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Abstract—Classical current control strategies in electric propulsion 
systems often suffer from degraded performance under periodic and 
aperiodic disturbances. To overcome these limitations, this paper 
proposes a novel current control framework that combines an 
adaptive fractional-order resonant controller (AFRC) with a fixed-
time augmented extended state observer (FxTAESO), aiming to 
enhance disturbance rejection and dynamic robustness. Firstly, the 
proposed AFRC introduces a self-tuning fractional-order operator, 
which adaptively adjusts in real-time according to load current, 
harmonic rejection strength, and desired phase margin. This adaptive 
mechanism enables precise harmonic compensation while ensuring 
stability and robustness across the varying operating conditions. 
Subsequently, the FxTAESO incorporates a current integral term as 
system augmented variable to decouple the coupling effect between 
current measurement noise and high observer gains. Additionally, by 
embedding an improved nonlinear fixed-time convergence law, the 
observer ensures that the estimation error converges to a bounded 
neighborhood of the equilibrium point within a predetermined time, 
independent of initial conditions. Finally, experimental validation on 
a PMSM drive platform demonstrates that the proposed FxTAESO-
AFRC scheme achieves superior steady-state accuracy, faster 
transient response, and stronger disturbance suppression compared 
to conventional methods.  
 

Index Terms—Augmented extended state observer, adaptive 
fractional-order, current control, electric propulsion system, fixed-
time convergence, permanent magnet synchronous motor. 

I. INTRODUCTION 

ERMANENT magnet synchronous motors (PMSMs) have 
emerged as a cornerstone technology in modern electric 

propulsion architectures due to their high energy conversion 
efficiency, compact structure, and reduced maintenance demands. 
These advantageous characteristics have facilitated their extensive 
deployment in a wide range of transportation electrification 

platforms, including electric and hybrid-electric aircraft, electric 
vehicles (EVs), and unmanned aerial and robotic systems [1], [2]. 
Within PMSM-based propulsion systems, the current control loop 
forms the innermost feedback path and plays a pivotal role in 
directly regulating the electromagnetic torque output. Hence, the 
precision and robustness of current regulation critically affect the 
dynamic performance, torque fidelity, and overall stability of the 
electric propulsion systems. However, conventional current 
controllers often face significant challenges in mitigating adverse 
effects caused by parameter uncertainties, inverter nonlinearities 
[3], and external disturbances [4]. These nonlinear disturbances 
can induce steady-state torque ripples, speed oscillations, and 
degraded the transient responses, which are especially detrimental 
to the high-performance electrified transportation applications. 
Therefore, the development of advanced current loop control 
strategies, particularly those capable of real-time disturbance 
rejection and robust performance enhancement, is essential for 
ensuring reliable and efficient operation of PMSM electric 
propulsion systems. 

Based on the underlying mechanism of uncertainties, the 
disturbances within the current loop of PMSM drive system can be 
broadly categorized into two primary subtypes [5]. The first 
subcategory encompasses aperiodic ones. To attenuate these 
disturbances, a wide range of advanced control theories and 
strategies have been developed over recent years to enhance the 
current performance of PMSM [6]-[10]. The approach outlined in 
[6] demonstrates capability to dynamically adapt to the disturbance 
based on the actual system. However, the developed technique 
remains to be a model-based control strategy, heavily relying on 
high precision of the prior model information. A composite 
extended Kalman filter (EKF) control strategy was introduced for 
disturbance estimation in [7]. As EKF operates as a variable gain 
observer, it provides effective observation performance. While it 
is computationally overloaded and presents challenge to tune 
control parameters. This makes its application particularly difficult 
in high-performance scenarios with short control cycle. Ref. [8] 
achieves precise current regulation by introducing a stator current 
self-adjustment model using model predictive control (MPC). 
Whereas classic MPC faces challenges, including high complexity 
of optimization calculation and sensitivity to model parameters. A 
sliding mode observer (SMO) based on adaptive reaching law was 
proposed in [9]. Although the chattering problem is mitigated, 
there are still significant current ripples and large overshoots due 
to parameters mismatch. Recently, extended state observer (ESO) 
has gained widespread research and adoption in PMSM drive 
because of its simple structure, ease of parameters tuning, and less 
dependency on the system model information [10]. However, the 
observation error of state variables in classic ESO can only 
converge asymptotically. This will have certain disturbances’ 
estimation errors for motor systems with fast control cycles and 
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high real-time requirements, which in turn affects the high-
performance current control of PMSMs. Also, the coupling 
characteristic between the current sampling noise and high 
observer gain is also a major point of consideration. Therefore, it 
is important to develop an method for ESO to tackle these 
undesired deficiencies. 

The second subcategory of current disturbances is periodic ones. 
However, due to the limitations of bandwidth and other factors, 
classic ESO struggles to effectively predict periodic disturbances. 
The conventional observer focuses more on the accurate 
observation of direct-current (DC) and slow time-varying signals. 
Hence, it is imperative to develop composite control strategies to 
enhance the rejection abilities of periodic harmonics. Iterative 
learning control (ILC) has been extensively used in repeated 
motion control and periodic disturbances suppression in PMSM 
drives [11], but it requires large amounts of data storage and is 
dependent on the specific initial state. In [12], repetitive control 
was utilized to process the periodic reference signals. However, the 
algorithm has a long convergence time and is challenging to 
implement when the frequency of disturbances is variable. For 
these reasons, resonant controller has received much attention 
recently in both academia and industrial communities for their 
structural flexibility and superior computational efficiency. In [13], 
the method of introducing resonant components to the PI controller 
was proposed to achieve smooth speed control and to avoid speed 
overshoots during transients by mode switching. Ref. [14] 
achieved sinusoidal disturbances tracking with fast time-varying 
characteristics in grid-connected inverter using a generalized 
integrator-based ESO. Similarly, the Ref. [15] achieved smooth 
speed control by embedding an adaptive generalized integrator in 
the ESO. However, none of the above schemes consider the 
constraints between resonant gain and system stability. Moreover, 
system stability may be degraded due to the delay property of the 
controlled plant. Therefore, in [16], a vector resonant control 
(VRC) was developed to remove the phase delay by introducing 
the controlled plant information. Unfortunately, the amplitude-
phase characteristics as well as the immunity of VRC are 
compromised when the system model parameters are mismatched. 

In the existing literatures, recent advances related to fixed-time 
and noise-tolerant ESOs have been further proposed to improve 
systems’ convergent speed and anti-disturbance performance. Ref. 
[17] designs a cascaded ESO combined with sliding mode control 
(SMC) to suppress noise and reduce chattering via disturbance-
based switching gain adjustment. Ref. [18] employs a cascaded 
finite-time SMO with terminal SMC to achieve fast convergence 
and strong noise rejection for underactuated systems. Ref. [19] 
develops a fixed-time SMC scheme with a cascaded SMO ensuring 
convergence independent of initial conditions and low sensitivity 
to noise. Ref. [20] integrates a fixed-time ESO with an adaptive 
integral SMC to realize fixed-time stability while effectively 
mitigating chattering and measurement noise. In the field of motor 
and precision motion control system, it has introduced diverse 
advanced control schemes to improve dynamic performance and 
system robustness. An improved deadbeat predictive current 
control (DPCC) incorporating a repetitive control-based 
disturbance correction observer enhances steady-state accuracy 
and harmonic rejection for PMSM current loop [21]. A model-free 
finite control set MPC based on an ultra-local model reduces model 
dependence while increasing computational burden and tuning 
sensitivity [22]. For robust control, a variable-structure active 
disturbance rejection control (ADRC) with interconnected ESOs 
provides strong disturbance rejection and noise suppression [23]. 
Likewise, a composite super-twisting SMC with a novel 
disturbance observer achieves high robustness and reduced 

chattering, yet depends heavily on precise observer calibration 
[24]. Adaptive and learning-based approaches have been employed 
to enhance tracking under uncertainty. Ref. [25] combines a fixed-
time observer with a fractional-order phase-compensated repetitive 
controller, enabling efficient suppression of current loop 
disturbances and harmonics; however, its complex formulation 
leads to considerable computational burden. An adaptive repetitive 
learning control effectively compensates bounded periodic 
uncertainties but exhibits poor generalization to non-repetitive 
tasks [26]. A cross-coupled ILC with adaptive gain scheduling 
achieves nanoscale synchronization for wafer scanners but suffers 
from high implementation complexity [27]. For coupled or high-
order systems, a high-order SMC ensures finite-time convergence 
and strong robustness at the cost of significant computational 
demand [28]. A decoupled current control with adaptive quasi-
resonant and linear ESO separates the disturbances effectively, 
though complicating tuning and stability analysis [29]. Moreover, 
a cross-decoupled harmonic suppression method combining notch 
filters and second-order generalized integrator enhances current 
regulation but is frequency-sensitive [30], while a modified 
discrete proportional-integral-resonant (PIR) controller with 
prefiltering and active damping improves transient response yet 
relies on accurate z-domain modeling [31]. Overall, these hybrid 
structures combining predictive, adaptive, and observer-based 
designs substantially improve motor performance but remain 
limited by computational complexity, fast observer convergence, 
strong noise immunity, high parameter robustness, superior 
suppression of both aperiodic disturbances and periodic 
harmonics, and adaptive balancing of system stability margins 
under time-varying and complex conditions. 

In this article, unlike conventional VRC, the proposed scheme 
introduces an adaptive fractional-order operator, which is 
dynamically tuned in real-time according to the load current 
amplitude, harmonic rejection strength, and desired phase margin. 
Then, compared with existing ESOs, the proposed method 
augments the integral of the measured current as an additional 
system state variable, leveraging the intrinsic low-pass filtering 
characteristic of the integral operator to effectively suppress high-
frequency measurement noise. Moreover, a modified nonlinear 
error correction law is designed to ensure fixed-time convergence 
of the observer. Finally, the convergent behavior, system stability, 
disturbances and noise suppression performance are analyzed in 
the PMSM drive system. The main motivations of this research can 
be summarized as follows. 
1) An adaptive fractional-order resonant controller (AFRC) is 

developed, featuring a self-tuning fractional-order operator 
that dynamically adjusts to load current amplitude, harmonic 
rejection strength, and desired phase margin. 

2) A fixed-time augmented extended state observer (FxTAESO) 
is proposed, introducing an augmented current integral term to 
decouple the interaction between measurement noise and high 
observer gain. 

3) A nonlinear fixed-time correction law is introduced to ensure 
that the state estimation error converges within a predefined 
time, regardless of the state initial conditions, improving both 
robustness and convergence rate. 

4) The integrated FxTAESO-AFRC current control framework 
achieves enhanced harmonic suppression abilities, superior 
steady-state accuracy, and fast transient dynamics under both 
periodic and aperiodic disturbances in motor drive systems. 

This paper is organized as follows. In Section II, the dynamic 
mathematical model and the types of current disturbances of 
PMSM are briefly described. In Section III, the FxTAESO-AFRC 
strategy is proposed to simultaneously suppress periodic and 



 
aperiodic disturbances in the PMSM current loop. Afterwards, the 
corresponding proof of convergent time for FxTAESO is derived. 
Section IV analyzes the performance of the proposed strategy for 
disturbances suppression, current tracking, anti-noise capability, 
adaptive function design and the global system stability. Section V 
completes the verification for the feasibility of the algorithm 
through experiments. In Section VI, the conclusion is given. 

II. PMSM MODEL DESCRIPTION AND DISTURBANCE ANALYSIS 

A. Dynamic Mathematical Model 
Generally, by neglecting the complex nonlinearities, such as 

hysteresis losses, eddy currents, and iron core saturation of PMSM, 
dynamic mathematical equations of electrical system in the dq-
axes are given by: 

ໆ

𝑢𝑑 = 𝐿𝑑
𝑑𝑖𝑑
𝑑𝑡

+ 𝑅𝑠𝑖𝑑 − 𝑝𝑛𝜔𝑚𝐿𝑞𝑖𝑞

𝑢𝑞 = 𝐿𝑞
𝑑𝑖𝑞

𝑑𝑡
+ 𝑅𝑠𝑖𝑞 + 𝑝𝑛𝜔𝑚𝐿𝑑𝑖𝑑 + 𝑝𝑛𝜔𝑚𝜓𝑓

           (1) 

where 𝑢𝑑 , 𝑢𝑞 , 𝑖𝑑 , 𝑖𝑞 , 𝐿𝑑  and 𝐿𝑞  are the voltages, currents, and 
stator inductances of the dq-axes, respectively; 𝑅𝑠 represents the 
stator resistor; 𝑝𝑛  denotes the number of pole pairs; 𝜔𝑚  is the 
actual mechanical angular velocity; 𝜓𝑓  is the permanent magnet 
flux. In this study, the surface-mounted PMSM is investigated, on 
account of this, it holds 𝐿𝑑 = 𝐿𝑞 = 𝐿𝑠. 

B. Current Disturbances Analysis 
During the operation of an actual electrical motor, the PMSM 

drive system will inevitably be subjected to a range of internal and 
external disturbance. Before implementing the suppression 
techniques for these disturbances, it is essential to theoretically 
analyze and classify the underlying causes and characteristics of 
these disturbances. To enable the development of a more accurate 
and effective suppression strategy, these can be categorized into 
periodic and aperiodic types. 

1) Periodic disturbances: The periodic disturbances 𝜀𝑑(𝑞)𝑝𝑑  are 
primarily associated with 𝜀𝑑(𝑞)𝑓ℎ introduced by motor air-gap flux 
harmonics, 𝜀𝑑(𝑞)𝑣ℎ  caused by inverter nonlinearities, current 
sampling error 𝜀𝑑(𝑞)𝑐𝑠 and other unknown disturbances 𝜀𝑑(𝑞)𝑢𝑑 . The 
expressions for the periodic disturbances in the dq-axes voltage 
equations can be summarized as: 
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   (2) 

where 𝑇𝑑 , 𝑇𝑠  and 𝑈𝑑𝑐  denote the deadtime interval, switching 
period and bus voltage of the inverter; 𝜓𝑑𝑓𝑛  and 𝜓𝑞𝑓𝑛  are 
amplitudes of the 6nth-order flux harmonics; 𝜔𝑒 = 𝑝𝑛𝜔𝑚  is the 
electrical angular velocity; Δ𝑖𝑑  and Δ𝑖𝑞  are the dq-axes current 
harmonics caused by scaling and offset error in current sampling 
process. The specific forms of harmonics are denoted as: 

⎩⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎧∆𝑖𝑑 =

|𝐾𝑏−𝐾𝑎|

√3
𝐼 sinฝ2𝜔𝑒𝑡 − 𝜋

6พ +
√3(𝐾𝑏−𝐾𝑎)

6
𝐼

           + 2

√3 ี∆𝑖𝑎𝑠
2 + ∆𝑖𝑎𝑠∆𝑖𝑏𝑠 + ∆𝑖𝑏𝑠

2 sin(𝜔𝑒𝑡 + 𝜅)

∆𝑖𝑞 =
|𝐾𝑏−𝐾𝑎|

√3
𝐼 cosฝ2𝜔𝑒𝑡 − 𝜋

6พ +
𝐾𝑎+𝐾𝑏−2

2
𝐼

           + 2

√3 ี∆𝑖𝑎𝑠
2 + ∆𝑖𝑎𝑠∆𝑖𝑏𝑠 + ∆𝑖𝑏𝑠

2 cos(𝜔𝑒𝑡 + 𝜅)

      (3) 

where 𝐾𝑎 , 𝐾𝑏, Δ𝑖𝑎𝑠  and Δ𝑖𝑏𝑠 are scaling coefficients and offset 
errors between actual and measured currents of phase-A and B. 
Ideally, these should meet the condition of 𝐾𝑎 = 𝐾𝑏 = 1 , and 
Δ𝑖𝑎𝑠 = Δ𝑖𝑏𝑠 = 0. I represents the phase current amplitude. 

Based on the above analysis, it can be concluded that the 
periodic disturbances are mainly concentrated at the 1st, 2nd, and 6th 
harmonics of the fundamental frequency, which provides 
theoretical guidance for harmonic suppression scheme. 

2) Aperiodic disturbances: The aperiodic disturbances 𝜀𝑑(𝑞)𝑎𝑑  
primarily include cross-coupling 𝜀𝑑(𝑞)𝑐𝑐 , the known disturbances 
𝜀𝑑(𝑞)𝑘𝑑 , parameters mismatch 𝜀𝑑(𝑞)𝑝𝑚, abrupt changes terms 𝜀𝑑(𝑞)ac 
in reference or load, and other external uncertainties 𝜀𝑑(𝑞)𝑒𝑢. The 
aperiodic disturbances in the dq-axes voltage equations can be 
obtained as follows: 
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        (4) 

where Δ𝐿𝑑 = 𝐿𝑑 − 𝐿𝑠𝑜 , Δ𝐿𝑞 = 𝐿𝑞 − 𝐿𝑠𝑜 , Δ𝑅𝑠 = 𝑅𝑠 − 𝑅𝑠𝑜  and Δ
𝜓𝑓 = 𝜓𝑓 − 𝜓𝑓𝑜 . 𝐿𝑠𝑜 , 𝑅𝑠𝑜 , and 𝜓𝑓𝑜  denote the nominal values of 
corresponding variables. 

Building upon the above disturbances analysis, the dynamic 
mathematical model of the current loop considering both periodic 
and aperiodic disturbances can be restructured as: 

ໆ

𝑑𝑖𝑑
𝑑𝑡

= 𝑏𝑜𝑢𝑑 + 𝜀𝑑
𝑑𝑖𝑞

𝑑𝑡
= 𝑏𝑜𝑢𝑞 + 𝜀𝑞

                                 (5) 

where 𝜀𝑑(𝑞) = 𝜀𝑑(𝑞)𝑝𝑑 + 𝜀𝑑(𝑞)𝑎𝑑  denotes the total disturbances of 
dq-axes, respectively. 𝑏𝑜 = 1 𝐿𝑠𝑜⁄  is the control gain. From Eq. (5), 
it can be concluded that the structure of dq-axes dynamic model is 
the same. Then, this paper focuses on the q-axis as a typical case 
to facilitate the introduction of proposed algorithm. It is worth 
mentioning that the proposed current control strategy is still 
applicable for interior permanent magnet motors. According to Eq. 
(5), the only difference between the interior and the surface-
mounted motors is that the dq-axis control gains are not equal, and 
the rest of the parts are consistent. 

III. PROPOSED FXTAESO-AFRC CONTROLLER 

To suppress the PMSM current loop periodic and aperiodic 
disturbances, this work proposes the novel FxTAESO-AFRC 
algorithm. Additionally, the stability and convergence proofs are 
comprehensively derived and a systematically implementation of 
the current control strategy is provided. 
A. Design and Convergence Proof of Proposed FxTAESO 

Phase currents acquisition is essential in the current control of 
the motor drive system. However, the acquisition process is highly 



 
susceptible to current measurement noise arise from current 
sensors, analog-to-digital conversion circuits, quantization errors, 
and other external interference, which will be introduced into the 
close-loop system. Additionally, when designing a classical 
observer, the noise-laden current captured as an input term is also 
multiplicatively coupled to the high observer gain, which further 
exacerbates the detrimental effect of noise on observer 
performance. To decouple the interaction properties between 
current sampling noise and high observer gain, and reduce the 
noise sensitivity of close-loop system, the current integral term is 
incorporated as an augmented variable to filter measurement noise. 
The following augmented variable is defined as: 

𝑖𝑞𝑜(𝑡) = ∫ ๡𝑖𝑞(𝜏) + 𝜎𝑞(𝜏)๢𝑑𝜏𝑡
0                        (6) 

where 𝑖𝑞(𝑡) and 𝜎𝑞(𝑡) are the actual q-axis current except noise and 
measurement noise, respectively; 𝑖𝑞𝑜(𝑡) is the integral term of the 
noisy current. It is worth mentioning that, according to Eq. (5) and 
Eq. (6), this integral augmented variable contains all information 
about disturbances and noise in the current loop. Augmenting this 
dummy state to a system variable and considering the higher-order 
derivatives of the total disturbances yield the following system 
state equations as: 

ທ
𝒙̇ = 𝑨𝟎𝒙 + 𝑩𝟎𝑢𝑞 + 𝑬𝟎𝜀𝑞

(𝑛−2)
+ 𝑭𝟎𝜎𝑞

𝑦 = 𝑪𝟎𝒙
               (7) 

where 𝒙 = ภ𝑥1 𝑥2 𝑥3  ⋯ 𝑥𝑛ม1∗𝑛
𝑇 = ๤𝑖𝑞0 𝑖𝑞 𝜀𝑞  ⋯ 𝜀𝑞

(𝑛−3)
๥1∗𝑛

𝑇
, 𝑪𝟎 =

[0 1 0 ⋯  0]1∗𝑛 , 𝑬𝟎 = [0 0 ⋯  0 1]1∗𝑛
𝑇 , 𝑭𝟎 = [1 0 ⋯  0 0]1∗𝑛

𝑇 , 

𝑨𝟎 =

⎣
⎢
⎢
⎢
⎡
0 1 0 ⋯ 0
0 0 1 ⋱ ⋮
⋮ ⋮ ⋱ ⋱ 0
0 0 ⋯ 0 1
0 0 ⋯ 0 0⎦

⎥
⎥
⎥
⎤

𝑛∗𝑛

, and 𝑩𝟎 =

⎣
⎢
⎢
⎢
⎡

0
𝑏𝑜
0
⋮
0 ⎦

⎥
⎥
⎥
⎤

𝑛∗1

. 

Most importantly, the (n-2)th derivative of the total disturbances 

𝜀𝑞
(𝑛−2) and current measurement noise 𝜎𝑞 exist and fulfill ๲𝜀𝑞

(𝑛−2)
๲ ≤

𝜀𝑚𝑎𝑥
(𝑛−2)  as well as ฮ𝜎𝑞ฮ ≤ 𝜎𝑞𝑚𝑎𝑥 , where 𝜀𝑚𝑎𝑥

(𝑛−2)  and 𝜎𝑞𝑚𝑎𝑥  represent 
the upper limitations. 

Based on this augmented state space model of PMSM [32], [33], 
the proposed FxTAESO is shown by: 

⎩
⎪
⎪
⎨
⎪
⎪
⎧

𝑧1̇ = 𝑧2 + 𝑙1𝜔0Λ(𝜌, 𝛼1, 𝛽1, 𝑒1)

𝑧2̇ = 𝑧3 + 𝑏𝑜𝑢𝑞 + 𝑙2𝜔0
2Λ(𝜌, 𝛼2, 𝛽2, 𝑒1)

𝑧3̇ = 𝑧4 + 𝑙3𝜔0
3Λ(𝜌, 𝛼3, 𝛽3, 𝑒1)

⋮
𝑧𝑛̇ = 𝑙𝑛𝜔0

𝑛Λ(𝜌, 𝛼𝑛, 𝛽𝑛, 𝑒1)

         (8) 

Λ(𝜌, 𝛼𝑖, 𝛽𝑖, 𝑒1) =

⎩
⎪
⎨
⎪⎧

ฝ𝜌1−𝛼𝑖+𝜌1−𝛽𝑖พ𝑒1

𝜌2−𝛼𝑖−𝛽𝑖
, 0 ≤ |𝑒1| < 𝜌

⌈𝑒1⌋𝛼𝑖 + ⌈𝑒1⌋𝛽𝑖, |𝑒1| ≥ 𝜌
𝑖 = 1,2, … , 𝑛

        (9) 

where 𝒛 = ภ𝑧1 𝑧2 𝑧3  ⋯ 𝑧𝑛ม1∗𝑛
𝑇  is the estimation value of 𝒙, 𝑒1 =

𝑥1 − 𝑧1  is the observation error of state variable 𝑥1 , 𝜔0  is a 
variable associated with the observer bandwidth, 0 < 𝜌 < 1 is the 
switching point, ⌈⋅⌋∗ = 𝑠𝑖𝑔𝑛(⋅)|⋅|∗ , 𝛼𝑖 = 𝑖𝛼 − 𝑖 + 1, 𝛼 ∈ (1 −
1 𝑛⁄ , 1) , 𝛽𝑖 = 𝑖𝛽 − 𝑖 + 1, 𝛽 ∈ (1,1 + 1 𝑛⁄ ) , and the observer gain 

𝑳 = ภ𝑙1 𝑙2  ⋯ 𝑙𝑛ม1∗𝑛
𝑇  makes the following matrix 𝑨𝒄  to be Hurwitz 

matrix that can be expressed by: 

𝑨𝒄 =

⎣
⎢
⎢
⎢
⎢
⎡

−𝑙1𝜔0 1 0 ⋯ 0

−𝑙2𝜔0
2 0 1 ⋱ ⋮

⋮ ⋮ ⋱ ⋱ 0
−𝑙𝑛−1𝜔0

𝑛−1 0 ⋯ 0 1

−𝑙𝑛𝜔0
𝑛 0 ⋯ 0 0⎦

⎥
⎥
⎥
⎥
⎤

𝑛∗𝑛

            (10) 

This work will be divided into two scenarios for the convergence 
proof of proposed FxTAESO. 

Case I: When |𝑒1| ≥ 𝜌, the FxTAESO is nonlinear. Defining 

𝜆𝑖 = 𝑙𝑖𝜔0
𝑖 , 𝑖 = 1,2, … , 𝑛, thus yields 𝒆 ≜ ภ𝑒1 𝑒2  ⋯ 𝑒𝑛ม1∗𝑛

𝑇  by: 

ໆ

𝑒𝚤̇ = 𝑒𝑖+1 − 𝜆𝑖ฝ⌈𝑒1⌋𝛼𝑖 + ⌈𝑒1⌋𝛽𝑖พ, 𝑖 = 1,2, … , 𝑛 − 1

𝑒𝑛̇ = −𝜆𝑛ฝ⌈𝑒1⌋𝛼𝑛 + ⌈𝑒1⌋𝛽𝑛พ + 𝜀𝑞
(𝑛−2)    (11) 

The system (11) can be further expressed as: 
𝒆̇ ≜ 𝒓(𝒆),       𝒆(0) = 𝒆0                     (12) 

where 𝑟𝑖(𝒆) = 𝑒𝚤̇, 𝒓(𝒆)|
𝜀𝑞

(𝑛−2)
=0 denotes undisturbed system (12). 

The upcoming demonstration will be organized into three parts. 
In the first two parts, the asymptotic stability and fixed-time 
convergence of undisturbed system 𝒓(𝒆)|

𝜀𝑞
(𝑛−2)

=0 will be discussed. 

In the third part, the analysis will extend to actual fixed-time 
stability of the disturbed system when  𝜀𝑞

(𝑛−2)
≠ 0. 

Part 1: When 𝜀𝑞
(𝑛−2)

= 0, system (12) can be rewritten as: 
𝒆|̇

𝜀𝑞
(𝑛−2)

=0
= 𝒓(𝒆)|

𝜀𝑞
(𝑛−2)

=0
= 𝒓𝛾 (𝒆) = 

⎣
⎢
⎢
⎢
⎢
⎡ −𝜆1(1 + 𝑚)⌈𝑒1⌋𝛾 + 𝑒2

⋮
−𝜆𝑖ฝ1 + 𝑚𝑖

พ⌈𝑒1⌋𝑖𝛾−𝑖+1 + 𝑒𝑖+1
⋮

−𝜆𝑛(1 + 𝑚𝑛)⌈𝑒1⌋𝑛𝛾−𝑛+1 ⎦
⎥
⎥
⎥
⎥
⎤

𝑛∗1

             (13) 

where, if 𝐞 ∈ {𝒆 ∈ ℝ𝑛 {0}⁄ : |𝑒1| ≤ 1}, then 𝛾 = 𝛼, 𝑚 = |𝑒1|𝛽−𝛼. If 
𝐞 ∈ {𝒆 ∈ ℝ𝑛 {0}⁄ : |𝑒1| ≥ 1} , then 𝛾 = 𝛽, 𝑚 = |𝑒1|𝛼−𝛽 . By using 
the Definitions 2 and 3 in the Appendix, the system 𝒓(𝒆)|

𝜀𝑞
(𝑛−2)

=0
 is 

bi-limit homogeneous with the corresponding triples (𝒉0, 𝑑0, 𝒇0) 
and (𝒉∞, 𝑑∞, 𝒇∞). In the 0-limit and ∞-limit triples, 𝒉0 = {(𝑖 −
1)𝛼 − (𝑖 − 2)}𝑖=1

𝑛 , 𝑑0 = 𝛼 − 1  and 𝒉∞ = {(𝑖 − 1)𝛽 − (𝑖 −

2)}𝑖=1
𝑛 , 𝑑∞ = 𝛽 − 1, or that reason, similar vector fields are 

𝒓0(𝒆) =
ໃ

−𝜆1⌈𝑒1⌋𝛼 + 𝑒2
⋮

−𝜆𝑛⌈𝑒1⌋𝑛𝛼−𝑛+1ໄ
𝑛∗1

, 𝒓∞(𝒆) =
ໃ

−𝜆1⌈𝑒1⌋𝛽 + 𝑒2
⋮

−𝜆𝑛⌈𝑒1⌋𝑛𝛽−𝑛+1ໄ
𝑛∗1

  

Based on the relationship between the linear and nonlinear 
systems [34], stability analysis of homogeneous system [35], and 
the Hurwitz matrix 𝑨𝒄 , it can be obtained that 𝒆̇ = 𝒓0 and 𝒆̇ = 𝒓∞ 
are globally asymptotically stable. Similarly, the origins of 
𝒓(𝒆)|

𝜀𝑞
(𝑛−2)

=0 is globally asymptotically stable. 

Part 2: The origin of 𝒓(𝒆)|
𝜀𝑞

(𝑛−2)
=0

  is globally asymptotically 

stable. Moreover, 𝑑∞ = 𝛽 − 1 > 0 > 𝛼 − 1 = 𝑑0 . So, the origin 

system is fixed-time convergent according to Lemma 1 in 
Appendix. There exists a continuous, positive definite and proper 
Lyapunov function 𝑉 (𝒆). Defining by: 

⎩
⎪
⎪
⎨
⎪
⎪
⎧

𝜇(𝒆) ≜  𝑉 (𝒆)

𝑑𝑉0
+𝑑0

𝑑𝑉0 + 𝑉 (𝒆)

𝑑𝑉∞
+𝑑∞

𝑑𝑉∞

𝛿(𝒆) ≜ −𝑉 ̇ (𝒆) = − 𝜕𝑉 (𝒆)

𝜕𝒆
 𝒓(𝒆)|

𝜀𝑞
(𝑛−2)

=0

𝑑𝑉0
> max

1≤𝑖≤𝑛
𝒉0,𝑖 = 1 , 𝑑𝑉∞

> max
1≤𝑖≤𝑛

𝒉∞,𝑖 = (𝑛 − 1)𝛽 − (𝑛 − 2)

𝑑0 = 𝛼 − 1 < 0,    𝑑∞ = 𝛽 − 1 > 0

  (14)  

The 𝛿(𝒆) and 𝜇(𝒆) are bi-limit homogeneous. Based on Lemma 
2 in Appendix, a positive real number 𝑝𝑉  makes: 

๡𝑉 (𝒆)ฝ𝑑𝑉0
+𝑑0พ 𝑑𝑉0ฟ + 𝑉 (𝒆)ฝ𝑑𝑉∞

+𝑑∞พ 𝑑𝑉∞ฟ
๢ ≤ −

𝒓(𝒆)|
𝜀𝑞
(𝑛−2)

=0

𝑝𝑉

𝜕𝑉 (𝒆)

𝜕𝒆
 (15) 

Based on the quantitative relationship ๡𝑑𝑉∞
+ 𝑑∞๢ 𝑑𝑉∞๣ >

1 > ฝ𝑑𝑉0
+ 𝑑0พ 𝑑𝑉0ฟ  of the variables, (15) can be redesigned as: 

𝑉 ̇ (𝒆) = 𝜕𝑉 (𝒆)

𝜕𝒆
𝒓(𝒆)|

𝜀𝑞
(𝑛−2)

=0
≤

⎩⎪
⎨
⎪
⎧

−𝑝𝑉 𝑉 (𝒆)

𝑑𝑉∞
+𝑑∞

𝑑𝑉∞ , 𝑉 (𝒆) ≥ 1

−𝑝𝑉 𝑉 (𝒆)

𝑑𝑉0
+𝑑0

𝑑𝑉0 , 𝑉 (𝒆) ≤ 1

     (16) 

Thus, the convergence time 𝑡1 of system 𝒓(𝒆)|
𝜀𝑞

(𝑛−2)
=0 meets: 



 
𝑡1 ≤ 1

 𝑝𝑉
ฝ𝑑𝑉0

(1 − 𝛼)⁄ + 𝑑𝑉∞
(𝛽 − 1)⁄ พ𝑡𝑖𝑛𝑖 = 𝑡𝑚𝑎𝑥1        (17) 

where 𝑡𝑖𝑛𝑖 is a positive real number associated with 𝑉 (𝒆0). 

Part 3: When 𝜀𝑞
(𝑛−2)

≠ 0  and ๲𝜀𝑞
(𝑛−2)

๲ < 𝜀𝑚𝑎𝑥
(𝑛−2) , the Lyapunov 

function 𝑉 (𝒆) can be rewritten by: 

𝑉 ̇ (𝒆) = 𝜕𝑉 (𝒆)

𝜕𝒆
 𝒓(𝒆)|

𝜀𝑞
(𝑛−2)

=0
+ 𝜕𝑉 (𝒆)

𝜕𝑒𝑛
𝜀𝑞

(𝑛−2)
          (18) 

Then the bi-limit homogeneous functions can be defined based 
on Lemma 1 in Appendix as: 

ທ

𝜇∆(𝒆) = |𝜕𝑉 (𝒆) 𝜕𝑒𝑛⁄ |

𝛿∆(𝒆) = 𝑉 (𝒆)ฝ𝑑𝑉0
−𝒉0,𝑛พ 𝑑𝑉0ฟ + 𝑉 (𝒆)ฝ𝑑𝑉∞

−𝒉∞,𝑛พ 𝑑𝑉∞ฟ
     (19) 

where 𝜇∆(𝒆) and 𝛿∆(𝒆) are bi-limit homogeneous with weight 𝒉𝑞 

and degree 𝑑𝑉𝑞
− ℎ𝑞,𝑛, 𝑞 = 0 𝑜𝑟 ∞ . Based on Lemma 2 in 

Appendix and the relationship ๡𝑑𝑉∞
− ℎ∞,𝑛๢ 𝑑𝑉∞๣ >

ฝ𝑑𝑉0
− ℎ0,𝑛พ 𝑑𝑉0ฟ > 0, there is a positive real number 𝑝∆ makes: 

๲
𝜕𝑉 (𝒆)

𝜕𝑒𝑛 ๲ ≤ 𝑝∆ ๡𝑉 (𝒆)ฝ𝑑𝑉0
−𝒉0,𝑛พ 𝑑𝑉0ฟ + 𝑉 (𝒆)ฝ𝑑𝑉∞

−𝒉∞,𝑛พ 𝑑𝑉∞ฟ
๢    (20) 

The collation can be further obtained as: 

๲
𝜕𝑉 (𝒆)

𝜕𝑒𝑛
𝜀𝑞

(𝑛−2)
๲ ≤

ໆ

2𝑝∆𝑉 (𝒆)ฝ𝑑𝑉∞
−𝒉∞,𝑛พ 𝑑𝑉∞ฟ 𝜀𝑚𝑎𝑥

(𝑛−2)
, 𝑉 (𝒆) ≥ 1

2𝑝∆𝑉 (𝒆)ฝ𝑑𝑉0
−𝒉0,𝑛พ 𝑑𝑉0ฟ 𝜀𝑚𝑎𝑥

(𝑛−2)
, 𝑉 (𝒆) ≤ 1

  (21) 

Combining Eq. (14) and Eq. (21) in Eq. (18) yields: 
𝑉 ̇ (𝒆) ≤

⎩
⎪
⎪
⎨
⎪
⎪
⎧− ๡𝑝𝑉 𝑉 (𝒆)ฝ𝑑𝑉0

+𝑑0พ 𝑑𝑉0ฟ − 2𝑝∆𝜀𝑚𝑎𝑥
(𝑛−2)

𝑉 (𝒆)ฝ𝑑𝑉∞
−𝒉∞,𝑛พ 𝑑𝑉∞ฟ

๢

−𝑝𝑉 𝑉 (𝒆)ฝ𝑑𝑉∞
+𝑑∞พ 𝑑𝑉∞ฟ , 𝑉 (𝒆) ≥ 1

− ๡𝑝𝑉 𝑉 (𝒆)ฝ𝑑𝑉∞
+𝑑∞พ 𝑑𝑉∞ฟ − 2𝑝∆𝜀𝑚𝑎𝑥

(𝑛−2)
𝑉 (𝒆)ฝ𝑑𝑉0

−𝒉0,𝑛พ 𝑑𝑉0ฟ
๢

−𝑝𝑉 𝑉 (𝒆)ฝ𝑑𝑉0
+𝑑0พ 𝑑𝑉0ฟ , 𝑉 (𝒆) ≤ 1

(22) 

Making the following inequalities hold: 

⎩⎪
⎨
⎪⎧𝑝𝑉 𝑉 (𝒆)ฝ𝑑𝑉0

+𝑑0พ 𝑑𝑉0ฟ − 2𝑝∆𝜀𝑚𝑎𝑥
(𝑛−2)

𝑉 (𝒆)ฝ𝑑𝑉∞
−𝒉∞,𝑛พ 𝑑𝑉∞ฟ ≥ 0

𝑝𝑉 𝑉 (𝒆)ฝ𝑑𝑉∞
+𝑑∞พ 𝑑𝑉∞ฟ − 2𝑝∆𝜀𝑚𝑎𝑥

(𝑛−2)
𝑉 (𝒆)ฝ𝑑𝑉0

−𝒉0,𝑛พ 𝑑𝑉0ฟ ≥ 0
   (23) 

Then 

⎩
⎪
⎨
⎪
⎧𝑉 (𝒆) ≥ ๡2𝑝∆𝜀𝑚𝑎𝑥

(𝑛−2)
𝑝𝑉ฟ ๢

𝑑𝑉0
𝑑𝑉∞ ฝ𝑑𝑉∞

𝑑0+𝑑𝑉0
𝒉∞,𝑛พ⁄

= 𝑉1

𝑉 (𝒆) ≥ ๡2𝑝∆𝜀𝑚𝑎𝑥
(𝑛−2)

𝑝𝑉ฟ ๢
𝑑𝑉0

𝑑𝑉∞ ฝ𝑑𝑉0
𝑑∞+𝑑𝑉∞

𝒉0,𝑛พ⁄
= 𝑉2

   (24) 

If 2𝑝∆𝑄 𝑝𝑉⁄ ≥ 1, then 𝑉1 ≥ 1 and 𝑉2 ≥ 1. By combining Eq. 
(22), Eq. (24), the Eq. (25) can be obtained by: 

𝑉 ̇ (𝒆) ≤ −𝑝𝑉 𝑉 (𝒆)ฝ𝑑𝑉∞
+𝑑∞พ 𝑑𝑉∞ฟ ,       𝑉 (𝒆) ≥ 𝑉1

        (25) 
The convergence time 𝑡2 from 𝑉 (𝒆0) to 𝑉1 is: 

𝑡2 ≤
𝑑𝑉∞

𝑝𝑉 𝑑∞ ເ

1

𝑉
1

𝑑∞ 𝑑𝑉∞⁄
− 1

𝑉 (𝒆0)
𝑑∞ 𝑑𝑉∞⁄ ແ

≤
𝑑𝑉∞

𝑝𝑉 𝑑∞

1

𝑉
1

𝑑∞ 𝑑𝑉∞⁄
= 𝑡𝑚𝑎𝑥2 (26) 

Therefore, the error 𝒆 will gradually converge to the vicinity of 
the origin Θ

1
= {𝒆 ∈ ℝ𝑛| 𝑉 (𝒆) ≤ 𝑉1} within finite time 𝑡2. 

On the other hand, if 2𝑝∆𝑄 𝑝𝑉⁄ < 1, then 𝑉1 < 1 and 𝑉2 < 1. 
The Eq. (22) can be rewritten as: 

𝑉 ̇ (𝒆) ≤
ໆ

−𝑝𝑉 𝑉 (𝒆)ฝ𝑑𝑉∞
+𝑑∞พ 𝑑𝑉∞ฟ , 𝑉 (𝒆) ≥ 1

−𝑝𝑉 𝑉 (𝒆)ฝ𝑑𝑉0
+𝑑0พ 𝑑𝑉0ฟ , 𝑉2 ≤ 𝑉 (𝒆) < 1

        (27) 

The convergence time 𝑡3 from 𝑉 (𝒆0) to 𝑉2 is: 

  𝑡3 ≤
𝑑𝑉∞

𝑝𝑉 𝑑∞ ๡1 − 1

𝑉 (𝒆0)
𝑑∞ 𝑑𝑉∞⁄ ๢ +

𝑑𝑉0

𝑝𝑉 |𝑑0| ๡1 − 𝑉
2

|𝑑0| 𝑑𝑉0
⁄

๢   

   ≤ 1

𝑝𝑉 ๡
𝑑𝑉∞

𝑑∞
+

𝑑𝑉0

|𝑑0|๢ = 𝑡𝑚𝑎𝑥3                         (28) 

Thus, the vector 𝒆 will gradually converge to the vicinity of 
origin Θ

2
= {𝒆 ∈ ℝ𝑛| 𝑉 (𝒆) ≤ 𝑉2} within finite time 𝑡3. 

In brief, the observation error 𝒆 will converge to 0 gradually 

within finite time 𝑡1 ≤ 𝑡𝑚𝑎𝑥1  when 𝜀𝑞
(𝑛−2)

= 0. Otherwise, it will 

converge to the vicinity of origin Θ = ቄ𝒆 ∈ ℝ𝑛|𝒆 ∈ Θ
1
ቅ ∪ ቄ𝒆 ∈

ℝ𝑛|𝒆 ∈ Θ
2
ቅ gradually within finite time 𝑡4, where 𝑡4 is uniformly 

bounded by 𝑚𝑎𝑥{𝑡𝑚𝑎𝑥2, 𝑡𝑚𝑎𝑥3}.  
Based on the above convergent proofs, it’s known that the 

observation error vector 𝒆 of the FxTAESO can converge to the 
switching point |𝑒1| = 𝜌 in a fixed time when 2𝑝∆𝑄 𝑝𝑉⁄ < 1 and 

𝑉2 ≤ 𝑉 ฝภ𝜌 𝑒2  ⋯ 𝑒𝑛ม1∗𝑛
𝑇

พ is set artificially. 
Case II: When 0 ≤ |𝑒1| < 𝜌 , the FxTAESO is linear. 

Combining Eq. (7) and Eq. (8), we can deduce that: 

𝒆̇ = 𝑨𝑒𝒆 + 𝑬𝜀𝑞
(𝑛−2)

+ 𝑭 𝜎𝑞  

𝑨𝒆 =

⎣
⎢
⎢
⎢
⎡

−𝜆1𝑌1 1 0 ⋯ 0
−𝜆2𝑌2 0 1 ⋱ ⋮

⋮ ⋮ ⋱ ⋱ 0
−𝜆𝑛−1𝑌𝑛−1 0 ⋯ 0 1

−𝜆𝑛𝑌𝑛 0 ⋯ 0 0⎦
⎥
⎥
⎥
⎤

𝑛∗𝑛

              

𝑌𝑖 = ฝ𝛿1−𝛼𝑖 + 𝛿1−𝛽𝑖พ 𝛿2−𝛼𝑖−𝛽𝑖⁄ , 𝑖 = 1,2, … , 𝑛         (29) 
And the observer gain matrix 𝑳 can be chosen as: 

𝑙𝑖 = 𝑛!

𝑖!(𝑛−𝑖)!
,       𝑖 = 1,2, … , 𝑛                  (30) 

Apparently, 𝑨𝒆  is a Hurwitz matrix. Therefore, 𝒆  is 

asymptotically stable when 𝜀𝑞
(𝑛−2)

= 0 . And 𝒆  is bounded-input 

bounded-output (BIBO) stable if 𝜀𝑞
(𝑛−2)

≠ 0 . Based upon the 
deliberations of Case I and II, the proposed FxTAESO has global 
convergence. When the observation error 𝑒1  is large, it will 
initially converge to the switching point |𝑒1| = 𝜌 within a fixed-
time by the proposed nonlinear correction term. Subsequently, it 
will converge to the equilibrium points or their vicinities with a 
linear correction term. This approach improves both dynamic 
response and steady-state anti-disturbance performance. 
B. Design and Rational Approximation of Proposed AFRC 

The quasi-vector resonant controller (QVRC) introduces the 
plant information and eliminates the poles of controlled object, 
which enhances the phase margin of system to some extent and 
expands the resonant bandwidth. However, the resonant gain is still 
insufficient. The limitation reduces controller’s ability to reject 
periodic disturbances and weakens the system stability. To address 
these issues, this paper proposes an optimization of the QVRC by 
introducing an adaptive fractional-order term into the numerator of 
the controller. According to the controller form, the resonant gain 
is proportional to the fractional-order exponential term, but the 
system stability margin is inversely proportional to it. Building 
upon the analysis of disturbance in Section II-B, when the load 
current is large, the amplitudes of harmonics are large, and then the 
fractional-order exponential term will be increased to enhance the 
harmonics suppression capability. Additionally, when the load 
current is small, the harmonic amplitudes are also reduced 
accordingly, so the fractional-order exponential term can be 
decreased to improve the system stability. Thus, the proposed 
AFRC scheme can adaptively adjust the resonant gain and stability 
margin according to the load conditions, and AFRC is denoted by: 

⎩⎪
⎨
⎪⎧𝐺𝐴𝐹𝑅𝐶

Δ (𝑠) =
𝑘𝑟𝜔𝑐𝑠𝜉(𝐿𝑠𝑜𝑠+𝑅𝑠𝑜)

𝑠2+𝜔𝑐𝑠+𝜔
ℎ
2

 𝜉 = 𝑓ฝ𝑖𝑞, 𝐻𝑅𝑆, 𝐷𝑃𝑀พ

                   (31) 

where 𝜔𝑐  and 𝜔ℎ  are damping and resonant frequencies, 
respectively. 𝑘𝑟  is the resonant gain. 𝜉 ∈ [1,2]  denotes adaptive 
fractional-order exponential term, which is determined by q-axis 
output current 𝑖𝑞 , harmonic rejection strength (HRS), and close-
loop system desired phase margin (DPM) in 𝑓 (∗)  function 
adaptively. The specific design solutions will be given in Section 
IV-F below. 



 

Given computational challenges of implementing fractional-
order calculus on a digital system, a rationalized approximation of 
fractional-order differential term 𝑠𝜏 , 𝜏 = 𝜉 − 1 ∈ [0,1] is required 
for the physical implementation of the actual system. To achieve 
this, Oustaloup Recursive Approximation (ORA) representation 
with high accuracy is used [36], denoted as: 

⎩
⎪
⎪
⎨
⎪
⎪
⎧𝑠𝜏 = 𝑌 (𝑠) = lim

𝑁→∞
(𝜔𝑢)𝜏 ∏

1+𝑠 𝜔𝑘
༣

⁄

1+𝑠 𝜔𝑘⁄

𝑁
𝑘=1

𝜔𝑘
༜ = 𝜔𝑙 ๡

𝜔𝑢

𝜔𝑙๢
(2𝑘−2−𝜏) 2𝑁⁄

𝜔𝑘 = 𝜔𝑙 ๡
𝜔𝑢

𝜔𝑙๢
(2𝑘+𝜏) 2𝑁⁄

            (32) 

where 𝑁  is the ORA approximation order.  𝜔𝑢 and 𝜔𝑙  are upper 
and lower limitations of the frequency band for the ORA.  

Fig. 1 compares the ORA fitting results and their theoretical 
amplitude-phase-frequency characteristics curves for 𝑠0.5  with 
different orders 𝑁 , where the frequency band is chosen as 2π ∗

ฝ10−1, 104
พ𝑟𝑎𝑑/𝑠. The fitting accuracy improves as the order 𝑁  

increases, but the resulting transfer function becomes more 
complicated. The amplitude-frequency characteristic slope of the 
fitting result closely approximates +10dB/dec for 𝑁 = 5 , and 
phase-frequency characteristic remains nearly to 45° within fitting 
frequency band, aligning with the theoretical behavior. In Fig. 2, 
the influence of varying 𝜉  when 𝜔𝑐 = 10𝑟𝑎𝑑/𝑠  and 𝑘𝑟 = 300  to 
AFRC is exhibited. The resonant gain is greatly improved by the 
introduction of fractional-order term 𝜉, but it will also change the 
closed-loop system stability margin. Thus, unlike the previous two 
parameters 𝜔𝑐 and 𝑘𝑟, 𝜉 can adjust both gain and phase margin of 
the entire system, providing an additional degree of freedom for 
resonant controller design. The above analysis further highlights 
the advantages of proposed AFRC over the conventional QVRC. 
C.   Implementation of FxTAESO-AFRC in Control System 

Building upon previous analysis, it is apparent that increasing 
the order 𝑛 of the FxTAESO improves the prediction accuracy and 
rejection capabilities for aperiodic disturbances. However, this 
comes at the cost of increasing computational complexity of the 
algorithm. Therefore, there is a trade-off in the selection of order 
𝑛. In this paper, 𝑛 = 4 has been selected to construct the observer, 
which can be redesigned as: 

⎩⎪
⎪
⎨
⎪
⎪⎧

𝑧1̇ = 𝑧2 + 𝑙1𝜔0Λ(𝜌, 𝛼1, 𝛽1, 𝑒1)

𝑧2̇ = 𝑧3 + 𝑏𝑜𝑢𝑞 + 𝑙2𝜔0
2Λ(𝜌, 𝛼2, 𝛽2, 𝑒1)

𝑧3̇ = 𝑧4 + 𝑙3𝜔0
3Λ(𝜌, 𝛼3, 𝛽3, 𝑒1)

𝑧4̇ = 𝑙4𝜔0
4Λ(𝜌, 𝛼4, 𝛽4, 𝑒1)

            (33) 

where 𝑙1 = 4 , 𝑙2 = 6 , 𝑙3 = 4  and 𝑙4 = 1 . For the periodic 
disturbances, Section II-B has been derived analytically that 
harmonics of the 1st, 2nd, and 6th fundamental frequencies are 
predominantly present in the current loop of the dq-axes. Hence 
the proposed AFRC can be rewritten as: 

𝐺𝐴𝐹𝑅𝐶 (𝑠) = ∑
𝑘𝑟𝑖𝜔𝑐𝑖𝑠

𝜉𝑖(𝐿𝑠𝑜𝑠+𝑅𝑠𝑜)

𝑠2+𝜔𝑐𝑖𝑠+𝜔ℎ𝑖
2𝑖=1,2,6              (34) 

where 𝑘𝑟𝑖, 𝜔𝑐𝑖, 𝜉𝑖, and 𝜔ℎ𝑖 = 𝑖𝜔𝑒 are the 1st, 2nd, and 6th resonant 
gains, damping frequencies, fractional-order term, and resonant 
frequencies, respectively. Based on feedback control law, 
estimated disturbances, resonant controller output above, and 
simultaneously considering the bus voltage limitations of the 
inverter within the linear modulation zone during practical 
engineering applications [37], the generalized control law of the 
PMSM current loop is: 

⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧𝑢𝑞_𝑖𝑛𝑖 =

𝚤𝑞𝑟𝑒𝑓̇ +𝑘𝑞𝑝ฝ𝑖𝑞𝑟𝑒𝑓 −𝑧2พ−𝑧3+𝑏𝑜𝑢𝑞𝑟

𝑏𝑜

𝑢𝑞𝑚𝑎𝑥 =
𝑈𝑑𝑐

√3
⋅

𝑢𝑞_𝑖𝑛𝑖

ี𝑢
𝑑_𝑖𝑛𝑖
2 +𝑢𝑞_𝑖𝑛𝑖

2

⎩⎪
⎨
⎪⎧𝑢𝑞 = 𝑢𝑞_𝑖𝑛𝑖,   ี𝑢𝑑_𝑖𝑛𝑖

2 + 𝑢𝑞_𝑖𝑛𝑖
2 ≤ 𝑈𝑑𝑐 √3⁄

𝑢𝑞 = 𝑢𝑞𝑚𝑎𝑥,   ี𝑢𝑑_𝑖𝑛𝑖
2 + 𝑢𝑞_𝑖𝑛𝑖

2 > 𝑈𝑑𝑐 √3⁄

        (35) 

where 𝑘𝑞𝑝 and 𝑢𝑞𝑟 are feedback gain and the form of 𝐺𝐴𝐹𝑅𝐶(𝑠) ∙
𝑒𝑞(𝑠)  in time-domain, respectively. 𝑢𝑑_𝑖𝑛𝑖  and 𝑢𝑞_𝑖𝑛𝑖  denote the 
preliminary calculation of the dq-axis reference voltage. 𝑢𝑞𝑚𝑎𝑥 is 
q-axis maximum saturation voltage. And 𝑢𝑞  is the reference 
voltage that is ultimately applied to the motor. The block diagram 
of control structure for PMSM based on field-oriented control 
(FOC) and proposed FxTAESO-AFRC is shown in Fig. 3. The 
FxTAESO and AFRC are configured in parallel to form the 
generalized control law, which produces voltage to drive motor.  
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Fig. 1. Fitting results of 𝑠0.5 with ORA method under different orders of 𝑁 . 
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Fig. 2. The Bode plot of AFRC with varying 𝜉 with 𝜔𝑐 = 10𝑟𝑎𝑑/𝑠 and 𝑘𝑟 = 300.  
 

 

PMSM

PWM1-6

 id(q)

Encoder

ia

 

sd(q)

+

++_

 

 

+

+

 

+

wm

FxTAESO

Control Law

Proposed FxTAESO-AFRC

u0

DC 
Power

InverterSVPWM

ua(b)

ud(q)

N
S

ab
abc

ib

ic

iabcia(b)

ejqe 

qe

wref

PI

iqref

idref =0
id(q)ref

z2

kped(q)

s

1/s e-jqe 

Position Detection and 
Speed Calculation 

id(q)o

_

_

ed(q)1

l4L(r,a4,b4,*)

l3L(r,a3,b3,*)

l2L(r,a2,b2,*)

l1L(r,a1,b1,*)

1/s
z4

1/s
z3

+

+
+ud(q) b0

1/s

z2

+ +

1/s
z1

+

_
_
+

1/bo ud(q)

GAFRC(s)

ud(q)r

+

+

wm

kr1wc1s
1(Lsos+Rso)

s2+wc1s+wh1
2

kr2wc2s
2(Lsos+Rso)

s2+wc2s+wh2
2

kr6wc6s
6(Lsos+Rso)

s2+wc6s+wh6
2

ed(q)
+

+ +

ud(q)r

+

ew

AFRC

Eq. (33)

Eq. (35)

Eq. (34)

 
Fig. 3. The block diagram of control structure for PMSM based on field-oriented control (FOC) and proposed FxTAESO-AFRC. 



 

IV. PERFORMANCE ANALYSIS OF THE FXTAESO-AFRC  

This section comprehensively analyzes the stability of entire 
current closed-loop control system, disturbance suppression 
performance, current tracking, anti-noise capability, parameters 
robustness and adaptive function design guidelines in 𝜉 =

𝑓 ฝ𝑖𝑞 , 𝐻𝑅𝑆, 𝐷𝑃𝑀พ of the proposed FxTAESO-AFRC strategy.  

A. Stability Analysis of Current Closed-loop System 
Referring to Eq. (33)-Eq. (35), the transfer function between 

current controller output 𝑢𝑞 and reference current 𝑖𝑞𝑟𝑒𝑓  and integral 
augmented variable 𝑖𝑞𝑜  can be obtained as Eq. (36). Where the 

transfer function 𝐴(𝑠) = 𝑠4 + 𝜆1𝑀1(𝐸1)𝑠3 + 𝜆2𝑀2(𝐸1)𝑠2 +
𝜆3𝑀3(𝐸1)𝑠 + 𝜆4𝑀4(𝐸1) ; 𝑀𝑖(𝐸1), 𝑖 = 1,2,3,4  is the descriptive 
function of nonlinear correction term Λ(𝜌, 𝛼𝑖, 𝛽𝑖, 𝑒1), 𝑖 = 1,2,3,4. In 
deriving a descriptive function, it is necessary to find the integral value 
of a sinusoidal function with different powers. And since 𝛼𝑖 and 𝛽𝑖 in 
function Λ(𝜌, 𝛼𝑖, 𝛽𝑖, 𝑒1)  are fractional-order operators, directly 
calculating its integral value during the derivation process of 
descriptive function is challenging. Therefore, the value of the 
partial integral is approximated by the area enclosed by this 
nonlinear fractional-order function, then represented by a 
polynomial approximation fitting [38].  

Based on this, the equivalent structural block diagram of the 
proposed FxTAESO-AFRC can be simplified as shown in Fig. 4. 
In Fig. 4, 𝑃 (𝑠)  is the reference prefilter, and 𝑄(𝑠)  denotes the 
equivalent current controller. They can be deduced as Eq. (37). 
Then the open-loop transfer function of the current control system 
based on the FxTAESO-AFRC can be displayed as follows: 

𝐺𝑜𝑝(𝑠) = 𝑄(𝑠)𝑏𝑜 𝑠2⁄                              (38) 
The closed-loop system stability is closely related to the variable 

parameters 𝑘𝑟 , 𝜔𝑐 , 𝜉 , 𝑘𝑞𝑝 , 𝜔0 , and 𝐸1 . The Nyquist diagram of 
open-loop transfer function is used to demonstrate in detail the 
influence of each variable on the stability. Fig. 5 shows the Nyquist 
curves of equivalent current loop based on proposed strategy under 
different parameters variation. The following parameters satisfy 
𝑘𝑟i = 𝑖𝑘𝑟1 , 𝜔𝑐𝑖 = 𝑖𝜔𝑐1 , and 𝜔ℎi = 𝑖𝜔ℎ1, 𝑖 = 1,2,6 . From Nyquist 
stability criterion, the number of clockwise and counterclockwise 
revolutions around the critical point (-1, 0) should strictly satisfy 
that 𝑃 = 2ฝ𝑁+ − 𝑁−พ if the closed-loop system is to be stable, 
where 𝑃  is the number of poles of 𝐺𝑜𝑝(𝑠) in right half s-plane, 𝑁+ 
and 𝑁− represent the laps of clockwise and counterclockwise. The 
above stability criterion is satisfied for all six parameter variations 
shown in Fig. 5, indicating that the closed-loop system is 
absolutely stable with low sensitivity to individual adjustable 
parameters. This also verifies that the proposed FxTAESO-AFRC 

can maintain current closed-loop system stability while effectively 
suppressing the current disturbances and uncertainties. 
B. Disturbances Suppression Capability  of FxTAESO 

As the core part of the proposed disturbance suppression 
approach, the ability of FxTAESO to predict the aperiodic 
disturbances and the slow-varying disturbances determines the 
accuracy of the feedforward compensation in the control law. This 
in turn affects the final disturbance rejection performance. 
Therefore, based on Eq. (5) and Eq. (33), the transfer function of 
disturbance prediction error can be deduced as: 

𝐺𝜀𝑒(𝑠) =
𝑧3(𝑠)−𝜀𝑞(𝑠)

𝜀𝑞(𝑠)
= −

𝑠4+𝜆1𝑀1(𝐸1)𝑠3+𝜆2𝑀2(𝐸1)𝑠2

𝐴(𝑠)
      (39) 

𝑢𝑞(𝑠) =
𝐴(𝑠)๡𝑠+𝑘𝑞𝑝+𝑏𝑜G𝐴𝐹𝑅𝐶 (𝑠)๢

𝑏𝑜𝑠2
๤๡𝑠+𝑘𝑞𝑝+𝑏𝑜G𝐴𝐹𝑅𝐶 (𝑠)๢ฝ𝑠+𝜆1𝑀1(𝐸1)พ+𝜆2𝑀2(𝐸1)๥

𝑖𝑞𝑟𝑒𝑓 (𝑠) −
ฝ𝜆3𝑀3(𝐸1)𝑠+𝜆4𝑀4(𝐸1)พ๡𝑠+𝑘𝑞𝑝+𝑏𝑜G𝐴𝐹𝑅𝐶 (𝑠)๢𝑠+𝜆2𝑀2(𝐸1)๡𝑘𝑞𝑝+𝑏𝑜G𝐴𝐹𝑅𝐶 (𝑠)๢𝑠3

𝑏0𝑠2
๤๡𝑠+𝑘𝑞𝑝+𝑏𝑜G𝐴𝐹𝑅𝐶 (𝑠)๢ฝ𝑠+𝜆1𝑀1(𝐸1)พ+𝜆2𝑀2(𝐸1)๥

𝑖𝑞𝑜(𝑠)

(36)

                   

⎩
⎪
⎪
⎨
⎪
⎪
⎧

𝑃 (𝑠) =
𝐴(𝑠)๡𝑠+𝑘𝑞𝑝+𝑏𝑜G𝐴𝐹𝑅𝐶 (𝑠)๢

ฝ𝜆3𝑀3(𝐸1)𝑠+𝜆4𝑀4(𝐸1)พ๡𝑠+𝑘𝑞𝑝+𝑏𝑜G𝐴𝐹𝑅𝐶 (𝑠)๢𝑠+𝜆2𝑀2(𝐸1)๡𝑘𝑞𝑝+𝑏𝑜G𝐴𝐹𝑅𝐶 (𝑠)๢𝑠3

𝑄(𝑠) =
ฝ𝜆3𝑀3(𝐸1)𝑠+𝜆4𝑀4(𝐸1)พ๡𝑠+𝑘𝑞𝑝+𝑏𝑜G𝐴𝐹𝑅𝐶 (𝑠)๢𝑠+𝜆2𝑀2(𝐸1)๡𝑘𝑞𝑝+𝑏𝑜G𝐴𝐹𝑅𝐶 (𝑠)๢𝑠3

𝑏0𝑠2
๤๡𝑠+𝑘𝑞𝑝+𝑏𝑜G𝐴𝐹𝑅𝐶 (𝑠)๢ฝ𝑠+𝜆1𝑀1(𝐸1)พ+𝜆2𝑀2(𝐸1)๥

                                    (37)
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Fig. 4. The equivalent structural block diagram of the proposed FxTAESO-AFRC. 
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(e)                                                        (f) 

Fig. 5. The Nyquist curves of the equivalent current loop based on proposed
FxTAESO-AFRC. (a) 𝑘𝑟1 = 100, 𝜔𝑐 = 0.002𝜋 , 𝜉 = 1.5, 𝜔0 = 200𝜋 , 𝜔ℎ1 = 20𝜋 , 
and 𝐸1 = 1 ; (b) 𝑘𝑟1 = 100 , 𝜔𝑐 = 0.002𝜋 , 𝜉 = 1.5 , 𝑘𝑞𝑝 = 100 , 𝜔ℎ1 = 20𝜋 , and 
𝐸1 = 1; (c) 𝑘𝑟1 = 100 , 𝜔𝑐 = 0.002𝜋 , 𝜉 = 1.5, 𝑘𝑞𝑝 = 100 , 𝜔ℎ1 = 20𝜋 , and 𝜔0 =

200π; (d) 𝜔0 = 200π, 𝜔𝑐 = 0.002𝜋 , 𝜉 = 1.5, 𝑘𝑞𝑝 = 100, 𝜔ℎ1 = 20𝜋, and 𝐸1 = 1; 
(e) 𝑘𝑟1 = 100, 𝑘𝑞𝑝 = 100, 𝜉 = 1.5, 𝜔0 = 200𝜋, 𝜔ℎ1 = 20𝜋, and 𝐸1 = 1; (f) 𝑘𝑟1 =

100, 𝑘𝑞𝑝 = 100, 𝜔𝑐 = 0.002𝜋, 𝜔0 = 200𝜋, 𝜔ℎ1 = 20𝜋, and 𝐸1 = 1.  
 



 

Building upon Eq. (39), the final value theorem can be used to 
analyze as follows: If 𝜀𝑞(𝑡)  is a constant disturbance or ramp 
uncertainty, it can be deduced that disturbance prediction error 
lim
𝑡→∞

𝑒𝜀𝑒(𝑡) = lim
𝑠→0

𝑠𝐺𝜀𝑒(𝑠)𝜀𝑞(𝑠) = 0 . When 𝜀𝑞(𝑡)  is an accelerated 

disturbance, then disturbance prediction error will ultimately have 
a steady-state error. This also verifies that FxTAESO can be used 
to estimate aperiodic and slow-varying disturbances accurately. 
It’s worth mentioning that the periodic disturbances are handled by 
the AFRC part, which has been discussed above.  

To further assess the effect of different parameters on the 
disturbances prediction, Fig. 6 illustrates the Bode plots of 𝐺𝜀𝑒(𝑠) 
for different error amplitudes 𝐸1  and observer bandwidths 𝜔0 
using traditional ESO (TESO) and the proposed FxTAESO, 
respectively. From Fig. 6, it can be seen that for the estimation 
error amplitude, the proposed FxTAESO demonstrates a lower 
estimation error compared to TESO under the same observer 
bandwidth. And as the observer bandwidth 𝜔0 and estimation error 
magnitude 𝐸1  increase, the disturbances estimation performance 
of FxTAESO strengthens, resulting in a reduced estimation error 
magnitude. This further validates the superior disturbances 
estimation performance of the proposed FxTAESO strategy. 

To evaluate immunity performance of proposed FxTAESO-
AFRC strategy, based on the equivalent control block diagram 
identified in Fig. 4, the transfer function from composite 
disturbances 𝜀𝑞(𝑡) to output current 𝑖𝑞(𝑡) can be obtained as: 

𝐺𝜀𝑖(𝑠) =
𝑖𝑞(𝑠)

𝜀𝑞(𝑠)
= 1 𝑠⁄

1+𝑄(𝑠)𝑏0 𝑠2⁄
= 𝑠

𝑠2+𝑄(𝑠)𝑏0
             (40) 

Fig. 7 draws comparison of the Bode plots of disturbances on 
output 𝐺𝜀𝑖(𝑠)  for FxTAESO alone and the proposed composite 
method FxTAESO-AFRC for different parameters variation. It’s 
found that high-frequency characteristics of both controllers are 
identical while low-frequency parts have some difference. As 
demonstrated in the previous analysis, the FxTAESO has strong 

rejection capability for aperiodic and slow-varying disturbances, 
but its performance in suppression periodic disturbances is less 
effective. Therefore, the proposed FxTAESO-AFRC demonstrates 
enhanced suppression capability for harmonics at specific 
frequency points, while maintaining the same rejection features as 
FxTAESO at other frequency points. Additionally, the rejection 
ability of the controller is proportional to observer bandwidth 𝜔0 
and proportional gain 𝑘𝑞𝑝. In conclusion, the proposed FxTAESO-
AFRC has superiority in suppressing both periodic and aperiodic 
current disturbances and harmonics.  
C. Performance of Current Tracking 

While maintaining the excellent periodic and aperiodic 
disturbances and uncertainties rejection capabilities of the current 
loop of PMSM system, the current tracking performance should 
not be neglected, which is critical to achieve the high-precision and 
fast-dynamic current response. Additionally, based on the 
equivalent control block diagram determined in Fig. 4, the transfer 
function of the current closed-loop system can be derived as 

𝐺𝑐𝑡(𝑠) =
𝑖𝑞(𝑠)

𝑖𝑞𝑟𝑒𝑓 (𝑠)
= 𝑃 (𝑠)𝑄(𝑠)𝑠

𝐿𝑠𝑜𝑠2+𝑅𝑠𝑜𝑠+𝑄(𝑠)
               (41) 

Similarly, the Bode plots of TESO, FxTAESO alone, and the 
proposed FxTAESO-AFRC are compared in the Fig. 8 to validate 
the superior current tracking ability of the proposed strategy in 
wider frequency-domain. 

As can be seen from Fig. 8, the command current is accurately 
tracked by all three schemes at low frequencies. However, within 
the frequency band of 10-100Hz, both TESO and FxTAESO alone 
exhibit large tracking amplitude fluctuations, while the proposed 
FxTAESO-AFRC method has the smallest amplitude and phase 
fluctuations. This indicates that the proposed method can track the 
reference signal better in this frequency band with close to unit 
gain and 0° phase. In addition, increasing the observer bandwidth 
can further improve the current tracking performance, while 
adjusting the controller proportional has minor effect. Therefore, 
the proposed FxTAESO-AFRC offers superior current tracking 
performance across wider frequency-domain through the above 
analysis. 
D. Anti-noise Performance Comparison of FxTAESO 

This section concentrates on evaluating the enhancement of 
noise-rejection capability achieved by the proposed integral 
augmented scheme in comparison with the conventional observer 
approach. The s-domain transfer function that characterizes the 
relationship between the measurement noise 𝜎𝑞(𝑠) and the output 
current 𝑖𝑞(𝑠)  can be obtained from Fig. 4 and is expressed as 
follows: 

𝐺𝜎𝑖(𝑠) = −
𝑏0𝑄(𝑠)

𝑠2+𝑏0𝑄(𝑠)
                                 (42) 
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Fig. 6. The bode plots of 𝐺𝜀𝑒(𝑠) for different error amplitudes 𝐸1 and observer 
bandwidths 𝜔0  using TESO and proposed FxTAESO. (a) 𝐺𝜀e(𝑠): 𝐸1 = 20 ; (b) 
𝐺𝜀e(𝑠): 𝜔0 = 200𝜋. 
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Fig. 7. The bode plots of  𝐺𝜀𝑖(𝑠) for FxTAESO alone and the composite method 
FxTAESO-AFRC for different parameters variation. (a) 𝑘𝑟1 = 100, 𝜔𝑐 = 0.002𝜋, 
𝜉 = 1.5, 𝑘𝑞𝑝 = 100, 𝜔ℎ1 = 20𝜋, and 𝐸1 = 1; (b) 𝑘𝑟1 = 100, 𝜔𝑐 = 0.002𝜋, 𝜉 = 1.5,
𝜔0 = 200𝜋, 𝜔ℎ1 = 20𝜋, and 𝐸1 = 1.  

-6

-4

-2

0

2

100 101 102 103-30

0

30

Current 
Tracking

Frequency (Hz)

P
h

as
e 

(d
eg

)
M

ag
ni

tu
de

 (
dB

)

TESO: w0 = 100p
FxTAESO: w0 = 100p

FxTAESO-AFRC: w0 = 100p

TESO: w0 = 200p
FxTAESO: w0 = 200p

FxTAESO-AFRC: w0 = 200p

 

-4

-3

-2

-1

0

1

100 101 102 103
-20

-10

0

10

TESO: kqp = 100
FxTAESO: kqp = 100

FxTAESO-AFRC: kqp = 100

TESO: kqp = 200
FxTAESO: kqp = 200

FxTAESO-AFRC: kqp = 200

Frequency (Hz)

P
h

as
e 

(d
eg

)
M

ag
n

it
ud

e 
(d

B
)

Current 
Tracking

  
(a)                                                           (b)     

Fig. 8. The bode plots of 𝐺𝑐𝑡(𝑠) of TESO, FxTAESO alone, and the proposed 
FxTAESO-AFRC under different parameters variation. (a) 𝑘𝑟1 = 100 , 𝜔𝑐 =
0.002𝜋, 𝜉 = 1.5, 𝑘𝑞𝑝 = 100, 𝜔ℎ1 = 20𝜋, and 𝐸1 = 1; (b) 𝑘𝑟1 = 100, 𝜔𝑐 = 0.002𝜋 , 
𝜉 = 1.5, 𝜔0 = 200𝜋, 𝜔ℎ1 = 20𝜋, and 𝐸1 = 1. 
 



 

The corresponding Bode plot of the anti-noise transfer functions 
for both the proposed and conventional methods are illustrated in 
Fig. 9. As observed, the traditional observer exhibits minimal 
attenuation of noise amplitude below 10kHz, indicating its limited 
noise-suppression capability. In contrast, the proposed integral 
augmented strategy exhibits a gradual decay in noise magnitude, 
reaching approximately –100dB, thereby demonstrating its 
superior robustness against measurement noise. Specifically, at 
1kHz and 3kHz, the proposed scheme achieves additional noise 
attenuation of 21.74dB and 32.61dB, respectively, compared with 
the conventional approach. Moreover, as the frequency increases, 
the proposed strategy exhibits progressively stronger noise 
suppression, confirming its remarkable anti-noise performance.  
E. Parameters Robustness Analysis  

During the long-term operation of PMSM system, the motor 
resistance and inductance will change with temperature and 
varying working conditions. And in the controller, 𝑏𝑜 depends on 
the inductance parameter. The effect of other controller parameters 
on the performance such as disturbance suppression and current 
tracking has been discussed separately in the previous subsections. 
Therefore, it’s necessary to analyze the effect of varying 𝑏𝑜 over a 
certain range on the disturbance rejection capability and current 
tracking performance of the control system to verify the parameters 
robust characteristics of the designed scheme. Then, the robustness 
of the  𝑏𝑜 at 0.8-1.2 times nominal value 1 𝐿𝑠𝑜⁄  is explored for Eq. 
(40) and Eq. (41), respectively. The corresponding Bode plots are 
shown in Fig. 10.  

It can be noticed that the value of 𝑏𝑜 is proportional to the system 
disturbance suppression capability and inversely proportional to 
the current tracking performance. However, the system still 
maintains superior disturbance rejection and current tracking 
performance. The current can remain close to the tracking 
characteristics of unit gain and 0° phase. Therefore, the proposed 
FxTAESO-AFRC is proved to exhibit good parametric robustness. 

F. Adaptive Function Design for 𝜉 = 𝑓ฝ𝑖𝑞 , 𝐻𝑅𝑆, 𝐷𝑃𝑀พ 

This section focuses on the design method of the adaptive 
function embedded within the proposed AFRC. As described in Eq. 
(31), the adaptive fractional-order exponential term 𝜉  is jointly 
determined by the q-axis output current 𝑖𝑞, the harmonic rejection 
strength (HRS), and the desired phase margin (DPM) of the closed-
loop system. Based on the harmonic analysis presented in Section 
II-B, it’s evident that harmonic amplitude exhibits a direct 
correlation with the load magnitude I, which in turn, is proportional 
to the q-axis output current. Consequently, according to Eq. (40), 
the influence of current-induced harmonic disturbances on the 
system output current can be modeled as:  

𝑖𝑞𝜀(𝑠)|𝑠=𝑗𝜔 = ๤
𝑠

𝑠2+𝑄(𝑠)𝑏0
⋅ 𝑚𝑖𝑞(𝑠)๥ |𝑠=𝑗𝜔 = 𝐴𝐻 (𝜔)𝑒𝑗𝜃𝐻 (𝜔)     (43) 

where the positive proportional coefficient 𝑚 quantifies the linear 
relationship between harmonic magnitude and the corresponding 
output current; 𝐴𝐻 (𝜔)  and 𝜃𝐻 (𝜔)  are the amplitude-phase-
frequency characteristics of 𝑖𝑞𝜀(𝑠). To ensure adequate disturbance 
attenuation, a parameter denoted as HRS is introduced. This 
threshold defines the maximum permissible error current induced 
by harmonic disturbances. Therefore, it can be obtained that 
𝐴𝐻 (𝜔) < 𝐻𝑅𝑆  needs to be satisfied at any frequency, and since 
the fractional-order exponential term 𝜉  is negatively correlated 
with 𝐴𝐻 (𝜔) , the lower limit value 𝜉𝑚𝑖𝑛  of the fractional-order 
exponential term 𝜉  can be obtained according to the above 
inequality.  

As inferred from Eq. (41), increasing the value of 𝜉 enhances the 
suppression margin; however, this improvement comes at the cost 
of reduced system phase margin, potentially compromising closed-
loop stability. Therefore, to strike a balance between rejection 
ability and stability, both the HRS and the DPM are employed to 
constrain the value of the adaptive fractional-order exponential 
term 𝜉. The closed-loop system transfer function can be deduced 
from Fig. 4 as: 

𝐺𝑐𝑙(𝑠)|𝑠=𝑗𝜔 =
𝑄(𝑠)𝑏0𝑠

𝑠2+𝑄(𝑠)𝑏0
|𝑠=𝑗𝜔 = 𝐴𝐶 (𝜔)𝑒𝑗𝜃𝐶 (𝜔)       (44) 

where 𝐴𝐶 (𝜔)  and 𝜃𝐶(𝜔)  are the amplitude-phase-frequency 
characteristics of 𝐺𝑐𝑙(𝑠). Based on the condition 𝐴𝐶(𝜔𝑐𝑢𝑡) = 1, the 
cutoff frequency 𝜔𝑐𝑢𝑡 of the closed-loop system can be analytically 
determined. To ensure adequate phase margin, the gain cutoff 
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Fig. 9. The bode plots of transfer function 𝐺𝜎𝑖(𝑠) for noise immunity comparison 
between proposed and traditional observer. 
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Fig. 10. The bode plots of 𝐺𝜀𝑖(𝑠)  and 𝐺𝑐𝑡(𝑠)  of the FxTAESO-AFRC under 
different 𝑏o  variation. (a) 𝐺𝜀𝑖(𝑠); (b) 𝐺𝑐𝑡(𝑠). (Parameter setting: 𝑘𝑟1 = 100, 𝜔𝑐 =
0.002𝜋, 𝜉 = 1.5, 𝑘𝑞𝑝 = 100, 𝜔0 = 200π, 𝜔ℎ1 = 20𝜋, and 𝐸1 = 1).  
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TABLE I 
BASIC PARAMETERS OF TESTED PMSM 

Symbols Variables Values 
𝑝𝑛 Pole pairs 4 

𝑅𝑠𝑜 Stator resistance 0.559Ω 
𝐿𝑠𝑜 Stator inductance 4.24mH 
𝜓𝑓𝑜 Flux of permanent magnet 0.2748Wb 
𝑈𝑑𝑐  Bus voltage 300V 
𝑃𝑎𝑝 Nominal active power 4.8kW 
𝑇𝑒𝑚𝑛 Nominal torque 20Nm 

 



 

frequency must satisfy 𝜃𝐶 (𝜔𝑐𝑢𝑡) + 180° > 𝐷𝑃𝑀 . Furthermore, 
due to the inverse relationship between fractional-order 
exponential term 𝜉 and 𝜃𝐶 (𝜔) + 180°, the upper limit value 𝜉𝑚𝑎𝑥 
of the fractional-order exponential term 𝜉  can be accordingly 
derived.  

Following this analytical framework, the adaptive fractional-
order exponential term is ultimately selected as 𝜉 =
( 𝜉𝑚𝑎𝑥 + 𝜉𝑚𝑖𝑛) 2⁄  to maintain sufficient phase margin and harmonic 
rejection margin. The determination of this adaptive fractional-
order exponential term 𝜉  involves a systematic three-step 
procedure. Firstly, the lower limit value 𝜉𝑚𝑖𝑛 is established based 
on the load current and the HRS. Secondly, the upper limit value 
𝜉𝑚𝑎𝑥 is derived with respect to the DPM specifications. Finally, the 
adaptive rate is calibrated such that the exponent satisfies the 
condition 𝜉 = ( 𝜉𝑚𝑎𝑥 + 𝜉𝑚𝑖𝑛) 2⁄ . In the design of this paper, HRS 
and DPM are selected as 0.01 and 45°, respectively, and the q-axis 
output current ranges from 0 to the rated value 12A. 

V. EXPERIMENTAL VERIFICATION 

To fully validate the effectiveness of the proposed scheme, 
comparative experiments were conducted on the motor test rig 
shown in Fig. 11. Table I summarizes the nominal parameters of 
tested PMSM. The motors and controllers used in experiments are 
semi-physical test rigs from IMPERIX, Switzerland. It primarily 
comprises a master controller, a resolver interface, two three-phase 
inverters, a DC power supply, and dual motors. The tested PMSM 
is controlled by speed and current double-loop architecture. The 
speed loop is operated by a PI controller with the control period of 
200𝜇𝑠. And the parameters setting is 𝑘𝑝_𝑠𝑝𝑑 = 1 and 𝑘𝑖_𝑠𝑝𝑑 = 15. 

The current loop of tested PMSM is used to compare the 
performance of classical PI controller with optimal tunned 
parameters, traditional ESO [TESO, four-order nonlinear observer 
based on classical nonlinear correction term 𝑓𝑎𝑙(𝜌, 𝛼𝑖, 𝑒) =

๧
𝜌𝛼𝑖−1𝑒, |𝑒| ≤ 𝜌
|𝑒|𝛼𝑖𝑠𝑖𝑔𝑛(𝑒), |𝑒| > 𝜌 

], TESO with vector resonant controller 

[TESO-VRC, VRC adopts the generalized form shown as 

𝐺𝑉𝑅𝐶 (𝑠) = ∑
𝑘𝑟𝑖𝜔𝑐𝑖𝑠(𝐿𝑠𝑜𝑠+𝑅𝑠𝑜)

𝑠2+𝜔𝑐𝑖𝑠+𝜔ℎ𝑖
2𝑖=1,2,6 ], proposed AFRC with fixed-

time extended state observer without the integral augmented 
variable (FxTESO-AFRC) and the proposed FxTAESO-AFRC. 
The corresponding parameters of the other comparative strategies 
remain identical to the proposed scheme. The load motor operates 
in a single torque loop with PI parameters 𝑘𝑝_𝑙𝑜𝑎𝑑 = 74  and 
𝑘𝑖_𝑙𝑜𝑎𝑑 = 4133. In addition, the current control frequency is set to 
20kHz for both motors and the deadtime intervals of inverters is 
selected as 1 𝜇𝑠  to balance the current harmonic content and 
equipment safety. 

Since the proposed strategy introduces the measured current 
integral as a system augmentation variable, the decoupling of high 
observer gains and current measurement noise is directly realized. 
After practical experimental validation, it’s found the proposed 
strategy can be set with a larger observer bandwidth without 
oscillation compared to TESO, thus achieving better current 
performance. However, to be fair, the same proportional gain and 
observer bandwidth are adopted for all above current control 
strategies in the following comparative experiments, as a way to 
highlight the proposed FxTAESO-AFRC still has optimal effects 
under the same parameters. Therefore, the proportional gain of 
control law and the observer bandwidth are set to 𝑘𝑝𝑞 = 𝑘𝑝𝑑 =

1000  and 𝜔0 = 200𝜋rad/s  for all above control schemes. 
Furthermore, for the proposed strategy, the switching point 𝜌 , 
variables 𝛼, and 𝛽 are set to 0.001, 0.8, and 1.2, respectively. And 
the resonant gain and bandwidth satisfy 𝑘𝑟i = 𝑖𝑘𝑟1, 𝜔𝑐𝑖 = 𝑖𝜔𝑐1, 𝑖 =
1,2,6  and 𝑘𝑟1 = 100, 𝜔𝑐1 = 0.02𝜋rad/s . For FxTESO-AFRC 
strategy, all the parameters are identical with proposed scheme, the 
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Fig. 12. The d-axis current, q-axis current, and A-phase current for five current control strategies under half rated load (10Nm). (a) PI, (b) TESO, (c) TESO-VRC, (d) 
FxTESO-AFRC, and (e) FxTAESO-AFRC. 
  

0
4

8
12

-10

0

10

i d
 (A

)

0

4

-4

i q
 (A

)
i a

 (A
)

[1s/div]

[1s/div]

[1s/div]

10

12

14

-10

0

10

[100ms/div]

i q
 (

A
)

1.772A

2.215A

THD:6.42%

i a
 (A

)

20 [100ms/div]

0
4

8
12

-10

0

10

i d 
(A

)

0

4

-4

i q
 (A

)
i a

 (A
)

[1s/div]

[1s/div]

[1s/div]

10

12

14

-10

0

10

[100ms/div]

i q
 (A

)

1.756A

2.087A

THD:6.18%

i a 
(A

)

20 [100ms/div]

0
4

8
12

-10

0

10

i d
 (A

)

0

4

-4

i q
 (A

)
i a

 (A
)

[1s/div]

[1s/div]

[1s/div]

10

12

14

-10

0

10

[100ms/div]

i q
 (A

)

1.102A

1.004A

THD:2.83%

i a
 (

A
)

20 [100ms/div]

0
4

8
12

-10

0

10

i d
 (A

)

0

4

-4

i q
 (A

)
i a

 (A
)

[1s/div]

[1s/div]

[1s/div]

10

12

14

-10

0

10

[100ms/div]

i q
 (A

)

1.006A

0.849A

THD:2.37%

i a
 (

A
)

20 [100ms/div]

 

0
4

8
12

-10

0

10

i d
 (A

)

0

4

-4

i q
 (A

)
i a

 (A
)

[1s/div]

[1s/div]

[1s/div]

10

12

14

-10

0

10

[100ms/div]

i q
 (A

)

0.872A

0.577A

THD:2.15%

i a
 (

A
)

20 [100ms/div]

  
(a)                                                  (b)                                          (c)            (d)                   (e) 

Fig. 13. The d-axis current, q-axis current, and A-phase current for five current control strategies under rated load (20Nm). (a) PI, (b) TESO, (c) TESO-VRC, (d) FxTESO-
AFRC, and (e) FxTAESO-AFRC. 
 TABLE II 

MAGNITUDES OF HARMONICS FOR Q-AXIS CURRENT (10NM/20NM) 

Frequency 𝒇𝒐(mA) 𝟐𝒇𝒐(mA) 𝟔𝒇𝒐(mA) 
PI 246/258 218/231 217/251 

TESO 233/244 153/178 148/202 
TESO-VRC 147/179 73/102 101/119 

FxTESO-AFRC 62/82 39/43 54/67 
FxTAESO-AFRC 9.7/8.1 4.9/4.2 6.8/5.2 

 



 

only difference is that FxTESO doesn’t have the integral 
augmented variable. For TESO-VRC method, the design 
parameters of its VRC are kept the same as above. For classical PI 
controller, the optimal parameters 𝑘𝑝_𝑃𝐼 = 14  and 𝑘𝑖_𝑃𝐼 = 1863 
are chosen to utilize the zero-pole elimination strategy. The 
running speed of tested PMSM is set to 300rpm.  
A. Steady-State Performance Experiment 

To validate steady-state performance of the proposed control 
strategy, multi-angle experimental verification of steady-state 
current fluctuations, output current total harmonic distortion 
(THD), and fast Fourier Transform (FFT) results of the five 
comparative strategies are hereby conducted under half rated load 
(10Nm) and rated load (20Nm). Under 10Nm load condition, it can 
be observed from Fig. 12(a) that the steady-state dq-axes currents 
ripples with PI scheme are 1.561A and 1.388A, respectively, and 
the A-phase current waveform has obvious aberrations, as well as 
the THD reaches as high as 7.06%. Furthermore, Table II shows 
the magnitudes of harmonics for q-axis current. It’s obvious that 
the 1st, 2nd and 6th harmonics in the q-axis current dominate, which 
is highly consistent with the previous theoretical analysis. The 
amplitudes of these three harmonic contents have reached 246mA, 
218mA and 217mA, respectively. And it can be seen from Fig. 
12(b) that the steady-state dq-axes currents ripples with TESO 
scheme are 1.333A and 1.354A, respectively, and the A-phase 
current THD reaches as also high as 6.90%. The amplitudes of 
three harmonics are 233mA, 153mA and 148mA. Fig. 12(c) shows 
the experimental results with scheme TESO-VRC, from which dq-
axes current, A-phase current THD, and three harmonic contents 
are attenuated to a certain extent due to the introduced VRC. The 
dq-axes current fluctuations and A-phase current THD are reduced 
to 0.751A, 0.976A, and 3.52%. The magnitudes of three harmonics 
are also attenuated to 147mA, 73mA, and 101mA. However, 
although current ripples and harmonic contents are decreased to 
some extent, the scheme doesn’t achieve sufficient suppression, 
and the order of magnitudes of harmonics remain consistent with 
TESO. And it can be shown from Fig. 12(d) that the steady-state 
dq-axes currents ripples with FxTESO-AFRC scheme are 0.523A 
and 0.743A, respectively, and the A-phase current THD reaches 
3.37%. The amplitudes of three harmonics are 62mA, 39mA and 
54mA. Finally, Fig. 12(e) illustrates the experimental results 
plotted by adopting proposed FxTAESO-AFRC. The dq-axes 
steady-state current fluctuations and A-phase current THD have 
been substantially attenuated, with their values reduced to 0.365A, 
0.615A, and 3.04%, respectively. The FFT analysis results of q-
axis current can also be summarized that all three harmonics are 
adequately and completely suppressed, with the values of 9.7mA, 

4.9mA, and 6.8mA, respectively. This also verifies the superiority 
of the proposed strategy under half rated load. 

Fig. 13 shows the experimental results of five schemes under 
rated load. Fig. 13(a) demonstrates the dq-axes current ripples, A-
phase current THD, and their values of 2.215A, 1.772A, and 6.42%, 
respectively, for taking the PI approach. The amplitudes of three 
harmonics are 258mA, 231mA, and 251mA. And Fig. 13(b) 
displays the dq-axes current ripples, A-phase current THD, and 
their values of 2.087A, 1.756A, and 6.18% for taking the TESO 
method. The amplitudes of three harmonics are 244mA, 178mA, 
and 202mA. Fig. 13(c) presents the results of adopting TESO-VRC 
strategy, which shows all the indexes have been attenuated to a 
certain extent, but there is still room for improvement. The dq-axes 
current ripples, A-phase current THD, and three harmonics are 
1.004A, 1.102A, 2.83%, 179mA, 102mA, and 119mA. And Fig. 
13(d) displays the dq-axes current ripples, A-phase current THD, 
and their values of 0.849A, 1.006A, and 2.37% for taking the 
FxTESO-AFRC method. The amplitudes of three harmonics are 
82mA, 43mA, and 67mA. Fig. 13(e) illustrates the waveforms of 
proposed FxTAESO-AFRC, which displays both current ripples 
and three harmonics are maximally suppressed. The d-axis current 
fluctuation is reduced from 2.215A to 0.577A, with a reduction 
percentage of 73.95%. The q-axis current fluctuation is reduced 
from 1.772A to 0.872A, with a reduction percentage of 50.79%. 
And the A-phase current THD is reduced from 6.42% to 2.15%, 
with a reduction percentage of 66.51%. The amplitudes of three 
harmonics are decreased to the milliampere level with values of 
8.1mA, 4.2mA, and 5.2mA, respectively. Thus, above 
experimental results fully validate the supremacy of proposed 
strategy in the case of steady-state.  
B. Dynamic Performance Verification 

Current dynamic characteristic is also an essential indicator of 
motor control performance. Fig. 14 illustrates the dynamic 
response of q-axis current of five comparative control strategies for 
a rated load step and localized magnification of the step transient. 
All the five strategies can realize accurate current tracking and fast 
response. However, due to the fixed-time convergence property of 
the proposed FxTAESO-AFRC method, its observation and 
compensation of disturbances and state variables respond faster 
under the same parameter constraints. Building upon this, it has the 
lowest response time with a value of 102ms, which is 42.05% 
faster compared to 176ms for PI, 37.80% faster compared to 164ms 
for TESO, 26.09% faster compared to 138ms for TESO-VRC and 
negligible difference compared to 118ms for FxTESO-AFRC. 
Furthermore, the proposed strategy achieves smoother and faster 
current dynamic since it has a much lower current fluctuation and 
transient overshoot. 
C. Parameters Robustness 

Because the PMSM parameters change in real-time with the 
working conditions and temperature during the actual operation. 
And in the controller design of this paper, it’s known to be closely 
related to the inductance and resistance parameters according to Eq. 
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Fig. 14. Dynamic response of q-axis current under rated load step for five current control strategies. (a) PI, (b) TESO, (c) TESO-VRC, (d) FxTESO-AFRC, and (e) 
FxTAESO-AFRC.  
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Fig. 15. The d-axis current, q-axis current and A-phase current of proposed 
FxTAESO-AFRC under rated load with parameter variations. (a) Inductance 
variation, (b) resistance variation. 
 

TABLE III 
COMPUTATIONAL BURDEN OF SEVERAL COMPARISON SCHEMES 

Scheme PI TESO 
TESO-
VRC 

FxTESO
-AFRC 

FxTAESO
-AFRC 

Time 8.71𝜇𝑠  9.23𝜇𝑠  9.54𝜇𝑠  16.96𝜇𝑠 17.61𝜇𝑠  

 



 

(33) and Eq. (34), so it’s quite necessary to analyze the robustness 
of proposed scheme to these parameters. Fig. 15 displays dq-axis 
current and A-phase current waveforms of the motor inductance 
and resistance at nominal, 1.3 times nominal, and 0.7 times 
nominal parameters, respectively. The fluctuations of above 
currents and THD are nearly the same as the corresponding indexes 
under the nominal parameters, both in the case of inductance and 
resistance change. It’s proved that the FxTAESO-AFRC is highly 
robust to parameter variations.  
D. Comparison of Computational Burden 

In an attempt to apply the algorithm to high-performance servo 
systems with fast control frequency, the computational burden of 
the processor for different schemes is extracted and displayed in 
Table III. The computational time of the four conventional 
schemes is 8.71𝜇𝑠, 9.23𝜇𝑠, 9.54𝜇𝑠, and16.96𝜇𝑠, while the time of 
proposed strategy is 17.61𝜇𝑠. This is because proposed FxTAESO-
AFRC involves a nonlinear observer correction term and a 
fractional-order differential operator, which increases the 
processor’s computational time to some extent. However, it’s still 
much lower than the control period of 50𝜇𝑠, and there still exists a 
large time margin to configure other parts of systems. The extra 
computational time is perfectly acceptable compared to current 
fluctuations and harmonics suppression performance. This also 
demonstrates its suitability for high control frequency. 

In addition, to fully demonstrate where the differences in steady-
state performance, dynamic response, and computation time lie 
between the five comparison strategies mentioned above. A 
comparative table regarding the improvement of the proposed 
control strategy is comprehensively exhibited as shown in Table 
IV. From the table, it can be seen that the proposed control strategy 
has optimal performance metrics in various scenarios. 
E. Speed Dynamic Performance Test 

The proposed FxTAESO-AFRC adopts a frequency adaptive 
principle to correct resonant frequencies in real-time according to 
the motor speed. Fig. 16 shows the results of speed dynamic 
performance tests conducted. The initial speed is set to 150rpm, 
and then a speed step of 150rpm is applied at 2s, and a rated load 

step is added at 4s. There are fluctuations in the q-axis current and 
A-phase current during the speed step and load step transients, but 
the current fluctuations quickly converge to lower values as the 
speed approaches its reference value. Thus, speed dynamic 
characteristic of proposed strategy is validated. 

VI. CONCLUSION 

The proposed strategy FxTAESO-AFRC can adaptively adjust 
resonant gain to balance harmonic rejection capability and system 
stability margin, and at the same time achieve noise immunity and 
observer’s fast convergence by introducing current integral 
augmented variable and optimizing nonlinear correction term. 
Firstly, proposed AFRC incorporates an adaptive fractional-order 
operator term that varies adjustably in real-time with load current, 
harmonic rejection strength, and desired phase margin, thus 
adequately suppressing the periodic current disturbances while 
guaranteeing rejection ability and system stability. Subsequently, 
the proposed FxTAESO introduces a measured current integral 
term as the augmented variable to decouple interaction between 
current measurement noise and high observer gain. Additionally, 
the state estimation error can be driven to converge within the 
vicinity of the equilibrium point in a fixed time by proposing a 
reasonable nonlinear correction term. Finally, the practicalities and 
effectiveness of proposed scheme are experimentally verified on a 
PMSM platform. It’s worth mentioning that the proposed strategy 
is also applicable to other types of motor systems such as 
permanent magnet linear synchronous motor (PMLSM), induction 
motor (IM), etc. 

APPENDIX 

Definition 1 [39]: The vector field 𝒇 (𝑥): ℝ𝑛 → ℝ𝑛  is 
homogeneous of degree d with respect to weight 𝒉, if for any 𝒙 ∈

ℝ𝑛  the relation 𝒇(𝜦𝒉𝒙) = 𝜆𝑑𝜦𝒉𝒇 (𝒙)  holds for some 𝑑 ≥
−min1≤𝑖≤𝑛𝒉𝑖  and all 𝜆 > 0 . The function 𝑉 (𝑥): ℝ𝑛 → ℝ  is 
homogeneous of degree d with respect to weight 𝒉, if for any 𝒙 ∈

ℝ𝑛  the relation 𝑉 (𝜦𝒉𝒙) = 𝜆𝑑𝑉 (𝒙) holds for some 𝑑 ∈ ℝ and all 
𝜆 > 0. And if a vector field or function is homogeneous in both 0-
limit and ∞-limit, then it will be considered to be homogeneous in 
the bi-limit. 

Definition 2 [40]: A vector field 𝒇(𝐞): ℝ𝑛 → ℝ𝑛 (or a function 
𝑉 (𝐞): ℝ𝑛 → ℝ) is considered to be homogeneous in the q-limit (𝑞 =

0 or ∞) with corresponding triples ฝ𝒉𝑞, 𝑑𝑞, 𝒇𝑞พ ( or ฝ𝒉𝑞, 𝑑𝑞, 𝑉𝑞พ) if 
the relationship 

⎩
⎪
⎨
⎪
⎧lim

𝜆→𝑞
sup
𝐞∈𝑲

๳𝜆−𝑑𝑞𝜦𝒉𝑞

−1𝒇๡𝜦𝒉𝑞
𝐞๢ − 𝒇𝑞(𝐞)๳ = 0

lim
𝜆→𝑞

sup
𝐞∈𝑲

๳𝜆−𝑑𝑞𝑉 ๡𝜦𝒉𝑞
𝐞๢ − 𝑉𝑞(𝐞)๳ = 0

 

TABLE IV 
COMPREHENSIVE PERFORMANCE COMPARISON OF FIVE SCHEMES 

Schemes PI TESO TESO-VRC FxTESO-AFRC FxTAESO-AFRC 

10Nm Load 

D-axis Current Ripple (A) 1.561 1.333 0.751 0.523 0.365 
Q-axis Current Ripple (A) 1.388 1.354 0.976 0.743 0.615 
Phase-A Current THD (%) 7.06 6.90 3.52 3.37 3.04 
1st Order Harmonic (mA) 246 233 147 62 9.7 
2nd Order Harmonic (mA) 218 153 73 39 4.9 
6th Order Harmonic (mA) 217 148 101 54 6.8 

20Nm Load 

D-axis Current Ripple (A) 2.215 2.087 1.004 0.849 0.577 
Q-axis Current Ripple (A) 1.772 1.756 1.102 1.006 0.872 
Phase-A Current THD (%) 6.42 6.18 2.83 2.37 2.15 
1st Order Harmonic (mA) 258 244 179 82 8.1 
2nd Order Harmonic (mA) 231 178 102 43 4.2 
6th Order Harmonic (mA) 251 202 119 67 5.2 

Dynamic Response (ms) 176 164 138 118 102 
Computational Time (𝝁𝒔) 8.71 9.23 9.54 16.96 17.61 
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Fig. 16. The q-axis current, A-phase current and speed profiles of proposed 
FxTAESO-AFRC for 150rpm speed step and rated load step. 
 



 
for all compact subsets 𝑲 ∈ ℝ𝑛\{0}, where 𝒉𝑞 is the weight, 𝑑𝑞 ∈

ℝ is the degree, and 𝒇𝑞(𝐞): ℝ𝑛 → ℝ𝑛 is the approximation vector 
field (or 𝑉𝑞(𝐞): ℝ𝑛 → ℝ is the approximation function). 

Lemma 1: For system (12), assuming that vector field 𝒓(𝒆) is bi-
limit homogeneous with vector triples ฝ𝒉𝑞, 𝑑𝑞, 𝒇𝑞พ, 𝑞 = 0 or ∞. If 
the origins of system 𝒆̇ = 𝒓(𝒆)  is globally asymptotically stable, 
then the following conclusions maintain: I. The origin of (12) is 
fixed-time stable when satisfies 𝑑∞ > 0 > 𝑑0 . II. Make 𝑑𝑉0

>

max1≤𝑖≤𝑛𝒉0,𝑖, 𝑑𝑉∞
> max1≤𝑖≤𝑛𝒉∞,𝑖 and 𝑑𝑉0

, 𝑑𝑉∞
 be real numbers. 

There exists a continuous, positive definite and proper function 
𝑉 (𝒆)  such that the function 𝒆 → ∂𝑉 ∂𝑒𝑖⁄ , ∀𝑖 ∈ {1,2, ⋯ , 𝑛}  is bi-

limit homogeneous with vector triples ๡𝒉𝑞 , 𝑑𝑉𝑞
−

𝒉𝑞,𝑖, ∂𝑉𝑞 ∂𝑒𝑖⁄ ๢, 𝑞 = 0 𝑜𝑟 ∞ , and the functions 𝒆 → ∂𝑉 ∂𝒆 ⋅ 𝒓(𝒆)⁄  

and 𝒆 → ∂𝑉𝑞 ∂𝒆 ⋅ 𝒓𝑞(𝒆)⁄  are negative definite. 
Lemma 2: If 𝜇(𝐞): ℝ𝑛 → ℝ and 𝛿(𝐞): ℝ𝑛 → ℝ+ are two bi-limit 

homogeneous functions with triples ฝ𝒉0, 𝑑𝜇0, 𝜇0พ , 

๡𝒉∞, 𝑑𝜇∞, 𝜇∞๢, (𝒉0, 𝑑𝛿0, 𝛿0) and ๡𝒉∞, 𝑑𝛿∞, 𝛿∞๢, and satisfying 

𝑑𝜇0 ≥ 𝑑𝛿0, 𝑑𝜇∞ ≤ 𝑑𝛿∞ and 𝛿, 𝛿0, 𝛿∞ are all positive definite, then 

there is a positive real number 𝑝 holds 𝜇(𝐞) ≤ 𝑝𝛿(𝐞), ∀𝐞 ∈ ℝ𝑛. 
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