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Investigating causation in the quantum domain is crucial. Despite numerous studies of correlations in
quantum many-body systems, causation, which is very distinct from correlations, has hardly been studied.
We address this by demonstrating the efficacy of the newly established causation measure, quantum Liang
information flow, in quantifying causality across phase diagrams of quantum many-body systems. We
focus on quantum criticality, which are highly nonclassical points. We extract causation behavior across a
spectrum-wide critical point and a ground state second-order phase transition in both integrable and
nonintegrable systems. Across criticality, each case exhibits distinct hallmarks, different from correlation
measures. We also deduce that quantum causation qualitatively follows the quasiparticle picture of
information propagation in integrable systems but exhibits enhanced quantum nonlocality near criticality.
At times significantly larger than the spatial separation, it extracts additional features from the equilibrium
wave function, leading to a peak just before the critical point for near boundary sites.
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Introduction—The study of dynamics of quantum many-
body systems typically involves the time evolution of
correlation functions and the spreading of entanglement
[1-5]. Even the study of light cones, operator spreading
[6-10], out-of-time-ordered correlators (OTOCs) [11-16],
and quantum chaos measures [17,18] are essentially cor-
relation studies. On the other hand, quantifying causation
dynamics in the quantum realm, unlike classical theories,
has been challenging [19]. In fact, the adage “correlation
does not always imply causation” holds true even in the
context of quantum mechanics, and the most commonly
studied measures can, at best, detect a causal connection
but not guantify the amount by which subsystems influence
each other. We address this limitation in our Letter.

Model Hamiltonians of quantum chains provide the
microcosm of quantum effects prevalent in our Universe.
Hence, it is of paramount importance to find a measure
of causation in these systems, which is easily measurable
and can be appropriately connected to the physical
intuition born from classical systems, yet demonstrating
distinct quantum signatures. This has led to efforts in which
quantum causation is extracted from quantum correlations,
drawing inspiration from the Liang-Kleeman analysis
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used in classical systems [20-22], using von Neumann
entropy [23]. The quantum version of Liang information
flow (where the causal influence is defined as a property of
interaction between two subsystems) offers distinct advan-
tages over observable-based correlation measures that pur-
portedly detect similar behavior. First, its use of information-
theoretic tools makes it more universal. Second, it is
intuitively connected to the classical picture and is easy
to implement in experimental setups, as its simplest version
requires only single-site measurements. However, its true
test lies in whether it can properly quantify nonclassical
phenomena. Critical regions in quantum many-body spin
systems provide the perfect playground for this evaluation,
which is where we focus our efforts.

In this Letter, we show that distinct signatures of
quantum criticality are seen in quantum causation quanti-
fied by quantum Liang information flow. The key differ-
ence compared to just measuring entanglement entropy is
that an intervention is applied, which allows us to measure
quantum causation, not just correlations. To demonstrate,
we conduct simulations of quench dynamics [24] using
model Hamiltonians. Previous research has explored the
time evolution of correlation functions for quenches across
critical points in quantum many-body systems [25,26],
leveraging nonanalyticities to detect phase transitions
[27,28], but these do not demonstrate causality. Some
studies involving OTOC:s are also available in the literature
[29-31], but their behavior frequently depends on the
choice of operator due to possible conservation laws and
they do not quantify causation. Our work suffers from no
such drawbacks.
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Definitions—For density operator p, the von Neumann
entropy S(p) is defined as S(p) = —Tr[plog p]. Consider a
system S with state p evolving under the unitary U(¢)
generated by Hamiltonian H. Let the reduced density
matrices of subsystems A, B, and AB be p,, pp, and
pap, respectively. Following Ref. [23], the quantum Liang
information flow is

dS(ps) AS(pap)

A - 1
B=4 dt dr (1)

where p, ¥ is the density matrix of A with B frozen. While

in Ref. [23] the derivative was used to denote rate of change
of von Neumann entropy, for our purpose, the rhs can be
considered to symbolically represent the Liang information
flow at an infinitesimal time interval. If the system with
frozen B evolves for time ¢, then the cumulative Liang
information flow is

Ta = S(paet) = S(pge 1) @

where d is the distance between A and B. This quantifies
the total influence (Liang information flow) from B to A
over time by tracking the change in A’s entanglement with
the system excluding B. Freezing a site effectively switches
off certain Hamiltonian couplings, making Eq. (2) a
measure of the “local quench” [32,33] effect on A. The
setup is schematically illustrated in Fig. 1, see also
Appendix A.

Localization transition in Aubry-Andre-Harper model—
We first examine Liang information flow in the 1D
Hamiltonian,
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FIG. 1. Schematic of Liang information flow (green arrows)
between a chosen site and others, computed by comparing an
information flow in a normal lattice to one with a frozen site
(cross). The top diagram shows nearest-neighbor coupling, while
the bottom includes next-nearest-neighbor coupling.

H =
=1

N =

(01 + 0j0)00) +

L
> B (3)
j=1

where 6% are Pauli-spin operators, B; = Acos(2zf3;), and

B = [(v/5 = 1)/2], the inverse golden ratio. The system size
L is chosen as a Fibonacci number to minimize
finite-size effects [34]. This model undergoes a localization-
delocalization transition at A =2 across its eigen-
spectrum [35].

In Fig. 2, we analyze the causal influence of a selected
site across the transition using cumulative Liang informa-
tion flow T, between sites at distance d, averaged beyond
the transient growth (1 ~ 10%). In Fig. 2(a), we observe that
in the delocalized regime, there is equitable Liang infor-
mation flow from the frozen site to others. This corrobo-
rates the unrestricted transport expected in this regime as a
result of spatially extensive single-particle eigenfunctions.
This indicates that, in large delocalized and ergodic
systems, removing a few qubits, no matter their location
in the chain, has no effect on dynamics. However, as 4 nears
the critical point, causation effects increase for nearby sites
due to the restriction of information propagation beyond the
localization length. Thus, local effects dominate a site’s
evolution. Since the phase transition spans the eigenspec-
trum, the initial state’s energy has minimal impact.
Therefore, our choice of the Néel state as the initial state
gives similar qualitative results to other typical states (see
Supplemental Material [36]).

In Fig. 2(b), we focus on two specific scenarios:
(i) d =1, representing a nearby site to the frozen site
and (ii) d = 15, representing a site at a distance greater than
the localization length in the localized regime. For the site
at d = 1, we observe the anticipated behavior described in
the preceding paragraph as A increases. However, for
distant sites, the causation flow becomes intriguing near
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FIG. 2. Cumulative Liang information flow for the model in
Eq. (4). (a) Late-time cumulative flow to a site d sites away from
the frozen site, with |T;| averaged over ¢ ~ 10% to smooth the plot.
The blue dashed line marks the localization phase transition at
A = 2. (b) Cross section of (a) at the red dashed line, with similar
data for other system sizes in different colors. The blue line marks
the critical point. The frozen site position is the closest smaller
Fibonacci number +1 to L, e.g., for L = 2584, i = 1598, to
minimize finite-size effects.
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criticality. For small A, the behavior mirrors that of nearby
sites, i.e., there is a gradual increase in cumulative Liang
information flow with A until approximately A ~ 1.5. This is
followed by a plateau before the expected sharp decline in
the localized regime. This indicates a peak in causality
occurs for an innocuous parameter, 4 < 2, for distant sites.
It also shows a slow drift toward 4 ~ 1.5 for larger values of
d, as seen in Fig. 2(a) from the faint violet regions. The
larger causation values indicate an already inequitable flow
of information between different sites in the said parameter
regime. This, in turn, signifies traces of localization in the
parts of the system acting as a herald to the onset of
localization across the spectrum for 4 = 2. A naive finite-
size analysis in Fig. 2(b) suggests this effect is largely
independent of system size. Furthermore, for A > 2 expo-
nentially localized wave functions result in exponentially
small information leakage beyond the localization length,
whose signature is given by a rapid but continuous decrease
in Liang information flow with d.

Ground state phase transitions in Ising models—Next,
we direct our focus to the anisotropic next-nearest-neighbor
Ising (ANNNI) model with open boundary conditions
(OBCs). This model includes a next-nearest-neighbor
coupling, is nonintegrable, and lacks U(l) symmetry
present in the previous example. In certain parameter
regimes, the ground state of this model undergoes a
ferromagnetic to paramagnetic Ising phase transition upon
tuning the transverse magnetization strength. In the follow-
ing analysis, we will investigate the influence of the middle
site of the chain on other chosen sites across different
parameter regimes. Note that choosing any other site in the
bulk gives qualitatively same results.

The Hamiltonian of the ANNNI chain is given by

L-1 L-2 L
H, =— Za;(;;H + Kzajo;;z - qu’;, (4)
J J J

where « represents the strength of the next-nearest-neighbor
term and B is the magnitude of magnetic field applied along
the transverse axis.

At fixed value of 0 < x < 0.5, the ground state of the
ANNNI model undergoes quantum phase transition from
the ferromagnetic to the paramagnetic phase when trans-
verse field B > 0 exceeds a critical value B, [46-52], and
the critical parameters «. and 5. are satisfies,

2 Ke

| -2k, =B, - B .
e = Pe ™2y o,

(5)

While this phase transition occurs in equilibrium, pre-
vious studies [27,28,37,53,54] show that its signatures can
appear in nonequilibrium quantum quenches, motivating us
to explore these within Liang information flow.

Since the model in Eq. (4) is nonintegrable for generic
parameter values, we resort to numerical simulations

[time-dependent variational principle (TDVP) and density
matrix renormalization group [55]] for our results.
However, we first explore the integrable limit x = 0, before
discussing the results for « > 0.

k = 0: For k = 0, we apply a canonical transformation
(6 = 6%, 0° > —0%) and a Jordan-Wigner transformation
to map H; to spinless fermions, yielding B. =1 in the
thermodynamic limit. The one-site density matrix required
for computation is p; = [(I+ (65)0°)/2] [38]. The time
evolution of (6%) can be found semianalytically due to the
Hamiltonian being quadratic in fermionic operators [36].

In Fig. 3(a), we show the flow of Liang information for
d = 3, when the initial state is the ground state at B = 0.01
and we quench to different values of 3. When B is small,
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FIG. 3. Variation of cumulative Liang information flow (|T,|)
for quenches to different B fields at k = 0. (a),(b) Initial state is
the ground state of B = 0.01. (c),(d) Initial state is the ground
state of the respective B. The inset of (d) shows AS,(d), the
entanglement difference at distance d from the frozen site,
between normal and frozen site ground states, as a function of
B. (a) |T5| at three sites from the frozen site; red dashed lines
mark the cross section in (b), where the black line indicates the
critical point. (e),(f) Spatial profiles of Liang information flow for
quenches at L = 250 at a chosen time. (e) follows the setup in (a)
and (f) follows that in (c). The red dashed line marks 5. = 1, and
green lines show the fastest quasiparticle’s reach.
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the initial state in this regime has a large overlap with the
ground state, thus limiting nontrivial evolution and Liang
information flow. The flow gradually increases as we
increase 3 toward B, due to increased quantum fluctuations
introduced by the ¢* in the dynamics. However, if 3 is too
large (deep inside the paramagnetic phase), evolution
becomes dominated by the local ¢* term and we notice
the expected qualitative behavior of small Liang informa-
tion flow in Fig. 3(b) for B > 1. However, the peak of
quantum causation appears to be shifted from the critical
B, = 1, where one would expect the quantum effects in the
evolution the most. One possible cause for this is our choice
of initial state having significant overlaps with several high
energy states in this regime. To verify this, we study another
initial state: the ground state of the corresponding 3 where
causality is being computed, the results of which are shown
in Figs. 3(c) and 3(d), which gives us almost the expected
features with the peak occurring closer to 5. The reason
for the remaining skewness toward the ferromagnetic phase
is the greater influence of nearby neighbors in the dynamics
due to dominance of a nearest-neighbor term, which is seen
in the maxima of |T,;| when 7> d. The effect becomes
more prominent for nonground initial states. Furthermore,
from the well-known quasiparticle picture of information
propagation for local quenches [39] that holds for Fig. 3(d),
we deduce that, for 7 > d, |T,| is effectively the difference
of S(p,) for site A at a distance d from the frozen site, for
the ground states of the unfrozen and frozen system. We
call this quantity AS,(d) and plot it in the inset to show the
resemblance. As evident from the plot, this feature is
prominent near the edge (small d) where the flow is
strongest and is embedded in the ground state of the
model. This concludes our explanation of the peak-
before-criticality phenomena.

Finally, we plot the spatial profile of Liang information
flow at time ¢ = 30 in Figs. 3(e) and 3(f). We make two key
observations in these plots. First, the causation shows a
spatial envelope. This is again qualitatively consistent with
the picture: quasiparticles carry information in the system
[39,56]. To corroborate, we show the distance covered by
the fastest quasiparticle for # = 30 by the green line, whose
velocity is Min(1, B). The small deviations can be attrib-
uted to the choice of initial state and finite sizes. Second,
regardless of the initial state chosen, there is a small but
highly nonlocal causation near or at the critical point which
coincides with the divergence of correlation length of the
ground state. This behavior is caused by the participation of
a edge localized eigenmode [57] with diverging localiza-
tion length near criticality in the dynamics. This effect is
beyond the quasiparticle picture, as there is no propagation
of plane wave (sinusoidal) eigenmodes, yet an extended
eigenstate with long-range entanglement participates in
dynamics, which exerts a quantum nonlocal causation
upon freezing a site. This is a rare example of beyond
quasiparticle quantum nonlocal behavior in spin systems.
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FIG. 4. Variation of absolute Liang information flow for
quenches to different 5 fields at fixed x # 0, computed via
TDVP for system sizes L = 50, 250. (a) |T;| at three sites from
the frozen site for k = 0.4, starting from the ferromagnetic state
[J4---{). (b) Same as (a) for k = 0.2. (c) |T3| for k =0.2
starting from the ground state, similar to Fig. 3(c). (d) Cross
section of (c) at # = 30 compared with |T3| for L = 250. Red and
black dashed lines denote 5. from Eq. (5).

Immediately after a critical point [which can be shown to be
at B. ~ L/(L + 1) due to the finite-size effect], this mode
changes to a plane wave and the nonlocality vanishes [36].

k > 0:For x > 0, performing quenches in B or « yields
similar results [36]. In Fig. 4, we show the features shown
by quantum Liang information flow for the nonintegrable
interacting model. As in the previous section, we study two
initial states: the ferromagnetic state || || --- ), which is
the ground state at k = 5 = 0, and the ground state of 5,
where information flow is computed [59].

In Fig. 4(a), despite starting from the ferromagnetic
initial state with a smaller system size L = 50 compared to
Fig. 3, we observe a peak in quantum Liang information
flow very close to criticality. The proximity of the peak to
the critical point compared to the k = 0 case is due to the
fact that larger x values push the critical point toward
B = 0. Consequently, even at these system sizes, this initial
state maintains sufficient overlap with the ground state of
the Hamiltonian before the critical point, thereby exhibiting
the expected behavior.

However, as we decrease « to 0.2, the ferromagnetic state
no longer maintains a high overlap with the ground state
near the corresponding critical point. Furthermore, the
system is now ergodic due to its nonintegrable nature,
implying the evolution of such a state at the same time-
scales is no longer restricted to the low energy sector (as
can be verified by, for example, growth of entanglement).
However, the causation peak still necessarily exists because
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quantum fluctuations have to maximize somewhere in
between the extreme cases B < 1 and B > 1. Although,
it need not bear any relation to the phase transition point; it
just depends on the dynamics. This is verified in Fig. 4(b),
which shows the peak much before the critical point
denoted by the red dashed line.

Nonetheless, we recover the “peak near criticality” akin
to the noninteracting case, once the initial state is the
ground state [36], as shown in Figs. 4(c) and 4(d) for Liang
information flow to nearby sites with d =3. In the
integrable model, starting from even nonground initial
states, we can capture the same features of the ground
state transition, as seen from Fig. 3(e). In contrast, in the
nonintegrable case, only the low energy initial states show
the correct behavior. Thus, the maximum causality depends
on the competing behavior of the various Hamiltonian
terms on the initial state.

Discussion—In this Letter, we have unraveled causation
behavior in quantum chains using the recently formulated
quantum Liang information flow. We established that
causality peaks do not align with maxima in correlation,
as causality is quantified by the difference in quantum
correlations. We found a democracy of influence in the
fully delocalized regime and near-site causation in the
localized regime. Furthermore, diverging correlation
lengths in ground state second-order phase transitions
manifest as nonlocal quantum causation. We also found
that the causation peak for nearby sites occurs slightly
toward the ordered side of the transition, acting as a
nonequilibrium herald to the equilibrium phase transition.

The quantum Liang information flow probe quantifies the
influence of different couplings in a Hamiltonian to induce
criticality. While classical Liang-Kleeman information has
improved artificial intelligence (Al) simulations by uncov-
ering causal relationships in data [60], our result shows that
its quantum counterpart can characterize phase transitions in
spin systems, and utilizing it on random graph structures can
be key to leveraging quantum computation for nondeter-
ministic-polynomial-hard problems, for example, in tack-
ling bottlenecks of quantum annealing [61]. Causality peaks
naturally delineate dominant interactions around transitions,
thus offering a diagnostic tool for detecting structural traits
inducing quantum phase transitions, which can be useful in
optimizing schedules for critical state preparation, a chal-
lenging task. Possible additional applications include iden-
tifying resonant regions in many-body localization [62,63]
and tracking participating qubits in quantum reservoir
computing [64], similar to its role in improving classical
AI[60]. The examples provided in this Letter can be tested in
D-wave architecture, where transverse Ising models with
0(100) sites have been simulated [65-67], or in trapped ion
systems (see Appendix B).

Acknowledgments—R. G. thanks K. Sengupta, A. Das,
M. Sarkar and A. Nico-Katz for discussions. R. G. and

S. B. acknowledge the UKRI EPSRC Grants “Nonergodic
quantum manipulation” No. EP/R029075/1 and Many-
Body Phases in Continuous-Time Quantum Computation
No. EP/Y004590/1 for support. Y. B. acknowledges sup-
port from National Natural Science Foundation of China
(Grant No. 12404551) and the China Postdoctoral Science
Foundation (Grant No. 2024M750339).

[1] L. Amico, A. Osterloh, F. Plastina, R. Fazio, and G. Massimo
Palma, Dynamics of entanglement in one-dimensional spin
systems, Phys. Rev. A 69, 022304 (2004).

[2] A. Polkovnikov, K. Sengupta, A. Silva, and M.
Vengalattore, Colloquium: Nonequilibrium dynamics of
closed interacting quantum systems, Rev. Mod. Phys. 83,
863 (2011).

[3] S. Campbell, T.J. G. Apollaro, C. Di Franco, L. Banchi, A.
Cuccoli, R. Vaia, F. Plastina, and M. Paternostro, Propa-
gation of nonclassical correlations across a quantum spin
chain, Phys. Rev. A 84, 052316 (2011).

[4] T.J. G. Apollaro, S. Lorenzo, and F. Plastina, Transport of
quantum correlations across a spin chain, Int. J. Mod. Phys.
B 27, 1345035 (2013).

[5] T. Boorman, M. Szyniszewski, H. Schomerus, and A.
Romito, Diagnostics of entanglement dynamics in noisy
and disordered spin chains via the measurement-induced
steady-state entanglement transition, Phys. Rev. B 105,
144202 (2022).

[6] A.K. Pattanayak and P. Brumer, Chaos and Lyapunov
exponents in classical and quantal distribution dynamics,
Phys. Rev. E 56, 5174 (1997).

[7] A. Lakshminarayan, Entangling power of quantized chaotic
systems, Phys. Rev. E 64, 036207 (2001).

[8] J.N. Bandyopadhyay and A. Lakshminarayan, Testing
statistical bounds on entanglement using quantum chaos,
Phys. Rev. Lett. 89, 060402 (2002).

[9] X. Wang, S. Ghose, B. C. Sanders, and B. Hu, Entanglement
as a signature of quantum chaos, Phys. Rev. E 70, 016217
(2004).

[10] V. Balasubramanian, P. Caputa, J. M. Magan, and Q. Wu,
Quantum chaos and the complexity of spread of states,
Phys. Rev. D 106, 046007 (2022).

[11] J. Maldacena, S. H. Shenker, and D. Stanford, A bound on
chaos, J. High Energy Phys. 08 (2016) 106.

[12] I. Kukuljan, S. Grozdanov, and P. Tomaz, Weak quantum
chaos, Phys. Rev. B 96, 060301(R) (2017).

[13] A.W. Harrow, L. Kong, Z.-W. Liu, S. Mehraban, and P. W.
Shor, Separation of out-of-time-ordered correlation and
entanglement, PRX Quantum 2, 020339 (2021).

[14] J. Riddell and E. S. Sgrensen, Out-of-time ordered correla-
tors and entanglement growth in the random-field XX spin
chain, Phys. Rev. B 99, 054205 (2019).

[15] T. Notenson, I. Garcia-Mata, A.J. Roncaglia, and D. A.
Wisniacki, Classical approach to equilibrium of out-of-time
ordered correlators in mixed systems, Phys. Rev. E 107,
064207 (2023).

[16] T. Xu, T. Scaffidi, and X. Cao, Does scrambling equal
chaos?, Phys. Rev. Lett. 124, 140602 (2020).

150202-5


https://doi.org/10.1103/PhysRevA.69.022304
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1103/PhysRevA.84.052316
https://doi.org/10.1142/S0217979213450355
https://doi.org/10.1142/S0217979213450355
https://doi.org/10.1103/PhysRevB.105.144202
https://doi.org/10.1103/PhysRevB.105.144202
https://doi.org/10.1103/PhysRevE.56.5174
https://doi.org/10.1103/PhysRevE.64.036207
https://doi.org/10.1103/PhysRevLett.89.060402
https://doi.org/10.1103/PhysRevE.70.016217
https://doi.org/10.1103/PhysRevE.70.016217
https://doi.org/10.1103/PhysRevD.106.046007
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1103/PhysRevB.96.060301
https://doi.org/10.1103/PRXQuantum.2.020339
https://doi.org/10.1103/PhysRevB.99.054205
https://doi.org/10.1103/PhysRevE.107.064207
https://doi.org/10.1103/PhysRevE.107.064207
https://doi.org/10.1103/PhysRevLett.124.140602

PHYSICAL REVIEW LETTERS 134, 150202 (2025)

[17] M. Pandey, P. W. Claeys, D. K. Campbell, A. Polkovnikov,
and D. Sels, Adiabatic eigenstate deformations as a sensitive
probe for quantum chaos, Phys. Rev. X 10, 041017 (2020).

[18] C. Lim, K. Matirko, A. Polkovnikov, and M. O. Flynn,
Defining classical and quantum chaos through adiabatic
transformations, arXiv:2401.01927.

[19] C. Brukner, Quantum causality, Nat. Phys. 10, 259 (2014).

[20] X.S. Liang and R. Kleeman, Information transfer between
dynamical system components, Phys. Rev. Lett. 95, 244101
(2005).

[21] X.S. Liang, Information flow and causality as rigorous
notions ab initio, Phys. Rev. E 94, 052201 (2016).

[22] X.S. Liang, Causation and information flow with respect to
relative entropy, Chaos 28, 075311 (2018).

[23] B. Yi and S. Bose, Quantum Liang information flow as
causation quantifier, Phys. Rev. Lett. 129, 020501 (2022).

[24] A. Mitra, Quantum quench dynamics, Annu. Rev. Condens.
Matter Phys. 9, 245 (2018).

[25] K. Sengupta, S. Powell, and S. Sachdev, Quench dynamics
across quantum critical points, Phys. Rev. A 69, 053616
(2004).

[26] P. Basu and S.R. Das, Quantum quench across a holo-
graphic critical point, J. High Energy Phys. 01 (2012) 103.

[27] A. Haldar, K. Mallayya, M. Heyl, F. Pollmann, M. Rigol,
and A. Das, Signatures of quantum phase transitions after
quenches in quantum chaotic one-dimensional systems,
Phys. Rev. X 11, 031062 (2021).

[28] C.B. Dag, P. Uhrich, Y. Wang, 1. P. McCulloch, and J. C.
Halimeh, Detecting quantum phase transitions in the qua-
sistationary regime of Ising chains, Phys. Rev. B 107,
094432 (2023).

[29] H. Shen, P. Zhang, R. Fan, and H. Zhai, Out-of-time-order
correlation at a quantum phase transition, Phys. Rev. B 96,
054503 (2017).

[30] Z.-H. Sun, J.-Q. Cai, Q.-C. Tang, Y. Hu, and H. Fan, Out-of-
time-order correlators and quantum phase transitions in the
Rabi and Dicke models, Annalen Phys. 532, 1900270 (2020).

[31] M. Heyl, F. Pollmann, and B. Déra, Detecting equilibrium
and dynamical quantum phase transitions in ising chains via
out-of-time-ordered correlators, Phys. Rev. Lett. 121,
016801 (2018).

[32] T.Fukuhara, A. Kantian, M. Endres, M. Cheneau, P. Schauf3,
S. Hild, D. Bellem, U. Schollwock, T. Giamarchi, C. Gross, L.
Bloch, and S. Kuhr, Quantum dynamics of a mobile spin
impurity, Nat. Phys. 9, 235 (2013).

[33] E.J. Torres-Herrera and L. F. Santos, Local quenches with
global effects in interacting quantum systems, Phys. Rev. E
89, 062110 (2014).

[34] M. Kohmoto, Metal-insulator transition and scaling for
incommensurate systems, Phys. Rev. Lett. 51, 1198 (1983).

[35] S. Aubry and G. André, Analyticity breaking and anderson
localization in incommensurate lattices, Ann. Israel Phys.
Soc 3, 18 (1980).

[36] See  Supplemental Material at  http:/link.aps.org/
supplemental/10.1103/PhysRevLett.134.150202 for other
parameter results and details of analytical computations,
which includes Refs. [37-45].

[37] J. H. Robertson, R. Senese, and F. H. L. Essler, A simple
theory for quantum quenches in the ANNNI model, SciPost
Phys. 15, 032 (2023).

[38] T.J. Osborne and M. A. Nielsen, Entanglement in a simple
quantum phase transition, Phys. Rev. A 66, 032110 (2002).

[39] P. Calabrese and J. Cardy, Entanglement and correlation
functions following a local quench: A conformal field
theory approach, J. Stat. Mech. (2007) P10004.

[40] R. Ghosh and A. Das, Disorder-induced enhancement of
entanglement growth in one dimension: Information leakage
at the scale of the localization length, Phys. Rev. B 103,
024202 (2021).

[41] 1. Peschel, Calculation of reduced density matrices from
correlation functions, J. Phys. A 36, L205 (2003).

[42] 1. Peschel and V. Eisler, Reduced density matrices and
entanglement entropy in free lattice models, J. Phys. A 42,
504003 (2009).

[43] E. Lieb, T. Schultz, and D. Mattis, Two soluble models of an
antiferromagnetic chain, Ann. Phys. (N.Y.) 16, 407 (1961).

[44] 1. Affleck and A.W.W. Ludwig, Universal noninteger
“ground-state degeneracy” in critical quantum systems,
Phys. Rev. Lett. 67, 161 (1991).

[45] H. Rieger and F. Igl6i, Semiclassical theory for quantum
quenches in finite transverse Ising chains, Phys. Rev. B 84,
165117 (2011).

[46] W. Selke, The ANNNI model—theoretical analysis and
experimental application, Phys. Rep. 170, 213 (1988).

[47] A.K. Chandra and S. Dasgupta, Floating phase in the one-
dimensional transverse axial next-nearest-neighbor Ising
model, Phys. Rev. E 75, 021105 (2007).

[48] S. Suzuki, J.-i. Inoue, and B. K. Chakrabarti, ANNNI model
in transverse field, in Quantum Ising Phases and Transi-
tions in Transverse Ising Models (Springer, Berlin, Heidel-
berg, 2013), pp. 73-103.

[49] D. Allen, P. Azaria, and P. Lecheminant, A two-leg quantum
Ising ladder: A bosonization study of the ANNNI model, J.
Phys. A 34, L305 (2001).

[50] A.Nagy, Exploring phase transitions by finite-entanglement
scaling of MPS in the 1D ANNNI model, New J. Phys. 13,
023015 (2011).

[51] P.R.C. Guimaraes, J. a. A. Plascak, F. C. Sa Barreto, and
J.a. Florencio, Quantum phase transitions in the one-
dimensional transverse Ising model with second-neighbor
interactions, Phys. Rev. B 66, 064413 (2002).

[52] M. Beccaria, M. Campostrini, and A. Feo, Density-matrix
renormalization-group study of the disorder line in the
quantum axial next-nearest-neighbor Ising model, Phys.
Rev. B 73, 052402 (2006).

[53] C.B. Dag, Y. Wang, P. Uhrich, X. Na, and J. C. Halimeh,
Critical slowing down in sudden quench dynamics, Phys.
Rev. B 107, L121113 (2023).

[54] P. Zanardi and N. Paunkovi¢, Ground state overlap
and quantum phase transitions, Phys. Rev. E 74, 031123
(2006).

[55] M. Fishman, S. R. White, and E. M. Stoudenmire, Codebase
release 0.3 for ITensor, SciPost Phys. Codebases, 10.21468/
SciPostPhysCodeb.4-r0.3 (2022).

[56] P. Ruggiero, P. Calabrese, L. Foini, and T. Giamarchi,
Quenches in initially coupled Tomonaga-Luttinger liquids:
A conformal field theory approach, SciPost Phys. 11, 055
(2021).

[57] Ferromagnetic phase of k = 0 for OBC hosts this mode, see
Ref. [58] and Supplemental Material [36].

150202-6


https://doi.org/10.1103/PhysRevX.10.041017
https://arXiv.org/abs/2401.01927
https://doi.org/10.1038/nphys2930
https://doi.org/10.1103/PhysRevLett.95.244101
https://doi.org/10.1103/PhysRevLett.95.244101
https://doi.org/10.1103/PhysRevE.94.052201
https://doi.org/10.1063/1.5010253
https://doi.org/10.1103/PhysRevLett.129.020501
https://doi.org/10.1146/annurev-conmatphys-031016-025451
https://doi.org/10.1146/annurev-conmatphys-031016-025451
https://doi.org/10.1103/PhysRevA.69.053616
https://doi.org/10.1103/PhysRevA.69.053616
https://doi.org/10.1007/JHEP01(2012)103
https://doi.org/10.1103/PhysRevX.11.031062
https://doi.org/10.1103/PhysRevB.107.094432
https://doi.org/10.1103/PhysRevB.107.094432
https://doi.org/10.1103/PhysRevB.96.054503
https://doi.org/10.1103/PhysRevB.96.054503
https://doi.org/10.1002/andp.201900270
https://doi.org/10.1103/PhysRevLett.121.016801
https://doi.org/10.1103/PhysRevLett.121.016801
https://doi.org/10.1038/nphys2561
https://doi.org/10.1103/PhysRevE.89.062110
https://doi.org/10.1103/PhysRevE.89.062110
https://doi.org/10.1103/PhysRevLett.51.1198
http://link.aps.org/supplemental/10.1103/PhysRevLett.134.150202
http://link.aps.org/supplemental/10.1103/PhysRevLett.134.150202
http://link.aps.org/supplemental/10.1103/PhysRevLett.134.150202
http://link.aps.org/supplemental/10.1103/PhysRevLett.134.150202
http://link.aps.org/supplemental/10.1103/PhysRevLett.134.150202
http://link.aps.org/supplemental/10.1103/PhysRevLett.134.150202
http://link.aps.org/supplemental/10.1103/PhysRevLett.134.150202
https://doi.org/10.21468/SciPostPhys.15.1.032
https://doi.org/10.21468/SciPostPhys.15.1.032
https://doi.org/10.1103/PhysRevA.66.032110
https://doi.org/10.1088/1742-5468/2007/10/P10004
https://doi.org/10.1103/PhysRevB.103.024202
https://doi.org/10.1103/PhysRevB.103.024202
https://doi.org/10.1088/0305-4470/36/14/101
https://doi.org/10.1088/1751-8113/42/50/504003
https://doi.org/10.1088/1751-8113/42/50/504003
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1103/PhysRevLett.67.161
https://doi.org/10.1103/PhysRevB.84.165117
https://doi.org/10.1103/PhysRevB.84.165117
https://doi.org/10.1016/0370-1573(88)90140-8
https://doi.org/10.1103/PhysRevE.75.021105
https://doi.org/10.1088/0305-4470/34/21/101
https://doi.org/10.1088/0305-4470/34/21/101
https://doi.org/10.1088/1367-2630/13/2/023015
https://doi.org/10.1088/1367-2630/13/2/023015
https://doi.org/10.1103/PhysRevB.66.064413
https://doi.org/10.1103/PhysRevB.73.052402
https://doi.org/10.1103/PhysRevB.73.052402
https://doi.org/10.1103/PhysRevB.107.L121113
https://doi.org/10.1103/PhysRevB.107.L121113
https://doi.org/10.1103/PhysRevE.74.031123
https://doi.org/10.1103/PhysRevE.74.031123
https://doi.org/10.21468/SciPostPhysCodeb.4-r0.3
https://doi.org/10.21468/SciPostPhysCodeb.4-r0.3
https://doi.org/10.21468/SciPostPhys.11.3.055
https://doi.org/10.21468/SciPostPhys.11.3.055

PHYSICAL REVIEW LETTERS 134, 150202 (2025)

[58] M. Kormos, Inhomogeneous quenches in the transverse
field Ising chain: Scaling and front dynamics, SciPost Phys.
3, 020 (2017).

[59] A tiny longitudinal field O(107*) is added to prevent
degeneracy for small B.

[60] M. Tyrovolas, X. S. Liang, and C. Stylios, Information flow-
based fuzzy cognitive maps with enhanced interpretability,
Granular Comput. 8, 2021 (2023).

[61] T. Albash and D. A. Lidar, Adiabatic quantum computation,
Rev. Mod. Phys. 90, 015002 (2018).

[62] R. Ghosh and M. Znidari&, Resonance-induced growth of
number entropy in strongly disordered systems, Phys. Rev.
B 105, 144203 (2022).

[63] A.Morningstar, L. Colmenarez, V. Khemani, D. J. Luitz, and
D. A. Huse, Avalanches and many-body resonances in many-
body localized systems, Phys. Rev. B 105, 174205 (2022).

[64] J. Dudas, B. Carles, E. Plouet, F. A. Mizrahi, J. Grollier, and
D. Markovi¢, Quantum reservoir computing implementa-
tion on coherently coupled quantum oscillators, npj Quan-
tum Inf. 9, 64 (2023).

[65] Y.Bando, Y. Susa, H. Oshiyama, N. Shibata, M. Ohzeki, F. J.
Gomez-Ruiz, D. A. Lidar, S. Suzuki, A. del Campo, and H.
Nishimori, Probing the universality of topological defect
formation in a quantum annealer: Kibble-zurek mechanism
and beyond, Phys. Rev. Res. 2, 033369 (2020).

[66] A.D.King et al., Quantum critical dynamics in a 5,000-qubit
programmable spin glass, Nature (London) 617, 61 (2023).

[67] J. Vodeb, J.-Y. Desaules, A. Hallam, A. Rava, G. Humar, D.
Willsch, F. Jin, M. Willsch, K. Michielsen, and Z. Papic,
Stirring the false vacuum via interacting quantized bubbles on
a 5564-qubit quantum annealer, Nat. Phys. 21, 386 (2025).

[68] D.FE. V. James, P. G. Kwiat, W. J. Munro, and A. G. White,
Measurement of qubits, Phys. Rev. A 64, 052312 (2001).

Correction: An affiliation indicator was erroneously
included with the first author's name during the proof
process and has been removed.

End Matter

Appendix A: Further details about the setup—In the
top three chains of Fig. 1, we depict situations with only
nearest-neighbor couplings. In this scenario, removing a
site results in a break in the chain, and the effective
evolution then occurs within a smaller chain, and the
difference of S(p) at the target site between the normal
and smaller chain gives the Liang information flow.
With longer-range couplings, as the next-nearest-
neighbor case shown in the lower half of Fig. 1,
freezing one site does not break the chain, positioning
the target site consistently within the bulk. However, we
must emphasize that, while computing causation, the
breakage of a chain is not a source of any issues. Just to
complete this discussion, we would like to mention that
to prevent chain breakage upon freezing site p, one
must ensure couplings of range p + 1 in a chain with
open boundary conditions. Furthermore, for periodic
boundary conditions, there is a connection between sites
1 and L, preventing chain breakage, but transforming
the system into an open boundary condition system
upon freezing a site. However, we opt for open
boundary conditions in this Letter to avoid this
additional complexity. Although it should not signifi-
cantly differ from the results in this Letter for unitary
evolution, discrepancies may arise in the nonunitary
scenario, particularly where potential skin effects
emerge, and for topological phase transitions. We plan
to explore these differences in a subsequent study.

Appendix B: Experimental protocol—To compute the
Liang information flow to a specific distance, one needs
to follow a two-step procedure: (1) To obtain the results
when starting from the ground state of the Ising model,
one needs to first initialize the model in its ground state

and then select any site, preferably away from the edges
of the chain. One then needs to perform single-site
tomography to obtain information about the reduced
density matrix of the problem. For the integrable
transverse Ising chain, this reduces to ¢° measurements
at the specific site. On the other hand, to obtain the
results starting from the ferromagnetic initial state, one
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FIG.5. (a),(b) The spatial profile for Liang information flow for
t =30 and r = 100, respectively, when site L/2 — 30 is frozen
for L = 250. (c),(d) The corresponding plots when site L/2 + 20
is frozen. There is no qualitative difference in the results. Note
that the points on the y axis are taken 0.04 apart; hence the small
gap between the dashed lines, which denote B, = 1, and the point
of beyond quasiparticle quantum nonlocality.
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needs to initialize the system in this state and allow it to
evolve under the corresponding Hamiltonians for time ¢.
Then, one needs to perform single-site tomographic
measurements to obtain the reduced density matrix and
thus the von Neumann entropy. Note that the reduced
density matrix for any general nonintegrable for a single
site can be reconstructed by three Pauli measurements
using the Stokes parameters [68], which can be the
protocol for tomography here. (2) In the second step,
one needs to reinitialize the system to either the ground
state of the same Hamiltonian as the previous step or the
ferromagnetic initial state, depending on which result
one intends to obtain. Then, according to the required
distance d, one should suddenly decouple the site (by
turning off the relevant couplings or applying a large
local magnetic field) at a distance d from the previously
measured site and allow the system to evolve freely.

Again, one needs to perform tomographic measurements
on the same site as before, after the same time ¢. This
would give us the entropy with a site frozen. The
difference between these two values yields the Liang
information.

It should be noted that freezing the middle site was
simply a choice made for numerical simulations; freezing
any other site would yield qualitatively similar results. This
implies that, to obtain the plot showing results for different
distances, one does not need to repeat step (1) for each
distance. Instead, one can repeat step (2) by decoupling
different sites at varying distances each time to obtain the
variation of Liang information with distance. This is
verified in Fig. 5, showing that similar qualitative results
can be achieved by keeping the target site fixed and varying
the position of the frozen site, which is operationally
simpler.
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