Man1-MaH1: Low-Latency Asynchronous BFT
DAG-Based Consensus

Philipp Jovanovic*, Lefteris Kokoris—KogiasT, Bryan Kumara?, Alberto Sonnino*T,
Pasindu Tennage®, Igor Zablotchi'

*University College London (UCL), TMysten Labs, {The Alan Turing Institute, SEPFL

Abstract—We present MaHI-MaH]I, the first asynchronous
BFT consensus protocol that achieves sub-second latency in
a wide-area network setting while processing over 100,000
transactions per second. MaHI-MaHI achieves such high
performance by leveraging an uncertified structured Directed
Acyclic Graph (DAG) to forgo explicit certification. This
reduces the number of messages required to commit and
the CPU overhead for certificate verification, significantly.
MaHI-MaHI introduces a novel commit rule that enables
committing multiple blocks in each asynchronous DAG
round. MaHI-MAaHI can be parametrized either with a 5
network hops commit delay, maximizing the commit prob-
ability under a continuously active asynchronous adversary,
or with a 4 network hops commit delay, reducing latency
under a more moderate and realistic asynchronous adversary.
We demonstrate safety and liveness of MaHI-MAHI in a
Byzantine context for all of these parametrizations. Finally,
we evaluate MAHI-MAHI in a geo-replicated setting and
compare its performance to state-of-the-art asynchronous
consensus protocols, showcasing MAHI-MAHT’s significantly
lower latency.

Index Terms—Asynchronous Consensus, BFT, Blockchain

I. INTRODUCTION

Applications that require Byzantine Fault Tolerant (BFT)
consensus [7], such as blockchains [3], [7], [9], [10], [33],
[43], often rely on protocols designed for the partially syn-
chronous network model which aims to approximate mostly
benign network conditions. However, protocols designed for
partial synchrony lose liveness under asynchronous condi-
tions, which can arise from poor connectivity, an active
network adversary, or denial-of-service (DoS) attacks [29].
Asynchronous consensus protocols [13], [15], [40] address
this issue by providing as much liveness as the network
connectivity allows. To achieve this, these protocols sacrifice
performance during periods of network synchrony, resulting
in significantly higher latency compared to their partially
synchronous counterparts. While state-of-the-art partially
synchronous protocols can process over 100, 000 transactions
per second with sub-second WAN latency [4], [5], current
asynchronous protocols achieve similar throughput with la-
tencies on the order of seconds [20]. This substantial latency
drawback has made asynchronous consensus protocols less
attractive for practical deployments.

Dual-mode protocols [28], [45] attempt to provide the
best of both worlds by operating partially-synchronous
consensus by default and reverting to a less performant

asynchronous sub-protocol when network conditions become
adverse. However, dual-mode protocols introduce complexity
and are prone to errors, as they must maintain two sep-
arate protocol stacks and implement mechanisms to detect
changing network conditions and switch between the two
consensus modes. Additionally, they remain vulnerable to
targeted attacks that can cause the protocol to switch con-
stantly between the two modes [45]. Due to these drawbacks,
no dual-mode protocol has yet been deployed in a production
environment, to the best of our knowledge.

We therefore ask if it is possible to design a protocol that
can simultaneously: (i) provide liveness under asynchronous
network conditions, (ii) achieve performance comparable to
state-of-the-art partially-synchronous consensus protocols,
and (iil) maintain a simple design that allow for effective
security analysis, implementation, and maintenance?

In this paper, we introduce MaAHI-MaHI, a novel low-
latency and high-throughput asynchronous consensus proto-
col that achieves these 3 goals. MAHI-MAHI accomplishes this
through a combination of the following techniques. (1) While
state-of-the-art asynchronous protocols, such as Tusk [20],
operate over a certified Directed Acyclic Graph (DAG) and
attempt to commit one leader block every 9 message delays,
MaHnI-MaH1 utilizes an uncertified DAG as its core data struc-
ture. This approach eliminates the overhead associated with
the reliable broadcast [13] of DAG vertices and allows MAHI-
MaHI to commit most blocks with only five network hops,
aligning with the theoretical results of Cordial Miners [32].
(2) MaHI-MAHI introduces a novel commit rule that enables
the commitment of multiple leader blocks in each DAG round
while ensuring safety and liveness in the presence of an
asynchronous adversary. (3) MAaHI-MAHI also explores more
practical network assumptions and can be parameterized to
further enhance average-case performance while maintaining
liveness against an asynchronous adversary.

We implement MaHI-MAHI in Rust and show that it
can process an impressive 350,000 transactions per second
in geo-distributed environments with 50 nodes, all while
keeping latency below 2 seconds. Additionally, MAHI-MAHI
can process 100,000 transactions per second with latency
below 1 second. This achievement sets a new record in the
realm of asynchronous consensus protocols and was previ-
ously only attainable by partially synchronous protocols [4],
[5], [44]. We further show that MAHI-MAHI maintains the

same throughput while reducing latency over recent state-of-
the-art asynchronous BFT protocols, Tusk [20] and Cordial
Miners [32] - achieving latency reductions of over 70% and
30%, respectively.

Contributions. We make the following contributions:

o We introduce MaHI1-MAH], the first asynchronous consen-
sus protocol capable of committing with sub-second la-
tency while maintaining high throughput. Notably, MaHI-
Masm1 is the first DAG-based asynchronous BFT consensus
protocol capable of committing multiple leader blocks in
each round.

o We provide detailed algorithms and formal security proofs
for MauI-MAHI, demonstrating its safety and liveness
under an asynchronous network model.

e We conduct a latency analysis of MaHI-MaAHI, evaluating
its commit probability under various network conditions.

o We present an implementation and evaluation of MAHI-
MaHI, comparing it to other state-of-the-art protocols and
demonstrating that MAHI-MAHI achieves the lowest com-
mit latency among available asynchronous BFT protocols.

II. SysTEM OVERVIEW
A. Threat model, goals, and assumptions

We consider a message-passing system with n = 3f + 1
validators. An adversary can adaptively corrupt up to f val-
idators, referred to as Byzantine, who may deviate arbitrarily
from the protocol. The remaining honest validators, follow
the protocol. The adversary is computationally bounded,
ensuring that standard cryptographic properties such as the
security of hash functions and digital signatures hold. The
communication network is asynchronous and messages can
be delayed arbitrarily, but messages among honest validators
are eventually delivered. Given these conditions MAHI-MAHI
is live, meaning honest validators eventually commit trans-
actions.

In addition to the asynchronous model, we analyze MAHI-
Mamur under the random network model [21], [20], a variant of
the asynchronous network model. While the asynchronous
model makes the worst-case assumption that the adversary
has perpetually full control over the message schedule (i.e.,
the order in which messages are received by honest valida-
tors), the random network model assumes that the message
schedule is random (see Section II-C). We analyze MaHI-
ManH1 with parameters optimized for the random network
model, representing an evaluation that characterizes practical
asynchronous network settings. Our empirical results show
that this parameterization generally outperforms a version of
ManI1-MaH1 configured for maximum resilience against an
active asynchronous adversary, all while maintaining safety
and liveness guarantees.

MaHI-MAHI Byzantine Atomic Broadcast
(BAB) [16], enabling validators to reach consensus on
a sequence of messages. According to the FLP impossibility
result [38], BAB cannot be solved deterministically in an
asynchronous setting. To address this, we employ a global

solves

perfect coin to introduce randomization, similar to previous
work [11], [14], [31], [35]. This coin can be constructed
using an adaptively secure threshold signature scheme [6],
[12], with the distributed key setup performed under
asynchronous conditions [1], [2], [23]

Each validator wvj, broadcasts messages by invoking
a_bcast,(m,q), where m is the message and ¢ € N
is a sequence number. Every validator v; has an output
a_deliver;(m, q,vy), where m is the message, ¢ is the se-
quence number, and vy, is the identity of the validator that
initiated the corresponding a_bcasty(m, ¢). MAHI-MAHI im-
plements a BAB protocol and guarantees the following [31]:

o Validity: If an honest participant vy, calls a_bcasty(m, q),
then every honest participant v; eventually outputs
a_deliver;(m, ¢, vy), with probability 1.

o Agreement: If an honest participant v; outputs
a_deliver;(m, q,v;), then every honest participant v;
eventually outputs a_deliver;(m, g, vx) with probability 1.

o Integrity: For each sequence number ¢ € N and

participant wvg, an honest participant v; outputs
a_deliver;(m, g, vy) at most once, regardless of m.
e Total Order: If an honest participant v; outputs

a_deliver;(m, q,v;) and a_deliver;(m/, ¢, v},) where ¢ <
¢, all honest participants output a_deliver;(m, q,v) be-
fore a_deliver;(m/, ¢, vy,).

B. Intuition behind the MAHI-MAHI design

Man1-MaHi1 builds upon DAG-based consensus protocols [5],
[32], [20], [31] that achieve high throughput by processing
O(n) blocks per round. While maintaining the throughput
advantages of DAG-based protocols, MAaHI-MaHI focuses
on reducing the latency in asynchronous state machine
replication. It introduces novel techniques to decrease the
number of message delays required for block commitment
and explores more practical network assumptions to further
improve average-case performance.

State-of-the-art asynchronous protocols, such as Tusk [20],
operate over a certified DAG and commits one leader block
every three certified rounds, requiring three message delays
to certify each round. This results in at least nine message
delays (nine network hops) per leader block. In contrast,
MaHI-MAHI operates over an uncertified DAG by forgoing
the reliable broadcast [13] of DAG vertices, committing
most blocks with only five network hops which matches
the theoretical results of Cordial Miners [32]. Uncertified
DAG approach significantly reduces both bandwidth and
computation cost.

Uncertified DAGs, however, creates the first challenge
(Challenge 1): handling equivocations practically. Unlike
certified DAG protocols [20], [27], [31], [45], [49], MaHI-
MaHI cannot rely on certificates to prevent equivocations,
necessitating the design of a novel commit rule that is
immune to equivocations. Cordial Miners [32], an existing
uncertified DAG based protocol, also faces the same chal-
lenge and addresses it by eventually excluding Byzantine
validators that provably equivocate. Although theoretically

sound, eventually excluding Byzantine validators takes a
very long time under asynchrony, hindering the benefits of
asynchronous liveness.

While having five rounds between leaders provides a good
probability of committing in asynchronous conditions, it also
results in relatively high latency. Although it can be shown
that we can implement a commit rule that operates in just
three message delays (see Section C), this approach would
not work under asynchrony as it would introduce significant
latency variance and in the worst case lose liveness. Instead,
we focus on addressing (Challenge 2): developing a commit
rule that effectively reduces average-case latency without
sacrificing worst-case liveness. We find that it is possible
to reduce the number of network hops to four, achieving
a balance between average-case latency in random network
conditions and worst-case latency in the classic asynchronous
model.

Even with this enhancement, committing only once ev-
ery four message delays still results in significant latency
variance for transactions that are not part of a committed
leader block’s causal history. A primary goal for MAHI-MAHI
is to commit multiple blocks in each round, which would
ensure that the system’s tail latency aligns more closely with
the four-message delay. To achieve this, we need to address
(Challenge 3): commit every block without relying on a suf-
ficient round difference between leader blocks. If MaHI-MAHI
were to adopt a traditional recursive commit rule [20], [32],
which mandates that each leader block always references all
previous leader blocks in their causal history, it would at
best be able to commit once every four rounds. However,
MaHI-MAHI recognizes that this causal reference is only
necessary when there is no sufficient evidence to directly
commit a block, which is not the typical case (Section V). This
insight indicates that the recursive commit rule used in prior
research is overly conservative in its approach to skipping
blocks, leading to unnecessary delays, particularly during
benign node crashes, which are immediately identifiable. To
resolve this issue, we propose a new commit rule capable
to promptly determine for each block whether it can be
committed or discarded.

Section III-B presents the MaHI-MAHI commit rule that
addresses these challenges. Hence, MAaHI-MAHI is the first
asynchronous BFT consensus protocol capable of committing
multiple blocks per round in the average case, while ensuring
both safety and liveness in the asynchronous and random
network models.

C. Structure of the MAHI-MAHI DAG

We present the structure of the MaHI-MaHI DAG, building an
uncertified DAG that offers similar guarantees to a certified
DAG, as shown in related work [5], [20], [32].

The MaHI-MaHI protocol operates in a sequence of logical
rounds. In each round, every honest validator proposes a
unique signed block, while Byzantine validators may attempt
to equivocate by sending multiple blocks or none at all.
During a round, validators receive transactions from users

and blocks from other validators, which they refer into their
proposed blocks. A block includes hash references to blocks
from prior rounds, starting with their most recent block,
and adds fresh transactions not yet included in preceding
blocks. Once a block references at least 2f + 1 blocks from
the previous round, the validator signs it and broadcasts it.
Clients send transactions to a validator, who adds them to
their blocks. If a transaction does not finalize quickly enough,
the client sends it to a different validator.

Block creation and validation. A block must include at
least the following elements: (1) the author A of the block
and their signature on the block contents; (2) a round number
R; (3) a list of transactions; (4) at least 2f + 1 distinct hashes
of valid blocks from the previous round R — 1, along with
potentially others from prior rounds; and (5) a share of a
global perfect coin. As already mentioned the coin can be
reconstructed from any 2f + 1 shares.

A block is wvalid if: (1) the signature is valid and the
author A is part of the validator set; (2) all hashes point to
distinct valid blocks from previous rounds, and the sequence
of past blocks includes 2 f+1 blocks from the previous round
R — 1; and (3) the share of the global perfect coin is valid®.
Honest validators only include valid blocks into their DAG
and discard invalid ones. Furthermore, honest validators only
include hashes of blocks once they have downloaded their
entire causal history, ensuring that they have successfully
validated the block’s causal history.

Rounds and waves. Figure 1 (left) illustrates an example
of a Maui-Mau1 DAG with four validators, (vg, v1,v2,v3)
when parametrized to commit in 5 rounds. For the practically
efficient 4-round MAHI-MAHI, the second Boost round is
omitted.

In its 5-rounds configuration, MAHI-MAHI defines a wave
of 5 rounds for every block. The first round (Propose)
includes the blocks that the wave attempts to commit (P, P,
P,, P5) and the equivocating block Pj. The second and third
rounds (Boost) act as a buffer, helping to propagate these
blocks to as many validators as possible. In the fourth round
(Vote), every block serves as a vote for the first block of the
Propose that it encounters when performing a depth- first
search following the block hash references. In the example
shown in this figure, blocks Vj, V1, and V;, are votes for Py,
Py, P, (but not for P| and Ps), while block V3 is a vote for
Py, Py, P,, and P; (but not for P;). The procedure ISVOTE(")
of Algorithm 2 (Section A) formally defines a vote. The fifth
round (Certify) reveals which blocks from the Propose round
have been implicitly certified. A block from the Propose
round is considered certified or has a certificate if a block
from the Certify round contains in its causal history at least
2f + 1 blocks from the Vote round that are a vote for the
block. In this example, blocks Cy, C1, Cs, and C3 serve as
certificates for Py, P;, and P». This round also opens the
global perfect coin, which the decision rule (Section III-B)

Each individual share of the coin can be independently verified if the
coin is implemented through a threshold signature.

R+4

v0 PO co

P1

v1 c1
P1*
v2 P2 c2
v3 P3 V3 l«— c3
propose boost boost vote certify

t I

elect

vo0

v1

v2

v3

—wave 22— ———————— - -

—wave 4— - -

Fig. 1: The structure of the MaHI-MaHI DAG. Left: The structure of a wave, consisting of 5 rounds (Propose, Boost, Boost, Vote, Certify). Right: Waves
patterns in the MaHI-MAHI protocol (each round starts a new overlapping wave).

uses to circumvent the FLP result and to commit blocks
under asynchrony by electing some of the Propose blocks
as leaders. Similar to related work [31], [20] this strategy
selects leaders “after the fact” to deter a network adversary
from strategically delaying leader blocks so that they are not
referenced by blocks of the Vote round.

As illustrated in Figure 1 (right), MAHI-MAHI initiates a
new wave every round. The rounds of each wave follow a
consistent pattern: Propose round: R, Boost round: R + 1,
Boost round: R+2, Vote round: R+3, and Certify round: R+
4. This pattern repeats continuously, with each new round
starting a fresh wave. Algorithm 3 of Section A formally
defines a wave.

Random network model. We analyze MAHI-MAHI in the
standard asynchronous network model, as well as in the
random network model [20]. In the asynchronous model,
the adversary chooses which blocks are received by each
honest validator at each round. In contrast, the random
network model assumes that at each round R+ 1, an honest
validator receives and references valid round-R blocks from
a uniformly random subset of 2f 4 1 validators. Section C
provides further details and analyses the commit probability
of MaHI-MAHI under both network models.

III. THE MAHI-MAHI PROTOCOL

In this section, we present MaHI-MAHI configured with a
wavelength of 5 rounds. A configuration of MaHI-MaHI with
a wavelength of 4 rounds operates similarly, but omits one
Boost round, and addresses challenge 2 of Section II as
we empirically show in Section V. Algorithm 1 specifies
the MaHI-MAHI main protocol, Algorithm 3 the MaHI-MAHI
decider instance, and algorithm 2 contains various DAG
helper functions.

A. Leader Slot

ManI1-MAHI leverages a perfect global coin to define several
leader slots per round. A leader slot is a tuple (validator,
round) and can be either empty or contain the validator’s
proposal for the respective round. If the validator is Byzan-
tine, the slot may also contain more than one (equivocating)
block. In line with related work [5], the slot can assume one
of three states: commit, skip, or undecided. All slots are

initially set to undecided and the goal of the protocol is to
classify them as commit or skip. The number of leader slots
instantiated per round and the number of boost rounds can
be configured (Section V explores different configurations).

B. The MaHI-MAHTI decision rule

We present the decision rule of MaHI-MAHI leveraging an
example protocol run. Section A provides detailed algorithms
and Section B provides a complete step-by-step protocol
execution. Figure 2 illustrates an example of a local view
of a MAHI-MAHI validator, in a system with four validators,
(vo, v1,v2,v3) and parameterized with two leader slots per
round. In this example, we refer to blocks using the notation
B(y,,r), Where v; is the issuing validator and R is the block’s
round.

All proposer slots are initially in the undecided state. The
validator holds the portion of the DAG depicted in Figure 2
and attempts to classify as many blocks in the leader slots
as possible as either commit or skip.

Step 1: Determine the leader slots. The validator begins
by reconstructing the global perfect coin to determine the
leader slots for each round. As shown in Figure 1 (Left), the
coin shares embedded in round R + 4? (the Certify round)
deterministically establish the leader slots for round R.

In this example, the validator reconstructs the coin from
any set of 2f + 1 blocks from round R + 4 of a wave,
then uses it as a seed to deterministically select two leader
slots for round R: L1, and L, as illustrated in Figure 2.
The coin also imposes an order between these two slots:
by convention, Ly, is the first leader slot and Lj; is the
second leader slot of round R. The validator repeats this
process for every subsequent wave, determining leader slots
Lo, and Lo from the coin shares in round R + 5, L3,
and L3, from those in round R + 6, and so on. The
validator then sorts these leader slots in descending order:
(L6, Leas Lsy, Lsas Lay, Laas L3y, Lza, Loy, Loa, Lip, Lia).

This mechanism of determining multiple, potentially
empty, leader slots from a global perfect coin is the first
step towards addressing challenge 3 (Section II). Even if
validators have different views of the DAG, they will still

20r R+3 when Man1-Mam is configured with a wave length of 4 rounds.

D

R+4

S~
O
KA

X

%@
)
‘ol

4

/
OGO
W@%.

s

()

I. /A'l.
DX
AN

Fig. 2: Example execution with 4 validators, wave length of 5 rounds and 2 leader slots per round.

deterministically decide the same leader slots, in the same
order, for a given round—regardless of whether they have a
block for that slot in memory. This enables MAHI-MAHI to
achieve low latency by electing more than one leader per
round and using these slots to order the causally history.

Step 2: Direct decision rule. The validator attempts to
classify each slot, even those without a block as either
commit or skip. To do so, the validator processes each
slot individually, starting with the highest (Lg), applying
the MaHu1-MaH1 direct decision rule. The validator classifies
a block B in a slot as skip if it observes 2f + 1 blocks
from the subsequent Vote round that do not encounter B
when performing a depth-first search following the blocks’
references, and as commit if it observes 2f + 1 certificates
over it. As discussed in Section II, a certificate over a block
B is a block from the Certify round that references at least
2f + 1 blocks from the Vote round, each of which encounter
B when performing a depth-first search starting at the voting
block. Otherwise, the validator leaves the slot as undecided
(for now).

In this example, the validator targets Lg;, first. It observes
that By, r19)> B(v,,r+9), and By, ri9) are certificates for
L. Therefore, it classifies Lg, as commit. Section V shows
that this scenario is the most common (in the absence of an
asynchronous adversary) and results in the lowest latency.
The validator then targets Lg, and observes that B(,, ris),
B(vy,r+8), and B(,, ryg) do not vote for it. Therefore, it
classifies Lg, as skip. The presence of 2f + 1 blocks from
the Vote round that do not vote for a block ensures that
it will never be certified, and will thus never be committed
by other validators with a potentially different local view of
the DAG. Section V shows that this rule allows MAHI-MAHI
to promptly skip (benign) crashed leaders to minimize their
impact on the protocol’s performance.

Malicious validators may attempt to equivocate by creating
multiple blocks for the same slot, such as Lg;, and Lgb in this
example. However, the direct decision rule ensures that at
most one of these blocks will be classified as commit, while
the others will be classified as skip. In this example, the
block B(y,,r+7) is a vote for Ls;, (and not for L7,) as it is the
first block of the slot encountered when performing a depth-
first search starting at B(,, r47) and recursively following
all blocks in the sequence of block hashes. Conversely,

B(v,,r+7)s B(vs,r47)> and By, gry7) are votes for Lyp .
This strategy addresses challenge 1. Even though Byzan-
tine validators might equivocate by creating multiple blocks
per slot, the causal references defined by the DAG allow
the validator to interpret blocks from the Certify round as
certificates for blocks from the Propose round. Coupled with
the rule that honest validators author at most one block per
round, this ensures that at most one block per slot receives
a certificate, while all possible other equivocating blocks are
skipped. In essence, MAHI-MAHI embeds the execution of a
Byzantine consistent broadcast [13] into the DAG.

Step 3: Indirect decision rule. In the (rare) case where
the direct decision rule cannot classify a slot, the validator
uses the MaHI-MAHI indirect decision rule. This rule looks at
future slots to decide about the current one. First, it finds an
anchor. This is the first block of the next wave (that is, the
earliest slot with a round number R’ > R + 4) that is either
still classified as undecided or already classified as commit. If
the anchor is undecided, the validator marks the current slot
as undecided. If the anchor is commit, the validator checks
if it references at least one certificate over the current slot.
If it does, the validator marks the current slot as commit.
If it does not, the validator marks the current slot as skip.
Section C shows the direct and indirect decision rules are
consistent, namely if one validator direct commits a block
no honest validators will indirect skip it (and vice versa).

In this example, the validator fails to classify L1, using the
direct decision rule as there is only one certificate for L,
and thus searches for its anchor. Since Lg, has been classified
as skip, it cannot serve as an anchor; therefore, Lg; becomes
the anchor for Ly,. Given that block By, r44), which serves
as a certificate for Li,, is referenced in Lgp’s causal history,
the validator classifies L1, as commit.

This rule is the last step to solving challenge 3. It allows
the validator to indirectly decide on a block by leveraging
the earliest anchors rather than waiting for the next leader
slot which may come much later. This enables MAHI-MAHI
to eliminate the need for non-leader blocks between leader
slots, achieving low latency by electing leader slots every
round.

Step 4: Leader slots sequence. After processing all slots,

the validator derives an ordered sequence of the blocks con-
tained in the leader slots. It then iterates over this sequence,

committing all slots marked as commit and skipping all slots
marked as skip. This process continues until the validator
encounters the first undecided slot. As shown in Section C,
this commit sequence is safe, and eventually, all slots will be
classified as either commit or skip.

In the example shown in Figure 2, the leader sequence
output by the validator is [Llas le, L2a, L2b, Lga, Lgb,
L4y, Lap, Lsg, L’5b, Lgp] . Section B provides a detailed
walkthrough of the decision rule applied to the example DAG
in Figure 2, guiding the reader step-by-step through deriving
this commit sequence.

Step 5: Commit sequence. Following the approach intro-
duced by DagRider [31], the validator linearizes the blocks
within the sub-DAG defined by each leader block by per-
forming a depth-first search. If a block has already been
linearized by a previous leader slot, it is not re-linearized.
The validator processes leader slots sequentially, ensuring
that all blocks are included in the final commit sequence in
the correct order, according to their causal dependencies. The
procedure LINEARIZESUBDAGS(-) of Algorithm 2 (Section A)
formally describes this.

In this example, Li, and Li; do not define any sub-
DAG (because the example begins at round R) and are thus
directly added to the commit sequence. Next, Lo, defines
the sub-DAG { L1y, B(y,,R), B(vs,r)> L2a }> Which is linearized
as [B(v,,R)> B(vs,R)s L2a] since Ly, is already part of the
commit sequence. The validator continues this process for
each leader, linearizing the sub-DAGs defined by Ls;, then
Ls, and so forth. The final commit sequence is [L1, L1p,
Bv,,r)> Bvs,R)s L2as L2b, B(wy,rR11)s Lsas Bus,ry1)s Lsbs
B(vy,r+2)s Bvs,rt+2)> Laas Lavs B(v,,R13)> Bvs,R+3)s Lsas
Lyy, B(o,,r+4)> B(vs,r+a)> Lev]-

IV. IMPLEMENTATION

We implemented a networked MaHnI-MaHI validator in Rust
by forking the Mysticeti codebase [34], consisting of about
14,000 LOC. Our implementation utilizes tokio [48] for
asynchronous networking and employs raw TCP sockets for
communication. We rely on ed25519-consensus [24] for
asymmetric cryptography and blake2 [41] for cryptographic
hashing. Furthermore, we implemented Cordial Miners [32],
a state-of-the-art DAG-based asynchronous consensus pro-
tocol, using the same system components. This allowed us
to conduct a comparative evaluation with Mahi-Mahi, see
Section V. Since the Cordial Miners paper lacks both im-
plementation and evaluation, we believe our implementation
and evaluation are additional contributions of our work. We
are open-sourcing both our implementations of MAaHI-MAHI
and Cordial Miners, along with our orchestration tools, to
ensure reproducibility of our results®.

V. EVALUATION
We evaluate the throughput and latency of MaHI-MaHI

through experiments conducted on Amazon Web Services

3https://github.com/PasinduTennage/mahi-mahi-consensus (commit

13a2819800ad3b192ab3c54dfe3ec4ddb34ae361)

(AWS), demonstrating its performance improvements over
the state-of-the-art. We evaluate MaHI-MAHI with different
parametrizations, with a wave length of 4 and 5 and with
different numbers of leaders per round.

We compare MAHI-MaH1 with Tusk [20], as an exam-
ple of certified DAG-based consensus protocol, and Cordial
Miners [32], as an example of an uncertified DAG-based
protocol. We choose these protocols because, to the best
of our knowledge, Tusk has shown the highest throughput
among all published and implemented asynchronous BFT
protocols when evaluated in a geo-distributed environment.
Cordial Miners, while lacking an implementation and evalua-
tion, theoretically proves excellent latency bounds and is the
protocol most similar to MAaHI-MAHI. We also considered a
performance comparison with other asynchronous consensus
protocols, including Pace [50], Fin [25], ParBFT [18], and
SQ [47], but decided against them. The reasons for this
decision is that their implementations are either closed-
source, only capable of handling a limited number of block
proposals (leading to crashes under sustained load), or unable
to operate in a WAN environment (resulting in deadlocks
after a few seconds).

Our evaluation demonstrates the following 5 claims:

C1 MaHI-MaHI has similar throughput and lower latency
than the baseline state-of-the-art protocols when oper-
ating in synchronous network conditions.

C2 MaHI-MAHI scales well by maintaining high throughput
and low latency as the number of validators increases.

C3 MaHI-MAHI has a similar throughput to, and lower
latency than, Cordial Miners, when operating in the
presence of (benign) crash faults.

C4 MaHI-MaHI latency decreases when increasing the num-
ber of leader slots per round (up to 3 leaders per round).

C5 MaHI-MAHI parametrized with a wave length of 4
rounds has lower latency in our geo-replicated network
than when configured with a wave length of 5 rounds.

Note that evaluating the performance of BFT protocols
in the presence of Byzantine faults is an open research
question [8], and state-of-the-art evidence relies on formal
proofs (presented in Section C). While there is a need to
robustly tolerate Byzantine faults, we note that they are
rare in observed delegated proof-of-stake blockchains, as

compared to crash faults which occur commonly [5].

A. Experimental Setup

We deploy Man1-Maz1 on AWS, using m5d.8xlarge in-
stances across 5 different AWS regions: Ohio (us-east-2),
Oregon (us-west-2), Cape Town (af-south-1), Hong Kong (ap-
east-1), and Milan (eu-south-1). Validators are distributed
across those regions as equally as possible. Each machine
provides 10 Gbps of bandwidth, 32 virtual CPUs (16 physical
cores) on a 3.1GHz Intel Xeon Skylake 8175M, 128 GB
memory, and runs Linux Ubuntu server 22.04.

In the following, latency refers to the time elapsed from
the moment a client submits a transaction to when it is
committed by the validators, and throughput refers to the

https://github.com/PasinduTennage/mahi-mahi-consensus

number of transactions committed per second. Each data
point is the average latency of 3 runs and the error bars
represent one standard deviation (error bars are sometimes
too small to be visible on the graph). We instantiate sev-
eral geo-distributed benchmark clients within each validator
submitting transactions in an open loop model, at a fixed
rate. We experimentally increase the load of transactions
sent to the systems, and record the throughput and latency
of commits. As a result, all plots illustrate the steady-state
latency of all systems under low load, as well as the maximal
throughput they can provide after which latency grows
quickly. Transactions in the benchmarks are arbitrary and
contain 512 bytes. Unless stated otherwise, we configure
Man1-MaH1 with 2 leaders per round. In the following
graphs, we refer to MaHI-MaHI with a wave length of 5
as MaHI-MaHI-5 and MAHI-MAHI with a wave length of 4
as MAHI-MAHI-4.

B. Benchmark under ideal conditions

We assess the performance of MaHI-MAHI under normal,
failure-free conditions in a wide-area network (WAN). Fig-
ure 3 presents the performance results of MAHI-MAHI in a
geo-replicated setting, comparing both a small committee of
10 validators and a large committee of 50 validators.

For a committee of 10 nodes, all three systems—Tusk,
Cordial Miners, and MaHI-MAHI—reach a peak throughput
of approximately 100k-130k transactions per second (tx/s).
However, their latencies vary significantly. Tusk and Cordial
Miners have average latency of 3.5s and 1.5s, respectively.
In contrast, MAHI-MaHI with a wave length 5 has a latency
of 1.1s, representing a reduction of 68% compared to Tusk
and 27% compared to Cordial Miners. MAHI-MAHI with wave
length 4 has a latency of 0.9s, representing a substantial
reduction of 74% compared to Tusk and 40% compared to
Cordial Miners. Tusk’s higher latency stems from its certified
DAG architecture, requiring at least 9 network hops to
commit a block. Cordial Miners bypasses DAG certification,
but can only commit one leader every 5 network hops. By
contrast, MAHI-MAHI operating with wave length 5 consis-
tently commits multiple blocks. MAHI-MAHI operating with
wave length 4 further reduces latency as it commits blocks
after 4 message delays. These results validate claim C1.

For a large committee of 50 nodes, Figure 3 shows that
the throughput of Cordial Miners and MaHI-MAHI exceeds
350,000 transactions per second (tx/s), while Tusk’s through-
put remains around 125,000 tx/s. This perhaps surprising
increase in throughput occurs because our MAHI-MAHI’s
validator implementation is optimized for large networks and
does not fully utilize all available resources (network, disk,
CPU) when deployed with smaller committee sizes. Con-
sequently, adding more validators improves resource multi-
plexing, boosting MaHI-MAHT’s performance. Additionally, as
the committee size grows, the number of blocks per round
increases, thus a larger number of blocks are included in
the causal history of elected leader blocks, without incurring
additional network hops. Unlike Tusk, both Cordial Miners

and MAHI-MaHI experience no significant CPU overhead
as the committee size increases, and bandwidth does not
become a bottleneck at these throughput levels. However,
we do not expect further throughput gains by increasing the
committee size beyond 50 nodes (such experiments would
be prohibitively expensive). As expected, Cordial Miners and
MaHI-MAHI share nearly identical throughput since both
rely on the same DAG implementation, and throughput is
determined by the efficiency of the DAG propagation layer.

In terms of latency, Tusk and Cordial Miners achieve
average latency of 3.5s and 2.6s, respectively. MAHI-MAHI
parametrized with a wave length of 5 has a latency of 2s (at
350,000 tx/s), which is a 42% reduction compared to Tusk
and a 23% reduction compared to Cordial Miners. MaHI-
Man1 with a wave length 4 has a latency of 1.5s, which
is a 57% reduction compared to Tusk and a 42% reduction
compared to Cordial miners. These results validate our claim
C2. Comparing the two versions of MAHI-MAHI in those two
experiments also validates our claim C5.

C. Performance under faults

Figure 4 depicts the performance of all systems when a com-
mittee of 10 validators suffers 3 crash-faults (the maximum
that can be tolerated for this committee size).

We observe that all three systems achieve a throughput of
approximately 35, 000-40, 000 tx/s. Tusk and Cordial Miners
record a latency of around 7s and 1.7s, respectively. MaHI-
MaHI records a latency of 0.95s and 0.85s when running with
a wave length 5 and 4, respectively. We observe that despite
the presence of faulty validators, the DAG continues to collect
and disseminate transactions. The reduction in throughput
seen in Figure 4, compared to Figure 3, can be attributed to
two primary factors: (1) the loss of capacity due to faulty
validators, and (2) the higher frequency of missing elected
leader blocks, which leads to increased commit delays. MaHI-
MaHI maintains a latency advantage of approximately 50%
over Cordial Miners, thanks to its direct skip rule (Section III),
which allows MaHI-MAHI to bypass faulty leaders roughly 2
rounds earlier than Cordial Miners. Thus, our claim Item C3
holds.

D. Impact of the number of leader slots per round

Finally, we assess the impact of multiple leaders on MaHI-
Manr’s performance. We evaluate how MaHI-MAHI config-
ured with a wave length of 4 rounds performs with 1, 2,
and 3 leaders under both normal conditions and scenarios
involving 3 crash faults. Due to space constraints, the graph
for this experiment is presented in the extended version of
the paper [30] (see Fig. 5).

We observe a notable reduction in average latency as the
number of leaders increases. Specifically, when the number of
leaders increases from 1 to 3, MAHI-MAHI's average latency
decreases by approximately 40ms in the ideal scenario, and
by approximately 100ms in the crash failure scenario. This
improvement arises because having more leaders per round
increases the number of blocks committed directly by leaders,

—e— Tusk (50 nodes)
--o-- Tusk (10 nodes)

—e— Cordial Miners (50 nodes)
--e-- Cordial Miners (10 nodes)

—e— Mahi-Mahi-4 (50 nodes)
--o-- Mahi-Mahi-4 (10 nodes)

—e— Mahi-Mahi-5 (50 nodes)
--e-- Mahi-Mahi-5 (10 nodes)

w B
o o
; ;

Average Latency (s)
N
o

=
=}
"

ok 50k 150k

200k

250k 300k 350k 400k

Throughput (tx/s)

Fig. 3: Comparative throughput-latency performance of Mani-Mani, Tusk, and Cordial Miners. WAN measurements with 10 and 50 validators. No validator

faults. 512B transaction size.

---- Tusk (10 nodes, 3 faulty)

---- Cordial Miners (10 nodes, 3 faulty)
---- Mahi-Mahi-5 (10 nodes, 3 faulty)
---- Mahi-Mahi-4 (10 nodes, 3 faulty)

8.0 7
/
/
I /
— R > - /
0 /
<6.0- £
> ;
O /o
c !/
(] A
4‘__0: /I ////
2 4.0 v
[0) /i
[o)] s
© S
— II//I
Q
> 2.0 i
1,4
< L el ;3?

20k 30k 40k

Throughput (tx/s)

"ok 10k

Fig. 4: Comparative throughput-latency of Mani-MaHi, Tusk, and Cordial
Miners. WAN measurements with 10 validators, three faults with 512B
transactions size.

rather than through the causal history of previous leader
blocks. These findings validate our claim Item C4. Increasing
the number of leaders beyond 3 did not further decrease
latency. This is due to the lower likelihood of directly com-
mitting, which may cause head-of-line blocking and delays
the commitment of future leaders.

VI. RELATED WORK

Uncertified DAG-based consensus protocols. The system
most similar to MAHI-MAHI is Cordial Miners [32]. Like
Man1-MaHi1, Cordial Miners operates over an uncertified
DAG, where each vertex represents a block that is dis-
seminated with best-effort to all peers [26]. The primary
distinction between the two lies in their commit rules.
Cordial Miners can commit at most one leader block every
five rounds, which leads to significantly higher latency for
transactions not included in that leader block. In contrast,
MaHI1-MAHTI's commit rule allows for a configurable number
of blocks to be committed in each round, increasing the

Mahi-Mahi-4, 1 leader (10 nodes)
Mahi-Mahi-4, 1 leader (10 nodes, 3 faulty)
—— Mahi-Mahi-4, 2 leaders (10 nodes)
Mahi-Mahi-4, 2 leaders (10 nodes, 3 faulty)
Mahi-Mahi-4, 3 leaders (10 nodes)

---- Mahi-Mahi-4, 3 leaders (10 nodes, 3 faulty)

1.0

0.9

0.81

Average Latency (s)

0.7

40k 60k 80k 100k

Throughput (tx/s)

ok 20k 120k

Fig. 5: Impact of the number of leaders per round in MaHI-MaH1. WAN
measurements with 10 validators. Zero and three faults. 512B transaction
size.

number of blocks committed per round and reducing the
latency for most transactions. MAHI-MAHI commits more
blocks directly through leaders, rather than relying on the
causal history of previous leader blocks. Additionally, Cordial
Miners does not provide an implementation or evaluation.

Mysticeti [5] is a recent protocol that, like MAHI-MAHTI,
operates over an uncertified DAG but in a partially syn-
chronous setting. Mysticeti takes advantage of synchronous
periods in the network to commit blocks in three rounds, and
like MaHI-MAH]I, it can commit blocks every round. However,
unlike MaHI-MAHI, Mysticeti completely loses liveness when
the network is not synchronous. To maintain liveness in
asynchronous conditions, MAHI-MAHI interprets the DAG
differently from Mysticeti. Specifically, MaHI-MAHI incorpo-
rates a global perfect coin into the protocol and modifies the
role of several DAG rounds to ensure that an asynchronous
adversary cannot indefinitely manipulate message schedules
to prevent block certificates from forming—an issue that can
easily arise in Mysticeti [29].

Certified DAG-based BFT consensus protocols. DAG-
Rider [31], Tusk [20], and Dumbo-NG [27] are popular
asynchronous certified DAG-based consensus protocols that
use reliable or consistent broadcast to explicitly certify every
DAG vertex [39]. This approach introduces 3 message delays
per DAG round but simplifies the commit rule by ensuring
that equivocating DAG vertices never occur. However, this
method results in significantly higher latency compared to
Mani1-MaHTI. For instance, DAG-Rider [31], GradedDAG [19],
and LightDAG [17] require at least 12 messages to commit a
block, while Tusk and Dumbo-NG require 9 message delays.
By contrast, MAHI-MAHI can commit in just 4 or 5 message
delays when respectively configured with a wave length of 4
and 5. Also, certified DAGs have higher bandwidth and CPU
requirements, as validators must disseminate, receive, and
verify the cryptographic certificates generated by consistent
broadcast. As shown in Section V, these factors lead to up to
70% higher latency in comparison to MAHI-MAHI.

Sailfish [42], BBCA-Chain [36], Fino [37], Shoal [44], and
Shoal++[4] build on the partially synchronous version of
Bullshark [46] through various improvements, including the
ability to commit more blocks per round and a relaxation
of DAG certification requirements. However, these protocols
are limited to partially synchronous environments and, unlike
Man1-MaH1, they lose liveness in asynchronous conditions.

Linear-chain protocols. Linear-chain asynchronous BFT
protocols such as Das et al. [22], Pace [50], FIN [25], and
SQ [47] do not leverage an underlying DAG structure. They
instead rely on explicit Byzantine consistent broadcast [13]
and a common coin to elect a leader, whereas MAaHI-MAHI
incorporates these components implicitly within the DAG.
This leader drives the protocol by constructing a linear chain.
Consequently, these protocols do not achieve the same level
of throughput and robustness as DAG-based systems [20].
Their contributions instead lie primarily in their theoretical
foundations. For example, Das et al. introduces a protocol
that operates without a trusted setup or the need for public-
key cryptography; FIN presents the first constant-time asyn-
chronous consensus (ACS) protocol with O(n?®) messages in
both information-theoretic and signature-free settings; and
SQ reduces this message complexity to O(n?).

VII. CONCLUSION

We introduce MaHI-MAHI, a novel asynchronous BFT con-
sensus protocol achieving a new performance milestone: an
impressive 350,000 transactions per second in geo-distributed
environments with 50 nodes all while keeping latency below
2 seconds, or 100,000 transactions per second with sub-
second latency—an achievement that sets a new record in the
realm of asynchronous consensus protocols and that was only
thought possible for partially-synchronous protocols. The
exceptional performance is made possible through a novel
commit rule applied over an uncertified DAG that enables
commits of multiple leaders every round. This allows MaHI-
MawH1 to inherit the robustness and throughput inherent in

TABLE I: Comparison of asynchronous DAG-based consensus protocols

LB Lat. NLB Lat. Complexity Leaders

DAG-Rider [31] 12 24 o(n?) One
Tusk [20] 9 15 o(n?) One
Cordial Miners [32] 5 10 O(n?) One
GradedDAG [19] 5@t 10 (9)F o(n?) One
LightDAG1 [17] 6 (5) 10 (9)f O(n?3) One
LightDAG2 [17] 4 8 O(n3) One
Maur-Mamr (this work) 5 (4)F 5 (a)f O(n?) Many

LB Lat. and NLB Lat. stand for leader block latency and non-leader block
latency, respectively. Latency refers to the number of message delays to
commit a block in the best case. Complexity refers to the number of messages
sent per DAG round. TGradedDAG and LightDAG can decide early, after the
first phase of a two-phase Byzantine consistent broadcast instance; the value
in parantheses is the latency when deciding early. ¥ The value in parantheses
shows MaHI-MAHT's latency in the random network model.

DAG-based protocols, while establishing a new standard for
the latency of asynchronous BFT consensus protocols.

Acknowledgements.

This work is partially supported by Mysten Labs and the
Sui Foundation. This work is also partially supported by the
Gates Foundation [INV-057591]; under the grant conditions
of the Foundation, a Creative Commons Attribution 4.0
Generic License has already been assigned to the Author’s
Accepted Manuscript.

REFERENCES

[1] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, and
Gilad Stern. Bingo: Adaptivity and Asynchrony in Verifiable Secret
Sharing and Distributed Key Generation. In CRYPTO, 2023.

[2] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad
Stern, and Alin Tomescu. Reaching Consensus for Asynchronous
Distributed Key Generation. Distributed Computing, 2023.

[3] Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, Dave Hrycyszyn,
and George Danezis. Chainspace: A sharded smart contracts platform.
arXiv preprint arXiv:1708.03778, 2017.

[4] Balaji Arun, Zekun Li, Florian Suri-Payer, Sourav Das, and Alexander
Spiegelman. Shoal++: High throughput DAG BFT can be fast! CoRR,
abs/2405.20488, 2024.

[5] Kushal Babel, Andrey Chursin, George Danezis, Lefteris Kokoris-
Kogias, and Alberto Sonnino. Mysticeti: Low-latency DAG consensus
with fast commit path. CoRR, abs/2310.14821, 2023.

[6] Renas Bacho and Julian Loss. On the Adaptive Security of the
Threshold BLS Signature Scheme. In ACM CCS, 2022.

[7] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi,
Patrick McCorry, Sarah Meiklejohn, and George Danezis. Consensus
in the age of blockchains. CoRR, abs/1711.03936, 2017.

[8] Shehar Bano, Alberto Sonnino, Andrey Chursin, Dmitri Perelman,
Zekun Li, Avery Ching, and Dahlia Malkhi. Twins: Bft systems made
robust. In ACM PODC, 2021.

[9] Mathieu Baudet, George Danezis, and Alberto Sonnino. Fastpay: High-

performance byzantine fault tolerant settlement. In ACM AFT, 2020.

Sam Blackshear, Andrey Chursin, George Danezis, Anastasios Kichidis,

Lefteris Kokoris-Kogias, Xun Li, Mark Logan, and et al. Sui lutris: A

blockchain combining broadcast and consensus. CCS, 2023.

Erica Blum, Jonathan Katz, Chen-Da Liu-Zhang, and Julian Loss.

Asynchronous byzantine agreement with subquadratic communication.

In ACM TCC, 2020.

Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the

Weil pairing. In ASIACRYPT, 2001.

Christian Cachin, Rachid Guerraoui, and Luis Rodrigues. Introduction

to reliable and secure distributed programming, 2011.

Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles

in constantipole: practical asynchronous byzantine agreement using

cryptography. In ACM PODC, 2000.

[11]

[12]
[13]

[14]

[15] Junchao Chen, Alberto Sonnino, Lefteris Kokoris-Kogias, and Mo-
hammad Sadoghi. Thunderbolt: Causal concurrent consensus and
execution. CoRR, abs/2407.09409, 2024.

Flaviu Cristian, Houtan Aghili, Ray Strong, and Danny Dolev. Atomic
Broadcast: From Simple Message Diffusion to Byzantine Agreement.
Information and Computation, Volume 118, Issue 1, 1995.

Xiaohai Dai, Guanxiong Wang, Jiang Xiao, Zhengxuan Guo, Rui Hao,
Xia Xie, and Hai Jin. LightDAG: A Low-latency DAG-based BFT
Consensus through Lightweight Broadcast. In IEEE IPDPS, 2024.
Xiaohai Dai, Bolin Zhang, Hai Jin, and Ling Ren. ParBFT: Faster
Asynchronous BFT Consensus with a Parallel Optimistic Path. In ACM
CCS, 2023.

Xiaohai Dai, Zhaonan Zhang, Jiang Xiao, Jingtao Yue, Xia Xie, and Hai
Jin. GradedDAG: An Asynchronous DAG-based BFT Consensus with
Lower Latency. In SRDS, 2023.

George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexan-
der Spiegelman. Narwhal and Tusk: a DAG-based mempool and
efficient BFT consensus. In ACM EuroSys, 2022.

George Danezis, Jovan Komatovic, Lefteris Kokoris-Kogias, Alberto
Sonnino, and Igor Zablotchi. Byzantine consensus in the random
asynchronous model. arXiv preprint arXiv:2502.09116, 2025.

Sourav Das, Sisi Duan, Shengqi Liu, Atsuki Momose, Ling Ren, and
Victor Shoup. Asynchronous consensus without trusted setup or
public-key cryptography. In ACM CCS, 2024.

Sourav Das, Zhuolun Xiang, Lefteris Kokoris-Kogias, and Ling Ren.
Practical Asynchronous High-threshold Distributed Key Generation
and Distributed Polynomial Sampling. In USENIX Security, 2023.
Henry de Valence. Ed25519 for consensus-critical contexts. https://
crates.io/crates/ed25519-consensus, 2024.

Sisi Duan, Xin Wang, and Haibin Zhang. FIN: Practical Signature-Free
Asynchronous Common Subset in Constant Time. In ACM CCS, 2023.
Bryan Ford. Threshold logical clocks for asynchronous distributed
coordination and consensus. CoRR, abs/1907.07010, 2019.

Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng
Zhang. Dumbo-ng: Fast asynchronous bft consensus with throughput-
oblivious latency. In ACM CCS, 2022.

Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander
Spiegelman, and Zhuolun Xiang. Jolteon and Ditto: Network-Adaptive
Efficient Consensus with Asynchronous Fallback. In FC, 2022.
Giacomo Giuliari, Alberto Sonnino, Marc Frei, Fabio Streun, Lefteris
Kokoris-Kogias, and Adrian Perrig. An Empirical Study of Consensus
Protocols’ DoS Resilience. In ACM ASIACCS, 2024.

Philipp Jovanovic, Lefteris Kokoris Kogias, Bryan Kumara, Alberto Son-
nino, Pasindu Tennage, and Igor Zablotchi. Mahi-mahi: Low-latency
asynchronous bft dag-based consensus. arXiv preprint arXiv:2410.08670,
2024.

Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander
Spiegelman. All You Need is DAG. In ACM PODC, 2021.

Idit Keidar, Oded Naor, Ouri Poupko, and Ehud Shapiro. Cordial Miners:
Fast and Efficient Consensus for Every Eventuality. In DISC, 2023.
Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas
Gailly, Ewa Syta, and Bryan Ford. OmniLedger: A Secure, Scale-Out,
Decentralized Ledger via Sharding. In IEEE S&P, 2018.

Mysten Labs. Mysticeti: Low-latency dag consensus with fast commit
path. https://github.com/asonnino/mysticeti, 2024.

Julian Loss and Tal Moran. Combining asynchronous and synchronous
byzantine agreement: The best of both worlds. IACR ePrint, 2018.
Dahlia Malkhi, Chrysoula Stathakopoulou, and Maofan Yin. BBCA-
CHAIN: One-Message, Low Latency BFT Consensus on a DAG. In FC,
2024.

Dahlia Malkhi and Pawel Szalachowski. Maximal extractable value
(mev) protection on a dag. In Tokenomics, 2022.

Michael S. Paterson Michael J. Fischer, Nancy A. Lynch. Impossibility
of distributed consensus with one faulty process. Journal of ACM, 1985.
Mayank Raikwar, Nikita Polyanskii, and Sebastian Miiller. SoK: DAG-
based Consensus Protocols. In IEEE ICBC, 2024.

Zhijie Ren, Kelong Cong, Johan Pouwelse, and Zekeriya Erkin. Implicit
Consensus: Blockchain with Unbounded Throughput, 2017.
RustCrypto. Hashes. https://github.com/RustCrypto/hashes, 2024.
Nibesh Shrestha, Aniket Kate, and Kartik Nayak. Sailfish: Towards
improving latency of dag-based BFT. IACR Cryptol. ePrint Arch., 2024.
Alberto Sonnino, Shehar Bano, Mustafa Al-Bassam, and George
Danezis. Replay attacks and defenses against cross-shard consensus
in sharded distributed ledgers. In IEEE EuroS&P, 2020.

(16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]
[25]
[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]
(35]

(36]

(37]

(38]

10

[44] Alexander Spiegelman, Balaji Arun, Rati Gelashvili, and Zekun Li.
Shoal: Improving dag-bft latency and robustness. In FC, 2024.
Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris
Kokoris-Kogias. Bullshark: DAG BFT Protocols Made Practical. In ACM
CCS, 2022.

Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris
Kokoris-Kogias. Bullshark: the partially synchronous version. arXiv
preprint arXiv:2209.05633, 2022.

Xiao Sui and Sisi Duan. Signature-free atomic broadcast with optimal
O(nz) messages and O(1) expected time. IACR ePrint, 2023.

The Tokio Team. Tokio. https://tokio.rs, 2024.

Lei Yang, Seo Jin Park, Mohammad Alizadeh, Sreeram Kannan, and
David Tse. DispersedLedger: High-throughput byzantine consensus on
variable bandwidth networks. In USENIX NSDI, 2022.

Haibin Zhang and Sisi Duan. Pace: Fully parallelizable bft from
reproposable byzantine agreement. In ACM CCS, 2022.

[45]
[46]

[47]

[48]
[49]

[50]

APPENDIX A
MAaHI-MAHI ALGORITHMS

This section presents the algorithms used in MaHI-MAHI
in pseudocode format. In particular, Algorithm 1 specifies
the MAHI-MAHI main algorithms, Algorithm 3 the MaHI-
Mamn1 decider instance, and algorithm 2 contains various
DAG helper functions.

As a reminder, MAHI-MAHI operates with a single type of
message: a block whose validity is described in Section II
Validators hold these blocks in a data structure called DAG.
To access the block(s) of round r authored by validator v of
the DAG, we write DAG(r,v]. If an equivocation happened
at a slot v, then DAG]r,v] may return multiple blocks. To
access all blocks of a given round r, we write DAG]r, x].

The entry point is the procedure
EXTENDCOMMITSEQUENCE(-) (Line Algorithm 1 of
Algorithm 1). This is called by the application layer to
extend the commit sequence. This procedure is idempotent
and is called by our implementation (Section IV) every
time the validator receives a new block. This procedure
calls TRYDECIDE(-) (Line Algorithm 1 of Algorithm 1) to
classify as many blocks as possible as either commit or
skip. The TrYDECIDE(-) procedure iterates over all possible
leaders and invokes the decider instance (Line Algorithm 1 of
Algorithm 1) to classify each leader slot. The decider instance
determines the leader of a given round, certifying blocks, and
classifying leader slots. The decider instance uses various
helper functions, such as IsVote(-) (Line Algorithm 2
of Algorithm 2), and IsCerT(-) (Line Algorithm 2 of
Algorithm 2), that are generic utilities for working with the
DAG.

APPENDIX B
ExaMPLE oF MAHI-MAHI EXECUTION

This section completes Section III by guiding readers through
the protocol execution, step-by-step protocol, using the ex-
ample illustrated in Figure 2. This figure showcases MaHI-
Mawn1 with four validators, labeled as (vg, v1, ve, v3), op-
erating over a wavelength of five rounds, with two leader
slots allocated per round. As mentioned in Section III-B, all
proposer slots are initially in the undecided state. Validator
holds in memory the portion of the DAG depicted in Figure 2

https://crates.io/crates/ed25519-consensus
https://crates.io/crates/ed25519-consensus
https://github.com/asonnino/mysticeti
https://github.com/RustCrypto/hashes
https://tokio.rs

Algorithm 1 ManI-MAHI Main Function

Algorithm 3 Mani-Mani1 Decider Instance

1: wavelength
2: leadersPerRound

> Set to at least 4 (see Section III)
> See Section V for details

// Called by the application layer to extend the commit sequence (idempotent).
: procedure EXTENDCOMMITSEQUENCE(Tcommitteds Thighest)
L <= TRYDECIDE(Tcommitted, Thighest) > See Algorithm 1 below
Leommit <[] > Hold decided leader sequence
for status € L do
if status =1 then break
if status = commit(bjeqder) then
Leommit < Lecommit || bleader
10: return LINEARIZESUBDAGS (L commiit)
Algorithm 2

> Stop at the first undecided leader

W00 gk W

> See Line Algorithm 2 of

// Try to decide proposals, recursively, starting from the latest proposal.
11: procedure TRYDECIDE("committeds Thighest)

12: L+ [] > Hold decision of each leader
13: for 7 € [Thighest down to Tcommittea + 1] do

14: for | € [leadersPerRound — 1 down to 0] do > All possible leaders
15: i < r % wavelLength

16: D < Decider(waveLength, 7, 1) > Algorithm 3
17: w <— D.WAVENUMBER(T)

18: if D.PrRoPOSEROUND(w) # 7 then continue > Skip if not a leader
19: status <— D.TRYDIRECTDECIDE(w) > Direct decision rule
20: if status =1 then

21: status <— D.TRYINDIRECTDECIDE(w) > Indirect decision rule
22: L <« status || L

23: return L > May still contain undecided leaders

Algorithm 2 DAG Helper Functions

1: procedure IsVOTE(byote; bieader)

2 function VoTebpBrock(b, id, 1)

3 if » > b.round then return L

4 for b’ € b.parents do

5 if (b'.author,b’.round) = (id, r) then return b’
6: res < VoTepBrock(b', id, r)

7 if res #_L then return res

8 return L

9 (id, 1) < (bieader-author, bjcqder.round)

0 return VOTEDBLOCK (byote, td, T) = bicader

—_

11: procedure ISCERT(bcert, bicader)
12: res < |{b € beert.parents : IsVoTe(b, bieqder) }
13: return res > 2f + 1

14: procedure ISLINK(boid, bnew)
15: return exists a sequence of k& € N blocks b1, ...,by st. b1 = boia, b =
brew and Vj € [2,k] : bj € U,.»; DAG|[r,*] Abj_1 € bj.parents

16: procedure ISCERTIFIEDLINK(bgnchor, Dicader)

17: w < WAVENUMBER(bj¢qder.round)

18: B + GetDEcIsioNnBLocks(w)

19: return 3b € B s.t. ISCERT(b, bieader) A ISLINK(D, banchor)

20: procedure LINEARIZESUBDAGS(L)

21: O+ [] > Hold output sequence

22: for bicqder € L do

23: B + {b € U,>; DAG]r, #] st. ISLINK(b, bjcader) AN b & O A
b not already output }

24: for b € B in any deterministic order do

25: O+ O|lb

26: return O

and attempts to classify as many blocks in the leader slots
as possible as either commit or skip.

The first step for the validator is to identify the leader slots
by reconstructing the global perfect coin for each round. As
described in Section III-B (step 1), the validator derives the
following leader slots:

[Lév, L6as Lsv, Lsa, Lap, Laa, L3y, Lsa, Loy, Laa, L1p, L1a]

Next, the validator attempts to classify each leader slot as
either commit or skip using the direct decision rule (step 2),

1: wavelLength > Set to at least 4 (see Section III)

2: waveOffset > Offset creating overlapping waves (Section II)
3: leaderOffset > Each decider operates on a unique leader slot
4: procedure WAVENUMBER(T")

5: return (r — waveOffset)/waveLength

6: procedure PROPOSEROUND(w)

7: return w - wavelLength + waveOffset > See Figure 1
8: procedure CERTIFYROUND(w)

9: return w - waveLength + waveLength — 1 4 waveOffset > See Figure 1

10: procedure VoTEROUND(w)

11: return Self.CErTIFYROUND(w) — 1 > See Figure 1

12: procedure LEADERBLOCK(w)

13: Tproposes Teertify — Self .PROPOSEROUND(w), Self .CERTIFYROUND(w)

14: ¢ +— CoMBINECOINSHARES({b.share st. b € DAG[rcertify, *|})

15: l < ¢ + leaderOffset > Modulo committee size

16: return DAG|[rproposes U] > May return more than one block in case of
equivocations

17: procedure SKIPPEDLEADER(W, bicgder)
18: Tyote < Self.VoTEROUND(w)
19: return [{—IsVOTE(D, bicader) st. b € DAG[ryote, ¥} > 2f + 1

20: procedure SUPPORTEDLEADER(W, bicader)
21: Teertify < Self.CERTIFYROUND(w)
22: return [{ISCERT(D, bjcader) St. b € DAG[rcertify, *)}| > 2f +1

23: procedure TRYDIRECTDECIDE(w)

24: for bjeqder € Self . LEADERBLOCK(w) do > Loop over equivocations
25: if Self.SKIPPEDLEADER(w, bjcqder) then return skip(w)

26: if Self.SUPPORTEDLEADER(W), bjcqder) then return commit(biecqder)
27: return L

28: procedure TRYINDIRECTDECIDE(w, S)
29: Sanchor < find first s € S st. reertify < s.Tound A s # skip(w)

30: if Sgnchor = commit(bgnchor) then

31: if 3bjeader € Self .LEADERBLOCK(w) s.t. ISCERTIFIEDLINK (Do nchors Dicader)
then

32: return commit(bicqder)

33: else

34: return skip(w)

35: return L > The anchor is undecided or not found

starting with the highest slot, Lgp. As shown in Figure 6,
the validator classifies Lg, as commit since it is certified
by 2f + 1 blocks from round R + 9, specifically B, rt9),
B(v,,r+9), and B(y, r49). The validator proceeds to Lg,. As
illustrated in Figure 7, it classifies this block as skip because
2f + 1 blocks from round R + 8 (B(y, r+8)s B(vs,r+8), and
B(v;,r+8)) do not vote for Lg,.

Next, the validator examines Lsp. In its local view of the
DAG, it encounters two equivocations for this leader slot: Lz
and Lf,. The validator then invokes the function IsVOTE(-)
(shown in Line Algorithm 2 of Algorithm 2, Section A) to
determine which of these equivocations, if any, receives votes
from the blocks of round R+ 7. For each block of this round,
the validator conducts a depth-first search starting from the
block, following its hash references to see if it first encounters
Lsp or Li,.

In this example, the validator first targets B(,, r+7) and
finds it votes for Ls;,. Upon targeting B(,, r7), it discovers
a vote for Lf,. Continuing this process with B(,, pi7) and
By, r+47) also leads to a vote for Lj,. Consequently, since
there are 2f + 1 blocks from round R + 7 that do not vote
for Ly, the validator classifies it as skip. And since there

\‘(0

"

"
NO,vy Gy
NN,

A'\.

RS

(=)

IS ASNe

g

NN X
WXL

v"v\.'/‘

]

X
o
O
),

Fig. 6: Example of direct decision rule. Lgy, is classified as commit.

YOSy
ARVANVI

TANYAN:
&l

1O
2o

R+4

vo @‘@‘ @v@
NN

SO~

@ OO

L a]

SUeteets

Lo
o

v

Fig. 7: Example of direct decision rule. Lg, is classified as skip.

Y

o0

R+4

(=) ON~em®
"‘."
o

O |

WY
o

.

R+6 R+8

Fig. 8: Example of indirect decision rule. Ly} is classified as commit.

Fig. 9: Example of MaHI-MAHI execution with 4 validators, configured with a wave length of 5 rounds and 2 leader slots per round.

are at least 2f + 1 blocks from round R + 8 (B(y,,r+8)s
By, ,r+8)> B(vs,r+8), and By, pys)) that certify L,, the
validator classifies it as commit.

The validator then moves on to Ls,, classifying it as
commit as it receives sufficient certification from blocks of
round R+8 (B(vO,R+8)a B(vl,R+8)a B(vz,R—i-S)a and B(,U&R_,_g)).
Similarly, the validator classifies both L4, and Ly, as
commit since they are also certified by B(y, ry7)s B(v,,r+7)s
B(y,,r+7)> and By, r47). This reasoning applies to the slots
Lsp and Ls,, which are certified by blocks of round R + 6,
as well as to Loy, and Lo, certified by blocks of round R+ 5.

12

Finally, Lyp is certified by By, r+4) (through both L5, and
L), By, mt4)» B(vs,rt4), and By, pia)-

However, the direct commit rule fails to classify Lj,. There
are neither 2 f+1 blocks from round R+3 that do not vote for
it (which would classify it as skip) nor 2f + 1 blocks from
round R + 4 that certify it (preventing its classification as
commit). Therefore, the validator turns to the indirect decision
rule (step 3) to classify L1,.

As specified in Section III-B, the validator first seeks the
anchor for Lq,, which is Lg,. The anchor is defined as the
first block with a round number r’ > r + 5 that is classified

as either undecided or commit. Consequently, Lg, cannot
serve as the anchor for Lp;, making Lg, its anchor. The
validator then checks for an existing certificate over Ly, that
is referenced by the causal history of its anchor, Lgp. As
illustrated in Figure 8, in this case, Lj; is certified by Ls,,
which references 2f + 1 votes for L1y (B(v,,r+3)> B(vs,R+3)>
and B, r+3))- Thus, Lyp is classified as commit. Without
such a certificate, the validator would have classified Lq; as
skip.

ApPPENDIX C
SECURITY PROOFS

This section proves the correctness of MAHI-MAHI, by show-
ing that MaH1-MaHI satisfies the properties of Byzantine
Atomic Broadcast (BAB) from Section II. We prove the
correctness of both the 4-round and 5-round versions of
MaHnI-MaHI. We start with results that hold for both versions
(these are mostly safety-related results) in Section C-A and
continue with version-specific results in Appendices Sec-
tion C-B and Section C-C.

A. Common Proofs for w =4 and w =5

We start by proving the Total Order and Integrity properties
of BAB. A crucial intermediate result towards these prop-
erties is that all honest validators have consistent commit
sequences, i.e., the committed sequence of one honest val-
idator is a prefix of another’s, or vice-versa. This is shown in
Lemmas Theorem C.5 and Theorem C.6, which the following
lemmas and observations build up to.

Lemma C.1. If in round v, 2f + 1 blocks from distinct
validators certify a block b, then all blocks at future rounds
r" > r will have a path to a certificate for b from round r.

Proof. We prove the lemma by induction on 7. The base case
is 7 = r + 1. Let &/ be a block at round r’. Since &’ points
to 2f + 1 blocks at round 7, by quorum intersection, b’ must
point to at least one of the certificates for b.

For the induction case, assume the lemma holds up to
round 7/ and consider the case of round ' + 1. Let &’ be
a block at round 7’ 4 1. By the induction hypothesis, 2f + 1
blocks at round 7’/ have paths to round-r certificates for b.
Since O’ points to 2f + 1 blocks from round r’, by quorum
intersection, b’ must point to at least one block that has a
path to a round-r certificate for b. O

Observation 1. A block cannot vote for more than one block
proposal from a given validator, in a given round.

Proof. This is by construction. Honest validators interpret
support in the DAG through deterministic depth-first traver-
sal. So even if a block b in the vote round has paths to
multiple leader round blocks from the same validator v (i.e.,
equivocating blocks), all honest validators will interpret b to
vote for only one of v’s blocks (the first block to appear in
the depth-first traversal starting from b). O

Lemma C.2. At most a single block per round from the same
validator can be certified.

13

Proof. Assume by contradiction that in a given round r, there
exist two distinct blocks b and ¥’ from the same validator v
such that both b and V' are certified. This means that there
exist round-(r + w — 1) blocks ¢, and ¢, that certify b and
b, respectively. ¢, and ¢,y must point to 2f + 1 votes for b
and b, respectively. By quorum intersection, there exists an
honest validator that has voted for both b and b’ in the vote
round. Since honest validators only produce a single block
per round, this implies that there exists a block that votes
for both b and V', contradicting Observation 1.

O

Observation 2. If an honest validator v directly or indirectly

commits a block b, then v’s local DAG contains a certificate for
b.

Proof. This follows immediately from our direct and indirect
commit rules. O

Observation 3. Honest validators agree on the sequence of
leader slots.

Proof. This follows immediately from the properties of the
common coin, see Section II-A. O

Lemma C.3. If an honest validator v commits some block b
in a slot s, then no other honest validator decides to directly
skip the slot s.

Proof. Assume by contradiction that some honest validator
v’ decides to directly skip s. Then it must be the case that in
the local DAG of v/, at least 2f + 1 validators did not vote
for b. However, since v commits b at s, by Observation 2,
there must exist a certificate for b at s. So in v’s local DAG
there must be 2f + 1 validators that vote for b. By quorum
intersection, at least one honest validator both voted for b
and did not vote for b. Since honest validators produce a
single block in the vote round, this is a contradiction. [

Lemma C.4. If an honest validator directly commits some
block in a slot s, then no other honest validator decides to skip
the slot s.

Proof. Assume by contradiction that an honest validator v
directly commits block b in slot s while another honest
validator v’ decides to skip s. By Theorem C.3, v’ cannot
directly skip s; it must be the case therefore that v’ skips s
using the indirect decision rule. Let r be the round of s. Since
v directly commits b, there exist 2f +1 certificates for b at s.
Therefore, by Theorem C.1, all blocks at rounds ' > r+w—1,
including the anchor of s, have a path to a certificate for b at
s. Thus, v’ cannot decide to skip s using the indirect decision
rule. We have reached a contradiction. O

Lemma C.5. If a slot s is committed at two honest validators,
then s contains the same block at both validators.

Proof. Let v and u be two honest validators and assume that
v commits block b at slot s. We will show that if © commits
slot s, then s contains b at s. Let w be the validator that
produced block b. By Observation 2, for b to be committed at

slot s at v, there must exist at least one certificate for b. By
Observation 3, v and u agree that s must contain a block by
w. By Theorem C.2, at most a single block per round from w
can be certified. So u cannot have a certificate for any other

block than b at slot s. O

We say that a slot is decided at a validator v if s is
committed or skipped, i.e., if it is categorized as commit or
skip. Otherwise, s is undecided.

Lemma C.6. If a slot s is decided at two honest validators v
and V', then either both validators commit s, or both validators
skip s.

Proof. Assume by contradiction that there exists a slot s
such that v and v' decide differently at s. We consider a
finite execution prefix and assume wlog that s is the highest
slot at which v and v’ decide differently (*). Further assume
wlog that v commits s and v skips s. By Theorem C.3 and
Theorem C.4, neither v nor v’ could have used the direct
decision rule for s; they must both have used the indirect
rule. Consider now the anchor of s: v and v’ must agree
on which slot is the anchor of s, since by our assumption
(*) above, they make the same decisions for all slots higher
than s, including the anchor of s. Let s’ be the anchor of s; s’
must be committed at both v and v’. Thus, by Theorem C.5,
v and v commit the same block b’ at s’. But then v and
v’ cannot reach different decisions about slot s using the
indirect decision rule. We have reached a contradiction. [

We have proven the consistency of honest validators’
commit sequences: honest validators commit (or skip) the
same leader blocks, in the same order. However, we are
not done: we also need to prove that non-leader blocks are
delivered in the same order by honest validators. We show
this next.

Causal history & delivery conditions Consider an
honest validator v. We call the causal history of a block b
in v’s DAG, the transitive closure of all blocks referenced
by b in v’s DAG, including b itself. In MaHI-MAHI, a block
b is delivered by an honest validator v if (1) there exists a
committed leader block ! in v’s DAG such that b is in I’s
causal history (2) all slots up to ! are decided in v’s DAG
and (3) b has not been delivered as part of a lower slot’s
causal history. In this case we say b is delivered at slot s, or
delivered with block .

Lemma C.7. If a block b is delivered by two honest validators
v and V', then b is delivered at the same slot s, and b is delivered
with the same leader block 1, at both v and v'.

Proof. Let s be the slot at which b is delivered at validator v,
and [the corresponding leader block in s, also at validator
v. Consider now the slot s’ at which b is delivered at
validator v’, and I’ the corresponding leader block. Assume
by contradiction that s’ # s. If s’ < s, then v would have
also delivered b at slot s/, since by Theorem C.5 must commit
the same leader blocks in the same slots, so v could not have
delivered b again at slot s; a contradiction. Similarly, if s < s,

14

then v' would have already delivered b at slot s, since by
Theorem C.5 v and v’ must have committed the same block
in slot s; contradiction. Thus it must be that s = s/, and by
Theorem C.5, [='. O

We can now prove the main safety properties of ManI-
Mamnr: Total Order and Integrity.

Theorem C.8 (Total Order). MAHI-MAHI satisfies the total
order property of Byzantine Atomic Broadcast.

Proof. This property follows immediately from Theorem C.7
and the fact that honest validators order the causal histories
of committed blocks using the same deterministic function,
and deliver blocks in this order. O

Theorem C.9 (Integrity). MAHI-MAHI satisfies the integrity
property of Byzantine Atomic Broadcast.

Proof. This is by construction: a block b is delivered as part
of the causal history of a committed leader block only if b
has not been delivered along with an earlier leader block (see
"Causal history & delivery conditions" above). So an honest
validator cannot deliver the same block twice. O

We now turn to liveness properties. The following two
lemmas establish that blocks broadcast by honest validators
are eventually included in all honest validators’ DAGs.

Lemma C.10. If a block b produced by an honest validator v
references some block V', then b’ will eventually be included in
the local DAG of every honest validator.

Proof. This is ensured by the synchronizer sub-component in
each validator: if some validator w receives b from v, but does
not have o’ yet, w will request b’ from v; since v is honest
and the network links are reliable, v will eventually receive
w’s request, send b’ to w, and w will eventually receive b'.
The same is recursively true for any blocks from the causal
history of b/, so w will eventually receive all blocks from the
causal history of b’ and thus include ¥’ in its local DAG. [

Lemma C.11. If an honest validator v broadcasts a block b,
then every correct validator will eventually include b in its local
DAG.

Proof. Since network links are reliable, all honest validators
will eventually receive b from v. By Theorem C.10, all honest
validators will eventually receive all of b’s causal history, and
so will include b in their local DAG. O

The following crucial lemma establishes that in any round
r, there is at least one block b, called a common core, such
that all blocks at round r + 2 have a path to b.

Lemma C.12. For any r, there is at least one block b from
round r such that any valid block from round r +2 has a path
to b.

Proof. Consider a set B of 2f 4 1 blocks in round 7+ 1 from
honest validators. Using B, we create a table T, as follows:
for blocks b,c € B, let T[b,c] = 1 if b in r + 1 references

¢ in r, T[b,c] = 0 otherwise. By quorum intersection, any b
will reference at least f + 1 blocks in round r that are also
in B, so each row of T" has at least f + 1 entries equal to 1.
Thus, T has at least (2f + 1)(f + 1) entries equal to 1. By
a counting argument, there is a block ¢* in B that has a 1
entry in at least f 4 1 rows, i.e., a block from round r which
is referenced by f + 1 blocks from round r+ 1. Let P’ be the
set of blocks from round 7 + 1 which reference ¢*. Consider
now any valid block b in round r + 2; b references 2f + 1
blocks in 7 + 1, so by quorum intersection b references at
least one block in B. Thus, b has a path to c*. O

B. Specific Proofs for w =5

We continue with proofs that are specific to the liveness
of the w = 5 version of MAHI-MAHI. We show that each
wave has at least 2f + 1 leader blocks that can be directly
committed (Lemmas Theorem C.13 and Theorem C.14), and
thus that each wave has a nonzero probability of directly
committing at least one block (Theorem C.15). We then show
that each slot is eventually decided directly or indirectly
(Theorem C.16). Finally, we show that MAHI-MAHI satisfies
the Validity and Agreement properties of BAB.

As a consequence of Theorem C.12, we have the following:

Lemma C.13. For any r, there exists a set S of at least 2f +1
blocks from round r such that any valid block from round r+3
is a vote for every block in S.

Proof. Let ' = r + 1. By Theorem C.12, there exists a block
b in round r’ = r + 1 such that any valid block from round
r’+2 = r+ 3 has a path to b. Now let S be the set of blocks
referenced by the block b. S must contain at least 2f + 1
blocks from round r. Every block from round r + 3 has a
path to b and thus, through b, to every block in S. O

From this we can derive the following crucial lemma:

Lemma C.14. For any r, there exists a set S of at least 2f +1
blocks from round r such that every block in S has at least
2f 4+ 1 certificates in round r + 4.

Proof. Take S to be the set from Theorem C.13. There are at
least 2f + 1 blocks in r +4. Any block b in round r + 4 must
reference 2f + 1 blocks from round r + 3. By Theorem C.13,
every block from round r 4 3 is a vote for every block in S,
so b must be a certificate for every block in S. O

We denote by ¢ < 3f + 1 the number of leader slots per
round.

Lemma C.15. Fix a roundr. If¢ > f, then an honest validator
directly commits at least one slot corresponding to round r.
Otherwise, the probability that an honest validator directly
commits at least one slot corresponding to round r is at least

> 0.

14
()
Proof. By Theorem C.14, at least 2f + 1 blocks from round
r can be directly committed, out of a maximum of 3f + 1
blocks. When the common coin is released in round r +4, it

pr=1-

15

selects uniformly at random ¢ round-r blocks as the ¢ slots
of round r.

In the case ¢ > f, by quorum intersection, there exists at
least one slot selected by the common coin among the 2f+1
blocks that can be directly committed.

In the case ¢ < f, we can model the number of directly
committed slots in round r as a hypergeometric random
variable, where a success event corresponds to selecting a slot
that can be directly committed. The probability of 0 successes
(i.ef., not committing any slots directly) is therefore at most

iy <1 -
Lemma C.16. Fix a slot s. Every honest validator eventually
either commits or skips s, with probability 1.

Proof. We prove the lemma by showing that the probability
of s remaining undecided forever at some honest validator
is 0. In order for s to remain undecided forever, s cannot
be committed or skipped directly. Furthermore, s cannot be
decided using the indirect rule. This means that the anchor
s’ of s must also remain undecided forever, and therefore
the anchor s” of s’ must remain undecided forever, and so
on. The probability of this occurring is at most equal to the
probability of an infinite sequence of rounds with no directly
committed slots, equal to lim; .. (1—p*)? = 0, where p* > 0
is the probability from Theorem C.15. O

Theorem C.17 (Validity). MAHI-MAHI satisfies the validity
property of Byzantine Atomic Broadcast.

Proof. Let v be an honest validator and b a block broadcast by
v. We show that, with probability 1, b is eventually delivered
by every honest validator. By Theorem C.11, b is eventually
included in the local DAG of every honest validator. So every
honest validator will eventually include a reference to b in at
least one of its blocks. Let r be the highest round at which
some honest validator includes a reference to b in one of its
blocks. By Theorem C.15, with probability 1, eventually some
block b at a round r’ > r will be directly committed. Block
b" must reference at least 2f + 1 blocks, thus at least f + 1
blocks from honest validators. Since all validators have b in
their causal histories by round 7, ’ must therefore have a
path to b. Theorem C.16 guarantees that all slots before o’
are eventually decided, so b’ is eventually delivered. Thus, b
will be delivered at all honest validators at the latest when
b’ is delivered along with its causal history. O

Theorem C.18 (Agreement). MAHI-MAHI satisfies the agree-
ment property of Byzantine Atomic Broadcast.

Proof. Let v be an honest validator and b a block delivered
by v. We show that, with probability 1, b is eventually
delivered by every honest validator. Let [be the leader
block with which b is delivered, and s the corresponding
slot. By Theorem C.16, all blocks up to and including s are
eventually decided by all honest validators, with probability
1. By Theorem C.5, all honest validators commit [in s.
Therefore, all honest validators deliver b eventually. O

C. Specific Proofs for w =4

We now turn to the liveness of the w = 4 version of MAHI-
Man1. We first show that under an asynchronous network,
liveness is guaranteed, albeit with a smaller probability of
direct commit at each wave than in the w = 5 version.
We later show that under a random network, MAHI-MAHI
directly commits all valid leader blocks in each wave with
high probability. Recall that in the random network model, a
valid block from round r + 1 references a set of 2f + 1 valid
blocks from round r, sampled uniformly at random among
all valid round-r blocks.

Lemma C.19. For any r, there exists a block b from round r
such that b has at least 2f + 1 certificates in round r + 3.

Proof. By Theorem C.12, there exists b in round r such that
any block in round r + 2 has a path to b, and therefore is
a vote for b. Since any block in round r 4 3 must reference
2f 41 blocks in round 7 + 2, any block in round r + 3 must
be a certificate for b. Since every honest validator publishes
a block in round r + 3, there must exist at least 2f + 1
certificates for b in round r + 3. O

We again denote by ¢ < 3f + 1 as the number of leader
slots per round.

Lemma C.20. Assume the asynchronous network model and
fix around r. If { = 3f + 1, then an honest validator commits
at least one slot corresponding to round r. Otherwise, the
probability that an honest validator directly commits at least

one slot corresponding to round r is at least p* = TZ-H’

Proof. By Theorem C.19, there exists at least one block b in
round 7 that can be directly committed. When the common
coin is released in round r+ 3, it selects uniformly at random
¢ round-r blocks as the ¢ slots of round 7.
If £ = 3f + 1, then all possible blocks of round r are
included in the slots, and thus b is directly committed.
¢ < 3f+1, we can model the number of directly committed
slots in round r as a hypergeometric random variable, where
a success event corresponds to selecting the slot that can be
directly committed. There are 3f + 1 states in total, out of
which only 1 is a success state; and there are ¢ draws. The
BIEAR -

(;;fizi = 3771
£

probability of one success is

Lemma C.21. In the random network model, with high
probability, every block in round r + 2 is a vote for every
block in round r.

Proof. We prove the lemma by showing, through Markov’s
inequality, that the probability of any block in round r being
unreachable from any block in round r + 2 approaches 0
exponentially in f.

Take a pair of blocks b, and b,2 in rounds r and r + 2,
respectively. We compute the probability that there is no path
from b,y 5 to b;.. Block b, must reference 2 f+1 blocks from
round r + 1; let b,;1 be one such block. The probability that

b,41 references b, is at least p = ?j—i} since b, references

16

2 f+1 randomly selected blocks from round . The probability
that there is no path from b,,5 to b, is therefore at most
g=(1-p)**.

We now compute the expected number of pairs of blocks
b, and b, 4o from rounds r and r+2, respectively, such that b,
is not reachable from b, 5. There are at most (3 f+1)? pairs,
and each pair is not connected by a path with probability at
most ¢, thus the expected number of unreachable pairs is at
most £ = q(3f +1)? = (3f +1)2(1 — p)2/*+1.

Using Markov’s inequality, the probability that there exists
at least one unreachable pair is:

Pr(At least one unreachable pair) < E = (3f+1)%(1—p)?/*L.

As f increases, this probability rapidly approaches 0 due to
the exponential term. O

Lemma C.22. Assume the random network model and fix a
round r. With high probability, an honest validator directly
commits every leader slot chosen by the common coin in round
r+ 3.

Proof. By Theorem C.21, every block in round r + 2 is a
vote for every block in round r with high probability. Thus
every block in round r + 3 is a certificate for every block
in round r with high probability. So every honest validator
sees 2f + 1 certificates for every block in round r and thus
sees also for the blocks chosen by the common coin at least
2f 41 certificates. O

Lemma C.23. Fix a slot s. In both the asynchronous network
model and the random network model, every honest validator
eventually either commits or skips s with probability 1.

Proof. The proof is analogous to the proof of Theorem C.16.
By Theorem C.20 and Theorem C.22, the probability of a
honest validator directly committing any leader block in a
given round is greater than 0, in both the asynchronous
and the random network models. Thus, the probability of an
infinite sequence of rounds without any directly committed
blocks is 0. This implies that every slot that is not directly
decided will eventually have a committed anchor and become
decided. O

Theorem C.24 (Validity). MAHI-MAHT satisfies the validity
property of Byzantine Atomic Broadcast.

Proof. The proof is similar to the proof of validity in the w =
5 case. Let v be an honest validator and b a block broadcast by
v. We show that, with probability 1, b is eventually delivered
by every honest validator. By Theorem C.11, b is eventually
included in the local DAG of every honest validator. So every
honest validator will eventually include a reference to b in at
least one of its blocks. Let r be the highest round at which
some honest validator includes a reference to b in one of its
blocks. By Theorem C.20 and Theorem C.22, with probability
1, eventually some block &’ at a round 7’ > r will be directly
committed. Block &' must reference at least 2f + 1 blocks,
thus at least f 4+ 1 blocks from honest validators. Since all
validators have b in their causal histories by round r, " must

Mahi-Mahi-5, 1 leader (10 nodes)

---- Mahi-Mahi-5, 1 leader (10 nodes, 3 faulty)
—— Mahi-Mahi-5, 2 leaders (10 nodes)
---- Mahi-Mahi-5, 2 leaders (10 nodes, 3 faulty)
—— Mahi-Mahi-5, 3 leaders (10 nodes)
---- Mahi-Mahi-5, 3 leaders (10 nodes, 3 faulty)
1.2
<11
>
Q
C
]
8 1.04
]
o
o
209
<
0.8 T r - - -
0ok 20k 40k 60k 80k 100k

Throughput (tx/s)
Fig. 10: Impact of the number of leaders per round in MAaHI-MaHI. WAN
measurements with 10 validators. Zero and three faults. 512B transaction
thierefore have a path to b. Theorem C.23 guarantees that
all slots before b’ are eventually decided, so b’ is eventually
delivered. Thus, b will be delivered at all honest validators at
the latest when b’ is delivered along with its causal history.

O

Theorem C.25 (Agreement). MAHI-MAHI satisfies the agree-
ment property of Byzantine Atomic Broadcast.

Proof. The proof is similar to the proof of agreement in
the w = 5 case. Let v be an honest validator and b a
block delivered by v. We show that, with probability 1,
b is eventually delivered by every honest validator. Let [
be the leader block with which b is delivered and s the
corresponding slot. By Theorem C.23, all blocks up to and
including s are eventually decided by all honest validators,
with probability 1. By Theorem C.5, all honest validators
commit [in s. Eventually, all honest validators deliver b. [

Note: MaHI-MAaHI with w = 3 It is possible to configure
ManI1-MaH1 with 3-round waves, by removing all Boost
rounds, and keeping the Propose round (r), Vote round (r+1)
and Certify round (r + 2). Such a protocol would still satisfy
safety, as all results up to and including Theorem C.9 hold
when w = 3. However, this 3-round version of MaHI-
Man1 would no longer satisfy liveness, because the common
core approach in Theorem C.12 can no longer be used to
guarantee that at least one leader block can be directly
committed in each wave.

APPENDIX D
MaHI-MAHI IMPACT OF MULTI-LEADER

This section completes Section V by presenting the impact
of the number of leaders per round in MaHI-MAHI when
implemented with 5 rounds per wave. Figure 10 illustrates
how Ma#nI1-MaHI configured with a wave length of 5 rounds
performs with 1, 2, and 3 leaders per round under both
normal conditions and scenarios involving 3 crash faults.
We observe a latency reduction as the number of leaders
increases similar to Figure 5 (Section V). Specifically, when
the number of leaders rises from 1 to 3, MAHI-MAHTIs

17

average latency decreases by approximately 40ms in ideal
scenario, and by approximately 100ms in the crash failure
scenario. Similarly to Figure 5, increasing the number of
leaders beyond 3 did not further decrease latency.

	Introduction
	System Overview
	Threat model, goals, and assumptions
	Intuition behind the Mahi-Mahi design
	Structure of the Mahi-Mahi DAG

	The Mahi-Mahi Protocol
	Leader Slot
	The Mahi-Mahi decision rule

	Implementation
	Evaluation
	Experimental Setup
	Benchmark under ideal conditions
	Performance under faults
	Impact of the number of leader slots per round

	Related Work
	Conclusion
	References
	Appendix A: Mahi-Mahi Algorithms
	Appendix B: Example of Mahi-Mahi Execution
	Appendix C: Security Proofs
	Common Proofs for w = 4 and w = 5
	Specific Proofs for w = 5
	Specific Proofs for w = 4

	Appendix D: Mahi-Mahi Impact of Multi-leader

