
Article

The lifespan evolution of individualized 
neurophysiological traits

Graphical abstract

Highlights

• This study examines the development of individualized brain 

activity across a person’s life

• Rhythmic neurophysiological traits can accurately 

differentiate children and adults

• Sensory and motor regions become increasingly distinctive 

in early adulthood

• Neurodevelopmental changes in differentiable brain activity 

align with gene expression

Authors

Jason da Silva Castanheira,

Alex I. Wiesman, Margot J. Taylor, 

Sylvain Baillet

Correspondence

sylvain.baillet@mcgill.ca

In brief

da Silva Castanheiro et al. examine the 

development of individualized brain 

activity across a person’s life. Rhythmic 

brain activity distinguishes individuals 

across age groups, with activity in 

sensory and motor regions becoming 

increasingly distinctive in early 

adulthood. These developmental 

changes in individualized brain activity 

align with specific patterns of cortical 

gene expression.

da Silva Castanheira et al., 2025, Cell Reports 44, 116657 
December 23, 2025 © 2025 The Author(s). Published by Elsevier Inc. 
https://doi.org/10.1016/j.celrep.2025.116657 ll

mailto:sylvain.baillet@mcgill.ca
https://doi.org/10.1016/j.celrep.2025.116657
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2025.116657&domain=pdf


Article

The lifespan evolution
of individualized neurophysiological traits

Jason da Silva Castanheira, 1,2 Alex I. Wiesman, 3 Margot J. Taylor, 4,5,6 and Sylvain Baillet 1,2,7,8,9, *
1 Montreal Neurological Institute, McGill University, Montreal, QC, Canada
2 Department of Experimental Psychology and Institute for Cognitive Neuroscience, University College London, 17-19 Alexandra House, 

London WC1N 3AZ, UK
3 Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, BC, Canada
4 Diagnostic and Interventional Radiology, Hospital for Sick Children, Toronto, ON, Canada
5 Neurosciences & Mental Health, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
6 Departments of Psychology and Medical Imaging, University of Toronto, Toronto, ON, Canada
7 Centre de Recherche du Centre Hospitalier de l’Université de Montré al (CRCHUM), Montreal, QC, Canada
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SUMMARY

How do neurophysiological traits that characterize individuals evolve across the lifespan? To address this 
question, we analyzed task-free magnetoencephalographic recordings from over 1,000 individuals aged 
4–89. We found that neurophysiological activity is more similar between individuals in childhood than in adult-

hood, an effect driven predominantly by arrhythmic brain activity. In contrast, periodic activity-based profiles 
remain reliable markers of individuality across all ages. The cortical regions most critical for determining in-

dividuality shift across neurodevelopment and aging, with sensorimotor cortices becoming increasingly 
prominent in adulthood. These developmental changes in neurophysiology align closely with the expression 
of cortical genetic systems related to ion transport and neurotransmission, suggesting a growing influence of 
genetic factors on neurophysiological traits across the lifespan. Notably, this alignment is strongest in late 
adolescence, a critical period when genetic factors significantly shape brain individuality. Overall, our find-

ings advance our understanding of the evolving biological foundations of inter-individual differences.

INTRODUCTION

The neurophysiological mechanisms underlying individuality in 

behavioral traits are a cornerstone of both basic and clinical 

neuroscience. 1–8 Beyond anatomical differences, functional 

neuroimaging studies have demonstrated that patterns of brain 

activity and connectivity reliably differentiate individuals. 9–12 

These neurophysiological traits, referred to as ‘‘brain finger-

prints’’ in the literature, are associated with cognitive abili-

ties 10,11,13,14 and various clinical conditions, including neurolog-

ical and psychiatric disorders. 15–18 Moreover, these traits are 

heritable and linked to cortical gene expression. 19 Yet, the evo-

lution of these individual-specific neurophysiological traits over 

the lifespan—amid extensive neurodevelopmental and aging-

related brain changes—remains largely unexplored.

A wealth of neuroimaging research has documented non-

linear age-related changes in both brain structure and function, 

offering insights into lifespan development. Structurally, 

cortical thinning is a hallmark of aging, occurring progressively 

over time. 20–23 This thinning is particularly pronounced 

in higher-order association areas along the transmodal 

ends of the unimodal-to-transmodal functional gradient. Trans-

modal regions—associated with complex, integrative cognitive

processes—show the earliest and most substantial reductions 

in cortical thickness. 24,25

In terms of function, neurophysiological activity can be map-

ped using magnetoencephalography (MEG), which captures 

both periodic (oscillatory) and aperiodic (background) compo-

nents of brain activity. 26,27 Periodic oscillations in different fre-

quency bands (e.g., delta, theta, alpha, beta, and gamma) vary 

across individuals and systematically change with age. For 

instance, posterior dominant rhythms develop from slower (3–

5 Hz) frequencies in early childhood to 6–7 Hz by 12 months 

and then into the alpha rhythm (8–13 Hz) characteristic of 

adults. 28–31 This rhythm slows again in older age, reflecting func-

tional decline. 32–36 Aperiodic components, which reflect the dy-

namic balance of excitatory and inhibitory processes, 26,27,37–39 

also evolve across the lifespan and are associated with age-

related decline in sensory and cognitive functions. 36,40–44 

These structural and functional transformations underscore 

the complex interplay between neurophysiological and anatom-

ical changes over time and offer insights into inter-individual dif-

ferences in brain function and structure at the population level. 

This previous work affords researchers age-matched norms of 

a particular trait (for example, hippocampal volume) to which 

any individual can be compared. 20,30,45 This differs from the
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brain fingerprinting approach, where researchers describe indi-

vidual-specific neurophysiological traits that are stable within a 

person and can distinguish between individuals.

While behavioral traits and cognitive abilities evolve signifi-

cantly across neurodevelopment and aging, it remains an open 

question whether the neurophysiological processes differenti-

ating individuals exhibit similar degrees of transformation or 

maintain stability.

Previous studies have examined whether brain fingerprints 

remain differentiable across development using functional con-

nectomes (FCs) derived from functional magnetic resonance im-

aging (fMRI), which has yielded mixed results. Some studies 

suggest that inter-individual differences in FC become more pro-

nounced with age, 17,46–48 consistent with evidence of increasing 

genetic influence on cognition during development. 49–51 Others 

have found that infants and children can be differentiated as 

accurately as adults, suggesting early stability in individual FC 

traits 52–56 and seemingly in contrast to previous findings. More-

over, our previous work identified a cortical gene expression 

signature aligned to the neurophysiological traits of adults, which 

becomes increasingly expressed throughout neurodevelop-

ment, hinting at potential developmental shifts in these traits. 

We are not aware of any previously published studies exploring 

whether neurophysiological traits derived from MEG in children 

are equally differentiable from those of adults.

Several factors may explain the disagreement as to whether 

individuals’ brain activity becomes more differentiable with 

age, as observed in fMRI brain fingerprinting. Many previous 

studies have relied on task-based data, where children and 

adults may engage different cognitive strategies, complicating 

the separation of stable, trait-like patterns from transient, task-

related states. This is particularly salient when task-evoked sig-

nals are regressed out from the blood-oxygen-level-dependent 

(BOLD) response to compute brain fingerprints, a correction 

that may not perform equally well across age groups. Residual 

task-related variance could therefore differentially bias finger-

printing results, especially if one demographic group engages 

with the task in a distinct manner. Resting-state acquisitions 

avoid this specific confound by not requiring removal of task-

evoked signals, although they still capture a combination of 

intrinsic traits and momentary cognitive states.

Another explanation for this discrepancy may be age-depen-

dent biases 57–59 in the hemodynamic response. While fMRI is 

an indirect measure of brain activity, MEG, on the other hand, 

directly measures neurophysiological signals, offering a clearer 

perspective on how differentiation of brain activity may evolve. 

Given the distinct biological origins of hemodynamic fMRI and 

electrophysiological MEG signals, it remains unknown whether 

neurophysiological traits become more individualized with age 

or whether consistent electrophysiological features differentiate 

individuals across development.

Emerging evidence also indicates that the brain regions most 

characteristic of healthy individuals differ significantly from those 

in clinical populations, where disease-related disruptions alter 

neurophysiological patterns. 15,16,60 This suggests that features 

critical for differentiation may shift in response to neural alter-

ations due to disease or the cumulative effects of aging and 

development. Supporting this, models trained on young adult

data to predict behavior from brain activity often fail to generalize 

when applied to older adults, 61,62 emphasizing the importance of 

age-specific patterns in studying individual differences.

This study addresses three objectives: (1) to determine 

whether the accuracy of individual differentiation based on 

MEG-derived neurophysiological traits changes with age, (2) 

to characterize how patterns of differentiation evolve across 

neurodevelopment and aging, and (3) to identify the brain re-

gions most critical for differentiation and examine their align-

ment with cortical gradients of functional organization and 

gene expression.

Based on prior work in both developmental neuroimaging and 

MEG-derived neurophysiological traits, we advance three pre-

dictions. (1) Stability of differentiability: children will be differenti-

ated as accurately from one another based on neurophysiolog-

ical traits as adults, reflecting the early emergence of stable, 

individual-specific brain activity patterns. However, the regional 

features most critical for differentiation will vary across the life-

span. (2) Functional gradient alignment. Given evidence that 

the unimodal-to-transmodal gradient becomes increasingly 

important for functional organization throughout neurodevelop-

ment, 24,25 we predict that salient features for participant differen-

tiation will show progressively stronger alignment with this 

gradient from childhood to adulthood. (3) Genetic expression 

alignment. Building on our previous work linking adult neuro-

physiological traits to a cortical gene expression gradient en-

riched for neurotransmission and ion transport, 19 we predict 

that alignment with this genetic gradient will increase across 

neurodevelopment, reflecting maturational changes in the mo-

lecular processes supporting individual-specific brain activity. 

In this study, we analyzed MEG-derived neurophysiological 

traits from a lifespan sample of 1,007 participants aged 4–89 

years. We examined whether individuals could be differentiated 

across a wide age range and investigated how the topography of 

the most characteristic brain regions shifts with age. Our findings 

reveal that, while periodic brain activity reliably differentiates in-

dividuals across the lifespan, the regions contributing most 

strongly to this differentiation change systematically with age, 

aligning with cortical gradients of functional organization and 

gene expression. These results reconcile previous inconsis-

tencies in the developmental trajectory of brain individuality 

and offer insights into how neurophysiological traits evolve 

throughout life.

RESULTS

We investigated three core aspects of neurophysiological traits 

across the lifespan. First, we evaluated whether individuals 

from different age groups, particularly children and older 

adults, could be accurately differentiated based on brief re-

cordings of their neurophysiological brain activity. Next, we 

examined the ease with which we can differentiate individuals 

through neurodevelopment and aging. Finally, we assessed 

the spatial distribution of neurophysiological features that 

most strongly contribute to individual differentiation and 

analyzed how these features vary systematically with age and 

relate to established cortical gradients of functional organiza-

tion and gene expression.
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Figure 1. Age-related variations in neurophysiological differentiation accuracy

(A) Differentiation accuracy in the SickKids cohort (ages 4–68) using wide-band neurophysiological traits derived from 2-min MEG recordings. Gray bars at the 

base of the plot represent chance-level differentiation based on empty-room MEG recordings collected the same day as participants’ sessions. Error bars 

denote bootstrapped 95% CIs. Right: similarity matrix illustrating self-similarity (diagonal) and other-similarity (off-diagonal) across two distinct data segments 

from each participant. Participants are ordered by ascending age; children (ages 4–12) exhibit higher other-similarity values, making differentiation more 

challenging.

(B) Differentiation accuracy in the Cam-CAN cohort (ages 18–89) using wide-band neurophysiological traits from 4-min MEG recordings. Gray bars represent 

chance-level differentiation as in (A). Error bars denote bootstrapped 95% CIs. Right: similarity matrix illustrating age-related changes in self- and other-similarity.

(legend continued on next page)
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We used a neurophysiological trait differentiation method that 

replicates established brain-neurophysiological differentiation 

techniques. 9–11 This approach involved comparing each partici-

pant’s neurophysiological traits—derived from one segment of 

data—with traits from all other participants, including a separate 

segment from the same individual. Correct differentiation was 

determined based on whether a participant’s neurophysiological 

trait was more similar to their own trait (‘‘self-similarity’’) than to 

those of any other individual in the cohort (‘‘other-similarity’’). Dif-

ferentiation accuracy was defined as the percentage of correctly 

differentiated participants across the cohort (STAR Methods). 

This analysis quantified differentiation accuracy across age 

groups and provided insights into the stability and uniqueness 

of neurophysiological traits over time.

Differentiation accuracy across age groups and 

neurophysiological components

We computed differentiation accuracy across four age cohorts 

from the SickKids dataset: (1) children aged 4–12 years (n = 

148), (2) adolescents aged 12–18 years (n = 57), (3) adults 

aged 18–68 years (n = 196), and (4) all participants combined 

(n = 401).

Across all age groups, individuals were accurately differenti-

ated with an overall accuracy of 93.4% (95% confidence interval 

[CI]: [91.9, 95.0]; Figure 1A). Differentiation accuracy for children 

was 90.3% (CI: [88.1, 93.2]), for adolescents 97.0% (CI: [93.5, 

100.0]), and for adults 95.7% (CI: [93.6, 97.5]). These results 

were consistent when individual traits were derived from specific 

frequency bands and age-specific data subsets (Figures S1 

and S7).

To investigate developmental trends, we assessed ‘‘differen-

tiability,’’ 9 a measure of how easily individuals could be differen-

tiated based on their neurophysiological traits. We observed a 

strong positive linear relationship between age and differentia-

bility (β = 0.60, SE = 0.04, 95% CI [0.52, 0.68], r 2 = 0.35, 

p < 0.001; Figure 1C). This increase was primarily driven by 

greater other-similarity in children, which made differentiation 

more challenging in this group. In contrast, adult traits exhibited 

lower similarity with other adults, enabling more accurate differ-

entiation (Figure 1A, right ). Self-similarity of neurophysiological 

traits did not scale with age in the SickKids cohort (r = − 0.09, 

95% CI [− 0.18, 0.01], p = 0.07, Bayes Factor [BF] = 0.57).

To explore which age groups may be driving this effect, we con-

ducted an exploratory analysis where we ran the same linear 

regression model restricted to participants below 40 years old 

and progressively increased the lower age cutoff from 4 years up-

ward. The goal of this analysis was to determine at which cutoff 

the age-differentiation relationship became non-significant. We 

observed that, with a lower cutoff of 13 years, the age-differentia-

tion relationship in the SickKids cohort for participants between 

the ages of 14 and 40 was non-significant (β = 0.09, p = 0.24). 

This result is consistent with the weaker age-differentiation rela-

tionship observed in the Cam-CAN cohort (see Differentiation 

accuracy and stability in older adults) and reinforces the interpre-

tation that participants below the age of 13 are more challenging 

to differentiate from one another based on broadband neurophys-

iological traits.

To further explore the contributions of periodic and aperiodic 

components to differentiation, we decomposed the power spec-

tral density (PSD) of each MEG cortical source time series into 

these two components. These decomposed spectra were then 

used to define individual periodic and aperiodic spectral traits 

(STAR Methods).

When differentiation accuracy was computed using aperiodic 

traits, accuracy dropped to 79.4% overall (CI: [76.6, 81.2]), with 

75.8% accuracy for children (CI: [72.0, 79.6]), 86.5% for adoles-

cents (CI: [80.4, 93.5]), and 84.5% for adults (CI: [80.9, 87.8]; 

Figure S7). In contrast, differentiation based on periodic traits re-

mained highly accurate across all age groups, achieving 96.6% 

overall accuracy (CI: [95.3, 97.8]), 97.0% for children (CI: [95.7, 

99.2]), 97.5% for adolescents (CI: [95.6, 100.0]), and 96.7% for 

adults (CI: [94.9, 98.7]; Figure S8).

Differentiation accuracy and stability in older adults

To extend our findings to older populations, we analyzed neuro-

physiological differentiation in an adult cohort (ages 18–89 years, 

n = 606) from the Cambridge Center for Aging Neuroscience 

(Cam-CAN) dataset. 63 Participants were divided into three age 

groups: young adults (18–45 years, n = 204), middle-aged adults 

(45–65 years, n = 194), and older adults (65–89 years, n = 208). 

For the entire Cam-CAN cohort, differentiation accuracy was 

93.2% (CI: [91.3, 94.8]). Differentiation accuracy varied slightly 

across age groups: 94.4% (CI: [92.0, 96.6]) for young adults, 

93.4% (CI: [90.8, 96.0]) for middle-aged adults, and 95.6% (CI: 

[93.7, 97.1]) for older adults (Figure 1B). These findings were 

robust across frequency bands and decomposition of periodic 

and aperiodic traits (Figures S1, S8, and S9). Note that the differ-

entiation accuracy for adults in the SickKids dataset was similar 

to that for the young adults in the Cam-CAN cohort.

To assess whether the stability of individual traits changes with 

age, we analyzed variations in self-similarity across age groups. 

No significant linear relationship was observed between self-

similarity and age (β = − 4.50, SE = 2.45, 95% CI [− 9.31, 0.31], 

r 2 = 0.006, p = 0.06). However, we observed a modest positive 

linear relationship between differentiability and age (linear 

regression model: β = 0.01, SE = 1.40 × 10 − 3 , 95% CI [0.00, 

0.01], r 2 = 0.042, p < 0.001), explaining 4.2% of the total variance 

(Figure 1C).

When differentiation accuracy was computed using aperiodic 

traits in the Cam-CAN cohort, accuracy remained high, 92.6% 

overall (CI: [90.9, 94.2]), with 91.7% accuracy for young adults 

(CI: [88.6, 94.9]), 95.4% for middle-aged adults (CI: [93.7, 

97.1]), and 94.4% for adults (CI: [92.6, 96.0]; Figure S7). Similarly, 

differentiation based on periodic traits remained highly accurate

Older adults exhibit higher distinctiveness in their neurophysiological traits, contributing to the modest positive relationship between differentiation and age 

(Figure S2).

(C) Relationship between age and differentiability. Left (SickKids): a strong positive linear relationship explains 36% of the variance; colors indicate biological sex. 

Right (Cam-CAN): a weaker positive relationship explains 4% of the variance; colors indicate age groups. Statistics obtained from linear regression models. The 

shaded grey area represents 95% CI.
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across all age groups, achieving 96.6% overall accuracy (CI: 

[95.1, 98.1]), 96.7% for young adults (CI: [93.7, 99.4]), 97.3% 

for middle-aged adults (CI: [96.6, 98.3]), and 97.6% for adults 

(CI: [96.6, 98.8]; Figure S8).

Age-related shifts in cortical regions influential for 

differentiation

Given the lower differentiation accuracy observed in children when 

using non-parameterized neurophysiological traits, we focused 

our analyses on periodic activity, which consistently demonstrated 

higher differentiation accuracy across all age groups.

Our primary goal was to identify the cortical regions most char-

acteristic of individuals throughout the lifespan. We define ‘‘char-

acteristic’’ regions as those where neurophysiological features 

most strongly contribute to individual differentiation. To quantify 

this, we used intraclass correlation coefficients (ICCs), which mea-

sure the consistency of neurophysiological features within individ-

uals relative to variability across individuals. 9,10,16 High ICC values 

indicate that a specific neurophysiological feature is consistently 

similar within participants while being distinct across different par-

ticipants. Regions with higher ICC values were deemed more influ-

ential for individual differentiation. To capture developmental tra-

jectories, we used a sliding window approach to compute ICC 

maps across different age groups (STAR Methods).

Our findings revealed systematic shifts in the cortical regions 

most distinctive for individual differentiation over the lifespan. In 

children, lateral parietal and superior temporal regions were the 

most characteristic of individual differences. By early adult-

hood (ages 20–30 years), caudal and peri-central cortical 

regions emerged as the most distinctive, consistent with previ-

ous studies. 12,19 Across all age groups, orbitofrontal regions 

consistently contributed the least to differentiation (Figure 2A; 

Figures S9 and S10).

We examined how these characteristic cortical regions align 

with the unimodal-to-transmodal functional gradient, 64 a primary 

axis of neurodevelopment that reflects transitions from primary 

sensory motor areas to higher-order association cortices. 24,25 

The alignment of characteristic regions with this gradient fol-

lowed a non-linear trajectory across the lifespan (third-order 

polynomial: β = − 0.46, SE = 0.07, 95% CI [− 0.60, − 0.31], 

p < 0.001, p spin = 0.00099; Table S9). Alignment was weakest 

in early childhood (6.9 years old, r = 0.09, p spin = 0.26) and stron-

gest in early adulthood (36.3 years old, r = − 0.44; Figure 2B), fol-

lowed by 22.2 years old (r = − 0.43), and 17.1 and 31.1 years old 

(r = − 0.41). In older adults, the highest alignment was observed 

at 79.9 years old (r = − 0.40). All observed alignments were nega-

tive, except for the earliest age group (6.9 years old), where we 

found a small positive alignment (r = 0.08), indicating maximal 

differentiation from transmodal regions. Negative alignments 

reflect maximal differentiation in unimodal (sensorimotor) re-

gions, a pattern observed across most of the lifespan.

We tested age-related changes in the alignment between 

salient neurophysiological traits and the unimodal-to-transmo-

dal functional gradient exclusively in the Cam-CAN sample. A 

significant non-linear trend emerged, with the weakest alignment 

observed in middle adulthood (β = 0.34, SE = 0.09, 95% CI [0.20, 

0.48], p < 0.001, p spin = 0.000999), an effect attenuated when 

considering the entire cohort (mean alignment of r = 0.28 for 

the entire sample between the ages of 40–65).

Despite the significant neurodevelopmental alignment of 

salient neurophysiological traits to the unimodal-to-transmodal 

gradient, we observed minimal alignment in childhood (mean 

age 9.2 years: r = − 0.14, p spin = 0.25; Figure 2B). This suggests 

that sensorimotor regions—which dominate adult differentia-

tion—play a minimal role in childhood. Motivated by evidence 

that the motor-to-visual gradient is particularly relevant in early

A

B

Figure 2. Sensorimotor brain regions 

become increasingly characteristic for indi-

viduals across the lifespan

(A) Topographic maps of intraclass correlation

coefficients (ICCs) show the cortical regions that 

contribute most to individual neurophysiological 

differentiation across age groups (bins of ∼100 

individuals per map). Higher ICC values indicate 

cortical areas that play a significant role in dis-

tinguishing individuals within each age group. 

Sensorimotor regions become increasingly 

prominent with age.

(B) Scatterplot illustrating the alignment between

characteristic cortical regions for participant dif-

ferentiation (as shown in A) and the unimodal-to-

transmodal functional gradient (inset on the right). 

The alignment exhibits a non-linear third-order 

polynomial trajectory across the lifespan, with 

weak alignment in early childhood that becomes

stronger into young adulthood. We observed the 

strongest alignment at 36.3 years old. This high-

lights the evolving contribution of cortical regions 

to individual differentiation with age. The shaded 

area represents 95% CIs.
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development, 65 we tested its alignment in children and observed 

a significant effect (mean age 9.2 years: r = 0.43, p spin < 0.05; 

Figure S11). This alignment did not vary significantly with age 

(third-order polynomial: β = − 0.24, SE = 0.07, 95% CI [–0.38,

− 0.10], p < 0.01, p spin > 0.05; Figure S11).

Alignment between neurophysiological differentiation 

and cortical gene expression across the lifespan 

Previous research has shown that neurophysiological traits in 

adults align with a ventromedial-to-dorsolateral gene expres-

sion signature, involving genes associated with ion transport, 

synaptic functioning, and neurotransmitter release. 19 Howev-

er, the evolution of this alignment across different develop-

mental stages, particularly during critical periods of neurode-

velopment, has remained unclear. We aimed to elucidate 

how the alignment between cortical neurophysiological traits 

and cortical gene expression changes across the lifespan 

(Figure 2A).

To investigate this relationship, we divided the gene differenti-

ation signature into two sets: a positive set related to participant 

differentiation and a negative set associated with lower differen-

tiation capabilities. The positive gene set primarily included pro-

cesses related to ion transport, synaptic activity, and neuro-

transmitter release, while the negative set was linked to 

neurodevelopmental processes such as neurogenesis and cell 

morphogenesis. 19 This division allowed us to understand which 

gene expressions were related to neurophysiological differentia-

tion across age groups (STAR Methods).

We first assessed whether the spatial organization of these 

gene sets remained stable across developmental stages, using 

data from the BrainSpan dataset, 66 which includes fetal through 

adult data. Consistent with prior findings indicating that the 

most pronounced changes in cortical gene expression occur 

prenatally, 67 the spatial distribution of the positive gene signa-

ture showed remarkable stability from infancy through child-

hood, adolescence, and adulthood (spatial correlations >0.71; 

Figure S12). In contrast, the negative gene signature exhibited 

weaker spatial consistency between childhood and adulthood 

(Figure S12). These results underscored the enduring relevance 

of the positive gene set for neurophysiological differentiation, 

prompting us to focus subsequent analyses on this gene group. 

Next, we analyzed the alignment between cortical maps of 

neurophysiological differentiation and the positive gene signa-

ture. This alignment followed a third-order polynomial trajectory 

across the lifespan, with an initial increase, a midlife dip, and a 

subsequent rise. The strongest alignment was observed in late 

adolescence (17.1 years old; β = 0.73, SE = 0.11, 95% CI 

[0.51, 0.96], p < 0.001, p spin = 0.004, p permutation = 0.001; 

Table S12; Figure 3A). This finding suggests that adolescence 

represents a critical period during which neurophysiological fea-

tures most strongly align with genetic signatures related to ion 

transport and neurotransmission, 19 likely reflecting a pivotal 

stage in the fine-tuning of neural circuits. Testing the non-linear 

relationship between age and the alignment of cortical maps of 

neurophysiological differentiation with the positive gene signa-

ture in only the Cam-CAN sample did not meet statistical signif-

icance after performing spatial autocorrelation-preserving per-

mutations (β = 0.26, p = 0.01, p sp i n = 0.083).

To gain deeper insights into how gene-neurophysiology align-

ment evolves, we conducted a partial least squares (PLS) anal-

ysis to examine the covariance between neurophysiological fea-

tures and cortical gene expression data from the Allen Human 

Brain Atlas. 68 The analysis revealed significant covariance be-

tween cortical gene expression patterns and neurophysiological 

differentiation across the lifespan, particularly up to middle age 

(Figure 3B, left). Interestingly, the percentage of covariance ex-

plained by these latent components remained relatively stable 

across age groups (Figure 3B, middle), indicating that the rela-

tion between gene expression and neurophysiological differenti-

ation is preserved over time. Additionally, gene loadings showed 

strong consistency across developmental stages, with Pearson 

correlations >0.75 between loadings from different age groups. 

This consistency suggests that the same gene signature drives 

neurophysiological differentiation throughout development 

(Figure 3B, right).

We further examined the contributions of specific neurophysio-

logical frequency bands to the alignment with gene expression 

(Figure 3C). The relationship between periodic activity and gene 

expression varied significantly by frequency band and develop-

mental stage. Theta band activity (4–8 Hz) showed a develop-

mental shift in its relationship with cortical gene expression. In 

early development, theta traits were aligned with the negative 

gene expression pattern (6.9 years old, r = − 0.43), but this rela-

tionship reversed later in life, with the strongest alignment with 

the positive gene set at 22.2 years old (r = 0.70). Alpha band activ-

ity (8–13 Hz) showed its strongest positive alignment at 12.3 years 

(r = 0.70), beta band traits (13–30 Hz) at 28.2 years (r = 0.60), and 

gamma traits (30–50 Hz) at 12.3 years (r = 0.55). These values 

represent the age bins with the highest observed correlations for 

each band (i.e., the point with the highest y value in the case of 

positive alignments in Figure 3C, highlighted with black outlines) 

and do not reflect the peak of the smoothed dotted lines. 

Importantly, the smoothed dotted lines in Figure 3 depict trends 

rather than model-derived non-linear fits. Our aim with this anal-

ysis was to illustrate broad, frequency-specific developmental tra-

jectories in the alignment between neurophysiological traits and 

gene expression across age. Across frequency bands, the data 

reveal distinct lifespan patterns; for example, theta-band activity 

shows early-life associations with the negative gene set before 

shifting toward strong positive alignment in adolescence and early 

adulthood. This pattern suggests that the specific contributions of 

different frequency bands to gene-neurophysiology covariance 

evolve dynamically across development.

These findings highlight the dynamic, frequency-specific nature 

of the molecular-genetic mechanisms underlying neurophysiolog-

ical individuality. While the overarching genetic gradient remains 

consistent, the specific contributions of different frequency bands 

evolve across the lifespan, with greater alignment to genes related 

to neurogenesis and cell morphology earlier in development 

and greater alignment to genes related to neurotransmission in 

adulthood. 19

Sensitivity analyses

We conducted sensitivity analyses to rule out potential con-

founding effects from environmental or physiological artifacts 

in both cohorts.
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First, using pseudo-neurophysiological traits derived from 

empty-room MEG data, we confirmed that environmental noise 

contributed minimally to differentiation (<5%; gray bars, 

Figure 1B).

Second, adding intracranial volume and head motion artifacts 

as nuisance covariates did not significantly alter the age-differ-

entiability relationship in either cohort (Tables S6 and S7), and 

similar robustness was observed in Cam-CAN for head motion, 

cardiac, and ocular artifacts (β = 0.01, SE = 1.53 × 10 − 3 , 95% 

CI [0.00, 0.01], p < 0.001; Table S3).

Third, excluding participants above age 40 in SickKids did not 

change the observed effect (β = 0.40, SE = 0.05, 95% CI [0.30, 

0.40], p < 0.001).

Fourth, in an artifact-matched subsample (p = 0.26 and p = 

0.13 for intracranial volume and motion, respectively), children 

remained less differentiable than adults (t = 4.50, p < 0.001,

BF = 1482), with salient-trait topographies closely matching 

those of the full sample (r = 0.77, pspin = 0.001; Figure S4). 

Fifth, anatomical analyses indicated that cortical properties 

play a minimal role in spectral differentiation: child-child anatom-

ical similarity was lower than adult-adult similarity (t = − 56.69, 

p < 0.01), and there was no meaningful age-related linear rela-

tionship between anatomical and spectral other-similarity 

(Figure S5).

DISCUSSION

A growing body of research demonstrates that brain activity pat-

terns, much like a fingerprint, are unique to each individual. 9–12 

These neurophysiological traits are heritable, 19 correlate with in-

ter-individual differences in cognition, 10,11,14 and manifest in dis-

ease processes. 15,16,60 However, the developmental trajectory

A

B

C

Figure 3. Lifespan variations in the align-

ment between gene expression and charac-

teristic patterns of neurophysiological ac-

tivity

(A) Cortical alignment between the positive gene 

expression signature and differentiable brain re-

gions. The right inset shows the spatial distribution

of the positive gene expression signature across 

the cortex. The graph illustrates the non-linear 

third-order polynomial alignment of this genetic 

signature with cortical regions most critical for 

neurophysiological differentiation across the life-

span. The alignment is weakest during early child-

hood (approximately 6.9 years old) and is strongest

in late adolescence (17.1 years old), emphasizing 

critical periods where genetic expression most in-

fluences neurophysiological individuality. The 

shaded area represents 95% CIs.

(B) Multivariate PLS analysis results.Left: signifi-

cance (p values) of latent gene differentiation com-

ponents, revealing significant covariance between 

cortical gene expression and neurophysiological 

differentiation across the lifespan, persisting 

through middle age. Points above the dashed line

did not survive correction for multiple comparisons

(false discovery rate [FDR]) or spatial autocorrela-

tion.Middle: percent covariance explained by the

latent components across different age groups. The 

variance explained remains relatively stable across 

age bins, suggesting a consistent gene-neuro-

physiology relationship throughout development 

and aging.Right: gene loadings show the relative 

contribution of neurophysiological frequency bands 

(theta, alpha, beta, and gamma) and genes to the 

covariance pattern. Strong consistency is observed 

across developmental stages as well as with load-

ings from prior independent analyses, demon-

strating the stability of gene contributions to

neurophysiological differentiation over time.

(C) Frequency band contributions across neuro-

development. The graph depicts the relative 

contributions of neurophysiological frequency bands (theta [4–8 Hz]), alpha [8–13 Hz]), beta [13–30 Hz]), and gamma [30–50 Hz]) to gene-neurophysiology 

covariance. Positive loadings indicate alignment with the positive gene expression pattern, while negative loadings indicate alignment with the negative gene 

expression pattern (illustrated by the topographies on the far right). Theta band traits show a shift from negative alignment in early childhood to strong positive 

alignment in early adulthood. Alpha band contributions remain relatively stable across the lifespan. Beta band contributions reach their highest positive 

alignment in early adulthood, while gamma band contributions are strongest in adolescence. Gray dotted lines represent spline-interpolated trends for 

visualization and do not reflect model fits. Black outlines indicate the age bins with the strongest observed alignment (see main text).
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of these traits over the lifespan has been relatively unexplored. 

This study addressed a fundamental question: do individual 

neurophysiological traits become more distinctive across key 

developmental and aging stages?

Our findings reveal that individuals can be accurately differ-

entiated based on patterns of periodic brain activity across 

the lifespan. However, the cortical regions most responsible 

for this differentiation shift with age. While neurophysiological 

traits are more homogeneous in childhood, sensorimotor re-

gions become increasingly distinctive during the transition to 

adulthood. This shift is accompanied by a growing alignment 

between neurophysiological activity and gene expression, 

particularly involving genes related to ion transport and 

neurotransmission.

Periodic brain activity as a hallmark of individuality

This study underscores the centrality of periodic brain activity in 

distinguishing individuals across all age groups (Figure S8). This 

finding is consistent with prior research showing that periodic 

features remain robust markers of individuality, even in condi-

tions such as Parkinson’s disease, where aperiodic traits exhibit 

lower self-similarity within individuals. 16

While periodic brain activity is characterized by stable 

repeating patterns of brain activity, the peak frequency and 

amplitude of brain rhythms are known to fluctuate within 

individuals throughout a brain recording. For example, alpha 

and beta band oscillations demonstrate transient bursts of 

increased activity at rest and during cognitive tasks. 69,70 Peri-

odic brain activity, therefore, is not differentiable by definition; 

brain rhythms can fluctuate within individuals and can be similar 

to those of other individuals in a cohort, challenging participant 

differentiation.

Notably, children (ages 4–12) exhibited differentiation accu-

racy nearly equivalent to that of adolescents and adults despite 

the rapid and dynamic developmental changes occurring in 

childhood. This suggests that stable, individual-specific neuro-

physiological traits emerge early in life, even amid ongoing struc-

tural and functional maturation. The distinctiveness of children’s 

periodic traits aligns with the development of major brain 

rhythms, including the transition from lower frequencies (3–

7 Hz) to the alpha rhythm (8–13 Hz), 28–31 which stabilizes in 

late childhood, with a major developmental turning point around 

age 7. 71 Similar patterns are observed in somatomotor 

rhythms, 72 suggesting that neurophysiological individuality is 

present even as these rhythms continue to mature. These results 

challenge the assumption that younger brains are less individu-

alized and highlight the resilience of periodic activity as a founda-

tion for neurophysiological models.

Interestingly, while differentiation accuracy remained high 

across all age groups, other-similarity increased with age for pe-

riodic traits (Figure S8). Conversely, aperiodic traits became 

increasingly distinct with age (Figure S7). These opposing pat-

terns tentatively suggest that periodic traits provide a stable 

marker of individuality, while aperiodic traits may evolve adap-

tively, possibly reflecting cortical plasticity and functional inte-

gration over the lifespan. Future research should explore the 

interplay between these components across cognitive and 

behavioral contexts.

We note that a growing body of evidence supports the close 

relationship between the arrhythmic component of brain activity 

and the balance of excitatory vs. inhibitory currents in local cir-

cuits. 27,37–39,73 More recent evidence suggests that arrhythmic 

brain activity tracks fluctuation in arousal during a biofeedback 

paradigm where participants learn to modulate their pupil 

size. 74 While children may show a more stereotyped topographic 

distribution of local excitatory vs. inhibitory activity, future 

research is needed to disambiguate these effects from other po-

tential explanations, such as smaller head size. 75

Gene expression and the molecular basis of 

neurophysiological differentiation

Our results shed light on how the alignment between cortical gene 

expression and individualized neurophysiological traits evolves 

across the lifespan (Figure 3). This alignment strengthens non-lin-

early with age, suggesting an increasing role of genetic factors in 

shaping brain individuality during neurodevelopment. We 

observed the strongest alignment between neurophysiological 

traits for participant differentiation and cortical gene expression 

in late adolescence (Figure 3). Genes related to ion transport 

and neurotransmission appear to drive this alignment, empha-

sizing the genetic underpinnings of individualized brain activity. 

We observed that specific frequency bands contribute differ-

entially to gene-neurophysiology alignment. Alpha band activ-

ity (8–13 Hz) consistently aligned with positive gene signatures 

across all ages, suggesting its enduring role in maintaining 

functional integrity. Conversely, theta band activity (4–8 Hz) 

showed an association with neurogenesis-related genes during 

early development, which diminished later in life. Beta band ac-

tivity (13–30 Hz), associated with predictive coding and motor 

functions, demonstrated increasing alignment with positive 

gene signatures into adulthood. These findings illustrate the dy-

namic nature of frequency-specific molecular mechanisms un-

derlying neurophysiological individuality. They may mirror the 

brain’s changing functional demands across the lifespan. For 

instance, the increasing alignment of beta activity with genes 

involved in ion transport and neurotransmission in adulthood 

may reflect the greater reliance on sensorimotor networks for 

adaptive behavior.

Further, the distinct roles of positive and negative gene signa-

tures highlight the complexity of brain individuality. While the 

positive signature consistently aligned with differentiable neuro-

physiological traits, the negative signature—linked to emotional 

processing 19,76 —showed greater variability across age groups. 

This suggests that different molecular pathways govern neuro-

physiological stability and flexibility, with positive genes support-

ing cognitive and motor functions and negative genes driving 

emotional regulation and responses to environmental stress.

The increasing role of sensorimotor regions in 

differentiation across the lifespan

Our findings show that the cortical regions most critical for indi-

vidual differentiation shift over time, with sensorimotor regions— 

including visual and somatomotor cortex—playing an increas-

ingly prominent role as individuals mature into adulthood 

(Figure 2A). This shift aligns with research indicating that senso-

rimotor areas gain importance in functional brain organization
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as motor control and sensorimotor integration mature during 

neurodevelopment. 65

Additionally, the alignment between cortical regions and func-

tional gradients evolves with age. In childhood, characteristic 

brain regions align more closely with the visual-to-motor 

gradient, which plays a key role in early brain development. In 

adulthood, this alignment shifts toward the unimodal-to-trans-

modal gradient, reflecting the maturation of higher-order associ-

ation cortices responsible for complex cognitive and emotional 

functions 24,25,47,77–80 (Figure 2B). We speculate that individual 

deviation from the group average functional gradient across 

the lifespan is critical for individual differentiation. Future studies 

utilizing FCs should clarify this interpretation.

This developmental shift underscores the role of sensorimotor 

regions in supporting predictive coding and inferential models, 

processes fundamental to cognition. 49–51,81–84 The increasing 

prominence of beta activity in these regions further highlights 

their genetic and functional specialization during development. 19 

While previous research using fMRI has argued for the central 

role of the frontoparietal network in inter-individual differentia-

tion using functional connectivity, our study, in contrast, high-

lights the role of unimodal sensorimotor cortical regions in 

neurophysiological traits. These results are broadly aligned 

with previous work on brain fingerprinting using neural power 

spectra. 9,16,19 We previously observed that periodic brain activ-

ity in medial visual regions and the left somatomotor cortex 

were among the most differentiating features in healthy older 

adults (mean age of 61.98; see Figure S3 in da Silva Castanheira 

et al. 16 ). We believe that the discrepancy between modalities 

underscores the distinct biological underpinnings of the hemo-

dynamic response in fMRI and electrophysiological signals in 

MEG. 9,11,12,85 Indeed, the present findings and our previous 

work 19 have emphasized the alignment between neurophysio-

logical traits and cortical gene expression gradients enriched 

for neuronal communication, particularly ion transport and 

neurotransmission. Our results thus provide insight into the po-

tential biological mechanisms underlying neurophysiological in-

dividuality across development.

Neurophysiological differentiation in older adults: A 

compensatory mechanism?

Our findings also reveal greater differentiation in older adults 

based on broadband neurophysiological spectral features origi-

nating from sensorimotor regions, including motor and ventral-

medial visual areas. When restricting our analyses exclusively 

to the Cam-CAN cohort, composed primarily of healthy older 

adults, we observed that the differentiation profile remained 

strongly aligned with the unimodal-to-transmodal functional 

gradient (Table S10). We therefore speculate that these effects 

likely reflect compensatory mechanisms for age-related sensory 

decline rather than disease-related changes, as older adults 

frequently exhibit reduced neural responsiveness to sensory 

stimuli. 86–88 Such compensatory processes may vary across in-

dividuals, potentially explaining the increased distinctiveness of 

sensorimotor activity in older adults. Importantly, sensory loss in 

aging is linked to elevated dementia, 89–94 suggesting that indi-

vidual variability in sensory processing could serve as an early in-

dicator of brain health.

Our findings appear to contrast with the ‘‘last in, first out’’ prin-

ciple of neurodevelopment, where higher-order association 

areas, associated with complex cognitive functions, take the 

longest to develop and show the earliest reductions in cortical 

thickness. 24,25 One might predict that these transmodal associ-

ation regions—which exhibit the largest and earliest signs of ag-

ing—would become more salient for individual differentiation. 

Yet, this interpretation rests on the assumption of a close link 

between structural changes and functional changes observed 

with neurophysiological traits, which our present findings 

(Figure S5) and previous work do not support. 19 In addition, 

we found that the increased other-similarity of neurophysiolog-

ical traits in children could not be explained by increased 

anatomical similarity between participants. Future work should 

further explore the association between anatomy and neuro-

physiological traits.

In contrast, we observed weak evidence of a change in the 

topographic alignment between patterns of cortical gene 

expression previously associated with neurophysiological differ-

entiation and neurophysiological traits. We interpret these find-

ings to tentatively suggest that the genetic underpinnings of in-

ter-individual diversity in neurophysiology in adulthood vary 

minimally across aging despite large shifts in early development 

(see subheading ‘‘The increasing role of sensorimotor regions in 

differentiation across the lifespan’’). We argue that our findings, 

taken together with our previous work, provide scientists with 

a biologically grounded framework to understand the molecular 

origins of inter-individual diversity in neurophysiological signals 

captured throughout the lifespan. Animal models, we believe, 

will be paramount to assess the causal role of genes and their 

products in large-scale brain signaling.

Implications for health monitoring and brain-behavior 

relationships

Our findings underscore the importance of developmental 

stages in understanding neurophysiological differentiation and 

highlight the need for multi-omics data incorporating diverse so-

cioeconomic, age, and geographical backgrounds. 95 Extending 

the concept of pediatric growth charts 20 to neurophysiological 

traits could enable approaches to monitoring brain health for 

tracking age-related brain changes. Extending this concept to 

neurophysiological traits could create opportunities for moni-

toring brain health and detecting deviations indicative of neuro-

logical or psychiatric conditions. 84

The stability of both periodic and aperiodic traits has implica-

tions for understanding neurodevelopmental and neurodegener-

ative disorders. Delayed stabilization of these traits has been 

linked to atypical neurodevelopment, while greater stabilization 

correlates—albeit weakly—with better cognitive outcomes. 55 

By establishing age-matched normative variants for neurophys-

iological differentiation, our study provides a foundation for 

further research of the diagnostic and prognostic utility of these 

traits in clinical contexts.

Prior work on brain fingerprinting in clinical populations, 

including mild cognitive impairment, dementia, and Parkinson’s 

disease, has shown that, while individuals remain differen-

tiable, 16,96 the specific regions driving differentiation differ. For 

example, individuals with mild cognitive impairment (MCI) with
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β-amyloid positivity and patients with Parkinson’s disease were 

best differentiated from activity in somatomotor regions. 16 Taken 

together with our present findings, we propose that increased 

differentiability in sensorimortor regions may reflect a contin-

uum, from compensatory mechanisms in healthy aging to dis-

ease-related alterations, and may represent an important marker 

for health monitoring. Future studies are needed to test this hy-

pothesis and validate these features as biomarkers in older 

populations.

Limitations of the study

While our study included a large, cross-sectional lifespan sam-

ple, longitudinal data are needed to provide a more accurate 

depiction of how neurophysiological traits evolve within individ-

uals over time. Additionally, our gene expression analyses relied 

on an adult dataset, limiting insights into gene-neurophysiology 

alignment across developmental stages. Future research should 

prioritize data collection in infancy and early childhood, which 

remain underexplored. Advances in optically pumped magne-

tometers (OPMs) may facilitate neurophysiological data acquisi-

tion in younger populations. 97

A strength—and limitation—of our approach lies in aggre-

gating multiscale data from multiple research centers. While 

site effects cannot be fully ruled out, we repeated the analyses 

shown in Figures 2 and 3 using only Cam-CAN data and found 

qualitatively similar effects (Tables S11 and S13). We believe 

that future multi-site data sharing will be critical for assembling 

large, lifespan-spanning MEG cohorts for replication and exten-

sion of these findings.

Our findings demonstrate that periodic neurophysiological traits 

differentiate between individuals across all ages, yet the most 

salient features for participant differentiation evolve with 

increasing age. The most pronounced changes in neurophysio-

logical traits occur below 13 years old and in older adults. These 

traits reflect dynamic interactions between genetic and environ-

mental influences, with sensorimotor regions playing an increas-

ingly prominent role in differentiation. By considering develop-

mental and aging trajectories, future research can better capture 

the dynamic nature of the neurophysiological self and its implica-

tions for understanding individuality and brain health.
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ler-Cucala, P., Juan, D., Ferrá ndez-Peral, L., Gulden, F.O., et al. (2018). 

Spatiotemporal transcriptomic divergence across human and macaque 

brain development. Science 362, eaat8077.

68. Hawrylycz, M.J., Lein, E.S., Guillozet-Bongaarts, A.L., Shen, E.H., Ng, L., 

Miller, J.A., van de Lagemaat, L.N., Smith, K.A., Ebbert, A., Riley, Z.L., 

et al. (2012). An anatomically comprehensive atlas of the adult human 

brain transcriptome. Nature 489, 391–399.

69. Lombardi, F., Herrmann, H.J., Parrino, L., Plenz, D., Scarpetta, S., Vau-

dano, A.E., de Arcangelis, L., and Shriki, O. (2023). Beyond pulsed inhi-

bition: Alpha oscillations modulate attenuation and amplification of neu-

ral activity in the awake resting state. Cell Rep. 42, 113162.

70. Liljefors, J., Almeida, R., Rane, G., Lundströ m, J.N., Herman, P., and 
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STAR★METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Participants: SickKids cohort

Data were collected from 401 healthy individuals aged 4–68 years (mean age = 20.79, SD = 14.14; 169 female; see Table S1 for de-

mographics). Resting-state eyes-open magnetoencephalography (MEG) recordings lasted approximately 5 min and were acquired 

using a 151-channel whole-head CTF MEG system (Port Coquitlam, British Columbia, Canada) sampled at 600 Hz. Participants’ 

head positions were continuously monitored throughout the recording using three Head-Position Indicator (HPI) coils to ensure 

consistent head localization. All participants also underwent structural T1-weighted MRI to inform MEG source modeling.

Participants: Cam-CAN cohort

Data were collected from 606 healthy individuals aged 18–89 years (mean age = 54.69, SD = 18.28; 299 female; see Table S2 for 

demographics) from the Cambridge Center for Aging and Neuroscience repository (Cam-CAN). 63 Each participant underwent a 

resting-state, eye-closed MEG recording using a 306-channel VectorView MEG system (MEGIN, Helsinki, Finland). The MEG system 

consisted of 102 magnetometers and 204 planar gradiometers, sampled sampling rate of 1 kHz with a 0.03–330 Hz bandpass filter. 

Resting-state recordings lasted approximately 8 min. Continuous monitoring of participants’ head positions was performed using 

four HPI coils. Additionally, electrooculography (EOG) and electrocardiography (ECG) electrodes were used to capture ocular and 

cardiac artifacts for subsequent removal. T1-weighted MRI scans were also collected from all participants.

For demographic details of each dataset, see Tables S1 and S2.

Ethics

The procedures for the curation and analysis were reviewed and approved according to the institutional ethics policies of McGill Uni-

versity ‘s and the Montreal Neurological Institute’s Research Ethics Boards (reference no. 22-11-021). Informed consent (assent 

when applicable) was obtained from all participants.

METHOD DETAILS

Preprocessing of MEG data

MEG data preprocessing was conducted using Brainstorm 99 (version dated 08-08-2023) in MATLAB R2021a (Mathworks Inc., Na-

tick, Massachusetts, USA) adhering to good practice guidelines. 102 Preprocessing followed our prior work on MEG individual 

differentiation. 9,16,19

REAGENT or RESOURCE SOURCE IDENTIFIER

Open data

CamCAN (open MEG dataset) Taylor et al. 63 https://Cam-CAN-archive.mrc-cbu.cam.ac.uk/

AHBA (Cortical gene expression data) Hawrylycz et al. 68 https://human.brain-map.org/static/download

BrainSpan (Cortical gene expression data) Miller et al. 98 https://www.brainspan.org/static/download.html.

Software and algorithms

Brainstorm Tadel et al. 99 http://neuroimage.usc.edu/brainstorm/;

RRID:SCR_001761

Abagen Markello et al. 100 https://abagen.readthedocs.io/en/stable/;

RRID:SCR_023832

Freesurfer Fischl 101 https://surfer.nmr.mgh.harvard.edu/;

RRID:SCR_001847

Python Python https://www.python.org;

RRID:SCR_008394

R R Core Team https://www.r-project.org;

RRID:SCR_001905

MATLAB MATLAB https://www.mathworks.com;

RRID:SCR_001622

Cell Reports 44, 116657, December 23, 2025 15

Article
ll

OPEN ACCESS

https://cam-can-archive.mrc-cbu.cam.ac.uk/
https://human.brain-map.org/static/download
https://www.brainspan.org/static/download.html
http://neuroimage.usc.edu/brainstorm/
https://abagen.readthedocs.io/en/stable/
https://surfer.nmr.mgh.harvard.edu/
https://www.python.org
https://www.r-project.org
https://www.mathworks.com


Line noise artifacts at 50 Hz (Cam-CAN) and 60 Hz (SickKids), along with their first ten harmonics, were removed using a notch filter 

bank to ensure the removal of environmental and power-line interference. Additionally, an 88 Hz artifact characteristic of the Cam-

CAN dataset was removed.

Slow-wave artifacts and DC offsets were mitigated using a high-pass finite impulse response filter with a 0.3-Hz cut-off frequency 

in both datasets.

Source modeling of MEG data

Brain source models were derived using individual participants’ T1-weighted MRI scans to constrain MEG source mapping. MRI vol-

umes were segmented and labeled automatically using FreeSurfer (version 7.3.2) 100 . The MRI data were co-registered with MEG re-

cordings using approximately 100 digitized head points, when available.

We used Brainstorm’s overlapping-spheres approach with default parameters for individual head models. Cortical source models 

were then computed with linearly-constrained minimum-variance (LCMV) beamforming (Brainstorm 2018 version for source estima-

tion processes). MEG source orientations were constrained to be normal to the cortical surface. A grid of approximately 15,000 lo-

cations across the cortex was used for source modeling.

Neurophysiological traits

The power spectrum of MEG source time series at each cortical location was computed using the Welch method. This involves split-

ting the MEG recordings into 2-s windows with 50% overlap, computing the Fast Fourier Transform (FFT) for each window, and then 

averaging the power of the FFT coefficients across all windows to obtain a stable spectral estimate. Cortical surfaces were parcel-

lated into 148 cortical regions using the Destrieux atlas. 103 We excluded the delta band (1–4 Hz) in the SickKids dataset due to the low 

signal-to-noise ratio, limiting analysis to frequencies between 4 and 150 Hz. For Cam-CAN, the analysis covered 1–150 Hz. The fre-

quency resolution was set to 0.5 Hz, resulting in matrices of 148 cortical regions by 293 (SickKids) or 300 (Cam-CAN) frequency fea-

tures for each participant. Spectral features were then exported to R (version 4.2.2) 104 for individual differentiation analyses.

Gene expression

We retrieved cortical gene expression data from six postmortem brains from the Allen Human Brain Atlas (AHBA; http://human.brain-

map.org/). 68 Data were processed using the abagen Python package, 100 following our previously established pipeline, 19 with the 

exception of using the Destrieux atlas for cortical parcellation. We selected microarray probes with the highest differential stability 

to represent the expression of each gene, resulting in 20,232 genes included in our analysis.

Tissue samples were assigned to the nearest cortical region using a nonlinear registration method, focusing on minimizing 

misalignment across regions. Gene expression data were normalized across tissue samples and subjects, 105 and only genes with 

differential stability greater than 0.1 were retained, resulting in a final set of 9,278 genes. We retained only genes with a differential 

stability (DS) greater than 0.1, following prior work using the AHBA, 76,100,106,107 including our own previous analyses of neurophys-

iological trait heritability. 19 This threshold ensures consistency with established literature and maximizes comparability with previ-

ously derived cortical gene expression gradients.

We used previously defined sets of positive and negative genes, categorized based on their association with participant differen-

tiation. 19 Genes positively correlated with differentiation were considered positive, while those negatively correlated were negative. 

After filtering for stability, we retained 2,076 positive genes and 2,219 negative genes. Cortical maps representing gene expression 

were generated to examine their alignment with the differentiable neurophysiological features observed across the lifespan.

QUANTIFICATION AND STATISTICAL ANALYSIS

Differentiation

Our differentiation method was adapted from previous work on neurophysiological differentiation. 9–11 Neurophysiological differen-

tiation relied on differentiability of each participant across resting-state segments. We divided recordings into first and second halves 

to evaluate reproducibility and distinctiveness.

We obtained Pearson correlations between participant i’s trait vector from the first segment (i.e., neurophysiological trait) and all 

trait vectors from the second segment. Correct differentiation occurred if participant i’s self-similarity was greater than their other-

similarity with any other participant in the cohort. Differentiation accuracy was then defined as the percentage of participants 

correctly differentiated according to this criterion.

For the SickKids cohort, we computed the differentiation accuracy in children (n = 148; 4–12 years old), adolescents (n = 57; 12–18 

years old), adults (n = 196; 18+ years old), and the entire cohort (n = 401). We chose these age group boundaries to maximize the 

number of participants in the children and adult groups. To verify the robustness of our results, we slightly adjusted the definitions 

of the age groups and assessed their impact on differentiation accuracy. Details of this robustness check are presented in Figure S6. 

A similar approach was used for the Cam-CAN cohort: young adults (18–45 years, n = 204), middle-aged adults (45–65 years, 

n = 194), older adults (65+ years, n = 208), and the entire cohort (n = 606).

Additionally, we computed a continuous differentiability score for each participant. 9 This score was calculated by z-scoring self-

similarity relative to the mean and standard deviation of other-similarity scores. A high differentiability score indicated that a
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participant’s traits were more distinct from others in the cohort. We fitted the linear relationship using the lm() function in R to test the 

relationship between age and differentiability:

differentiability ∼ β ∗ age + intercept:

Bootstrapping differentiation accuracy

To assess reliability, we derived bootstrapped 95% confidence intervals for each differentiation accuracy. Participants were 

randomly sampled with replacement, subsampling 485 participants for the entire cohort and 175 for each age group in the Cam-

CAN sample. For the SickKids Institute sample, 321 participants for the entire cohort were subsampled. Bootstrapping was repeated 

1,000 times, and 2.5 th and 97.5 th percentiles of the resulting accuracy distribution were computed to provide confidence intervals, 

which reflect the empirical uncertainty.

The specific choice of the number of subsampled participants was made to balance the computational load with statistical power 

while ensuring consistency across the bootstrap samples. By defining our approach in this way, we aimed to maintain an adequate 

sample size that ensures robust estimation of the true differentiation accuracy for each cohort while accommodating practical con-

siderations for data processing.

Band-limited neurophysiological traits

We replicated differentiation analyses using canonical electrophysiological frequency bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8– 

13 Hz), beta (13–30 Hz), gamma (30–50 Hz), and high gamma (50–150 Hz). Delta band activity was excluded from SickKids analyses 

due to poor signal-to-noise ratio (SNR), limiting reliable differentiation.

Each canonical frequency band was subjected to the same differentiation analysis.

Recording artifacts and differentiability

We assessed the effect of common physiological artifacts on differentiability using regression models. Artifact levels were quantified 

using root-mean-square (RMS) values of ocular (VEOG, HEOG), cardiac (ECG), and head movement (HLU channels) artifacts across 

the MEG recording. Analyses were conducted separately for each dataset to account for specific differences.

We used regression models to determine whether physiological artifacts influenced individual differentiability, performing analyses 

separately in SickKids and Cam-CAN to account for cohort-specific differences. For Cam-CAN, head motion, cardiac, and ocular ar-

tifacts were included as nuisance covariates in linear regression models (see Tables S3). For SickKids, we assessed the effects of total 

intracranial volume (TIV) and head motion (Tables S6 and S7). To address the possibility of non-linear confounding, we repeated the 

regression models including quadratic terms for intracranial volume and log-transformed head motion. The results were consistent with 

the main analyses, with age-differentiability effects remaining significant after non-linear adjustment (see Table S7).

To further control for recording artifacts, we created a subgroup of participants who were matched on TIV and head motion artifact. 

This subsampling procedure yielded a sample size of 202 participants, 57 of whom were children below the age of 12. We then tested 

the robustness of our findings in this subsample: We examined whether i) we observed a similar age-differentiation effect with a two-

sample permutation t test and ii) whether the most salient features for differentiating the artifact-matched sample of children were 

topographically aligned to those of the entire cohort of children. The findings of these analyses are presented in Figure S4.

Empty-room differentiation

To establish that individual differentiation was not driven by environmental or instrumental noise, we conducted empty-room differ-

entiation using MEG recordings from the day of each participant’s visit. For the SickKids dataset, only a single empty-room recording 

was available for the entire cohort. This recording was used to approximate the baseline noise level. Empty-room data were pre-pro-

cessed similarly to participant data, except for physiological artifact removal. These recordings were used to generate pseudo neuro-

physiological traits. Differentiation accuracy using these pseudo-traits served as a baseline performance measure, ensuring that re-

sults were not due to noise. 9 The results of this analysis are plotted in Figure 1 (i.e., the gray bars).

Aperiodic & periodic spectral parametrization

To assess the contribution of aperiodic neurophysiological activity to individual differentiability, we parametrized the participants’ 

MEG source power spectra using the ms-specparam tool in Brainstorm. 99,108 We extracted the aperiodic background components 

from periodic oscillatory peaks in each source signal spectrum.

For the SickKids dataset, the frequency range for analysis was set between 4 and 50 Hz, while for the Cam-CAN dataset, it was set 

between 1 and 40 Hz. The peak width limits differed slightly, with the SickKids dataset having limits between 1 and 8 Hz, and the Cam-

CAN dataset between 0.5 and 12 Hz. We specified a maximum of six peaks per spectrum, with a minimum peak amplitude of 1 arbi-

trary unit (a.u.). The peak detection threshold was set at two standard deviations above the mean, while the proximity threshold, 

determining how close detected peaks could be, was set at 0.75 standard deviations. The aperiodic component was modeled using 

a fixed mode to ensure consistency across participants.

These hyperparameters for spectral parametrization were determined based on visual inspection of the spectra, to ensure that the 

model captured the relevant spectral features while minimizing the risk of overfitting or misinterpretation.
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Following spectral parametrization, the (a)periodic components were used to derive neurophysiological traits defined from (a)pe-

riodic spectral features. The differentiation procedure was then carried out using the previously described approach, where we eval-

uated how well participants could be differentiated based solely on the aperiodic vs. periodic spectral components fits of their cortical 

neurophysiological activity.

Relative contribution of features

We calculated intraclass correlations (ICC) using a one-way random effects model to evaluate the contribution of each feature (fre-

quency x cortical region) to participant differentiation. 9,10,109 This approach follows from previous brain-fingerprinting work. 9,10,16,19 

ICC quantifies the ratio of within-participant to between-participant variance of neurophysiological traits, where high ICC values indi-

cate that a specific neurophysiological feature is consistently similar within participants across repeated measures while being 

distinct across different participants. Therefore, features with high ICC values contribute most significantly to participant 

differentiation.

To generate the brain maps presented in Figures 2 and S11, we initially averaged ICC values within each canonical frequency band 

(e.g., theta, alpha, beta, gamma). Following this, we averaged across the resulting frequency band maps to derive a broadband sa-

liency topography. This two-step averaging was performed to ensure that each frequency band had an equal influence on the overall 

saliency map, independent of differences in frequency band definitions (e.g., the theta bandwidth spans 4 Hz, while gamma covers at 

least 20 Hz).

We pooled data from both the SickKids and Cam-CAN datasets to obtain a comprehensive representation of how feature saliency 

changes across the lifespan. Participants were ordered by ascending age, and we used a sliding window approach to calculate ICC 

values for each age group. Specifically, we selected a moving window of 100 participants with 75% overlap between consecutive 

windows, which resulted in 37 ICC maps representing increasing age bins. Note, we tested the robustness of our results using a mov-

ing window of 50 participants with 50% overlap (see Tables S11 and S13). This method allowed us to capture the gradual changes in 

the contribution of different cortical regions and frequency bands to individual differentiation as participants age. The results of this 

analysis are visualized in Figure 2A, which illustrates the shifting topographic features that characterize individualized neurophysi-

ology across the lifespan.

Neuroanatomical similarity

To ensure that increased other-similarity observed in children was not due to anatomical features, we conducted additional analyses 

incorporating neuroanatomical data. Specifically, we extracted nine anatomical features for each cortical region defined by the Des-

trieux atlas, 103 which were provided by the FreeSurfer segmentation process. 101 These features included metrics such as cortical 

thickness, surface area, and volume.

We used these anatomical features to construct an anatomical similarity matrix that quantified the similarity between each pair of 

participants based on their anatomical characteristics. This matrix was derived by computing Pearson correlations between the 

anatomical features of all possible participant pairs.

We then evaluated whether this anatomical similarity could explain the observed other-similarity in neurophysiological traits, 

particularly the greater similarity observed in children. To do this, we computed the linear relationship between participant-pair 

anatomical similarity and neurophysiological similarity across all pairs.

Cortical functional hierarchy

We assessed whether the pattern of cortical regions contributing most to differentiation increasingly aligned with the functional or-

ganization of the cortex with age. Specifically, we evaluated their correspondence with the unimodal-to-transmodal gradient, which 

represents the functional hierarchy of cortical regions from primary sensory to higher-order association areas. 64

To evaluate this correspondence, we computed the spatial alignment between the ICC maps (derived from the sliding window 

approach, see above) and the unimodal-to-transmodal functional gradient obtained using the neuromaps toolbox. 110 This alignment 

was quantified using Pearson correlation for each age bin, capturing the degree to which regions involved in individual differentiation 

align with the functional gradient of the cortex.

We further examined whether this alignment changed non-linearly across the lifespan by fitting a third-order polynomial model to 

capture potential trends. To test the robustness of observed changes, we used 1,000 autocorrelation-preserving permutation tests 

using the Hungarian spin method. These permutation tests generated spin-based resampling of cortical maps to assess statistical 

significance while preserving spatial autocorrelation. 111,112

For each spin permutation, we recalculated the alignment between the permuted functional gradient map and the ICC maps, fitting 

a third-order polynomial to the resulting alignment data. We then computed the permuted p-value by comparing the observed third-

order polynomial beta-coefficients with those obtained from the permuted data, allowing us to assess the statistical significance of 

the observed alignment patterns.

We also evaluated the alignment between the pattern of cortical regions contributing the most to differentiation and the visual-to-

motor functional gradient, 64 hypothesized to be more relevant for early brain development. The same procedures for spatial align-

ment and permutation testing were applied (see Figure 2A).
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Gene expression across the lifespan

To evaluate the stability of positive and negative gene signatures identified in our previous work, 19 we analyzed gene expression data 

across developmental stages, from 8 post-conception weeks to 40 years of age, using data from 16 cortical regions obtained from 

the BrainSpan Atlas. 98 Gene expression data were grouped into five life stages 19,76,113 : fetal (8–37 post-conception weeks), infant 

(4 months–1 year), child (2–8 years), adolescent (11–19 years), and adult (21–40 years). For each developmental stage, we computed 

the average expression levels of the positive and negative gene sets across the cortical regions.

To assess the stability of these spatial gene expression patterns across different life stages, we calculated Pearson correlations 

between the cortical expression patterns of all pairs of life stages. This resulted in a symmetric topographic similarity matrix for 

the positive and negative gene sets separately (Figure S12).

Alignment to gene expression

To investigate whether the alignment between the pattern of cortical regions that contribute to differentiation and cortical gene 

expression changed across the lifespan, we computed the spatial alignment between the ICC maps and the positive gene expression 

signature. This alignment was assessed using Pearson correlations to quantify the similarity between the spatial distribution of differ-

entiable features and gene expression patterns.

We used a sliding window approach across different age bins to examine changes in this alignment throughout the lifespan. This 

allowed us to explore how the developmental progression of neurophysiological features aligns with the expression of genetic sys-

tems across the cortex.

Partial Least Squares analysis

To further explore the alignment between cortical gene expression and neurophysiological traits, we conducted a Partial Least 

Squares (PLS) analysis for each age group. This multivariate analysis was used to relate the most differentiable cortical regions 

(as quantified by ICC values) at each age bin (Figure 2A) to cortical gene expression patterns obtained from the Allen Human Brain 

Atlas. 68

For each age bin, we constructed two data matrices: one containing distinctive neurophysiological traits (represented by the ICC 

values) and another containing the cortical gene expression data. The traits matrix had four columns (each representing a frequency 

band) and 148 rows, corresponding to the cortical regions of the Destrieux atlas. The gene expression matrix had 9,278 columns 

(representing genes) and 148 rows (representing cortical regions).

To ensure comparability, we z-scored the columns of each matrix before applying Singular Value Decomposition (SVD) to the 

cross-covariance matrix between the neurophysiological and gene matrices. The resulting latent components provided insight 

into the covariance structure between the neurophysiological features and gene expression across age bins:

(Y ′ X) 
′ 

= USV ′ :

Here, U is a 9,278 by 4 orthonormal matrix, and V is a 4 by 4 orthonormal matrix, with each column representing a latent component 

of the covariance between neurophysiological traits and gene expression. This decomposition was repeated for each age group us-

ing a sliding window approach, as described above. We reported the percentage of covariance explained by each latent component, 

giving insight into the relationships between neurophysiological features and genetic expression across age bins. 114,115

To assess the significance of the latent components, we conducted 1,000 spatial autocorrelation-preserving permutation tests us-

ing the Hungarian spin method (detailed above). We generated null distributions of singular values from these permutations to 

compute empirical p-values, which were corrected for multiple comparisons using False Discovery Rate (FDR) correction, as imple-

mented in MATLAB.

To determine the contribution of individual genes and frequency bands to the observed patterns of covariance, we computed Pear-

son correlations between each variable’s spatial distribution over the cortex (i.e., gene expression and ICC values) and the opposing 

PLS brain score pattern. 19,76 These loadings are bounded between − 1 and 1, facilitating intuitive interpretation—large absolute load-

ings indicate strong contributions to the latent component of covariance.

Lastly, to evaluate the consistency of gene contributions across the lifespan, we assessed the similarity between the gene loadings 

derived from each age bin with our previously reported gene loadings from an independent PLS analysis using MEG data from the 

Human Connectome Project. 19 This was done using Pearson correlations (Figure 3B, right panel), which provided insight into the 

stability of the genetic signature governing differentiable neurophysiological activity throughout development and aging.

Participant age permutation analyses

To assess the robustness of the non-linear neurodevelopmental effects presented in Figures 2 and 3, we permuted the association 

between each participant’s neurophysiological trait and their age 500 times. Each permuted dataset was analyzed using the same 

sliding-window approach described in Relative Contribution of Neurophysiological Traits. A third-order polynomial regression model 

was then fit to the resulting alignment values, and the true beta coefficients were compared to those from the permutations to derive a 

p-value.
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