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In brief

da Silva Castanheiro et al. examine the
development of individualized brain
activity across a person’s life. Rhythmic
brain activity distinguishes individuals
across age groups, with activity in
sensory and motor regions becoming
increasingly distinctive in early
adulthood. These developmental
changes in individualized brain activity
align with specific patterns of cortical
gene expression.
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SUMMARY

How do neurophysiological traits that characterize individuals evolve across the lifespan? To address this
question, we analyzed task-free magnetoencephalographic recordings from over 1,000 individuals aged
4-89. We found that neurophysiological activity is more similar between individuals in childhood than in adult-
hood, an effect driven predominantly by arrhythmic brain activity. In contrast, periodic activity-based profiles
remain reliable markers of individuality across all ages. The cortical regions most critical for determining in-
dividuality shift across neurodevelopment and aging, with sensorimotor cortices becoming increasingly
prominent in adulthood. These developmental changes in neurophysiology align closely with the expression
of cortical genetic systems related to ion transport and neurotransmission, suggesting a growing influence of
genetic factors on neurophysiological traits across the lifespan. Notably, this alignment is strongest in late
adolescence, a critical period when genetic factors significantly shape brain individuality. Overall, our find-

ings advance our understanding of the evolving biological foundations of inter-individual differences.

INTRODUCTION

The neurophysiological mechanisms underlying individuality in
behavioral traits are a cornerstone of both basic and clinical
neuroscience.’® Beyond anatomical differences, functional
neuroimaging studies have demonstrated that patterns of brain
activity and connectivity reliably differentiate individuals.®'?
These neurophysiological traits, referred to as “brain finger-
prints” in the literature, are associated with cognitive abili-
ties'®""131% and various clinical conditions, including neurolog-
ical and psychiatric disorders.’>"'® Moreover, these traits are
heritable and linked to cortical gene expression.'® Yet, the evo-
lution of these individual-specific neurophysiological traits over
the lifespan—amid extensive neurodevelopmental and aging-
related brain changes—remains largely unexplored.

A wealth of neuroimaging research has documented non-
linear age-related changes in both brain structure and function,
offering insights into lifespan development. Structurally,
cortical thinning is a hallmark of aging, occurring progressively
over time.?°® This thinning is particularly pronounced
in higher-order association areas along the transmodal
ends of the unimodal-to-transmodal functional gradient. Trans-
modal regions—associated with complex, integrative cognitive
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processes —show the earliest and most substantial reductions
in cortical thickness.?*>°

In terms of function, neurophysiological activity can be map-
ped using magnetoencephalography (MEG), which captures
both periodic (oscillatory) and aperiodic (background) compo-
nents of brain activity.”>*” Periodic oscillations in different fre-
quency bands (e.g., delta, theta, alpha, beta, and gamma) vary
across individuals and systematically change with age. For
instance, posterior dominant rhythms develop from slower (3—
5 Hz) frequencies in early childhood to 6-7 Hz by 12 months
and then into the alpha rhythm (8-13 Hz) characteristic of
adults.?®* " This rhythm slows again in older age, reflecting func-
tional decline.®~*® Aperiodic components, which reflect the dy-
namic balance of excitatory and inhibitory processes,>®7-%7-%°
also evolve across the lifespan and are associated with age-
related decline in sensory and cognitive functions.*¢4°=%*

These structural and functional transformations underscore
the complex interplay between neurophysiological and anatom-
ical changes over time and offer insights into inter-individual dif-
ferences in brain function and structure at the population level.
This previous work affords researchers age-matched norms of
a particular trait (for example, hippocampal volume) to which
any individual can be compared.?®*%% This differs from the
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brain fingerprinting approach, where researchers describe indi-
vidual-specific neurophysiological traits that are stable within a
person and can distinguish between individuals.

While behavioral traits and cognitive abilities evolve signifi-
cantly across neurodevelopment and aging, it remains an open
question whether the neurophysiological processes differenti-
ating individuals exhibit similar degrees of transformation or
maintain stability.

Previous studies have examined whether brain fingerprints
remain differentiable across development using functional con-
nectomes (FCs) derived from functional magnetic resonance im-
aging (fMRI), which has yielded mixed results. Some studies
suggest that inter-individual differences in FC become more pro-
nounced with age,'”“®~*® consistent with evidence of increasing
genetic influence on cognition during development.“®=>" Others
have found that infants and children can be differentiated as
accurately as adults, suggesting early stability in individual FC
traits®?~°° and seemingly in contrast to previous findings. More-
over, our previous work identified a cortical gene expression
signature aligned to the neurophysiological traits of adults, which
becomes increasingly expressed throughout neurodevelop-
ment, hinting at potential developmental shifts in these traits.
We are not aware of any previously published studies exploring
whether neurophysiological traits derived from MEG in children
are equally differentiable from those of adults.

Several factors may explain the disagreement as to whether
individuals’ brain activity becomes more differentiable with
age, as observed in fMRI brain fingerprinting. Many previous
studies have relied on task-based data, where children and
adults may engage different cognitive strategies, complicating
the separation of stable, trait-like patterns from transient, task-
related states. This is particularly salient when task-evoked sig-
nals are regressed out from the blood-oxygen-level-dependent
(BOLD) response to compute brain fingerprints, a correction
that may not perform equally well across age groups. Residual
task-related variance could therefore differentially bias finger-
printing results, especially if one demographic group engages
with the task in a distinct manner. Resting-state acquisitions
avoid this specific confound by not requiring removal of task-
evoked signals, although they still capture a combination of
intrinsic traits and momentary cognitive states.

Another explanation for this discrepancy may be age-depen-
dent biases®~° in the hemodynamic response. While fMRI is
an indirect measure of brain activity, MEG, on the other hand,
directly measures neurophysiological signals, offering a clearer
perspective on how differentiation of brain activity may evolve.
Given the distinct biological origins of hemodynamic fMRI and
electrophysiological MEG signals, it remains unknown whether
neurophysiological traits become more individualized with age
or whether consistent electrophysiological features differentiate
individuals across development.

Emerging evidence also indicates that the brain regions most
characteristic of healthy individuals differ significantly from those
in clinical populations, where disease-related disruptions alter
neurophysiological patterns.' %% This suggests that features
critical for differentiation may shift in response to neural alter-
ations due to disease or the cumulative effects of aging and
development. Supporting this, models trained on young adult
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data to predict behavior from brain activity often fail to generalize
when applied to older adults,®'*°> emphasizing the importance of
age-specific patterns in studying individual differences.

This study addresses three objectives: (1) to determine
whether the accuracy of individual differentiation based on
MEG-derived neurophysiological traits changes with age, (2)
to characterize how patterns of differentiation evolve across
neurodevelopment and aging, and (3) to identify the brain re-
gions most critical for differentiation and examine their align-
ment with cortical gradients of functional organization and
gene expression.

Based on prior work in both developmental neuroimaging and
MEG-derived neurophysiological traits, we advance three pre-
dictions. (1) Stability of differentiability: children will be differenti-
ated as accurately from one another based on neurophysiolog-
ical traits as adults, reflecting the early emergence of stable,
individual-specific brain activity patterns. However, the regional
features most critical for differentiation will vary across the life-
span. (2) Functional gradient alignment. Given evidence that
the unimodal-to-transmodal gradient becomes increasingly
important for functional organization throughout neurodevelop-
ment,>*?° we predict that salient features for participant differen-
tiation will show progressively stronger alignment with this
gradient from childhood to adulthood. (3) Genetic expression
alignment. Building on our previous work linking adult neuro-
physiological traits to a cortical gene expression gradient en-
riched for neurotransmission and ion transport,’® we predict
that alignment with this genetic gradient will increase across
neurodevelopment, reflecting maturational changes in the mo-
lecular processes supporting individual-specific brain activity.

In this study, we analyzed MEG-derived neurophysiological
traits from a lifespan sample of 1,007 participants aged 4-89
years. We examined whether individuals could be differentiated
across a wide age range and investigated how the topography of
the most characteristic brain regions shifts with age. Our findings
reveal that, while periodic brain activity reliably differentiates in-
dividuals across the lifespan, the regions contributing most
strongly to this differentiation change systematically with age,
aligning with cortical gradients of functional organization and
gene expression. These results reconcile previous inconsis-
tencies in the developmental trajectory of brain individuality
and offer insights into how neurophysiological traits evolve
throughout life.

RESULTS

We investigated three core aspects of neurophysiological traits
across the lifespan. First, we evaluated whether individuals
from different age groups, particularly children and older
adults, could be accurately differentiated based on brief re-
cordings of their neurophysiological brain activity. Next, we
examined the ease with which we can differentiate individuals
through neurodevelopment and aging. Finally, we assessed
the spatial distribution of neurophysiological features that
most strongly contribute to individual differentiation and
analyzed how these features vary systematically with age and
relate to established cortical gradients of functional organiza-
tion and gene expression.
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Figure 1. Age-related variations in neurophysiological differentiation accuracy

(A) Differentiation accuracy in the SickKids cohort (ages 4-68) using wide-band neurophysiological traits derived from 2-min MEG recordings. Gray bars at the
base of the plot represent chance-level differentiation based on empty-room MEG recordings collected the same day as participants’ sessions. Error bars
denote bootstrapped 95% Cls. Right: similarity matrix illustrating self-similarity (diagonal) and other-similarity (off-diagonal) across two distinct data segments
from each participant. Participants are ordered by ascending age; children (ages 4-12) exhibit higher other-similarity values, making differentiation more
challenging.

(B) Differentiation accuracy in the Cam-CAN cohort (ages 18-89) using wide-band neurophysiological traits from 4-min MEG recordings. Gray bars represent
chance-level differentiation as in (A). Error bars denote bootstrapped 95% Cls. Right: similarity matrix illustrating age-related changes in self- and other-similarity.

(legend continued on next page)
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We used a neurophysiological trait differentiation method that
replicates established brain-neurophysiological differentiation
techniques.®™"" This approach involved comparing each partici-
pant’s neurophysiological traits—derived from one segment of
data—with traits from all other participants, including a separate
segment from the same individual. Correct differentiation was
determined based on whether a participant’s neurophysiological
trait was more similar to their own trait (“self-similarity”) than to
those of any other individual in the cohort (“other-similarity”). Dif-
ferentiation accuracy was defined as the percentage of correctly
differentiated participants across the cohort (STAR Methods).
This analysis quantified differentiation accuracy across age
groups and provided insights into the stability and uniqueness
of neurophysiological traits over time.

Differentiation accuracy across age groups and
neurophysiological components

We computed differentiation accuracy across four age cohorts
from the SickKids dataset: (1) children aged 4-12 years (n =
148), (2) adolescents aged 12-18 years (n = 57), (3) adults
aged 18-68 years (n = 196), and (4) all participants combined
(n = 401).

Across all age groups, individuals were accurately differenti-
ated with an overall accuracy of 93.4% (95% confidence interval
[CI1: [91.9, 95.0]; Figure 1A). Differentiation accuracy for children
was 90.3% (CI: [88.1, 93.2]), for adolescents 97.0% (CI: [93.5,
100.0]), and for adults 95.7% (Cl: [93.6, 97.5]). These results
were consistent when individual traits were derived from specific
frequency bands and age-specific data subsets (Figures S
and S7).

To investigate developmental trends, we assessed “differen-
tiability,” a measure of how easily individuals could be differen-
tiated based on their neurophysiological traits. We observed a
strong positive linear relationship between age and differentia-
bility (5 = 0.60, SE = 0.04, 95% CI [0.52, 0.68], r* = 0.35,
p < 0.001; Figure 1C). This increase was primarily driven by
greater other-similarity in children, which made differentiation
more challenging in this group. In contrast, adult traits exhibited
lower similarity with other adults, enabling more accurate differ-
entiation (Figure 1A, right ). Self-similarity of neurophysiological
traits did not scale with age in the SickKids cohort (r = —0.09,
95% CI [-0.18, 0.01], p = 0.07, Bayes Factor [BF] = 0.57).

To explore which age groups may be driving this effect, we con-
ducted an exploratory analysis where we ran the same linear
regression model restricted to participants below 40 years old
and progressively increased the lower age cutoff from 4 years up-
ward. The goal of this analysis was to determine at which cutoff
the age-differentiation relationship became non-significant. We
observed that, with a lower cutoff of 13 years, the age-differentia-
tion relationship in the SickKids cohort for participants between
the ages of 14 and 40 was non-significant (3 = 0.09, p = 0.24).
This result is consistent with the weaker age-differentiation rela-
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tionship observed in the Cam-CAN cohort (see Differentiation
accuracy and stability in older adults) and reinforces the interpre-
tation that participants below the age of 13 are more challenging
to differentiate from one another based on broadband neurophys-
iological traits.

To further explore the contributions of periodic and aperiodic
components to differentiation, we decomposed the power spec-
tral density (PSD) of each MEG cortical source time series into
these two components. These decomposed spectra were then
used to define individual periodic and aperiodic spectral traits
(STAR Methods).

When differentiation accuracy was computed using aperiodic
traits, accuracy dropped to 79.4% overall (Cl: [76.6, 81.2]), with
75.8% accuracy for children (Cl: [72.0, 79.6]), 86.5% for adoles-
cents (Cl: [80.4, 93.5]), and 84.5% for adults (CI: [80.9, 87.8];
Figure S7). In contrast, differentiation based on periodic traits re-
mained highly accurate across all age groups, achieving 96.6%
overall accuracy (Cl: [95.3, 97.8]), 97.0% for children (Cl: [95.7,
99.2]), 97.5% for adolescents (CI: [95.6, 100.0]), and 96.7% for
adults (CI: [94.9, 98.7]; Figure S8).

Differentiation accuracy and stability in older adults

To extend our findings to older populations, we analyzed neuro-
physiological differentiation in an adult cohort (ages 18-89 years,
n = 606) from the Cambridge Center for Aging Neuroscience
(Cam-CAN) dataset.®® Participants were divided into three age
groups: young adults (18-45 years, n = 204), middle-aged adults
(45-65 years, n = 194), and older adults (65-89 years, n = 208).

For the entire Cam-CAN cohort, differentiation accuracy was
93.2% (Cl: [91.3, 94.8]). Differentiation accuracy varied slightly
across age groups: 94.4% (Cl: [92.0, 96.6]) for young adults,
93.4% (Cl: [90.8, 96.0]) for middle-aged adults, and 95.6% (Cl:
[93.7, 97.1]) for older adults (Figure 1B). These findings were
robust across frequency bands and decomposition of periodic
and aperiodic traits (Figures S1, S8, and S9). Note that the differ-
entiation accuracy for adults in the SickKids dataset was similar
to that for the young adults in the Cam-CAN cohort.

To assess whether the stability of individual traits changes with
age, we analyzed variations in self-similarity across age groups.
No significant linear relationship was observed between self-
similarity and age (p = —4.50, SE = 2.45, 95% CI [-9.31, 0.31],
r? = 0.006, p = 0.06). However, we observed a modest positive
linear relationship between differentiability and age (linear
regression model: p = 0.01, SE = 1.40 x 1073, 95% CI [0.00,
0.01],* = 0.042, p < 0.001), explaining 4.2% of the total variance
(Figure 1C).

When differentiation accuracy was computed using aperiodic
traits in the Cam-CAN cohort, accuracy remained high, 92.6%
overall (Cl: [90.9, 94.2]), with 91.7% accuracy for young adults
(Cl: [88.6, 94.9]), 95.4% for middle-aged adults (Cl: [93.7,
97.1]), and 94.4% for adults (Cl: [92.6, 96.0]; Figure S7). Similarly,
differentiation based on periodic traits remained highly accurate

Older adults exhibit higher distinctiveness in their neurophysiological traits, contributing to the modest positive relationship between differentiation and age

(Figure S2).

(C) Relationship between age and differentiability. Left (SickKids): a strong positive linear relationship explains 36% of the variance; colors indicate biological sex.
Right (Cam-CAN): a weaker positive relationship explains 4% of the variance; colors indicate age groups. Statistics obtained from linear regression models. The

shaded grey area represents 95% CI.
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Figure 2. Sensorimotor brain regions
become increasingly characteristic for indi-
viduals across the lifespan

(A) Topographic maps of intraclass correlation
coefficients (ICCs) show the cortical regions that
contribute most to individual neurophysiological
differentiation across age groups (bins of ~100
individuals per map). Higher ICC values indicate
cortical areas that play a significant role in dis-
tinguishing individuals within each age group.
Sensorimotor regions become increasingly
prominent with age.

(B) Scatterplot illustrating the alignment between

functional characteristic cortical regions for participant dif-
—oa gradient ferentiation (as shown in A) and the unimodal-to-
= transmodal functional gradient (inset on the right).
£ E ® The alignment exhibits a non-linear third-order
; g polynomial trajectory across the lifespan, with
g E, 02 weak alignment in early childhood that becomes
S g stronger into young adulthood. We observed the
@ % age® @ strongest alignment at 36.3 years old. This high-
_S_. [ p <0.05 lights the evolving contribution of cortical regions
00 p SPIN <0.05 uni- trans- to individual differentiation with age. The shaded
Y -.2 0 2. area represents 95% Cls.
20 40 60 80
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across all age groups, achieving 96.6% overall accuracy (Cl:
[95.1, 98.1]), 96.7% for young adults (Cl: [93.7, 99.4]), 97.3%
for middle-aged adults (Cl: [96.6, 98.3]), and 97.6% for adults
(ClI: [96.6, 98.8]; Figure S8).

Age-related shifts in cortical regions influential for
differentiation

Given the lower differentiation accuracy observed in children when
using non-parameterized neurophysiological traits, we focused
our analyses on periodic activity, which consistently demonstrated
higher differentiation accuracy across all age groups.

Our primary goal was to identify the cortical regions most char-
acteristic of individuals throughout the lifespan. We define “char-
acteristic” regions as those where neurophysiological features
most strongly contribute to individual differentiation. To quantify
this, we used intraclass correlation coefficients (ICCs), which mea-
sure the consistency of neurophysiological features within individ-
uals relative to variability across individuals.®'*'® High ICC values
indicate that a specific neurophysiological feature is consistently
similar within participants while being distinct across different par-
ticipants. Regions with higher ICC values were deemed more influ-
ential for individual differentiation. To capture developmental tra-
jectories, we used a sliding window approach to compute ICC
maps across different age groups (STAR Methods).

Our findings revealed systematic shifts in the cortical regions
most distinctive for individual differentiation over the lifespan. In
children, lateral parietal and superior temporal regions were the
most characteristic of individual differences. By early adult-
hood (ages 20-30 years), caudal and peri-central cortical
regions emerged as the most distinctive, consistent with previ-
ous studies.'®"® Across all age groups, orbitofrontal regions
consistently contributed the least to differentiation (Figure 2A;
Figures S9 and S10).

We examined how these characteristic cortical regions align
with the unimodal-to-transmodal functional gradien’(,64 aprimary
axis of neurodevelopment that reflects transitions from primary
sensory motor areas to higher-order association cortices.?*°
The alignment of characteristic regions with this gradient fol-
lowed a non-linear trajectory across the lifespan (third-order
polynomial: § = —0.46, SE = 0.07, 95% CI [-0.60, —0.31],
p < 0.001, pspin = 0.00099; Table S9). Alignment was weakest
in early childhood (6.9 years old, r = 0.09, pgpin = 0.26) and stron-
gest in early adulthood (36.3 years old, r = —0.44; Figure 2B), fol-
lowed by 22.2 years old (r = —0.43), and 17.1 and 31.1 years old
(r = —0.41). In older adults, the highest alignment was observed
at 79.9 years old (r = —0.40). All observed alignments were nega-
tive, except for the earliest age group (6.9 years old), where we
found a small positive alignment (r = 0.08), indicating maximal
differentiation from transmodal regions. Negative alignments
reflect maximal differentiation in unimodal (sensorimotor) re-
gions, a pattern observed across most of the lifespan.

We tested age-related changes in the alignment between
salient neurophysiological traits and the unimodal-to-transmo-
dal functional gradient exclusively in the Cam-CAN sample. A
significant non-linear trend emerged, with the weakest alignment
observed in middle adulthood (§ = 0.34, SE = 0.09, 95% CI [0.20,
0.48], p < 0.001, pspin = 0.000999), an effect attenuated when
considering the entire cohort (mean alignment of r = 0.28 for
the entire sample between the ages of 40-65).

Despite the significant neurodevelopmental alignment of
salient neurophysiological traits to the unimodal-to-transmodal
gradient, we observed minimal alignment in childhood (mean
age 9.2 years: r = —0.14, pgpin = 0.25; Figure 2B). This suggests
that sensorimotor regions—which dominate adult differentia-
tion—play a minimal role in childhood. Motivated by evidence
that the motor-to-visual gradient is particularly relevant in early
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development,®® we tested its alignment in children and observed

a significant effect (mean age 9.2 years: r = 0.43, pgpin < 0.05;
Figure S11). This alignment did not vary significantly with age
(third-order polynomial: § = —0.24, SE = 0.07, 95% ClI [-0.38,
—0.10], p < 0.01, pspin > 0.05; Figure S11).

Alignment between neurophysiological differentiation
and cortical gene expression across the lifespan
Previous research has shown that neurophysiological traits in
adults align with a ventromedial-to-dorsolateral gene expres-
sion signature, involving genes associated with ion transport,
synaptic functioning, and neurotransmitter release.’® Howev-
er, the evolution of this alignment across different develop-
mental stages, particularly during critical periods of neurode-
velopment, has remained unclear. We aimed to elucidate
how the alignment between cortical neurophysiological traits
and cortical gene expression changes across the lifespan
(Figure 2A).

To investigate this relationship, we divided the gene differenti-
ation signature into two sets: a positive set related to participant
differentiation and a negative set associated with lower differen-
tiation capabilities. The positive gene set primarily included pro-
cesses related to ion transport, synaptic activity, and neuro-
transmitter release, while the negative set was linked to
neurodevelopmental processes such as neurogenesis and cell
morphogenesis.'® This division allowed us to understand which
gene expressions were related to neurophysiological differentia-
tion across age groups (STAR Methods).

We first assessed whether the spatial organization of these
gene sets remained stable across developmental stages, using
data from the BrainSpan dataset,® which includes fetal through
adult data. Consistent with prior findings indicating that the
most pronounced changes in cortical gene expression occur
prenatally,®’ the spatial distribution of the positive gene signa-
ture showed remarkable stability from infancy through child-
hood, adolescence, and adulthood (spatial correlations >0.71;
Figure S12). In contrast, the negative gene signature exhibited
weaker spatial consistency between childhood and adulthood
(Figure S12). These results underscored the enduring relevance
of the positive gene set for neurophysiological differentiation,
prompting us to focus subsequent analyses on this gene group.

Next, we analyzed the alignment between cortical maps of
neurophysiological differentiation and the positive gene signa-
ture. This alignment followed a third-order polynomial trajectory
across the lifespan, with an initial increase, a midlife dip, and a
subsequent rise. The strongest alignment was observed in late
adolescence (17.1 years old; p = 0.73, SE = 0.11, 95% CI
[0.51, 0.96], p < 0.001, pspin = 0.004, ppermutation = 0.001;
Table S12; Figure 3A). This finding suggests that adolescence
represents a critical period during which neurophysiological fea-
tures most strongly align with genetic signatures related to ion
transport and neurotransmission,'® likely reflecting a pivotal
stage in the fine-tuning of neural circuits. Testing the non-linear
relationship between age and the alignment of cortical maps of
neurophysiological differentiation with the positive gene signa-
ture in only the Cam-CAN sample did not meet statistical signif-
icance after performing spatial autocorrelation-preserving per-
mutations (p = 0.26, p = 0.01, pgpin = 0.083).
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To gain deeper insights into how gene-neurophysiology align-
ment evolves, we conducted a partial least squares (PLS) anal-
ysis to examine the covariance between neurophysiological fea-
tures and cortical gene expression data from the Allen Human
Brain Atlas.®® The analysis revealed significant covariance be-
tween cortical gene expression patterns and neurophysiological
differentiation across the lifespan, particularly up to middle age
(Figure 3B, left). Interestingly, the percentage of covariance ex-
plained by these latent components remained relatively stable
across age groups (Figure 3B, middle), indicating that the rela-
tion between gene expression and neurophysiological differenti-
ation is preserved over time. Additionally, gene loadings showed
strong consistency across developmental stages, with Pearson
correlations >0.75 between loadings from different age groups.
This consistency suggests that the same gene signature drives
neurophysiological differentiation throughout development
(Figure 3B, right).

We further examined the contributions of specific neurophysio-
logical frequency bands to the alignment with gene expression
(Figure 3C). The relationship between periodic activity and gene
expression varied significantly by frequency band and develop-
mental stage. Theta band activity (4-8 Hz) showed a develop-
mental shift in its relationship with cortical gene expression. In
early development, theta traits were aligned with the negative
gene expression pattern (6.9 years old, r = —0.43), but this rela-
tionship reversed later in life, with the strongest alignment with
the positive gene set at 22.2 years old (r = 0.70). Alpha band activ-
ity (8—13 Hz) showed its strongest positive alignment at 12.3 years
(r=0.70), beta band traits (13-30 Hz) at 28.2 years (r = 0.60), and
gamma traits (30-50 Hz) at 12.3 years (r = 0.55). These values
represent the age bins with the highest observed correlations for
each band (i.e., the point with the highest y value in the case of
positive alignments in Figure 3C, highlighted with black outlines)
and do not reflect the peak of the smoothed dotted lines.

Importantly, the smoothed dotted lines in Figure 3 depict trends
rather than model-derived non-linear fits. Our aim with this anal-
ysis was to illustrate broad, frequency-specific developmental tra-
jectories in the alignment between neurophysiological traits and
gene expression across age. Across frequency bands, the data
reveal distinct lifespan patterns; for example, theta-band activity
shows early-life associations with the negative gene set before
shifting toward strong positive alignment in adolescence and early
adulthood. This pattern suggests that the specific contributions of
different frequency bands to gene-neurophysiology covariance
evolve dynamically across development.

These findings highlight the dynamic, frequency-specific nature
of the molecular-genetic mechanisms underlying neurophysiolog-
ical individuality. While the overarching genetic gradient remains
consistent, the specific contributions of different frequency bands
evolve across the lifespan, with greater alignment to genes related
to neurogenesis and cell morphology earlier in development
and greater alignment to genes related to neurotransmission in
adulthood.'®

Sensitivity analyses

We conducted sensitivity analyses to rule out potential con-
founding effects from environmental or physiological artifacts
in both cohorts.
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Figure 3. Lifespan variations in the align-
ment between gene expression and charac-
teristic patterns of neurophysiological ac-
tivity

(A) Cortical alignment between the positive gene
expression signature and differentiable brain re-
gions. The right inset shows the spatial distribution
of the positive gene expression signature across
the cortex. The graph illustrates the non-linear
third-order polynomial alignment of this genetic
signature with cortical regions most critical for
neurophysiological differentiation across the life-
span. The alignment is weakest during early child-

gene expression
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critical periods where genetic expression most in-
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contributions of neurophysiological frequency bands (theta [4-8 Hz]), alpha [8-13 Hz]), beta [13-30 Hz]), and gamma [30-50 Hz]) to gene-neurophysiology
covariance. Positive loadings indicate alignment with the positive gene expression pattern, while negative loadings indicate alignment with the negative gene
expression pattern (illustrated by the topographies on the far right). Theta band traits show a shift from negative alignment in early childhood to strong positive
alignment in early adulthood. Alpha band contributions remain relatively stable across the lifespan. Beta band contributions reach their highest positive
alignment in early adulthood, while gamma band contributions are strongest in adolescence. Gray dotted lines represent spline-interpolated trends for
visualization and do not reflect model fits. Black outlines indicate the age bins with the strongest observed alignment (see main text).

First, using pseudo-neurophysiological traits derived from
empty-room MEG data, we confirmed that environmental noise
contributed minimally to differentiation (<5%; gray bars,
Figure 1B).

Second, adding intracranial volume and head motion artifacts
as nuisance covariates did not significantly alter the age-differ-
entiability relationship in either cohort (Tables S6 and S7), and
similar robustness was observed in Cam-CAN for head motion,
cardiac, and ocular artifacts (p = 0.01, SE = 1.53 x 1073, 95%
Cl [0.00, 0.01], p < 0.001; Table S3).

Third, excluding participants above age 40 in SickKids did not
change the observed effect (3 = 0.40, SE = 0.05, 95% ClI [0.30,
0.40], p < 0.001).

Fourth, in an artifact-matched subsample (p = 0.26 and p =
0.13 for intracranial volume and motion, respectively), children
remained less differentiable than adults (t = 4.50, p < 0.001,

BF = 1482), with salient-trait topographies closely matching
those of the full sample (r = 0.77, pspin = 0.001; Figure S4).

Fifth, anatomical analyses indicated that cortical properties
play a minimal role in spectral differentiation: child-child anatom-
ical similarity was lower than adult-adult similarity (t = —56.69,
p < 0.01), and there was no meaningful age-related linear rela-
tionship between anatomical and spectral other-similarity
(Figure S5).

DISCUSSION

A growing body of research demonstrates that brain activity pat-
terns, much like a fingerprint, are unique to each individual.®'?
These neurophysiological traits are heritable, ' correlate with in-
ter-individual differences in cognition,'®""'* and manifest in dis-
ease processes.'>'%% However, the developmental trajectory
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of these traits over the lifespan has been relatively unexplored.
This study addressed a fundamental question: do individual
neurophysiological traits become more distinctive across key
developmental and aging stages?

Our findings reveal that individuals can be accurately differ-
entiated based on patterns of periodic brain activity across
the lifespan. However, the cortical regions most responsible
for this differentiation shift with age. While neurophysiological
traits are more homogeneous in childhood, sensorimotor re-
gions become increasingly distinctive during the transition to
adulthood. This shift is accompanied by a growing alignment
between neurophysiological activity and gene expression,
particularly involving genes related to ion transport and
neurotransmission.

Periodic brain activity as a hallmark of individuality

This study underscores the centrality of periodic brain activity in
distinguishing individuals across all age groups (Figure S8). This
finding is consistent with prior research showing that periodic
features remain robust markers of individuality, even in condi-
tions such as Parkinson’s disease, where aperiodic traits exhibit
lower self-similarity within individuals.'®

While periodic brain activity is characterized by stable
repeating patterns of brain activity, the peak frequency and
amplitude of brain rhythms are known to fluctuate within
individuals throughout a brain recording. For example, alpha
and beta band oscillations demonstrate transient bursts of
increased activity at rest and during cognitive tasks.®®"° Peri-
odic brain activity, therefore, is not differentiable by definition;
brain rhythms can fluctuate within individuals and can be similar
to those of other individuals in a cohort, challenging participant
differentiation.

Notably, children (ages 4-12) exhibited differentiation accu-
racy nearly equivalent to that of adolescents and adults despite
the rapid and dynamic developmental changes occurring in
childhood. This suggests that stable, individual-specific neuro-
physiological traits emerge early in life, even amid ongoing struc-
tural and functional maturation. The distinctiveness of children’s
periodic traits aligns with the development of major brain
rhythms, including the transition from lower frequencies (3-
7 Hz) to the alpha rhythm (8-13 Hz),®°" which stabilizes in
late childhood, with a major developmental turning point around
age 7.”" Similar patterns are observed in somatomotor
rhythms,”® suggesting that neurophysiological individuality is
present even as these rhythms continue to mature. These results
challenge the assumption that younger brains are less individu-
alized and highlight the resilience of periodic activity as a founda-
tion for neurophysiological models.

Interestingly, while differentiation accuracy remained high
across all age groups, other-similarity increased with age for pe-
riodic traits (Figure S8). Conversely, aperiodic traits became
increasingly distinct with age (Figure S7). These opposing pat-
terns tentatively suggest that periodic traits provide a stable
marker of individuality, while aperiodic traits may evolve adap-
tively, possibly reflecting cortical plasticity and functional inte-
gration over the lifespan. Future research should explore the
interplay between these components across cognitive and
behavioral contexts.
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We note that a growing body of evidence supports the close
relationship between the arrhythmic component of brain activity
and the balance of excitatory vs. inhibitory currents in local cir-
cuits.?”*"3%73 More recent evidence suggests that arrhythmic
brain activity tracks fluctuation in arousal during a biofeedback
paradigm where participants learn to modulate their pupil
size.”* While children may show a more stereotyped topographic
distribution of local excitatory vs. inhibitory activity, future
research is needed to disambiguate these effects from other po-
tential explanations, such as smaller head size.”®

Gene expression and the molecular basis of
neurophysiological differentiation

Our results shed light on how the alignment between cortical gene
expression and individualized neurophysiological traits evolves
across the lifespan (Figure 3). This alignment strengthens non-lin-
early with age, suggesting an increasing role of genetic factors in
shaping brain individuality during neurodevelopment. We
observed the strongest alignment between neurophysiological
traits for participant differentiation and cortical gene expression
in late adolescence (Figure 3). Genes related to ion transport
and neurotransmission appear to drive this alignment, empha-
sizing the genetic underpinnings of individualized brain activity.

We observed that specific frequency bands contribute differ-
entially to gene-neurophysiology alignment. Alpha band activ-
ity (8-13 Hz) consistently aligned with positive gene signatures
across all ages, suggesting its enduring role in maintaining
functional integrity. Conversely, theta band activity (4-8 Hz)
showed an association with neurogenesis-related genes during
early development, which diminished later in life. Beta band ac-
tivity (13-30 Hz), associated with predictive coding and motor
functions, demonstrated increasing alignment with positive
gene signatures into adulthood. These findings illustrate the dy-
namic nature of frequency-specific molecular mechanisms un-
derlying neurophysiological individuality. They may mirror the
brain’s changing functional demands across the lifespan. For
instance, the increasing alignment of beta activity with genes
involved in ion transport and neurotransmission in adulthood
may reflect the greater reliance on sensorimotor networks for
adaptive behavior.

Further, the distinct roles of positive and negative gene signa-
tures highlight the complexity of brain individuality. While the
positive signature consistently aligned with differentiable neuro-
physiological traits, the negative signature—linked to emotional
processing'®’®—showed greater variability across age groups.
This suggests that different molecular pathways govern neuro-
physiological stability and flexibility, with positive genes support-
ing cognitive and motor functions and negative genes driving
emotional regulation and responses to environmental stress.

The increasing role of sensorimotor regions in
differentiation across the lifespan

Our findings show that the cortical regions most critical for indi-
vidual differentiation shift over time, with sensorimotor regions —
including visual and somatomotor cortex—playing an increas-
ingly prominent role as individuals mature into adulthood
(Figure 2A). This shift aligns with research indicating that senso-
rimotor areas gain importance in functional brain organization
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as motor control and sensorimotor integration mature during
neurodevelopment.®®

Additionally, the alignment between cortical regions and func-
tional gradients evolves with age. In childhood, characteristic
brain regions align more closely with the visual-to-motor
gradient, which plays a key role in early brain development. In
adulthood, this alignment shifts toward the unimodal-to-trans-
modal gradient, reflecting the maturation of higher-order associ-
ation cortices responsible for complex cognitive and emotional
functions®*2>*7-""-89 (Figure 2B). We speculate that individual
deviation from the group average functional gradient across
the lifespan is critical for individual differentiation. Future studies
utilizing FCs should clarify this interpretation.

This developmental shift underscores the role of sensorimotor
regions in supporting predictive coding and inferential models,
processes fundamental to cognition.**°"#""%* The increasing
prominence of beta activity in these regions further highlights
their genetic and functional specialization during development.'®

While previous research using fMRI has argued for the central
role of the frontoparietal network in inter-individual differentia-
tion using functional connectivity, our study, in contrast, high-
lights the role of unimodal sensorimotor cortical regions in
neurophysiological traits. These results are broadly aligned
with previous work on brain fingerprinting using neural power
spectra.” %' We previously observed that periodic brain activ-
ity in medial visual regions and the left somatomotor cortex
were among the most differentiating features in healthy older
adults (mean age of 61.98; see Figure S3 in da Silva Castanheira
et al.’®). We believe that the discrepancy between modalities
underscores the distinct biological underpinnings of the hemo-
dynamic response in fMRI and electrophysiological signals in
MEG.®""'285 |ndeed, the present findings and our previous
work'® have emphasized the alignment between neurophysio-
logical traits and cortical gene expression gradients enriched
for neuronal communication, particularly ion transport and
neurotransmission. Our results thus provide insight into the po-
tential biological mechanisms underlying neurophysiological in-
dividuality across development.

Neurophysiological differentiation in older adults: A
compensatory mechanism?

Our findings also reveal greater differentiation in older adults
based on broadband neurophysiological spectral features origi-
nating from sensorimotor regions, including motor and ventral-
medial visual areas. When restricting our analyses exclusively
to the Cam-CAN cohort, composed primarily of healthy older
adults, we observed that the differentiation profile remained
strongly aligned with the unimodal-to-transmodal functional
gradient (Table S10). We therefore speculate that these effects
likely reflect compensatory mechanisms for age-related sensory
decline rather than disease-related changes, as older adults
frequently exhibit reduced neural responsiveness to sensory
stimuli.®*"® Such compensatory processes may vary across in-
dividuals, potentially explaining the increased distinctiveness of
sensorimotor activity in older adults. Importantly, sensory loss in
aging is linked to elevated dementia,®*°* suggesting that indi-
vidual variability in sensory processing could serve as an early in-
dicator of brain health.
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Our findings appear to contrast with the “last in, first out” prin-
ciple of neurodevelopment, where higher-order association
areas, associated with complex cognitive functions, take the
longest to develop and show the earliest reductions in cortical
thickness.?*?> One might predict that these transmodal associ-
ation regions —which exhibit the largest and earliest signs of ag-
ing—would become more salient for individual differentiation.
Yet, this interpretation rests on the assumption of a close link
between structural changes and functional changes observed
with neurophysiological traits, which our present findings
(Figure S5) and previous work do not support.'® In addition,
we found that the increased other-similarity of neurophysiolog-
ical traits in children could not be explained by increased
anatomical similarity between participants. Future work should
further explore the association between anatomy and neuro-
physiological traits.

In contrast, we observed weak evidence of a change in the
topographic alignment between patterns of cortical gene
expression previously associated with neurophysiological differ-
entiation and neurophysiological traits. We interpret these find-
ings to tentatively suggest that the genetic underpinnings of in-
ter-individual diversity in neurophysiology in adulthood vary
minimally across aging despite large shifts in early development
(see subheading “The increasing role of sensorimotor regions in
differentiation across the lifespan”). We argue that our findings,
taken together with our previous work, provide scientists with
a biologically grounded framework to understand the molecular
origins of inter-individual diversity in neurophysiological signals
captured throughout the lifespan. Animal models, we believe,
will be paramount to assess the causal role of genes and their
products in large-scale brain signaling.

Implications for health monitoring and brain-behavior
relationships

Our findings underscore the importance of developmental
stages in understanding neurophysiological differentiation and
highlight the need for multi-omics data incorporating diverse so-
cioeconomic, age, and geographical backgrounds.®® Extending
the concept of pediatric growth charts® to neurophysiological
traits could enable approaches to monitoring brain health for
tracking age-related brain changes. Extending this concept to
neurophysiological traits could create opportunities for moni-
toring brain health and detecting deviations indicative of neuro-
logical or psychiatric conditions.®*

The stability of both periodic and aperiodic traits has implica-
tions for understanding neurodevelopmental and neurodegener-
ative disorders. Delayed stabilization of these traits has been
linked to atypical neurodevelopment, while greater stabilization
correlates—albeit weakly—with better cognitive outcomes.*®
By establishing age-matched normative variants for neurophys-
iological differentiation, our study provides a foundation for
further research of the diagnostic and prognostic utility of these
traits in clinical contexts.

Prior work on brain fingerprinting in clinical populations,
including mild cognitive impairment, dementia, and Parkinson’s
disease, has shown that, while individuals remain differen-
tiable,'®°° the specific regions driving differentiation differ. For
example, individuals with mild cognitive impairment (MCI) with
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B-amyloid positivity and patients with Parkinson’s disease were
best differentiated from activity in somatomotor regions.'® Taken
together with our present findings, we propose that increased
differentiability in sensorimortor regions may reflect a contin-
uum, from compensatory mechanisms in healthy aging to dis-
ease-related alterations, and may represent an important marker
for health monitoring. Future studies are needed to test this hy-
pothesis and validate these features as biomarkers in older
populations.

Limitations of the study

While our study included a large, cross-sectional lifespan sam-
ple, longitudinal data are needed to provide a more accurate
depiction of how neurophysiological traits evolve within individ-
uals over time. Additionally, our gene expression analyses relied
on an adult dataset, limiting insights into gene-neurophysiology
alignment across developmental stages. Future research should
prioritize data collection in infancy and early childhood, which
remain underexplored. Advances in optically pumped magne-
tometers (OPMs) may facilitate neurophysiological data acquisi-
tion in younger populations.®’

A strength—and limitation—of our approach lies in aggre-
gating multiscale data from multiple research centers. While
site effects cannot be fully ruled out, we repeated the analyses
shown in Figures 2 and 3 using only Cam-CAN data and found
qualitatively similar effects (Tables S11 and S13). We believe
that future multi-site data sharing will be critical for assembling
large, lifespan-spanning MEG cohorts for replication and exten-
sion of these findings.

Our findings demonstrate that periodic neurophysiological traits
differentiate between individuals across all ages, yet the most
salient features for participant differentiation evolve with
increasing age. The most pronounced changes in neurophysio-
logical traits occur below 13 years old and in older adults. These
traits reflect dynamic interactions between genetic and environ-
mental influences, with sensorimotor regions playing an increas-
ingly prominent role in differentiation. By considering develop-
mental and aging trajectories, future research can better capture
the dynamic nature of the neurophysiological self and its implica-
tions for understanding individuality and brain health.

RESOURCE AVAILABILITY

Lead contact

Requests for further information and resources should be directed to and
will be fulfilled by the corresponding author, Sylvain Baillet (sylvain.baillet@
mcgill.ca).

Materials availability
This study did not generate new materials.

Data and code availability
@ Data used in the preparation of this work are available through the
Cam-CAN repository (https://Cam-CAN-archive.mrc-cbu.cam.ac.
uk/). Data from the SickKids cohort will be available upon reasonable
request from the lead contact. Cortical gene expression data were
retrieved from two open source repositories and are available from
the Allen Human Brain Atlas at https://human.brain-map.org/static/
download and the BrainSpan database at https://www.brainspan.org/
static/download.html.
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® All codes for preprocessing, data analysis, and data visualization can be
found on the project’s GitHub site (https:/github.com/jasondsc/
brainfingerprintsR4ever).

® Any additional information required to reanalyze the data reported in this
paper is available from the lead contact upon request.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Open data

CamCAN (open MEG dataset) Taylor et al.®® https://Cam-CAN-archive.mrc-cbu.cam.ac.uk/
AHBA (Cortical gene expression data) Hawrylycz et al.® https://human.brain-map.org/static/download
BrainSpan (Cortical gene expression data) Miller et al.”® https://www.brainspan.org/static/download.html.

Software and algorithms

Brainstorm Tadel et al.”® http://neuroimage.usc.edu/brainstorm/;
RRID:SCR_001761

Abagen Markello et al.'® https://abagen.readthedocs.io/en/stable/;
RRID:SCR_023832

Freesurfer Fischl'®! https://surfer.nmr.mgh.harvard.edu/;
RRID:SCR_001847

Python Python https://www.python.org;
RRID:SCR_008394

R R Core Team https://www.r-project.org;
RRID:SCR_001905

MATLAB MATLAB https://www.mathworks.com;

RRID:SCR_001622

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Participants: SickKids cohort

Data were collected from 401 healthy individuals aged 4-68 years (mean age = 20.79, SD = 14.14; 169 female; see Table S1 for de-
mographics). Resting-state eyes-open magnetoencephalography (MEG) recordings lasted approximately 5 min and were acquired
using a 151-channel whole-head CTF MEG system (Port Coquitlam, British Columbia, Canada) sampled at 600 Hz. Participants’
head positions were continuously monitored throughout the recording using three Head-Position Indicator (HPI) coils to ensure
consistent head localization. All participants also underwent structural T1-weighted MRI to inform MEG source modeling.

Participants: Cam-CAN cohort

Data were collected from 606 healthy individuals aged 18-89 years (mean age = 54.69, SD = 18.28; 299 female; see Table S2 for
demographics) from the Cambridge Center for Aging and Neuroscience repository (Cam-CAN).®® Each participant underwent a
resting-state, eye-closed MEG recording using a 306-channel VectorView MEG system (MEGIN, Helsinki, Finland). The MEG system
consisted of 102 magnetometers and 204 planar gradiometers, sampled sampling rate of 1 kHz with a 0.03-330 Hz bandpass filter.
Resting-state recordings lasted approximately 8 min. Continuous monitoring of participants’ head positions was performed using
four HPI coils. Additionally, electrooculography (EOG) and electrocardiography (ECG) electrodes were used to capture ocular and
cardiac artifacts for subsequent removal. T1-weighted MRI scans were also collected from all participants.

For demographic details of each dataset, see Tables S1 and S2.

Ethics

The procedures for the curation and analysis were reviewed and approved according to the institutional ethics policies of McGill Uni-
versity ‘s and the Montreal Neurological Institute’s Research Ethics Boards (reference no. 22-11-021). Informed consent (assent
when applicable) was obtained from all participants.

METHOD DETAILS
Preprocessing of MEG data
MEG data preprocessing was conducted using Brainstorm®® (version dated 08-08-2023) in MATLAB R2021a (Mathworks Inc., Na-

tick, Massachusetts, USA) adhering to good practice guidelines.'® Preprocessing followed our prior work on MEG individual
differentiation.®%1°
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Line noise artifacts at 50 Hz (Cam-CAN) and 60 Hz (SickKids), along with their first ten harmonics, were removed using a notch filter
bank to ensure the removal of environmental and power-line interference. Additionally, an 88 Hz artifact characteristic of the Cam-
CAN dataset was removed.

Slow-wave artifacts and DC offsets were mitigated using a high-pass finite impulse response filter with a 0.3-Hz cut-off frequency
in both datasets.

Source modeling of MEG data

Brain source models were derived using individual participants’ T1-weighted MRI scans to constrain MEG source mapping. MRl vol-
umes were segmented and labeled automatically using FreeSurfer (version 7.3.2)'°°. The MRI data were co-registered with MEG re-
cordings using approximately 100 digitized head points, when available.

We used Brainstorm’s overlapping-spheres approach with default parameters for individual head models. Cortical source models
were then computed with linearly-constrained minimum-variance (LCMV) beamforming (Brainstorm 2018 version for source estima-
tion processes). MEG source orientations were constrained to be normal to the cortical surface. A grid of approximately 15,000 lo-
cations across the cortex was used for source modeling.

Neurophysiological traits

The power spectrum of MEG source time series at each cortical location was computed using the Welch method. This involves split-
ting the MEG recordings into 2-s windows with 50% overlap, computing the Fast Fourier Transform (FFT) for each window, and then
averaging the power of the FFT coefficients across all windows to obtain a stable spectral estimate. Cortical surfaces were parcel-
lated into 148 cortical regions using the Destrieux atlas.'®® We excluded the delta band (1-4 Hz) in the SickKids dataset due to the low
signal-to-noise ratio, limiting analysis to frequencies between 4 and 150 Hz. For Cam-CAN, the analysis covered 1-150 Hz. The fre-
quency resolution was set to 0.5 Hz, resulting in matrices of 148 cortical regions by 293 (SickKids) or 300 (Cam-CAN) frequency fea-
tures for each participant. Spectral features were then exported to R (version 4.2.2)'%* for individual differentiation analyses.

Gene expression

We retrieved cortical gene expression data from six postmortem brains from the Allen Human Brain Atlas (AHBA; http://human.brain-
map.org/).%® Data were processed using the abagen Python package, ' following our previously established pipeline,'® with the
exception of using the Destrieux atlas for cortical parcellation. We selected microarray probes with the highest differential stability
to represent the expression of each gene, resulting in 20,232 genes included in our analysis.

Tissue samples were assigned to the nearest cortical region using a nonlinear registration method, focusing on minimizing
misalignment across regions. Gene expression data were normalized across tissue samples and subjects,'%® and only genes with
differential stability greater than 0.1 were retained, resulting in a final set of 9,278 genes. We retained only genes with a differential
stability (DS) greater than 0.1, following prior work using the AHBA,”®'%%:1%5:197 including our own previous analyses of neurophys-
iological trait heritability.'® This threshold ensures consistency with established literature and maximizes comparability with previ-
ously derived cortical gene expression gradients.

We used previously defined sets of positive and negative genes, categorized based on their association with participant differen-
tiation."® Genes positively correlated with differentiation were considered positive, while those negatively correlated were negative.
After filtering for stability, we retained 2,076 positive genes and 2,219 negative genes. Cortical maps representing gene expression
were generated to examine their alignment with the differentiable neurophysiological features observed across the lifespan.

QUANTIFICATION AND STATISTICAL ANALYSIS

Differentiation

Our differentiation method was adapted from previous work on neurophysiological differentiation.’”'" Neurophysiological differen-
tiation relied on differentiability of each participant across resting-state segments. We divided recordings into first and second halves
to evaluate reproducibility and distinctiveness.

We obtained Pearson correlations between participant i’s trait vector from the first segment (i.e., neurophysiological trait) and all
trait vectors from the second segment. Correct differentiation occurred if participant i’s self-similarity was greater than their other-
similarity with any other participant in the cohort. Differentiation accuracy was then defined as the percentage of participants
correctly differentiated according to this criterion.

For the SickKids cohort, we computed the differentiation accuracy in children (n = 148; 4-12 years old), adolescents (n = 57; 12-18
years old), adults (n = 196; 18+ years old), and the entire cohort (n = 401). We chose these age group boundaries to maximize the
number of participants in the children and adult groups. To verify the robustness of our results, we slightly adjusted the definitions
of the age groups and assessed their impact on differentiation accuracy. Details of this robustness check are presented in Figure S6.

A similar approach was used for the Cam-CAN cohort: young adults (18-45 years, n = 204), middle-aged adults (45-65 years,
n = 194), older adults (65+ years, n = 208), and the entire cohort (n = 606).

Additionally, we computed a continuous differentiability score for each participant.® This score was calculated by z-scoring self-
similarity relative to the mean and standard deviation of other-similarity scores. A high differentiability score indicated that a
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participant’s traits were more distinct from others in the cohort. We fitted the linear relationship using the Im() function in R to test the
relationship between age and differentiability:

differentiability ~ p xage +intercept.

Bootstrapping differentiation accuracy

To assess reliability, we derived bootstrapped 95% confidence intervals for each differentiation accuracy. Participants were
randomly sampled with replacement, subsampling 485 participants for the entire cohort and 175 for each age group in the Cam-
CAN sample. For the SickKids Institute sample, 321 participants for the entire cohort were subsampled. Bootstrapping was repeated
1,000 times, and 2.5 and 97.5™ percentiles of the resulting accuracy distribution were computed to provide confidence intervals,
which reflect the empirical uncertainty.

The specific choice of the number of subsampled participants was made to balance the computational load with statistical power
while ensuring consistency across the bootstrap samples. By defining our approach in this way, we aimed to maintain an adequate
sample size that ensures robust estimation of the true differentiation accuracy for each cohort while accommodating practical con-
siderations for data processing.

Band-limited neurophysiological traits
We replicated differentiation analyses using canonical electrophysiological frequency bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-
18 Hz), beta (13-30 Hz), gamma (30-50 Hz), and high gamma (50-150 Hz). Delta band activity was excluded from SickKids analyses
due to poor signal-to-noise ratio (SNR), limiting reliable differentiation.

Each canonical frequency band was subjected to the same differentiation analysis.

Recording artifacts and differentiability

We assessed the effect of common physiological artifacts on differentiability using regression models. Artifact levels were quantified
using root-mean-square (RMS) values of ocular (VEOG, HEOG), cardiac (ECG), and head movement (HLU channels) artifacts across
the MEG recording. Analyses were conducted separately for each dataset to account for specific differences.

We used regression models to determine whether physiological artifacts influenced individual differentiability, performing analyses
separately in SickKids and Cam-CAN to account for cohort-specific differences. For Cam-CAN, head motion, cardiac, and ocular ar-
tifacts were included as nuisance covariates in linear regression models (see Tables S3). For SickKids, we assessed the effects of total
intracranial volume (TIV) and head motion (Tables S6 and S7). To address the possibility of non-linear confounding, we repeated the
regression models including quadratic terms for intracranial volume and log-transformed head motion. The results were consistent with
the main analyses, with age-differentiability effects remaining significant after non-linear adjustment (see Table S7).

To further control for recording artifacts, we created a subgroup of participants who were matched on TIV and head motion artifact.
This subsampling procedure yielded a sample size of 202 participants, 57 of whom were children below the age of 12. We then tested
the robustness of our findings in this subsample: We examined whether i) we observed a similar age-differentiation effect with a two-
sample permutation t test and ii) whether the most salient features for differentiating the artifact-matched sample of children were
topographically aligned to those of the entire cohort of children. The findings of these analyses are presented in Figure S4.

Empty-room differentiation

To establish that individual differentiation was not driven by environmental or instrumental noise, we conducted empty-room differ-
entiation using MEG recordings from the day of each participant’s visit. For the SickKids dataset, only a single empty-room recording
was available for the entire cohort. This recording was used to approximate the baseline noise level. Empty-room data were pre-pro-
cessed similarly to participant data, except for physiological artifact removal. These recordings were used to generate pseudo neuro-
physiological traits. Differentiation accuracy using these pseudo-traits served as a baseline performance measure, ensuring that re-
sults were not due to noise.® The results of this analysis are plotted in Figure 1 (i.e., the gray bars).

Aperiodic & periodic spectral parametrization

To assess the contribution of aperiodic neurophysiological activity to individual differentiability, we parametrized the participants’
MEG source power spectra using the ms-specparam tool in Brainstorm.®'%® We extracted the aperiodic background components
from periodic oscillatory peaks in each source signal spectrum.

For the SickKids dataset, the frequency range for analysis was set between 4 and 50 Hz, while for the Cam-CAN dataset, it was set
between 1 and 40 Hz. The peak width limits differed slightly, with the SickKids dataset having limits between 1 and 8 Hz, and the Cam-
CAN dataset between 0.5 and 12 Hz. We specified a maximum of six peaks per spectrum, with a minimum peak amplitude of 1 arbi-
trary unit (a.u.). The peak detection threshold was set at two standard deviations above the mean, while the proximity threshold,
determining how close detected peaks could be, was set at 0.75 standard deviations. The aperiodic component was modeled using
a fixed mode to ensure consistency across participants.

These hyperparameters for spectral parametrization were determined based on visual inspection of the spectra, to ensure that the
model captured the relevant spectral features while minimizing the risk of overfitting or misinterpretation.
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Following spectral parametrization, the (a)periodic components were used to derive neurophysiological traits defined from (a)pe-
riodic spectral features. The differentiation procedure was then carried out using the previously described approach, where we eval-
uated how well participants could be differentiated based solely on the aperiodic vs. periodic spectral components fits of their cortical
neurophysiological activity.

Relative contribution of features

We calculated intraclass correlations (ICC) using a one-way random effects model to evaluate the contribution of each feature (fre-
quency x cortical region) to participant differentiation.®'%%° This approach follows from previous brain-fingerprinting work.% %1619
ICC quantifies the ratio of within-participant to between-participant variance of neurophysiological traits, where high ICC values indi-
cate that a specific neurophysiological feature is consistently similar within participants across repeated measures while being
distinct across different participants. Therefore, features with high ICC values contribute most significantly to participant
differentiation.

To generate the brain maps presented in Figures 2 and S11, we initially averaged ICC values within each canonical frequency band
(e.g., theta, alpha, beta, gamma). Following this, we averaged across the resulting frequency band maps to derive a broadband sa-
liency topography. This two-step averaging was performed to ensure that each frequency band had an equal influence on the overall
saliency map, independent of differences in frequency band definitions (e.g., the theta bandwidth spans 4 Hz, while gamma covers at
least 20 Hz).

We pooled data from both the SickKids and Cam-CAN datasets to obtain a comprehensive representation of how feature saliency
changes across the lifespan. Participants were ordered by ascending age, and we used a sliding window approach to calculate ICC
values for each age group. Specifically, we selected a moving window of 100 participants with 75% overlap between consecutive
windows, which resulted in 37 ICC maps representing increasing age bins. Note, we tested the robustness of our results using a mov-
ing window of 50 participants with 50% overlap (see Tables S11 and S13). This method allowed us to capture the gradual changes in
the contribution of different cortical regions and frequency bands to individual differentiation as participants age. The results of this
analysis are visualized in Figure 2A, which illustrates the shifting topographic features that characterize individualized neurophysi-
ology across the lifespan.

Neuroanatomical similarity

To ensure that increased other-similarity observed in children was not due to anatomical features, we conducted additional analyses
incorporating neuroanatomical data. Specifically, we extracted nine anatomical features for each cortical region defined by the Des-
trieux atlas,'% which were provided by the FreeSurfer segmentation process.'®' These features included metrics such as cortical
thickness, surface area, and volume.

We used these anatomical features to construct an anatomical similarity matrix that quantified the similarity between each pair of
participants based on their anatomical characteristics. This matrix was derived by computing Pearson correlations between the
anatomical features of all possible participant pairs.

We then evaluated whether this anatomical similarity could explain the observed other-similarity in neurophysiological traits,
particularly the greater similarity observed in children. To do this, we computed the linear relationship between participant-pair
anatomical similarity and neurophysiological similarity across all pairs.

Cortical functional hierarchy

We assessed whether the pattern of cortical regions contributing most to differentiation increasingly aligned with the functional or-
ganization of the cortex with age. Specifically, we evaluated their correspondence with the unimodal-to-transmodal gradient, which
represents the functional hierarchy of cortical regions from primary sensory to higher-order association areas.®"

To evaluate this correspondence, we computed the spatial alignment between the ICC maps (derived from the sliding window
approach, see above) and the unimodal-to-transmodal functional gradient obtained using the neuromaps toolbox.''° This alignment
was quantified using Pearson correlation for each age bin, capturing the degree to which regions involved in individual differentiation
align with the functional gradient of the cortex.

We further examined whether this alignment changed non-linearly across the lifespan by fitting a third-order polynomial model to
capture potential trends. To test the robustness of observed changes, we used 1,000 autocorrelation-preserving permutation tests
using the Hungarian spin method. These permutation tests generated spin-based resampling of cortical maps to assess statistical
significance while preserving spatial autocorrelation."'"''2

For each spin permutation, we recalculated the alignment between the permuted functional gradient map and the ICC maps, fitting
a third-order polynomial to the resulting alignment data. We then computed the permuted p-value by comparing the observed third-
order polynomial beta-coefficients with those obtained from the permuted data, allowing us to assess the statistical significance of
the observed alignment patterns.

We also evaluated the alignment between the pattern of cortical regions contributing the most to differentiation and the visual-to-
motor functional gradient,®* hypothesized to be more relevant for early brain development. The same procedures for spatial align-
ment and permutation testing were applied (see Figure 2A).
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Gene expression across the lifespan
To evaluate the stability of positive and negative gene signatures identified in our previous work, '® we analyzed gene expression data
across developmental stages, from 8 post-conception weeks to 40 years of age, using data from 16 cortical regions obtained from
the BrainSpan Atlas.’® Gene expression data were grouped into five life stages'®"%""%: fetal (8-37 post-conception weeks), infant
(4 months—1 year), child (2-8 years), adolescent (11-19 years), and adult (21-40 years). For each developmental stage, we computed
the average expression levels of the positive and negative gene sets across the cortical regions.

To assess the stability of these spatial gene expression patterns across different life stages, we calculated Pearson correlations
between the cortical expression patterns of all pairs of life stages. This resulted in a symmetric topographic similarity matrix for
the positive and negative gene sets separately (Figure S12).

Alignment to gene expression
To investigate whether the alignment between the pattern of cortical regions that contribute to differentiation and cortical gene
expression changed across the lifespan, we computed the spatial alignment between the ICC maps and the positive gene expression
signature. This alignment was assessed using Pearson correlations to quantify the similarity between the spatial distribution of differ-
entiable features and gene expression patterns.

We used a sliding window approach across different age bins to examine changes in this alignment throughout the lifespan. This
allowed us to explore how the developmental progression of neurophysiological features aligns with the expression of genetic sys-
tems across the cortex.

Partial Least Squares analysis
To further explore the alignment between cortical gene expression and neurophysiological traits, we conducted a Partial Least
Squares (PLS) analysis for each age group. This multivariate analysis was used to relate the most differentiable cortical regions
(as quantified by ICC values) at each age bin (Figure 2A) to cortical gene expression patterns obtained from the Allen Human Brain
Atlas.®®

For each age bin, we constructed two data matrices: one containing distinctive neurophysiological traits (represented by the ICC
values) and another containing the cortical gene expression data. The traits matrix had four columns (each representing a frequency
band) and 148 rows, corresponding to the cortical regions of the Destrieux atlas. The gene expression matrix had 9,278 columns
(representing genes) and 148 rows (representing cortical regions).

To ensure comparability, we z-scored the columns of each matrix before applying Singular Value Decomposition (SVD) to the
cross-covariance matrix between the neurophysiological and gene matrices. The resulting latent components provided insight
into the covariance structure between the neurophysiological features and gene expression across age bins:

(Y'X) = USV.

Here, Uis a 9,278 by 4 orthonormal matrix, and Vis a 4 by 4 orthonormal matrix, with each column representing a latent component
of the covariance between neurophysiological traits and gene expression. This decomposition was repeated for each age group us-
ing a sliding window approach, as described above. We reported the percentage of covariance explained by each latent component,
giving insight into the relationships between neurophysiological features and genetic expression across age bins."'*1"°

To assess the significance of the latent components, we conducted 1,000 spatial autocorrelation-preserving permutation tests us-
ing the Hungarian spin method (detailed above). We generated null distributions of singular values from these permutations to
compute empirical p-values, which were corrected for multiple comparisons using False Discovery Rate (FDR) correction, as imple-
mented in MATLAB.

To determine the contribution of individual genes and frequency bands to the observed patterns of covariance, we computed Pear-
son correlations between each variable’s spatial distribution over the cortex (i.e., gene expression and ICC values) and the opposing
PLS brain score pattern.'®”® These loadings are bounded between —1 and 1, facilitating intuitive interpretation—large absolute load-
ings indicate strong contributions to the latent component of covariance.

Lastly, to evaluate the consistency of gene contributions across the lifespan, we assessed the similarity between the gene loadings
derived from each age bin with our previously reported gene loadings from an independent PLS analysis using MEG data from the
Human Connectome Project.'® This was done using Pearson correlations (Figure 3B, right panel), which provided insight into the
stability of the genetic signature governing differentiable neurophysiological activity throughout development and aging.

Participant age permutation analyses

To assess the robustness of the non-linear neurodevelopmental effects presented in Figures 2 and 3, we permuted the association
between each participant’s neurophysiological trait and their age 500 times. Each permuted dataset was analyzed using the same
sliding-window approach described in Relative Contribution of Neurophysiological Traits. A third-order polynomial regression model
was then fit to the resulting alignment values, and the true beta coefficients were compared to those from the permutations to derive a
p-value.
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