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Abstract

Short-wave-infrared (SWIR) imaging can extend drone operations into fog and rain, yet
the optimum spectral strategy remains unclear. We evaluated a drone-borne quantum-dot
SWIR camera inside a climate-controlled tunnel that generated calibrated advection fog,
radiation fog, and rain. Images were captured with a broadband 400-1700 nm setting
and three sub-band filters, each at four lens apertures (f/1.8-5.6). Entropy, structural-
similarity index (S55IM), and peak signal-to-noise ratio (PSNR) were computed for every
weather—-aperturefilter combination. Broadband SWIR consistently outperformed all fil-
tered configurations. The gain stems from higher photon throughput, which outweighs the
modest scattering reduction offered by narrowband selection. Under passive illumination,
broadband SWIR therefore represents the most robust single-camera choice for unmanned
aerial vehicles (UAVs), enhancing situational awareness and flight safety in fog and rain.

Keywords: SWIR imaging; visibility enhancement; all-weather drones; UAV; autonomous
navigation; fog; rain

1. Introduction

Unmanned aerial vehicles (UAVs) have become increasingly valuable for a wide
range of civil and industrial applications, including infrastructure inspection, emergency
response, precision agriculture, and surveillance. Many of these tasks depend on reliable
visual perception systems that enable drones to operate safely and autonomously. However,
environmental conditions such as fog, haze, and rain significantly degrade visibility in
the visible spectrum, reducing image contrast and obscuring critical scene details. These
challenges pose serious limitations to drone-based operations, especially in time-sensitive
or safety-critical scenarios.

To overcome the limitations of visible-band imaging in degraded visual environments
(DVESs), imaging systems operating in the short-wave infrared (SWIR) band, which typ-
ically span wavelengths from 900 to 2500 nm, have received growing attention. SWIR
wavelengths are scattered less by small water droplets than visible light, enabling clearer
imaging through fog and haze due to favorable behavior in the Rayleigh and Mie scattering
regimes [1]. Furthermore, the SWIR spectral region contains atmospheric transmission
“windows” where absorption by water vapor is relatively low, most notably between 1.5
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and 1.7 um, allowing light to propagate with reduced attenuation in humid and foggy
conditions [1]. Unlike thermal cameras, which image emitted heat and often lack fine
detail, SWIR sensors capture reflected light much like visible cameras, offering sharper
textures and improved scene comprehension when ambient illumination or active lighting
is available [2].

Numerous studies have validated these advantages. Driggers et al. [1] conducted a
foundational comparison of SWIR, visible, and near infrared (NIR) imaging under foggy
conditions and found that longer wavelengths provided superior target/background
contrast, haze penetration, and long-range detection. Lang et al. [2] demonstrated in
multi-band experiments that SWIR imagery maintains high signal-to-noise ratio (SNR) and
scene clarity over distances up to 20 km in haze, while visible images deteriorate quickly.
Jobert et al. [3] further confirmed SWIR’s advantage over visible sensors in long-range field
trials under diverse atmospheric conditions, emphasizing SWIR's resilience in real-world
scenarios. In the context of autonomous navigation, Judd et al. [4] compared SWIR, visible,
long-wave infrared (LWIR), and light detection and ranging (LiDAR) under artificial fog
and concluded that longer wavelengths may extend visibility. St-Laurent et al. [5] further
demonstrated that combining SWIR with NIR and LWIR sensors improved navigation
safety in snowy and foggy driving conditions.

Although fog has been more extensively studied, rain presents an equally significant
obstacle to optical systems due to strong scattering and glare from larger water droplets. In
controlled experiments, Willitsford et al. [6] demonstrated that a range-gated active SWIR
system using 1550 nm laser illumination could suppress near-field backscatter and form
clear images of targets at 10 km, even when ambient visibility dropped to 3—4 km. Similarly,
automotive testing has shown that SWIR cameras suffer less degradation in light rain com-
pared to red-green-blue (RGB) systems [7]. These results indicate that SWIR offers both pas-
sive and active imaging potential under rainfall conditions. Additionally, Sheeny et al. [8]
explored polarization-based imaging in the thermal IR for degraded weather conditions,
highlighting the potential of multispectral systems—including SWIR—for robust visibility
under complex atmospheric scenarios.

Complementing hardware advances, algorithmic techniques have been developed to
enhance SWIR utility in fog. Duan et al. [9] proposed a dual-band defogging model that
fuses SWIR and visible images to reconstruct obscured scene details. Their approach uses
the deeper penetration of SWIR imagery to guide the enhancement of visible-light features,
resulting in improved clarity over traditional single-band defogging methods. Meanwhile,
Pavlovi¢ et al. [10] developed a deep learning framework that enables accurate object
detection in SWIR imagery captured under fog and haze by applying cross-spectral training
and domain adaptation. These works demonstrate how image processing can leverage
SWIR'’s physical advantages to support automated perception in degraded environments.

Despite these developments, little research has been conducted on the quantitative
performance of SWIR sensors mounted on UAVs operating in realistic fog and rain con-
ditions. Most prior work has been ground-based or focused on automotive or manned
systems [1-4,6,7,10]. While drone-compatible SWIR cameras have become increasingly
available [11], their operational capabilities in repeatable, controlled atmospheric condi-
tions remain poorly documented. This represents a key knowledge gap in enabling UAV
missions in adverse weather.

In this study, we address that gap through a systematic evaluation of a SWIR imag-
ing system tested in the CEREMA PAVIN tunnel—a unique full-scale climate test facility
designed to simulate realistic fog (advection and radiative) and rain environments under
controlled conditions (Figure 1a) [12]. This work tests three interrelated hypotheses regard-
ing passive VNIR-SWIR imaging in fog and rain from an unmanned platform: (i) within
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the 0.4-1.7 um window, specific sub-bands should yield higher perceptual detail than a
broadband collection once scattering, absorption, and sensor throughput are considered;
(ii) practical image quality requires sufficient photon flux, and thus, sub-bands should
approach this limit in low-illumination fog; (iii) stopping the lens down modestly can
reduce optical aberrations and flare, potentially yielding a perceived-contrast gain in fog or
rain. We evaluated a Q.Fly drone payload (Figure 1b) with integrated colloidal quantum
dot (CQD) image sensors, which offer greater affordability and simpler/broader spectral
tunability compared to epitaxial infrared sensors (Figure 1c). Unlike conventional SWIR
systems, the camera core is an ultracompact, thermoelectric cooler (TEC)-less module that
redefines size, weight, and power (SWaP) for field-deployable short-wave infrared imaging
in VTOL UAV applications. We analyzed image quality across different lens apertures and
spectral filters, using quantitative metrics such as entropy, structural similarity index, and
peak signal-to-noise ratio. Our results provide one of the first controlled, quantitative as-
sessments of UAV-mounted SWIR performance in low-visibility environments and support
the adoption of broadband SWIR systems for robust, all-weather drone operations.
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Figure 1. (a) CEREMA’s PAVIN climatic tunnel view prior to the experiment. (b) SWIR payload
mounted on a drone. (c) Spectral responsivity profile of SWIR channel with selected optically
filtered bands.

2. Materials and Methods
2.1. SWIR Camera

The quantum dot SWIR camera (Q.Cam, Quantum Advanced Solutions Ltd., Oxford,
UK)), as part of the UAV payload (Q.Fly, Quantum Advanced Solutions Ltd., Oxford, UK),
was chosen owing to its ultracompact (35 x 25 x 25 mm?), lightweight (30 g), and power-
efficient (1.3 W) core based on a 640 x 512-pixel front-illuminated and uncooled focal plane
array with 5 um pitch and a broad 400-1700 nm (VNIR-SWIR) spectral response, operated
in global-shutter mode at 30-60 fps [13]. The SWIR-optimized lens with a focal length of
50 mm and manual f-stop was paired with the sensor, providing a field of view (FOV) of
3.7°, suitable for long-range imaging. Under fixed-exposure, shot-noise-limited conditions,
the SNR is proportional to the pupil diameter (D) and thus inversely proportional to
the f-number. Accordingly, stopping down from f/1.8 to £/5.6 is expected to reduce the
SNR by roughly the same 3.1-fold. For outdoor reliability, the camera performs on-board
corrections (bad-pixel replacement and two-point non-uniformity corrections for gain,
offset, illumination, and temperature) in real time. The Q.Fly payload is a lightweight
(600 g) multi-sensor module engineered for DJI Matrice 300/350/400 RTK platforms. The
SWIR channel accepts quick-swap spectral filters, allowing band-selective acquisition.
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Three discrete filters were chosen to probe complementary regions of the SWIR spectrum
while respecting the sensor’s responsivity curve: (i) 900 nm longpass captures both the first
and second SWIR atmospheric windows and sits just beyond the visible/NIR transition;
(ii) 1450 nm longpass marks a second atmospheric window and avoids a water-vapor
absorption peak; (iii) 1550 nm narrowband coincides with the eye-safe telecom line used
by most SWIR range-gated illuminators and drone-borne LiDARs. The SWIR camera is
co-aligned with an RGB and thermal module for all-weather situational awareness. The
payload is also equipped with a PPK GNSS module for precise geo-tagging.

2.2. Experiment Setup

The experimental pipeline consisted of a spectrally tunable payload mounted on a
drone, climatic tunnel cycles producing calibrated rain and fog, varied optical settings of the
camera, and offline batch computation of image quality metrics over multiple image stacks.
All imaging trials were carried out inside CEREMA’s PAVIN climatic tunnel—a 50 m long
enclosed test facility equipped to generate repeatable fog and rain environments under
tightly controlled temperature, droplet-size, and droplet-density conditions [12]. A DJI
Matrice 350 RTK UAV (SZ DJI Technology Co., Ltd., Shenzhen, China) was positioned
on a static landing pad 100 cm above the floor at one portal of the tunnel and fitted with
the Q.Fly payload described above. Stand-alone cameras were mounted on a tripod. The
SWIR camera recorded image frames for selected runs (Figure 2). The distance between the
cameras and targets was approximately 50 m.

Rain Fog

[

30 mm/h 120 mm/h 180mmh || 80m 60 m 40 m

Figure 2. Comparison of broadband and SWIR images captured at 50 m distance from the targets
upon progressively attenuated visibility in radiative fog and rain. The lower the visibility, the higher
the information loss.

Two fog regimes were produced in separate test blocks: advection (sea/maritime) fog
and radiation (ground/continental) fog. The advection fog, generated with demineralized
water, featured droplet radii with peaks at 0.8 um and 8 um, whereas the radiative fog,
generated with mineralized (tap) water, had droplet radii peaking at approximately 0.5 um.
Each fog type was stepped through calibrated meteorological visibilities of 20, 40, 60,
and 80 m, as measured by Konica-Minolta T-10A illuminance meters (Konica Minolta,
Tokyo, Japan) installed at mid-tunnel. Rain trials followed, using the overhead sprinkler
array to deliver uniform intensities of 30, 120, 180, and 250 mm/h. A high-contrast
target, a human-silhouette, and road signs were mounted at the back of the tunnel. For
every distance/obscurant combination, we captured images with four SWIR filter settings
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(broadband, 900 nm, 1450 nm, and 1550 nm) and variable f-stop (f/1.8, 2.8, 4.0, and 5.6).
Environmental data (air temperature, relative humidity, droplet density, and rainfall rate)
were logged. Representative images were saved in 16-bit TIFF, then processed offline to
compute image quality metrics and target-contrast curves as a function of visibility. This
controlled tunnel protocol ensured that all cameras viewed identical, repeatable fog and
rain scenes, providing a robust basis for the performance comparisons reported in the
following sections.

2.3. Image Evaluation and Content Loss

The selection of appropriate image quality assessment (IQA) metrics is crucial for
objectively evaluating the performance of imaging systems and processing algorithms,
particularly in challenging environments such as those involving SWIR cameras under
varying weather and visibility conditions. Among the myriad of IQA metrics, entropy,
SSIM, and PSNR have been widely adopted due to their distinct yet complementary
approaches to quantifying image information.

Entropy (Equation (1)), rooted in information theory, provides a measure of the rich-
ness or randomness of information within an image. A higher entropy value generally
indicates a greater amount of detail and textural complexity, which can be particularly rele-
vant when assessing images captured in conditions where information might be obscured
or degraded, such as in foggy [14] and rainy conditions [15]. Its application in computer
vision and image processing allows for the quantification of information content, which is
essential for tasks such as segmentation and feature extraction, making it a valuable tool
for understanding the impact of environmental factors on image information.

H(x) = ~Y_P(x)log, P(x) M

where x is image pixel; P(x) is pixel intensity.

While entropy focuses on the statistical distribution of pixel intensities, the struc-
tural similarity index (SSIM) (Equation (2)) offers a perceptually oriented assessment by
comparing the structural information, luminance, and contrast between a reference and a
distorted image. Developed as an improvement over traditional metrics like mean squared
error (MSE), SSIM aims to mimic the human visual system’s ability to perceive structural
similarities, making it a more reliable indicator of perceived image quality [16,17]. Its
widespread use in evaluating the effects of compression, noise, and blur aligns well with
the challenges encountered in outdoor imaging scenarios [18-20].

(2uesty +C1) (203 + )

SSIM(x,y) = (u%+u§+cl)(gg+a§+cz)

2

where x, y are two images, y, and Hy are average pixel intensities, oxy is the covariance of
pixel intensities between the two images, ox and oy are the variance of the pixel intensities,
and C; and C; are small constants preventing numerical instability.

Complementing these, the peak signal-to-noise ratio (PSNR) (Equation (3)) remains a
widely used metric due to its simplicity and computational efficiency, providing a quan-
titative measure of the difference between an original and a processed (distorted) image.
PSNR is defined via MSE and represents the ratio between the maximum possible power of
a signal and the power of corrupting noise [21]. Although PSNR'’s correlation with human
perception can sometimes be limited, especially when compared to SSIM, it serves as a
valuable benchmark for signal fidelity and is particularly useful for quantifying the level
of noise or distortion introduced by various factors, including atmospheric conditions or
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sensor limitations. Its common application in evaluating lossy compression and image
reconstruction quality makes it a standard metric for assessing the raw signal integrity in
diverse imaging applications [18,19].

MAXyy

MSE(x,y) ®)

PSNR = 20-log;,
where x, y are two images, MSE(x, y) represents mean squared error between them, and
MAXy,y is the maximum pixel intensity of the two images. The SSIM/PSNR were calculated
relative to the clear image without fog or rain applied.

Entropy, SSIM, and PSNR were chosen because together they capture complementary
aspects of image fidelity: statistical information content, perceptual similarity, and signal
integrity. Entropy traces back to Shannon’s information theory [20] and quantifies the
average surprise of pixel intensities; it rises with scene detail and falls as fog or rain
obliterate texture [19]. SSIM, proposed by Wang et al. [16], compares local luminance,
contrast, and structure, closely mirroring human visual perception. PSNR remains the de-
facto engineering metric for signal degradation; although less correlated with perception
than SSIM, it provides an intuitive dB-scale measure of noise or blur relative to full-
scale intensity [20,22]. In the literature, entropy, SSIM, and PSNR have been routinely
applied to assess imagery quality in adverse-visibility research including various UAV
systems [23-26].

It is important to note that higher entropy does not necessarily indicate better visual
quality in this context; it merely quantifies complexity. While both SSIM and PSNR improve
with image quality (higher is better), they respond to distortions differently. By analyzing
all three, we obtain a holistic view of how SWIR settings preserve (or lose) information
as visibility degrades. The combined use of entropy, SSIM, and PSNR thus offers a mul-
tifaceted evaluation, capturing aspects of information content, perceptual similarity, and
signal fidelity, all of which are critical for a thorough analysis of image quality under
varying environmental conditions.

3. Results

The selected metrics were derived from images captured with various optical filters
(including broadband, 900 nm, 1450 nm, and 1550 nm) and apertures (f/1.8, 2.8, 4.0, and
5.6) under three types of weather conditions: rain, advection fog, and radiation fog. In
practice, very high f-numbers, although they improve depth of focus, significantly reduce
light intake and may require longer exposures—an important trade-off for real-time UAV
operations. Therefore, we limited our analysis to moderate aperture values. Additionally,
the captured images may contain various types of noise and optical distortions (e.g., lens
aberrations, sensor noise, etc.), which can affect the computed values of entropy, SSIM, and
PSNR and should be considered when interpreting the results.

3.1. Rain Conditions

Under rain conditions, SWIR imaging performance varied with filter configuration,
exhibiting both expected trends and some anomalies. Figure 3 compares narrowband and
broadband SWIR imagery during light, moderate, and heavy rain. Performance metrics
were computed for all four filter types at four aperture settings. Overall, the broadband
(unfiltered) and narrowband-filtered SWIR imagery provided consistent visibility of the
target scene across rain intensities. Longpass SWIR did show occasional advantages in
rain, but no firm conclusion can be drawn, as any advantage likely depends on other
optical settings. These mixed results in rain highlight that while broadband SWIR performs
robustly overall, there are scenarios where a SWIR filter can enhance specific image features.
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Still, during moderate rain conditions, both narrowband and broadband SWIR suffered
degradation according to all the metrics, underscoring that a high density of small droplets
and multiple scattering can overwhelm any passive optical imaging system. More generally,
these findings highlight the importance of properly choosing camera settings for a particular
application, an issue rarely discussed in the literature. Previous studies have generally
examined only a narrow range of parameters without varying camera settings [15].

Rain
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Figure 3. Entropy, SSIM, and PSNR estimated for varied apertures and optical bands in different
visibilities under rain conditions. The colored lines represent the average metric across a set of
band filters.

3.2. Advection Fog

Results for advection fog (a maritime-type fog with relatively large droplet sizes)
showed modest differences between broadband and narrowband SWIR imagery (Figure 4).
The SWIR cameras with all the varied settings were able to penetrate this fog to a degree,
revealing objects that were barely perceptible in the visible-light reference at 40 m visibility;
since the tunnel was 50 m long, some data points were omitted. Quantitatively, however,
the image quality metrics in advection fog did not strongly favor either configuration.
In fact, the faster optics slightly outperformed the slower ones under the most severe
advection fog conditions. We attribute this to the fully open aperture collecting more light,
thus compensating for signal loss that occurs in the partially closed lens. Contrary to our
hypothesis (iii) that stopping down might improve image contrast, in advection fog, the
wider aperture (f/1.8) produced better metrics due to greater photon collection. These
results suggest that, for fog with larger droplets and moderate optical depth, neither a
narrowband SWIR filter nor different aperture settings provided significant benefit. The
broadband SWIR and fast optics already capitalize on the reduced scattering of longer
wavelengths (relative to visible light) and benefit from a higher overall photon count,
yielding comparable clarity in advection fog without the need for spectral filtering.
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Figure 4. Entropy, SSIM, and PSNR for varied apertures and optical filters in advection (left) and
radiation (right) fog conditions. The filled regions represent standard deviation, color-coded for
corresponding data points.

3.3. Radiation Fog

In radiation fog (a ground/continental fog with typically smaller droplet sizes but
often high number density), the broadband SWIR configuration produced a higher entropy,
SSIM, and (partly) PSNR than the narrower band filters. Figure 4 presents all the metrics
for the target images under varying radiation fog densities. Entropy and SSIM demonstrate
that the broadband approach preserved image features more effectively, yielding the top
values of all configurations in this fog type. However, as the visibility decreased, the
difference between filters became less significant. Initially, we hypothesized that the
narrowband filters might excel in radiation fog due to reduced scattering at that longer
wavelength. However, the data show the opposite effect. Nevertheless, considering the
amount of light being blocked by filtering, one could argue that the 1550 nm showed the
lowest relative decrease in each metric as radiation fog visibility decreased, which might
be owing to less pronounced scattering. Notably, these findings apply to moderate fog
conditions (visibility between 40 and 80 m) and limited illumination, essentially a photon-
starved environment. Under dense fog (<20 m), both SWIR and visible bands become
saturated by scattering, leading to a near-complete white-out. In this regime, scattering
becomes largely wavelength-independent, overwhelming any advantages from aperture or
spectral filtering.

3.4. Statistical Evaluation

To assess whether the observed differences in image quality are statistically meaning-
ful, we applied non-parametric procedures that do not assume normality or equal variances.
For each image-quality metric (PSNR, entropy, and SSIM) we first ran a Kruskal-Wallis H-
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test to evaluate the null hypothesis that the metric comes from the same distribution across
the levels of each experimental factor—weather condition, aperture, and spectral filter.
Whenever a Kruskal-Wallis test was significant («x = 0.05), we performed post hoc Dunn
pairwise comparisons with Benjamini-Hochberg false-discovery-rate (FDR) correction to
control the expected proportion of false positives within that factor.

PSNR. Weather exerted a very strong effect on PSNR (Kruskal-Wallis p < 0.0001).
Dunn tests confirmed that advection fog differed significantly from both radiation fog and
rain (both adjusted p < 0.0001). Aperture and filter showed no significant influence on
PSNR (p = 0.754 and p = 0.176, respectively).

Entropy. Aperture had a moderate main effect on entropy (p = 0.022), driven by lower
entropy at f/5.6 compared with f/1.8 (p = 0.044) and £/2.8 (p = 0.024). Filter produced a
highly significant main effect (p < 0.0001); key pairwise differences included broadband vs.
1450 nm and broadband vs. 1550 nm (both p < 0.0001) and 900 nm vs. 1450 nm (p = 0.0036).
Weather had no significant impact on entropy (p = 0.252).

SSIM. Weather again showed a significant main effect (p = 0.0077), with advection
fog differing from rain (p = 0.0067). Filter was significant as well (p = 0.0041); broadband
vs. 1550 nm (p = 0.0081) and 1450 nm vs. 1550 nm (p = 0.042) were the principal contrasts.
Aperture did not significantly influence SSIM (p = 0.577).

Overall, weather consistently governed PSNR and SSIM, whereas aperture and filter
exerted metric-dependent effects. The divergent sensitivity of PSNR, SSIM, and entropy
underscores their distinct formulations and justifies their joint use when quantifying content
degradation under adverse conditions.

4. Discussion

The experimental results indicate that the broadband SWIR approach offers consis-
tently high image quality in diverse obscurant conditions, calling for a reinterpretation
of earlier assumptions about narrowband performance in fog. In fact, the broadband
configuration marginally outperformed the narrowband filter in small-particle fog, which
we interpret as evidence that maximizing photon capture generally improves image fidelity
when scattering is not extreme. In large-droplet fog, however, the experiments produced
mixed results. This finding shows that the narrowband’s theoretical advantage in fine-
particle fog does not necessarily translate to superior real-world performance under our test
conditions. Notably, across every spectral and optical setting, all quality metrics (entropy,
SSIM, and PSNR) registered their highest values in rain. As theory predicts, the larger and
less optically dense droplets in rain preserved more information.

Our tunnel results align with and, in several cases, extend the trends reported in recent
flight trials and multispectral studies. Lang et al. [2] showed that single-band 1550 nm
SWIR improves haze penetration versus RGB, yet their outdoor data also hinted at photon
starvation, an effect we quantify here through the broadband-narrowband gap. Likewise,
the multisensor benchmark of Bijelic et al. [14] showed that SWIR degrades more slowly
than is visible, as the liquid-water path increases in a controlled fog chamber, mirroring our
trends. Conversely, the active range-gated system of Willitsford et al. [6] achieved superior
rain penetration by injecting 1550 nm laser power, highlighting that passive broadband
and active narrowband are complementary rather than contradictory approaches. Taken
together, these cross-study comparisons reinforce our conclusion that photon throughput,
whether provided by broad passive collection or active illumination, dominates SWIR
performance in degraded visual environments.

A key factor in broadband SWIR’s superior performance is likely the greater total light
throughput and the associated improvement in SNR. The broadband sensor captures a
wide range of wavelengths simultaneously, delivering a higher overall photon count to
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the detector. Even though shorter SWIR wavelengths within that band may experience
more scattering, the sheer increase in collected light can enhance image signal and reduce
noise after image processing. In contrast, the narrowband filters restrict the sensor to a
much narrower slice of the spectrum, dramatically reducing the incoming light. In the low-
illumination, high-scattering environment of fog, this reduced signal can lead to a lower
SNR, effectively eroding image quality. Thus, any scattering reduction benefit at 1550 nm
may be offset by the narrowband’s poorer photon statistics. In addition, no significant
improvement in fog/rain image clarity was observed from stopping down the lens; on the
contrary, the loss of light with higher f-number hurt SNR more than it helped image quality.
This trade-off should be acknowledged when interpreting the image quality metrics in
our results.

Radiation fog is characterized by a high concentration of small droplets, so one
would expect longer wavelengths to have an edge. However, many of those droplets
are still on the order of a few microns in diameter, meaning both 1.55 um and the shorter
wavelengths in the SWIR range undergo Mie scattering rather than Rayleigh scattering. The
difference in scattering cross-section may not be large enough to significantly boost image
clarity on its own. In addition, the spectral region around 1.4 pm coincides with a strong
water absorption band in the atmosphere; a moisture-rich fog could further attenuate the
narrowband signal. The broadband camera, by covering a continuum of wavelengths, likely
captures portions of the spectrum with better transmission, for example, around 0.9-1.2 pm
where water absorption is lower. This means the broadband system inherently leverages
the penetration benefits of longer wavelengths and gains extra signal from wavelengths
that are less affected by absorption, yielding a more robust image overall.

Revisiting our initial theoretical assumptions in light of these findings, we see that
spectral optimization alone (choosing a single wavelength to minimize scattering) is not
guaranteed to maximize image quality. These results underscore the importance of con-
sidering total system performance for real-world applications, as any theoretical gains in
clarity from spectral filtering may be negated by the reduction in SNR. Ultimately, the
consistent outperformance of the broadband approach suggests that collecting a wider
spectral range is a more reliable approach for maintaining visibility in inclement conditions,
provided that chromatic aberration is properly managed. Importantly, these conclusions
apply primarily to passive imaging; systems using active illumination or other modalities
may exhibit different wavelength-dependent behavior. It should be noted that adequate
denoising models tailored to SWIR imaging, particularly for low-illumination and high-
scattering environments, and image fusion with longer wavelengths bands such as MWIR,
LWIR, or SWIR LiDAR have the potential to significantly enhance imagery outputs [27,28].

5. Conclusions

The main contributions of this study are the following: (1) the first controlled tunnel
experiment comparing broadband vs. narrowband passive SWIR on a UAV in fog and rain;
(2) quantitative evidence that broadband SWIR yields higher image quality than any single
sub-band at moderate visibilities; (3) analysis of lens aperture effects, showing a SNR drop
from /1.8 to £/5.6; and (4) an established baseline of SWIR image-quality metrics (SSIM,
PSNR, and entropy) in degraded weather for the UAV-vision research community.

Broadband SWIR imaging emerged as a robust performer across all adverse visibility
conditions examined in this study, demonstrating relatively high image-quality metrics in
heavy rain, advection fog, and radiation fog alike, and in most cases outperforming the
narrowband SWIR filters. Although all systems collapse in extremely dense fog (<20 m
visibility), the broadband SWIR sustains a measurable advantage in moderate conditions,
as quantified by SSIM, PSNR, and entropy, in the scientifically reproducible environment
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of the climatic CEREMA PAVIN tunnel. This finding revises our understanding of SWIR
imaging in fog: it shows that casting a wider “net” over the SWIR spectrum can yield
better results than isolating a single wavelength, even in situations where that wavelength
was theoretically favored. It is noteworthy that the conclusions are drawn using a CQD
imager and that the results could differ from those of other sensor technologies, though the
qualitative trend (photon throughput matters) likely remains.

In summary, our results affirm that broadband VNIR-SWIR is a preferable strategy
for enhancing visibility in fog and rain. By capturing a broad span of wavelengths, the
broadband system maximizes light throughput and maintains higher image signal lev-
els, preserving scene details more effectively under scattering conditions. This insight is
valuable for the design of future imaging systems and visibility enhancement technolo-
gies, underscoring that maximizing SNR through broad spectral capture can outweigh
the benefits of spectral selectivity in real-world fog and rain. We understand that other
techniques such as polarization, active illumination, and multispectral fusion may further
enhance visibility in ways that a passive broadband imager alone cannot; hence, future
work will leverage this dataset to train multi-band fusion algorithms that jointly exploit
RGB, SWIR, and LWIR imagery and to prototype tunable SWIR sensors that adapt their
spectral response to changing weather.
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Abbreviations

The following abbreviations are used in this manuscript:

SWIR Short-Wave Infrared

UAV Unmanned Aerial Vehicle
VTIOL  Vertical Take-Off and Landing
DVE Degraded Visual Environment
VIS Visible (Spectral Band)

NIR Near-Infrared

MWIR  Mid-Wave Infrared

LWIR Long-Wave Infrared

IR Infrared
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LiDAR Light Detection and Ranging
SSIM Structural Similarity Index
PSNR Peak Signal-to-Noise Ratio
SNR Signal-to-Noise Ratio

CQD Colloidal Quantum Dot
SWaP  Size, Weight and Power
FOV Field of View

TEC Thermoelectric Cooler

IQA Image Quality Assessment
PPK Post-Processed Kinematic
GNSS  Global Navigation Satellite System
RTK Real-Time Kinematic

RGB Red, Green, Blue
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