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Abstract The Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On missions have
enriched global groundwater monitoring, forming the basis for tools that detect groundwater drought, including
the GRACE-Groundwater Drought Index (GGDI). The reliability of GGDI is fundamentally tied to the accurate
isolation of a representative groundwater storage anomaly (GRACE-GWA) signal from GRACE observations,
a challenge heightened by the scarcity of direct water budget measurements and the diverse methodologies
applied in GRACE data processing. In this global assessment, we integrate multi-model GRACE-GWA
estimates into the GGDI framework to examine how variability among these estimates influences groundwater
drought interpretation across 37 study aquifers. Results reveal substantial sensitivity of key drought indicators to
input uncertainty, with maximum observed intra-basin discrepancies reaching 11 events, 122 months in
maximum duration, 63.33 months in average duration, 24.47 in severity, and 5.4 in intensity. Aquifer memory,
inferred from GGDI autocorrelation, reveals pronounced variability, most notably in the Nubian Basin where
memory estimates range from 3 to 61 months amongst multi-model realizations. Aquifers with higher memory
tended to experience fewer drought events, yet those droughts were typically longer and more intense. Our
findings underscore that even modest discrepancies in GRACE-GWA methodologies can translate into
considerable uncertainties in both drought indicators and aquifer memory, thereby compromising the reliability
of groundwater drought assessments.

1. Introduction

Drought, characterized as an extended period of water scarcity, disrupts ecosystems, economies, and societies by
virtue of an anomalous reduction in precipitation (Dracup et al., 1980; Mishra & Singh, 2010; Wilhite &
Glantz, 1985; Wilhite et al., 2014). Although drought commences with a precipitation deficit, incoming water
shortages propagate through the hydrological system, leading to diminished groundwater storage (Mishra &
Singh, 2010). Groundwater drought presents a complex and evolving challenge, shaped by the interplay of cli-
matic variability and anthropogenic pressures. Storage deficits can result from reduced recharge due to prolonged
precipitation deficits and limited infiltration (Goodarzi et al., 2016) and excessive groundwater abstraction that
exceeds natural replenishment rates (Bloomfield & Marchant, 2013; Bloomfield et al., 2015; Mishra &
Singh, 2010). Intensifying climate extremes coupled with escalating human interventions (Famiglietti, 2014;
Taylor et al., 2013; Thomas & Famiglietti, 2019) have magnified the frequency and severity of groundwater
drought (Panda et al., 2007; Tallaksen & Van Lanen, 2023). Often seen as a natural buffer during hydrological
(i.e., reduced streamflow) or agricultural (i.e., depleted soil moisture) droughts (Famiglietti, 2014), groundwater
has reliably supported human consumption and agricultural production (Castle et al., 2014; Hughes et al., 2012;
Scanlon et al., 2012; Siebert et al., 2010). However, unsustainable pumping practices undermine this resilience,
compounding water scarcity and intensifying drought impacts (Castle et al., 2014; Famiglietti et al., 2011;
Famiglietti & Rodell, 2013). Operational groundwater drought monitoring is hampered by the challenges of
directly measuring groundwater storage, particularly in transboundary or remote aquifers where in situ moni-
toring is sparse or absent (Condon et al., 2021; Famiglietti et al., 2011; Lall et al., 2020; Giordano, 2009; Jasechko
et al., 2024).

Thomas, Famiglietti, et al. (2017) introduced the Gravity Recovery and Climate Experiment (GRACE)
groundwater drought index (GGDI), a normalized groundwater storage-based indicator to enumerate ground-
water drought. By leveraging GRACE-derived groundwater storage anomalies (GRACE-GWA), the GGDI
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captures both surpluses and deficits, offering a comprehensive evaluation of groundwater drought conditions
(Thomas, Famiglietti, et al., 2017). Since its development, GGDI has been widely applied to analyze groundwater
drought and characterize its spatiotemporal variability across diverse aquifer systems (e.g., Ali et al., 2022; Aon
et al., 2024; Nikraftar et al., 2024; Song et al., 2024; Wang et al., 2020; Wang et al., 2022; Zhang et al., 2024). Its
broad applicability has enabled insight into groundwater system responses across a range of hydroclimatic set-
tings, facilitating the monitoring of drought onset, duration, intensity, and recovery, while also illuminating the
influence of both natural variability and anthropogenic pressures. However, despite the growing application of
GGDI, its interpretation hinges on the variability in GRACE-GWA time series (Thomas, Famiglietti, et al., 2017).
This variability is driven by differences in GRACE processing methods and uncertainties in other water budget
components (e.g., soil moisture, snow, surface water) (Akl et al., 2025; Akl & Thomas, 2023, 2024; Saxe
et al., 2021). Many GGDI applications since Thomas, Famiglietti, et al. (2017) have overlooked this inherent
variability, raising questions about the reliability of groundwater drought interpretations. For instance, Wang
etal. (2020) identified a severe drought event in the North China Plain (GGDI = —1.36) between August 2013 and
September 2014, while Ali et al. (2022) cited an extreme event in the Indus Basin in August 2010
(GGDI = —1.81), based on study periods of 2003-2015 and 2003-2016, respectively. Both studies relied on a
single land surface model (LSM) to disaggregate GRACE-TWSA into GRACE-GWA, thereby disregarding
structural model biases (Clark et al., 2008; Konapala et al., 2020; Ruddell et al., 2019) and possibly conflating
groundwater signals with unaccounted surface water components (Akl et al., 2022; Akl & Thomas, 2024; Castle
et al., 2014; Thomas & Nanteza, 2023).

Our evolving knowledge of the challenges in applying the water budget framework for estimating GRACE-GWA
(AKl et al., 2025; Akl & Thomas, 2024) translates to a compelling need to re-examine the GGDI framework.
Central to this re-examination is elucidating how variability amongst multi-model GRACE-GWA estimates
impacts GGDI interpretation. This can be achieved by quantifying and characterizing variability in key
groundwater drought indicators derived from the GGDI framework. In our study, we seek to (a) assess the in-
fluence of multi-model GRACE-GWA realizations on key groundwater drought indicators and (b) assess aquifer
memory variability for perceived groundwater drought. Our analysis centers on the world's largest aquifers, which
collectively store the majority of global groundwater and are vital to water and food security (Gleeson et al., 2012;
Margat, 2008; Margat & Van der Gun, 2013; Van der Gun, 2022).

To achieve our objectives, this study employs an integrated water balance framework that synthesizes multiple
GRACE solutions with a range of auxiliary data sets, resulting in up to 180 multi-model GRACE-GWA re-
alizations across 37 aquifer systems. This framework enables a systematic evaluation of how uncertainties in
GRACE-GWA propagate through the GRACE-Groundwater Drought Index (GGDI), influencing the robustness
and reliability of groundwater drought characterization. It also incorporates aquifer memory estimation derived
from GGDI autocorrelation, providing new insights into the persistence and recovery dynamics of aquifers under
varying hydroclimatic conditions.

Rather than prescribing a singular or deterministic drought narrative, this study foregrounds the interpretive
consequences of input divergence in GRACE-based drought assessment. By explicitly accounting for un-
certainties introduced through variations in GRACE-TWSA solutions and water budget components, our multi-
model framework provides a transparent and defensible approach to groundwater drought characterization. Our
framework is particularly salient in data-sparse regions, where GRACE-based indicators may represent the sole
line of evidence of drought onset and recovery. Ultimately, this study seeks to enhance the interpretability and
credibility of GRACE-based drought assessments, supporting more context-aware and evidence-driven
groundwater management decisions.

2. Data and Methods

This study focuses on 37 large aquifer systems as defined by the Worldwide Hydrogeological Mapping and
Assessment Program (WHYMAP; Margat & Van der Gun, 2013) for the period spanning April 2002 to December
2022 (Figure 1 and Table S1 in Supporting Information S1). These aquifers are among the world's most productive,
holding a substantial share of accessible global groundwater resources (Gleeson et al., 2012; Margat, 2007; Richey
et al., 2015; Thomas, Caineta, & Nanteza, 2017; Van der Gun, 2022). In addition, each aquifer exceeds the
minimum 100,000 km? spatial threshold necessary for reliable GRACE-based assessments (Scanlon et al., 2016).
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Figure 1. Map of the 37 study aquifers, sourced from the World-wide Hydrogeological Mapping and Assessment Program (WHYMAP; Margat & Van der Gun, 2013).
Numeric labels refer to aquifer names listed in Table S1 in Supporting Information S1. The color scale represents the aridity index, sourced from the CGIAR-CSI Global
Aridity Index and Potential Evapotranspiration Climate Database V3 (Global-AI_PET; Zomer et al., 2022), where Hyper-Arid regions are shown in dark brown, Arid in
medium brown, Semi-Arid in light brown, Sub-Humid in medium green, and Humid in dark green.

These aquifers span a wide range of climatic zones, from hyper-arid to humid conditions, offering diverse contexts
for investigating hydrological processes (Figure 1).

2.1. GRACE-Terrestrial Water Storage Anomalies (GRACE-TWSA)

GRACE-Terrestrial Water Storage Anomalies (GRACE-TWSA) were obtained from five GRACE-based solu-
tions covering the interval from April 2002 to December 2022, including both spherical harmonic (SH; Landerer
& Swenson, 2012; Landerer, 2021) and mass concentration (mascon; Landerer et al., 2020; Save, 2020; Save
et al., 2016; Watkins et al., 2015; Wiese et al., 2016; Wiese et al., 2018) approaches. The SH solutions were
provided on 1° X 1° global grids by three data processing centres: the Centre for Space Research (CSR-SH; RL06
V04), Jet Propulsion Laboratory (JPL-SH; RL0O6 V04), and GeoForschungsZentrum (GFZ-SH; RL06 V04)
(https://grace.jpl.nasa.gov/; last access: 3 December 2024). Meanwhile, mascon solutions were supplied by CSR
(CSR-M; RL06 V02) on a 0.25° X 0.25° global grid (https://www2.csr.utexas.edu/grace/; last access: 3 December
2024) and by JPL (JPL-M; RL0O6 V04) on a 0.5° X 0.5° global grid (https://grace.jpl.nasa.gov/; last access: 3
December 2024).

Data gaps between the GRACE and GRACE-FO missions (July 2017-May 2018) were omitted, and shorter
missing intervals (one to two months) were filled using cubic spline interpolation (Aon et al., 2024; Wei
et al., 2021). This study avoided JPL scale factors derived from the Community Land Model (CLM; Lawrence
et al., 2011), due to concerns regarding their reliability in regions where key hydrological processes are either
oversimplified or entirely absent (Wiese et al., 2016). For example, CLM has well-documented limitations in
representing snow accumulation and melt dynamics, as well as anthropogenic groundwater withdrawals (Wiese
et al., 2016), processes that are critical for accurately resolving groundwater storage changes in many of the
aquifer systems investigated.

2.2. Water Budget Components
2.2.1. Snow Water Equivalent Anomalies (SWEA)

Monthly SWEA were derived from six modeling and reanalysis systems, each offering unique spatial resolutions
and physical representations. Three data sets were obtained from LSMs provided by the NASA Global Land Data
Assimilation System (GLDAS; V2.1; last access: 9 December 2024; Rodell et al., 2004), including NOAH at
1° X 1°, Variable Infiltration Capacity (VIC) at 1° X 1°, and Catchment Land Surface Model (CLSM) at 1° X 1°.
High-resolution SWEA data were also sourced from NOAH at 0.10° x 0.10° via the Famine Early Warning
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System Network (FEWS NET) Land Data Assimilation System (FLDAS; V001; last access: 9 December 2024;
McNally et al., 2017). Additional data sets included the WaterGAP Global Hydrology Model v2.2e (WGHM; last
access: 9 December 2024; Miiller Schmied et al., 2024) at 0.5° X 0.5° resolution and the ERAS5-Land data set at
0.10° x 0.10° resolution (Copernicus Climate Change Service, 2022; last access: 9 December 2024; Muiioz-
Sabater et al., 2021).

2.2.2. Soil Moisture Anomalies (SMA)

Soil moisture anomalies (SMA) were derived from the same modeling systems and reanalysis used to estimate
SWEA (Section 2.2.1). These model-based SMA data sets are widely used in GRACE-based groundwater as-
sessments due to their long-term availability and spatial completeness. In contrast, remote sensing products, such
as SMAP (Entekhabi et al., 2010), were deliberately excluded due to limitations including elevated noise,
temporal discontinuities and limited sensing depth (Beck et al., 2021).

The employed model output represents soil moisture using distinct structural formulations and vertical dis-
cretizations. The NOAH model (at 1° and 0.10° resolutions), simulates soil moisture through a multi-layer soil
profile divided into four depths: 0—10 cm, 1040 cm, 40-100 cm, 100-200 cm (Rodell et al., 2004). VIC represents
soil moisture within three layers: a surface layer (0-30 cm), a variable-depth second layer, and a bottom layer.
CLSM conceptualizes soil moisture within three reservoirs: the Surface layer (0-2 cm), Root Zone (0—100 cm), and
the Profile reservoir (varies grid-by-grid). WGHM simulates monthly soil moisture within the effective root zone
using a single-layer soil water storage compartment that integrates land cover, soil-specific maximum storage
capacity, and soil texture (Miiller Schmied et al., 2024). ERA5-Land provides volumetric soil moisture estimates
across four layers: 0—7 cm, 7-28 cm, 28—100 cm, and 100-289 cm (Muifioz-Sabater et al., 2021). To avoid inclusion
of saturated or groundwater-affected zones, especially across humid basins (Fan et al., 2013), only the upper 0-1 m
of the modeled soil column was considered. This depth range captures the dynamic portion of the root zone and is
widely used in GRACE-based studies to represent the soil moisture component of the terrestrial water balance (Akl
& Thomas, 2024; Thomas et al., Thomas, Famiglietti, et al., 2017).

However, soil thickness remains a critical and often underappreciated source of structural uncertainty in water
balance modeling. Numerous studies have shown that the depth of modeled soil layers can significantly influence
soil moisture dynamics, particularly during drought conditions. Shallow soil schemes often produce unrealisti-
cally persistent moisture signals due to limited water-holding capacity and weak coupling with deeper subsurface
layers (Houborg et al., 2012; Swenson & Lawrence, 2015; Thomas, Famiglietti, et al., 2017; Thomas, Caineta, &
Nanteza, 2017). Most LSMs and hydrological models impose fixed saturation thresholds and typically do not
simulate dynamic groundwater—soil moisture interactions (Rodell & Famiglietti, 2001). In humid regions, where
the simulated water table may intersect the upper soil layers, this can lead to inadvertent inclusion of shallow
groundwater in modeled SMA, causing underestimation of GRACE-GWA (Fan et al., 2013). In contrast, in arid
and semi-arid regions characterized with deep unsaturated zones, modeled soil moisture may underrepresent
actual storage changes, resulting in overestimation of GRACE-GWA (Fan et al., 2013; Scanlon et al., 2009;
Shamsudduha & Taylor, 2020). These discrepancies highlight the critical importance of accounting for soil depth
assumptions and their hydrological implications when incorporating SMA into the GRACE-based groundwater
framework.

2.2.3. Surface Water Storage Anomalies (SWA)

Surface water storage anomalies (SWA) primarily capture variations in lakes, reservoirs, rivers and floodplains,
which play a pivotal role in modulating basin-scale hydrological regimes. Over half of the world's major river
systems are influenced by reservoir operations (Nilsson et al., 2005), and this influence is expected to grow with
the ongoing expansion of global storage infrastructure (Duan & Bastiaanssen, 2013). Despite their significance,
consistent and spatially resolved in situ observations of surface water dynamics remain limited. Where such
records exist, they are often fragmented, inconsistently reported, or inaccessible due to institutional, political, or
logistical constraints (Alsdorf et al., 2007; Busker et al., 2019; Tortini et al., 2020).

In the absence of systematic monitoring networks, SWA has traditionally been approximated using river-routing
components embedded in large-scale hydrological models (e.g., Han et al., 2009; Kim et al., 2009), land surface
models such as GLDAS (e.g., Shamsudduha & Taylor, 2020; Thomas, Caineta, & Nanteza, 2017), or reanalysis
products like ERA5-Land (e.g., Amazirh et al., 2024). Although these data sets provide long-term continuity and
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global coverage, they remain constrained by limited calibration and sparse validation, particularly across data-
scarce regions, resulting in substantial uncertainty in simulated surface water storage (Gao et al., 2012).

To address SWA accounting challenges (Alsdorf et al., 2007; Busker et al., 2019; Tortini et al., 2020), this study
assumed that reservoir and lake storage represents SWA and applied integrated satellite-based data sets from
GloLakes (Hou et al., 2024; last access: 08 June 2023) and the Copernicus Climate Change Service (Copernicus
Climate Change Service, 2020; https://cds.climate.copernicus.eu/; V5; last access: 15 December 2024). The
Hydrological Data and Maps Based on Shuttle Elevation Derivatives at Multiple Scales data set (HydroSHEDS;
Lehner et al., 2008; V10; last access: 01 June 2023) was used to delineate lake and reservoir extents (Figure S1 in
Supporting Information S1). While GloLakes offered lake-storage data, Copernicus supplied lake water-level
observations that required integration with time-varying lake area. This integration was achieved using the
global lake bathymetry data set (GLOBathy; Khazaei et al., 2022), enabling a reliable representation of surface
water storage changes (Akl & Thomas, 2024).

A quality-control algorithm excluded lakes with more than one missing seasonal reading in any calendar year,
producing a final data set of 429 lakes (415 from GloLakes and 14 from Copernicus; Table S2 and Figure S2 in
Supporting Information S1). The data were aggregated to produce consistent monthly intervals, with any
remaining gaps filled via cubic spline interpolation.

2.3. Disaggregating GRACE-TWSA Into GRACE-GWA

GRACE-TWSA offers an integrated estimate of terrestrial water storage changes, encompassing soil moisture
anomalies (SMA), snow water equivalent anomalies (SWEA), surface water anomalies (SWA), vegetation canopy
anomalies (VCA), and groundwater storage anomalies (GRACE-GWA). In this study, VCA was excluded from
the water balance equation due to its negligible influence on GRACE-TWSA, consistent with prior work across a
range of hydroclimatic settings (Nanteza et al., 2016; Richey et al., 2015; Thomas, Caineta, & Nanteza, 2017).
Isolating GRACE-GWA from GRACE-TWSA relies on the water balance equation (Equation 1), which assumes
that accurate accounting for water budget components (i.e., SMA, SWEA, SWA) allows the extraction of a
representative GRACE-GWA signal (Rodell & Famiglietti, 1999).

GRACE-TWSA, = SMA, + SWEA, + SWA, + GRACE-GWA, (1)

where the subscribe ¢ denotes time.

To ensure consistency with GRACE processing methodologies, all water budget components (soil moisture,
snow, and surface water) were processed in accordance with GRACE standards (Nanteza et al., 2016). For
spherical harmonic (SH) solutions, with significant leakage potential (Awange et al., 2014; Fatolazadeh
et al., 2016; Guo et al., 2016; Klees et al., 2007; Landerer & Swenson, 2012; Lenk, 2013; Longuevergne
et al., 2013; Nanteza et al., 2016; Swenson & Wahr, 2002), water budget data were projected onto GRACE grids
and underwent truncation at harmonic degree 60, destriping with a decorrelation filter (Swenson & Wahr, 2006)
and smoothing using a 300 km radius Gaussian filter (Landerer, 2021; Landerer & Swenson, 2012). Subse-
quently, these processed components were converted to anomalies by removing the mean of the time series over
the period from January 2004 to December 2009, before being subtracted from GRACE-TWSA grids. In contrast,
for mascon solutions, potential leakage across GRACE grids was presumed to be effectively addressed during
processing (Bhanja et al., 2016; Neves et al., 2020; Richey et al., 2015; Rodell et al., 2018; Save et al., 2012, 2016;
Scanlon etal., 2016, 2021, 2022; Thomas, Caineta, & Nanteza, 2017; Thomas, Famiglietti, et al., 2017; Thomas &
Famiglietti, 2019; Watkins et al., 2015; Wang et al., 2020; Wiese et al., 2016). Water budget components were
converted to anomalies by subtracting the mean over January 2004 to December 2009 and further subtracted from
the respective GRACE grids prior to averaging at the basin scale. The original spatial resolutions of both SH and
mascon grids were preserved, with data clipped to basin boundaries to maintain spatial fidelity and integrity (Akl
& Thomas, 2024).

This analysis utilized a structured multi-model framework that integrated five GRACE-TWSA solutions, six
SMA data sets, six SWEA data sets, and a SWA estimate within the water balance equation (Equation 1) to derive
multiple GRACE-GWA realizations across 37 study aquifers. These aquifers span a diverse range of climatic and
hydrological conditions, reflecting substantial variability in the composition of water budget components
incorporated into the water balance equation (Equation 1; Figure 1). Rather than aggregating data sets, each was
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treated as a discrete input to explicitly represent structural uncertainty arising from input selection. For aquifers
where all four components (GRACE-TWSA, SMA, SWEA, and SWA) were available, this configuration yielded
180 possible GRACE-GWA realizations (5 GRACE-TWSA x 6 SMA X 6 SWEA X 1 SWA). Where one or more
components were unavailable (i.e., SWEA and SWA), the number of realizations was adjusted accordingly (Table
S3 in Supporting Information S1).

This multi-model framework was not intended to estimate internal variability or measurement error within a given
configuration, but instead to characterize the methodological divergence that emerges from the use of multiple,
plausible input data sets (Akl & Thomas, 2024). While this cross-combination may not preserve strict physical
consistency between individual water budget components (e.g., pairing SWEA from one model with SMA from
another), the intention was not to maintain such consistency but to quantify the methodological divergence that
arises from multiple, independently derived yet plausible data sets. This approach aligns with recent multi-model
studies designed to assess input-driven uncertainty in GRACE-based groundwater storage estimates (e.g., Akl
et al., 2025; Akl & Thomas, 2024; Li et al., 2023; Rateb et al., 2020).

2.4. GRACE-Groundwater Drought Index (GGDI)

The GRACE-Groundwater Drought Index (GGDI; Thomas, Famiglietti, et al., 2017) is applied to detect and
quantify groundwater drought across study aquifers. As a normalized measure of groundwater storage deviation,
GGDI captures both natural variability and anthropogenic pressures on subsurface storage, thereby offering an
integrated perspective on drought conditions (Thomas, Famiglietti, et al., 2017). This interpretation aligns with
the conceptual framework proposed by Van Loon et al. (2016), which highlights the importance of accounting for
both natural and human-induced factors in drought characterization. GGDI is derived from GRACE-GWA and
reflects departures from expected seasonal conditions. To remove the influence of seasonality, a monthly
climatology (C;) was calculated for each calendar month (i = 1, 2,...,12) given as:

_ 31 GRACE-GWA,

G @

n;
where n; represents the number of years of data available for month i (Thomas et al., 2014; Thomas, Famiglietti,
et al., 2017). This climatology defines the expected seasonal pattern of groundwater storage and serves as the
reference baseline for anomaly detection. The climatology (C;) is removed from GRACE-GWA to compute the
Groundwater Storage Deviation (GSD), which represents net seasonal variation in groundwater storage (Thomas,
Famiglietti, et al., 2017). The GSD was further standardized to derive the GGDI using the formula:

GSD; = Xgsp
OGSD

GGDI, = 3)

where ¢ accounts for time and Xggp and oggp are the mean and standard deviation of the GSD time series,
respectively (Thomas, Famiglietti, et al., 2017). Following Thomas, Famiglietti, et al. (2017), a groundwater
drought event is defined as a period beginning with at least three consecutive months of GGDI < 0, and it ter-
minates after three consecutive months of GGDI > 0.

2.5. Groundwater Drought Indicators

GGDI indicators were applied to characterize groundwater drought: the number of drought events, representing
the total count of distinct drought occurrences; the maximum drought duration, defined as the total number of
months characterizing the longest drought over the observational period; the average drought duration, capturing
the mean length of all drought events occurring during the observational period; the drought severity, quantified
as the cumulative sum of GGDI values during drought periods; and drought maximum intensity, representing the
minimum GGDI value recorded across all drought events, captures the most extreme intensity observed among all
identified drought periods.
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2.6. Aquifer Memory

Aquifer memory refers to the temporal persistence of groundwater storage anomalies, capturing how long the
hydrological impacts of a drought event continue to influence subsequent conditions. It reflects the intrinsic
response time of an aquifer system and serves as a proxy for its resilience to climatic variability and anthropogenic
stress (Neves, 2024; Opie et al., 2020). In this study, aquifer memory was quantified by examining the auto-
correlation structure of the GGDI time series. Specifically, memory was defined as the number of months required
for the autocorrelation coefficient to decline below 0.1, a threshold commonly used to indicate the point at which
the influence of antecedent conditions becomes statistically insignificant (Bloomfield & Marchant, 2013; Dubois
& Larocque, 2024).

Aquifer memory provides an informative characterization of groundwater persistence, enabling cross-aquifer
comparison of recovery dynamics. Longer memory values indicate sustained drought impacts and delayed hy-
drological recovery, while shorter memory signals a more responsive system. To examine how memory corre-
lated with drought behavior, estimated memory were systematically compared with key groundwater drought
indicators, including event frequency, maximum and average duration, severity, and maximum intensity.

3. Results
3.1. Propagation of Uncertainty Through GRACE-Groundwater Drought Index (GGDI)

Figure 2 depicts the variability in multi-model GRACE-GWA for the Northern Great Plains Aquifer—Judith River
(Basin 13), emphasizing how discrepancies in GRACE processing methods and water budget accounting
propagate through each sequential stage of GGDI derivation. The figure is arranged in four panels—GRACE-
GWA (top), Climatology (second), GSD (third), and GGDI (bottom)—with each panel displaying the multi-
model realizations (gray lines/shading) and their corresponding mean (green line). In the top panel, the
GRACE-GWA time series is anchored to a January 2004—December 2009 baseline, rendering anomalies within
this reference window comparably subdued. Post-2009, however, the amplitude volatility increases, particularly
between 2010 and 2012 when the aquifer recharged due to reported episodes of rapid snowmelt and intense
precipitation (Coles et al., 2017; Dumanski et al., 2015). The divergence among realizations in both the magnitude
and timing reflects the influence of model structural bias when disaggregating GRACE-TWSA into GRACE-
GWA (Akl & Thomas, 2024).

In the second panel (Climatology), the derived monthly mean captures the aquifer's expected seasonal cycle of
storage increases and decreases, exposing significant discrepancies among estimates driven by divergent model
assumptions. These discrepancies are particularly pronounced during seasonal peaks and troughs, where im-
pediments in water partitioning led to pronounced variations in climatology amplitudes. In the third panel, the
Groundwater Storage Deficit (GSD) quantifies deviation from the seasonal climatology, delineating intervals of
groundwater surplus (positive GSD) or deficits (negative GSD). Notably, abrupt shifts—such as those noted in
early 2010—coincide with notable expansions in the GSD realization spread, signaling heightened ambiguity in
model water budget allocation.

Finally, in the bottom panel (GGDI), GSD values are standardized to allow comparisons of groundwater drought
intensity. By converting absolute storage deficits to a z-score measure, GGDI is thought to reduce amplitude-
driven uncertainty. Variability in GGDI, attributed to GRACE processing methodologies and water budget
component selection, increases notably during abrupt hydrologic transitions, indicating heightened model water
allocation discord under rapid change. For example, GGDI values range from 0.25 to —2.80 in January 2003, 0.15
to —2.75 in February 2010, 2.40 to —1.50 in March 2011, and 1.00 to —2.15 in June 2022. When the realization
means hovers near zero (e.g., in 2010-2012 or 2019-2020), small deviations can shift apparent conditions be-
tween mild drought and near-normal, fundamentally altering drought classification.

3.2. Groundwater Drought Indicators Across Study Basins

Figure 3 presents five key groundwater drought indicators for the 37 aquifer systems. The number of drought
events exhibits substantial inter-basin variability, with ranges extending up to 11 events (Figure 3 and Table 1).
For instance, Basin 25 (Yakut; Sub-Humid) displayed the widest range—from 1 to 12 events—while Basin 22
(Indus; Arid) showed the narrowest, with counts between 3 and 5. In general, humid basins tend to register both a
higher number of drought events and greater variability, whereas arid basins typically record fewer events with
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Figure 2. Time series of GRACE-GWA and associated climatology, groundwater storage defects (GSD), and GRACE-groundwater drought index (GGDI) across study
basin number 13 (Northern Great Plains Aquifer-Judith River) from April 2002 to December 2022. The blue-shaded area marks the gap period between the GRACE and
GRACE-FO missions, which was excluded from the analysis. For the time series of all 37 study basins, please refer to Figures S3:S39 in Supporting Information S1.

less variability. Nonetheless, notable outliers exist among arid basins: Basin 1 (Nubian) recorded a range of 1-10
events, Basin 5 (Taoudeni-Tanezrouft) ranged from 3 to 11, and Basin 29 (Tarim) also varied between 3 and 11
events.

Variability in maximum drought duration also differed markedly across basins, with ranges spanning from 0 to
122 months (Figure 3 and Table 1). For example, Basin 1 (Nubian; Hyper-Arid) exhibited the greatest variability,
with maximum drought durations ranging from 30 to 152 months, whereas Basin 22 (Indus; Arid) demonstrated
no variability, with a consistently recorded maximum drought duration of 55 months. Average drought duration
followed a similar pattern, varying between 6 and 63.5 months. Notably, Basin 25 (Yakut; Sub-Humid) recorded
the highest variability in average duration—ranging from 11 to 74.5 months—while Basin 22 (Indus; Arid) again
exhibited the lowest variability, with average durations confined to a narrow band between 32.5 and 38.5 months.
The overall findings suggest that arid basins tend to exhibit longer drought duration and greater variability in both
maximum and average drought durations, in contrast to shorter drought duration and reduced variability observed
in humid basins.

Drought severity revealed pronounced inter-basin differences (Figure 3 and Table 1). Basin 1 (Nubian; Hyper-
Arid) exhibited the highest variability, with severity values ranging from —101 to —76.5 (a range of 24.5),
whereas Basin 18 (Amazonas; Humid) showed the lowest variability, with values spanning from —102.5 to —97.5
(arange of 5.0). In general, arid basins tended to display high variability in drought severity—except for Basins 4
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Figure 3. Groundwater drought indicators derived from GGDI time series for 37 study aquifers spanning April 2002 to December 2022. Five indicators are displayed
across panels: the number of drought events, maximum duration, average duration, severity, and maximum intensity. Aquifers are ordered by aridity class to facilitate
climate-based comparisons, where Hyper-Arid regions are shown in dark brown, Arid in light brown (tan), Semi-Arid in green, Sub-Humid in sky blue, and Humid in

medium blue (royal blue). The gap period between the GRACE and GRACE-FO missions was excluded from this analysis.
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Table 1

Climate Zones Across Study Basins and the Variability Ranges of Groundwater Drought Indicators, Defined as the Difference Between the Maximum and Minimum

Values, Including the Number of Drought Events, Maximum Duration (Months), Average Duration (Months), Severity, and Maximum Intensity

Range of variability (maximum—minimum)

Basin Climate zone Number of drought events Maximum duration (m) Average duration (m) Severity Max intensity
1 Hyper Arid 9 122 61.69 24.47 5.39
2 Hyper Arid 3 10 25.13 10.68 1.00
21 Hyper Arid 4 34 46.67 9.76 2.61
29 Hyper Arid 8 23 33.42 21.71 2.93
3 Arid 6 86 28.04 13.46 2.72
4 Arid 5 37 58.17 6.59 0.48
5 Arid 8 73 30.73 19.81 1.74
6 Arid 7 45 39.00 12.19 1.25
11 Arid 8 82 25.90 13.53 2.11
15 Arid 5 24 38.25 11.66 1.60
22 Arid 2 0 6.17 6.14 0.74
35 Arid 5 23 24.83 6.47 1.01
36 Arid 5 24 51.50 13.81 1.29
9 Semi-Arid 9 78 40.98 13.59 2.99
10 Semi-Arid 7 105 19.04 13.49 1.80
13 Semi-Arid 6 72 46.25 19.12 1.62
14 Semi-Arid 6 21 39.57 9.01 0.93
16 Semi-Arid 6 25 23.58 7.85 1.30
19 Semi-Arid 6 117 61.00 9.85 0.49
27 Semi-Arid 5 46 31.33 9.95 2.06
33 Semi-Arid 3 64 40.92 9.37 1.19
25 Sub humid 11 121 63.33 15.63 1.59
26 Sub humid 4 18 35.63 5.66 0.90
30 Sub humid 6 2 8.00 9.83 0.94
7 Humid 6 46 17.85 8.71 1.08
8 Humid 5 32 12.42 7.66 0.69
12 Humid 6 110 15.30 7.89 1.88
17 Humid 6 21 16.00 7.06 1.27
18 Humid 5 63 10.38 5.00 1.52
20 Humid 3 54 9.63 5.70 0.86
23 Humid 2 18 17.17 5.74 1.15
24 Humid 9 55 27.42 17.59 1.61
28 Humid 8 112 21.44 20.76 2.17
31 Humid 6 53 50.08 11.12 0.67
32 Humid 9 51 29.94 16.15 2.01
34 Humid 10 87 49.56 11.36 0.92
37 Humid 10 41 42.23 10.82 1.37
Note. For comprehensive statistical details, please refer to Tables S4:S9 in Supporting Information S1.
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Figure 4. Box blots of aquifer memory (in months) across 37 study aquifers, ordered by aridity class, where Hyper-Arid regions are shown in dark brown, Arid in light
brown (tan), Semi-Arid in green, Sub-Humid in sky blue, and Humid in medium blue (royal blue).

(Tulluemeden-Irhazer; Arid), 16 (Ogallala; Semi-Arid), 22 (Indus; Arid), and 35 (Canning; Arid), which exhibited
narrower ranges of 6.5, 7.8, 6.1, and 6.5, respectively. Conversely, while humid basins typically exhibited lower
variability, outliers were noted in Basins 24 (West Siberian), 28 (Middle Heilongjiang-Amur River), and 32
(Pechora), with ranges of 17.5, 20.8, and 16.1, respectively.

Maximum intensity revealed significant heterogeneity across the study basins (Figure 3 and Table 1). Notably,
Basin 1 (Nubian; Hyper-Arid) exhibited the highest variability, with GGDI ranging from —2.0 to —7.5—a range
of approximately 5.5 points. Following this apex of variability, other arid basins—specifically Basins 3 (Chad), 9
(Karoo), 21 (Arabian) and 29 (Tarim)—displayed variability with ranges around 3 points. Meanwhile, Basins 4
(Iulluemeden-Irhazer; Arid), 8 (Coango; Humid), 19 (Yrenda-Toba-Tarijefio; Semi-Arid), and 31 (Russian
Platform; Humid) exhibited minimal variability, confined to roughly 0.50 points. The findings underscore that
arid basins are distinguished by both elevated maximum intensity values and markedly greater variability,
whereas humid basins consistently register lower maximum intensity values accompanied by reduced variability.

In humid basins, drought events occur more frequently—with a broad range of variability—yet these events tend
to have relatively short and consistent durations and severity. In contrast, arid basins, while recording fewer
events with a narrower variability range, often exhibit prolonged durations and more extreme intensity values,
accompanied by high variability. Moreover, several outlier basins underscore the complex influence of multi-
model GRACE-GWA variability on drought characterization.

3.3. Aquifer Memory Across Study Basins

Figure 4 displays aquifer memory estimates for the 37 study basins. These memory estimates are derived from a
series of GGDI calculations based on multi-model GRACE-GWA estimates. Aquifer memory demonstrated
striking inter-basin variability, ranging from 9 to 65 months (Figure 4 and Table 2). For example, Basin 37 (Paris;
Humid) exhibited the broadest range, with estimates spanning from 3 to 68 months, whereas Basins 26 (North
China Plains; Sub-Humid) and 33 (Taurus-Zagros; Semi-Arid) showed much narrower ranges, varying from 45 to
54 months.

In general, hyper-arid and arid basins tended to display both higher aquifer memory values and greater variability.
For instance, Basin 1 (Nubian) exhibited a variability range of 58 months (3—61 months), and Basin 6 (Senegalo-
Mauretanian) recorded some of the highest values, ranging from 12 to 71 months. An intriguing outlier was Basin
21 (Arabian), which, despite having relatively high memory values (48—60 months), showed only a 12-month
variability range, possibly reflecting the combined effects of minimal precipitation and intensive groundwater
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Table 2 extraction for agricultural purposes (Siebert et al., 2010). In contrast, humid

Climate Zones Across Study Basins and the Aquifer Memory Statistics,

Including Minimum Values (Min), Lower Quartile (Q1), Median, Upper

Quartile (Q3), and Maximum Values (Max)

Aquifer memory statistics

and sub-humid basins generally exhibited lower aquifer memory values with
minimal variability. For example, Basin 18 (Amazonas) recorded memory
estimates ranging from 14 to 28 months, a narrow variability of just
14 months. Yet, outliers such as Basin 23 (Ganges-Brahmaputra) and Basin
26 (North China Plains), despite maintaining relatively narrow ranges, re-

Basin Climate zone Min Q1 Median Q3 Max ) )
- ported considerably higher memory values (51-62 and 45-54 months,
l e . 4 = = el respectively), likely reflecting the impact of dense populations and intense
2 Hyper Arid 40 52 57 59 60 irrigation demand (Richey et al., 2015). Notably, Basin 37 (Paris) emerges as
21 Hyper Arid 48 55.75 58 58 60 an extreme case, demonstrating the most pronounced variability with a range
29 Hyper Arid 5 10 18 36 46 spanning 65 months.
3 Arid 4 7 12 31.25 50 Figure 5 compares aquifer memory estimates derived from GRACE-GWA
4 Arid 26 51 51 56 58 and GGDI time series across the 37 study basins. In both cases, memory is
5 Arid 3 7 10 13.5 61 defined as the number of months required for the lagged autocorrelation of the
6 Arid 12 46.75 62 63 71 time series to fall below 0.1, following a consistent methodological frame-
1 Axid 8 1 115 15.25 62 wor'k. This comparl.son.lsolates the influence of chmlatology removal, applied
during GGDI derivation, on the temporal persistence of groundwater
15 Arid 19 29 40 43 50 .
anomalies.
22 Arid 15 24 28 36 63
35 Arid 12 14 4 30 46 The removal o.f seasonal chmatol(?gy exerts a §ubstant1al influence on aqulfer
memory, altering both the magnitude of estimates and the range of inter-
36 Arid 27 31 34 39 53 L L. . . . .
realization variability across the 37 study basins (Figure 5). While aquifer
9 Semi-Arid 9 18 205 25 57 memory generally increases following climatology removal, the extent and
10 Semi-Arid 8 20 22 27.25 50 nature of this change vary markedly across hydroclimatic regimes. In humid
13 Semi-Arid 17 46 51.5 53.25 68 basins, where groundwater storage is regulated by recurring seasonal recharge
14 Semi-Arid 18 26 30 35 49 (Jasechko et al., 2014), removing the climatological signal exposes slower,
16 Semi-Arid 20 ” 23 27 30 mt.e.ranr.lual ﬂgctuatlons—thereby. increasing both aquifer memory and Vfil’l-
ability in aquifer memory magnitudes. For example, the range of aquifer
19 Semi-Arid 19 22 25 25 39 . . . . .
memory widened in Basin 18 (Amazonas) from 1 to 35 months, in Basin 12
27 Semi-Arid 12 17 20 23 52 (Karoo-Carbonate) from 1 to 14 months, and in Basin 8 (Coango) from 1 to
33 Semi-Arid 45 48 50 52 54 12 months.
25 Sub humid 4 15 19 24 50 . . . .
ub A Conversely, arid and semi-arid basins, where groundwater dynamics are
2 Sitly 2l = & 20 2l o shaped primarily by episodic recharge and long-term storage trends, tended to
30 Sub humid 10 12 14 23 60 show reduced aquifer memory variability was noted following climatology
7 Humid 14 17 18 22 34 removal. Notable examples include Basin 33 (Taurus-Zagros), where range
8 Humid 12 18 19 20 24 narrowed from 47 to 9 months; Basin 21 (Arabian), from 27 to 12 months;
12 Humid 14 16 18 o 8 Basin 16 (Ogallala), from 23 to 10 months; and Basin 2 (Northwest Sahara),
- —_— 18 " - 2 - from 43 to 20 months. In a few basins, the effect was minimal, as observed in
umi . . . .
_ Basins 30 (North Caucasus; Sub-Humid) and 36 (Great Artesian; Arid),
1 Lilrmld ¢ ? = 12 e where aquifer memory was little changed, from 49 to 50 and from 25 to
20 Humid 10 12 12 13 21 26 months, respectively. In certain cases, the influence of climatology
23 Humid 51 56 57 59 62 removal was especially pronounced. For instance, in Basin 23 (Ganges-
24 Humid 13 17 19 23 35 Brahmaputra), aquifer memory increased considerably from 5-30 months to
28 Humid 50011 13 15 59  1-62 months.
31 Humid 24 45 56 59 61 Notable changes in aquifer memory underscore the hydrological significance
32 Humid 3 6 9 20 41 of climatology removal in shaping aquifer memory diagnostics. In humid
34 Humid 5 13 30 39 49 regio.ns, where seasor.lal recharge dominates, elimina?ing th.e recurring signal
. R 3 3 21 i . unveils deeper per51§tenc§ patt'erns that substantially mﬂuence', a.q.ulft?r
memory. Conversely, in arid environments, where groundwater variability is
driven more by episodic or decadal-scale events (Scanlon et al., 2022;
Shamsudduha & Taylor, 2020), the effect of climatology removal is comparatively muted. This contrast high-
lights the methodological sensitivity of aquifer memory to signal decomposition and reinforces the need to
interpret persistence metrics through the lens of basin-specific hydroclimatic context.
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Figure 5. A comparison of aquifer memory (in months), calculated from the GRACE-Groundwater Drought Index (GGDI; medium blue (royal blue)) and GRACE-
groundwater storage anomalies (GRACE-GWA; sky blue), across 37 study aquifers.

3.4. Correlation Analysis of Aquifer Memory and Drought Indicators

Spearman correlation analysis was conducted to document the relation between aquifer memory and groundwater
drought indicators across study basins (Figure 6). When comparing aquifer memory and drought event frequency,
average Spearman correlation coefficients (p) were —0.77 for hyper-arid, —0.64 for arid, —0.56 for semi-arid,
—0.64 for sub-humid, and —0.54 for humid basins. These negative correlations indicate that aquifer memory is
generally linked to reduced drought event frequency, suggesting that aquifer memory may serve as an effective
buffer against frequent drought occurrences. However, certain basins—such as Basin 8 (Coango; Humid), Basin
17 (Atlantic and Gulf Coastal Plains; Humid), and Basin 33 (Taurus—Zagros; Semi-Arid)—display positive
correlations (0.26, 0.63, and 0.33, respectively).

In contrast, the relationship between aquifer memory and maximum drought duration generally shows a positive
correspondence (Figure 6). Average correlations are p = 0.50 for hyper-arid, 0.49 for arid, 0.50 for semi-arid, 0.36
for sub-humid, and 0.30 for humid basins, indicating that while aquifer memory may hinder frequent droughts, it
prolongs the maximum duration of drought events when they do occur. However, notable deviations emerge in
specific cases— Basin 20 (Guarani; Humid), Basin 21 (Arabian; Hyper-Arid), and Basin 33 (Taurus—Zagros;
Semi-Arid) exhibit negative correlations (—0.07, —0.41, and —0.57, respectively). A similar positive association
is observed when comparing aquifer memory with mean drought duration, with average correlations of p = 0.77
for hyper-arid, 0.15 for arid, 0.50 for semi-arid, 0.21 for sub-humid, and 0.54 for humid basins. Yet again,
significant outliers are evident: Basins 8 (Coango; Humid), 9 (Karoo; Semi-Arid), 20 (Guarani; Humid), 21
(Arabian; Hyper-Arid), 23 (Ganges—Brahmaputra; Humid), 33 (Taurus -Zagros), and 36 (Great Artesian) display
negative correlations ranging from —0.05 to —0.41.

Drought severity generally exhibits a negative relationship with aquifer memory (Figure 6). Hyper-arid basins
exhibit an average correlation of p = —0.80, arid basins p = —0.53, semi-arid basins p = —0.52, sub-humid basins
p = —0.73, and humid basins p = —0.51. This pattern suggests that aquifer memory is capable of mitigating the
severity of drought conditions. However, variability persists, as evidenced by basins such as Basin 8 (Coango;
Humid), Basin 11 (Stampriet-Kalahari; Arid), Basin 17 (Atlantic and Gulf Coastal Plains; Humid), Basin 20
(Guarani; Humid), Basin 25 (Yakut; Sub-humid), Basin 27 (Song-Liao; Semi-Arid), Basin 33 (Taurus—Zagros;
Semi-Arid), and Basin 35 (Canning; Arid), which exhibit correlations ranging from 0.06 to 0.45.
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Spearman Correlation

Spearman Correlations between Aquifer Memory and Drought Indicators by Basin

Sub-Humid

Aridity Class Arid @ Humid @ Hyper-Arid ® Semi-Arid

Number of Drought Events Max. Duration
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Figure 6. Spearman correlations depicting the relationship between aquifer memory and five drought indicators, including number of drought events, maximum
duration, average duration, severity, and maximum intensity, across 37 study basins. Aquifers are ordered by aridity class, where Hyper-Arid regions are shown in dark
brown, Arid in light brown (tan), Semi-Arid in green, Sub-Humid in sky blue, and Humid in medium blue (royal blue).

The analysis of maximum drought intensity reveals an overall positive association with aquifer memory
(Figure 6). In hyper-arid basins, the average correlation is p = 0.64, while in arid, semi-arid, sub-humid, and
humid basins, the average correlations are p = 0.048, p = 0.27, p = 0.54, and p = 0.21, respectively. This suggests
that, in general, aquifer memory may contribute to higher peak drought intensities, possibly due to a delayed
groundwater response that allows more severe water deficits to develop. Yet, this trend is not universal; sig-
nificant outliers exist. For example, several arid basins—such as Basin 4 (Iulluemeden-Irhazer), Basin 11
(Stampriet-Kalahari), Basin 15 (Basin and Range Basin-fill), Basin 35 (Canning), and Basin 36 (Great Artesian)
—along with Basin 16 (Ogallala; Semi-Arid), Basin 17 (Atlantic and Gulf Coastal Plains; Humid), and Basin 27
(Song-Liao; Semi-Arid), exhibit negative correlations ranging from —0.08 to —0.66, indicating that in these cases,
aquifer memory may be associated with reduced maximum drought intensity.

4. Discussion

This study demonstrates that biases and variability in multi-model GRACE-GWA realizations, arising from
differences among GRACE solutions and water budget assumptions, introduce uncertainty into GGDI inter-
pretation (Figures 2—4). These findings reinforce the concerns raised by Akl and Thomas (2024), highlighting the
necessity of a comprehensive evaluation of water budget components to enhance the accuracy and credibility of
GRACE-groundwater based studies. Although normalization within the GGDI framework mitigates some
amplitude-related discrepancies, it cannot fully resolve model divergences, particularly under extreme hydro-
logical events or near-threshold conditions where even minor shifts in realization spreads can alter drought
classification (Figure 2). The broad uncertainty ranges observed in groundwater drought indicators (Figure 3) and
aquifer memory (Figure 4) across study basins highlight critical deficiencies in our current knowledge of
groundwater drought dynamics.

Previous GGDI studies (Ali et al., 2022; Aon et al., 2024; Huang et al., 2023; Liu et al., 2022, 2025; Nandi &
Biswas, 2024; Neves, 2024; Nigatu et al., 2024; Nikraftar et al., 2024; Paredes-Trejo et al., 2021; Satish Kumar
etal., 2021; Song et al., 2024; Wang et al., 2020, 2022; Zhang et al., 2024; Zheng et al., 2024) relied on a single-
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model approach to disaggregate GRACE-TWSA into GRACE-GWA. This strategy overlooks inherent model
structure biases (Clark et al., 2008; Konapala et al., 2020; Ruddell et al., 2019) and underestimates the influence of
surface water storage anomalies within the water balance equation (Han et al., 2009; Kim et al., 2009). In contrast,
our multi-model analysis reveals that discrepancies in amplitude and timing across different, yet equally plau-
sible, GRACE and water budget components data sets introduce substantial uncertainty into GGDI outcomes
(Figures 3 and 4). Consequently, reliance on a single-model approach for deriving GRACE-GW A embeds critical
biases into groundwater drought assessments, thereby compromising their overall robustness and reliability.

Rather than identifying a single “best” configuration, our analysis demonstrates that realization mean can mask
critical variability and bias within groundwater drought indicators. For example, in Basin 1 (Nubian), the real-
ization mean suggests six drought events, a maximum duration of 70 months, an average duration of 14 months, a
severity of —92.50, a maximum intensity of —2.90, and an aquifer memory of 4 months. However, when the full
range of realizations is considered, these values vary dramatically ranging from 1 to 10 events, 30 to 152 months
in maximum duration, 10 to 72 months in average duration, —76.50 to —101 in severity, —2.00 to —7.40 in
maximum intensity, and 3 to 61 months in aquifer memory. Such discrepancies highlight that meaningful hy-
drological information may be lost through averaging. By preserving the full realization spread, this framework
provides a more transparent and probabilistic interpretation of groundwater drought, enhancing the reliability of
GRACE-based drought assessments. Notably, our multi-model approach does not seek to select an optimal
GRACE-GWA time series for GGDI analysis but takes the position that a multiple realization approach derives a
comprehensive understanding of the groundwater system.

The considerable uncertainty in GGDI indicators observed across study basins highlights the challenge of
accurately characterizing groundwater drought conditions (Figure 3). Notably, Basin 25 (Yakut) exhibited a
variation of 11 drought events and a 63-month spread in average drought duration across realizations. In Basin 1
(Nubian), maximum drought duration estimates diverged by as much as 122 months, while drought severity and
peak intensity varied by 24.47 and 5.39 units, respectively. Such discrepancies underscore the strong sensitivity of
groundwater drought indicators to input variability, revealing the difficulty of achieving consistent and robust
drought classifications.

Groundwater drought indicators are essential for informing resource allocation, aquifer recharge strategies, usage
regulations, and long-term sustainability planning (e.g., Liu et al., 2025; Thomas, Caineta, & Nanteza, 2017;
Zhang et al., 2024). However, failure to account for variability in groundwater time series increases the risk of
misjudging groundwater deficits, potentially leading to either resource depletion due to underestimated drought
severity or overly restrictive management actions that unnecessarily constrain water use. By explicitly capturing
the spread among GRACE-based realizations, the multi-model framework transforms GGDI indicators into
diagnostic tools that expose where assessments are robust and where uncertainty remains high. This diagnostic
insight enhances policy relevance, enabling managers to gauge confidence in GRACE-derived indicators, identify
vulnerable aquifers, and align intervention or monitoring strategies with the reliability of the supporting data. In
doing so, the framework promotes transparent, evidence-informed groundwater governance and fosters more
adaptive, resilient responses to drought.

The wide range of variability in aquifer memory estimates across study basins hampers our ability to anticipate
groundwater response and implement efficient sustainable strategies (Figure 4). For example, Basin 1 (Nubian),
Basin 3 (Lake Chad), Basin 6 (Senegalo-Mauretanian), and Basin 37 (Paris) exhibit aquifer memory ranges
spanning from 3 to 61 months, 4 to 50 months, 12 to 71 months, and 7 to 68 months, respectively. Such variability
makes it difficult to predict when an aquifer will recover from drought, complicating long-term planning. If
aquifer memory is highly uncertain, it is unclear whether prolonged dry spells will quickly subside once wetter
conditions return or persist for extended periods. This ambiguity can lead to either overconfidence or excessive
caution in water-use restrictions.

Our findings suggest a surprisingly consistent relationship between aquifer memory and various groundwater
drought indicators across study basins despite variability attributed to GRACE-GWA extraction (Figure 6).
Generally, aquifer memory corresponds to fewer drought events and lower severity, while also correlating with
extended drought durations and more intense peaks. However, certain basins depart from this pattern. For
instance, Basin 33 (Taurus-Zagros; Semi-Arid) shows a contrasting trend, with a positive correlation between
aquifer memory and drought frequency (p = 0.33), negative correlations with maximum (p = —0.57) and average
(p = —0.26) drought duration, a positive correlation with drought severity (p = 0.45), and virtually no relationship
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with maximum drought intensity (p = 0.06). Likewise, Basin 21 (Arabian; Hyper-Arid) presents negative cor-
relations between aquifer memory and both maximum (p = —0.42) and average (p = —0.11) drought duration.
Basin 33 is predominantly populated rangeland, while Basin 21 comprises barren, remote rangeland interspersed
with populated areas (Richey et al., 2015). Both basins experience limited recharge and considerable groundwater
pumping for agriculture, conditions that likely contribute to their atypical drought behavior.

Validation of large-scale GRACE-GWA is inherently constrained by the limited spatial and temporal coverage of
in situ groundwater observations (Condon et al., 2021; Famiglietti et al., 2011; Giordano, 2009; Jasechko
et al., 2024; Lall et al., 2020). Consequently, the practical value of the proposed framework lies in its ability to
quantify and interpret uncertainty where direct validation is not feasible. Moreover, even in regions where in situ
data exist, the framework enhances interpretability by revealing the full range of plausible groundwater responses
rather than obscuring meaningful variability through realization averaging or model weighting. By maintaining
the independence of each GRACE-TWSA and water balance component, the framework explicitly propagates
methodological divergence through the GRACE-GWA estimation process, offering a transparent and defensible
basis for policy-relevant groundwater drought assessment.

In this study, we retained the 2004-2009 baseline for computing anomalies in GRACE-TWSA and the associated
water budget components, aligning with the official reference period established by major GRACE processing
centers (Cooley & Landerer, 2019). Given that GRACE-GWA reflects deviations from the selected baseline
rather than absolute groundwater storage, the baseline plays a pivotal role in shaping both the magnitude and
interpretability of the resulting anomalies. This baseline choice introduces a structural artifact: an apparent
agreement among GRACE-GWA realizations during the baseline years, not due to alignment in model behavior,
but rather to the shared constraint of normalization. It is outside this reference window, before 2004 and after
2009, where model-specific assumptions, structural differences, and input data combinations exert greater in-
fluence, revealing the true extent of divergence across GRACE-GWA realizations. Although extending the
anomaly baseline to is feasible, we intentionally applied the 2004—-2009 baseline to allow model divergence to
manifest more clearly across the remaining time series. This decision enhances the transparency of uncertainty
propagation within the GGDI framework and enables a robust evaluation of how discrepancies in GRACE-
TWSA and water budget components influence drought identification and classification.

One limitation of this study arises from the spatial resolution mismatch between the employed water budget
components and GRACE products, requiring interpolation to align their grid resolution. While necessary, this
adjustment introduces an additional layer of uncertainty. Furthermore, to minimize uncertainties, we excluded the
data gap between the GRACE and GRACE-FO missions; however, this omission may inadvertently obscure
critical information essential for a more comprehensive evaluation of groundwater drought indicators. Notably,
the GRACE observation period was sufficient for aquifer memory calculations, ensuring that this gap did not
affect the robustness of memory estimates. Although this study leveraged recent advancements in remote sensing
to account for surface water across the study basins, data limitations persist in many regions where surface water
bodies remain underrepresented (Figures S1 and S2 and Table S2 in Supporting Information S1). This issue is not
unique to the present analysis but represents a broader, systemic challenge in global hydrological monitoring
(Alsdorf et al., 2007; Busker et al., 2019; Tortini et al., 2020). As a result, GRACE-GWA estimates may still carry
residual signals from unresolved surface water variability (Castle et al., 2014; Thomas and Nanteza, 2023),
complicating efforts to isolate pure groundwater storage changes from mixed terrestrial water components (Akl
et al., 2025; Akl & Thomas, 2024). Furthermore, as with any normalized index, GGDI results are inherently
dependent on the chosen study period. Any modification to this period could alter GGDI calculations, thereby
impacting the estimated range of uncertainty.

5. Conclusions

Reliable groundwater drought assessment is paramount, given groundwater's critical role during periods of water
scarcity (Castle et al., 2014; Famiglietti, 2014; Hughes et al., 2012). In this study, we integrate multi-model
GRACE-GWA, sourced from diverse GRACE-TWSA solutions and water budget data, within the GGDI
framework across 37 study aquifers. By evaluating key five groundwater drought indicators, that is number of
drought events, maximum duration, average duration, severity, and maximum intensity, our findings demonstrate
that variability among multi-model GRACE-GWA introduces significant uncertainty to GGDI, thereby con-
straining the reliability of groundwater drought assessments. Furthermore, our exploration of aquifer memory,
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quantified via the autocorrelation in GGDI time series, reveals substantial uncertainty, limiting our ability to
accurately capture aquifer response and recovery dynamics, complicating the development of long-term water
sustainability strategies. Additionally, this study uncovered the relation between aquifer memory and ground-
water drought indicators documenting that aquifer memory correlates with fewer drought events yet results in
longer and more intense drought episodes when they occur. These findings underscore the inherent uncertainty in
large-scale groundwater drought assessments and reinforce the necessity of employing a multi-model GRACE-
GWA approach within the GGDI framework. By capturing variability, this approach enhances uncertainty
awareness and improves the reliability of groundwater drought assessments.
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