Master
Controller

Two Three-
Phase Inverters

1 1
Load Motor | Torque Sensor | Tested PMSM

Fig. 11. Experimental motor test rigs.

TABLEI
BASIC PARAMETERS OF TESTED PMSM
Symbols Variables Values
Pn Pole pairs 4
Ry, Stator resistance 0.559Q
L, Stator inductance 4.24mH
Yo Flux of permanent magnet 0.2748Wb
Uy Bus voltage 300V
ap Nominal active power 4.8kW
T, Nominal torque 20Nm

F. Adaptive Function Design for & = f(iq, HRS, DPM)

This section focuses on the design method of the adaptive
function embedded within the proposed AFRC. As described in Eq.
(31), the adaptive fractional-order exponential term & is jointly
determined by the g-axis output current {4, the harmonic rejection
strength (HRS), and the desired phase margin (DPM) of the closed-
loop system. Based on the harmonic analysis presented in Section
II-B, it’s evident that harmonic amplitude exhibits a direct
correlation with the load magnitude 7, which in turn, is proportional
to the g-axis output current. Consequently, according to Eq. (40),
the influence of current-induced harmonic disturbances on the
system output current can be modeled as:

, . 0
ige()s=jor = m.mzq(s) ls=jr = A (@)e’ 1@ (43)

where the positive proportional coefficient m quantifies the linear
relationship between harmonic magnitude and the corresponding
output current; Ap(®) and 6y(®) are the amplitude-phase-
frequency characteristics of iz (s). To ensure adequate disturbance
attenuation, a parameter denoted as HRS is introduced. This
threshold defines the maximum permissible error current induced
by harmonic disturbances. Therefore, it can be obtained that
Ag(w) < HRS needs to be satisfied at any frequency, and since
the fractional-order exponential term & is negatively correlated
with Ay (w), the lower limit value &,,;, of the fractional-order
exponential term £ can be obtained according to the above
inequality.

As inferred from Eq. (41), increasing the value of & enhances the
suppression margin; however, this improvement comes at the cost
of reduced system phase margin, potentially compromising closed-
loop stability. Therefore, to strike a balance between rejection
ability and stability, both the HRS and the DPM are employed to
constrain the value of the adaptive fractional-order exponential
term &. The closed-loop system transfer function can be deduced

from Fig. 4 as:

O(s)b i)
Ger(9)ls—jo = T ppp smio = Ac(@)e" @ (44)

where Ac(w) and Oc(w) are the amplitude-phase-frequency
characteristics of G (s). Based on the condition Ac(®,,) = 1, the
cutoff frequency w,,, of the closed-loop system can be analytically
determined. To ensure adequate phase margin, the gain cutoff
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Fig. 12. The d-axis current, g-axis current, and A-phase current for five current control strategies under half rated load (10Nm). (a) P, (b) TESO, (c) TESO VRC, (d)

FXTESO-AFRC, and (¢) FxTAESO-AFRC.
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Fig. 13. The d-axis current, g-axis current, and A-phase current for five current control strategies under rated load (20Nm). (a) PI, (b) TESO, (c) TESO-VRC, (d) FXTESO-

AFRC, and (¢) FXTAESO-AFRC.

TABLE I1
MAGNITUDES OF HARMONICS FOR Q-AXIS CURRENT (10NM/20NM)

Frequency f,(mA) 2f,(mA) 6f,(mA)

PI 246/258 218/231 217/251

TESO 233/244 153/178 148/202
TESO-VRC 147/179 73/102 101/119

FXTESO-AFRC 62/82 39/43 54/67
FxTAESO-AFRC 9.7/8.1 4.9/4.2 6.8/5.2

frequency must satisfy 0-(w,,) + 180° > DPM . Furthermore,
due to the inverse relationship between fractional-order
exponential term & and O (w) + 180°, the upper limit value &,,,,
of the fractional-order exponential term & can be accordingly
derived.

Following this analytical framework, the adaptive fractional-
order exponential term is ultimately selected as &=
(&nax + &Emin)/2 to maintain sufficient phase margin and harmonic
rejection margin. The determination of this adaptive fractional-
order exponential term & involves a systematic three-step
procedure. Firstly, the lower limit value &,;, is established based
on the load current and the HRS. Secondly, the upper limit value
& .ax 1s derived with respect to the DPM specifications. Finally, the
adaptive rate is calibrated such that the exponent satisfies the
condition & = (&, + &pin)/2. In the design of this paper, HRS
and DPM are selected as 0.01 and 45°, respectively, and the g-axis
output current ranges from 0 to the rated value 12A.

V. EXPERIMENTAL VERIFICATION

To fully validate the effectiveness of the proposed scheme,
comparative experiments were conducted on the motor test rig
shown in Fig. 11. Table I summarizes the nominal parameters of
tested PMSM. The motors and controllers used in experiments are
semi-physical test rigs from IMPERIX, Switzerland. It primarily
comprises a master controller, a resolver interface, two three-phase
inverters, a DC power supply, and dual motors. The tested PMSM
is controlled by speed and current double-loop architecture. The
speed loop is operated by a PI controller with the control period of

200us. And the parameters setting is k, .,;, = 1l and k; ,,;, = 15.

p_sp i_sp

The current loop of tested PMSM is used to compare the
performance of classical PI controller with optimal tunned
parameters, traditional ESO [TESO, four-order nonlinear observer
based on classical nonlinear correction term fal(p,a;,e) =
{p""le, lel < p
le|%sign(e), e| > p
[TESO-VRC, VRC adopts the generalized form shown as

k,j@q;S(Ls,s+Rg,) .
Gyre(s) = X 5 ot——e—s0] proposed AFRC with fixed-
i=1,2,6 sz+wa~s+wf”.

time extended state observer without the integral augmented
variable (FXTESO-AFRC) and the proposed FXTAESO-AFRC.
The corresponding parameters of the other comparative strategies
remain identical to the proposed scheme. The load motor operates
in a single torque loop with PI parameters k, ;,,y =74 and
k; 10aq = 4133. In addition, the current control frequency is set to
20kHz for both motors and the deadtime intervals of inverters is
selected as 1 us to balance the current harmonic content and
equipment safety.

Since the proposed strategy introduces the measured current
integral as a system augmentation variable, the decoupling of high
observer gains and current measurement noise is directly realized.
After practical experimental validation, it’s found the proposed
strategy can be set with a larger observer bandwidth without
oscillation compared to TESO, thus achieving better current
performance. However, to be fair, the same proportional gain and
observer bandwidth are adopted for all above current control
strategies in the following comparative experiments, as a way to
highlight the proposed FXTAESO-AFRC still has optimal effects
under the same parameters. Therefore, the proportional gain of
control law and the observer bandwidth are set to k,,

], TESO with vector resonant controller

= kp J =
1000 and @y = 200zrad/s for all above control schemes.
Furthermore, for the proposed strategy, the switching point p,
variables a, and g are set to 0.001, 0.8, and 1.2, respectively. And
the resonant gain and bandwidth satisfy k,; = ik,|, ® W1, 1=
1,2,6 and k,; =100,w, = 0.02zrad/s . For FxTESO-AFRC
strategy, all the parameters are identical with proposed scheme, the
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FXTAESO-AFRC under rated load with parameter variations. (a) Inductance
variation, (b) resistance variation.

only difference is that FXTESO doesn’t have the integral
augmented variable. For TESO-VRC method, the design
parameters of its VRC are kept the same as above. For classical PI
controller, the optimal parameters k, py = 14 and k; py = 1863

are chosen to utilize the zero-pole elimination strategy. The
running speed of tested PMSM is set to 300rpm.

A.  Steady-State Performance Experiment

To validate steady-state performance of the proposed control
strategy, multi-angle experimental verification of steady-state
current fluctuations, output current total harmonic distortion
(THD), and fast Fourier Transform (FFT) results of the five
comparative strategies are hereby conducted under half rated load
(10Nm) and rated load (20Nm). Under 10Nm load condition, it can
be observed from Fig. 12(a) that the steady-state dg-axes currents
ripples with PI scheme are 1.561A and 1.388A, respectively, and
the A-phase current waveform has obvious aberrations, as well as
the THD reaches as high as 7.06%. Furthermore, Table II shows
the magnitudes of harmonics for g-axis current. It’s obvious that
the 1%, 2™ and 6 harmonics in the g-axis current dominate, which
is highly consistent with the previous theoretical analysis. The
amplitudes of these three harmonic contents have reached 246mA,
218mA and 217mA, respectively. And it can be seen from Fig.
12(b) that the steady-state dg-axes currents ripples with TESO
scheme are 1.333A and 1.354A, respectively, and the A-phase
current THD reaches as also high as 6.90%. The amplitudes of
three harmonics are 233mA, 153mA and 148mA. Fig. 12(c) shows
the experimental results with scheme TESO-VRC, from which dg-
axes current, A-phase current THD, and three harmonic contents
are attenuated to a certain extent due to the introduced VRC. The
dg-axes current fluctuations and A-phase current THD are reduced
t0 0.751A, 0.976A, and 3.52%. The magnitudes of three harmonics
are also attenuated to 147mA, 73mA, and 101mA. However,
although current ripples and harmonic contents are decreased to
some extent, the scheme doesn’t achieve sufficient suppression,
and the order of magnitudes of harmonics remain consistent with
TESO. And it can be shown from Fig. 12(d) that the steady-state
dg-axes currents ripples with FXTESO-AFRC scheme are 0.523A
and 0.743A, respectively, and the A-phase current THD reaches
3.37%. The amplitudes of three harmonics are 62mA, 39mA and
54mA. Finally, Fig. 12(e) illustrates the experimental results
plotted by adopting proposed FxTAESO-AFRC. The dg-axes
steady-state current fluctuations and A-phase current THD have
been substantially attenuated, with their values reduced to 0.365A,
0.615A, and 3.04%, respectively. The FFT analysis results of g-
axis current can also be summarized that all three harmonics are
adequately and completely suppressed, with the values of 9.7mA,

4.9mA, and 6.8mA, respectively. This also verifies the superiority
of the proposed strategy under half rated load.

Fig. 13 shows the experimental results of five schemes under
rated load. Fig. 13(a) demonstrates the dg-axes current ripples, A-
phase current THD, and their values of 2.215A, 1.772A, and 6.42%,
respectively, for taking the PI approach. The amplitudes of three
harmonics are 258mA, 231mA, and 251mA. And Fig. 13(b)
displays the dg-axes current ripples, A-phase current THD, and
their values of 2.087A, 1.756A, and 6.18% for taking the TESO
method. The amplitudes of three harmonics are 244mA, 178mA,
and 202mA. Fig. 13(c) presents the results of adopting TESO-VRC
strategy, which shows all the indexes have been attenuated to a
certain extent, but there is still room for improvement. The dg-axes
current ripples, A-phase current THD, and three harmonics are
1.004A, 1.102A, 2.83%, 179mA, 102mA, and 119mA. And Fig.
13(d) displays the dg-axes current ripples, A-phase current THD,
and their values of 0.849A, 1.006A, and 2.37% for taking the
FXTESO-AFRC method. The amplitudes of three harmonics are
82mA, 43mA, and 67mA. Fig. 13(e) illustrates the waveforms of
proposed FXTAESO-AFRC, which displays both current ripples
and three harmonics are maximally suppressed. The d-axis current
fluctuation is reduced from 2.215A to 0.577A, with a reduction
percentage of 73.95%. The g-axis current fluctuation is reduced
from 1.772A to 0.872A, with a reduction percentage of 50.79%.
And the A-phase current THD is reduced from 6.42% to 2.15%,
with a reduction percentage of 66.51%. The amplitudes of three
harmonics are decreased to the milliampere level with values of
8.1mA, 4.2mA, and 5.2mA, respectively. Thus, above
experimental results fully validate the supremacy of proposed
strategy in the case of steady-state.

B.  Dynamic Performance Verification

Current dynamic characteristic is also an essential indicator of
motor control performance. Fig. 14 illustrates the dynamic
response of g-axis current of five comparative control strategies for
a rated load step and localized magnification of the step transient.
All the five strategies can realize accurate current tracking and fast
response. However, due to the fixed-time convergence property of
the proposed FXTAESO-AFRC method, its observation and
compensation of disturbances and state variables respond faster
under the same parameter constraints. Building upon this, it has the
lowest response time with a value of 102ms, which is 42.05%
faster compared to 176ms for P1, 37.80% faster compared to 164ms
for TESO, 26.09% faster compared to 138ms for TESO-VRC and
negligible difference compared to 118ms for FXTESO-AFRC.
Furthermore, the proposed strategy achieves smoother and faster
current dynamic since it has a much lower current fluctuation and
transient overshoot.

C. Parameters Robustness

Because the PMSM parameters change in real-time with the
working conditions and temperature during the actual operation.
And in the controller design of this paper, it’s known to be closely
related to the inductance and resistance parameters according to Eq.



TABLE IV
COMPREHENSIVE PERFORMANCE COMPARISON OF FIVE SCHEMES

Schemes PI TESO TESO-VRC FxTESO-AFRC FXxTAESO-AFRC
D-axis Current Ripple (A) 1.561 1.333 0.751 0.523 0.365
Q-axis Current Ripple (A) 1.388 1.354 0.976 0.743 0.615
10Nm Load Phase-A Current THD (%) 7.06 6.90 3.52 3.37 3.04
1** Order Harmonic (mA) 246 233 147 62 9.7
2" Order Harmonic (mA) 218 153 73 39 49
6" Order Harmonic (mA) 217 148 101 54 6.8
D-axis Current Ripple (A) 2.215 2.087 1.004 0.849 0.577
Q-axis Current Ripple (A) 1.772 1.756 1.102 1.006 0.872
20Nm Load Phase-A Current THD (%) 6.42 6.18 2.83 2.37 2.15
1% Order Harmonic (mA) 258 244 179 82 8.1
2" Order Harmonic (mA) 231 178 102 43 42
6" Order Harmonic (mA) 251 202 119 67 5.2
Dynamic Response (ms) 176 164 138 118 102
Computational Time (us) 8.71 9.23 9.54 16.96 17.61
5 step is added at 4s. There are fluctuations in the g-axis current and
gt l A-phase current during the speed step and load step transients, but
.?»162' l{ the current fluctuations quickly converge to lower values as the
0 . o . speed approaches its reference value. Thus, speed dynamic
211»”5/"“] v characteristic of proposed strategy is validated.
= 100 lfw VI. CONCLUSION
g, fivan — The proposed strategy FXTAESO-AFRC can adaptively adjust
3150 [ d resonant gain to balance harmonic rejection capability and system
%0 . ! ! . stability margin, and at the same time achieve noise immunity and

Fig. 16. The g-axis current, A-phase current and speed profiles of proposed
FXTAESO-AFRC for 150rpm speed step and rated load step.

(33) and Eq. (34), so it’s quite necessary to analyze the robustness
of proposed scheme to these parameters. Fig. 15 displays dg-axis
current and A-phase current waveforms of the motor inductance
and resistance at nominal, 1.3 times nominal, and 0.7 times
nominal parameters, respectively. The fluctuations of above
currents and THD are nearly the same as the corresponding indexes
under the nominal parameters, both in the case of inductance and
resistance change. It’s proved that the FXTAESO-AFRC is highly
robust to parameter variations.

D. Comparison of Computational Burden

In an attempt to apply the algorithm to high-performance servo
systems with fast control frequency, the computational burden of
the processor for different schemes is extracted and displayed in
Table III. The computational time of the four conventional
schemes is 8.71us, 9.23us, 9.54us, and16.96us, while the time of
proposed strategy is 17.61us. This is because proposed FXTAESO-
AFRC involves a nonlinear observer correction term and a
fractional-order differential operator, which increases the
processor’s computational time to some extent. However, it’s still
much lower than the control period of 50us, and there still exists a
large time margin to configure other parts of systems. The extra
computational time is perfectly acceptable compared to current
fluctuations and harmonics suppression performance. This also
demonstrates its suitability for high control frequency.

In addition, to fully demonstrate where the differences in steady-
state performance, dynamic response, and computation time lie
between the five comparison strategies mentioned above. A
comparative table regarding the improvement of the proposed
control strategy is comprehensively exhibited as shown in Table
IV. From the table, it can be seen that the proposed control strategy
has optimal performance metrics in various scenarios.

E. Speed Dynamic Performance Test

The proposed FXTAESO-AFRC adopts a frequency adaptive
principle to correct resonant frequencies in real-time according to
the motor speed. Fig. 16 shows the results of speed dynamic
performance tests conducted. The initial speed is set to 150rpm,
and then a speed step of 150rpm is applied at 2s, and a rated load

observer’s fast convergence by introducing current integral
augmented variable and optimizing nonlinear correction term.
Firstly, proposed AFRC incorporates an adaptive fractional-order
operator term that varies adjustably in real-time with load current,
harmonic rejection strength, and desired phase margin, thus
adequately suppressing the periodic current disturbances while
guaranteeing rejection ability and system stability. Subsequently,
the proposed FXTAESO introduces a measured current integral
term as the augmented variable to decouple interaction between
current measurement noise and high observer gain. Additionally,
the state estimation error can be driven to converge within the
vicinity of the equilibrium point in a fixed time by proposing a
reasonable nonlinear correction term. Finally, the practicalities and
effectiveness of proposed scheme are experimentally verified on a
PMSM platform. It’s worth mentioning that the proposed strategy
is also applicable to other types of motor systems such as
permanent magnet linear synchronous motor (PMLSM), induction
motor (IM), etc.
APPENDIX

Definition 1 [39]: The vector field f(x):R" - R" is
homogeneous of degree d with respect to weight h, if for any x €
R" the relation f(A,x)= /ldAh f(x) holds for some d =
—min;¢;<,h; and all A>0. The function V(x):R" - R is
homogeneous of degree d with respect to weight h, if for any x €
R" the relation V(A,x) = /ldV(x) holds for some d € R and all
4> 0. And if a vector field or function is homogeneous in both 0-
limit and @-limit, then it will be considered to be homogeneous in
the bi-limit.

Definition 2 [40]: A vector field f(e): R" - R" (or a function
V (e): R" - R) is considered to be homogeneous in the g-limit (¢ =
0 or @) with corresponding triples (k. d,. f,) (or (h,.d,.V,))if
the relationship

(1im sup H/I‘qu,_lqlf(Ahqe> - fq(e)” -0

=4 ek
L1 sup [1-v (A, €) - vy0] =0
4=deek K



for all compact subsets K € R"\{0}, where hq is the weight, dq €
R is the degree, and f,(e): R"” - R" is the approximation vector
field (or V,(e): R" — R is the approximation function).

Lemma 1: For system (12), assuming that vector field r(e) is bi-
limit homogeneous with vector triples (h,.d,, f,).q = 0or ®.If
the origins of system é = r(e) is globally asymptotically stable,
then the following conclusions maintain: 1. The origin of (12) is
fixed-time stable when satisfies d , > 0> d,. II. Make dy; >
max;<;<,ho ;> dy > max << h 5, and dy,,dy _be real numbers.
There exists a continuous, positive definite and proper function
V(e) such that the function e — 0V /de;,Vi € {1,2,---,n} is bi-

limit  homogeneous  with  vector triples (hq,qu -

hg ;s
and e = oV, /0e - r,(e) are negative definite.

Lemma 2: 1If u(e): R" - R and 6(e): R" - R, are two bi-limit
homogeneous  functions ~ with  triples  (hg,d .00 /,10) ,

<h w0y i a,), (hg, dg, 6p) and (hw, ds o 500), and satisfying
dyo 2 dsy, d, o < dsoand 8,68, 6 4 are all positive definite, then

qu/ae,.), q=0o0r @, and the functions e — oV /0e - r(e)

there is a positive real number p holds u(e) < pé(e), Ve € R".

REFERENCES

[1] C. Zhang et al., "An Adaptive ADRC Strategy With Weight Function for
Propeller Speed Control and Experimental Verification in Wind Tunnel," /EEE
Trans. Transp. Electrif., vol. 10, no. 1, pp. 670-681, March 2024.

[2] X.Liu, H. Yang, H. Lin, F. Yuand Y. Yang, "A Novel Finite-Set Sliding-Mode
Model-Free Predictive Current Control for PMSM Drives Without DC-Link
Voltage Sensor," IEEE Trans. Power Electron.,vol. 39, no. 1, pp. 320-331, Jan.
2024.

[3]1 J. Ye, M. Wang, S. Cui, C. Zhang and L. Li, "Modified Single-Edge
Modulation to Decrease Common-Mode Voltage with Considering Deadtime
Effects and Switching Losses for Three-Phase VSIs," [EEE Trans. Power
Electron., vol. 39, no. 8, pp. 9292-9304, Aug. 2024.

[4] H. Cao, Y. Deng, Y. Zuo, H. Li, J. Wang and X. Liu, "Improved ADRC With
a Cascade Extended State Observer Based on Quasi-Generalized Integrator for
PMSM Current Disturbances Attenuation," IEEE Trans. Transp. Electrif., vol.
10, no. 1, pp. 2145-2157, March 2024.

[5] Y. Yan,J. Yang, Z. Sun, C. Zhang, S. Li and H. Yu, "Robust Speed Regulation
for PMSM Servo System With Multiple Sources of Disturbances via an
Augmented Disturbance Observer," IEEE/ASME Trans. Mechatron., vol. 23,
no. 2, pp. 769-780, April 2018.

[6] Y. Yin, L. Liu, S. Vazquez, R. Xu, Z. Dong, J. Liu, J. Leon, L. Wu and L.
Franquelo, "Disturbance and Uncertainty Attenuation for Speed Regulation of
PMSM Servo System Using Adaptive Optimal Control Strategy," IEEE Trans.
Transp. Electrif., vol. 9, no. 2, pp. 3410-3420, June 2023.

[7] C.Mitsantisuk, K. Ohishi, and S. Katsura, “Estimation of action/reaction forces
for the bilateral control using Kalman filter,” /EEE Trans. Ind. Electron., vol.
59, no. 11, pp. 4383-4393, Nov. 2012.

[8] F. Wang, K. Zuo, P. Tao, and J. Rodriguez, "High performance model
predictive control for PMSM by using stator current mathematical model self-
regulation technique," /EEE Trans. Power Electron., vol. 35, no. 12, pp.
13652-13662, Dec. 2020.

[9] X. Zhang, B. Hou, and Y. Mei, "Deadbeat predictive current control of
permanent-magnet synchronous motors with stator current and disturbance
observer," IEEE Trans. Power Electron., vol. 32, no. 5, pp. 3818-3834, May
2017.

[10]C. Zhang, C. Zhang, L. Li and H. Liu, "An Enhanced Nonlinear ADRC Speed
Control Method for Electric Propulsion System: Modeling, Analysis, and
Validation," IEEE Trans. Power Electron., vol. 38, no. 4, pp. 4520-4528, April
2023.

[11]M. Tian, B. Wang, Y. Yu, Q. Dong and D. Xu, "Enhanced One Degree-of
Freedom ADRC With Sampled-Data Iterative Learning Controller for PMSM
Uncertain Speed Fluctuations Suppression," /[EEE Trans. Transp. Electrif., vol.
10, no. 4, pp. 8321-8335, Dec. 2024.

[12]C. Tan, Q. Chen, L. Zhang and K. Zhou, "Frequency-Adaptive Repetitive
Control for Three-Phase Four-Leg V2G Inverters," /EEE Trans. Transp.
Electrif., vol. 7, no. 4, pp. 2095-2103, Dec. 2021.

[13]C. Xia, B. Ji, and Y. Yan, "Smooth speed control for low-speed high-torque
permanent-magnet synchronous motor using proportional integral-resonant
controller," /IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2123-2134, Apr.
2015.

[14]B. Guo, S. Bacha, M. Alamir, A. Hably, and C. Boudinet, "Generalized
integrator-extended state observer with applications to grid-connected
converters in the presence of disturbances," IEEE Trans. Control Syst. Technol.,
vol. 29, no. 2, pp. 744-755, Mar. 2021.

[15]Y. Zuo et al., "Active disturbance rejection controller for smooth speed control
of electric drives using adaptive generalized integrator extended state
observer," IEEE Trans. Power Electron., vol. 38, no. 4, pp. 4323-4334, April
2023.

[16]A. G. Yepes, F. D. Freijedo, O. Lopez, and J. Doval-Gandoy, "High
performance digital resonant controllers implemented with two integrators,"
IEEE Trans. Power Electron., vol. 26, no. 2, pp. 563-576, Feb. 2011.

[17]K. Rsetam, Z. Cao and Z. Man, "Cascaded-Extended-State-Observer-Based
Sliding-Mode Control for Underactuated Flexible Joint Robot," IEEE Trans.
Ind. Electron., vol. 67,no. 12, pp. 10822-10832, Dec. 2020.

[18]K. Rsetam, Z. Cao and Z. Man, "Design of Robust Terminal Sliding Mode
Control for Underactuated Flexible Joint Robot," IEEE Trans. Syst. Man
Cybern.: Syst., vol. 52, no. 7, pp. 4272-4285, July 2022.

[19]Rsetam, Kamal, Zhenwei Cao, Lulu Wang, Mohammad Al-Rawi, and Zhihong
Man. "Practically Robust Fixed-Time Convergent Sliding Mode Control for
Underactuated Aerial Flexible Joint Robots Manipulators" Drones, vol. 6, no.
12:428,2022.

[20]Khan, R.F.A., Rsetam, K., Cao, Z. et al. "ESO Based Adaptive Fixed-Time
Integral Sliding Mode Control for Flexible Joint Robots Using Singular
Perturbation Method," Nonlinear Dyn, 113, 24981-25000, 2025.

[21]H. Cao etal., "Improved Deadbeat Predictive Current Control of PMSM Drives
With Repetitive Control-Based Disturbance Correction Observer," [EEE Trans.
Power Electron., vol. 40, no. 1, pp. 801-812, Jan. 2025.

[22]Z. Sun, Y. Deng, J. Wang, T. Yang, Z. Wei and H. Cao, "Finite Control Set
Model-Free Predictive Current Control of PMSM With Two Voltage Vectors
Based on Ultralocal Model," IEEE Trans. Power Electron., vol. 38, no. 1, pp.
776-788, Jan. 2023.

[23]H. Cao, Y. Deng, Y. Zuo, X. Liu, J. Wang and C. H. T. Lee, "A Variable
Structure ADRC for Enhanced Disturbance Rejection and Improved Noise
Suppression of PMSM Speed System," /EEE Trans. Ind. Electron., vol. 72, no.
5, pp. 4481-4495, May 2025.

[24]Q. Hou, S. Ding and X. Yu, "Composite Super-Twisting Sliding Mode Control
Design for PMSM Speed Regulation Problem Based on a Novel Disturbance
Observer," IEEE Trans. Energy Convers., vol. 36, no. 4, pp. 2591-2599, Dec.
2021.

[25]). Ye,M. Wang, S. Cai, C. Zhang and L. Li, "Fractional-Order Phase-Corrected
Feedforward Repetitive Control With Fast Convergent Augmented Observer
for Static-Errorless Current Regulation in PMSM," [EEE Trans. Ind. Electron.,
early access, doi: 10.1109/TIE.2025.3605462.

[26]Q. Chen, X. Yu, M. Sun, C. Wu and Z. Fu, "Adaptive Repetitive Learning
Control of PMSM Servo Systems with Bounded Nonparametric Uncertainties:
Theory and Experiments," /[EEE Trans. Ind. Electron., vol. 68, no. 9, pp. 8626-
8635, Sept. 2021.

[27]F. Song, Y. Liu, D. Shen, L. Li and J. Tan, "Learning Control for Motion
Coordination in Wafer Scanners: Toward Gain Adaptation," /EEE Trans. Ind.
Electron., vol. 69, no. 12, pp. 13428-13438, Dec. 2022.

[28]). Li, M. Wang, C. Zhang, M. Liu and L. Li, "High-Performance Control
Method for Six-Degree-of-Freedom Micromotion Stage Based on High-Order
Sliding Mode Control Theory," IEEE Trans. Power Electron., vol. 39, no. 8,
pp. 9174-9188, Aug. 2024.

[29]S. Jia, D. Yang, P. Sun, D. Liang and J. Si, "Decoupled Current Control Using
Adaptive Quasi Resonant-Based ESO for Novel Matrix-Torque-Component
Machines," IEEE Trans. Power Electron., vol. 40, no. 6, pp. 8503-8515, June
2025.

[30]C. Du, S. Yang, L. Qiu, J. Ma, Y. Fang and J. Rodriguez, "A Cross-Decoupled
Current Harmonics Suppression Method for IPMSM Based on Notch Filter and
Second-Order Generalized Integrator," IEEE Trans. Power Electron., vol. 40,
no. 4, pp. 5715-5730, April 2025.

[31]M. Hu, W. Hua, G. Ma, S. Xu and W. Zeng, "Improved Current Dynamics of
Proportional-Integral-Resonant Controller for a Dual Three-Phase FSPM
Machine," IEEE Trans. Ind. Electron., vol. 68, no. 12, pp. 11719-11730, Dec.
2021.

[32]J. Han, "From PID to Active Disturbance Rejection Control," /[EEE Trans. Ind.
Electron., vol. 56, no. 3, pp. 900-906, March 2009.

[33]K. Rsetam, Z. Cao, Z. Man and X. -M. Zhang, "GPIO-Based Continuous
Sliding Mode Control for Networked Control Systems Under Communication
Delays with Experiments on Servo Motors," IEEE-CAA J. Automatica Sin., vol.
12, no. 1, pp. 99-113, January 2025.

[34]W. Perruquetti, T. Floquet, and E. Moulay, "Finite-time observers: Application
to secure communication," IEEE Trans. Autom. Control, vol. 53, no. 1, pp.
356-360, Feb. 2008.

[35]E. Bernuau, D. Efimov, W. Perruquetti, and A. Polyakov, "On homogeneity
and its application in sliding mode control," J. Franklin Inst., vol. 351, pp.
1866-1901, Apr. 2014.



[36]A. Oustaloup, F. Levron, B. Mathieu and F. M. Nanot, "Frequency-band
complex noninteger differentiator: characterization and synthesis," /EEE Trans.
Circuits Syst. I: Fundam. Theory Appl., vol. 47, no. 1, pp. 25-39, Jan. 2000.

[37]R. Xu, X. Shen, X. Lin, Z. Liu, D. Xu and J. Liu, "Robust Model Predictive
Control of Position Sensorless-Driven IPMSM Based on Cascaded EKF-
LESO," IEEE Trans. Transp. Electrif.,vol. 11,no. 4, pp. 8824-8832, Aug. 2025.

[38]Z. Wang, J. Zhao, L. Wang, M. Liand Y. Hu, "Combined Vector Resonant and
Active Disturbance Rejection Control for PMSLM Current Harmonic
Suppression," [EEE Trans. Ind. Informat., vol. 16, no. 9, pp. 5691-5702, Sept.
2020.

[39]M. Basin, P. Yu, and Y. Shtessel, "Finite- and fixed-time differentiators
utilising HOSM techniques," IET Control Theory Appl., vol. 11, no. 8, pp.
1144-1152,2017.

[40]T. Menard, E. Moulay, and W. Perruquetti, "Fixed-time observer with simple
gains for uncertain systems," Automatica, vol. 81, pp. 438-446, Jul. 2017.



