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Abstract

In the degraded and modified environment of the Scottish Highlands, novel
ungulate communities have arisen following local extinctions, reintroductions, and
the introduction of non-native species. An understanding of the dynamics and
interactions within these unique mammal communities is important as many of
these mammals represent keystone species with disproportionate impacts on the
environment. Using a camera trap survey, we investigated land cover preferences
and spatiotemporal interactions within a Scottish ungulate community: the sika deer
(Cervus nippon), the roe deer (Capreolus capreolus), the red deer (Cervus elaphus), and
the wild boar (Sus scrofa). We used generalised linear models to assess land cover
preferences and the effect of human disturbance; spatiotemporal interactions were
characterised using time interval modelling. We found that sika deer and roe deer
preferred coniferous plantations and grasslands, with sika deer additionally preferring
woodland. For red deer, we found a slight preference for wetland over woodland;
however, the explained variance was low. Finally, wild boar preferred grassland and
woodland and avoided coniferous plantations, heathland, and shrubland. Contrary
to our expectations, we found no evidence that human disturbance negatively
impacted ungulates' distributions, potentially because ungulates temporally avoid
humans or because dense vegetation cover mitigates the impacts of humans on their
distributions. Furthermore, we detected a spatiotemporal association between sika
deer and roe deer. Although the underlying cause of this is unknown, we hypothesise
that interactions such as grazing facilitation or an anti-predator response to culling
could be driving this pattern. Our work provides a preliminary analysis of the dynamics
occurring within a novel ungulate community and also highlights current knowledge
gaps in our understanding of the underlying mechanisms dictating the observed

spatiotemporal associations.

KEYWORDS
camera trapping, land cover, Scotland, spatiotemporal interactions, ungulates

TAXONOMY CLASSIFICATION
Behavioural ecology, Community ecology, Zoology

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2024 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Ecology and Evolution. 2024;14:€11015.
https://doi.org/10.1002/ece3.11015

www.ecolevol.org 10of 15


https://doi.org/10.1002/ece3.11015
http://www.ecolevol.org
mailto:
https://orcid.org/0000-0002-1951-8024
https://orcid.org/0000-0002-1594-6208
https://orcid.org/0000-0002-4314-1378
http://creativecommons.org/licenses/by/4.0/
mailto:connor.t.lovell@kcl.ac.uk

LOVELL ET AL.

20f15 WI LEY-ECOIOgy and Evolution

Open Access,

1 | INTRODUCTION

The Scottish Highlands are a highly modified environment contain-
ing unique ecosystems and wildlife communities. Humans modified
the Scottish environment considerably from as early as 11,000
BP through land clearance for agriculture (Dumayne-Peaty, 1999;
O'Sullivan, 1974; Smout et al., 2007). Much of Scotland's woodland
was subsequently lost from the 1500s to the 1900s with humans
as a significant driving force (Smout et al., 2007). Currently, most of
the country is classified as rural, with major land uses including ag-
riculture, forestry, hunting, and wildlife conservation (Brand, 2021;
Morgan-Davies & Waterhouse, 2010).

This extensive modification of the Scottish landscape, when cou-
pled with hunting, led to the loss of many of Scotland's large key-
stone animals (species whose effects on the environment are large
relative to their population size) such as the moose (Alces alces), au-
roch (Bos primigenius), Eurasian lynx (Lynx lynx), and grey wolf (Canis
lupus; Bishop et al., 2015, Brown et al., 2011, Power et al., 1996,
Warren, 2009). The remaining large terrestrial mammals are all un-
gulates, and include the native red deer (Cervus elaphus) and roe
deer (Capreolus capreolus), non-native sika deer (Cervus nippon) and
fallow deer (Dama dama), and, more recently, wild boar (Sus scrofa),
reintroduced to the British Isles by humans a few decades ago
(NatureScot, 2016, 2022).

How ungulates in these novel communities behave and interact
is important to understand as Scottish ungulates are often classed
as keystone species and therefore have a significant influence over
the environment through ecosystem processes such as browsing,
grazing, and rooting (Power et al., 1996; Rooney, 2001; Sandom
et al., 2013a). In addition, the lack of wild predators in Scotland leads
to higher ungulate densities, with potentially increased competi-
tion and unusual behavioural interactions as a result (Latham, 1999;
Simberloff, 1982). Finally, the presence of non-native species in
Scotland is likely to alter the behaviours of, and interactions be-
tween, ungulates as these species have not co-evolved (Ferretti &
Mori, 2020; Latham, 1999).

A previously studied factor influencing ungulates' distribution
is land cover type (Braza & Alvarez, 1987; Uzal et al., 2013; Welch
et al.,, 1990). Food availability and vegetation cover both influ-
ence ungulate habitat selection, with a trade-off existing as high
vegetation cover shades out high-quality forage (Mayle, 1996;
Mysterud & @stbye, 1999). The red deer is generally observed
on open heathland, with some spring preference for grassland
and winter preference for coniferous woodland and plantations
(Putman, 1996; Schaefer et al., 2008; Ward, 2005). Red deer rarely
occupy dense closed forests, instead preferring forests with open
rides (long narrow glades) and clearings where heather and plant
cover is higher (Mitchell et al., 1977; Welch et al., 1990). Having
said this, some level of forest cover appears important for red
deer (Borowik et al., 2013). Similarly, roe deer benefit from some
forest cover (particularly deciduous and mixed forests) and other
high-cover dense vegetation types, but select heavily for areas
with plants in the most nutritious phenological stage (Borowik

et al.,, 2013; Mancinelli et al., 2015; Palmer & Truscott, 2003;
Welch et al., 1990). Indeed, roe deer fawn winter body mass (a
strong determinant of fitness) can be heavily influenced by indi-
vidual plant species (Pettorelli, Dray, et al., 2003).

However, the distribution of other wild ungulate species in
Scotland, such as the sika deer (introduced c.1860) and the wild boar,
is less well understood (Ratcliffe, 1987; Swanson & Putman, 2009).
Research conducted in Southern England suggests sika deer pre-
fer coniferous plantations and heathland, and other vegetation
types providing high cover and grazing potential (Mayle, 1996;
Putman, 1996; Putman & Pemberton, 2022; Uzal et al., 2013).
Similarly, research on sika deer in their native range finds a pref-
erence for deciduous, coniferous, and mixed forests (Sakuragi
et al.,, 2002, 2003). A preference for shrublands and grasslands is
also observed in their native range, particularly when the latter is
located nearby forest cover (Honda, 2009; Laneng et al., 2023).
Having said this, some studies record no preferences for sika deer
(Borkowski & Furubayashi, 1998). For wild boar, the research con-
ducted in Scotland to date suggests a preference for woodland, par-
ticularly deciduous woodland, and grassland (Sandom et al., 2013a).
However, these were captive individuals and further research is re-
quired to determine whether they would remain close to woodlands
if free roaming (Sandom et al., 2013a). In southwest England, recent
work has identified forest as an important predictor of wild boar dis-
tributions, alongside open parkland (Bacigalupo et al., 2022). This is
similar to mainland Europe, where multiple studies identify forest
cover as an important predictor of wild boar distributions, with a
preference for deciduous over coniferous forests often observed
(Borowik et al., 2013; Janoska et al., 2018; Thurfjell et al., 2009;
Virgds, 2002). Some studies additionally demonstrated a prefer-
ence for open areas such as pastures and meadows, although others
fail to detect a preference for open areas (Bacigalupo et al., 2022;
Janoska et al., 2018; Thurfjell et al., 2009). As species vary in their
preferences both within populations and geographically, it remains
important to consider land cover selection in varying ecosystems
(Alston et al., 2020; Shy, 1984).

One additional factor influencing ungulate spatial distributions
is anthropogenic disturbance. Prior studies demonstrate a strong in-
fluence of human activities and disturbance on ungulate behaviour.
Studies demonstrate how ungulates avoid human infrastructure such
as roads, vehicle traffic, and dwellings (Bojarska et al., 2020; Bonnot
et al., 2013; D'Amico et al., 2016; lkeda, Kuninaga et al., 2019).
However, the need for ungulates to use particular land cover types
(such as woodlands) may also mask a negative response to humans
(Wevers et al., 2020). Indeed, Wevers et al. (2020) found no rela-
tionship between human disturbance and roe deer habitat use, and
a positive relationship between hunting high seats and wild boar ac-
tivity. Although the latter is potentially due to hunters baiting high
seats, in both cases selection for high-cover vegetation types may
modulate and reduce any negative influence of human disturbance.

A less studied process affecting ecological communities are non-
trophic interactions - interactions between species that are non-
consumptive (Kéfi et al., 2015; Majdi et al., 2014; Ohgushi, 2008).
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Non-trophic interactions are traditionally classified based on their
impacts on species, ranging from mutualism (positive effect on
each species) to competition (negative impact on each species;
Bronstein, 2015; Burkholder, 1952; Latham, 1999). Non-trophic
interactions can alter the spatiotemporal activity of animals: the
presence of a mutualism between two species can lead to inter-
specific attraction between them, whilst competition could lead to
two species showing interspecific avoidance (Asefa, 2016; Karanth
et al., 2017). Therefore, animals potentially alter both where and
when they are active in response to an interacting species (Cusack
et al., 2017; Durant, 1998; Ferretti et al., 2011). Although inferring
the underlying non-trophic interaction from observed interspecific
attraction and avoidance is difficult and the underlying behavioural
and methodological processes need careful consideration, research
has demonstrated the use of interspecific attraction and/or avoid-
ance in identifying non-trophic interactions (Cusack et al., 2017;
Karanth et al., 2017; Niedballa et al., 2019). For example, Karanth
et al. (2017) found evidence of interspecific competition through
fine-scale behavioural avoidance between carnivores, whilst Cusack
et al. (2017) demonstrated, with varying success, how kleptopara-
sitism between African carnivores leads to interspecific attraction.

In Scotland, red deer appear to exert a competitive effect on roe
deer. Studies demonstrate a negative effect of red deer density on
roe deer numbers, with resource competition potentially causing
a negative impact on roe deer body mass (Borkowski et al., 2021;
Latham et al., 1997; Richard et al., 2010). With sika deer, some limited
research demonstrates the potential for sika deer to be displaced by
red deer, and for high red deer densities to reduce fertility in sika
deer (Putman & Pemberton, 2022; Raymond, 2008). Interactions be-
tween sika deer and roe deer are poorly understood, and restricted
to analysis of dietary overlap with no evidence of a competitive ef-
fect (Putman, 1996). Very little is known for wild boar interactions
in Scotland, although in mainland Europe segregation is detected
between roe deer and wild boar (Zanni et al., 2021). Subsequently,
interactions within this unique ungulate community warrant further
investigation.

This study assesses the springtime land cover preferences and
spatiotemporal relationships within a novel Scottish large mammal
community consisting of two native species (red deer and roe deer),
a non-native species (sika deer), and a reintroduced native species
(wild boar). Springtime represents an important time for the un-
gulates present onsite. Individuals present will be feeding on new
vegetation growth to maximise energy intake after harsher winters;
with different species heavily pregnant, birthing, feeding young,
and/or defending territories at this time of year (Gaillard et al., 1993;
Johansson, 1996; McCullough et al.,, 2009; Pettorelli, Gaillard
et al., 2003; Stopher et al., 2008).

We first investigate the role of land cover in influencing spe-
cies' detection rates. We expect land cover that provides cover and
more abundant forage resources (such as grasslands) to be preferred
(Allwin & Swaminathan, 2016; Mayle, 1996; Meriggi & Sacchi, 2001).
We also anticipate that human disturbance would negatively impact
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ungulate distributions. Following this, we investigate whether spa-
tiotemporal associations are present between these ungulates,
with the expectation that roe deer will avoid all other species spa-
tiotemporally due to interspecific competition (Latham, 1999; Mori
etal., 2020).

2 | METHODS

2.1 | Studyarea

The Bunloit rewilding project is a 511-ha site in Inverness-shire, part
of Highlands Rewilding (https://www.highlandsrewilding.co.uk/).
The project aims to use rewilding to maximise both biodiversity and
carbon capture in the area. Vegetation types found onsite include
mixed woodland (Quercus sp., Betula sp., Pinus sylvestris), coniferous
plantations (Picea sitchensis, Larix sp., P.sylvestris), grassland, wetland,
and heathland. Sika deer, roe deer, red deer, and wild boar, alongside
other mammals such as the European badger (Meles meles), the red
fox (Vulpes vulpes), the red squirrel (Sciurus vulgaris), and the pine
marten (Martes martes), are all present onsite (Highlands Rewilding
Ltd, 2021a). With regard to the wild boar, their origins are unknown
as they were present at least 15years prior to the creation of the
Bunloit rewilding project (Scott Hendry, 2022). However, numerous
wild boar farms recorded in the area would suggest they are
escapees (Massei & Ward, 2022). Additionally, camera trap images
from the project's baseline surveys would suggest they are a mix
of wild boar and hybrid wild boar/feral pigs, like most UK wild boar
populations (Alister Hughes-Roden, personal communication, June
24,2022).

2.2 | Camera trapping

Camera traps were used as a cost-effective, non-invasive method
able to conduct multi-taxa surveys continuously at the landscape
level (Caravaggi et al., 2017). The use of camera traps in ecological
research, including in exploring land cover preferences and
spatiotemporal associations, has grown over the last decade
(O'Connell et al.,, 2011; Van Berkel, 2014). Crucially, for each
detection of an animal, camera traps record both a spatial aspect
(where the animal is located) and a temporal aspect (what time the
animal was active at), therefore permitting spatiotemporal analyses
to be conducted.

We placed 40 camera traps across the Bunloit rewilding project
using random systematic sampling. Within the boundary of the site,
a grid with grid squares of size 364 m was generated from a randomly
selected point using Gridmaker (Rowcliffe, 2022). Camera traps were
then placed as close to gridline intersections as possible account-
ing for the ease of relocating camera traps, the structures present
which cameras can be securely attached to, and both the practical

and safety implications of the site (Figure 1; Van Berkel, 2014). These
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practicalities meant the shortest distance between two camera

traps was approximately 152 m.

Cameras were deployed over the period 3 May 2022-7 May
2022 and were set to record for a 28-day period. After 28days, the
cameras were collected in the same order they were deployed be-
tween 31 May 2022 and 4 June 2022. Deploying 40 camera traps
for 28days is identified as being sufficient to record the species
present within a survey area, and is comparable in terms of camera
trap-days to similar studies on large mammals (Akbaba & Ayas, 2012;
Kays et al., 2020; Kelly & Holub, 2008).

All camera traps were Browning Strikeforce HD Pro, to avoid is-
sues with intermodal differences (Apps & McNutt, 2018). Camera
traps were mounted at shoulder height of the smallest species (60-
80cm high, the approximate shoulder height of the roe deer; The
Mammal Society, 2022) with no angled dip downwards; placing cam-
eras too high or dipping the field of view risks missing target species
(Apps & McNutt, 2018; Palencia et al., 2022). Where possible, the
immediate field of view of the camera trap was cleared of vegeta-
tion to both improve and standardise the reliability of detecting the
target species and to reduce the probability of vegetation errone-
ously triggering the camera. Similarly, for camera traps positioned on
slopes, the camera field of view was positioned perpendicular to the
slope, so as to not restrict the view and therefore detection range.
As the target ungulates are reasonably common onsite, leaving cam-
era traps at a single location for a longer period was deemed more
appropriate than moving cameras to new locations part way through
the survey period (Mackenzie & Royle, 2005). Camera traps were
programmed with a 1-s delay between images. Having a 1-s delay
allowed for sequences of the same animal to be identified without
being restricted to a pre-defined number of images. 64 GB SD cards
were used and image quality was set to 4 MB to ensure SD cards did
not run out of memory prematurely. Both the motion detection and

infra-red flash were set as ‘long range’ to improve detectability.

FIGURE 1 Camera trap placements
across the Bunloit rewilding project. The
insert illustrates the location of the site
within Scotland. Map created with QGIS

v.3.16.4.
~ 3 The Bunloit Rewilding Project}
* Camera trap locations
2.3 | Image tagging

Images were manually tagged with the species present using ExifPro
v2.1 (Kowalski, 2013). Individuals present in the images were iden-
tified to species level. Then, following commonly used camera trap-
ping methodology, the first image of a sequence of images of an
individual animal, or images of the same species taken greater than
30min apart, was tagged as independent ‘contacts’ (Mori et al., 2020;
Ridout & Linkie, 2009; Sollmann et al., 2013; Zanni et al., 2021). Only
these contacts were used in future analyses to reduce temporal cor-
relation and increase independence, should one individual animal or
group of individuals spend an extended period in front of the camera
(Mori et al., 2020; Ridout & Linkie, 2009; Sollmann et al., 2013; Zanni
et al., 2021). The same procedure was used for human contacts, with
a human detection rate (human contacts per day) obtained for each
camera trap.

For species identification and tagging, we used these key di-
agnostic features (Figure 2; Couzens et al., 2021; The Mammal
Society, 2022):

e The red deer is the largest species with the most complex antlers
(up to eight points per antler) and has a creamy rump with a short
reddish tail.

e The sika deer is the next largest species and has much simpler
and thinner antlers than the red deer (with up to four points).
The rump is white with a dark brown/black rim with a white tail
featuring a single vertical stripe. An additional identification
characteristic is a distinct white metatarsal gland on the lower
hind legs.

e The roe deer is the smallest of the three species, with much
smaller antlers (up to three points). They additionally have a
broad, whitish rump either shaped as an inverted heart (females)

or an oval (males) with no obvious tail.
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FIGURE 2 Camera trap photographs demonstrating all four target ungulate species (a=sika deer; b=roe deer; c=red deer; d=wild boar),
with key identifying characters for the three deer species highlighted (sika deer=the white metatarsal gland; roe deer=the rump pattern

and lack of obvious tail; red deer=the creamy, beige rump).

2.4 | Land cover classifications

From 2020 to 2021, multiple ecological surveys were conducted
onsite as part of baseline biological surveys. In 2020 land cover
onsite was classified into six different categories based on UK habitat
classifications: clearfell, coniferous plantation, grassland, heathland
and shrubland, wetland, woodland (Butcher et al., 2020; Highlands
Rewilding Ltd, 2021a). These categories were confirmed with NVC
survey data from 2021. Each camera trap site was assigned to one
of these six land cover types via QGIS v.3.16.4 (QGIS Development

Team, 2022) depending on the camera trap's location.

2.5 | Statistical analysis

Data manipulation and statistical analyses were conducted using R
v.4.2.2 (R Core Team, 2022). Results were deemed significant if p-
value <.05.

2.51 | Land cover preference modelling

Four negative binomial generalised linear models (GLM) were con-
structed to model the impact of land cover on ungulate detec-
tion rates across the camera traps. Negative binomial models used
as overdispersion were detected in all models using performance
v.0.10.2 (Liidecke et al., 2021). Species-specific detection rate acted as
the response variable: with one GLM for each of the four ungulate

species. Land cover and human detection rate acted as predictor vari-
ables, whilst the log of the duration each camera trap was deployed
for acted as an offset variable to control for varying camera trap de-
ployment times (i.e., to accommodate cases where a camera failed
part way through; Sollmann, 2018). For the sika deer and roe deer,
negative binomial GLMs were constructed using Ime4 v.1.1-29 (Bates
etal., 2015), whilst for red deer and wild boar, negative binomial GLMs
were constructed via glmmTMB v.1.1.6 (Brooks et al., 2017) to over-
come issues with complete separation of the data. Finally, post-hoc
comparisons of estimated marginal means for each land cover type
were undertaken via emmeans v.1.5.5-1 (Lenth, 2021). Estimated
marginal means (also known as least-squares means) are the modelled
means for each variable in the model, whilst accounting for other var-
iables in the model (Lenth, 2021). Thus, here the estimated marginal
means represent the predicted ungulate detection rate per day for
each land cover class. Associated tables were constructed with sjPlot
v.2.8.12 (Ludecke, 2021) and figures with emmeans.

2.5.2 | Time interval modelling

Following Niedballa et al. (2019), we investigated whether an initial
species arriving at a camera trap site (the leading species) affects
the time until a second species (the follower species) is detected. As
we calculated the time interval gaps on an individual camera trap
basis, we incorporated both a spatial and temporal aspect, thereby
undertaking a spatiotemporal analysis (Cusack et al., 2017; Niedballa
etal., 2019).



60f15 WI LEY-ECOIOgy and Evolution

LOVELL ET AL.

Open Access,

For every species pair, we calculated the median time interval
between the leading species arriving at a camera trap site and the
follower species arriving, giving 12 observed median time inter-
vals. Each observed median time interval was then compared to a
null distribution of time intervals to identify if the follower species
is attracted to or avoids the leading species. To create the null dis-
tribution for each species pair, each detection of the follower spe-
cies was first assigned a random date, sampled from the dates that
camera trap was deployed, and a random time, sampled from the
daily activity pattern of the follower species. This generated a null
dataset from which a new, simulated median was calculated. This
was repeated 1000 times to finally generate the null distribution of
simulated time intervals, representing the distribution of time inter-
vals expected if the leading species does not influence the follower
species (Niedballa et al., 2019).

The p-value for the test was then calculated through a two-sided
significance test, where Q represents the proportion of null medians
greater than the observed median (Niedballa et al., 2019):

p=min(Q,1-Q)x 2

3 | RESULTS

One camera trap was faulty, and four other camera traps failed to
record for the full length of time, leaving 1099 camera trap days
successfully recorded. All four target ungulates were captured on
camera traps (Table 1). On average it took 1.70days to photograph
a sika deer, 8.59days to photograph a roe deer, 23.38days to
photograph a red deer, and 9.47 days to photograph a wild boar. 29
ungulate contacts were unable to be identified from camera trap
images and were excluded, representing under 3% of all ungulate
contacts.

3.1 | Land cover preferences
Of the 39 successful camera traps, 2 were placed in clearfell, 8 in
coniferous plantations, 8 in grassland, 6 in heathland and shrubland,
5 in wetland, and 10 in woodland.

Compared to clearfell, the detection rate of sika deer increased
11.94 times in coniferous plantations (estimate=2.48, error=1.07,

Naive occupancy Total number of

Mean detection

p=.020), 28.22 times in grassland (estimate=3.34, error=1.07,
p=.002), and 13.07 times in woodland (estimate=2.57, error=1.06,
p=.015). Post-hoc pairwise comparisons also detected elevated de-
tection rates in grassland relative to heathland and shrubland (es-
timate=1.72, error=0.65, p=.008) and wetland (estimate=1.74,
error=0.62, p=.005). Finally, sika deer detection rate increased with
human detection rate (Table 2; Figure 1; estimate = 0.48, error = 0.18,
p =.007).

Land cover was not initially found to significantly predict roe
deer detection rate. However, post-hoc pairwise comparisons de-
tected lower detection rates in woodland compared to both conifer-
ous plantations (estimate=1.16, error=0.55, p=.036) and grassland
(Table 2; Figure 3; estimate=1.09, error=0.55, p=.049).

Similarly, land cover was not initially found to significantly pre-
dict red deer detection rate. However, post-hoc pairwise compari-
sons detected higher detection rates in wetland relative to woodland
(Table 2; Figure 3; estimate=1.48, error=0.62, p=.016).

Finally, land cover was also not initially found to significantly
predict wild boar detection rate. However, post-hoc pairwise com-
parisons detected higher detection rates in grassland relative to
coniferous plantation (estimate=-4.24, error=1.18, p<.001) and
heathland and shrubland (estimate=2.48, error=0.88, p=.005).
Similarly, higher detection rates were present in woodland compared
to coniferous plantation (estimate=-3.57, error=1.18, p=.003)
and heathland and shrubland (Table 2; Figure 3; estimate=-1.81,
error=0.87, p=.037).

3.2 | Time interval modelling

Time interval modelling detected an attractive effect between roe
deer and sika deer. The time interval between a roe deer arriving at a
camera trap site and a sika deer following was approximately 36.7%
shorter than would be expected from no effect (Figure 4b; p=.038).
No other relationships were statistically significant (Figure 4a,c-I).

4 | DISCUSSION

Using a camera trap survey, we quantified land cover preferences,
the influence of human disturbance, and spatiotemporal relationships

TABLE 1 Summary statistics for the
four ungulates recorded.

Species (%) contacts rate + standard deviation
Sika deer 89.74 647 0.60+0.92
Roe deer 74.36 128 0.12+0.16
Red deer 53.85 47 0.04+0.06
Wild boar 43.59 116 0.11+0.20

Note: Naive occupancy represents the proportion of camera traps where each species was
detected at least once, total number of contacts records the total number of independent contacts
of each species across all camera traps, and mean detection rate represents the mean number of
independent detections per day for each species across camera traps + the standard deviation.
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TABLE 2 Outputs from the four GLMs investigating how land
cover and human disturbance impacts sika deer, roe deer, red deer,
and wild boar detection rates.

Predictors Estimate ::’it;r p-Value

Sika deer
Clearfell (Intercept) -3.41 1.00 .001
Coniferous plantation 2.48 1.07 .020
Grassland 3.34 1.07 .002
Heathland and shrubland 1.61 1.14 157
Wetland 1.60 1.12 156
Woodland 2.57 1.06 .015
Human detection rate 0.48 0.18 .007
R? .56

Roe deer
Clearfell (Intercept) -2.97 0.90 .001
Coniferous plantation 1.16 0.98 .235
Grassland 1.09 0.98 .263
Heathland and shrubland 0.27 1.08 .800
Wetland 0.92 1.03 .373
Woodland 0.00 0.99 .998
Human detection rate 0.21 0.19 .249
R? .24

Red deer
Clearfell (Intercept) -3.58 1.10 .001
Coniferous plantation 0.45 1.18 .703
Grassland 0.32 1.14 .782
Heathland and shrubland 0.33 1.21 .783
Wetland 1.33 1.15 .245
Woodland -0.15 1.18 902
Human detection rate 0.21 0.16 169
R? .07

Wild boar
Clearfell (Intercept) -6.36 3.40 .061
Coniferous plantation 0.86 3.57 .810
Grassland 5.10 3.42 136
Heathland and shrubland 2.61 3.49 454
Wetland -5.99 44.56 .893
Woodland 4.43 3.42 196
Human detection rate 0.09 0.26 737
R? .84

Note: Significant p-values are highlighted in bold.

between ungulate species within a unique mammal community in
Scotland. As expected, land cover was found to play a role in dictat-
ing ungulate detection rates. Although land cover preferences were
detected, the GLMs constructed for roe and red deer had low R?
values, limiting the explanatory value of these models. In addition,
whilst the 511 ha site represents an area greater than the largest av-
erage summer home range estimates recorded in studies of the sika
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deer (400ha; Borkowski & Furubayashi, 1998; Laneng et al., 2023;
Putman & Pemberton, 2022), roe deer (140ha; Lovari et al., 2017,
Mysterud, 1998, Pagon et al., 2017), and wild boar (420ha; Keuling
etal., 2008; Podgorski et al., 2013; Russo et al., 1997), it is smaller than
the typical range size of the red deer, and thus the identified land cover
preferences for red deer should be interpreted with caution (Catt &
Staines, 1987; Kamler et al., 2008). We found no evidence of a negative
effect of human disturbance on ungulate distribution, instead finding a
positive effect of human detection rate on sika deer. Finally, although
we had anticipated competition to drive spatiotemporal avoidance, we
found no evidence of this. Instead, a spatiotemporal association of sika
deer for roe deer was detected.

This study being conducted in spring will likely impact land cover
preferences and spatiotemporal interactions. In spring, the ungu-
lates present will feed on new vegetation growth to maximise en-
ergy intake after harsher winters, with ungulates heavily pregnant,
birthing, and feeding young at this time of year (Gaillard et al., 1993;
McCullough et al., 2009; Pettorelli, Gaillard et al., 2003; Stopher
et al., 2008). Roe deer are additionally defending territories in May/
June until late August, after the rut ends (Johansson, 1996). As in-
come breeders, roe deer need to feed to replace energy lost during
this high-activity period, meaning any preferences for high-quality
forage are likely strongest at this time of year (Pagon et al., 2017).

For sika deer, the strong preference for grassland likely reflects
grazing. Although grasslands potentially bias detection rates due to
the lack of vegetation, sika deer act as mostly grazers in both their
native and introduced ranges (Endo et al.,, 2017; Putman, 1996;
Putman & Pemberton, 2022; Sollmann, 2018). Indeed, sika deer are
known to move out of cover onto adjacent open ground and heath
at night to feed (Putman, 1996). In addition, prior work identifies a
preference for coniferous plantations and woodland - similar to our
results (Mayle, 1996; Putman, 1996; Putman & Pemberton, 2022;
Sakuragi et al., 2002). Indeed, mixed woodland and coniferous for-
est are highly used vegetation types of sika deer in Japan (Sakuragi
et al.,, 2003). Sika deer eat both deciduous and coniferous trees;
hence, their presence in mixed woodland and coniferous for-
ests could be due to feeding, whilst also exploiting the cover pro-
vided by the former two food sources (Akashi & Terazawa, 2005;
Latham, 2000; Putman & Pemberton, 2022; Yokoyama et al., 2001).

Like sika deer, grasslands can provide forage for wild boar, po-
tentially explaining their preference for grassland. Due to their
rooting behaviour, wild boar turn over the soil and consume high
quantities of underground plant parts and roots, with smaller, but
consistent, quantities of invertebrates also foraged (Ballari & Barrios-
Garcia, 2014; Endo et al., 2017; Schley & Roper, 2003). Furthermore,
graminoids have been identified as a staple food resource for wild
boar, with wild boar found to graze more over spring-summer time,
when this study was conducted (Genov, 1981; Massei et al., 1996;
Sandom et al., 2013a). The preference of wild boar for woodland over
coniferous plantations is supported by studies outside of the UK, de-
spite Pinus sp. providing a high-quality fat resource (Fonseca, 2008;
Liu et al., 2022; Muthoka et al., 2022; van Ginkel et al., 2013). As
Quercus species were found throughout the woodland, it seems
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FIGURE 3 Four pairwise p-value plots demonstrating the pairwise comparisons between different land cover classes for each ungulate
species. Land cover classes (with the log estimated marginal means present in boxes) are on the y-axis, with vertical lines between land cover
classes representing each pairwise comparisons. The positioning of the vertical comparison along the x-axis indicates its associated p-value.
Comparisons to the left of the vertical dashed line (p=.05) are deemed significant.

likely wild boar were active here to forage and root for acorns, in
addition to bracken (Pteridium aquilinum) rhizomes, whilst deriving
additional benefit from the cover provided by the woodland envi-
ronment (Herrero et al., 2005; Highlands Rewilding Ltd, 2021a;
Sandom et al., 2013a; van Ginkel et al., 2013). This study additionally
adds to previous work from Sandom et al. (2013a) by demonstrating
that wild boar in Scotland do utilise woodland when allowed to roam
freely.

For roe deer, land cover preferences were less clear, with wood-
land only identified as avoided compared to coniferous plantations
and grassland. These less clear preferences may be attributable to
roe deer selecting areas based on the presence of particular forbs
or shrubs, rather than the macro-scale vegetation characteristics
studied here (Mancinelli et al., 2015; Pettorelli, Dray, et al., 2003).
Roe deer may select coniferous plantations as they provide a
high-cover environment relative to other land cover classes,
with roe deer also possibly browsing on pine saplings (Palmer &
Truscott, 2003). However, why this would lead to an avoidance of
woodland is less clear, as roe deer also require woodland and for-
est strands with a richer understory (Lovari et al., 2017; Mancinelli
et al., 2015). Despite roe deer being termed a ‘forest ungulate’,
studies highlight that roe deer are adapted for more open grass-
lands and glades, and require just a minimum quantity of woodland
within their home ranges (Lovari et al., 2017; Morellet et al., 2011).
Roe deer may additionally be avoiding wooded areas due to the
presence of wild boar, as seen in similar studies, although no signif-
icant spatiotemporal avoidance was detected in this study system
(Zanni et al., 2021).

Similarly, red deer have less clear land cover preferences, with
only a preference for wetland detected over woodland. Red deer
are known to exploit both wet and dry open heathland, which may
partially explain these results as much onsite wetland is dominated
by species such as Calluna vulgaris and Erica sp. (Pérez-Barberia
et al.,, 2013; Plantlife, 2021; Putman, 1996; Ward, 2005; Welch
et al., 1990). In addition, the largest area of wetland on the Bunloit
estate runs alongside the North-West of the site and directly bor-
ders an area where little-to-no deer management takes place, which
itself is surrounded by deer stalking estates in the wider area which
maintain large red deer herds (Highlands Rewilding Ltd, 2021b). The
preference for wetland over woodland is in line with other studies,
where red deer are found to avoid dense woodlands and forests
except where there are clearings and glades (Mitchell et al., 1977,
Welch et al., 1990). Although some level of woodland or forest cover
does appear important for red deer elsewhere, red deer in Scotland
are observed to have stronger preferences for open wetland and
moorland over woodlands and forests (Borowik et al., 2013; Mitchell
et al., 1977). Mitchell et al. (1977) suggest that open moorland and
wetland in Scotland provides red deer with important habitat fea-
tures which are provided by woodland elsewhere. For example,
browse in the form of heather (Calluna vulgaris) is present, and un-
restricted views may give the same sense of security that woodland
can provide (Mitchell et al., 1977).

As keystone species, these ungulate species considered in this
study are likely to impact the ecosystems they are found in through
their land cover preferences. Sika deer, wild boar, and roe deer all had
some preference for grassland, hypothesised here to be representative
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FIGURE 4 Outputs from the time interval modelling approach. Each plot represents the results from one pairwise interaction. For
example, Sika deer-Roe deer represents the time differences, both observed and expected, between a leading sika deer arriving at a camera
trap and a roe deer follower arriving at a camera trap. For each tested interaction, the red vertical line represents the observed median

time interval, the black vertical line represents the modelled median time interval, and grey vertical bars represent the distribution of 1000
modelled null time intervals. Dashed vertical lines represent the 95% confidence intervals for attraction and avoidance.

of grazing, with the former two also preferring woodland, hypothe-
sised to be providing a mix of forage and cover. By altering the im-
portance of stochastic and deterministic processes, ungulate grazing
and rooting within these preferred land covers alter the species and
functional diversity and composition of plants (Cushman et al., 2004;
Nishizawa et al., 2016; Ohashi & Hoshino, 2014; Wardle et al., 2004).
Even if not feeding, other impacts of ungulates such as trampling
can impact plant communities (Barros & Pickering, 2015; Heggenes
et al.,, 2017). These changes to functional diversity and composition
can subsequently influence ecosystem processes and functions,
such as carbon storage and seedling recruitment (Allen et al., 2023;
Velamazan et al., 2020; Wardle et al., 2004). Over long time periods,
these changes can significantly alter ecosystems. In woodlands, un-
gulates may inhibit tree regeneration and reduce fire risk, whilst in
grassland soil carbon stocks may be significantly altered depending
on the local conditions (Cornelissen et al., 2014; Lecomte et al., 2019;
McSherry & Ritchie, 2013).

Contrary to our hypothesis, we detected no negative impact of
human disturbance on ungulates, and instead detected a positive re-
lationship between human and sika deer distribution. These results
were unexpected as prior studies show ungulates avoiding areas
of high human activity (Bojarska et al., 2020; Bonnot et al., 2013;
D'Amico et al., 2016; lkeda, Kuninaga et al., 2019). The observed
preferences for high-cover vegetation offering seclusion from

human activity may mask any impact of human disturbance (Wevers
et al., 2020). Indeed, Jayakody et al. (2008) found red deer vigilance
behaviour was unaffected by human disturbance in high-cover vege-
tation, such as woodland. Alternatively, the primarily diurnal activity
of humans may complement a more crepuscular or nocturnal ungu-
late activity, allowing ungulates to coexist alongside human activity
(Akbaba & Ayas, 2012; Ikeda, Kuninaga et al., 2019; Ikeda, Takahashi
etal., 2019). For sika deer, previous studies demonstrate behavioural
flexibility in response to perceived predation risk through culling
(Ikeda, Takahashi et al., 2019; Ikeda & Koizumi, 2024). Thus, human
disturbance may not impact ungulate distributions if they are able to
avoid high-disturbance areas during daytime hours.

To our knowledge, this is the first time that spatiotemporal re-
lationships among this community of ungulate species have been
investigated. Unlike this study, most previous research does not ex-
plicitly consider both spatial and temporal aspects simultaneously
in their analyses, either considering them separately, or aggregat-
ing hourly data across days (Melberg, 2012; Mori et al., 2020; Zanni
et al., 2021). These approaches could make previous spatiotem-
poral relationships detected between species less reliable (Cusack
etal., 2017).

No spatiotemporal avoidance was detected between any of
the four species. This was contrary to our initial hypothesis, which
predicted spatiotemporal avoidance would be present, although
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some studies have detected attraction and facilitation between
ungulates. Bartos et al. (2002) found a lack of antagonistic interac-
tions between ungulate species including roe deer, whilst Imperio
et al. (2012) more specifically found both red deer and wild boar to
be positively influenced by roe deer. Having said this, these partic-
ular interactions were not recovered in this study. One possible ex-
planation for the lack of apparent spatiotemporal avoidance could
be dietary partitioning. Wild boar typically feed less on grasses
and woody browse than deer, instead opportunistically feeding on
fruits/seeds, underground plant parts, and non-plant items (Ballari
& Barrios-Garcia, 2014; Schley & Roper, 2003; Spitzer et al., 2020).
The three remaining deer species may split their foraging behaviour
along a ‘browser-grazer axis’, with the smaller roe deer acting as a
‘browser’ by selecting smaller amounts of the most nutritious food
items and the larger red and sika deer acting more as ‘grazers’ and
able to consume larger amounts of low-quality, fibrous forage (Endo
etal.,2017; Putman & Pemberton, 2022; Spitzer et al., 2020; Storms
et al., 2008). How the sika deer and red deer would differentiate
is less certain, but both species can demonstrate large variation
in forage types, with red deer in particular suggested to act more
as an intermediate feeder (Endo et al., 2017; Fraser, 1996; Zhong
et al., 2020). Finally, interactions between two ungulate species
are more plastic than is typically assumed, and the interaction type
can vary depending on factors such as an individual's life stage, the
time of year, and environmental factors (Bronstein, 1994; Ferretti &
Fattorini, 2021; Thompson, 1988). If sufficient resources are found
onsite, then hypothesised competition between species may be re-
duced, leading to the interspecific interactions between ungulates
manifesting non-competitively (Ferretti & Fattorini, 2021).

A significant spatiotemporal association was detected for
sika deer towards roe deer. This observed spatiotemporal asso-
ciation may indicate beneficial facilitatory relationships between
the sika deer and roe deer (Asefa, 2016). Spatiotemporal associa-
tions could be driven by a combination of grazing facilitation and
an anti-predator response. Grazing facilitation is where, through
feeding, one species makes forage in an area more accessible or
preferable to a second species (Colman et al., 2009; Gordon, 1988;
Odadi et al., 2011). As sika deer and roe deer diets split along a
grazing-browsing axis, the browsing action of the roe deer may
be making grasses more accessible to sika deer (Mann, 1982;
Putman, 1996; Putman & Pemberton, 2022; Spitzer et al., 2020;
Tixier & Duncan, 1996). Secondly, although no large wild preda-
tors still reside in Scotland, the culling programme on the Bunloit
rewilding project could be driving an anti-predator response and
spatiotemporal associations between ungulates, with the heav-
ily culled sika deer at the centre of this (Highlands Rewilding
Ltd, 2021a, 2021b). Indeed, sika deer are known to shift their ac-
tivity patterns in response to culling, with an increase in nocturnal
activity observed, whilst ungulates can form interspecific groups
as an anti-predator response (Asefa, 2016; Bartos et al., 2002;
Ikeda, Takahashi et al., 2019). Despite these mutually inclusive
suggestions, more research is required to identify the underlying
mechanisms behind these spatiotemporal associations.

Camera traps are a successful way to remotely monitor wild
animal populations in a less invasive and biased manner than tra-
ditional transect approaches (Marini et al., 2009). However, camera
trapping is not without its own limitations. For starters, a species is
only recorded as present when it is successfully detected and pho-
tographed by a camera trap. However, whether a species is success-
fully detected by a camera trap is partially dependent on camera
trap-level variables, such as the density of vegetation or the field of
view, which could risk biasing results (Sollmann, 2018). Furthermore,
although bias between camera traps was reduced by limiting the
study to one site over a single season, with a consistent camera trap
type and set-up, there may be differences in detectability between
species (Hofmeester et al., 2019). However, failure for a camera trap
to trigger appears to be less of a problem for large-bodied species
such as the ungulates studied here (Kays et al., 2021). Despite being
less invasive than other techniques such as telemetry and nocturnal
transects, camera traps can be noticed by wildlife and can trigger a
behavioural reaction, with both attraction to and avoidance of cam-
era traps observed (Henrich et al., 2020; Marini et al., 2009; Meek
et al., 2014; Roberts, 2011). Operational limitations of camera traps
can further hinder data collection, ranging from condensation dis-
torting photographs to failure of camera traps (Newey et al., 2015).

With novel land uses and ungulate communities present the
Scottish Highlands, it remains important to understand the dynam-
ics of ungulate communities. Using a camera trapping survey, this
study provided a snapshot understanding of the spring-summer land
cover preferences of sika deer, red deer, roe deer, and wild boar. For
wild boar, this is one of the first studies assessing its land cover pref-
erences and activities in Scotland, with prior studies limited to cap-
tive populations over smaller areas (Sandom et al., 2013a, 2013b). As
a keystone native species with only two to four current populations
in Scotland, the formal reintroduction of wild boar to Scotland has
been proposed (Leaper et al., 1999; Sandom et al., 2013a, 2013b).
The results from this study highlights the strong preference of wild
boar for grassland and woodland land cover types, and therefore
could be used to inform any proposed wild boar reintroductions of
the potential land cover preferences of released individuals and the
permeability of the landscape. We additionally used spatiotemporal
analyses to provide evidence of an attractive effect of sika deer to-
wards roe deer. To our knowledge, this is the first study to identify
this spatiotemporal association, and further research is needed to
both confirm this effect and understand the underlying reason for
this. Should roe deer partially influence sika deer activity, then any
changes in population size of roe deer (for example, through culling)
could lead to unanticipated changes to sika deer activity and thus
environmental impacts, something which land managers and con-

servation organisations should consider.
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