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Highlights: 

 Roughness, THD and vegetation are key predictors of the soundscape pleasantness. 

 Lceq, Roughness, and RA are key features to perceive soundscape eventfulness. 

 Gaussian process regression performs better at both individual and group levels. 

 Group metrics perform better than individual metrics on capturing group perception. 
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Abstract: 

Urban environments are used by a large number of diverse people but existing soundscape 

prediction model are focused on perceptual outcomes of an idealised average individual. With 

respect to developing group-level soundscape prediction models, it remains unclear which 

factors are important for predicting soundscapes and which types of models perform better for 

that task. Therefore, by relying on the International Soundscape Database this study aims at 

determining which factors can be used to predict soundscape and which model performs 

better at the group level. In this study, methods, such as correlation analysis, are used to select 

demographic, acoustic, visual, and geographic information factors that are significantly 

correlated with soundscapes. Subsequently, this study compares the performances of four 

models—linear regression, random forest, XGBoost, and Gaussian Process Regression 

(GPR)—in soundscape prediction tasks conducted at the individual and group levels. The 

results show that the equivalent sound pressure level (|𝑟| > 0.31), roughness (|𝑟| > 0.34), 

total harmonic distortion (|𝑟| > 0.31), relative approach (|𝑟| > 0.30) and vegetation (|𝑟| >

0.48) are important to the soundscape prediction. The performance of the GPR model is better 

than the other three models at the individual level (𝑅𝐼𝑆𝑂𝑃𝑙𝑒𝑎𝑠𝑎𝑛𝑡
2 = 0.36, 𝑀𝐴𝐸𝐼𝑆𝑂𝑃𝑙𝑒𝑎𝑠𝑎𝑛𝑡 =

0.26, 𝑅𝑀𝑆𝐸𝐼𝑆𝑂𝑃𝑙𝑒𝑎𝑠𝑎𝑛𝑡 = 0.33, 𝑅𝐼𝑆𝑂𝐸𝑣𝑒𝑛𝑡𝑓𝑢𝑙
2 = 0.18, 𝑀𝐴𝐸𝐼𝑆𝑂𝐸𝑣𝑒𝑛𝑡𝑓𝑢𝑙 =

0.23, 𝑅𝑀𝑆𝐸𝐼𝑆𝑂𝐸𝑣𝑒𝑛𝑡𝑓𝑢𝑙 = 0.29). At the group level, the performance of the GPR model is 

also relatively high (𝐾𝐿𝐼𝑆𝑂𝑃𝑙𝑒𝑎𝑠𝑎𝑛𝑡 = 0.81, 𝐷𝑀𝐸𝐼𝑆𝑂𝑃𝑙𝑒𝑎𝑠𝑎𝑛𝑡 = 0.26, 𝐷𝑀𝐸𝐼𝑆𝑂𝐸𝑣𝑒𝑛𝑡𝑓𝑢𝑙 = 0.38). 

This study identifies the key acoustic and visual factors of soundscape perception and 

demonstrates the advantages of GPR. The introduction of a probability distribution–based 

framework is expected to predict soundscape at the group level and offer guidance for urban 

sound environment design. 

Keywords: Soundscape prediction; Machine learning; Gaussian process regression; Group 

level evaluation   

                  



 3 / 37 

 

1. Introduction 

Soundscape has been widely discussed in many fields, covering topics such as psychological 

restoration and implementation in urban planning[1,2]. A soundscape is defined by the 

International Organization for Standardization (ISO) as an “acoustic environment as perceived 

or experienced and/or understood by a person or people, in context”[3], and a simplification of 

soundscape perception is suggested to two-dimensional indicators, namely, ISOPleasant and 

ISOEventful[4]. As an important part of soundscape research, soundscape prediction holds 

application potential in the field of urban planning, which refers to the prediction of people’s 

soundscape perceptions in unknown environments on the basis of existing soundscape data. 

Kang et al., noted that the importance of soundscape prediction is that it allows urban planners, 

architects and other designers to estimate how potential users will perceive the soundscape of a 

space they are designing, which they cannot otherwise assess[1,5]. As urban soundscape 

research and practice increasingly focus on holistic development, it is necessary to apply 

existing engineering tools and design methods to soundscape planning tasks in urban areas to 

promote the application of soundscapes in large-scale projects and a wide range of other 

fields[1,5,6]. Whether the goal is to determine the impacts of urban design or to integrate 

large-scale data at the community and urban levels, soundscape prediction models consisting of 

interacting factors constitute an important part of the implementation of soundscape[7]. To 

develop more practical soundscape prediction models, identifying the relevant factors and 

selecting appropriate modelling approaches remain central topics in research on soundscape. 

Current research has identified factors that are correlated with soundscape perception, such as 

demographic, psychoacoustic, acoustic, visual, and contextual factors. These findings can 

help with selecting appropriate factors for soundscape prediction. First, demographic factors, 

such as age, gender, and education, are correlated with soundscape perception[7–9]. For 

instance, Fang et al., reported that females generally showed higher sensitivity and lower 

tolerance than males did towards several sounds and that higher education levels resulted in 

lower tolerance towards sounds. Guo et al., found that increased visit intensity could enhance 

the pleasantness perception[10]. Second, some studies have revealed that acoustic and 

psychoacoustic metrics are correlated with soundscape perception[7,8,11–16]. In terms of 

acoustic metrics, sound pressure level has been widely discussed. Regarding psychoacoustic 

metrics, loudness is the most widely considered factor, while other factors include sharpness, 

roughness, and the speech interference level[12,17–23]. For instance, Mitchell et al., reported 

that the A-weighted equivalent continuous sound pressure level (𝐿𝐴𝑒𝑞 ) is correlated with 

perceived pleasantness and eventfulness, with correlation coefficients of -0.34 and 0.37, 

respectively[24]. The research from Hong et al., finds that sound level played the most 

important role among all physical factors[25]. With respect to psychoacoustics factors, in the 
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study by Mitchell et al., [24] loudness (𝑁 ) is correlated with pleasantness (-0.37) and 

eventfulness (0.33), and roughness is correlated with pleasantness (-0.36) and eventfulness 

(0.32) [24]. Third, visual and contextual factors play important roles in soundscape research. 

Ricciardi reported that visual factors strongly influence the explained variance in soundscape 

pleasantness[13]. In terms of context, location is another important factor for conducting 

soundscape prediction, with location factors having higher influence on pleasantness, than on 

eventfulness, as reported by Mitchell et al., [24] and Erfanian et al[26]. Visual factors showed 

mediating effects on the soundscape restorativeness reported by Guo et al[27]. Furthermore, 

urban morphology and the percentages of natural and contextual factors are correlated with the 

perceptions of soundscapes[14,28,29]. Watts et al., reported that the greater the proportion of 

vegetation in the field of vision is, the more tranquillity people feel[15], whereas Puyana et al., 

reported that soundscapes are negatively correlated with areas possessing high building 

densities and positively correlated with the proportion of sea in the visual field[17]. Since 

different models have varying abilities to model the relationships between different variables, 

even though many factors have shown correlation with soundscape perception, it remains to be 

further discussed which factors can be used for soundscape prediction.  

Many researches have attempted to predict soundscape based on different models. For 

instance, Mitchell et al., used linear multilevel models to predict soundscape perception 

during the covid pandemic[24] and Kang et al., used linear regression to predict soundscape 

based on the data collected from individual responses[30]. With the development of artificial 

intelligence, many machine learning models have been used for soundscape prediction. For 

instance, random forest (RF), eXtreme Gradient Boosting (XGBoost), and support vector 

machine (SVM) are widely used for soundscape prediction. Versümer et al., used LR, RF, 

XGBoost, and SVM to investigate the soundscape model while considering the fixed and 

mixed effects on different soundscape datasets[23]. An experiment conducted by Fan and 

Giannakopoulos et al., demonstrated the potential of the SVM model in soundscape prediction 

tasks[31,32], and Lunden et al., used an SVM to predict soundscape perceptions and reported 

that it is possible to predict the responses of human to acoustic environments on the basis of 

data derived from acoustic signals[33]. Zhao et al., used a gradient-boosted regression tree 

(GBRT) model to predict soundscapes, achieving an 𝑅2 of 0.48 [29]. Meanwhile, with the 

advancement of artificial neural networks (ANNs), Yu and Kang constructed an ANN model to 

predict soundscape perceptions[34]. Their experiment demonstrates that the ANN model 

performs effectively and reliably in soundscape prediction tasks. Machine learning shows 

considerable potential for application in soundscape prediction tasks. However, above studies 

build models by leveraging existing datasets of individual perceptual responses to predict the 

perception of each record. Specifically, these studies select deterministic models, such as RFs, 

XGBoost and other AI models[23,34,35]. These models operate by identifying specific 
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functions within a high-dimensional vector space to fit the individual-level soundscape 

perception data obtained from questionnaires. Moreover, these studies rely individual-level 

(pointwise or per-data) evaluation criteria for their models, such as 𝑅2, the 𝑅𝑀𝑆𝐸, etc. These 

evaluation standards describe the accuracy of models in terms of predicting individual 

soundscape perceptions. However, urban environments are intended sometimes for specific 

groups and communities, and sometimes also for unknown users and groups of users, however 

rarely for idealised individuals, so paying more attention to soundscape perception at the group 

level is necessary so to address public space users in an inclusive and sustainable way. 

Soundscape perception at the group level can be described as a set of soundscape perceptions 

perceived by a group of people in the same content. Individual-level prediction requires the 

accurate determination of the specific rating assigned by each person. In contrast, soundscape 

prediction at the group level involves predicting the proportion of different soundscape 

evaluation of individuals. Most current research focuses on the individual level, while 

discussions concerning soundscape prediction at the group level remains limited. In this case, 

the goal of soundscape prediction can change from accurately predicting individual 

perceptions to predicting the aggregate soundscape perception at the group level—in other 

words, predicting not individual soundscape perceptions but the soundscape perception 

distribution of a group of people.   

Therefore, this study aims to explore the potential of machine learning models for predicting 

soundscape perceptions at the group level and evaluate the model performance. In this context, 

this study attempts to answer the following research questions. 

(1). Considering the soundscape prediction task at the group level, which factors are correlated 

with soundscape perception (ISOPleasant and ISOEventful) and thus can be used for 

soundscape prediction? 

(2). Among the different models that are available for soundscape prediction, what metrics can 

be used to evaluate their performance at the group level, and which model performs best at the 

individual and group levels?  

In this study, by relying on the International Soundscape Database, Linear Regression (LR), 

Random Forest (RF), XGBoost (XGB), and Gaussian process regression (GPR) models are 

selected for soundscape prediction. Pointwise and groupwise accuracy metrics are used to 

assess the models at both the individual and group levels.  
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2. Methodology 

This study is designed to answer each research question using corresponding methods (Figure 

1). Data were sourced from the International Soundscape Database (ISD) and OpenStreetMap 

(OSM). Through classification and extraction processes, we obtained survey data (including 

soundscape perceptions and demographics), acoustic data, visual data from videos, and 

geographic information. Fivefold cross-validation was applied to the dataset. The employed 

feature extraction methods were tailored to each model to identify the factors that were 

relevant to soundscape perception. The trained models were tested on test sets, and the 

performance attained across all folds was aggregated to evaluate the predictive effectiveness 

of each model at both the individual and group levels. 
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Figure 1 Overall experimental flow and framework of this study. 

Specifically, Section 2.1 describes the soundscape method and introduces the source and 
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description of the soundscape database. Section 2.2 provides a detailed introduction to the 

classification and filtering methods employed for the soundscape prediction-related factors, 

and Section 2.3 introduces the models used in this study and the reasons for choosing these 

models. It also explains how these models were evaluated and the reasons for choosing 

specific evaluation methods. 

2.1 Soundscape description and data sources 

A soundscape is an acoustic environment as perceived by humans in context. In general, there 

are many different ways to describe soundscapes. To simplify the process of quantifying 

soundscapes and aid subsequent researchers in terms of comparing their experimental results, 

this study employed the widely used soundscape description standard published by the 

International Organization for Standardization (ISO) in 2014[3]. As the most widely used 

method for describing soundscapes, this standard involves describing soundscape perceptions 

based on eight perceptual attributes (PAs)[36]. The PAs are derived from a Likert-based 

questionnaire containing 8 scales, including pleasant, vibrant (or exciting), eventful, chaotic, 

annoying, monotonous, uneventful, and calm (Figure 2). During the questionnaire procedure, 

these PAs are assessed independently of each other; however, they are conceptually considered 

to form a two-dimensional circumplex with pleasantness and eventfulness on the x- and y-axes, 

respectively, where all regions of the space are equally likely to accommodate a given 

soundscape assessment[37]. To facilitate analysis of PA responses, Part 3 of ISO 12913 

provides a coordinate transformation into the two primary dimensions on the basis of the 45° 

relationship between the diagonal axes and the pleasant and eventful axes[3]. In theory, this 

coordinate pair then encapsulates information from all 8 PA dimensions into two dimensions 

that are more easily understandable and analysable. The ISO coordinates and the PAs are 

arranged around the circumplex, as shown in Figure 2. The 𝑐𝑜𝑠45° term operates to project the 

diagonal terms down onto the x- and y-axes, and 
1

4+√32
 scales the resulting coordinates to the 

range of (−1, 1). The results of this transformation are shown in Figure 2. In this approach, 

soundscape perception has a standard description and modelling method[38]. In summary, this 

study employed ISOPleasant and ISOEventful to describe the two dimensions of soundscape 

perceptions, which were also the prediction targets of the models. 
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Figure 2 Example representations of two soundscape assessments. Left: Radar plot of two 

example perceptual attribute (PA) ratings on the Likert scale (1–5). Right: Scatter plot of the 

same assessments on the soundscape circumplex, transformed according to ISO 12913 Part 3. 

On the basis of a literature review, this study selected soundscape perceptions (ISOPleasant and 

ISOEventful) as the prediction targets for the model. With respect to factor selection, the factors 

used in this study were categorized into four groups: demographic, acoustic, visual, and 

geographic factors. The soundscape perception data, demographic data, acoustic factors data, 

and visual factors data were provided by the International Soundscape Database (ISD), while 

the geographic factor data were provided by the Python API of OSM. 

The ISD was utilized as the primary data source in this study[39]. This database comprises 

results derived from a series of soundscape assessment campaigns conducted across Europe, 

following a data collection protocol [40] designed to provide survey, environmental and 

acoustic data collected in urban public spaces with the goal of creating a unified dataset for the 

development of a predictive soundscape model, as well as a soundscape index. The protocol 

contained two-stages: a “Recording Stage,” during which approximately 15-minute 360° 

videos, corresponding spatial audio recordings and sound level measurements were captured 

across different locations, and a subsequent “Questionnaire Stage”. In the latter stage, on-site 

soundscape evaluations were collected from the public using the questionnaire based on 

ISO/TS 12913-2: 2018[41], yielding both demographic information and perceptual 

assessments. Simultaneously, acoustic measurements were continuously recorded using sound 

level metres, while 30-second binaural audio recordings and 360° photographs were obtained 

for the participants taking questionnaires at that moment (usually one or two individuals at a 

time) to document their immediate perceptual environments. These recordings were 

subsequently analysed to derive corresponding acoustic and psychoacoustic metrics. This 

research used perceptual and demographic data obtained from the questionnaire stage of the 

ISD, consisting of 1,147 valid records obtained from London stored in the comma-separated 
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value (CSV) format. The acoustic measures were derived from binaural recordings collected 

during the same questionnaire stage. A computational analysis of these recordings produced 

the required acoustic and psychoacoustic factors, which were also provided in the CSV format 

and maintained a direct correspondence with the perceptual and demographic data. The visual 

data were obtained from the 360° videos captured during the ISD recording stage. For each 

location, frames were systematically sampled from the video recordings at predetermined 

intervals. These frames were then processed using a semantic segmentation algorithm based 

on the Cityscapes dataset to quantify the relative proportions of different visual elements (e.g., 

buildings, sky, roads, vegetation, and vehicles) [42]. The resulting metrics, categorized by 

scene type, were maintained in CSV files. 

Table 1 Acoustic and psychoacoustic factors included in the International Soundscape 

Database (ISD), along with their symbols, units, and standards. 

Factors Symbol Unit Standard 

LZeq LZeq dB IEC 61672 

LCeq LCeq dB IEC 61672 

LAeq LAeq dB IEC 61672 

Loudness N sones ISO 532-1 

Sharpness S acum ISO 532-1 

Roughness R asper Hearing Model 

Tonality T tuHM ECMA-74 (17th) 

Fluctuation Strength FS vacil Hearing Model 

(Total) Harmonic Distortion THD     

Impulsiveness I   Hearing Model 

Speech Interference Level SIL4 dB ISO 9921:2003 

Relative Approach 2D RA cPA Hearing Model 

Regarding geographic factors, this study used OSM as the data source. Specifically, on the 

basis of the latitude and longitude coordinates provided in the ISD, a 100-m buffer was 

established. The number of POIs within this buffer was considered a geographic factor. This 

is because the number of POIs can indirectly reflect the land use type of an area, which in turn 

affects people's sound perceptions. For instance, a high number of bars indicates that the 

surrounding area is likely a business region, which often indicates that the area is likely to be 

more eventful. Because OSM provides a wide variety of POI types, each with similarities, this 

study consolidated these POI types. Similarly, because the classifications of the urban visual 

elements contained in the Cityscapes dataset also overlap, the visual factor data were also 

consolidated.  
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2.2 Factor selection 

In this study, different factor extraction methods were used for different models to obtain 

characteristic factors that could be used for soundscape prediction. The advantage of this 

approach is that it allowed us to assess the contributions of various factors to soundscape 

prediction from multiple perspectives. Because different models utilize different prediction 

methods, different factors contribute differently to their prediction performance. For instance, 

a linear model selects only factors with linear relationships for soundscape prediction 

purposes, whereas nonlinear features are not recognized by the model. 

For the LR model, this study chose to calculate the correlation coefficient and variance 

inflation factor (VIF) to extract the characteristic factors. Specifically, factors with absolute 

correlation values greater than 0.3 and VIFs less than 10 were selected as model input factors. 

With respect to the RF and XGB, feature importance values were used in this study to 

gradually screen for factors. Specifically, first, an importance threshold was set, then all 

factors were used for modelling, factors with importance levels greater than the threshold 

were screened out, these factors were then remodelled, and the factors with importance values 

greater than the threshold were screened out again. This process was repeated until the 

number of factors no longer changed, and finally, the characteristic factors were obtained. For 

the GPR model, this study used automatic relevance determination (ARD) to extract the 

utilized factors. Specifically, ARD regression was used to calculate the feature importance 

values, and the factors with parameter values that were less than a threshold were selected as 

important. Because ARD uses a kernel method, more important factors have smaller 

parameters. Finally, a factor combination that was suitable for GPR soundscape prediction 

was obtained.  

2.3 Models and evaluation standards 

2.3.1 Models 

In this study, four models were selected to predict soundscapes: linear regression (LR), a 

random forest (RF), XGBoost (XGB) and Gaussian process regression (GPR). LR was 

selected because of its simplicity, transparency, and wide applicability. As a baseline model, LR 

offers an interpretable benchmark for understanding the linear contribution of each factor to the 

perceptual outcomes, and it has also been used in other studies as a base model[8,12–

15,17,19,20,43]. The RF and XGBoost are ensemble learning methods that are capable of 

capturing nonlinear relationships and high-order interactions between input variables. Their 

built-in feature importance mechanisms help identify the key environmental factors that 

influence soundscape perception, thereby contributing to both performance and 
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interpretability[23,44]. LR, the RF, and XGB models are deterministic models that predict 

soundscapes from parameter spaces, whereas GPR is a probabilistic model that predicts 

soundscapes from functional spaces. The GPR model differs from the other models in that it 

provides a probabilistic modelling framework that does not directly predict the target function 

but rather predicts the distribution of the target function to describe the associated functional 

relationship[45]. One can consider a Gaussian process as defining a distribution over functions, 

where inference takes place directly in the function space, i.e., the function space view. 

Specifically, GPR first assumes that all functions describe the true function with equal 

probability (a priori), then optimizes the probabilities of all functions through training data (a 

posteriori), and finally obtains a function probability distribution that can describe the true 

function. The GPR output includes not only the mean value as the predicted value but also the 

associated uncertainty interval, which is particularly useful for analysing the subjective 

variability exhibited by perceptual responses and has been used in other studies[46,47]. 

Furthermore, GPR, as a nonparametric probabilistic model, does not require the distribution of 

each factor to be certain or the same. It only assumes that the noise related to each factor 

follows a Gaussian distribution[45]. To explore whether probabilistic models perform better 

than deterministic models do in soundscape prediction tasks conducted at the group level, all 

machine learning models should demonstrate optimal performance to enable a comparison 

between the applicability levels of probabilistic and deterministic modelling approaches. This 

means that each model needs to individually choose the model inputs and hyperparameter 

settings that will provide the best performance for that model. By comparing the best 

performances of different models, we can infer whether probabilistic models are more suitable 

for soundscape prediction than are deterministic models. This method has also been widely 

used in other studies[48–51]. 

Because the ISD data were collected from various areas of London, to reduce the impact of 

regional inequality, this study adopted a stratified 5-fold data splitting strategy based on 

LocationID, splitting the data into training, validation, and test sets at an 8:1:1 ratio. Stratified 

K-fold splitting is a cross-validation method and a variation of K-fold splitting that returns 

stratified folds. The folds were made by preserving the percentage of the samples possessing 

each LocationID, which means that each set contained approximately the same percentage of 

samples for each location as that in the ISD. The training set was used for model training 

purposes, the validation set was used for hyperparameter adjustment, and the test set was used 

for model evaluation tasks. 

2.3.2 Evaluation indicators 

Among the traditional evaluation criteria employed for soundscape prediction models, the 

individual prediction accuracy is often used performance evaluation purposes. This involves 
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metrics such as the coefficient of determination and root mean square error. These indicators 

assess the accuracy of soundscape predictions from an individual perspective. However, in an 

urban context, planners, architects, urban designers and others often pay more attention to the 

soundscape perception evaluation of a group [52]. Therefore, more methods are needed to 

describe the accuracy of soundscapes prediction model from a group perspective. In an attempt 

to evaluate the performance of the constructed model at the group level, this study employed a 

variety of quantitative metrics, thus reflecting the accuracy of soundscape perception prediction 

at the group level.  

Evaluation conducted at the individual level: 

To evaluate the individual perspective, commonly used model performance evaluation 

indicators were selected to examine the performance of each model. 

(1). Coefficient of Determination ( 𝑅2 ): This metric reflects the proportion of variance 

explained by the model and is defined as follows: 

𝑅2 = 1 −
𝑆𝑆𝑅

𝑆𝑆𝑇
= 1 −

∑ (𝑦𝑖 − 𝑦̂𝑖)2
𝑖

∑ (𝑦𝑖 − 𝑦̅)2
𝑖

(1) 

where 𝑆𝑆𝑅 is the sum of squares of the residuals, which is also called the residual sum of 

squares; 𝑆𝑆𝑇  is the total sum of squares; 𝑦𝑖  denotes the true values; 𝑦̂𝑖  represents the 

predicted values; and 𝑦̅ is the mean of the true values. 

(2). Root Mean Square Error (RMSE): This metric is the square root of the average squared 

difference between the predicted and true values. 

RMSE(𝑦, 𝑦̂) = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛−1

𝑖=0

(2) 

where 𝑛 is the number of samples; 𝑦𝑖 denotes the true values; and 𝑦̂𝑖 represents the predicted 

values. 

(3). Mean Absolute Error (MAE): This measure captures the average magnitude of the errors 

without considering their directions. 

MAE(y,  ŷ)  =  
1

𝑛
  ∑| yi  − 𝑦̂𝑖  |

𝑛−1

i=0

(3) 

where 𝑛 is the number of samples; 𝑦𝑖 denotes the true values; and 𝑦̂𝑖 represents the predicted 

values. 
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Evaluation conducted at the group level: 

To evaluate the performance of the prediction models from a group perspective, this study 

considered the soundscape perception of a group of people as a whole and used the soundscape 

perception distribution composed of these soundscape perceptions as the soundscape 

characteristics of the corresponding scene. Therefore, the degree of matching between the 

predicted perceived distribution and the true distribution was selected as a basis for judgement, 

and this study incorporated the Kullback‒Leibler (KL) divergence measure (4), the Jensen–

Shannon (JS) divergence measure (5), and the distributional mean error (DME) (6) into the 

evaluation framework. 

(1). The KL divergence measure quantifies the difference in information between two 

probability distributions and is defined as follows: 

𝐷𝐾𝐿(𝑃 ∥ 𝑄) = ∑ 𝑃(𝑥)𝑙𝑜𝑔 (
𝑃(𝑥)

𝑄(𝑥)
) (4) 

where 𝑄(𝑥)  is the predicted probability distribution; 𝑃(𝑥)  is the true/target probability 

distribution; and 𝑥 represents the soundscape perception index (ISOPleasant or ISOEventful), 

which ranges from [-1, 1]. 

The KL divergence indicates the amount of information that is lost when the distribution 𝑄 is 

used to approximate the true distribution 𝑃[53]. In this study, the smaller the KL divergence is, 

the lower the cost of fitting the probability distribution of the model prediction results to the 

true distribution, and the higher the model accuracy. This metric is particularly useful in model 

calibration and probabilistic inference tasks, where the distributional shape is of interest rather 

than just the point estimates. 

(2). The JS divergence (JS) is an optimization of KL divergence and is defined as follows: 

𝐷𝐽𝑆(𝑃 ∥ 𝑄) =
1

2
∑ [𝑃(𝑥) 𝑙𝑜𝑔

2𝑃(𝑥)

𝑃(𝑥) + 𝑄(𝑥)
+ 𝑄(𝑥) 𝑙𝑜𝑔

2𝑄(𝑥)

𝑃(𝑥) + 𝑄(𝑥)
]

𝑥∈𝒳

(5) 

where 𝑄(𝑥)  is the predicted probability distribution; 𝑃(𝑥)  is the true/target probability 

distribution; and 𝑥 represents the soundscape perception index (ISOPleasant or ISOEventful), 

which ranges from [-1, 1]. 

Unlike the KL divergence, the JS divergence is symmetric and does not change with changes 

in the order of the input distribution. Furthermore, owing to its calculation method, the JS 

divergence has a range of [0, 1] , whereas the KL divergence has no upper bound. 

Furthermore, the KL divergence is sensitive to differences in high-probability events but 

insensitive to differences in low-probability events. This means that if high-probability events 
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vary significantly, the KL divergence value fluctuates dramatically, while the JS divergence 

compensates for this effect to some extent. Similar to the KL divergence, the smaller the value 

of the JS divergence is, the more similar the two compared distributions are and the better the 

predictive performance of the evaluated model. 

(3). Distributional Mean Error (DME): To further capture distributional consistency, an 

accuracy metric based on the 𝑀𝐴𝐸  between two probability density functions, which is 

generalized over a continuous interval, is proposed in this work. Given two continuous 

distributions 𝑄(𝑥) and 𝑃(𝑥), the DME is defined as follows:  

𝐷𝑀𝐸 =
1

|𝑏 − 𝑎|
∫ |𝑄(𝑥) − 𝑃(𝑥)|

𝑏

𝑎

(6) 

where 𝑄(𝑥)  is the predicted probability distribution; 𝑃(𝑥)  is the true/target probability 

distribution; 𝑎, 𝑏 are the integration bounds, which are set to [−1,1] in this study; and 𝑥 

represents the soundscape perception index (ISOPleasant or ISOEventful), which ranges from 

[-1, 1]. 

To obtain 𝑄(𝑥) and 𝑃(𝑥), kernel density estimation (KDE) is used to smooth and estimate the 

underlying distributions of both the ground truths and the model predictions. Geometrically, 

this method first calculates the area between the two distribution curves and then normalizes it 

over the integration range, yielding an interpretable measure of the average absolute deviation 

between the two functions. This approach intuitively reflects the average distributional 

mismatch across the perception spectrum, offering a more holistic evaluation of the predictive 

mean error in perceptual modelling cases (Figure 3). In terms of values, the closer the KL 

divergence, JS divergence and DME are to 0, the better the performance of the tested model. 

 

Figure 3 Schematic illustration of the distribution mean error. (Note: The grey area is 

correlated with the conceptual geometric interpretation of the distribution mean error.) 

                  



 16 / 37 

 

In summary, in this study, the 𝑅2, 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸 were used to evaluate the performance of 

the tested models at the individual level, and the KL, JS divergence and DME were used to 

evaluate the performance achieved at the group level.  
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3. Results 

3.1 Factor selection 

In this study, different feature extraction methods were used for different soundscape 

prediction models, including correlation analysis, the VIF and feature importance rankings. 

When the prediction target was ISOPleasant, the selected predictive factors varied across the 

models (Table 2). For the LR model, the selected factors included 𝐿𝑍𝑒𝑞𝑀𝑖𝑛
, 𝑅95, 𝑇𝐻𝐷𝑀𝑎𝑥, 

𝐼50 and 𝑅𝐴50 as acoustic factors; vegetation and traffic vehicles as visual factors; and traffic 

and public services as geo-information factors. The RF model incorporated age as a 

demographic factor; 𝐿𝑍𝑒𝑞𝑀𝑖𝑛,𝑀𝑎𝑥,5,10,90
, 𝑁95 , 𝑆𝑀𝑎𝑥,95 , 𝑅𝑀𝑖𝑛,𝑀𝑎𝑥,95 , 𝑇𝐻𝐷𝑀𝑎𝑥 , 𝐼𝑀𝑖𝑛  and 

𝑆𝐼𝐿4𝑀𝑖𝑛 as acoustic factors; and vegetation and terrain as visual factors. For the XGB model, 

the selected factors included 𝐿𝑍𝑒𝑞𝑀𝑒𝑎𝑛,90,95
, 𝐿𝐶𝑒𝑞𝑀𝑒𝑎𝑛,𝑀𝑎𝑥,5,50,90,95

, 𝐿𝐴𝑒𝑞𝑀𝑎𝑥,5
, 𝑁10 , 

𝑅𝑀𝑒𝑎𝑛,𝑀𝑖𝑛,10,90,95, 𝑇𝐻𝐷𝑀𝑎𝑥 and 𝑆𝐼𝐿4𝑀𝑎𝑥 as acoustic factors and vegetation and terrain as 

visual factors. Finally, the GPR model included 𝐿𝑍𝑒𝑞𝑀𝑖𝑛
, 𝐿𝐴𝑒𝑞50

, 𝑆95, 𝑅90,95, 𝐹𝑆𝑀𝑒𝑎𝑛,50, 

𝑇𝐻𝐷𝑀𝑎𝑥,50,90 , 𝐼50,95 , 𝑆𝐼𝐿4𝑀𝑒𝑎𝑛,50  and 𝑅𝐴50  as acoustic factors; vegetation, traffic 

vehicles and human activity as visual factors; and traffic and cultural education as 

geo-information factors. To summarize the relative importance of the predictive factors across 

the four models (LR, the RF, XGB, and GPR), the factors were categorized on the basis of 

their selection frequencies. The acoustic factors 𝑅  and 𝑇𝐻𝐷  and the visual factor 

𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 were selected by all four models, indicating their high importance in soundscape 

prediction tasks. The factors selected by the three models included the acoustic factors 𝐿𝐶𝑒𝑞, 

𝐼 and 𝑆𝐼𝐿4, suggesting that these factors were of secondary importance. 
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Table 2 Table of the important factors selected by the four models (LR, the RF, XGB and GPR) for predicting ISOPleasant; these factors are classified 

into demographic, acoustic, vision and geographic groups. A check mark indicates that the corresponding factor was selected by the model. For the 

acoustic factors, the selected factors are presented as percentiles. 

Factors Models 

Factor class Factor name LR RF XGB GPR 

Demographic  
Age   √     

Gender         

Acoustic 

LZeq 𝐿𝑍𝑒𝑞𝑀𝑖𝑛
   𝐿𝑍𝑒𝑞𝑀𝑒𝑎𝑛,90,95

 𝐿𝑍𝑒𝑞𝑀𝑖𝑛
 

LCeq   𝐿𝐶𝑒𝑞𝑀𝑖𝑛,𝑀𝑎𝑥,5,10,90
 𝐿𝐶𝑒𝑞𝑀𝑒𝑎𝑛,𝑀𝑎𝑥,5,50,90,95

   

LAeq     𝐿𝐴𝑒𝑞𝑀𝑎𝑥,5
 𝐿𝐴𝑒𝑞50

 

N   𝑁95 𝑁10   

S   𝑆𝑀𝑎𝑥,95   𝑆95 

R 𝑅95 𝑅𝑀𝑖𝑛,𝑀𝑎𝑥,95 𝑅𝑀𝑒𝑎𝑛,𝑀𝑖𝑛,10,90,95 𝑅90,95 

T         

FS       𝐹𝑆𝑀𝑒𝑎𝑛,50 

THD 𝑇𝐻𝐷𝑀𝑎𝑥 𝑇𝐻𝐷𝑀𝑎𝑥 𝑇𝐻𝐷𝑀𝑎𝑥 𝑇𝐻𝐷𝑀𝑎𝑥,50,90 

I 𝐼50 𝐼𝑀𝑖𝑛   𝐼50,95 

SIL4   𝑆𝐼𝐿4𝑀𝑖𝑛 𝑆𝐼𝐿4𝑀𝑎𝑥 𝑆𝐼𝐿4𝑀𝑒𝑎𝑛,50 

RA 𝑅𝐴50     𝑅𝐴50 

Visual 

Vegetation √ √ √ √ 

Terrain   √ √   

Sky         

Traffic Vehicles √     √ 

Traffic Infrastructure         

Human Activity       √ 

Buildings         

Geographic Traffic √     √ 

                  



 19 / 37 

 

Business         

Cultural/Educational       √ 

Public Services √       

Medical Health         

Religious Special         

Other         

Note: Xn represents X factors with n percentiles, which can be Min, Mean, Max,5, 10, 50, 90, or 95. 

When the prediction target was ISOEventful, the employed predictive factors varied across models (Table 3). For the LR model, the selected factors 

included 𝐿𝐶𝑒𝑞10
, 𝑆𝑀𝑒𝑎𝑛, 𝑅𝑀𝑒𝑎𝑛, 𝐹𝑆𝑀𝑒𝑎𝑛, 𝑇𝐻𝐷10 and 𝑅𝐴𝑀𝑖𝑛 as acoustic factors and business and medical health as geo-information factors. The 

RF model incorporated age as a demographic factor; 𝐿𝐶𝑒𝑞𝑀𝑒𝑎𝑛
, 𝑅𝑀𝑖𝑛,50,90,95, 𝑇𝑀𝑎𝑥,50,90,95, 𝑇𝐻𝐷𝑀𝑒𝑎𝑛,5,10, 𝐼𝑀𝑖𝑛 and 𝑅𝐴𝑀𝑖𝑛 as acoustic factors; 

vegetation and sky as visual factors; and business as a geo-information factors. For the XGB model, the selected factors included 𝐿𝐶𝑒𝑞𝑀𝑒𝑎𝑛
, 𝐿𝐴𝑒𝑞𝑀𝑒𝑎𝑛

, 

𝑁10, 𝑅𝑀𝑖𝑛,𝑀𝑒𝑎𝑛,5,50,90,95, 𝑇𝐻𝐷5, 𝑆𝐼𝐿45 and 𝑅𝐴𝑀𝑖𝑛 as acoustic factors. Finally, the GPR model included 𝐿𝐶𝑒𝑞10
, 𝐿𝐴𝑒𝑞5

, 𝑁10, 𝑆10, 𝑅𝑀𝑖𝑛, 𝑇10, 

𝐼𝑀𝑖𝑛, 𝑆𝐼𝐿45 and 𝑅𝐴𝑀𝑖𝑛,5 as acoustic factors; terrain as a visual factor; and business and medical health as geo-information factors. To summarize 

the relative importance levels of the predictive factors across the four models (LR, the RF, XGB, and GPR), the factors were categorized on the basis 

of their selection frequencies. The acoustic factors 𝐿𝐶𝑒𝑞 , 𝑅 and 𝑅𝐴 were selected by all four models, indicating their high importance in 

soundscape prediction tasks. The factors selected by the three models included the acoustic factor 𝑇𝐻𝐷 and the geo-factor 𝑏𝑢𝑠𝑖𝑛𝑒𝑠𝑠, suggesting 

that these factors were of secondary importance. 

Table 3 Table of the important factors selected by the four models (LR, the RF, XGB and GPR) for predicting ISOEventful; these factors are 

classified into demographic, acoustic, vision and geographic groups. A check mark indicates that the corresponding factor was selected by the model. 

For the acoustic factors, the selected factors are presented as percentiles. 

Factors Models 

Factor class Factor name LR RF XGB GPR 

Demographic  
Age   √     

Gender         
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Acoustic 

LZeq         

LCeq 𝐿𝐶𝑒𝑞10
 𝐿𝐶𝑒𝑞𝑀𝑒𝑎𝑛

 𝐿𝐶𝑒𝑞𝑀𝑒𝑎𝑛
 𝐿𝐶𝑒𝑞10

 

LAeq     𝐿𝐴𝑒𝑞𝑀𝑒𝑎𝑛
 𝐿𝐴𝑒𝑞5

 

N     𝑁10 𝑁10 

S 𝑆𝑀𝑒𝑎𝑛     𝑆10 

R 𝑅𝑀𝑒𝑎𝑛 𝑅𝑀𝑖𝑛,50,90,95 𝑅𝑀𝑖𝑛,𝑀𝑒𝑎𝑛,5,50,90,95 𝑅𝑀𝑖𝑛 

T   𝑇𝑀𝑎𝑥,50,90,95   𝑇10 

FS 𝐹𝑆𝑀𝑒𝑎𝑛       

THD 𝑇𝐻𝐷10 𝑇𝐻𝐷𝑀𝑒𝑎𝑛,5,10 𝑇𝐻𝐷5   

I   𝐼𝑀𝑖𝑛   𝐼𝑀𝑖𝑛 

SIL4     𝑆𝐼𝐿45 𝑆𝐼𝐿45 

RA 𝑅𝐴𝑀𝑖𝑛 𝑅𝐴𝑀𝑖𝑛 𝑅𝐴𝑀𝑖𝑛 𝑅𝐴𝑀𝑖𝑛,5 

Visual 

Vegetation   √     

Terrain       √ 

Sky   √     

Traffic Vehicles         

Traffic Infrastructure         

Human Activity         

Buildings         

Geographic 

Traffic         

Business √ √   √ 

Cultural/Educational         

Public Services         

Medical Health √     √ 

Religious Special         

Other         

Note: Xn represents X factors with n percentiles, which can be Min, Mean, Max,5, 10, 50, 90, or 95. 
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3.2 Soundscape prediction model comparison 

In this study, the LR, RF, XGB, and GPR models were used to predict soundscape perceptions 

based on the ISD dataset. To ensure the stability of the performance and prediction results of 

the models, K-fold cross-validation was used to evaluate the models on the basis of the results 

produced by all the models. Furthermore, to provide practical implications for soundscape 

design work, this study also attempted to evaluate the model results at the group level. 

On the test set, the performance of each model was different from that attained of the training 

set. When the prediction target was ISOPleasant, the GPR model outperformed the other three 

models at the individual level, achieving an 𝑅2 of 0.3649, an 𝑀𝐴𝐸 of 0.2604, and an 

𝑅𝑀𝑆𝐸 of 0.3296. At the group level, GPR had the best results in terms of two metrics, with a 

KL divergence of 0.8096 and a DME of 0.2587, whereas the RF model achieved the best 

performance in terms of the JS divergence (𝐽𝑆 =  0.1095). Similarly, when predicting 

ISOEventful, GPR again exhibited better performance at the individual level, with an 𝑅2 of 

0.1759, an 𝑀𝐴𝐸 of 0.2303, and an 𝑅𝑀𝑆𝐸 of 0.2872. At the group level, the performances 

of the models differed across various evaluation metrics: XGB achieved the lowest KL 

divergence (𝐾𝐿 = 1.7055), the RF performed best in terms of the JS divergence (𝐽𝑆 =

0.1513), and GPR resulted in the smallest DME (𝐷𝑀𝐸 = 0.3812). Overall, on the test set, 

the performance of the GPR model was superior to that of the other three models. 

Table 4 Tabular performance of the four models (LR, RF, XGB and GPR) at the individual 

and group levels when predicting ISOPleasant and ISOEventful.  

Targets Models 
Model performance based on different evaluation indicators 

R2 MAE RMSE KL JS DME 

ISOPleasant 

LR 0.3525  0.2638  0.3329  0.8567  0.1118  0.2821  

RF 0.3566  0.2644  0.3318  0.8648  0.1095  0.3107  

XGB 0.3281  0.2718  0.3391  0.8526  0.1383  0.3652  

GPR 0.3649  0.2604  0.3296  0.8096  0.1137  0.2587  

ISOEventful 

LR 0.1684  0.2308  0.2885  2.2243  0.1590  0.3985  

RF 0.1547  0.2330  0.2909  2.0849  0.1513  0.4017  

XGB 0.1216  0.2371  0.2965  1.7055  0.1656  0.4926  

GPR 0.1759  0.2303  0.2872  2.0144  0.1612  0.3812  

Note: best results are highlighted. 

In addition, in this study, the kernel density estimation method was used to visualize the 

soundscape perception distribution of the test set and the prediction results. For the 

single-dimensional ISOPleasant and ISOEventful indicators, their corresponding probability 

density functions were visualized as soundscape perception distributions at the corresponding 

scale to reflect the soundscape perceptions at the group level (Figure 4). The red curve in the 
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figure represents the probability distribution of the real data, and the blue curve represents the 

probability distribution of the predicted data. To better describe the soundscape prediction 

results, this study aimed to evaluate the results from a group perspective. The closer the 

probability distribution of the predicted values was to the probability distribution of the real 

data, the closer the soundscape perceptions predicted by the model were to the actual 

group-level soundscape perceptions, indicating that the prediction performance of this model 

was better. When the probability density functions derived from the kernel density estimation 

results were analysed, two key characteristics were of primary interest: the peak value on the 

Y-axis and the spread along the X-axis. Since the total area under a probability density 

function is constrained to one, an inverse relationship exists between these two properties. A 

higher peak value corresponds to a narrower spread, indicating that a majority of a group of 

people have the same perception of the examined soundscape. Conversely, a lower peak with 

a wider spread means people have more dispersed or varied perceptual responses. In Figure 4, 

regarding the prediction of ISOPleasant, the peaks of the distributions predicted by the RF 

and XGBoost models deviated more from the true values than those of the LR and GPR 

models did. Furthermore, compared with the GPR model, the LR model had a narrower 

spread. For the prediction of ISOEventful, the peak and spread of the GPR-predicted 

distribution aligned much more closely with the true values than those of the other three 

models did. These results imply that the GPR model possesses a better ability to approximate 

the true distributions of soundscape perceptions for both the ISOPleasant and ISOEventful 

attributes. 
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Figure 4 Group-level visualization of the prediction performance achieved by the four models 

regarding the distributions of ISOPleasant and ISOEventful. 
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Furthermore, this study also visualized the joint probability distributions of ISOPleasant and 

ISOEventful (Figure 5). Orange points represent the predicted values, blue points represent 

the true values, and the enclosed orange area represents the simplified kernel density estimate 

produced for the predicted points, whereas the enclosed blue area represents the simplified 

kernel density estimate obtained for the true points. The closer the shapes of the two areas are 

and the greater their degree of overlap, the closer the predictions of the examined model are to 

the actual perception of the soundscape by the group, indicating better prediction 

performance. 

 

Figure 5 Comparison of true and prediction value based on four models at group-level 

visualization task.  
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4. Discussion 

4.1 Factors related to soundscape prediction 

This study identified the factors which can be used for soundscape prediction (ISOPleasant 

and ISOEventful). The results indicate that the acoustic factors of the sound pressure level, 

roughness, total harmonic distortion, and relative approach, as well as the visual factor of 

vegetation, play important roles in soundscape prediction scenarios. 

Specifically, 𝐿𝐶𝑒𝑞 was negatively correlated with ISOPleasant (𝑟 ≈ −0.36) and positively 

correlated with ISOEventful (𝑟 ≈ 0.31). 𝐿𝐶𝑒𝑞  is the C-weighted equivalent continuous 

sound pressure level, which reflects the overall sound energy level of the scene (the intensity 

of the ambient noise) filtered with the “C-type filter” which preserves the low frequency 

information but rolls off the high frequencies (unlike the A-type filter which rolls of low both 

low and high frequencies, or the Z-type filter which preserves the full frequency spectrum) 

and is highly correlated with people's intuitive perceptions of “quiet/noisy”. In 2009, Yu and 

Kang reported the important influence of the equivalent sound pressure level on soundscape 

perceptions when an ANN was used to model soundscapes[7]. In addition, Ricciardi and 

Pheasant et al., used A-weighted equivalent sound pressure levels to predict soundscapes 

[13,14]. This means that higher sound pressure levels make the sound environment noisier 

and reduce people’s pleasure, whereas high sound pressure levels often mean an increase in 

the number of sound sources, making a setting feel more eventful. 

Roughness was negatively correlated with ISOPleasant (𝑟 ≈ −0.44) and positively correlated 

with ISOEventful (𝑟 ≈ 0.34). Roughness reflects the harshness or instability caused by rapid 

amplitude/frequency fluctuations in sound. Sounds with high roughness, such as brake sounds, 

chain saw sounds, and harsh metal friction sounds, appear harsh, tense, mechanical, or 

discordant. Sounds with low roughness, such as wind sounds and light music, are softer and 

smoother. Roughness reflects the instability of a sound texture and is closely related to the 

intensity of “irritation/harshness” in a scene. When exploring changes in soundscape 

perceptions during an epidemic, Mitchell et al., reported that roughness was strongly 

correlated with soundscape perceptions (|𝑟| > 0.28) [24,54]. In his study, Zhang also reported 

that roughness affects sound perceptions[55]. In natural protected areas, Oberman found 

roughness to be positively correlated with ISOEventful but found no significant associations 

with ISOPleasant[56]. 

Total harmonious distortion (THD) was negatively correlated with ISOPleasant (𝑟 ≈ −0.32) 

and positively correlated with ISOEventful (𝑟 ≈ 0.31). THD measures the loss of sound 

waveforms. A high THD level results in severe sound loss, poor fidelity, and blurry sounds, 

                  



 26 / 37 

 

such as distortion caused by low-quality speakers or mechanical vibrations. A low THD level 

results in high-fidelity sound reproduction, closer to the natural/original sound, such as in 

high-fidelity audio or quiet scenes. THD reflects the fidelity and distortion of the sound in a 

scene and is closely related to the “clarity or distortion” characteristics of the scene, which in 

turn influence people's perceptions of pleasure and eventfulness. 

Relative approach (RA) was negatively correlated with ISOPleasant (𝑟 ≈ −0.30 ) and 

positively correlated with ISOEventful (𝑟 ≈ 0.32). RA often refers to the perceived proximity 

of a moving sound source (such as a vehicle, an aircraft, or a drone) relative to the listener 

and is typically characterized by the Doppler effect, intensity change rate, or directionality of 

the sound source. It reflects the motion and proximity of the sound source within the scene, 

embodying the dynamic and eventful nature of the sound [57–59]. A high RA value indicates 

that dynamic elements are more likely to be present in the scene, making the scene appear 

noisy and distracting, leading to greater perceptions of eventfulness and less of reservations 

[60–63]. 

Vegetation, as a key visual factor, was significantly positively correlated with ISOPleasant 

(𝑟 ≈ 0.48). This relationship may be attributed to two main mechanisms. First, vertical 

vegetation coverage enhances sound absorption through the repeated reflection of sound 

waves within dense plant structures, effectively reducing noise and contributing to a more 

tranquil environment. Second, the presence of greenery promotes a positive audiovisual 

integration experience, likely evoking a greater sense of pleasure and strengthening the 

perceived pleasantness of the soundscape[8,15,17,64,65]. These combined effects suggest that 

vegetation not only improves acoustic environments but also enhances subjective 

pleasantness perceptions, thereby elevating the ISO pleasantness rating. 

In addition to the above factors, acoustic factors including the speech interference level (SIL) 

and impulsiveness and the geographic factor business were selected as predictive factors by 

the three models for their respective prediction tasks. The SIL is a measure of the degree to 

which noise interferes with the intelligibility of speech. It was negatively correlated with 

ISOPleasant (𝑟 ≈ −0.33) and positively correlated with ISOEventful (𝑟 ≈ 0.31). A higher 

SIL often indicates a greater number of other sound sources in the target scene, increasing the 

eventfulness of the scene at the expense of pleasantness. Impulsiveness describes whether a 

sound contains short, intense transient energy, such as explosions, knocks, and sudden horns. 

It is also correlated with the ISOPleasant dimension of soundscape perception. Business, as a 

geographic factor, indicates the commercial environment of the surrounding environment. If 

the commercial environment factor is high, the number of commercial POIs increases, the 

flow of people in the scene increases, and the number of sound sources increases, which in 

turn affects people's perceptions of the sound environment. Although some studies have 
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reported that demographic factors and urban form factors affect soundscape 

perceptions[34,58,66], they were not sufficiently correlated in this study except for age, which 

may have been because when the four factors were considered, the importance levels of 

demographic factors and urban form factors were lower than those of the acoustic factors (such 

as the sound pressure level, roughness, and loudness) and visual factors (such as the green view 

rate). Therefore, the demographic and urban form factors were replaced by other more 

important factors when a certain number of modelling factors were selected. 

4.2 Soundscape prediction performance at the individual and group 

level 

To explore the potential for predicting soundscape perception at the group levels, this study 

compared the performance of deterministic models (at the individual level) using LR, an RF, 

and XGB as examples and probabilistic models (at the group level) using GPR as an example 

for the soundscape prediction task. The results show that the GPR model outperformed the 

other models at the individual scale, whether it was used to predict ISOPleasant or 

ISOEventful. Moreover, the GPR model outperformed the RF (𝑅𝑝𝑙
2 = 0.2500, 𝑅𝑒𝑣

2 = 0.0928) 

and XGB (𝑅𝑝𝑙
2 = 0.2561, 𝑅𝑒𝑣

2 = 0.1016) models used in Versumer’s 2025 experiments on the 

ISD dataset[23], with 𝑅𝑝𝑙
2 = 0.3649 and 𝑅𝑒𝑣

2 = 0.1759 in this study. At the group level, the 

GPR model also performed relatively well in terms of predicting pleasantness (its KL and 

DME values were better than those of the other methods). When predicting eventfulness, 

although the performance achieved by GPR in terms of KL and JS was limited, its DME 

performance was still better than that of the other approaches. In addition, the probability 

distribution results obtained for the predictions of each model revealed that the distribution of 

the prediction results yielded by the GPR model was closer to the shape of the true 

distribution than those of the other models were. When predicting pleasantness and 

eventfulness, the peak value and spread of the probability distribution of the prediction results 

produced by the GPR model were closer to the probability distribution of the true values 

(Figure 4). When pleasantness and eventfulness were considered together, the distribution 

shape of the prediction results produced by the GPR model was closer to the true distribution 

than those of the other deterministic models were (Figure 5). These results indicate that 

predicting soundscape perceptions at the group level has certain advantages over predicting 

soundscape perceptions at the individual level. The advantages of modelling at the group level 

over modelling at the individual level have also been reflected in other fields[67], such as 

solar output forecasting[68] and runoff prediction in hydrological research[69]. 

There may be three reasons why using GPR (a probabilistic model) to predict soundscape 

perceptions at the group level presented certain advantages. First, GPR is a nonparametric 
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Bayesian method that can flexibly fit complex nonlinear relationships. The prediction 

uncertainty of GPR can reflect the inherent volatility in these data, thereby improving the 

reliability of the model [70,71]. Moreover, GPR can use kernel functions (e.g., RBF kernels 

and dot product kernels) to model the correlations among different scales and features. This 

makes GPR suitable for tasks such as soundscape perception, which may exhibit periodicity 

(e.g., day-to-night variations) and spatial autocorrelations. Second, soundscape data are often 

highly subjective and noisy (perceptions vary from person to person). In real-world contexts, 

soundscape perceptions are influenced by environmental variables (e.g., temperature and 

wind) and personal factors (e.g., mood and experience), which are difficult to replicate 

experimentally. These factors integrate noise and bias into real-world soundscape data, 

complicating prediction efforts [23]. The probabilistic modelling method has a higher 

tolerance for such noise and deviations, which gives this method a certain advantage in terms 

of predicting the distributions of real soundscapes. Third, soundscape perception data often 

have limited sample sizes but a wide range of feature dimensions (e.g., acoustic factors, 

environmental factors, and demographic data). Even with a small sample size, GPR can still 

reliably fit nonlinear relationships, whereas random forests and XGB may overfit the data or 

produce unstable predictions when the sample size is insufficient [45,72]. These advantages 

may explain why probabilistic models are better at predicting soundscape perceptions at the 

group level, which also means that the idea of modelling and predicting soundscape 

perceptions at the group level has certain advantages. 

From the perspective of urban planning, when addressing the question of how to design 

environments that optimize soundscape perceptions, the focus should be placed on the 

perceptions of groups rather than individuals. Cities are built to serve communities, not 

averaged ideal individuals. Therefore, in soundscape prediction tasks, researchers should shift 

the modelling paradigm from the traditional individual level to the group level. This approach 

would not only enable soundscape prediction to be performed with a smaller amount of data 

but also mitigate the influence of individual variability, thereby yielding more robust and 

reliable predictive results. Ultimately, soundscape prediction models can be further applied to 

infer which factors most strongly affect soundscape perceptions and to analyse how these 

factors interact with urban environments. Such insights can guide urban designers and 

planners to create more acoustically pleasant and perceptually balanced public spaces. 

4.3 Applications 

In the field of soundscape mapping, GPR can construct a dynamically updated probabilistic 

soundscape map that reflects the spatial distribution characteristics of sound comfort levels in 

different areas, and this feature makes it particularly suitable for the preassessment of 

soundscapes in urban renewal projects. 
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In addition, the results of this study demonstrate that the GPR model can effectively predict 

group-level soundscape perceptions. This capability offers practical value for guiding 

sound-oriented environmental planning and design tasks. When a group of people enters a 

specific environment, their soundscape perception can be anticipated in advance. By doing so, 

the model helps reduce the reliance on large-scale data collection processes, shortens the 

required training time, decreases the incurred computational costs, and supports efficient 

soundscape design decisions with minimal training samples.  

4.4 Limitations and future work 

Future work could focus on extending the applicability and robustness of the modelling 

framework. On the one hand, rather than relying solely on group-level performance, efforts 

should be directed towards scene-specific optimization strategies. By adapting the model to a 

specific environment, such as an urban park, localized acoustic characteristics and contextual 

factors can be better captured, allowing the model to provide more accurate and actionable 

predictions in diverse urban environments. This approach would enhance the capacity of the 

model to support site-specific soundscape planning and design activities. On the other hand, 

future research could attempt to directly use the distribution of soundscape perceptions at the 

group level as the prediction target of the constructed model. That is, more advanced 

probabilistic models, such as Bayesian models, latent variable analysis or deep neural 

networks, can be used to directly predict the probability distributions of soundscape 

perceptions. By treating perceptual outcomes as probability distributions, such models can 

better account for the individual variability and uncertainty that are inherent in soundscape 

perceptions. This probabilistic framework also facilitates more targeted model selection and 

parameter tuning procedures. Together, these potential future research directions could 

strengthen the ability of soundscape prediction models to provide reliable, context-aware, and 

uncertainty-informed insights for both research and urban planning practice.  
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5. Conclusions 

This study investigates which factors can be used for soundscape prediction and how the 

machine learning models performs at the group level, by using LR, RF, XGB, and GPR 

models constructed based on the ISD. 

In this study, key factors of soundscape perceptions were identified by applying four distinct 

models to screen factors on the basis of correlation, multicollinearity, and importance metrics. 

Acoustic factors, including the equivalent continuous sound pressure level (|𝑟| > 0.31), 

roughness (|𝑟| > 0.34), total harmonic distortion (|𝑟| > 0.31), and relative approach (|𝑟| >

0.30), alongside the visual factor vegetation (|𝑟| > 0.48), were consistently selected across 

all the models, underscoring their critical role in predicting both ISOPleasant and 

ISOEventful. Vegetation was positively correlated with ISOPleasant, highlighting the calming 

effect of natural visual elements. Additional factors such as the speech interference level, 

impulsiveness, and business-related geographic attributes also contributed to the model, 

although demographic and urban form factors were largely overshadowed by the acoustic and 

visual factors. GPR model outperformed the other models at both the individual and group 

levels. GPR demonstrated a unique advantage in terms of matching the predicted distributions 

of ISOPleasant and ISOEventful with the actual perceived distributions. By modelling 

soundscape perceptions in a function space and accounting for uncertainty, the GPR model 

provided predictions that more closely approximated the “true collective perceptions”, i.e. 

predictions at the group-level.  

This distribution-based evaluation approach thus provides a more intuitive and robust strategy 

for understanding and predicting soundscape perceptions, offering insights for sound 

environment design and management tasks. This study adopted a probability 

distribution-based approach to evaluate the performance of the tested models at the group 

level. This method allowed the predictions to better capture the perceptual diversity among 

different populations, thereby improving the applicability of the models in real-world acoustic 

environments. This contribution could help to improve soundscape research and guiding the 

design and planning processes concerning urban sound environment.   
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