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Abstract—In this letter, we investigate an opportunistic fluid
antenna multiple access (O-FAMA) system in a multiuser down-
link channel, where a multi-antenna base station (BS) communi-
cates to many user equipments (UEs) on the same time-frequency
resource block without precoding and each UE decides on its
own whether it should access the channel at any given time, and
if it does, utilizes solely its fluid antenna to overcome the inter-
user interference. This setup is designed to combine decentralized
opportunistic scheduling and FAMA for sum-rate maximization.
Specifically, the joint optimization of opportunistic UE scheduling
and port selection is prohibitively complex even if it is performed
in a centralized fashion. To address this challenge, we propose a
low-complexity mean field reinforcement learning approach, for
each UE to select its best port and make scheduling decision based
on the mean field behavior of other UEs and its own partially
observable signal-to-interference-plus-noise ratio (SINR) at the
ports. Numerical results show that the proposed method not only
reduces training time but also outperforms benchmark solutions
in terms of sum-rate performance in O-FAMA systems.

Index Terms—6G, Fluid antenna system (FAS), fluid antenna
multiple access (FAMA), mean field, reinforcement learning.

I. INTRODUCTION

HE fluid antenna system (FAS) introduces a novel com-

munication paradigm by enabling dynamic repositioning
of radiating elements, offering a new degree of freedom (DoF)
through position flexibility [1], [2], [3]. This enhanced spatial
diversity and multiplexing capability make FAS an appealing
technology for achieving the high reliability, hyper-low latency
and massive connectivity that are crucial for future wireless
systems such as the sixth generation (6G) [4]. The concept of
FAS was explained through the lens of electromagnetic theory
in [5]. Recently, FAS prototypes using different technologies
and experiments have also been reported [6], [7], [8].

One of the main applications in FAS is multiple access. In
[9], Wong et al. proposed that inter-user interference can be
overcome by simply adjusting the receiver’s antenna position
with FAS, without the need of any interference management
such as precoding or power control. This is possible because
radio signal fades in scattering environments. While [9] intro-
duced the concept of fluid antenna multiple access (FAMA),
the version of FAMA in [9] demanded the knowledge of a
symbol-level signal-to-interference plus noise energy ratio that
is not known possible. This has motivated the development of
a more practical FAMA scheme, called slow FAMA, in [10],
which only requires to know the average signal-to-interference
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plus noise ratio (SINR) at the ports [11] and can easily handle
several users on the same physical channel. Recent research
has also shown the amazing impact of channel coding on slow
FAMA [12] and in [13], it was demonstrated that slow FAMA
with the codec in the fifth generation (5G) New Radio (NR)
can accommodate a much greater number of user equipments
(UEs) than the fixed-position antenna (FPA) counterpart.

Despite the encouraging results thus far, an uncoded slow
FAMA system has limited interference rejection capability. To
tackle this problem, [14] contemplated the idea of combining
opportunistic scheduling and FAMA and revealed tremendous
capacity benefits of an opportunistic FAMA (O-FAMA) sys-
tem. Opportunistic scheduling, however, requires a centralized
scheduler with channel state information (CSI) (including all
the crosstalk channels) of all UEs, to perform an exhaustive
search, which is infeasible. Motivated by the successes in [15],
[16], the authors of [17] proposed a decentralized reinforce-
ment learning (RL) framework for O-FAMA to autonomously
select favorable UEs and their best FAS ports, for maximizing
the network sum-rate. The technique in [17] further enhanced
policy learning through derivative-based reward shaping and a
dual actor-critic structure, but suffers from very high training
complexity and lacks scalability for large networks.

This letter aims to reduce the computational complexity for
realizing O-FAMA systems for maximizing the sum-rate. The
proposed approach is built upon mean field learning [18], in
which the port selection decision of each UE is influenced by
the average behavior (i.e., mean action) of all other UEs in the
network. To the best of our knowledge, this is the first time to
utilize a mean field learning approach to solve port selection
and opportunistic scheduling in O-FAMA systems. Our main
contributions are summarized as follows:

« First, we formulate a sum-rate maximization problem for
the O-FAMA network as a stochastic game by jointly
optimizing user scheduling and port selection at each UE,
while taking into account partially observable SINR at
the UEs. This formulation enables each agent (i.e., UE) to
make sequential decisions under uncertainty and dynamic
interactions, providing a principled framework to model
long-term performance and multi-agent coordination.

o In large-scale systems, stochastic games suffer from the
curse of dimensionality, since the joint action and state
spaces grow exponentially with the number of UEs,
making policy learning and coordination intractable. To
address this problem, we propose a partially observable
mean field learning approach, in which each UE makes
decisions based on its own observable SINR and the
mean field action of other UEs. As the number of UEs
increases, the computational complexity remains nearly
constant, since both policy and value updates rely on the
mean field representation rather than individual actions.
This makes the proposed approach highly scalable and
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well-suited for large-scale network scenarios.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a downlink multiuser system in which a multi-
FPA base station (BS) simultaneously transmits independent
data stream to M users over a shared time-frequency resource
block. The BS is equipped with a fixed antenna array, where
each antenna is designated for communication with a specific
UE. Each UE has a FAS spanning a linear region of W,
where A is the carrier wavelength, and K ports are uniformly
distributed along this space. We assume that each FAS port
can be considered as a point source and can be instantaneously
switched amongst the K preset locations without delay. Thus,
the received signal at the k-th port of UE w is given by

M
o = g v+ 3 g o 0, (1)
e

where g,gﬂ’“) is the fading coefficient between the u-th FPA

of the BS and the k-th port of UE wu, v, is the data symbol
transmitted to UE u, with E[|v,|?] = 02, and 71/(:) is the addi-
tive white Gaussian noise (AWGN) at the k-th port of UE u,
modeled as a circularly symmetric complex Gaussian variable
with zero mean and variance o7, (i.e., 77,(;") ~ CN(0,02)).

We assume that all channels follow a Rayleigh distribution
with E[|g|*] = o2. Since the ports of a UE’s FAS can be
arbitrarily close to one another, the channel coefficients gku"")
corresponding to different ports of the u-th UE exhibit spatial
correlation which can be modeled as
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For notational brevity, the indices k, u, and @ are omitted.
The variables {xy} | are modeled as independent and iden-
tically distributed (i.i.d.) standard complex Gaussian random
variables, i.e., z ~ CN(0,1), while A serves to impose the
desired spatial correlation among the channel coefficients.

In our case of a linear fluid antenna with size W A operating
in a rich two-dimensional isotropic scattering environment,
the spatial correlation between any pair of ports follows the
classical Jake’s model, which gives

3)
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in which Jy(+) is the zeroth-order Bessel function of the first
kind. With ® £ [¢; ], we have & = E[gg] = AAT.

Let g 2 [g1,...,9x]" denote the vector of channel coeffi-
cients. Applying eigenvalue decomposition to the correlation
matrix ® yields ® = VDV, where D denotes a diagonal
matrix containing the eigenvalues, and V is a unitary matrix
composed of the corresponding eigenvectors. Accordingly, the
matrix A can be constructed as A = VD'/2 to ensure that
the required correlation structure is satisfied. Followed by [17]
the distances between the BS and UEs, as well as the effects
of path loss, are intentionally omitted. This abstraction allows
us to focus on evaluating the performance of O-FAMA.

In O-FAMA, M favorable UEs are selected from a total of
M UEs to communicate over a shared time-frequency resource
block. Ideally, the SINRs of all UEs are evaluated and ranked,
and the top M users are chosen for transmission. For a given
UE u, the SINR observed at its k-th port is expressed as
u) ‘2 M _

sty pa=M, 4
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where (1, = {0, 1} indicates if UE v is selected.
Our aim is to solve:

M
(w)

max logo(1+1T S5a
pay ; gy(1+T) (52)
s.t. Cp:py ={0,1}, Vu, (5b)

M
C2:2< ) pu <M, (50)

u=1
Cs: ke =[1,...,K],Vu, (5d)
Cy: k! = arg m]?x{I‘,i"), k € P}, (5e)
where K = {k1, ..., ky, ..., kar} is the port selection decision
of the favourable UEs, and p = {p1, ..., fuy---,pbar} 18

the scheduling decision of all UEs, (5b) specifies the binary
scheduling decision for all UEs, (5c) indicates that the total
number of selected UEs should not exceed the permissible
range of the network, (5d) specifies the port indices, and (5e)
is the availability of SINR information at the ports. Note that
after solving (5), M will be found, which is a random variable
according to the CSI of all the UEs.

Solving (5) faces major challenges: (i) the port selection of
UE £ is affected by the other UEs’ decisions; (ii) in massive
access scenarios, it is impossible to compute the optimal port
selection when considering the port selection of other UEs.

III. MEAN FIELD LEARNING

To address the above challenges, we reformulate the prob-
lem as a stochastic game, which provides a principled frame-
work for sequential decision-making. However, as the number
of agents increases, traditional methods suffer from the curse
of dimensionality, making joint optimization in large-scale
systems intractable. Moreover, due to the limited observability
of O-FAMA ports, it is difficult for each agent to obtain global
information. To overcome these issues, we incorporate the
mean field approximation and propose a partially observable
mean field actor-critic algorithm, enabling scalable and decen-
tralized decision-making under partial observability. The key
elements in stochastic game can be represented using a five
tuple: (U, S, O, A, R). Each element is explained below.

1) Agent U: Each EU acts as an agent to learn the optimal
port selection policy. We have the UE set, i = {1,..., M}.

2) State space S: The state space S includes all UEs” SINR
information at each port at time slot £. The state space of agent
u can be represented as s, = {F,(Cu)}ke;g.

3) Observable space O: Each UE can only access its own
observation at the observable ports, which consists of the
available SINR information, o, = {F’(;L)}kep, Pl < |K|.
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4) Action space A: The action space of each UE is the port
selection decision and the opportunistic scheduling decision,
which can be represented as a,, = {ky, (i, }. Due to the fact
that ky, = [0,...,ku,...,0]1x k) and j, € {0,1} are discrete
values, at any time step, only one port can be activated, so
one-hot encoding can be adopted for action space.

5) Reward R: Our objection is to maximize the sum rate.
Thus, the agent receives a reward of r = 224:1 10g2(1+F,(€1i )
if all the constraints are met; otherwise, » = 0. "

The Nash equilibrium is an important concept in stochastic

games. It represents a joint policy w* = [x},..., 73], such
that for each v € [1,..., M], vy (04, ") = vy (0, 7, T*,),
where 7*, = [mf,...,7m5_1,m5 1,.-.,7y]. The best

response of UE w is defined as wvy,(oy, 7}, 7*,) >
Uy (0y, T, _y,), where 7 denotes the optimal policy of UE
u, and 7_,, represents the policies of all other UEs. If every
UE’s policy, 7, satisfies this best response condition with
respect to the others, the joint policy profile 7* = (7%)M
constitutes a Nash equilibrium. In multi-agent RL, Nash Q-
learning computes the Nash equilibrium through two iterative
steps [19]. However, as the number of agents increases, the
joint action space grows exponentially, making it unsuitable
for large-scale multi-agent interaction scenarios.

Mean field approximation has been investigated in [18]
to reduce the computational complexity of Nash Q-learning.
In this case, we have a, = @, + day,, in Which a,, =
ﬁ Zu a,, and da, - is a small fluctuation. Additionally,
. is the action distribution of the neighbors of agent u’.
Therefore, the Q-function can be expressed as Q. (0,,a) =
T Dow Qul0u, au, aw) =Qu(0y, @y, @y). During the learn-
ing phase, the action is selected by the Boltemann policy:

exp(BQu(OM oy Elu))

, 6
wen, oD(BQulonan )

e, (aulouv au) = Z

where
Qtqul(suv Qs Gy) = (1 — at)Qz +alry + ’Y’UZ(S/)L (N

where oy is the learning rate. The mean field value function
vt (s') is found by

u
vl(8) =Y mh(auls’,8u)Ba, o ymnt QL(s). (8)
Qy
With the mean field approximation, the best response of
agent u can be calculated based on the mean field action of
agent u. Therefore, we can implement the mean field learning
by function approximation such as neural networks, where
Qu(0y,ay,a,) is parameterized by weights ¢. We can also
use a neural network to model the policy selection process
with weights 6. The update rules for Q-function and policy
selection lead to an actor-critic approach.
In mean field actor-critic, the agent is trained by minimizing
the loss function

£(¢u) = (yu - Q¢u,(0ua oy au))za 9
where y, = 1, + YV, (8') is the target mean field value with
the weight ¢, . Differentiating £(¢,,) gives

v¢u£(¢u) = (yu - quu (Oua Qs au))vqﬁqubu (Oua Ay s au)-
(10)
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Fig. 1. The overall mean field learning framework.

Additionally, the actor network 7y, is trained by the sampled
policy gradient

Vo, T (8u) = Vg, log mg, (04)Qop., (0w, G, Guy)- (11

The overall mean field learning framework is shown in Fig. 1,
and the proposed algorithm is presented as Algorithm 1.

Algorithm 1 Mean Field Actor-Critic (MFAC) Algorithm for
Port Selection and Opportunistic Scheduling in O-FAMA

1: Initialize parameters: ¢* and ¢/, 6" and 0/, initialize the mean
action @,, for all v € {1,..., M}, initialize the total number of
episode E and total number of step 7.

2: while Episode < E do

3: while Step < T do

4: For each agent u choose action a,, from 7y, , and compute
new mean action a = [a@1,...,aMm].
5: Execute the joint action a, observe the reward r, and the

next state s’.

6: Store (0, a,r,s’,a) in replay buffer B.

7: end while

8: while j =1,...,U do

9: Sample a minibatch of Z samples (o0,a,r,s’,a) from
replay buffer .

10: Set yu = ru + v, (s).

11: Update the critic “network by minimizing the loss:
L(¢u) = 7 2o (yu — Qo (0u, au, au)).

12: Update the actot network by (11).

13: end while

14: Update the parameters of the target network/ for/ each agent
u with learning rate: 7; ¢, < T¢u + (1 = 7))y, 0, + 70, +
(1—=7)0,.

15: end while

The computational complexity of the proposed algorithm
depends on the architecture of the critic network. Let h™te
represent the number of neurons in the i-th hidden layer.
Then the complexity of our approach can be expressed as
O <(|Su‘ + 2‘Au|)hclritic + Zf:_Ql hgrilichﬁi_tilc 4 hc]ritics’
only the local state and mean action are used as inputs.
In contrast, the traditional actor-critic approach takes the
actions of all M agents as input, resulting in a complexity of
O ((|Su‘ + M‘AuDhclritic + 21*21 hgritich;‘::igilc + hc[rilic)’ which

1=

where

increases linearly with the number of agents [17]. Therefore,
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Fig. 2. Convergence under different number of M.

by leveraging the mean field approximation, the proposed
approach ensures that the computational complexity does not
increase with the number of agents. This design effectively
compresses the input dimension of the critic network, thereby
significantly reducing the overall computational complexity.

IV. SIMULATION RESULTS

In the simulations, the actor network at each UE takes as
input the agent’s local observation and the mean action of other
agents. It consists of five fully connected layers with hidden
sizes 1024, 512, 256, and 128, followed by a softmax output
layer to produce action probabilities. The output of critic part
is the Q-value through a similar architecture. ReLU activation
is applied to all hidden layers. Both networks are optimized
using Adam with a learning rate of 0.0005, and soft target
updates with 7 = 0.05 are applied. A learning rate scheduler
is used to decay the learning rate by 0.95 every 50 steps, and
the total number of episodes is 400. The system parameters
are set as: K = 100, with M =6, W = 2, and |P| = 30.

We compare the proposed approach with (1) the MA SD3-
DerivNet scheme proposed in [17] which employs dual policy
networks and high-order derivative estimations to enhance the
reward signal and (2) exhaustive search which evaluates all
possible action combinations to obtain the optimal solution, is
adopted as the performance upper bound.

As can be observed from Fig. 2, the proposed algorithm
consistently achieves relatively stable convergence within ap-
proximately 50 episodes. This is primarily attributed to the
incorporation of the mean field action, which abstracts the
interactions among agents (i.e., UEs) into a low-dimensional
representation. As a result, the input size of the value network
remains invariant with respect to the number of agents, thereby
enabling the algorithm to maintain stable learning performance
regardless of the scale of the multi-agent system.

Table I shows the training time of the proposed approach
and MA SD3-DerivNet under different number of UEs. As
the number of UEs increases from 3 to 5, the training time
of MA SD3-DerivNet grows rapidly, reaching over 12,000
seconds, due to the exponential increase in joint action space.
In contrast, our proposed approach maintains a significantly

TABLE I
TRAINING TIME VS. DIFFERENT NUMBER OF UES
Number of UEs, M
3 4 5
Algorithm
The proposed method 405s 542s 662s
MA SD3-DerivNet [17] 9600s | 11200s| 12800s

Sum-rate/(bit/s/Hz)

—@— Exhaustive Search
8 —#—The proposed
MA SD3-DerivNet

3 4 5 6 7 8 9 10
Number of UEs, M

Fig. 3. Sum-rate vs. different number of UEs.

lower and more stable training time (405s to 662s), benefit-
ing from the mean field approximation. This highlights our
superior scalability and efficiency in large-scale O-FAMA.

In Fig. 3, we show the sum-rate performance by varying
the number of UEs from 3 to 10. We see that the proposed
approach consistently outperforms the benchmark scheme. For
instance, when M = 6, the proposed approach achieves a
sum-rate improvement of approximately 13.0% over MA SD3-
DerivNet. As M increases to 10, the performance gap widens
further, with the proposed approach achieving a sum-rate that
is about 13.9% higher than MA SD3-DerivNet. This perfor-
mance gain stems from the design of the proposed MFAC
approach. Unlike MA SD3-DerivNet, which introduces dual
policy networks and high-order derivative networks to enhance
the reward but incurs significant computational overhead as the
number of agents grows, the proposed approach leverages the
mean field approximation. This abstraction replaces the model-
ing of joint actions with a representative mean action, thereby
avoiding the complexity of the high-dimensional action space.
Consequently, each agent optimizes its policy based on local
information and the mean field action, leading to improved
scalability and a significant increase in system sum-rate.

Fig. 4 illustrates the sum-rate performance versus the num-
ber of ports K at the FAS of each UE. Compared with the MA
SD3-DerivNet algorithm, the proposed approach consistently
achieves better performance, especially as the number of ports
increases. For example, when K = 60, the proposed approach
achieves a sum-rate of 11.5 bps/Hz, which is 11.7% higher
than that of MA SD3-DerivNet (10.3 bps/Hz). As K increases
to 100, the performance gap becomes more pronounced, with
the proposed approach reaching 11.8 bps/Hz, while MA SD3-
DerivNet remains saturated at 10.3 bps/Hz, resulting in a gain
of 14.6%. This gain stems from the efficiency of the MFAC
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Fig. 5. Sum-rate vs. different normalized size of fluid antenna.

algorithm. Each agent can make more informed decisions by
considering the aggregated behavior of others, rather than
modeling the full joint action space explicitly.

Finally, the results in Fig. 5 are provided to examine the
impact of the normalized size of the FAS at each UE, denoted
by W. The results demonstrate that the proposed approach
consistently outperforms the benchmark scheme. For instance,
when W = 3, the proposed approach achieves a sum-rate of
11.2 bps/Hz, compared to 10.9 bps/Hz for MA SD3-DerivNet.
As W increases to 5, the proposed approach reaches 12.7
bps/Hz, while MA SD3-DerivNet only achieves 12.3 bps/Hz,
yielding a relative gain of about 3.3%. This gain arises from
the MFAC algorithm’s ability to capture average interaction
effects through mean field approximation. Unlike MA SD3-
DerivNet, which again relies on higher-order derivative net-
works and suffers from increased computational complexity in
more dynamic environments, MFAC maintains both scalability
and decision quality as W increases. By abstracting the joint
actions of other agents into a representative mean action, our
approach allows each agent to make efficient decisions even
as the system becomes more complex.

V. CONCLUSION

In this letter, we proposed a mean field learning approach to
address the joint port selection and opportunistic scheduling

problem in O-FAMA systems, aiming to maximize the sum-
rate while taking into account partial SINR observability at the
UEs. Our approach revealed superior performance compared
to the MA SD3-DerivNet baseline [17] in terms of training
complexity, achievable sum-rate, and computational efficiency.
Numerical results validated the effectiveness of our mean field
learning framework for addressing the challenges in O-FAMA
systems. In the future, it would be useful to accommodate
heterogeneous FAS configurations across the UEs, incorporate
beamforming at the BS, and explore integrated communication
and sensing capabilities within the O-FAMA system.
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