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Abstract

In this thesis, we investigate two non-Noetherian rings of arithmetic interest:

the p-adic completed group ring Zp[[ZN
p ]], where ZN

p denotes the direct product

of countably infinitely many copies of Zp, and the integral completed group ring

Z[[G]] associated to compact p-adic Lie groups. We further study the module

theory over these rings and explore arithmetic applications of the resulting

algebraic structures.

For the first ring Zp[[ZN
p ]], we establish a general structure theorem for finitely

presented torsion modules over a class of commutative rings that need not

be Noetherian. This theorem is then applied to the study of the Weil-étale

cohomology groups of Gm for curves over finite fields. A particularly striking

outcome is that we prove an Iwasawa Main Conjecture under mild assumptions.

As an application, we show that the inverse limit, taken with respect to norm

maps, of the p-primary parts of degree-zero divisor class groups can only form

a finitely generated Zp[[ZN
p ]]-module under a small class of ZN

p -extensions.

For the second ring Z[[G]], we study its coherence properties. We prove that

for every compact p-adic Lie group G of rank d, the ring Z[[G]] is not coherent,

but is d+3-coherent. This result contributes to a better understanding of the

homological behavior of modules over this non-Noetherian Iwasawa algebra.



Impact Statement

This thesis contributes to pure mathematics, specifically within Algebraic

Number Theory and Iwasawa Theory. The primary impact of this research

lies in advancing the theoretical understanding of non-Noetherian algebraic

structures and their arithmetic applications, addressing technical limitations

that have previously constrained research in this area.

Beneficial Use within Academia:

1. Establishing a New Algebraic Framework: Traditional Iwasawa

theory relies heavily on Noetherian rings. This thesis bridges a critical

gap by establishing a general structure theorem for finitely presented tor-

sion modules over a class of non-Noetherian rings, specifically Zp[[ZN
p ]].

By replacing previously ”ad hoc” arithmetic definitions with intrinsic al-

gebraic characterizations, this work provides future scholars with a stan-

dardized toolkit. This framework allows for a more conceptual approach

to studying characteristic ideals, which can be utilized by researchers to

explore broader classes of infinite extensions of global fields.

2. Advancing Arithmetic of Function Fields: The application of the

newly developed structure theorems has led to part of proof of an Iwa-

sawa Main Conjecture for degree-one Weil-étale cohomology groups un-

der mild assumptions. This result strengthens and generalizes existing

literature regarding divisor class groups and Drinfeld modular towers. It

offers researchers deeper insights into the arithmetic behavior of global
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function fields, potentially influencing future work on the special values

of L-functions and geometric extensions.

3. Foundations for Non-Commutative Integral Iwasawa Theory:

The thesis also impacts Integral Iwasawa Theory by investigating the

homological properties of the integral completed group ring Z[[G]]. By

proving that these rings are (d+3)-coherent for compact p-adic Lie groups

of rank d, this research resolves open questions regarding their coherence.

This finding lays a crucial algebraic foundation for the development of

non-commutative integral Iwasawa theory, opening new pathways for

investigating class group growth in non-abelian extensions.

Broader Impact: While this research is primarily theoretical, it contributes

to the fundamental advancement of mathematical knowledge. By clarifying

complex algebraic structures, it supports the long-term vitality of Number

Theory, a discipline that historically underpins modern advancements in cryp-

tography and information theory.
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Chapter 0

Introduction

0.1 Overview

The goal of this thesis is to advance the understanding of non-Noetherian alge-

bra that arises naturally in the development of Iwasawa theory, by establishing

a structural algebraic framework and exploring its arithmetic applications. We

focus on two main objects of study:

• Zp[[ZN
p ]], the completed p-adic group ring of the direct product ZN

p of a

countably infinite number of copies of Zp;

• Z[[G]], the integral completed group ring associated to compact p-adic

Lie groups G.

This introduction is devoted to the former. For an introduction to the latter,

see Part II, Chapter 6.

Let us briefly review the motivation for studying the algebra Zp[[ZN
p ]]. This

motivation is closely tied to the number of independent Zp-extensions of global

fields. Let us first recall the number field case. Fix a prime number p and a

number field K. For each prime p of K lying over p, let Up denote the group of

local units of Kp, and U1,p denote the subgroup of units congruent to 1 mod-

ulo p. Set U =
∏

p|p Up and U1 =
∏

p|p U1,p. There is a diagonal embedding

e : O×
K ↪→ U , sending each global unit ϵ to (ϵ, . . . , ϵ) ∈ U . Let E1 ⊂ O×

K
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be the subgroup whose image lies in U1, and let Ē1 denote its closure. It is

well known that there exists at least one Zp-extension of K, but there may

be several independent such extensions. The number d of independent Zp-

extensions of K is related to the Zp-rank of Ē1 (See Washington [79, Thm.

13.4]). According to the well-known Leopoldt’s Conjecture, for every number

field K, this number d is expected to satisfy d = r2 +1 = rankZp(Ē1)− r1 +2,

where r1, r2 denote the numbers of real and complex embeddings of K, respec-

tively. Leopoldt’s conjecture is known in many cases; in particular, it holds

for every finite abelian extension of Q or of an imaginary quadratic field (see,

for example, Ferri–Johnston [39, Thm 1.1] and the references therein; see also

Washington [79, Cor. 5.32]). Let K ′ be the compositum field of all the Zp-

extensions of K. Then we have Gal(K ′/K) ∼= Zdp. This compositum field,

which is the canonical example for Zdp-extensions, has been extensively utilized

by many researchers, for example Greenberg [45] which studies Iwasawa invari-

ants. In particular, he proved that if K has only one prime lying over p, then

the µ-invariant is bounded as the Zp-extension varies over all such extensions.

This shows that studying the compositum field is a meaningful and worthwhile

pursuit.

In contrast, it is of interest to investigate the analogous situation for global

function fields. Let us now recall the notion of Zp-extensions in the con-

text of global function fields. Suppose k denotes a global function field with

the constant field Fq. The first example that naturally comes to mind when

discussing such extensions is the constant field — that is, an extension of k

obtained by forming a tower of finite field extensions of the constant field. In

this case, the base field Fq is extended by a union of finite fields Fqpn . It should

be noted that this type of Zp-extension exhibits different properties from the

cyclotomic Zp-extension of number fields. For instance, any constant field ex-

tension of a global function field is unramified (See [68, Prop. 8.5]). Since such

Zp-extensions involve only the extension of the constant field, they arguably

carry relatively trivial arithmetic information about global function fields.
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However, for global function fields, the most significant departure from the

number field case arises in the case of geometric extensions of k — these are

algebraic extensions K/k whose constant field coincides with that of k. As

previously noted, the number of independent Zp-extensions is always finite in

the case of number fields. By contrast, this is no longer true for global function

fields. A prominent counterexample is provided by the Zp-extensions arising

from Drinfeld modules (See [68, P. 199]). In particular, a Carlitz module is a

rank-one Drinfeld module defined over A = Fq[T ] with base field k = Fq(T ).

Since the existence of a Drinfeld module is often a delicate matter (See [68, P.

231]), we restrict our attention here to the Carlitz module Φ associated with

A and use it to illustrate the constructions that follow.

Fix once and for all an algebraic closure k̄ of k, and a non-zero prime ideal

p ⊂ A generated by an irreducible polynomial of degree d ≥ 1. For each n ∈ N,

define kn := k(Φ[pn+1]) as the field obtained by adjoining the pn+1-torsion of

Φ to k. Since pn | pn+1 implies Φ[pn] ⊆ Φ[pn+1], we have a tower of fields:

k ⊂ k0 ⊂ k1 ⊂ · · · ⊂ k∞ :=
⋃
n

kn.

It is well known that each kn/k is an abelian extension, with Galois group

Gn := Gal(kn/k) ∼= (A/pn+1)× ∼= (A/p)× × (1 + pA)/(1 + pn+1A) =: ∆× Γn,

where ∆ ∼= Gal(k0/k) ∼= (A/p)× is a cyclic group of order qd − 1, and Γn =

Gal(kn/k0) is the p-Sylow subgroup of Gn. The extension kn/k is totally

ramified at p and tamely ramified at the place ∞. In particular, kn/k0 is

ramified only at p. This motivates the definition of the p-cyclotomic extension

of k as

kp,cyc := k(Φ[p∞]) =
⋃
n

k(Φ[pn])
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which is a Galois extension with the Galois group

G∞ := Gal(kp,cyc/k) = lim←−
n

Gal(kn/k) ∼= ∆× Γ, where Γ := lim←−
n

Γn.

To analyze the group G∞, we consider the completion of A at p. We have

Ap
∼= Fp[[πp]], where πp is the irreducible generator of p and Fp is the residue

field of Ap. The unit group A×
p admits a filtration Un := 1 + pnAp. Let kp

be the completion of k at p and Cp be the completion of an algebraic closure

of kp. We establish, once and for all, an embedding k̄ ↪→ Cp. Via the Galois

action on the formal Drinfeld module Φ : Ap → Ap{{τ}} (See [67]), we obtain

a p-cyclotomic character κ : G∞ → A×
p which is, in fact, an isomorphism.

Then we know Γ ∼= U1 since Γn ∼= U1/Un+1
∼= (1 + pAp)/(1 + pn+1Ap). Since

n→ +∞, the minimal number of generators of U1/Un+1 tends to infinity (See

[68, Prop. 1.6]), it is obvious that U1
∼= ZN

p . LetK be the subfield of kp,cyc fixed

by Γ. Then K/k is a ZN
p -extension of k, which is totally ramified at p. This

provides a natural and concrete example demonstrating why the development

of Iwasawa theory for ZN
p -extensions of function fields is both meaningful and

necessary.

There has been considerable pioneering work on this topic. Let K/k be a ZN
p -

extension of a global function field k. The major difficulty in this setting is

that the completed p-adic group ring Zp[[ZN
p ]] of ZN

p is not Noetherian, which

prevents the direct application of classical techniques in Iwasawa theory. In

response to this challenge, Bandini, Bars, and Longhi were the first to in-

troduce the notion of “pro-characteristic ideal” under certain conditions, as

a generalization of the classical Iwasawa-theoretic characteristic ideal (See [7,

Def. 1.3]). They applied this concept to the study of several natural Iwa-

sawa modules over K/k. For instance, the authors investigated degree-zero

divisor class groups in [7, 9], as well as the Pontrjagin duals of the p-primary

Selmer groups of abelian varieties defined over global function fields in [8, 9].

These efforts culminated in their joint proof, with Anglès, of a main conjec-
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ture for divisor class groups over Carlitz-Hayes cyclotomic extensions of k (see

[3]). More recently, Bandini and Coscelli [10], as well as Bley and Popescu

[12], have extended such results to broader classes of Drinfeld modular towers.

However, a significant issue arises in that the definitions of “pro-characteristic

ideals” used in the aforementioned works heavily depend on specific arithmetic

contexts. In particular, the definitions vary depending on the Iwasawa module

under consideration, each requiring arithmetic assumptions to define a pro-

characteristic ideal tailored to that module (See [7, Thm 1.2, Def. 1.3], [8,

Thm. 1.2]). As a result, the definition appears somewhat ad hoc—crafted to

align with arithmetic phenomena rather than arising as an intrinsic algebraic

characterization of the modules over the complete group ring Zp[[ZN
p ]].

By adopting a more conceptual algebraic approach, Part I of this thesis aims to

strengthen the theoretical foundations established in earlier works. As a start-

ing point, we identify a natural class of commutative rings — which notably

includes all rings of the form Zp[[ZN
p ×G]] for finite abelian groups G — that

are generally non-Noetherian, yet still admit a structure theorem for a broad

class of finitely presented torsion modules (see Theorem 2.2.1). This result

is potentially of independent interest and, in particular, leads naturally to a

generalized notion of the characteristic ideal, which both extends and refines

the pro-characteristic ideal constructions used in previous literature.

We then prove that the inverse limits (with respect to corestriction) of the

p-completions of the degree-one Weil-étale cohomology groups of Gm over fi-

nite extensions of k in K are finitely-presented torsion Zp[[ZN
p ]]-modules. By

applying our structure theory to these modules, we obtain strengthened and

more general versions of the main results in [3], [10] and [12] (see Theorem

4.3.2 and Remarks 4.4.2 and 4.4.3). Moreover, this approach also enables us

to prove surprisingly that the inverse limit (with respect to norm maps) of the

p-parts of the degree-zero divisor class groups of finite extensions of k in K is

finitely generated as a Zp[[ZN
p ]]-module for a remarkably small class of exten-
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sions K/k (see Corollary 4.4.1). Finally, we present two major open questions

whose resolution may lead to further advances in the theory.

0.2 Content

In this section, we present a summary of the content covered in Chapters 1-7

individually.

In Chapter 1, we introduce a general structure theorem for finitely presented

torsion modules over a broad class of unital commutative rings, including cer-

tain non-Noetherian cases. After presenting several types of rings, we then

establish the structure theorem for finitely presented modules over elementary

divisor domains, which form a special subclass of Prüfer and Bézout domains.

In Chapter 2, to apply the structure theorems presented in 1, we introduce

the notions of admissible modules and admissible rings. We then prove two

structure theorems for finitely presented admissible modules. Furthermore, we

investigate the admissibility relationship between certain kinds of Zp-algebras

R and their group rings Zp[G] for finite abelian groups G, which sets the stage

for the arithmetic study of Zp[[ZN
p ×G]]-extensions in Chapter 4.

In Chapter 3, in light of the two structure theorems we established in Chapter

2, we define two types of characteristic ideals and examine the relationship be-

tween them. Later, we develop a framework for inverse limits of compact rings

and introduce the notion of I•-completeness for finitely presented modules.

The I•-completeness is employed later in Section 4.2 to show that the defini-

tion of one of our two characteristic ideals encompasses the pro-characteristic

ideal for quadratically-presented torsion modules.

In Chapter 4, following a brief introduction to Weil–étale cohomology theory

and some preparatory steps to adapt our algebraic results for arithmetic appli-

cations, we show that the degree-one Weil–étale cohomology groups of Gm over
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finite extensions inside a ZN
p × G-extension form quadratically-presented tor-

sion Zp[[ZN
p ×G]]-modules. Furthermore, using the characteristic ideals defined

earlier, we formulate an Iwasawa Main Conjecture and prove it under certain

mild assumptions. Finally, we apply this result to the study of degree-zero

divisor class groups.

In Chapter 5, we propose two meaningful questions to be addressed in future

research. The first concerns the ring-theoretic properties of Zp[[ZN]]; the second

explores potential applications of our theory to the study of the arithmetic of

number fields.

In Chapter 6, we introduce the motivation to develop integral Iwasawa theory

and review recent progress in the field to clarify our interest in studying the

properties of integral completed group rings associated with p-adic Lie groups

in Chapter 7.

In Chapter 7, we complete the proof of a more general theorem showing that

for every compact p-adic Lie group G of rank d, Z[[G]] is d+3-coherent rather

than coherent. Along the way, we introduce the notion of pro-discrete Z[[G]]-

modules, establish a version of Nakayama’s Lemma for such modules, and

investigate the divisibility properties of Tor-groups.

0.3 Notation

In this thesis, Z denotes the ring of integers. N denotes the set of natural num-

bers. Q denotes the field of rational numbers. C denotes the field of complex

numbers. Qp denotes the field of p-adic numbers, that is, the completion of Q

with respect to the p-adic valuation. Zp denotes the ring of p-adic integers. Fq
denotes the finite field with q elements, where q is a power of a prime number

p. Throughout this thesis, A and R always denote unital rings, the precise as-

sumptions on which will be specified as needed in context. M will be used to

denote a module over such rings, with additional structure specified as needed.
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Spec(A) denotes the spectrum of a commutative ring A. All other notations

will be introduced and explained as they arise in the text.



Chapter 1

Non-Noetherian algebra

In this chapter, we review several algebraic results concerning properties of

commutative unital rings that are not necessarily Noetherian, along with mod-

ules over such rings.

We begin with Warfield’s Structure Theorem (Theorem 1.1.2) which serves

as the starting point for the structural results developed in Chapter 2. This

theorem describes the structure of finitely presented modules over commutative

rings whose localizations at all maximal ideals are valuation rings.

Next, we introduce various classes of rings, including semisimple rings, von

Neumann regular rings, semihereditary rings, Prüfer domains, Bézout domains,

elementary divisor domains. These classes form a hierarchy:

• “Von Neumann regular rings generalize semisimple rings”;

• “Semihereditary rings generalize von Neumann regular rings”;

• “An integral semihereditary ring is called a Prüfer domain”;

• “A Bézout domain is a special case of a Prüfer domain”;

• “An elementary divisor domain is a special case of a Bézout domain”.
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Finally we present the structure theorem (Theorem 1.6.1), which gives the

structure of finitely presented modules over elementary divisor domains. We

also highlight a key property of module presentations (Proposition 1.7.4) that

will be used frequently in the chapters that follow.

1.1 Warfield’s structure theorem

In this section, we follow Warfield [75] to show a decomposition property for

finitely presented modules over certain commutative rings. Throughout this

section, all rings are assumed to be commutative and unital. We begin by

recalling the definition of a cyclic module.

Definition 1.1.1. Let R be a commutative and unital ring. A cyclic R-module

is a module generated by a single element, i.e. M = Rx. If M is a cyclic R-

module, then it is isomorphic to R/AnnR(x). In addition, if AnnR(x) is a

principal ideal, then the module M is said to be cyclically presented.

Theorem 1.1.2 (Warfield’s Structure Theorem). A commutative ring R has

the property that every finitely presented module is a summand of a direct sum

of cyclic modules if and only if the localisation Rm is a generalized valuation

ring for each maximal ideal m in R.

To prove this theorem, we first introduce the notion of a generalized valuation

ring, which extends the concept of valuation rings to the setting of non-integral

rings.

Definition 1.1.3. A commutative ring is a generalized valuation ring if it

satisfies one of the three equivalent conditions:

• for every element a and b, either a divides b or b divides a;

• the ideals of R are totally ordered by inclusion;

• R is a local ring and every finitely generated ideal is principal.
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Proposition 1.1.4. If M is a finitely presented module over a generalized

valuation ring, then M is a direct sum of cyclically presented modules.

Proof. See [75, Thm. 1].

The third item of the Definition 1.1.3 describes the relationship between gen-

eralized valuation rings and local rings. We now present a result that further

elucidates this relationship in the context of finitely presented modules.

Proposition 1.1.5. If R is a commutative local ring and every finitely pre-

sented module is a summand of a direct sum of cyclic modules, then R is a

generalized valuation ring.

To prove this result, we need the following two lemmas.

Lemma 1.1.6. Let R be a commutative local ring which is not a generalized

valuation ring. Then for every n > 0, there are finitely presented modules

which are indecomposable and cannot be generated by fewer than n elements.

Proof. See [75, Thm. 2].

Lemma 1.1.7. Any indecomposable summand of a direct sum of cyclic mod-

ules over a commutative local ring is again a cyclic module.

Proof. See [6, Thm. 1]

Proof of Proposition 1.1.5. Assume R is not a generalized valuation ring.

Then by Lemma 1.1.6, there exists a finitely presented indecomposable module

M which is generated by no fewer than two elements. By the hypothesis of

Proposition 1.1.5, M is a summand of a direct sum of cyclic modules. Thus

we know it is again a cyclic module by Lemma 1.1.7. We obtain a contradic-

tion.
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To complete the proof of Theorem 1.1.2, we need the following notion.

Definition 1.1.8. Let R be a commutative ring. An R-submodule A of an R-

module B is relatively divisible if for all r ∈ R, rA = A∩ rB. An R-module P

is RD-projective if for every short exact sequence 0→ A→ B → C → 0 with

A relatively divisible in B, the map Hom(P,B)→ Hom(P,C) is surjective.

Proposition 1.1.9. Let R be a commutative ring and M a finitely generated

R-module. Then M is RD-projective if and only if M is finitely presented and

for each maximal ideal m of R, the localisation Mm is a direct sum of cyclically

presented Rm-modules.

Proof. See [76, Prop. 4].

Proposition 1.1.10. Let R be a commutative ring. Then an R-module is RD-

projective if and only if it is a summand of a direct sum of cyclically presented

modules.

Proof. See [76, Prop. 1, Cor. 1]

Proof of Theorem 1.1.2. It is well known that if a ring R satisfies the con-

ditions of Theorem 1.1.2, then so does Rm for every maximal ideal m. This

follows from the fact that every finitely presented Rm-module is of the form

Mm, where M is a finitely presented R-module. The necessity then follows

from Proposition 1.1.5. Conversely, by Proposition 1.1.10, it suffices to prove

that every finitely presented module is RD-projective. By Proposition 1.1.9,

a finitely generated R-module M is RD-projective if and only if M is finitely

presented and Mm is RD-projective for every m. Applying Proposition 1.1.10

and Proposition 1.1.4, we obtain the desired result.
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1.2 Semisimple rings

In this section, we recall some properties of semisimple rings, which will play

an important role in our theory. We begin by recalling the definition.

Definition 1.2.1. A module is called left (or right) semisimple if it is a direct

sum of left (or right) simple modules. A ring is called semisimple if as the left

(or right) module over itself, the ring is a semisimple left (or right) module.

In the proposition below, we list some alternative equivalent definitions of

semisimple rings (see [69, Chap. 4, §4.1, Prop. 4.5]).

Proposition 1.2.2. The following conditions on a ring R are equivalent.

(i) R is semisimple.

(ii) Every left (or right) R-module M is semisimple.

(iii) Every left (or right) R-module M is injective.

(iv) Every short exact sequence of left (or right) R-modules splits.

(v) Every left (or right) R-module M is projective.

(vi) The global dimension (gl.dim) of R is equal to 0.

As is well known, semisimple rings play a key role in many areas of mathe-

matics, including commutative algebra, representation theory, and algebraic

number theory. The examples below illustrate the ubiquity of such rings.

Example 1.2.3. We list several kinds of rings as examples of semisimple

rings.

(i) Every field is semisimple. More generally, any division ring is also

semisimple.
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(ii) Every Artinian ring is semisimple over itself.

(iii) If R is semisimple, then so is Mn(R).

(iv) If R and S are semisimple, so is R× S.

(v) By Maschke’s Theorem and Proposition 1.2.2(ii), for every finite group

G over a field F with characteristic not dividing the order of G, F[G] is

semisimple. As an application, for F = Qp and G = Gal(L/K) for any

finite extension K/Qp, we know Qp[G] is semisimple.

Next, we recall a well-known result that describes the structure of semisimple

rings: the Wedderburn–Artin Theorem.

Proposition 1.2.4 (Wedderburn-Artin). Let R be a semisimple ring. Then

R is isomorphic to a product of finitely many Mni
(Di) for some integers ni

and division ring Di, where Di and ni, up to permutation of the index, are

uniquely determined.

By Proposition 1.2.4, we know that any commutative semisimple ring is iso-

morphic to a finite direct product of fields. On the other hand, by identifying

matrix rings over division rings with simple Artinian rings, one obtains another

version of the theorem. (see [2, Chap 4, §13, Thm. 13.6]).

Proposition 1.2.5. A ring R is semisimple if and only if it is a finite product

of simple Artinian rings.

1.3 von Neumann regular rings

To extract further information from semisimple rings, we introduce a concept

originally formulated by John von Neumann in [74], where he referred to such

rings as “regular rings”.

Definition 1.3.1. A ring R is a von Neumann regular ring if for every element
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a ∈ R there exists an x in R such that a = axa.

Note that if a is a unit in R, then x = a−1 satisfies the equation a = axa.

Intuitively, the element x in this equation can be viewed as a weak inverse of

a. A ring is said to be von Neumann regular if every element in the ring admits

at least one such weak inverse. Several examples of von Neumann regular rings

can be found in [49, P. 110].

Example 1.3.2. We list several kinds of rings as examples of von Neumann

regular rings

(i) Each field is von Neumann regular by taking x = a−1 for every a ̸= 0 and

taking x equal to any element for a = 0. Moreover, any division ring is

von Neumann regular.

(ii) The matrix ring Mn(R) for n ≥ 1 over every von Neumann regular ring

R is von Neumann regular again.

(iii) Let K be a division ring and let V be a (possibly infinite-dimensional) left

K-vector space. Then the endomorphism ring EndK(V ) is von Neumann

regular.

From the perspective of ideals and modules, we can gain further insight into

the structure of von Neumann regular rings, as illustrated in the following

proposition.

Proposition 1.3.3. The following conditions are equivalent.

(i) R is a von Neumann regular ring.

(ii) Every principal left (resp. right) ideal of R is generated by an idempotent.

(iii) Every principal left (resp. right) ideal of R is a direct summand of the

left (resp. right) R-module R.



1.3. von Neumann regular rings 16

(iv) Every finitely generated left (resp. right) ideal of R is generated by an

idempotent element.

Proof. For all items above, we just prove the claims about left ideals as the

right ideal cases can be deduced by symmetrical arguments.

(i) ⇔ (ii): (ii) means that for every a ∈ R, there is an idempotent e ∈ R

such that Ra = Re. By (i), we know for every a ∈ R, there exists an x

such that a = axa. Let e = xa. It is easy to check e is an idempotent and

Re ⊆ Ra. Besides, we have a = axa = ae. Hence Ra ⊆ Re. Conversely,

suppose Ra = Re for some idempotent e, then we have e = xa and a = ye for

some x, y ∈ R. Then we have axa = ae = yee = ye = a for every a ∈ R.

(ii) ⇔ (iii): Since for every idempotent e ∈ R, R = Re ⊕ R(1 − e), then we

know every principal right ideal is a direct summand if it is generated by an

idempotent e. Conversely, since any direct summand of R is generated by an

idempotent, (ii) can be deduced from (iii) naturally.

(ii) ⇔ (iv): By (ii) and inductive method, we only need to prove the sum of

two principal left ideals is principal. By (ii) we know any principle left ideal is

generated by idempotent. Let Re1 and Re2 generated by idempotents e1 and

e2. By (ii), we know the left ideal Re2(1− e1) is generated by an idempotent

f . Thus there exist b, c ∈ R such that e2(1 − e1) = bf and f = ce2(1 − e1).

Since e2 = e2e1 + bf and fe1 = ce2(1 − e1)e1 = 0. Thus we can have some

computations as follows.

e1 = e1 + f − fe1 − f 2 = (1− f)(e1 + f),

e2 = e2e1 + bf = e2e1 + e2f − e2f 2 − e2(fe1) + b(fe1) + bf 2

= (e2 − e2f + bf)(e1 + f),
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Hence we can know Re1 +Re2 ⊆ R(e1 + f). By

e1 + f = e1 + ce2(1− e1) = (1− ce2)e1 + ce2,

we know R(e1 + f) ⊆ Re1 +Re2. The proof of converse arrow is obvious.

Corollary 1.3.4. All semisimple rings are von Neumann regular.

Proof. By Proposition 1.2.2 (iv), every left ideal of a semisimple ring is a direct

summand. So is every finitely generated ideal. Since every direct summand

is generated by an idempotent, and by Proposition 1.3.3 (ii), we obtain the

result.

To illustrate certain local–global properties of von Neumann regular rings, we

now present the following proposition.

Lemma 1.3.5. A commutative ring is von Neumann regular if and only if for

every maximal ideal m of R the localization ring Rm is a field.

Proof. See ([37, Thm 1]). Note that in this paper, the author refers to local-

ization rings as “quotient rings”.

We also require the following two lemmas concerning the homological dimen-

sion properties of von Neumann regular rings. Before stating the next lemma,

we briefly recall the notion of weak global dimension. The (left) global dimen-

sion gl. dim(R) of a ring R is defined as

gl. dim(R) := sup{pdR(M) :M is a left R-module},

where pdR(M) denotes the projective dimension of M . Similarly, the (left)

weak global dimension w.gl.dim(R) of R is defined as

w.gl.dim(R) := sup{fdR(M) :M is a left R-module},
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where fdR(M) is the flat dimension of M . Equivalently, w.gl.dim(R) ≤ n if

and only if TorRn+1(M,N) = 0 for all R-modules M and N . In particular, one

always has

w.gl.dim(R) ≤ gl. dim(R),

so the weak global dimension is a priori a weaker invariant than the global

dimension.

Lemma 1.3.6. A commutative local ring R is a valuation ring if and only if

its weak global dimension (denoted by w.gl.dim) is less than or equal to 1. In

particular, it is a field if and only if w.gl.dim(R) = 0.

Proof. See [37, Thm 4].

Lemma 1.3.7. Let R be a ring, M,N be R-modules and S be a multiplica-

tively closed subset of R. For every integer n ≥ 0, we have TorRn (M,N)S ∼=

TorRS
n (MS, NS). Thus w.gl.dim(R)= sup

m
{w.gl.dim(Rm)}, where m runs over

all maximal ideals of R.

Proof. See [21, VII, Ex 9, 10, 11].

Proposition 1.3.8. A commutative ring R is von Neumann regular if and

only if w.gl.dim(R) = 0.

Proof. It is obvious by Lemma 1.3.5, Lemma 1.3.6 and Lemma 1.3.7.

The following proposition motivates the introduction of the notions of admis-

sible modules and admissible rings in Chapter 2.

Proposition 1.3.9. For a commutative ring R, w.gl.dim(R) ≤ 1 if and only

if the localization ring Rm of R at every maximal ideal m of R is a valuation

ring.
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Proof. It is obvious by Lemma 1.3.6 and Lemma 1.3.7.

1.4 Semihereditary rings and Prüfer domains

The main focus of this section is on certain properties of semihereditary rings,

a notion that generalizes von Neumann regular rings. We begin by recalling

the definition of a semihereditary ring.

Definition 1.4.1. If a commutative ring R has the property that every finitely

generated ideal of R is projective as an R-module, we call it a semihereditary

ring.

One can also define left (resp. right) semihereditary rings by replacing ideals

with left (resp. right) ideals in the definition. Since our work primarily focuses

on the commutative case, we present the definition accordingly. Furthermore,

if every ideal of a ring is projective, the ring is called a hereditary ring. A

commutative semihereditary integral domain is referred to as a Prüfer domain.

Example 1.4.2. There are several examples of semihereditary rings.

i) Each field is semihereditary.

ii) Each Dedekind domain is a hereditary ring. Indeed, every ideal I of a

Dedekind domain R is finitely generated. For a finitely generated R-

module, being projective is equivalent to being locally free. For every

ideal I ⊂ R and prime ideal p ∈ Spec(R), the localisation Ip is a free

Rp-module of rank one. Thus, Prüfer domains can be viewed as a gen-

eralization of Dedekind domains to the non-Noetherian setting. Further-

more, semihereditary (resp. hereditary) rings extend this notion to the

non-integral and noncommutative context. For example, the matrix ring

Mn(R) over a Prüfer domain R is a semihereditary ring (see [52, P.44

Example 2.32(c)]).
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iii) The direct product of any two semihereditary(resp. hereditary) rings is

also semihereditary(resp. hereditary) (see [52, P.44 Example 2.32(c)]).

The following corollary, derived from Proposition 1.3.3(iv) and Definition 1.4.1,

demonstrates that semihereditary rings generalize the notion of von Neumann

regular rings.

Corollary 1.4.3. Each von Neumann regular ring is semihereditary.

As observed, the direct product of any two semihereditary (resp. hereditary)

rings is again semihereditary (resp. hereditary). We now present an equivalent

characterization of a semihereditary ring R in terms of its total quotient ring

Q(R).

Proposition 1.4.4. A commutative ring R is semihereditary if and only if

the total quotient ring Q(R) is von Neumann regular ring and the localization

ring Rm is a valuation ring for every maximal ideal m of R.

Proof. See [37, Thm 2].

The Proposition 1.4.4 offers a perspective for recovering semihereditary rings

from von Neumann regular rings. Consequently, using the weak global dimen-

sion properties of von Neumann regular rings, we can characterize semihered-

itary rings as follows (see [37, Thm 5]).

Proposition 1.4.5. For every commutative ring R and its total quotient ring

Q(R), the following two statements are equivalent:

i) R is a semihereditary ring.

ii) w.gl.dim(R) ≤ 1 and w.gl.dim(Q(R)) = 0.

Proof. By Proposition 1.4.4, Proposition 1.3.8 and Proposition 1.3.9.
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Finally we explore the properties of Prüfer domains. We briefly recall the

notion of an invertible ideal. Let R be a commutative ring. A (fractional)

ideal I of R is called invertible if there exists a (fractional) ideal J of R such

that IJ = R.

Proposition 1.4.6. The following conditions listed below are equivalent.

i) R is a Prüfer domain.

ii) For every maximal ideal m in R, the localization Rm of R at m is a

valuation domain.

iii) Every non-zero finitely generated ideal is invertible.

Proof. See [13, P.558 12].

A characterization of the direct product of a finite number of Prüfer domains

in terms of homological dimensions is given as follows (see [37, P.117 Cor]).

Proposition 1.4.7. For every commutative ring R and its total quotient ring

Q(R), the following two statements are equivalent:

i) R is a direct product of a finite number of Prüfer domains.

ii) w.gl.dim(R) ≤ 1 and gl.dim(Q(R)) = 0.

Proof. It is obvious by Lemma 1.3.6.

1.5 Bézout domains and elementary divisor

domains

In the previous section, we studied the properties of Prüfer domains. An

important subclass of Prüfer domains is the class of Bézout domains, which

are defined as follows.
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Definition 1.5.1. A commutative ring is a Bézout ring if its finitely generated

ideals are principal.

By the definition above, Bézout’s identity holds for every pair of elements in

a Bézout domain. It is evident that principal ideals in a commutative domain

are projective, as they are free of rank one. Hence, every Bézout domain is a

Prüfer domain. A natural question arises: which Prüfer domains are in fact

Bézout domains? To address this question, we first recall the definition of

semilocal rings.

Definition 1.5.2. A commutative ring is semilocal if it only has finitely many

maximal ideals.

It is clear that a local ring is a special case of a semilocal ring. The finiteness

of maximal ideals in semilocal rings leads to the following proposition, which

answers the question raised above.

Proposition 1.5.3. Semilocal Prüfer domains are Bézout domains.

Proof. See [41, III. Thm. 5.1].

On the other hand, we can use the notion of GCD-domain, i.e. every pair

of elements in the domain admits a greatest common divisor, to give another

comprehensive answer of the question about the relation between Prüfer and

Bézout domains.

Proposition 1.5.4. A commutative ring R is a Bézout domain if and only if

R is both a Prüfer domain and a GCD-domain.

Proof. For the only if part, we just need to prove every pair of elements in

Bézout domain has a greatest common divisor. This is because that for all

a, b ∈ R, there exists an c ∈ R such that aR+ bR = cR. Thus c divides a and

b, and for every r ∈ R, if r divides a and b, then r divides c.
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For the if part, by Proposition 1.4.6(iii), we only need to prove that in a

GCD-domain every invertible ideal is principal. Let I be an invertible ideal

of a GCD-domain R, I = (a1/b1)R + · · · + (an/bn)R. Since R is a GCD-

domain. here we can assume for each 1 ≤ i ≤ n, (ai, bi) = 1. Since R is

also an LCM-domain, we can find c as the least common multiple of all bi’s

and d as the greatest common divisor of all ai’s, thus I−1 = (c/d)R. We

hence know there exist mi’s of I such that m1(c/d) + · · · + mn(c/d) = 1.

Then we know I = uR, where u = m1 + · · · + mn, because for every x ∈ I,

x = x ·m1(c/d) + · · ·+mn(c/d) = uxc/d.

Proposition 1.5.5. A commutative ring R is a principal ideal domain if and

only if R is both a unique factorization domain and a Bézout domain.

Proof. The only if part is trivial. For any a, b ∈ I, where I is an ideal in R,

we have (gcd(a, b)) = (a, b) ⊆ I. Thus an ideal I ̸= 0 is generated by an

element a with fewest prime factors. We can find it by the following steps.

Pick any 0 ̸= c ∈ I. If I ̸= (c), then there exists some d ∈ I such that c ∤ d, so

e = gcd(c, d) ∈ I and e has fewer prime factors than a.

Example 1.5.6. There are several examples for Bézout domains.

i) Each principal ideal domain is a Bézout domain.

ii) Each valuation ring is a Bézout domain since the ideals are totally or-

dered. Thus every non-Noetherian valuation ring is an example of a

non-noetherian Bézout domain ,for example, the valuation ring of Cp.

iii) The ring of algebraic integers Z̄ ⊆ Q̄ is a Bézout domain (see [34, 2.4]).

An important subclass of Bézout domains is that of elementary divisor do-

mains, which play a central role in the structure theorem for finitely presented

modules.
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Definition 1.5.7. A commutative ring R is said to be an elementary divisor

ring(EDR) if every rectangular m × n matrix A over R admits diagonal re-

duction, i.e. there are invertible square matrices P and Q of orders m and n

respectively such that PAQ = D where D is a diagonal matrix with entries di

satisfying the divisibility relations di | di+1 for all 1 ≤ i ≤ min{m,n}. We say

A is equivalent to D.

To investigate the relationship between elementary divisor rings (EDRs) and

Bézout domains, we consider the following proposition, which provides a

matrix-theoretic characterization of Bézout domains.

Proposition 1.5.8. R is a Bézout domain if and only if every diagonal matrix

over R admits diagonal reduction.

Proof. See ([41, III. Prop. 6.1]).

Corollary 1.5.9. Elementary divisor domains are Bézout domains.

The following proposition characterizes those Bézout domains that are elemen-

tary divisor rings (EDRs).

Proposition 1.5.10. For a Bézout domain R the following properties are

equivalent.

i) R is an elementary divisor domain.

ii) Every 2× 2 matrix admits diagonal reduction.

iii) If a, b, c ∈ R satisfy aR + bR + cR = R, then there exist p, q ∈ R such

that

paR + (pb+ qc)R = R.

Proof. See ([48, Thm 5.1, Thm 5.2]).
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The Proposition 1.5.10(ii) is particularly useful, as it reduces the problem of

proving that a Bézout domain is an elementary divisor domain to the case of

2 × 2 matrices. We now provide a more direct description of the relationship

between elementary divisor domains and Bézout domains. To do so, we first

introduce the following definition.

Definition 1.5.11. We say a ring of finite character (of countable character)

if every non-zero element of the ring is contained in a finite (countable) number

of maximal ideals.

For instance, Dedekind domains and semilocal rings are both examples of rings

with finite character. In contrast, the ring of all algebraic integers, denoted Z̄ is

not a ring of countable character, as every non-unit is contained in uncountably

many maximal ideals. We now introduce a more direct criterion — beyond

the matrix-theoretic characterization in Proposition 1.5.10(ii) — under which

a Bézout domain is also an elementary divisor domain.

Proposition 1.5.12. Bézout domains of countable character are elementary

divisor domains.

Proof. By Proposition 1.5.8 and 1.5.10(ii), we only need to prove that every

2× 2 matrix can be reduced to a diagonal matrix. The remainder of the proof

can be found in [41, III. Thm. 6.5].

Corollary 1.5.13. For a semilocal integral domain R the following are equiv-

alent:

i) R is a Prüfer domain;

ii) R is a Bézout domain;

iii) R is an elementary divisor domain.

Proof. The equivalence between (i) and (ii) is given by Proposition 1.5.3. The
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equivalence between (ii) and (iii) is given by Corollary 1.5.9 and Proposition

1.5.12.

1.6 The structure theorem of finitely pre-

sented modules

In this section, we prove a fundamental structure theorem for finitely presented

R-modules over an elementary divisor domain. This theorem also characterizes

the class of domains over which finitely presented modules decompose into

direct sums of cyclic modules (See [48], [55]).

Theorem 1.6.1. A domain R satisfies the property that every finitely pre-

sented R-module is a direct sum of cyclic R-modules if and only if it is an

elementary divisor domain. Moreover, every finitely presented R-module M

can be decomposed in a unique way as

M ∼= R/d1R⊕ · · · ⊕R/dnR, di | di+1 (1 ≤ i ≤ n− 1). (1.1)

To prove the theorem, we first recall the following proposition concerning

finitely presented modules over Bézout domains.

Proposition 1.6.2. Let R be a Bézout domain and let M be a finitely pre-

sented R-module which is a direct sum of cyclic modules. Then

M ∼= R/d1R⊕ · · · ⊕R/dnR, di | di+1 (1 ≤ i ≤ n− 1). (1.2)

Here the annihilator ideals diR are uniquely determined by M .

Proof. Since every finitely generated ideal of R is principal, every cyclic sum-
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mand of M is cyclically presented. Thus M has a free presentation

Rn → Rn →M → 0,

where the first arrow is a diagonal matrix. By Proposition 1.5.8, the ma-

trix admits a diagonal reduction. The uniqueness of the form 1.2 is given by

Proposition 1.6.4.

Proposition 1.6.3. A domain R has the property that every finitely presented

R-module is a summand of a direct sum of cyclic modules if and only if R is

a Prüfer domain.

Proof. It is obvious by Theorem 1.1.2 and Proposition 1.4.6.

The sufficiency of Theorem 1.6.1 can be proved now. Since every elementary

divisor domain is both a Prüfer domain and a Bézout domain, Propositions

1.6.3 and 1.6.2 ensure the existence of the normal form (1.1). The uniqueness

of this form is guaranteed by the following proposition.

Proposition 1.6.4. Let R be a commutative ring, and let an R-module M

satisfy

M ∼=
m⊕
i=1

R/Ii ∼=
n⊕
j=1

R/Jj,

i.e. M has two direct decompositions by cyclic summands. If I1 ≥ · · · ≥ Im

and J1 ≥ · · · ≥ Jn, then m = n and Ii = Ji for all 1 ≤ i ≤ m. Moreover, the

number of the non-zero summands of M cannot exceed the minimal cardinality

of systems of generators of the module M .

Proof. See [41, V. Prop. 2.10].

The necessity of Theorem 1.6.1 is not directly relevant to our work and can be

found in [41, V. Thm. 3.4].
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1.7 Presentations of modules

In this section, we study the notion of n-presentations of modules. Let R be a

commutative ring. Recall that an R-module M is said to be finitely presented

if there exists an exact sequence

F1 → F0 →M → 0, (1.3)

where F0 and F1 are finitely generated free R-modules. For such modules, we

now state the following useful lemma.

Lemma 1.7.1. Let M be a finitely presented R-module. If there exists an

exact sequence

0→ K → N →M → 0,

where N is a finitely generated R-module, then K is finitely generated.

Proof. Consider the commutative diagram

F1 F0 M 0

0 K N M 0

β α idM

where α, β are given by the projectivity properties of F0 and F1, respectively.

By snake lemma Coker(β) ∼= Coker(α), and so we have an exact sequence

0→ Im(β)→ K → Coker(α)→ 0.

Since Im(β) and Coker(α) are both finitely generated, thus K is finitely gen-

erated too.

If we refer to the exact sequence 1.3 as a finite 1-presentation of M , then, by

analogy, we can define an n-presentation of M as follows.
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Definition 1.7.2. An n-presentation of M is an exact sequence

Fn → Fn−1 → · · · → F0 →M → 0

with Fi free R-modules. In addition, if Fi is finitely generated, this presentation

is called a finite n-presentation of M . Sometimes, such an R-module M with

finite n-presentations is called n-presented in the later chapters.

It is obvious that a finitely generated R-module M has a 0-presentation. We

now introduce a numerical invariant λ(M) to study n-presentation, defined as

follows.

Definition 1.7.3. If M is a finitely generated R-module, then we define

λ(M) = sup{n | there is a finite n-presentation of M}.

If M is not finitely generated, we put λ(M) = −1.

It is clear thatM is finitely generated if and only if λ(M) ≥ 0 andM is finitely

presented if and only if λ(M) ≥ 1. The following proposition describes the

relationship between modules that are connected by an exact sequence.

Proposition 1.7.4. Let 0 → P → N → M → 0 be an exact sequence of

R-modules, then we have

1) λ(N) ≥ inf{λ(P ), λ(M)}.

2) λ(M) ≥ inf{λ(N), λ(P ) + 1}.

3) λ(P ) ≥ inf{λ(N), λ(M)− 1}.

4) If N =M⊕P then λ(N) = inf{λ(M), λ(P )}. In particular, N is finitely

presented if and only if M and P are both finitely presented.

To prove 1) of Proposition 1.7.4, we need the following lemma.
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Lemma 1.7.5. Let N ′ u−→ N
v−→ N ′′ → 0 be an exact sequence of R-modules

and P ′ α′
−→ N ′ → 0 and P ′′ α′′

−→ N ′′ → 0 be two surjective maps. If P ′′ is a

projective R-module then there exists a surjective map α : P ′ ⊕ P ′′ → N → 0

such that the following diagram commutes:

P ′ P ′ ⊕ P ′′ P ′′

N ′ N N ′′ 0

0 0 0

i

α′

p

α α′′

u v

where i and p are the corresponding inclusion and projection maps.

Proof. See [44, Thm 1.1.4].

Proof of Proposition 1.7.4.

1) Utilizing Lemma 1.7.5 to combine an λ(P )-presentation and an λ(M)-

presentation together, we can construct an inf{λ(P ), λ(M)}-presentation

of N .

2) Let n ≤ inf{λ(N), λ(P ) + 1}. We want to show for each n, λ(M) ≥ n.

Using induction, if n ≤ 0, the statement is obvious. For n ≥ 1, by a

λ(M)-presentation of M and an n− 1-presentation of P , we can obtain

an n − 1 = inf{λ(M), n − 1}-presentation of N . If λ(M) < n, then we

have λ(N) ≥ n > λ(M) = n − 1. Thus the kernel at n − 1 stage of the

composite presentation of N which is constructed by a λ(P )-presentation

of P and a λ(M)-presentation of M is a finitely generated module onto

which a finitely generated free module can be mapped. This can help us

increase the λ(M)-presentation. So we obtain a contradiction.

3) Similar to the proof of 2).
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4) If N = M ⊕ P , we have 0 → P → N → M → 0 and 0 → M → N →

P → 0. Use 1),2),3) to get the result.

A ring R is said to be n-coherent if every R-module that admits a finite n-

presentation also admits a finite (n+1)-presentation. Rings with this property

will be the primary focus of our study, particularly in Part II of this thesis.



Chapter 2

The structure theorem

As noted in the introduction, many foundational contributions to Iwasawa

theory over function fields have been developed using the extrinsic notion of

the pro-characteristic ideal. The main obstruction to obtaining an intrinsic

definition of characteristic ideals — one that avoids reliance on field extensions

and inverse limits — is the lack of a well-behaved structure theorem.

In classical Iwasawa theory, the setting typically involves a Noetherian Iwasawa

algebra, such as Λ = Zp[[Zp]]. For a finitely generated torsion Λ-module M ,

one has a pseudo-isomorphism of the form:

M ∼
s⊕
i=1

Λ/pmi ⊕
t⊕
i=1

Λ/F
nj

j ,

where p is a rational prime, the Fj are distinguished polynomials of Λ, and

“∼” denoting a pseudo-isomorphism. This structure theorem expresses M , up

to pseudo-isomorphism, as a direct sum of elementary modules over Λ, and

the integers r, mi, nj, and the prime ideals (Fj) are uniquely determined by

M . A challenging problem arises: can this structure theorem be extended to

broader settings beyond Noetherian Iwasawa algebras?

The answer is, perhaps unexpectedly, affirmative—and the implications may

even surpass initial expectations.
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In this chapter, we establish a structure theorem 2.2.1 for a special class of

finitely presented torsion modules—referred to as admissible modules—over

an arbitrary unital commutative ring A. However, the generality of the ring

introduces two notable limitations. First, in this setting, the roles of p and

Fj in the classical Iwasawa-theoretic decomposition are replaced by general

principal ideals, making it impossible, in general, to give an explicit description

of these ideals. Second, the module M is not necessarily pseudo-isomorphic to

a direct sum of elementary modules; rather, it appears as a direct summand

of a module that is pseudo-isomorphic to such a sum. Nevertheless, under the

mild additional assumption that the total quotient ring Q(A) is semisimple, we

obtain the improved version (Theorem 2.2.3), in which the principal ideals are

replaced by powers of height-one prime ideals. The proofs of both structure

theorems rely critically on the algebraic foundations developed in Chapter 1.

Furthermore, to apply Warfield’s Structure Theorem (Theorem 1.1.2) for

height-one prime ideals, we introduce the notion of an admissible module over

a commutative ring R in Definition 2.1.1. To meet the assumptions of Theo-

rem 2.2.3, we define the concept of an admissible ring in Definition 2.3.1 and

observe that it encompasses many rings commonly encountered in arithmetic

contexts. Finally, we investigate the relationship between admissibility for a

Zp-algebra R that is an integrally closed domain of characteristic zero, and

admissibility for the group ring R[G], where G is a finite abelian group.

This chapter is a joint work with David Burns and Alexandre Daoud.

2.1 Admissible modules

In this section we fix a commutative unital ring A and write Q(A) for its total

quotient ring. We also write ht(p) for the height of each p in Spec(A) and



2.1. Admissible modules 34

consider the sets

P = PA := {p ∈ Spec(A) : ht(p) = 1} and

P fg = P fg
A := {p ∈ P : p is finitely generated}.

Given an A-moduleM , we writeMp for its localisation at p in Spec(A). We also

write Mtor =MA·tor for the A-submodule of M comprising all elements m that

are annihilated by a non-zero divisor of A (that may depend on m) and refer to

M as a “torsion A-module” if M =Mtor (or, equivalently, Q(A)⊗AM = (0)).

We then define a (possibly empty) subset of P by setting

P(M) = PA(M) := P ∩ Support(Mtor) = {p ∈ P : (Mtor)p ̸= (0)}.

Finally, we write Mtf for the quotient of M by Mtor.

The following notion will play a key role in the sequel.

Definition 2.1.1. A finitely generated A-module M will be said to be admis-

sible if it has both of the following properties:

(P1) for every p ∈ Spec(A) that is maximal amongst those contained in⋃
q∈P(M) q, the localisation Ap is a valuation ring (that is, its ideals are

totally ordered by inclusion).

(P2) P(M) is a finite subset of P fg.

Remark 2.1.2. We consider several examples below to concretize the defini-

tion of the admissible module. Later these examples will be used repeatedly.

(i) If P(M) is finite (as required by (P2) and automatically satisfied if A is

Noetherian), then the prime avoidance lemma implies (P1) is valid if and only

if Aq is a valuation ring for every q in P(M). In particular, if Ap is a valuation

ring for all p in P (as is the case if A is either a Krull domain or valuation
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domain of arbitrary dimension), then M is admissible if and only if Mtor is

supported on only finitely many primes in P, and each of which is finitely

generated.

(ii) Prime ideals that are contained in a union of primes in P need not have

height one. For example, if A is a Noetherian domain of dimension two, then

Krull’s Principal Ideal Theorem states that for every principal proper ideal I of

A, each minimal prime ideal containing I has height at most one. This implies

that every prime ideal of A is contained in
⋃

p∈Pp, since for any prime ideal

P in A and any non-zero element x ∈ P there is a principal proper ideal (x)

contained in a prime ideal p with height one. Hence the prime ideal in A with

height two must be contained in
⋃

p∈Pp.

As usual, a torsion A-module will be said to be pseudo-null if its localization

vanishes at every prime in P , and a map of A-modules will be said to be a

pseudo-isomorphism if its kernel and cokernel are both pseudo-null.

2.2 Structure theorems

We are now in a position to prove two structural results that may be regarded

as the starting point of our theory. These results apply to a broad class of

modules: the first holds over arbitrary commutative rings, while the second

requires a mild additional assumption on the base ring A, namely that its total

quotient ring Q(A) is semisimple.

The proof of Theorem 2.2.1 rely on the preceding algebraic decomposition

result, Proposition 1.1.2, which can be applied using property (P1) introduced

in Definition 2.1.1. Notably, the condition (P1) provides a favorable setting for

localization.

The proof of the first structural theorem proceeds with minimal reliance on

auxiliary lemmas, whereas the second theorem — an improved and more re-
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fined version — builds upon various algebraic results established in the pre-

vious chapter, like the refined structure theorem 1.6.1 of finitely presented

modules, leading to a substantially more intricate argument.

Theorem 2.2.1. Let M be a finitely-presented A-module with property (P1).

If M is torsion, then there exists an A-module N , a finite family of principal

ideals {Lτ}τ∈T of A and a pseudo-isomorphism of A-modules

M ⊕N →
⊕

τ∈T
A/Lτ . (2.1)

Proof of Thm 2.2.1. To prove the theorem we assume that M is A-torsion.

We also note that if P(M) = ∅, then M is pseudo-null and there is nothing to

prove. We therefore assume that P(M) ̸= ∅, set S := A \
⋃

p∈P(M) p and write

(−)′ for the localisation functor S−1(−).

The maximal ideals of A′ are in one-to-one correspondence with the primes

of A that are maximal amongst those contained in
⋃

p∈P(M) p. Hence, from

condition (P1), it follows that the localisation of A′ at each maximal ideal is a

valuation ring. We may therefore apply the Warfield’s structure theorem 1.1.2

to deduce the existence of an A′-module N ′ and a finite collection {a′τ}τ∈T of

elements of A′ \ (A′)× for which there is an isomorphism of A′-modules

ψ :M ′ ⊕N ′ ∼=
⊕

τ∈T
A′/(a′τ ). (2.2)

We now choose elements {aτ}τ∈T of A \ S =
⋃

p∈P(M) p with (aτ )
′ = (a′τ )

for each τ ∈ T . Then, since both M and
⊕

τ∈TA/(aτ ) are finitely-presented

A-modules (the former by assumption and the latter clearly), the canonical
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maps

HomA

(
M,

⊕
τ∈T

A/(aτ )
)′ ∼−→ HomA′

(
M ′,

⊕
τ∈T

A′/(a′τ )
)
,

HomA

(⊕
τ∈T

A/(aτ ),M
)′ ∼−→ HomA′

(⊕
τ∈T

A′/(a′τ ),M
′), (2.3)

EndA(M)′
∼−→ EndA′(M ′)

are all bijective. This implies the existence of homomorphisms of A-modules

ι1 :M →
⊕

τ∈T
A/(aτ ) and ι2 :

⊕
τ∈T

A/(aτ )→M

such that, for suitable elements s1 and s2 of S, the maps ι′1/s1 and ι′2/s2 are

respectively equal to the composites

M ′ (id,0)−−−→M ′⊕N ′ ψ−→
⊕

τ∈T
A′/(a′τ ) and

⊕
τ∈T

A′/(a′τ )
ψ−1

−−→M ′⊕N ′ (id,0)−−−→M ′.

Set N := ker(ι2). Then, since the endomorphism ι′2/s2 ◦ ι′1/s1 of M ′ is the

identity map, which corresponds to the identity map in EndA(M)′, the map

ι2 ◦ ι1 is given by multiplication by s2s1 and the latter element is not contained

in any prime in P(M). Hence the modules ker(ι1), coker(ι2) and ι1(M) ∩ N

are all pseudo-null. In addition, by localising the exact commutative diagram

0 N ι1(M) +N (ι2 ◦ ι1)(M) 0

0 N
⊕

τ∈TA/(aτ ) im(ι2) 0

ι2

i1 i2

ι2

(2.4)

one checks that the inclusion

i1 : ι1(M) +N →
⊕

τ∈T
A/(aτ )

is also a pseudo-isomorphism. Actually, by diagram 2.4 and snake lemma, we
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have the short exact sequence

0→ coker(i1) −→ coker(i2)→ 0.

Since coker(ι2) is pseudo-null, we know im(ι2)p = Mp for all p ∈ P . Notice

that we have the trivial short exact sequence

0 (ι2 ◦ ι1)(M) im(ι2) coker(i2) 0.
i2

Since (ι2 ◦ ι1)(M)p = Mp for all p ∈ P , it follows that coker(ι2)p = 0 for

all p ∈ P , and hence the same holds for coker(ι1). Given these facts, the

tautological short exact sequence

0→ ι1(M) ∩N x7→(x,x)−−−−→ ι1(M)⊕N (x,y)7→x−y−−−−−−→ ι1(M) +N → 0

implies that the composite map

M ⊕N (ι1,id)−−−→ ι1(M)⊕N (x,y)7→x−y−−−−−−→ ι1(M) +N ↪→
⊕
τ∈T

A/(aτ ) (2.5)

is a pseudo-isomorphism. This proves (i) with Lτ = (aτ ) for each τ ∈ T .

The structural theorem 2.2.1 expresses a finitely presented torsion admissible

A-module, up to pseudo-isomorphism, as a direct sum of quotient modules by

principal ideals. Although the theorem holds for every commutative ring A,

its main limitation lies in its dependence on the intermediate module N , which

arises during the proof. In fact, since N is defined as the kernel of a specific

morphism, its structure is generally difficult to describe explicitly.

Before stating the next theorem, we isolate the purely ring-theoretic input that

will be used in its proof. This result concerns only a suitable localisation of A

and its decomposition as a finite direct product of Prüfer domains.

Proposition 2.2.2. Let A be a commutative ring and let S ⊂ A be a multi-
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plicative set. Set A′ := S−1A. Assume that:

(i) the total quotient ring Q(A) of A is semisimple; and

(ii) for every maximal ideal m of A′ the local ring A′
m is a valuation ring.

Then A′ has weak global dimension at most 1 and the total quotient ring Q(A′)

has global dimension 0. In particular, there exists a finite index set T and

Prüfer domains A′
t (t ∈ T ) such that

A′ ∼=
∏
t∈T

A′
t.

Proof. Since Q(A) is semisimple, it has global dimension 0 by Corollary 1.2.2

(vi). Localising at S shows that Q(A′) ∼= S−1Q(A) is again semisimple. This

is because Q(A) is isomorphic to finite product of fields by Proposition 1.2.4.

Hence gl. dim(Q(A′)) = 0 by Corollary 1.2.2 (vi). By assumption (ii), each

localisation A′
m at a maximal ideal m of A′ is a valuation ring. Hence Proposi-

tion 1.3.9 implies that w.gl.dim(A′) ≤ 1. We may now apply Proposition 1.4.7

with R = A′ to deduce that A′ is a finite direct product of Prüfer domains, as

claimed.

The next theorem shows that, under the additional hypothesis that Q(A) is

semisimple, the auxiliary module N in Theorem 2.2.1 can in fact be dispensed

with.

Theorem 2.2.3. Let M be a finitely-presented A-module with property (P1).

If Q(A) is semisimple, then the following claims are valid.

(a) There exists a pseudo-isomorphism of A-modules M →Mtor ⊕Mtf .

(b) Assume M is both admissible and torsion. Then for improving the

pseudo-isomorphism (2.1) one can take the module N to be (0). Further,

there exists a finite index set S and for each σ ∈ S a prime ideal pσ in P
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and a natural number aσ, for which there exists a pseudo-isomorphism

of A-modules M →
⊕

σ∈SA/p
aσ
σ .

Proof of Thm 2.2.3. In the remainder of the argument we no longer require,

except when explicitly stated, that M is a torsion module, but we do assume

that the ring Q(A) is semisimple. We keep the notation S and A′ = S−1A

introduced in the proof of Theorem 2.2.1. By Remark 2.1.2 and condition (P1),

the localisation A′
m is a valuation ring for every maximal ideal m of A′. Hence

Proposition 2.2.2 yields a finite direct product decomposition

A′ ∼=
∏
t∈T

A′
t

over a finite index set T in which each ring A′
t is a semi-hereditary (or Prüfer)

domain.

In particular, if M is an admissible, torsion module, then P(M) is finite and,

for each t ∈ T , the ring A′
t is a semi-local Prüfer domain because A′ only

has finitely many maximal ideals. Moreover, the A′
t-component of M ′ is both

finitely-presented and torsion due to the structure of modules over direct prod-

uct of some rings. In this case, therefore, we can apply the Corollary 1.5.13

and the stronger structure theorem 1.6.1 to each ring A′
t in order to deduce

the existence of an isomorphism (2.2) for which the module N ′ is zero. Then,

in this case, the module coker(ι1)
′ = coker(ψ) vanishes and so coker(ι1)p, and

hence also Np, vanishes for all p in P(M).

Next we suppose, in addition, that every prime ideal in P(M) is finitely gener-

ated and we claim this implies that every prime ideal of A′ is finitely generated.

To see this we note every prime ideal of A′ is of the form B = B0×
∏

t∈T\{t0}A
′
t

where B0 is a prime ideal of the domain A′
t0
for some t0 ∈ T . If B0 = (0), then

B is finitely generated. If B0 ̸= (0), then Q := (0) ×
∏

t∈T\{t0}A
′
t is a prime

ideal of A′ that is strictly contained in B. Now, since P(M) is assumed to be

finite, the prime avoidance lemma implies that B and Q correspond to prime
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ideals p and p1 of A with p1 ⊊ p ⊆ q for some q ∈ P(M). In particular, since

q has height one, this implies p = q and hence that B is finitely generated, as

claimed.

At this stage, we can apply Cohen’s Theorem [25, Th. 2] to deduce that A′, and

hence each of its components A′
t, is Noetherian. It follows that the localisation

A′
B of A′ at each prime ideal B is Noetherian, a domain (as each component A′

t

of A′ is a domain) and either a field (if B corresponds to the zero ideal of some

component A′
t) or a valuation ring (by Remark 2.1.2 and the assumption M is

admissible). We further recall that every Noetherian valuation ring that is not

a field is a discrete valuation ring (cf. [56, Th. 5.18]). Taken together, these

facts imply that every component ring A′
t of A

′ is a Dedekind domain. We

can therefore now appeal to the usual structure theorem for finitely generated

torsion modules over such rings to deduce that the isomorphism (2.2) can be

replaced by an isomorphism of the form M ′ ∼=
⊕

σ∈SA
′/(paσσ )′ in which S is a

finite index set, each pσ a prime ideal in P(M) and each aσ a natural number.

There are then also associated isomorphisms (2.3) in which T is replaced by S

and each of the terms (aτ ) and (a′τ ) by paττ and (paττ )′ respectively, and so one

can deduce the existence of corresponding analogues of the homomorphisms

ι1 and ι2. In addition, in this case the module N := ker(ι2) is pseudo-null

(since N ′ = (0) and we already observed that Np vanishes for all p in P(M))

and so can be taken to be zero in the pseudo-isomorphism that arises from the

analogue of the construction (2.5) in this case. This proves (ii)(b).

Finally, to prove (ii)(a), we do not assume either that M is torsion or that

Mtor is admissible. We do however continue to assume that Q(A) is semisimple

and hence, by the above argument, that A′ is a finite direct product of semi-

hereditary domains. Thus, by the general result of [37, §5, Cor.], we know that

M ′
tf is a projective A′-module and hence that there exists an isomorphism of

A′-modules of the form M ′ ∼= M ′
tf ⊕M ′

tor.
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Now, since M is a finitely-presented A-module, the natural map

HomA(M,Mtor)
′ → HomA′(M ′,M ′

tor)

is bijective. In particular, there exists a homomorphism ϕ : M → Mtor and

an element s1 ∈ S with the property that ϕ′/s1 corresponds under this iden-

tification to the projector of M ′ onto M ′
tor. As such, ϕ′/s1 restricts to the

submodule M ′
tor to give the identity. We can therefore find an element s2 of S

such that the map τ := s2 · ϕ restricted to Mtor is equal to s1s2 · idMtor .

We now write π for the canonical projection M →Mtf and consider the map

κ :M →Mtf ⊕Mtor; m 7→ (π(m), τ(m)).

One then checks that ker(κ) = ker(τ)∩Mtor and that coker(κ) is equal to the

cokernel of the endomorphism of Mtor induced by τ and, since s1s2 ∈ S, these

modules are both pseudo-null. It follows that the above map κ is the required

pseudo-isomorphism.

2.3 Admissible rings

In view of Theorem 2.2.3, the following class of rings will be of interest to us

in the sequel.

Definition 2.3.1. A commutative unital ring A will be said to be admissible

if it has both of the following properties:

(P3) Q(A) is semisimple.

(P4) Every finitely-presented torsion A-module is admissible (as in Definition

2.1.1).

It is clear that a Noetherian integrally closed domain (or equivalently, a
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Noetherian Krull domain) is admissible in the above sense and also such that

every finitely generated module is finitely-presented. For such rings, Theorem

2.2.1 simply recovers the classical structure theorem of Bourbaki [13, Chap.

VII, § 4, Th. 4 and Th. 5]. However, Theorem 2.2.1 can also be applied in

more general situations and, to end this section, we shall now discuss some

examples that are relevant to later arguments.

Remark 2.3.2.

(i) Let A be an arbitrary Krull domain. Then Q(A) is a field (and so semisim-

ple), PA is non-empty, the localisation of A at each prime in PA is a dis-

crete valuation ring and every non-zero ideal is contained in only finitely many

primes in PA. Hence, if M is a non-zero finitely generated torsion A-module,

then PA(M) is finite (as it is the subset of PA comprising primes containing

the annihilator of M) and so M has property (P1) (by Remark 2.1.2(i)) and

also admits a pseudo-isomorphism (2.1) with N = (0). In particular, A is ad-

missible if PA = P fg
A . However, there are Krull domains A for which PA ̸= P fg

A

(see, for instance, the examples discussed by Eakins and Heinzer in [35]) and

no such ring is admissible. Indeed, in any such case, if p ∈ PA is not finitely

generated and x ∈ p \ {0}, then M := A/(xA) is a finitely presented torsion

A-module with p ∈ PA(M).

(ii) If A is a unique factorisation domain, then A is a Krull domain for which

every prime in PA is principal and so the above discussion implies A is ad-

missible. In fact, for such a ring, the only essential difference between the

argument of Theorem 2.2.1 and that of Bourbaki referred to above is that we

require the module M to be finitely-presented, rather than merely finitely gen-

erated, in order to guarantee the existence of the isomorphism (2.3).

In this subsection we assume to be given a Zp-algebra R that is an integrally

closed domain of characteristic zero. For a fixed finite abelian group G, we

compare the notions of admissibility introduced above relative to R and to the
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group ring A := R[G] of G over R.

To do this, we write f for the ring inclusion R→ A, f ∗ : Spec(A)→ Spec(R)

for the induced morphism of spectra and f ∗(M) for each A-module M for

the R-module obtained by restriction through f . We note that A is a free R-

module of finite rank (as G is finite) so that f is a finite, flat ring morphism. In

addition, since |G| is invertible in the field of fractions Q(R) of R, the algebra

Q(A) is equal to Q(R)[G] and is therefore a finite product
∏

i∈IKi of finite

degree field extensions Ki of Q(R) (and so is semisimple).

We write D(n) for the set of positive divisors of a natural number n. We also

fix a primitive n-th root of unity ζn in Qc
p, set Ln := Qp(ζn) and write On for

its valuation ring Zp[ζn]. We then set Rn := R⊗ZpOn and write ιn for the ring

inclusion R→ Rn.

Proposition 2.3.3. Fix R,G,A = R[G] and f as above, and write H for the

maximal subgroup of G of order prime to p. Then the following claims are

valid.

(i) For q ∈ Spec(R), the fibre (f ∗)−1(q) := {p ∈ Spec(A) : f ∗(p) = q} is

finite and non-empty. For p ∈ Spec(A), one has ht(p) = ht(f ∗(p)) and

so p ∈ PA ⇐⇒ f ∗(p) ∈ PR.

(ii) Fix q ∈ PR and write Dq(|G|) for D(|G|) if p /∈ q and for D(|H|) if p ∈ q.

(a) (f ∗)−1(q) ⊆ P fg
A ⇐⇒ (ι∗n)

−1(q) ⊆ P fg
Rn

for every n ∈ Dq(|G|).

(b) Assume Rq is a valuation ring. Then Ap is a valuation ring for all

p ∈ (f ∗)−1(q) if and only if both |G| /∈ q and f ∗(A)q is a maximal

Rq-order in Q(A).

(iii) For every finitely generated A-module M the following equivalences are

valid:
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(a) M is finitely-presented (over A) ⇐⇒ f ∗(M) is finitely-presented

(over R);

(b) f ∗(Mtor) is the R-torsion submodule of f ∗(M). In particular, M is

a torsion A-module ⇐⇒ f ∗(M) is a torsion R-module;

(c) PA(M) ⊆ (f ∗)−1(PR(f ∗(M))) and so PA(M) is finite if PR(f ∗(M))

is finite;

(d) M is a pseudo-null A-module if f ∗(M) is a pseudo-null R-module.

Proof. Since f is both finite and flat it has the lying over, incomparability and

going down properties and, in addition, its fibres are finite (cf. [59, Chap. 3,

Th. 9.3, Th. 9.5 and Exer. 9.3]). The first assertion of (i) is thus clear. For

the second assertion, it is enough to show ht(p) = ht(f ∗(p)) for p ∈ Spec(A).

For this, we claim first that ht(p) ≥ ht(f ∗(p)): indeed, this follows easily from

the fact that if {b′, b} ⊂ Spec(R) and a ∈ Spec(A) are such that b′ ⊊ b and

f ∗(a) = b, then (by going down) there exists a′ ∈ Spec(A) with a′ ⊊ a and

f ∗(a′) = b′. On the other hand, one has ht(p) ≤ ht(f ∗(p)) since for every

inclusion a′ ⊊ a with a′ and a in Spec(A), incomparability implies that the

inclusion f ∗(a′) ⊂ f ∗(a) is also strict. This proves (i).

We next make a general observation. For this, we fix a natural number m, a

quotient Q of G, an ideal J of Om[Q], set Rm[Q]/J := Rm⊗Om (Om[Q]/J) and

use the canonical ring homomorphisms fm,J : Rm → Rm ⊗Om (Om[Q]/J) and

fJm : Rm[Q] → Rm[Q]/J . We assume J ∩ Om = (0) (in Om[Q]) and Om[Q]/J

is Om-free and hence that fm,J ◦ ιm is an injective finite flat ring morphism

R → Rm[Q]/J . Via this morphism, we regard Rm[Q]/J as an extension of R

and note the argument of (i) implies that any prime ideal of Rm[Q]/J lying over

q has height one. In addition, since ker(fJm) = Rm ⊗OmJ is finitely generated

(as Om[Q]/J is Om-free and Om[Q] is Noetherian), for each p ∈ PRm[Q]/J one
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has

(
p∩R = q⇐⇒ (fJm)

−1(p)∩R = q
)
and

(
p ∈ P fg

Rm[Q]/J ⇐⇒ (fJm)
−1(p) ∈ P fg

Rm[Q]

)
.

(2.6)

Turning now to the proof of (ii), we first note that, for each n ∈ D(|G|), the

morphism ιn is finite and flat and so the argument of (i) implies (ι∗n)
−1(q) ⊆

PRn . We next fix a homomorphism ψ : G → Qc,×
p of exact order n. Then the

kernel Jψ of the induced Zp-linear ring homomorphism ψ∗ : Zp[G] → Qc
p is

such that Jψ ∩Zp = (0) and Zp[G]/Jψ ∼= im(ψ∗) is Zp-free (so that the criteria

(2.6) are valid with m = 1, Q = G and J = Jψ). In particular, since the

algebra R[G]/Jψ identifies with R⊗Zp im(ψ∗) = Rn, this shows that the stated

condition on the sets (ι∗n)
−1(q) in (ii)(a) are necessary.

To prove its sufficiency, we will show it implies, for every m ∈ D(|G|) and

every quotient Q of G, that each prime ideal of Rm[Q] lying over q is finitely

generated. To prove this, we argue by induction on |Q|, with the case |Q| = 1

being obvious. To deal with the induction step, we fix m ∈ D(|G|), a prime

divisor ℓ of |Q|, a non-trivial element σ of Q that has ℓ-power order t = ℓd

and is such that Q decomposes as a direct product ⟨σ⟩ × Q′ and a prime

ideal p of Rm[Q] that lies over q. Now, if σt/ℓ − 1 ∈ p, then p is the full-

preimage under the canonical projection Rm[Q] → Rm[Q/⟨σt/ℓ⟩] of a prime

ideal and so, by induction (and an application of (2.6) with J the kernel of

Om[Q]→ Om[Q/⟨σt/ℓ⟩]), is finitely generated. On the other hand, if σt/ℓ−1 /∈ p

and we set Tσ :=
∑ℓ−1

j=0(σ
t/ℓ)j, then the equality (σt/ℓ−1)Tσ = 0 implies Tσ ∈ p.

To deal with this case, we fix an injective homomorphism ψ : ⟨σ⟩ → O×
t and

consider the induced (surjective) Om-linear ring homomorphism

ψm,∗ : Om[Q] = Zp[⟨σ⟩]⊗ZpOm[Q′]→ Ot⊗ZpOm[Q′] = (Ot⊗ZpOm)[Q′] ∼=
∏

C
Oa[Q′]

where a = a(m, t) ∈ D(|G|) is the least common multiple of m and t and, with

b denoting the greatest common divisor of m and t, we write C for a fixed
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set of coset representatives for Gal(La/Lb) in Gal(La/Qp), Then ker(ψm,∗) =

Om[Q] · Tσ and so the containment Tσ ∈ p implies p is the full preimage under

the projection Rm⊗Om ψm,∗ : Rm[Q]→
∏

C Ra[Q
′] of a prime ideal. Hence, by

the induction hypothesis (and an application of (2.6) with J = ker(ψm,∗)), it

follows again that p is finitely generated.

To complete the proof of (ii)(a) we now only need to show that if G = H × P

with P a non-trivial p-group, then for any q ∈ PR that contains p, one has

(f ∗)−1(q) ⊆ P fg
A if (ι∗n)

−1(q) ⊆ P fg
Rn

for all n ∈ D(|H|). Now f factors as

the composite fP ◦ fH of the finite, flat ring morphisms fH : R → R[H] and

fP : R[H] → (R[H])[P ] = A and by what we have just proved, the given

condition implies that (f ∗
H)

−1(q) ⊆ P fg
R[H]. It is thus enough to note that

if q′ ∈ (f ∗
H)

−1(q), then p ∈ q′ and so the only prime ideal in (f ∗
P )

−1(q′) is

q′ + I(P ) ·R[G] which is finitely generated (over R) since q′ is.

Turning to (ii)(b) we assume Rq is a valuation ring and note that, as R is

a Zp-algebra, one has |G| ∈ q if and only if both p ∈ q and p | |G|. In

particular, if this last condition is satisfied, then (f ∗)−1(q) contains the ideal

p = q′+I(P )·R[G] discussed above. One then checks Ap is equal to (R[H])q′ [P ]

which is not an integral domain (as P is non-trivial) and so cannot be a

valuation ring. To prove (ii)(b) it is thus enough to assume |G| /∈ q and show

Ap is a valuation ring for all p ∈ Σ := (f ∗)−1(q) if and only if f ∗(A)q is a

maximal Rq-order in Q(A). In this case, there exist subrings Oi of Ki that are

integral over Rq and have Ki as their fraction field and are such that

f ∗(A)q = Rq[G] =
∏

i∈I
Oi. (2.7)

It follows that f ∗(A)q is a maximal Rq-order if and only if each Oi is the

integral closure O′
i of Rq in Ki. In addition, writing Σ(i) for the (finite)

set of non-zero prime, and hence maximal, ideals of Oi, the set (f ∗)−1(q)

corresponds bijectively to
⋃
i∈IΣ(i) in the following way: for each p ∈ Σ, there

exists a unique ip ∈ I and a unique Pp ∈ Σ(ip) such that Ap = Oip,Pp (and
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Pp ∩ R = q). In addition, by Chevalley’s Extension Theorem, each ring O′
i is

the intersection of the finitely many valuation subrings of Ki that extend Rq

and the localisation of O′
i at any of its maximal ideals is equal to one of these

valuation rings (cf. [38, Lem. 3.2.6]).

We now assume Ap is a valuation ring for every p ∈ Σ. In this case Oip,P
is a valuation ring that extends Rq for every P ∈ Σ(ip) and hence, since

Oip =
⋂

P∈Σ(ip)
(Oip)P (as Oip is an integral domain), one must have O′

ip ⊆ Oip
and therefore also Oip = O′

ip . Thus, in this case, (2.7) implies that f ∗(A)q is

integrally closed in Q(A) and so is a maximal Rq-order.

Conversely, if f ∗(A)q is a maximal Rq-order, then (2.7) implies thatOi = O′
i for

all i ∈ I. In particular, since the localisation of each O′
i at any of its maximal

ideals is a valuation ring that extends Rq, it follows that the localisation O′
ip,Pp

of A at each p ∈ Σ is a valuation subring of some field Ki, as required to

complete the proof of (ii).

The proof of (iii) relies crucially on the fact A is a free R-module of finite

rank. In (iii)(a), the forward implication is clear and the reverse implication

a consequence of Schanuel’s Lemma. To prove (iii)(b) it is enough to prove

the first assertion and then, since every non-zero element of R is a non-zero

divisor of A, it is enough to show that any element m of M that is annihilated

by a non-zero divisor a of A is also annihilated by a non-zero element of R.

To prove this we write fa(X) for the monic polynomial of minimal degree in

R[X] with fa(a) = 0 and note that the constant term of fa(X) is non-zero

(since a is a non-zero divisor and fa(X) is chosen to be of minimal degree)

and annihilates m. To prove (iii)(c), we note (iii)(b) implies f ∗(Mtor) is the

R-torsion submodule of f ∗(M). We then fix p ∈ PA(M) and an element m

of Mtor with non-zero image in Mtor,p. Then p contains the annihilator A(m)

of m in A and so f ∗(p) contains the annihilator R ∩ A(m) of m in R. The

image of m in f ∗(Mtor)f∗(p) is therefore non-zero so that f ∗(p) ∈ PR(f ∗(M))

and hence p ∈ (f ∗)−1(PR(f ∗(M)), as required. Finally, (iii)(d) is true since
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(iii)(c) implies that PA(M) = ∅ if PR(f ∗(M)) = ∅.

We now consider, for each natural number n, the following subset of Spec(R)

PnR := {q ∈ PR : n /∈ q and (ι∗m)
−1(q) ⊆ P fg

Rm
for all m ∈ D(n)}.

Example 2.3.4. By taking m = 1 (∈ D(n)) in the above definition, it is clear

PnR ⊆ P
fg
R . Under certain hypotheses on R, such as the following, it is possible

to be much more precise.

(i) If R is Noetherian, then clearly PnR = {q ∈ PR : p /∈ q} if p | n and PnR = PR
if p ∤ n.

(ii) If Rm is a unique factorisation domain for each m ∈ D(n), then every

prime in PRm is principal and so again one has PnR = {q ∈ PR : p /∈ q} if p | n

and PnR = PR if p ∤ n.

(iii) If On ⊆ R, then, for each m ∈ D(n), the Zp-algebra Rm is a finite direct

product of copies of R and so one has PnR = {q ∈ P fg
R : p /∈ q} if p | n and

PnR = P fg
R if p ∤ n. In particular, in all cases one has PnR = P fg

R for n ∈ D(p−1).

(iv) Fix q ∈ P fg
R with p /∈ q and set κ := R/q. Fix a field E containing Q(κ)

and Qc
p and, for m ∈ D(n), set Fm = Q(κ) ∩ Lm ⊆ E, write O′

m for the

valuation ring of Fm and assume O′
n ⊆ κ (as occurs, for example, if either

Fn = Qp or κ is integrally closed in Q(κ)). Then Om is a free O′
m-module of

rank [Lm : Fm] so that κm := κ⊗O′
m
Om is isomorphic to a subring of the field

Q(κ)⊗Fm Lm and hence (0) is its unique prime ideal lying over the zero ideal

(0κ) of κ. In particular, since the algebra κ ⊗Zp Om is a finite direct product

of copies of κm, each prime ideal that lies over (0κ) is principal and so each

prime ideal of Rm that lies over q is finitely generated. It follows that q ∈ PnR .

From Proposition 2.3.3 we now obtain the following useful criterion.
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Proposition 2.3.5. Let M be an A-module for which the R-module f ∗(M)

is finitely-presented, admissible and torsion. Then M is a finitely-presented,

admissible torsion A-module if both PR(f ∗(M)) ⊆ P |G|
R and, in addition, Rq is

Noetherian for every q ∈ PR(f ∗(M)).

Proof. Under the stated assumptions, Proposition 2.3.3(iii) implies that the

A-module M is finitely-presented and torsion and that PA(M) is finite since

PR(f ∗(M)) is finite. Then, since PA(M) ⊆ (f ∗)−1(PR(f ∗(M))), Proposition

2.3.3(ii)(a) implies PA(M) ⊆ P fg
A if PR(f ∗(M)) ⊆ P |G|

R . Finally we note that if

q ∈ PR(f ∗(M)) is such that Rq is Noetherian, then it is a Noetherian valuation

ring that is not a field (as ht(q) = 1) and hence a discrete valuation ring. In this

case, therefore, the Rq-order Rq[G] is maximal if and only if |G| /∈ q (cf. [29,

Props. (27.1)]). The admissibility of M as an A-module now follows directly

from Proposition 2.3.3(ii)(b) (and the first assertion of Remark 2.1.2(i)).

Remark 2.3.6. Fix a natural number n, let R be the completed p-adic group

ring Zp[[Znp ]] and assume p divides |G|. Then A = R[G] is Noetherian, Q(A) is

semisimple and Proposition 2.3.5 combines with Example 2.3.4(i) to imply that

a finitely generated torsion A-module M is admissible if pR /∈ PR(f ∗(M)). By

the classical structure theory of Iwasawa modules (cf. [62, Prop. (5.1.7)(ii)]),

this condition is satisfied if and only if the submodule M [p∞] of M of elements

of finite (p-power) order is pseudo-null. Hence, in this case, Theorem 2.2.3(b)

provides the following ‘equivariant’ refinement of the structure theorem for

Iwasawa modules: if M is a finitely generated torsion A-module for which

M [p∞] is pseudo-null, then PA(M) is finite and M is pseudo-isomorphic, as

an A-module, to a finite direct sum of modules of the form A/pe(p), with p ∈

PA(M) and e(p) ∈ N.



Chapter 3

Characteristic ideals

In this chapter, we define the generalised characteristic ideals in Definition

3.1.1 drawing upon the algebraic results established in Chapter 2. However,

the two structural forms presented in Theorem 2.2.1 and Theorem 2.2.3 are

distinct: the former employs principal ideals, while the latter utilizes prime

ideals. This distinction gives rise to two different types of characteristic ideals.

In Proposition 3.1.2, we examine the relationship between them, which lays the

groundwork for the formulation of an Iwasawa Main Conjecture in Theorem

4.3.2(iii). Moreover, we point out that for rings arising in our arithmetic setting

and the modules defined over them, the characteristic ideal defined via prime

ideals is contained within that defined via principal ideals, and their quotient

is pseudo-null. In particular, if a module is quadratically presented over the

ring, then the characteristic ideal defined by principal ideals coincides with the

zeroth Fitting ideal.

In the second part of this chapter, we investigate the structure of modules

over a ring expressed as the inverse limit of a system of rings. We first treat

the general case and then deduce the compact case (Proposition 3.2.2): if a

ring is the inverse limit of compact Hausdorff rings and a module over it is

I•-complete (see the beginning of 3.2), then the two characteristic ideals also

arise as inverse limits. This perspective aids in understanding the modules
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encountered in our arithmetic contexts in Chapter 4.2.

This chapter is a joint work with David Burns and Alexandre Daoud.

3.1 Generalised characteristic ideals

In this section we assume Q(A) is semisimple. Then, for any finitely-presented,

admissible, torsion A-module M , the set PA(M) is finite and, by Theorem

2.2.3(b), for each p in PA(M) there exists a finite set {e(p)i}1≤i≤n(p) of natural

numbers e(p)i for which there exists a pseudo-isomorphism of A-modules

M →
⊕

p∈PA(M)

⊕
1≤i≤n(p)

A/pe(p)i . (3.1)

In addition, Theorem 2.2.1 implies the existence of a finite family of principal

ideals {Lτ }τ∈T of A together with a pseudo-isomorphism of A-modules

M →
⊕

τ∈T
A/Lτ . (3.2)

These pseudo-isomorphisms then naturally suggest the following definitions.

Definition 3.1.1. Assume Q(A) is semisimple and let M be a finitely-

presented, admissible, torsion A-module. Then the lower and upper generalised

characteristic ideals of M (with respect to the pseudo-isomorphisms (3.1) and

(3.2)) are the ideals of A that are respectively obtained by setting

charA(M) :=
∏

p∈PA(M)
p
∑

1≤i≤n(p) e(p)i .

and

CharA(M) :=
∏

τ∈T
Lτ .

The distinguishing features of these ideals are that charA(M) is defined via an

explicit product of primes in PA, whilst CharA(M) is defined to be principal. In
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the next result, we discuss the relation between them (and, in particular, justify

the ‘lower’ and ‘upper’ terminology) and their dependence on the respective

choices of pseudo-isomorphism, and also show that they retain some of the key

properties of the characteristic ideals in classical Iwasawa theory (and see also

Remark 3.1.3 below).

In the sequel we write Fit0A(M) for the initial Fitting ideal of a finitely-

presented A-module M . We also refer to M as ‘quadratically-presented’ if,

for some natural number d, it lies in an exact sequence of A-modules of the

form

Ad
θ−→ Ad →M → 0. (3.3)

Proposition 3.1.2. Assume Q(A) is semisimple.

(i) If M is a finitely-presented, torsion A-module, then the following claims

are valid.

(a) If M is admissible, then charA(M) is independent of the choice of

pseudo-isomorphism (3.1) and one has charA(M)p = CharA(M)p for

all p in PA.

(b) Assume A = R[G], with R a Zp-algebra that is a Krull domain and

G a finite abelian group. Then M is admissible if PR(f ∗(M)) ⊆

P |G|
R . Assuming this to be the case, the following claims are also

valid.

(i) CharA(M) =
⋂

q∈PRf
∗(charA(M))q. In particular, CharA(M) is

independent of the choice of pseudo-isomorphism (3.2).

(ii) charA(M) ⊆ CharA(M), with equality if and only if charA(M)

is principal. In addition, the quotient CharA(M)/charA(M) is

pseudo-null.

(iii) If M is quadratically-presented, then CharA(M) = Fit0A(M).
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(ii) Let 0→M1 →M2 →M3 → 0 be an exact sequence of finitely generated

A-modules. Then the following claims are valid.

(a) If M2 is a finitely-presented, admissible, torsion A-module, then

M3 is a finitely-presented, admissible, torsion A-module and

charA(M2) ⊆ charA(M3).

(b) If M1 and M3 are finitely-presented, admissible, torsion A-modules,

then M2 is a finitely-presented, admissible, torsion A-module and

charA(M2) = charA(M1) · charA(M3).

Proof. To prove (i)(a) we fix p ∈ PA(M) and note that, ifM is admissible, then

the ring Ap = A′
p′ that occurs in the proof of Theorem 2.2.3(a) is a discrete

valuation ring. Writing lp(N) for the length of a finitely generated, torsion

Ap-module N , one can then compute

e(p) :=
∑

1≤i≤n(p)

e(p)i = lp
( ⊕
1≤i≤n(p)

Ap/(pAp)
e(p)i

)
= lp

( ⊕
a∈PA(M)

⊕
1≤i≤n(a)

(A/ae(a)i)p
)
= lp(Mp), (3.4)

where the last equality follows from the pseudo-isomorphism (3.1). One there-

fore has

charA(M)p = pe(p)Ap = (pAp)
lp(Mp)

which, in particular, implies the first assertion of (i)(a). In the same way, the

pseudo-isomorphism (3.2) implies that each Ap-module Ap/Lτ,p is torsion and

that

lp(Mp) =
∑

τ∈T
lp(Ap/Lτ,p) = lp

(
Ap/(

∏
τ∈T

Lτ )p
)
= lp(Ap/CharA(M)p)

and hence CharA(M)p = (pAp)
lp(Mp) = charA(M)p. To complete the proof of

(i)(a), it is now enough to note that if p ∈ PA \ PA(M), then it is clear
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charA(M)p = Ap and also that the pseudo-isomorphism (3.2) implies Lτ,p = Ap

for all τ ∈ T and hence CharA(M)p = Ap.

To prove (i)(b) we assumeR is a Krull domain and A = R[G]. Then PR(f ∗(M))

is finite and f ∗(M) is admissible if PR(f ∗(M)) ⊆ P fg
R (cf. Remark 2.3.2(i)).

By applying the argument of Proposition 2.3.3(ii) in this case, we deduce that

M is admissible provided PR(f ∗(M)) ⊆ P |G|
R (as we assume henceforth).

Before proceeding, we next show that

f ∗(charA(M))q = f ∗(CharA(M))q for every q ∈ PR. (3.5)

For this, we first assume that q /∈ PR(f ∗(M)). Then one has f ∗(M)q = (0)

so that the pseudo-isomorphisms (3.1) and (3.2) imply f ∗(pe(p)i)q = f ∗(A)q =

f ∗(Lτ )q for each p ∈ PA(M), integer i with 1 ≤ i ≤ n(p) and τ ∈ T . This

in turn implies f ∗(charA(M))q = f ∗(A)q = f ∗(CharA(M))q. It is thus enough

to verify (3.5) for q ∈ PR(f ∗(M)). For such q one has |G| /∈ q and so, in

order to deduce (3.5) from the final assertion of (i)(a), it is enough to show

that, for any such q and any ideal X of A the module f ∗(X)q is uniquely

determined by {Xp : p ∈ (f ∗)−1(q)}. To see this, we note the argument

of Proposition 2.3.3(ii) implies f ∗(A)q =
∏

i∈IO′
i, with each O′

i the integral

closure in Ki of the discrete valuation ring Rq. There is also a natural bijection

j : (f ∗)−1(q)→
⋃
i∈I Σ(i), where Σ(i) denotes the (finite) set of maximal ideals

of O′
i, such that Xp = (f ∗(X)q)j(p) for p ∈ (f ∗)−1(q). In addition, each ring

O′
i is a principal ideal domain (as a Dedekind domain with only finitely many

prime ideals) and equal to
⋂

B∈Σ(i)O′
i,B. In particular, f ∗(X)q =

⊕
i∈I X(i),

with each X(i) := O′
i⊗AX an ideal of O′

i. In addition, X(i) = (0) if and only

if X(i)B = (0) for any B ∈ Σ(i) and, if X(i) ̸= (0), then it is isomorphic to O′
i

and hence equal to
⋂

B∈Σ(i)X(i)B. The claimed result is therefore true since

X(i)B = Xj−1(B) for each B ∈ Σ(i).

Next we observe that the claimed equality in (i)(b)(i) combines with the in-
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dependence result in (i)(a) to directly imply the second claim of (i)(b)(i). To

prove the equality of (i)(b)(i) and the first assertion of (i)(b)(ii) it is enough

to show that

charA(M) ⊆
⋂

q∈PR
f ∗(charA(M))q =

⋂
q∈PR

f ∗(CharA(M))q = CharA(M).

(3.6)

Here the inclusion is clear (since R is a domain) and the first equality follows

from (3.5). Since R is assumed to be a Krull domain, the second equality

will follow if CharA(M) is free as a (finitely generated) R-module. To prove

this it is enough to show that the principal ideal CharA(M) of A contains a

non-zero divisor (of A). To do this, we note first that each p ∈ PA(M) contains

a non-zero divisor (as if m ∈ M has non-zero image in Mp, then p contains

every non-zero divisor that annihilatesm). This implies the existence of a non-

zero divisor a in charA(M). Then, for q ∈ PR, one has a ∈ f ∗(charA(M))q =

f ∗(CharA(M))q and so ra = b for some r ∈ R \ q and b ∈ CharA(M). The

element b is then a non-zero divisor of the sort required to complete the proof

of (3.6).

In a similar way, if charA(M) is a principal ideal, then it is a free R-module

(as it contains a non-zero divisor) and so the first inclusion in (3.6) is an

equality. This proves the second assertion of (i)(b)(ii) and the third assertion

then follows directly from the final assertion of (i)(a). Lastly, to prove (i)(b)(iii)

we note that, for p ∈ PA(M), the presentation (3.3) gives rise to an exact

sequence of Ap-modules

Adp
θp−→ Adp →Mp → 0. (3.7)

Hence, since Mp is a torsion module over the discrete valuation ring Ap, one

has

Ap · det(θp) = p
lp(coker(θp))
p = p

lp(Mp)
p = p

e(p)
p = CharA(M)p. (3.8)

Here the first equality is valid since Ap is an elementary divisor ring, the
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second follows from (3.7), the third from (3.4) and the last from the definition

of charA(M) and the final assertion of (i)(a).

Now, since M is torsion, the exact sequence (3.3) implies det(θ) is a unit

of Q(A) (and hence a non-zero divisor of A). This implies f ∗(A · det(θ)) is a

(finitely generated) free R-module and thereby implies the equality in (i)(b)(iii)

via the computation

Fit0A(M) = A · det(θ) =
⋂
q∈PR

f ∗(A · det(θ))q =
⋂
q∈PR

f ∗(CharA(M))q = CharA(M).

Here the first equality follows directly from the definition of initial Fitting

ideal (and the resolution (3.3)), the second from the assumption R is a Krull

domain and the last from (3.6). In addition, since (A · det(θ))p = Ap · det(θp)

for all p ∈ PA, the third equality is true since the equalities (3.8) imply that

f ∗(A · det(θ))q = f ∗(CharA(M))q for all q ∈ PR (in just the same way that the

final assertion of (i)(a) implies (3.5)). This completes the proof of (i)(b).

Turning to (ii), we note that the assertions regarding modules being torsion

and finitely-presented follow directly from the given exact sequence (and, in

the latter case, the Proposition 1.7.4). In addition, for each prime ideal p of

A, the given sequence induces a short exact sequence of Ap-modules

0→M1,p →M2,p →M3,p → 0.

AssumingM2 (or equivalently, bothM1 andM3) to be torsion, these sequences

imply an equality P(M2) = P(M1)∪P(M3) that combines with Remark 2.1.2

to imply both of the assertions regarding admissibility, and also combines with

the fact, proved in (i)(a), that for each prime ideal p of A one has

charA(M)p = (pAp)
lp(Mp)

to imply the stated inclusion, respectively equality, of characteristic ideals.
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Remark 3.1.3. Fix natural numbers m and n and write R for the completed

group ring Zp[ζm][[Znp ]]. Then R is both Noetherian and admissible in the sense

of Definition 2.3.1 (for example, by Remark 2.3.2(ii)) and, in addition, every

prime in PR is principal. In this case, therefore, the argument of Proposition

3.1.2(i)(b) has two concrete consequences. Firstly, if p ∤ |G|, then the ring R[G]

is admissible (by Example 2.3.4(i)). Secondly, for every finitely generated (and

hence finitely presented by Noetherianity), torsion R-module M , the ideals

charR(M) and CharR(M) are equal and are easily seen to coincide with the

classical characteristic ideal of M as an R-module.

3.2 Inverse limit rings

In this section we assume to be given an inverse system of rings

(An, ϕn :An → An−1)n∈N

in which every homomorphism ϕn is surjective. We study the associated inverse

limit ring

A := lim←−
n

An.

For every n we write ϕ⟨n⟩ : A → An for the induced (surjective) projection

map, so that ϕn ◦ ϕ⟨n⟩ = ϕ⟨n−1⟩ for all n, and we use the decreasing separated

filtration

I• := (In)n∈N

of A that is obtained by setting In := ker(ϕ⟨n⟩) for every n. For an A-module

M and non-negative integer n, we then define an An-module by setting

M(n) :=M/(In ·M) ∼= (A/In)⊗AM ∼= An ⊗AM.

We also use similar notation for morphisms, so that θ(n) :M(n) → N(n) denotes

the morphism idAn⊗Aθ induced by a given morphism ofA-modules θ :M → N .
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We say M is ‘I•-complete’ if the natural map

µM :M → lim←−
n

M(n)

is bijective, where the inverse limit is taken with respect to the maps ϕM,n :

M(n) →M(n−1) induced by ϕn.

3.2.1 The general case

The following result records some useful general facts about the notion of I•-

completeness. In this result we refer to the linear topology on A induced by

the subgroups {In}n as the ‘I•-topology’.

Lemma 3.2.1. The following claims are valid for every A-module M .

(i) If M is finitely generated, then µM is surjective but need not be injective.

(ii) M is I•-complete if it is a finitely generated submodule of an I•-complete

module. In particular, every finitely generated ideal of A is I•-complete.

(iii) Assume M is I•-complete and that there exists a natural number t for

which both the It-adic topology on A is finer than the I•-topology and

the At-module M(t) is finitely generated. Then M is generated as an A-

module by any finite subset that projects to give a set of generators of

M(t).

Proof. To prove (i) we fix a natural number d for which there exists an exact

sequence of A-modules of the form

0→ K
⊆−→ Ad

φ−→M → 0. (3.9)

For each n, we set K ′
n := ker(φ(n)) and use the exact commutative diagram
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0 // K ′
n

⊆ //

αn

��

Ad(n)
φ(n) //

(ϕn)d

����

M(n)
//

ϕM,n

����

0

0 // K ′
n−1

⊆ // Ad(n−1)

φ(n−1)//M(n−1)
// 0.

Write I[n] for the image of In−1 in An. Then ker((ϕn)
d) = Id[n] and ker(ϕM,n) =

I[n] ·M(n). Thus, since each map (ϕn)
d is surjective, the Snake Lemma applies

to the above diagram to imply that each map αn is also surjective. By passing

to the limit over n of these diagrams we thus obtain the bottom row of the

exact commutative diagram

0 K Ad M 0

0 lim←−nK
′
n (lim←−nA(n))

d lim←−nM(n) 0.

φ

(µA)d µM (3.10)

In addition, for each n the (surjective) map ϕ⟨n⟩ induces an isomorphism A(n)
∼=

An so that the map (µA)
d is bijective (and hence Ad is I•-complete). From the

above diagram, one can therefore deduce that µM is surjective.

To give an example in which µM is not injective we take An to be the power

series ring Zp[[X1, . . . , Xn]] over Zp in n commuting indeterminates Xi and ϕn

to be the projection map An → An−1 induced by sending Xn to 0. In this case

A identifies with one version (see [23]) of the power series ring over Zp in a

countable number of commuting indeterminates {Xi}i∈N. We then define K to

be the (proper) ideal of A that is generated by the set {pX1}∪{Xn−pXn+1}n∈N
and take M to be the quotient A/K. In this case, one computes that, for each

n, the module M(n)
∼= An/ϕ⟨n⟩(K) ∼= Zp and hence that µM is not injective.

To prove the first assertion of (ii) we fix an injective map θ : M → N in

which N is I•-complete. It is then enough to note that µM is injective as a

consequence of the diagram
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M N

lim←−nM(n) lim←−nN(n)

θ

µM µN

(θ(n))n

and the fact that µN is injective. The second assertion of (ii) is then an

immediate consequence of the fact A is I•-complete (as shown above).

To prove (iii) we mimic the argument of [59, Th. 8.4]. To do this we fix a

finite set of elements {mσ}σ∈Σ of M with M = (
∑

σ∈ΣAmσ) + It ·M . Then

M = (
∑

σ∈ΣAmσ) + Int ·M for every n and so, since for each n ∈ N there

exists (by assumption) n1 ∈ N with (It)
n1 ⊆ In, one therefore also has

M = (
∑

σ∈Σ
Amσ) + In ·M for every n. (3.11)

We now fix m ∈ M and set m0 := m and I0 := A. Then, for each n ∈ N,

we inductively choose {aσ,n}σ∈Σ ⊆ In−1 and mn ∈ In−1In ·M ⊂ In ·M with

mn−1 = (
∑

σ∈Σ aσ.nmσ)+mn. That such elements can be chosen for n = 1 is a

direct consequence of (3.11) with n = 1. Then, if one assumes their existence

for n = n0, their existence for n0 +1 is a consequence of the equality obtained

after multiplying (3.11) with n = n0+1 by In0 . Now, since A is I•-complete, for

each σ ∈ Σ, there exists a unique element aσ ∈ A such that aσ−
∑i=n

i=1 aσ,i ∈ In
for all n. Then one checks that

m− (
∑

σ∈Σ
aσmi) ∈

⋂
n∈N

(In ·M) = (0)

where the last equality is valid since M is I•-complete. This shows that M is

generated over A by {mσ}σ∈Σ, as required.

3.2.2 The compact case

In the sequel we say that the inverse limit A is ‘compact’ if each ring An is

endowed with a compact Hausdorff topology with respect to which the transi-

tion maps ϕn are continuous. In this case we endow A with the corresponding
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inverse limit topology, so that A is compact and, for every n, the ideal In is

closed and the projection map ϕ⟨n⟩ is continuous.

In particular, since A is compact, the inverse limit functor is exact on the

category of finitely generated A-modules and this fact allows us to prove a

finer version of Lemma 3.2.1.

Before stating the result, we note that if an A-module N is pseudo-null, then

the associated An-module N(n) need not even be torsion. Such issues mean

that, in general, one cannot hope to compute the characteristic ideal of a

finitely-presented torsion A-module M directly in terms of the associated An-

modules M(n).

Despite this difficulty, claim (iii) of the following result shows that such a

reduction is possible for a natural family of compact rings A, at least after

possibly replacing M by a pseudo-isomorphic module. (In Proposition 4.2.4

below we will also prove a more concrete version of this result for certain power

series rings.)

Proposition 3.2.2. Assume that A is compact. Then the following claims are

valid for any finitely-presented A-module M .

(i) M is I•-complete.

(ii) If M is an admissible, torsion module, then

charA(M) = lim←−
n

ϕ⟨n⟩(charA(M)) and CharA(M) = lim←−
n

ϕ⟨n⟩(CharA(M)),

where the limits are taken with respect to the maps ϕn.

(iii) Assume A and An for each n are Zp-algebras and unique factorisation

domains. Let M be a finitely-presented, torsion A-module. Then M is

pseudo-isomorphic to an A-module M̃ with the following properties: M̃

is finitely-presented, torsion and I•-complete; there exists n0 ∈ N such
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that, for all n ≥ n0, the An-module M̃(n) is finitely-presented and torsion;

one has

CharA(M) = charA(M) = lim←−
n≥n0

charAn(M̃(n)),

where the limit is taken with respect to the maps ϕn.

Proof. To prove (i) we fix an exact sequence of A-modules of the form (3.9).

Then the A-module K is, by assumption, finitely generated and thus, by

Lemma 3.2.1(ii), I•-complete. Hence, by passing to the limit over n of the

induced exact sequences of (compact) An-modules K(n) → Adn → M(n) → 0

one obtains an exact sequence of A-modules

0→ K
⊆−→ Ad → lim←−

n

M(n) → 0.

Comparing this to (3.9) one deduces the map µM is bijective, as required to

prove (i).

In the rest of the argument we assume M is torsion. Then, since charA(M)

and CharA(M) are both finitely generated ideals of A (cf. condition (P2) in

Definition 2.1.1), to prove (ii) it is enough to show that any finitely generated

ideal N of A is equal to lim←−n ϕ⟨n⟩(N), where the limit is taken with respect to

the maps ϕn. To see this, we note that the above argument (with M = A/N ,

d = 1 and K = N) implies that the map µA/N is bijective. The stated equality

then follows from the corresponding exact commutative diagram (3.10) and

the fact that, in this case, one has K ′
n = ϕ⟨n⟩(N) for every n.

To prove (iii) we note that if B is equal to either A or An for any n, then

the given assumptions imply it is admissible (cf. Example 2.3.2(ii)) and also

that every ideal in PB is principal so that, for any finitely-presented torsion

B-module N , one has CharB(N) = charB(N) (by Proposition 3.1.2(i)(b)(ii)

with R = B and G trivial). In addition, by Theorem 2.2.3(b), any finitely-

presented torsion A-module M is pseudo-isomorphic to a finite direct sum



3.2. Inverse limit rings 64

M̃ :=
⊕

τ∈TA/Lτ , where, for each τ , Lτ = A · aτ with aτ ∈ A \ {0}. In

particular, M̃ is finitely-presented and torsion and thus also I•-complete by

(i). Further, for every n there is a natural isomorphism

M̃(n)
∼=

⊕
τ∈T

(
A/Lτ

)
(n)
∼=

⊕
τ∈T

An/ϕ⟨n⟩(Lτ ) =
⊕

τ∈T
An/(An · ϕ⟨n⟩(aτ )).

(3.12)

In particular, if n0 is the smallest integer for which ϕ⟨n⟩(aτ ) ̸= 0 for all τ ∈ T ,

then for every n ≥ n0 the An-module M̃(n) is finitely-presented and torsion. It

is then enough to note that

CharA(M) =
∏

τ∈T
Lτ = lim←−

n

∏
τ∈T

ϕ⟨n⟩(Lτ ) = lim←−
n

charAn(M̃(n)).

Here the first equality follows directly from our definition of upper generalised

characteristic ideal, the second from (ii) and the third is valid since, for each

n, the isomorphism (3.12) combines with Proposition 3.1.2(i)(b) to imply that

charAn(M̃(n)) = CharAn(M̃(n)) =
∏

τ∈T
ϕ⟨n⟩(Lτ ).



Chapter 4

Arithmetic applications

Let p be a prime, k the function field of a smooth projective curve over the field

of characteristic p and K/k a Galois extension such that Gal(K/k) ∼= ZN
p ×G,

where G is a finite abelian group. This section aims to apply the algebraic

results developed in Chapter 2 and Chapter 3 to arithmetic contexts.

In the first part we provide a detailed introduction to Weil–étale cohomol-

ogy theory as a refinement of étale cohomology, which allows us to extract

deeper arithmetic information from function fields. We begin by presenting

the background on the Weil group, which plays the role of the absolute Ga-

lois group in étale cohomology theory. We then introduce the Weil–étale site

and topos, compute cohomology groups for certain sheaves, and establish the

corresponding duality theorem (Proposition 4.1.14).

In the second part, by Lemma 4.2.1 and Proposition 4.2.4 we demonstrate that

our notions of admissible rings and characteristic ideals are compatible with

the rings and modules that naturally arise in arithmetic applications.

Subsequently, in Theorem 4.3.2, by applying the algebraic structure theorem

established in Chapter 2, we prove that the degree-one Weil–étale cohomology

groups of Gm over finite extensions of k in K are finitely presented torsion

Zp[[ZN
p ]]-modules. From this, we prove an Iwasawa Main Conjecture holding
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under certain mild assumptions.

Finally, under mild assumptions, we investigate the pro-p completion of the

Picard group in Corollary 4.4.1, whose finitely-generated property reflects be-

haviors of places of k ramified in K. Moreover, we show that our framework

encompasses and extends several earlier works in the literature.

The results in Sections 2–4 are joint work with David Burns.

4.1 Weil-étale cohomology theory

Over the past several decades, étale cohomology has demonstrated its tremen-

dous power. Numerous cohomology theories—serving as fundamental tools in

algebraic number theory, arithmetic geometry, and algebraic geometry—have

been unified under the framework of étale cohomology. In this section, we

introduce the Weil–étale topology, which possesses better cohomological prop-

erties than the étale topology and retains richer arithmetic information.

Grothendieck originally introduced the notion of a Grothendieck topology via

category theory to address the limitations of classical sheaf cohomology in

capturing nontrivial information. In particular, because the Zariski topology is

extremely coarse, the cohomology groups of many sheaves — such as constant

sheaves over irreducible varieties — are often trivial. To overcome this issue,

Grothendieck introduced the concept of a site, which generalizes the notion

of a topological space. A site consists of a category together with a specified

notion of covering families. In this framework, the category plays the role

of a topological space, while coverings serve as analogues of open coverings

in classical topology. Notably, the Zariski topology on a scheme X can be

equivalently described using the Zariski site Xzar. To remedy the deficiencies of

the Zariski site, Grothendieck defined the small étale siteXét, whose objects are

étale morphisms over X, arrows are X-morphisms, and coverings are surjective

families of étale morphisms. The notion of sheaf can then be extended to the
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étale site using contravariant functor concept and the sheaf condition expressed

via exact sequences. This provides the foundation for studying the category

of étale sheaves TX,ét which is an abelian category with enough injectives.

Consequently, one can define the étale cohomology groups as the right derived

functors of the global sections functor Γ(X,−) on TX,ét.

Compared with classical sheaf cohomology, a significant advantage of étale

cohomology is its ability to capture the action of the Galois group on sheaves.

A prominent example is the correspondence between étale sheaves on a scheme

X of finite type over finite field k = Fq, and étale sheaves on the base change

X̄ = X×k ksep equipped with a continuous action of the absolute Galois group

Gk = Gal(ksep/k) (see [50, VIII, 1.1.3]). We will describe this correspondence

more precisely in the following sections. This mechanism plays a central role

in the proof of the Weil conjectures.

However, a major limitation of étale cohomology becomes apparent when we

attempt to study the special values and leading terms of the zeta functions

of varieties over finite fields. To address this issue, Lichtenbaum introduced a

new Grothendieck topology in [58] called the Weil–étale topology, in which the

role of the absolute Galois group is replaced by the Weil group (see proposition

4.1.7). We now proceed to introduce the definition and properties of the Weil

group.

4.1.1 Weil groups

Let K be a local or global field, we can define the Weil group axiomatically

(also see [72, 1.1]).

Definition 4.1.1. Weil group for K is a triple data (WK , ϕK , {rL}L/K), where

WK is a topological group, ϕK : WK → GK is a continuous homomorphism

with dense image. Let WL,K be ϕ−1
K (Gal(Ksep/L)) where L runs through all the

finite extensions of K within Ksep. The rL : AL → W ab
L,K (AL is L× when L is

a local field and idèle class group CL when L is a global field) are isomorphisms



4.1. Weil-étale cohomology theory 68

between the topological groups satisfying the conditions (W1)- (W4).

(W1) For every finite extension L/K, the homomorphism ϕK induces homo-

morphism W ab
L,K → Gab

L , and the diagram below is commutative.

WK GK

WL,K GL

AL W ab
L,K Gab

L

ϕ

ϕ

ab ab

rL ϕabL,K

(4.1)

Moreover, the composition ϕabL,K ◦ rL of the bottom line is the local reci-

procity homomorphism θL : AL → Gab
L .

(W2) For any w ∈ WK and σ = ϕ(w) ∈ GK and every finite extension L/K,

the diagram below is commutative.

AL W ab
L

Aσ(L) W ab
σ(L)

rL

σ w

rσ(L)

Here the left vertical map is induced by σ and right vertical map is the

conjugation by w.

(W3) If L′ ⊂ L, the diagram below is commutative.

AL′ W ab
L′,K

AL W ab
L,K

rL′

t

rL

Here the left vertical map is induced by the inclusion map and right ver-

tical map is the transfer homomorphism defined as follows. For any

topological group G and its finite index closed subgroup H, let s be a
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section s : H\G → G of the projection p : G → H\G, i.e p ◦ s = id.

For any g ∈ G and x ∈ H\G, we pick hg,x such that s(x)g = hg,xs(xg).

Then the transfer homomorphism is defined as

tGH : Gab → Hab gGc →
∏

x∈H\G

hg,x mod Hc,

where Gc is the closure of commutator subgroup of G. Here the map t

on the commutative diagram is the transfer homomorphism decided by

WL′,K and its closed subgroup WL,K.

(W4) Let WL/K := WK/W
c
L,K. Then there is a topological group isomorphism

WK → lim←−
L/K

WL/K ,

where the inverse limit taken for all finite extension L/K inside Ksep and

if L′ ⊂ L, the homomorphism between WL/K → WL′/K is the projection.

Remark 4.1.2. Let us give some interpretation of the definition 4.1.1.

i) The second data in the definition of Weil group is required to be continu-

ous. This is because if ϕK is continuous, then we know WL,K is an open

subgroup of WK. Moreover, since the image of ϕK is dense, ϕK induces

a bijection

WK/WL,K
∼−→ Gal(Ksep/K)/Gal(Ksep/L)

∼−→ HomK(L,K).

If L/K is a Galois extension, then the bijection becomes a group homo-

morphism WK/WL,K
∼= Gal(L/K).

ii) Let (WK , ϕK , {rL}L/K) be a Weil group of K. For any finite extension

L/K inside Ksep, we can take the restriction for ϕK on WL,K and pick

{rL′}L′/L as rL′ in {rL}L/K (L′ is also finite extension of K). Then WL,K

is also a Weil group of L. Thus we can reduce the symbol WL,K to WL.
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iii) In (W3), if H is a closed normal subgroup of G, then the composition

Hab ↪→ Gab
tGH
↪−→ Hab.

is the norm map N : h 7→
∏

x∈H\G h
x, where hx = s(x)hh,xs(x)

−1 =

hh,x. The transfer (Verlagerung) homomorphism plays a key role in the

construction of reciprocity maps in class field theory, serving as a bridge

that connects Galois groups on different layers.

There is a result (see [4, Chap 14. Thm 1, Thm 2]) that ensures the existence

and uniqueness (up to isomorphism) of Weil group for a local or global field.

So we can formulate Weil group for some types of fields.

Example 4.1.3. Let us determine the Weil group for a local p-adic field and

a global function field

i) If K is a p-adic local field with residue field k, which is equal to Fq, as

we know Gk is isomorphic to Ẑ. On the other hand the Galois group of

the maximal unramified extension Kur over K is also isomorphic to Gk,

thus we have an tautological exact sequence

1 IK GK Gk
∼= Ẑ 1. (4.2)

Here IK denotes the absolute inertia subgroup. We can choose the WK

in the triple data as the inverse image in GK of the discrete subgroup

in Gk generated by the Frobenius endomorphism Frob : x → xq, so we

have WK/IK ∼= Z. Take ϕ : WK → GK as the inclusion map. For the

reciprocity maps, we can construct them from the local reciprocity map



4.1. Weil-étale cohomology theory 71

θK : K× → Gab
K . As we know, the classical diagram below is commutative.

1 O×
K K× Z 0

1 Gal(Kab/Kur) Gal(Kab/K) Gal(Kur/K) 1

∼=

v

θK i

The isomorphism between O×
K and Gal(Kab/Kur) is given by the exis-

tence theorem of local class field theory (see [22, P. 144, Thm 3a] ). Since

K× ∼= O×
K×Z and the profinite completion K̂× ∼= Gal(Kab/K) ∼= O×

K×Ẑ,

and the exact sequence 4.2 is split, we can define the maps rL be θL and

identify the W ab
L with the image of θL. It is easy to check that rL satisfy

the conditions (W1)-(W4) (see [72, 1.4.1]).

ii) For a function field K of a curve C over a finite field k, we have the

projection map π : GK → Gal(Kksep/K) ∼= Gk, which is isomorphic to

Ẑ and topologically generated by the Frobenius element. Then we have

an analogue of exact sequence 4.2

1 Gal(Ksep/Kksep) GK Gal(Kksep/K) 1,

which is also split. Here Gal(Kksep/K) ∼= Gal(ksep/k) ∼= Ẑ. The Weil

group WK for function field K is π−1(Z) where Z denotes the discrete

subgroup of Gal(Kksep/K). By similar analysis and a commutative dia-

gram

1 C0
K CK Z 0

1 Gal(Kab/H) Gal(Kab/K) Gal(H/K) 1

∼=

d

θK i

where d is a composition degree map given by CK → Cl(K)
deg−−→ Z with

the first arrow as the canonical map, C0
K is the degree-0 part, and H is

the maximal constant field extension inside Kab, we can a have similar
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process as the p-adic local field case (see [72, 1.4.2])

iii) As a special case of function field, a finite field Fq has Weil group Z as

the discrete subgroup of GalFq
∼= Ẑ.

We now analyze the motivation behind replacing absolute Galois groups with

Weil groups. First, the abelianization of the Weil group WK encodes more

refined arithmetic information than that of GK , particularly in relation to

the idéle class group CK . In the classical setting, we only obtain the Artin

reciprocity map θK : CK → Gab
K , which is, in general, not injective. Second,

in the global case, for each finite extension L/K, there exists a short exact

sequence

1 W ab
L WL,K WK/WL 1.

Given thatWL/W
c
L
∼= CL andWK/WL

∼= Gal(L/K) for finite Galois extension

L/K, it follows that WL,K is an extension of Gal(L/K) by CL, corresponding

to a fundamental class u ∈ H2(Gal(L/K), CL). By condition (W4) in def-

inition 4.1.1, WK is the projective limit of WL/K , which demonstrates that

WK contains ample arithmetic information. Moreover, the original motiva-

tion for Weil’s introduction of the Weil group was to resolve the discrepancy

between Hecke L-functions and Artin L-functions. Indeed, not every Hecke

L-function corresponds to an Artin L-function for a one-dimensional repre-

sentation of the Galois group. However, Weil constructed the Weil group so

that every Hecke L-function corresponds to an Artin L-function arising from

a one-dimensional representation of the Weil group (see [80, P. 1-35]). This

construction has since become classical in the study of automorphic forms and

plays a central role in the Langlands program—for instance, in extending Weil

groups to Deligne–Weil groups on the Galois side match automorphic data on

the automorphic side, as in the study of the local Langlands correspondence

for GLn (see [72], [30, Chap 2], [20, Chap 7]). These developments highlight

the foundational importance and potential of the Weil group in arithmetic
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research. Later, we will also see that Weil–étale cohomology enjoys better for-

mal properties and can be regarded as more fundamental than classical étale

cohomology.

4.1.2 Weil-étale sites and topoi

The content of this section is a reformulation of [58, §2]. Throughout this

section, let k denote a finite field Fq. Let X be a scheme of finite type over

k and let X̄ denote its base change to the algebraic closure of k. In analogy

with the development of étale cohomology, we first define the site that will be

used in the construction of Weil-étale cohomology theory.

Definition 4.1.4. We define the Weil-étale topology as the following

Grothendieck topology on the underlying category CatW(X).

• Objects: All étale schemes of finite type over X̄.

• Morphisms: Let π1 : X̄ → X, π2 : X̄ → ksep be the two projections. If

W
f−→ X̄ and Z

g−→ X̄ are two objects belonging to CatW(X) where W

is connected, then a morphism ϕ from (W, f) to (Z, g) is a morphism ϕ

from W to Z such that

i) For π1, the diagram following is commutative.

W Z

X̄ X̄

X X

ϕ

f g

π1 π1

id

(4.3)

ii) For π2, the diagram following is commutative where the bottom ar-
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row is an integral power of the Frobenius morphism on k̄.

W Z

X̄ X̄

ksep ksep

ϕ

f g

π2 π2

Frobn

(4.4)

For arbitrary W , a morphism on W is a collection of morphisms on the

connected components of W .

• Covering: The surjective families {Wi → W} belonging to CatW(X).

The Weil-étale site XW ét is the category CatW(X) equipped with the Weil-étale

topology.

Remark 4.1.5. The Weil-étale site defined above closely resembles the struc-

ture of the small étale site. For instance, its coverings are induced by restricting

the étale topology from the small étale site X̄ét to the subcategory CatW(X).

For this reason, Lichtenbaum[58] also refers to it as the Weil-étale small site.

Next we introduce Weil-étale sheaves and the topos.

Definition 4.1.6. A sheaf F on XW ét is a contravariant functor CatW(X)→

AbGrp such that

F(W )→
∏
i∈I

F (Wi) ⇒
∏

(i,j)∈I×I

F (Wi ×W Wj)

is exact for every object W → X and every covering {Wi → W}. We use the

notation TX,W ét to denote the topos of Weil-étale sheaves.

We now provide an equivalent description of the Weil-étale topos. We begin by

recalling the correspondence between étale sheaves on X and Gk-equivariant

sheaves on the X̄. Let F be an étale sheaf on X̄, and let π1 : X̄ → X denote



4.1. Weil-étale cohomology theory 75

the natural projection. For any g ∈ Gk and any étale morphism U → X̄

of finite type, define gU = U ×F̄q ,g−1 F̄q. Then we can define the pullback

g∗F(U) = F(gU) and the pushward g∗F(U) = F(g−1U). We say Gk acts on

F if for each g ∈ Gk there exists an isomorphism ig : F → g∗F such that

igh = ig ◦ ih. For any f ∈ F(U), we denote ig(f) ∈ F(gU) by gf . Let

GU ⊂ Gk denote the subgroup fixing the minimal finite extension Fqr over

which U has a model U ′ such that U = U ′ ×Fqr
F̄q. This model exists because

every scheme of finite type over F̄q is the base change of a scheme over some

finite field Fqr . If Gk acts on F , then so does GU on F(U). We say that Gk

acts continuously on F if for each U , the action of GU on F(U) equipped with

discrete topology is continuous. This correspondence yields an equivalence

between the étale topos TX,ét of étale sheaves on X and the topos TGk

X̄,ét
of

étale sheaves on X̄ equipped with a continuous Gk-action as follows. Given

an étale sheaf G on X, its pullback Gk = π∗
1G to X̄ carries a natural Gk-action

since for every g ∈ Gk, there is an induced morphism g : X̄ → X̄ which

induces a pullback g∗Gk and g∗Gk ∼= Gk. This assigns G belonging to TX,ét

corresponding to Gk belonging to TGk

X̄,ét
. Conversely, given a sheaf F on the

X̄ with a continuous Gk-action, the corresponding étale sheaf on X is given

by π1
Gk
∗ F , defined by V → F(V ×Fq F̄q)Gk . Moreover, using the isomorphism

H i
ét(X̄, g

∗F) ∼= H i
ét(X,F), we can extract cohomological information from the

Gk-action on F .

Notice that any Gk-equivariant sheaf as described above naturally carries the

structure of a Wk-equivariant sheaf via the inclusion Wk ↪→ Gk. In particular,

for any W belonging to TX,W ét, the global section Γ(X̄,W) naturally form

a Wk-module. Analogously, for the Weil group Wk and Weil-étale topos, a

similar correspondence holds, mirroring the discussion above.

Proposition 4.1.7. The category of Weil-étale sheaves on X is equivalent to

the category of étale sheaves on X̄ equipped with a Wk-action.
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Proof. See [58, Prop. 2.2].

Next we explain the connection between the Weil-étale topos TX,W ét and the

étale topos TX,ét. Inspired by constructing equivalence between TX,ét and

TGk

X̄,ét
, we can define two similar functors ψ : TX,W ét → TX,ét and ϕ : TX,ét →

TX,W ét between TX,ét and TX,W ét. For every object F → X in Xét and every

Weil-étale sheaf G in TX,W ét, we define ψ(G)(F ) := G(F ×X X̄)Wk . For every

étale sheaf F on X, we set ϕ(F) := π∗
1F . In general the two functors φ and ψ

do not yield an equivalence of topoi. However, as a second-best result the pair

(ϕ, ψ) forms an adjoint pair. Moreover, there exists a unit η : idTX,ét
→ ψ ◦ ϕ

which implies ϕ is actually fully faithful. This shows that TX,ét is equivalent

to a full subcategory of TX,W ét (see [58, Prop. 2.4, (a),(b)]).

On the other hand, since TX,W ét is a Grothendieck abelian category, it has

enough injectives. By taking the functor Γ(X̄,−)Wk as the zeroth cohomology

functor, we can define the i-th Weil-étale cohomology functor as its i-th right

derived functor. We denote the i-th Weil-étale cohomology group of an object

G belonging to TX,W ét by H
i(XW ét,G). The functors (ϕ, ψ) provide insights

into the connection between Weil-étale and classical étale cohomology, via the

homomorphisms induced between cohomology groups by the action of functors

on the resolution complexes (see [58, Prop. 2.4, (e),(g)]).

Proposition 4.1.8. Let G belong to TX,W ét and F belong to TX,ét. There is

ci : H
i
ét(X,ψ(G)) → H i(XW ét,G) and di : H

i
ét(X,F) → H i(XW ét, ϕ(F)) such

that the following assertions are correct.

• c0 is an isomorphism.

• ci are isomorphisms when G is a torsion sheaf.

• di are isomorphisms when F is a torsion sheaf.

It also should be noted that the six standard functors for Weil-étale sheaves
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— namely (i∗, i∗, i
!) and (j!, j

∗, j∗), corresponding respectively to the open

immersion j : U ↪→ X and the closed immersion i : Z ↪→ X with U = X\Z —

satisfy similar adjoint functor relationships as in the case of étale sheaves (see

[58, P. 693]). These functors are particularly useful for analyzing the structure

of Weil-étale sheaves. For instance, the exact sequence

0 j!j
∗F F i∗i

∗F 0

remains valid for any Weil-étale sheaf F on X.

4.1.3 Weil-étale cohomology groups of sheaves

In this subsection we collect several basic properties of Weil–étale cohomology

groups for certain sheaves. Throughout we let k be a finite field and X a

scheme of finite type over k. In what follows we will mainly be interested in

the constant sheaf Z, the extension–by–zero sheaf j!Z associated to an open

immersion j : U ↪→ X, and the Weil–étale sheaf Gm, which is defined as the

restriction of the étale sheaf Gm on X̄ét to XW ét.

For the constant sheaf Z on XW ét, Lichtenbaum has proved that the cohomol-

ogy groups Hq(XW ét,Z) are finitely generated for all integers q ≥ 0, are finite

for all q ≥ 2, and vanish for all sufficiently large q (see [58, Thm 3.1]).

Now we compute the extension by zero sheaf j!Z. Let U be a smooth d-

dimensional quasi-projective variety over a finite field k. Since the proof of

the following proposition involves certain technical subtleties, we assume the

existence of an open dense immersion j : U ↪→ X, where X is a smooth

projective variety over k. The existence of X is justified by the existence of

resolution of singularities in positive characteristic when d ≤ 3.

Proposition 4.1.9. Let d ≤ 3, j : U → X as mentioned in the above para-

graph. Then Hq(X, j!Z) are independent of the choice of X and j. Moreover,

the groups are finitely generated and vanishing for q large enough.
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Proof. See [58, Thm 3.3]

Remark 4.1.10. It is well-known that the existence of resolution of singular-

ities for varieties over fields of characteristic zero was proven by H. Hironaka

in [47]. However, for varieties of dimension more than 3 over fields of char-

acteristic p, the existence problem is still open. For curves, the problem is

relatively straightforward and can be handled via normalization. In dimension

d = 2, the existence was proven by S. Abhyankar in [1], and for d = 3, the

case was settled by V. Cossart and O. Piltant in [27].

It should be noted that in [58], S. Lichtenbaum proved the proposition 4.1.9 only

for the case d ≤ 2. At the time S. Lichtenbaum completed [58], the result of

[27] for d = 3 had not yet been established. After reviewing the argument, the

author of this thesis believes that the proposition should also hold in dimension

d = 3, in light of the results in [27].

Proposition 4.1.11. Let X be a geometrically connected smooth curve over a

finite field k. Then the cohomology groups Hq(XW ét,Gm) are finitely generated

for all q and vanishing for all q ≥ 3. In particular, when X is projective, we

have H0(XW ét,Gm) = k×, H1(XW ét,Gm) = Pic(X), H2(XW ét,Gm) = Z.

Proof. See ([58, Prop. 3.4]).

4.1.4 Duality theorems in the derived version

Let U be a smooth geometrically connected curve over a finite field k, equipped

with an open dense immersion j : U ↪→ X into a smooth projective curve X

over k. Let F be a sheaf in TX,W ét. Notice that X has finite cohomological

dimension. Thus by taking an injective (bounded-above) resolution I• of F ,

a sufficiently far-out truncation τI• and an injective resolution J• of Gm, we

construct RHomX(F ,Gm) = HomX(τI
•, J•). We can also define the derived

global sections RΓX(F) as the right derived functor of the global section functor

Γ(X̄,−)Wk .
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Let D be the derived category of abelian groups consisting of those complexes

with finitely generated homology groups. Applying the functor RΓX(F), we ob-

tain a natural morphism kF : RHomX(F ,Gm)→ RHomD(RΓX(F),RΓX(Gm))

in D. Moreover, by Proposition 4.1.11, there is a natural morphism f :

RΓX(Gm) → Z[−2] in D . Then we define κF = f ◦ kF which is the compo-

sition morphism from RHomX(F ,Gm) to RHomX(RΓX(F),Z[−2]). The proof

of next proposition can be found in [58, Thm 5.1].

Proposition 4.1.12. Let F be either j!Z or j!Z/nZ. Then κF is an isomor-

phism.

Since the six standard functors applies well for Weil-étale sheaves, the functor

j∗ has the exact left j! and j
∗ is exact. Consequently j∗ carries a resolution of

Gm,X to a resolution of j∗Gm,X = Gm,U . By the adjointness of the pair (j∗, j!),

we obtain the following lemma.

Lemma 4.1.13. Let F be a Weil-étale sheaf on U . There is a canonical

isomorphism in D between RHomX(j!F ,Gm,X) and RHomU(F ,Gm,U).

Notice that RΓU(F) ∼= RHomU(Z,F) and the functor is RHomD(−,Z[−2]) is

self-inverse. By combining Proposition 4.1.12 and Lemma 4.1.13, we obtain

the following duality theorem.

Proposition 4.1.14. The following two assertions are right.

1) RΓU(Gm) is naturally isomorphic to RHomD(RΓX(j!Z),Z[−2]).

2) RΓX(j!Z) is naturally isomorphic to RHomD(RΓU(Gm),Z[−2]).
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4.2 Arithmetic of function fields

4.2.1 Application of algebraic results

In this section we describe an application of the algebraic results in Chapters

2 and 3 to the rings and modules occurring in the context of Iwasawa theory.

For this, we write U(G) for the set of open subgroups of a profinite group G.

The Iwasawa algebra of ZN
p over a commutative Zp-algebra O is the completed

group ring

O[[ZN
p ]] := lim←−

U∈U(ZN
p)

O[ZN
p /U ],

where the limit is taken respect to the natural projection maps. In particular,

after fixing a Zp-basis {γi}i∈N of ZN
p , the association Xi 7→ γi − 1 induces an

isomorphism of rings between O[[ZN
p ]] and the power series ring

RO := lim←−
n

Rn,O with Rn,O := O[[X1, . . . , Xn]]

in commuting indeterminates {Xi}i∈N. Here the inverse limit is taken with

respect to the (surjective) Zp-linear ring homomorphisms

ρn,O : Rn,O ↠ Rn−1,O

that send Xi to Xi if 1 ≤ i < n and to 0 if i = n. For each n we also use the

maps

ιn,O : Rn,O ↪→ RO and ρ⟨n⟩,O : RO ↠ Rn,O,

that are respectively the natural inclusion and the (surjective) O-linear ring

homomorphism that sends Xi to Xi if 1 ≤ i ≤ n and to 0 if i > n (so

that the pair (ιn,O, ρ⟨n⟩,O) is a retract of rings and, for each n > 1, one has

ρn,O ◦ ρ⟨n⟩,O = ρ⟨n−1⟩,O).
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In the case O = Zp, we abbreviate RO,Rn,O, ρn,O, ρ⟨n⟩,O and ιn,O to

R,Rn, ρn, ρ⟨n⟩ and ιn respectively. We then also fix a finite abelian group

G and consider the group rings

A := R[G] and An = Rn[G],

together with the maps An → An−1,An → A and A → An that are respec-

tively induced by ρn, ιn and ρ⟨n⟩ (and which we continue to denote by the same

notation).

We then define a separated decreasing filtration I• = (In)n of A by setting

In := ker(ρ⟨n⟩)

for each n, and we note that A is I•-complete.

Now, since the submodule of In that is generated by {Xi}i>n is not finitely

generated, the ring A is not Noetherian (cf. Remark 4.2.3 below) and its

module theory is complicated. For instance, the example discussed in the

proof of Lemma 3.2.1(i) shows that cyclic A-modules need not be I•-complete

(or even pro-finite). Nevertheless, claims (i) and (ii) of the following result

ensure that our theory developed in Chapter 2 and Chapter 3 can be applied

in this setting.

For each natural number m, we use Om to denote Zp[ζm] ⊂ Qc
p.

Lemma 4.2.1. For every n the following claims are valid.

(i) For all natural numbers m, the rings ROm and Rn,Om are p-adically com-

plete unique factorisation domains, and hence admissible (in the sense

of Definition 2.3.1).

(ii) The ring A is p-adically complete and compact (in the sense of §3.2.2)

and both rings Q(A) and Q(An) are semisimple (as algebras over Q(R)
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and Q(Rn) respectively). In addition, an A-module M is finitely-

presented, torsion and admissible if it is finitely-presented and torsion

as an R-module and, in addition, no height one prime of R that lies in

the support of M contains |G|. In particular, if p ∤ |G|, then the ring A,

and also the ring An for each n, is admissible.

(iii) If p is a prime ideal of An, then ιn(p)A is a prime ideal of A.

Proof. Since Om is a regular local domain, the first assertion of (i) is classical

in the case of Rn,Om . This result then implies that the ring ROm satisfies

the condition (∗) of Nishimura [64, Intro.] and hence that it is a unique

factorisation domain by [64, Th. 1]. The second assertion of (i) then follows

directly from Remark 2.3.2(ii).

To prove (ii) we note that, for each subgroup U in U(ZN
p ) the ring Zp[(ZN

p /U)×

G] is finitely generated over Zp and hence compact with respect to the canonical

p-adic topology. The (inverse limit) ring Zp[[ZN
p ×G]] is therefore compact with

respect to the induced inverse limit topology. This induces a compact topology

on A that is independent of the choice of Zp-basis {γi}i∈N of ZN
p and such that

each ideal In is closed. This proves the first assertion of (ii). In addition, as R

and Rn are both domains of characteristic zero, and G is finite, the algebras

Q(A) and Q(An) are respectively equal to Q(R)[G] and Q(Rn)[G] and so are

semisimple (see the discussion at the paragraph above Proposition 2.3.3).

Next we note that (i) combines with Proposition 2.3.5 (with R and A replaced

by R and A) to imply an A-module M that is finitely-presented and torsion

as an R-module is finitely-presented, torsion and admissible as an A-module

provided that both PR(M) ⊆ P |G|
R and Rq is Noetherian for every q ∈ PR(M).

In addition, since for each divisor m of n, the ring Om ⊗Zp R = ROm is a

unique factorisation domain, one has P |G|
R = {q ∈ PR : |G| /∈ q} (cf. Example

2.3.4(ii)) and the localisation of R at each prime in PR is a principal ideal

domain, and hence Noetherian. This proves the second sentence of (ii). Given
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this fact, it is clear that if p ∤ |G| then A is admissible as no prime in PR can

contain |G|. Finally, we recall that the admissibility of each ring An in this

case was already observed in Remark 3.1.3

To prove (iii) we note p is a (finitely generated) ideal of the (Noetherian) ring

An, and hence that P := ιn(p)A is a finitely generated ideal of A. Proposition

3.2.2(i) therefore implies that the map µA/P is bijective. Since, for m > n, the

image of the natural map P(m) → A(m) = Am is ρ⟨m⟩(P) = p[[Xn+1, . . . , Xm]],

these observations combine to give a composite ring isomorphism

A/P
µA/P−−−→ lim←−

m>n

(
A/P

)
(m)
∼= lim←−

m>n

Am/ρ⟨m⟩(P) ∼= lim←−
m>n

(An/p)[[Xn+1, · · · , Xm]].

Hence, since each ring (An/p)[[Xn+1, · · · , Xm]] is a domain, the limit is a

domain and so P is a prime ideal of A.

Remark 4.2.2. Every non-zero prime ideal of R that is principal has height

one (since if a generating element x does not belong to any prime in PR, then

x−1 belongs to Rq for all q in PR and hence to R =
⋂

q∈PRRq). Lemma

4.2.1(iii) (with G trivial) therefore implies that ιn(p)R belongs to PR if p be-

longs to PRn. This observation is a special case of a result of Gilmer [42, Th.

3.2] and is also related to the second part of [7, Prop. 2.3].

Remark 4.2.3. Since R is a unique factorisation domain, it is a finite con-

ductor ring in the sense of Glaz [43] (so that every ideal with at most two

generators is finitely-presented).

The following result proves a more concrete version of Proposition 3.2.2(iii)

in this case. In particular, it shows that, for a natural class of torsion A-

modules, the notion of lower generalised characteristic ideal coincides with the

‘pro-characteristic ideal’ defined by Bandini et al in [7].
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Proposition 4.2.4. Assume |G| is prime to p. Then the following claims are

valid for any quadratically-presented, torsion A-module M .

(i) For any natural number n for which the An-module M(n) is torsion, the

An-module (M(n+1))
Xn+1=0 is pseudo-null.

(ii) The A-moduleM identifies with lim←−nM(n) and its pro-characteristic ideal

(in the sense of [7, Def. 1.3]) is equal to charA(M).

Proof. Since p ∤ |G|, there exists a finite set {mi}i∈I of natural numbers

and corresponding direct product decompositions A =
∏

i∈I ROmi
and An =∏

i∈I Rn,Omi
(for each n) that are compatible with all transition maps. Hence,

in this argument we can, and will, henceforth assume that A and An respec-

tively represent ROm and Rn,Om for some natural number m.

To prove (i) we note An+1 is Noetherian. Hence, assuming M(n) to be a

torsionAn-module, the equality (M(n+1))(n) =M(n) combines with Nakayama’s

Lemma to imply (M(n+1))p = (0) with p = (Xn+1) ∈ Spec(An+1) and so

M(n+1) is a torsion An+1-module. In particular, sinceM(n+1) andM(n) are both

quadratically-presented (over An+1 and An respectively), there are equalities

of An-ideals

charAn

(
(M(n+1))

Xn+1=0
)
· ρn+1

(
charAn+1(M(n+1))

)
=charAn(M(n)) (4.5)

=Fit0An
(M(n))

= ρn+1

(
Fit0An+1

(M(n+1))
)

= ρn+1

(
charAn+1(M(n+1))

)
.

Here the second and last equalities follow from Proposition 3.1.2(i)(b) (with G

trivial and R taken to be respectively An and An+1), the first equality follows

from Remark 3.1.3 and the general result of [7, Prop. 2.10] (see also [65,

Lem. 4]) and the third from a standard property of Fitting ideals under scalar

extension.
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Next we note that, asM(n) is a quadratically-presented, torsionAn-module, the

ideal Fit0An

(
M(n)

)
, and hence (by (4.5)) also ρn+1

(
charAn+1(M(n+1))

)
, is prin-

cipal and generated by a non-zero divisor. The equalities (4.5) therefore imply

charAn

(
(M(n+1))

Xn+1=0
)
= An, and hence that (M(n+1))

Xn+1=0 is a pseudo-null

An-module, as required to prove (i).

In a similar way, Proposition 3.1.2(i)(b) implies for every n that

charAn(M(n)) = Fit0An
(M(n)) = ρ⟨n⟩

(
Fit0A(M)

)
= ρ⟨n⟩

(
charA(M)

)
.

Taking account of Proposition 3.2.2(ii) (and Lemma 4.2.1(ii)), these equalities

in turn imply that the pro-characteristic ideal of the A-module lim←−nM(n) is

equal to charA(M). To complete the proof of (ii), it is now enough to note that

the canonical map M → lim←−nM(n) is bijective as a consequence of Proposition

3.2.2(i) (and the first assertion of Lemma 4.2.1(ii)).

Remark 4.2.5. The assumptions used in [7] are more general than those

of Proposition 4.2.4. Specifically, the authors of loc. cit. assume only to

be given a Krull domain Λ that arises as the inverse limit (over d ∈ N) of

Noetherian Krull domains Λd and a Λ-module M arising as the inverse limit

of torsion Λd-modules Md. Then, under suitable hypotheses on each Λd, they

formulate conditions on the modules Md that are analogous to the conclusion

of Proposition 4.2.4(i) and, assuming these conditions to be satisfied, [7, Th.

2.13] provides a well-defined ‘pro-characteristics ideal’ C̃hΛ(M) ofM . We now

assume M is a finitely-presented, torsion Λ-module that is supported on only

finitely many primes in PΛ, each of which is finitely generated. Then M is

also an admissible Λ-module (cf. Remarks 2.1.2(i) and 2.3.2(i)) and so has a

generalised characteristic ideal charΛ(M) in the sense of Definition 3.1.1. As

a possible extension of Proposition 4.2.4 (and Proposition 3.2.2(iii)), it would

seem reasonable to expect that in any such case charΛ(M) should be closely

related to C̃hΛ(M).
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4.2.2 The Weil-étale cohomology group and Stickel-

berger element

In rest of this chapter, we fix a global function field k of characteristic p and a

Galois extension K of k that is ramified at only finitely many places and such

that the group Γ := Gal(K/k) is topologically isomorphic to a direct product

ZN
p × G for a finite abelian group G. We fix such an isomorphism and, in

addition, a finite non-empty set of places Σ of k that contains all places that

ramify in K but no place that splits completely in K. For every intermediate

field L of K/k we set ΓL := Gal(L/k) and, if L/k is finite, we write OΣ
L for the

subring of L comprising elements that are integral at all places outside those

above Σ.

This section aims to introduce the Stickelberger element associated with the

special value at 0 of the Dirichlet L-series, as well as the derived complex

over which we work to extract arithmetic information. These two objects,

representing two aspects of the Iwasawa Main Conjecture, will be the focus of

the following section.

For a finite extension F of k in K, the result of [73, Chap. V, Th. 1.2] implies

that the sum

θΣF := [F : k]−1
∑

ψ∈Hom(ΓF ,Qc,×
p )

∑
γ∈ΓF

ψ(γ−1)LΣ(ψ, 0)

is a well-defined element of Zp[ΓF ], where LΣ(ψ, 0) denotes the value at 0 of the

Σ-truncated Dirichlet L-series of ψ (here we use that, in terms of the notation

of loc. cit., θΣF is equal to ΘΣ(1) and, as p = char(k), the integer e is prime to

p). In addition, the behaviour of Dirichlet L-series under inflation of characters

implies the elements θΣF are compatible with respect to the projection maps

Zp[ΓF ′ ]→ Zp[ΓF ] for any finite extension F ′ of k in K with F ⊂ F ′ and so, for

each extension L of k in K, one obtains a well-defined element of Zp[[ΓL]] by

setting



4.2. Arithmetic of function fields 87

θΣL := lim←−
U∈U(ΓL)

θΣLU .

For each such L, we also set

H1((OΣ
L)W ét,Zp(1)) := lim←−

U∈U(ΓL)

(
Zp ⊗Z H

1((OΣ
LU )W ét,Gm))

and both

Pic0(L)p := lim←−
U∈U(ΓL)

(Zp⊗ZPic
0(LU)) and Cl(OΣ

L)p := lim←−
U∈U(ΓL)

(Zp⊗ZCl(OΣ
LU )),

where (−)W ét denotes the Weil-étale site and Pic0(LU) the degree zero divisor

class group of LU , and the respective limits are with respect to the natural

corestriction and norm maps.

We next recall some general facts about Weil-étale cohomology. For a com-

mutative Noetherian ring Λ, we write D(Λ) for the derived category of com-

plexes of Λ-modules and Dperf(Λ) for the full triangulated subcategory of D(Λ)

comprising complexes isomorphic to a bounded complex of finitely generated

projective Λ-modules.

For a finite extension F of k inK we also write CF for the unique geometrically

irreducible smooth projective curve with function field F and jΣF for the natural

open immersion Spec(OΣ
F ) → CF . We then define an object of D(Zp[ΓF ]) by

setting

D•
F,Σ := RHomZp(RΓ((CF )ét, j

Σ
F,!(Zp)),Zp[−2]).

We recall that D•
F,Σ belongs to Dperf(Zp[ΓF ]) (cf. [16, Lem. 3.3]), and also that

there exist canonical isomorphisms

H1(D•
F,Σ)
∼=Zp ⊗Z H

1(RHomZ(RΓ((CF )W ét, j
Σ
F,!(Z)),Z[−2])) (4.6)

∼=Zp ⊗Z H
1((OΣ

F )W ét,Gm) = H1((OΣ
F )W ét,Zp(1)).
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Here the first isomorphism is a consequence of Proposition 4.1.8 and the second

of the duality theorem 4.1.14 in Weil-étale cohomology and the equality follows

directly from our definition of H1((OΣ
F )W ét,Zp(1)).

We next recall (from the proof of [16, Prop. 4.1]) that D•
F,Σ is acyclic in degrees

greater than one and such that, for each intermediate field F ′ of F/k, there

is exists a canonical projection formula isomorphism Zp[ΓF ′ ] ⊗L
Zp[ΓF ] D

•
F,Σ
∼=

D•
F ′,Σ in D(Zp[ΓF ′ ]). These facts combine with (4.6) to imply that the natural

corestriction map H1((OΣ
F )W ét,Gm)→ H1((OΣ

F ′)W ét,Gm) induces a canonical

isomorphism of Zp[ΓF ′ ]-modules

Zp[ΓF ′ ]⊗Zp[ΓF ] H
1((OΣ

F )W ét,Zp(1)) ∼= H1((OΣ
F ′)W ét,Zp(1)). (4.7)

Remark 4.2.6. Some explicit relations between the complexes D•
F,Σ and lead-

ing terms of Σ-truncated Artin L-series have already been established elsewhere.

In the case of finite abelian extensions F/k, these relations are obtained by the

main result of Lai, Tan and Burns in [16] and in the case of arbitrary finite

Galois extensions F/k by the main result of Burns and Kakde in [18].

4.3 The structural result of the Weil-étale co-

homology group

In this section, we next fix a Zp-basis {γi}i∈N of ZN
p (as at the beginning of

§4.2.1) and, for each n ∈ N, write Γ(n) for the Zp-module generated by {γi}i>n
and Kn for the fixed field of Γ(n) in K (so that ΓKn is isomorphic to Znp ×G).

We also write Γv for the decomposition group in Γ of each v in Σ and consider

the following condition on K and Σ.

Hypothesis 4.3.1. There exists a natural number n0 such that, for every v

in Σ, the group Γ(n0) ∩ Γv is not open in Γv.
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We note that this hypothesis is satisfied in the setting of the main results of

both Anglès et al [3] and Bley and Popescu [12] and hence that the structural

aspects of the next result complement these earlier results (for more details

see the discussions in Remarks 4.4.2 and 4.4.3 below).

We use the fixed basis {γi}i∈N of ZN
p to identify the completed p-adic group

ring Zp[[Γ]] with the group ring A = R[G] of G over the power series ring

R = Zp[[ZN
p ]]. In the sequel we shall thereby regard the inverse limit

M := H1((OΣ
K)W ét,Zp(1))

as an A-module.

Finally, for each n we set An := Rn[G] ∼= Zp[[ΓKn ]] and M(n) := An ⊗A M .

Theorem 4.3.2 (Iwasawa Main Conjecture). The A-module M has the fol-

lowing properties.

(i) M is quadratically-presented and, for every n, the An-module M(n) is

isomorphic to H1((OΣ
Kn

)W ét,Zp(1)).

In the remainder of the result we assume that K and Σ satisfy Hypothesis

4.3.1.

(ii) M is torsion and PA(M) is finite.

(iii) If |G| does not belong to any prime in PA(M), then there exists a pseudo-

isomorphism of A-modules of the form

M →
⊕

p∈PA(M)

⊕
1≤i≤n(p)

A/pe(p)i

(for suitable natural numbers n(p) and e(p)i). Setting e(p) :=
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∑
1≤i≤n(p) e(p)i for each p ∈ PA(M), one also has

∏
p∈PA(M)

pe(p) ⊆
⋂

q∈PR

(∏
p∈PA(M)

pe(p)
)
q
= A · θΣK , (4.8)

with equality if and only if
∏

p∈PA(M)p
e(p) is a principal ideal of A.

(iv) If |G| is prime to p, then the inclusion in (4.8) is an equality and, in

addition, for every n ≥ n0 the An-modules

H1((OΣ
Kn+1

)W ét,Zp(1))Xn+1=0 and Cl(OΣ
Kn+1

)Xn+1=0
p

are both pseudo-null.

The proof of these results will occupy the remainder of this section.

Proof. At the outset we fix an exhaustive separated decreasing filtration

(∆n)n∈N of the subgroup ZN
p of Γ by open subgroups. We set Fn := K∆n ,

write Jn for the kernel of the natural projection map

A↠ A[n] := Zp[ΓFn ] = Zp[Γ/∆n] ∼= Zp[(ZN
p /∆n)][G],

and for each A-module N , respectively homomorphism of A-modules θ, we set

N[n] := A[n] ⊗A N and θ[n] := idA[n]
⊗A θ. Then

J• := (Jn)n∈N

is a separated decreasing filtration with respect to which A is complete. In

addition, the isomorphisms (4.7) with F/F ′ equal to each Fn/Fn−1 imply the

A-module M is J•-complete and that, for every n, there is a natural isomor-

phism M[n]
∼= H1((OΣ

Fn
)W ét,Zp(1)).

Turning now to the proof of Theorem 4.3.2, we first observe the isomorphisms

in the second assertion of (i) are directly induced by the descent isomorphisms
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(4.7). We then claim that, to prove the quadratic-presentability of M (and

hence complete the proof of (i)), it suffices to inductively construct, for every

n, an exact commutative diagram of A[n]-modules

Ad[n]
θn−−−→ Ad[n]

πn−−−→ M[n] −−−→ 0

τ0n

y τ1n

y τn

y
Ad[n−1]

θn−1−−−→ Ad[n−1]

πn−1−−−→ M[n−1] −−−→ 0

(4.9)

in which the natural number d is independent of n, all maps πn and τ 0n are sur-

jective and τ 1n and τn are the tautological projections. To justify this reduction

we use the fact that ∆n−1/∆n is a finite p-group and hence that the kernel

of the projection A[n] → A[n−1] is contained in the Jacobson radical of (the

finitely generated Zp-algebra) A[n]. This in turn implies that the natural maps

GLd(A[n])→ GLd(A[n−1]) are surjective and therefore, since A is J•-complete,

that the inverse limit of Ad[n] with respect to the maps τ 0n is isomorphic to Ad.

Then, since M is also J•-complete (and the inverse limit functor is exact on

the category of finitely generated Zp-modules), by passing to the limit over n

of the above diagrams one obtains an exact sequence of A-modules

Ad θ−→ Ad π−→M → 0 (4.10)

(with θ = lim←−n θn and π = lim←−n πn) which shows directly that M is

quadratically-presented.

To complete the proof of (i), we must therefore construct the diagrams (4.9).

To do this, we note that F1 is a finite extension of k and hence that M[1]
∼=

H1((OΣ
F1
)W ét,Zp(1)) is finitely generated over A[1] (this follows, for example,

from (4.6) and the fact D•
F1,Σ

belongs to Dperf(A[1])). We can therefore fix a

natural number d and a subset {mi}1≤i≤d of M whose image in M[1] generates

M[1] over A[1]. For each n, we write mi,n for the projection of mi to M[n].

We then note that, just as above, the kernel of the projection A[n] → A[1]

lies in the Jacobson radical of the (Noetherian) ring A[n], and hence that the
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tautological isomorphism A[1] ⊗A[n]
M[n]

∼= M[1] combines with Nakayama’s

Lemma and our choice of elements {mi}1≤i≤d to imply {mi,n}1≤i≤d generates

the A[n]-moduleM[n]. We therefore obtain the right hand commutative square

in (4.9) by defining πn (and similarly πn−1) to be the map of A[n]-modules that

sends the i-th element in the standard basis of Ad[n] to mi,n.

By following the argument of [16, Prop. 4.1] it now follows that D•
Fn,Σ

can

be represented by a complex of the form Pn
θn−→ Ad[n] in which Pn is a finitely

generated projective A[n]-module (placed in degree zero), im(θn) = ker(πn)

and πn induces an isomorphism between coker(θn) and M[n]. Then, since A[n]

is a finite product of local rings and the A[n]-equivariant Euler characteristic

of D•
Fn,Σ

vanishes (by Flach [40, Th. 5.1]), the A[n]-module Pn is free of rank d

(and so, after changing θn if necessary, can be taken to be Ad[n]). In particular,

if we choose both of the rows in (4.9) in this way, then they are exact and so

the commutativity of the right hand square reduces us to proving the existence

of a surjective map τ 0n that makes the left hand square commute. To do this

we can first choose a morphism of A[n−1]-modules τ ′n : (Ad[n])[n−1] → Ad[n−1] for

which the associated diagram

(Ad[n])[n−1]

(θn)[n−1]−−−−−→ (Ad[n])[n−1]

τ ′n

y ∼=
y(τ1n)[n−1]

Ad[n−1]

θn−1−−−→ Ad[n−1]

commutes and represents the canonical isomorphism A[n−1] ⊗L
A[n]

D•
Fn,Σ

∼=

D•
Fn−1,Σ

. In particular, since the morphism of complexes represented by this

diagram is a quasi-isomorphism and (τ 1n)[n−1] is bijective, the map τ ′n must also

be bijective. The composite map

τ 0n : Ad[n] ↠ (Ad[n])[n−1]
τ ′n−→ Ad[n−1]

(in which the first map is the tautological projection) is then surjective and

such that the diagram (4.9) commutes. This completes the proof of (i).
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In the rest of the argument we assume that K and Σ satisfy Hypothesis 4.3.1.

To prove (ii) we note that, by Proposition 2.3.3(iii)(b), M is a torsion R-

module if and only if it is a torsion A-module. The exact sequence (4.10)

therefore implies that M is a torsion R-module if and only if det(θ) is a non-

zero divisor of A. To investigate this condition, we recall that, for each n, Kn

denotes KΓ(n) and we set Γn := Γ/Γ(n) = Gal(Kn/k) so that An = Zp[[Γn]].

We also write I• := (In)n∈N for the separated decreasing filtration of A in

which each In is the kernel of the natural projection map ρ⟨n⟩ : A → An.

Then, for every n ≥ n0, Hypothesis 4.3.1 implies that the decomposition sub-

group in Γn of every place in Σ is infinite. Hence, for each such n, the results

of [16, Prop. 4.1 and Prop. 4.4] combine to imply that ρ⟨n⟩(det(θ)) and θΣKn

are non-zero divisors of An such that

An · ρ⟨n⟩(det(θ)) = An · θΣKn
. (4.11)

This implies, in particular, that det(θ) = (ρ⟨n⟩(det(θ)))n≥n0 is a non-zero divi-

sor in the ring A = lim←−nAn = lim←−n≥n0
An, and so the first assertion of (ii) is

proved. In addition, the fact that PA(M) is finite follows directly from Lemma

4.2.1(i) and Proposition 2.3.3(iii)(c). This completes the proof of (ii).

To prove (iii), we note first that the results of (i) and (ii) combine with Lemma

4.2.1(ii) to imply, under the stated hypotheses, that M is a finitely-presented,

admissible, torsion A-module. From Theorem 2.2.3(b), we can therefore de-

duce the existence of a pseudo-isomorphism of A-modules of the form

M →
⊕

p∈PA(M)

⊕
1≤i≤n(p)

A/pe(p)i

for suitable natural numbers n(p) and e(p)i. Upon setting e(p) :=∑
1≤i≤n(p) e(p)i and combining this pseudo-isomorphism with the explicit defi-

nition of the lower generalised characteristic ideal charA(M) (and the result of
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Proposition 3.1.2(i)(a)) one then obtains an equality

∏
p∈PA(M)

pe(p) = charA(M).

Next we note that, as ρ⟨n⟩(det(θ)) is a non-zero divisor for each n ≥ n0, the

equality (4.11) implies the existence for each such n of an element un of A×
n

with ρ⟨n⟩(det(θ)) = un · θΣKn
. In particular, the family u := (un)n≥n0 belongs to

A× = lim←−n≥n0
A×
n and is such that det(θ) = u · θΣK . From the resolution (4.10)

one therefore has

Fit0A(M) = A · det(θ) = A · θΣK .

Given the last two displayed equalities, all of the claims in (iii) follow directly

from Proposition 3.1.2(i)(b).

To prove (iv) we assume |G| is prime to p and adapt the argument of Propo-

sition 4.2.4. Specifically, in this case every prime in PA is principal since

A is a finite direct product of unique factorisation domains. The first as-

sertion of (iv) therefore follows directly from the final assertion of (iii). To

prove the remaining assertions in (iv), we note that the resolution (4.10) com-

bines with the isomorphisms in (i) to imply that, for each n, the An-module

cok(idAn ⊗A θ) ∼= An ⊗A M =M(n) is isomorphic to H1((OΣ
Kn

)W ét,Zp(1)).

In particular, if n ≥ n0, then the latter module is torsion since it is annihilated

by the non-zero divisor det(idAn ⊗A θ) = ρ⟨n⟩(det(θ)) of An. Given this, the

pseudo-nullity of H1((OΣ
Kn+1

)W ét,Zp(1))Xn+1=0 follows directly from the argu-

ment of Proposition 4.2.4(i). The An-module Cl(OΣ
Kn+1

)Xn+1=0
p is then also

pseudo-null since, after taking account of the isomorphisms (4.6), the exact se-

quence [16, (4)] (with the fieldK in loc. cit. taken to beKn+1) gives a canonical

identification of Cl(OΣ
Kn+1

)p with a submodule of H1((OΣ
Kn+1

)W ét,Zp(1)).
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4.4 Some applications

Theorem 4.3.2 has the following concrete consequence for the A-module

Pic0(K)p.

Corollary 4.4.1. Assume K and Σ satisfy Hypothesis 4.3.1. Then Pic0(K)p

is a torsion R-module. In addition, if Pic0(K)p is finitely generated over R,

then at most one place that ramifies in K has an open decomposition subgroup

in Γ and, if such a place v exists, then one has Γv = Γ.

Proof. For each subset Σ′ of Σ we write ϵΣ′ for the canonical projection map⊕
v∈Σ′Zp[[Γ/Γv]] → Zp. Then, by taking the inverse limit over n of the exact

sequences [16, (4)] used above (for the fields Kn+1), one obtains an exact

sequence of A-modules

0→ Cl(OΣ
K)p →M → ker(ϵΣ)→ 0. (4.12)

In a similar way, the corresponding limits of the exact sequences [16, (5) and

(6)] combine to give an exact sequence of A-modules

ker(ϵΣK
fin
)→ Pic0(K)p → Cl(OΣ

K)p → Zp/(nK)→ 0, (4.13)

in which ΣK
fin is the subset of Σ comprising places that have finite residue degree

in K/k and nK is a (possibly zero) integer.

We now assume that Hypothesis 4.3.1 is satisfied. In this case the A-module

M is finitely-presented and torsion (by Theorem 4.3.2(i) and (ii)) and the A-

module ker(ϵΣK
fin
) is torsion. The first of these facts combines with the sequence

(4.12) to imply both that the A-module Cl(OΣ
K)p is torsion and also (by using

Proposition 1.7.4, 2) and 3)) that it is finitely generated if and only if the A-

module ker(ϵΣ) is finitely-presented. From the sequence (4.13) we can then also

deduce that Pic0(K)p is a torsion A-module (and hence a torsion R-module)
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and also that Cl(OΣ
K)p is finitely generated (over A) if Pic0(K)p is finitely

generated over R.

To complete the proof we now argue by contradiction and, for this, the above

observations imply it is enough to assume both that ker(ϵΣ) is finitely-presented

(over A) and that there are either two places v1 and v2 in Σ such that Γv1 and

Γv2 are open, or at least one place v1 in Σ for which Γv1 is open and not equal

to Γ. We then define an open subgroup of Γ by setting Γ′ := Γv1 ∩ Γv2 in the

first case and Γ′ := Γv1 in the second case, we set A′ := Zp[[Γ′]] and we write

I and I ′ for the kernels of the respective canonical projection maps A → Zp
and A′ → Zp.

Then the definition of Γ′ ensures that the A′-module ker(ϵΣ) is both finitely-

presented and contains a direct summand that is isomorphic to the trivial

module Zp. This implies (via Proposition 1.7.4, 4) ) that Zp is finitely-presented

as an A′-module and hence, by applying Proposition 1.7.1 to the tautological

short exact sequence

0→ I ′ → A′ → Zp → 0,

that I ′ is finitely generated over A′. However, writing d for the order of Γ/Γ′,

there exists an exact sequence of A′-modules

0→ (I ′)d → I → Zd−1
p

and so one can deduce that I is finitely generated over A′, and hence also over

R. However, this last assertion is easily shown to be false and this contradiction

completes the proof of Corollary 4.4.1.

Remark 4.4.2. Assume that K is a Carlitz-Hayes cyclotomic extension of k,

as considered by Anglès et al in [3]. In this case Γ = ZN
p (so A = R) and

Σ = {v} with v a place that is totally ramified in K. Hence Γv = Γ (so that

Hypothesis 4.3.1 is clear) and, as v is totally ramified in K, for each U ∈ U(Γ)
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the integers cU and mU
Σ that occur in [16, (5)] are both equal to 1 and so (4.13)

is valid with nK = 1. Thus, in this case, the exact sequences (4.12) and (4.13)

combine to induce identifications M = Cl(OΣ
K)p = Pic0(K)p.

In addition, since M is quadratically-presented as an R-module (by (4.10)),

the results of Proposition 3.1.2(i)(b) (with G trivial and R = R) and Propo-

sition 4.2.4(ii) (with G trivial) imply that the generalised characteristic ideal

charR(M) coincides both with Fit0R(M) and with the pro-characteristic ideal

C̃hR(M) of M defined in [7]. Given this, one finds that the explicit structural

information concerning M that is provided by claims (iii) and (iv) of The-

orem 4.3.2 strengthens the main results of [3] concerning Pic0(K)p (see, in

particular, [3, Th. 5.2, Rem. 5.3]).

Remark 4.4.3. Assume that K is a Drinfeld modular tower extension L∞ of k

of the form specified by Bley and Popescu in [12, §2.2]. In this case A = R[G]

with G isomorphic to Gal(Hfp/k) for a ‘real’ ray class field Hfp of k relative

to a fixed prime ideal p and integral ideal f. The set Σ therefore comprises p

and the set of prime divisors of f, and so the validity of Hypothesis 4.3.1 in

this case follows from the argument of [12, Prop. 3.22]. We now assume that

pR /∈ PR(M) if p divides |G|. Then the arguments of Proposition 3.1.2(i)(b)

and Theorem 4.3.2(iii) combine to imply that the explicit ideal
∏

p∈PA(M)p
e(p)

that occurs as the first term in (4.8) is contained in Fit0A(M), with equality

if and only if it is principal (as occurs automatically if |G| is prime to p).

Further, by comparing the sequence (4.12) to the sequences of [12, (24), (25),

(26)], and using the fact Ap is a discrete valuation ring for p ∈ PA(M), one

verifies an equality of principal A-ideals

Fit0A(M) = Fit0A(Tp(M
(∞)
Σ )Γ).

Here the A-module Tp(M
(∞)
Σ )Γ is (quadratically-presented and) defined in [12,

§3.3] as an inverse limit lim←−n Tp(M
(n)
Σ )Γ over the p-adic Tate modules of a

canonical family of Picard 1-motives. In particular, as the main result [12,
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Th. 1.3] (with S = Σ) of loc. cit. concerning Stickelberger elements and

divisor class groups is an equality

A · θΣK = Fit0A(Tp(M
(∞)
Σ )Γ),

it is strengthened by the explicit structural results obtained in Theorem

4.3.2(iii) and (iv). Finally, we note that if p decomposes in the field Hfp,

then Corollary 4.4.1 implies that Pic0(L∞)p cannot be finitely generated as an

R-module. This observation implies, in particular, that the non-splitting hy-

potheses on p that are imposed in the results of [12, Th. 3.16 and Th. 3.17]

are actually necessary for the stated conclusions to be valid.



Chapter 5

Outlook on the future

development

When we establish the theory for ZN
p -extensions, we find two meaningful ques-

tions still waiting for exploring in the future.

Q1: Is the ring Zp[[ZN
p ]] coherent? Or as a fallback, is the ring n-

coherent?

The definition of n-coherent rings can be found in Definition 6.0.3, and motiva-

tion for studying this property is discussed following Theorem 6.0.7. The main

difficulty in analyzing this question comes from the structure of the Iwasawa

algebra

Zp[[ZN
p ]]
∼= lim←−

n

Zp[[X1, . . . , Xn]].

This inverse limit is strictly larger than the I-adic completion of the polynomial

ring Zp[X1, X2, . . . ], where I = (p,X1, X2, . . . ). In the I-adic completion each

element is represented by a formal power series
∑

α aαX
α such that, for every

integer d ≥ 0, only finitely many monomials of total degree ≤ d have non-zero

coefficient. By contrast, in Zp[[ZN
p ]] there exist elements whose components of

a fixed degree involve infinitely many variables. For example, the compatible
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family

fn = X1 + · · ·+Xn ∈ Zp[[X1, . . . , Xn]]

defines an element of Zp[[ZN
p ]] which one may heuristically denote by

∑
i≥1Xi.

Its degree-1 part has a non-zero coefficient at every variable Xi, so it does not

belong to the usual formal power series ring obtained as the I-adic completion

of Zp[X1, X2, . . . ]. Currently, we do not have a method for effectively handling

such terms.

Q2: Can we find arithmetic applications for our Zp[[ZN
p ]]-theory over

number fields?

Thanks to a valuable comment from Meng Fai Lim, we discovered that the

answer to this question is affirmative. A notable example is provided by Mináč,

Rogelstad and Tân [60]. Let F be a number field satisfying the following

condition.

If p is odd then F contains a primitive p-th root of unity ζp. If p = 2 then F

contains a primitive fourth root ζ4 of unity.

We define

CR(F ) = F
(

p∞
√
F×

)
:=

⋃
F
(

pm
√
a, ζpm

)
.

The union is taken over all positive integers m and all elements a ∈ F×.

The field CR(F ) is called the p-cyclotomic radical extension of F . Then the

following theorem has been proven in [60, Appendix, Thm A.1].

Proposition 5.0.1. Let F be a field containing µp∞. Let I be a set of cardi-

nality of a basis for F×/ (F×)
p
over Fp. Then

Gal(CR(F )/F ) ≃ ⟨τi, i ∈ I | [τi, τj] = 1, ∀i, j ∈ I⟩ ≃
∏
i∈I

Zp.

It should be noted that the cyclotomic radical extension is closely related to



101

the false Tate extensions. Therefore, it is meaningful and worthwhile to pursue

further study on this topic.



Part II: Non-Noetherian study

in integral Iwasawa theory

102



Chapter 6

A review of integral Iwasawa

theory

For a commutative ring A and a prime p, the completed group ring A[[Zp]]

is defined as the inverse limit lim←−nA[Z/(p
n)], where the transition morphisms

A[Z/(pn+1)] → A[Z/(pn)] are the A-linear group ring maps induced by the

natural projections Z/(pn+1)→ Z/(pn).

Arithmetic modules over Z[[Zp]] naturally arise as the inverse limits of families

of modules in Zp-towers of global fields. For example, let K be a number field,

K∞ be the cyclotomic extension of K, and consider the field tower

K = K0 ⊂ K1 ⊂ · · · ⊂ K∞.

One can construct the inverse limit lim←−iCl(Ki) where the transition maps are

induced by the norm maps. There is a natural action of the complete group

ring Z[[Zp]] on lim←−iCl(Ki). However, Z[[Zp]] is neither a Noetherian ring nor

a compact topological ring. Iwasawa addressed this issue by passing to the

pro-p completion of lim←−iCl(Ki) and working instead over the associated ring

Zp[[Zp]], which is both Noetherian and compact.

But what is the price of Iwasawa’s method? The passage to pro-p completion
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can result in a loss of significant arithmetic information. For instance, one

can only obtain an asymptotic formula estimating the growth of the p-part

of the ideal class group along the tower, rather than the growth of the entire

class group. Intuitively, current Iwasawa theory—which studies the p-part of

the ideal class groups—can be seen as a kind of “local theory.” In contrast,

the integral Iwasawa theory aims to become a more “global theory,” capable of

capturing information about the full ideal class group by working over complete

group rings Z[[G]], for certain p-adic Lie groups G.

Many researchers have commented on the benefits and challenges of working

over Z[[Zp]] or Zℓ[[Zp]] for a prime ℓ ̸= p instead of Zp[[Zp]], or have made

efforts to investigate specific aspects of this issue. For example, Washington

proved the following theorem in [78].

Theorem 6.0.1. Let K be an abelian number field and K∞ the cyclotomic

Zp-extension of K. Let ℓ ̸= p be a prime and ℓen be the power of ℓ dividing the

class number hn of the Kn in the field tower. Then en is bounded independently

of n. In fact, en is constant for large n.

However, to the best of the author’s knowledge, no better result is currently

known. On the other hand, the proof of the theorem 6.0.1 of Washington is

not achieved by studying the properties of Zℓ[[Zp]]. In fact, as Washington

points out in [77, §VI], very little is known about the structure of modules

over Zℓ[[Zp]] for ℓ ̸= p. Another well-known contribution concerning Z[[Zp]]

was made by Coleman [26, §II]. He proved an analogue of the Weierstrass

Preparation Theorem for Z[[Zp]], which plays a crucial role in characterizing

certain norm-compatible families of units in abelian fields.

As part of the broader puzzle of the integral Iwasawa theory, the first work,

[17], was recently published by David Burns and Alexandre Daoud on the

Nagoya Mathematical Journal. The aim of this article, and of the subsequent

articles in the series, is to develop some foundational aspects of a workable
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theory of arithmetic Z[[Zp]]-modules. This overall approach relies crucially on

ring-theoretical results, which in turn depend upon a detailed analysis of the

category of ‘pro-discrete’ Z[[Zp]]-modules introduced in [17, §3]. In particular,

natural ‘pro-discrete’ versions of both Nakayama’s Lemma and Roiter’s Lemma

are established. Furthermore, the authors provide several explicit criteria for

the finite presentability of pro-discrete modules (see [17, Thm. 3.8, Thm.

3.11]). These results are then applied to give an explicit description of the

finitely generated prime spectrum of Z[[Zp]] (see [17, Thm. 4.2, Remark 4.3]),

which in turn is used to establish a range of natural ring-theoretic properties of

Z[[Zp]]. To present the most important of these properties, we first introduce

some necessary notions.

Definition 6.0.2. For a non-negative integer n, one says that an R-module

M is finitely n-presented if there exists an exact sequence of R-modules

Mn →Mn−1 → · · · →M0 →M → 0

in which each Mi is both finitely generated and free.

In particular,M is finitely 0-presented, respectively finitely 1-presented, if and

only if it is finitely generated, respectively finitely presented. One also says that

M is ‘finitely ∞-presented’ if it is finitely n-presented for every non-negative

n. For example, if R is Noetherian, then every finitely generated module is

automatically finitely ∞-presented.

Definition 6.0.3. For each non-negative integer n, the ring R is then said

to be ‘n-coherent’ if every finitely n-presented R-module is finitely (n + 1)-

presented.

In addition, a ring R is 0-coherent if and only if every finitely generated module

is finitely presented, which is easily seen to be equivalent to R being Noethe-

rian. Similarly, R is 1-coherent if and only if every finitely generated ideal
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is finitely presented, which is equivalent to R being coherent. This notion

is further generalized at the beginning of §7.3.3 to accommodate the non-

commutative case. We now introduce a related notion from [28, §1].

Definition 6.0.4. For each pair of non-negative integers n and d, an integral

domain R is called a (n, d)-domain if every finitely n-presented module has

projective dimension at most d. R is called a strict (n, d)-domain if it is an

(n, d)-domain that is neither an (n− 1, d)-domain nor an (n, d− 1)-domain.

The following definition is taken from [32] and [43].

Definition 6.0.5. An integral domain is called a finite conductor domain if

it has the property that the intersection of any two of its principal ideals is

finitely generated.

It is then straightforward to show that any coherent integral domain is auto-

matically a finite conductor domain, though the converse does not hold. The

following definition is taken from [71].

Definition 6.0.6. A commutative ring R is said to have weak Krull dimension

equal to n if n is the maximum integer m for which there exists a chain

p0 ⊊ p1 ⊊ · · · ⊊ pm

of finitely generated prime ideals of R.

By the definition, it is obvious that for a commutative ring R the weak Krull

dimension is less than or equal to its Krull dimension. If it is not possible

to calculate the Krull dimension, then the weak Krull dimension becomes an

acceptable substitute.

Finally, the ring-theoretical property of Z[[Zp]] that we aim to present holds

for all prime numbers p, except for finitely many. We call a prime number p

exceptional if it satisfies the following three conditions simultaneously:
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1. p is irregular.

2. p satisfies Vandiver’s Conjecture.

3. The p-adic λ-invariant of every (odd) isotypic component of the ideal

class group of Q(e2πi/p) is at least p− 1.

A probabilistic argument due to Lang [54, Chap. 10 App] suggests there are

only finitely many exceptional primes. According to the computations of Hart,

Wilson and Ong [46], no exceptional primes exist up to the bound 231. We

are now in a position to state the important property of Z[[Zp]] established by

Burns and Daoud [17].

Theorem 6.0.7. The completed integral group ring Z[[Zp]] is not a finite con-

ductor ring. However, it is a 2-coherent domain of weak Krull dimension 2

and if p is not exceptional then it is also a strict (2, 2)-domain.

We now explain the underlying significance of the algebraic properties involved

in Theorem 6.0.7. The property of coherency can be viewed as a suboptimal

substitute for Noetherianness, serving at least to ensure that certain arguments

in Iwasawa theory still function properly. For instance, it becomes much easier

to compute ExtiΛ(M,Λ) whenM is finitely presented over any unital ring Λ (see

[62, V. §4]). If Λ is a Noetherian Iwasawa algebra, then every finitely generated

Λ-module is finitely presented. This allows one to leverage the advantages of

finite presentability (see [62, Thm. 5.4.13]) to extract arithmetic information

from Ext-groups ExtiΛ(M,Λ) (see [62, Prop. 5.5.10]). Although the integral

complete group ring Z[[Zp]] which we want to work with is not Noetherian,

if one could show that it is coherent, the above reasoning would still apply.

Unfortunately, Burns and Daoud demonstrated that Z[[Zp]] is not a finite

conductor ring, and consequently not coherent. However, one saving grace is

that Z[[Zp]] is at least 2-coherent. Moreover, Theorem 6.0.7 still yields several

favorable results — for example, the fact that Z[[Zp]] is strict (2, 2)-domain of

weak Krull dimension 2 except finitely many primes p. These results which
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help control the homological dimension properties of Z[[Zp]], remain sufficiently

robust — especially when combined with the theory of pro-discrete modules

developed in [17]— to support a range of meaningful arithmetic applications.

As far as the author is aware, a series of works following [17] is currently under

development, including a Z[[Zp]]-version of Weil-étale cohomology theory and

arithmetic applications for global function fields and number fields. These

developments illustrate the potential power of integral Iwasawa theory, which

is poised to become a prominent direction in algebraic number theory.

To extend the study of integral Iwasawa theory to non-commutative settings,

the next chapter presents our generalization of the coherency results in [17]

from Z[[Zp]] to Z[[G]], whereG belongs to certain classes of non-abelian groups.



Chapter 7

Coherency properties in

non-commutative cases

This chapter is based on joint work with David Burns and Yu Kuang. More

precisely, it is a slightly modified version of the article [19]. The material

is reproduced here with minor changes in notation and with some additional

explanations adapted to the context of this thesis.

Following Chase [24], and Bourbaki [13, Chap. 1], a ring is said to be (left, re-

spectively right) ‘coherent’ if every finitely generated (left, respectively right)

ideal is finitely presented. The theory of coherent rings is by now well estab-

lished (for a comprehensive overview see Glaz’s book [44]) and has important

applications, particularly in arithmetic geometry.

It is clear that every Noetherian ring is coherent, and it is also known that any

flat direct limit of coherent rings is coherent (cf. [loc. cit., Th. 2.3.3]). How-

ever, determining whether a given inverse limit of coherent—or even Noethe-

rian—rings remains coherent can be highly nontrivial, and no general results

in this direction appear to be known. In this chapter, we examine this problem

in the context of completed group algebras.

We recall that, for each commutative ring Λ and profinite group G, the com-
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pleted group algebra of G over Λ is defined (following Brumer [15]) to be the

inverse limit

Λ[[G]] := lim←−UΛ[G/U ]

in which U runs over open normal subgroups of G and the transition map

for U ⊆ U ′ is the group ring homomorphism Λ[G/U ] → Λ[G/U ′] induced

by the natural projection G/U → G/U ′. Such rings arise naturally in various

arithmetic contexts – for instance, when Z[[G]] acts on inverse limits of modules

(such as class groups, Selmer groups, etc.) defined over a tower of fields within

a given Galois extension of number fields with Galois group G.

In this chapter, we state and prove two theorems concerning properties related

to the coherency of the integral completed group ring Z[[G]] for two classes

of profinite groups G. The proof of the first theorem relies on an analysis of

the ring homeomorphisms induced by group characters. In Corollary 7.2.4,

we show that a broad class of profinite groups arising in arithmetic contexts

fails to be coherent. The proof of the second theorem is based on Nakayama’s

Lemma (Proposition 7.3.3) for pro-discrete Z[[G]]-modules, together with a

divisibility result for Tor-groups (Proposition 7.3.4).

As mentioned in the previous chapter, the aim of this work is to generalize

the results of Burns and Daoud [17] and to build the algebraic foundation of

non-commutative integral Iwasawa theory.

7.1 Statements of theorems

Our first result, which will be proved in §7.2.1, addresses the question of the

coherence of Z[[G]] under a mild technical assumption on G (see also Remark

7.2.3).

Theorem 7.1.1. If G has a countable basis of neighborhoods of the identity

and a non-torsion Sylow subgroup, then Z[[G]] is neither left nor right coherent.
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The existence of a non-torsion Sylow subgroup is a very mild condition, and

thus the above result applies to most groups that arise naturally in arithmetic

(cf. Corollary 7.2.4).

With potential arithmetic applications in mind, it is therefore natural to con-

sider the classification of non-coherent rings. In this context, we focus on

the hierarchy of n-coherence conditions (indexed by natural numbers n) intro-

duced by Costa in [28] where 1-coherence coincides with the classical notion

of coherence. In particular, we recall that n-coherent rings — whose definition

is explicitly reviewed at the beginning of §7.3.3 — possess a range of useful

properties, including a relatively well-behaved algebraic K-theory (cf. [36]).

However, despite the weaker nature of these conditions, verifying them for any

given n appears to be highly nontrivial — if possible at all — since Z[[G]] is

not a compact topological ring, and in cases where it is not coherent, there are

no general methods available for establishing finite generation.

To address these issues, in §7.3.1 we introduce a category of ‘pro-discrete’

modules over Z[[G]] , and establish a natural analogue of Nakayama’s Lemma

for this category (see Proposition 7.3.3). By combining this result with well-

known theorems of Brumer [15] and Serre [70], we then deduce the following

result in §7.3.3.

Theorem 7.1.2. If G is a compact p-adic analytic group of rank d, then Z[[G]]

is (d+ 3)-coherent.

Whilst this result is not in all cases best possible (see Remark 7.3.7(ii)), estab-

lishing any form of coherency for completed integral group algebras associated

with a general class of profinite groups is striking — and, as far as we are aware,

without precedent. Moreover, such results enable interesting arithmetic appli-

cations. More specifically, we recall that a stronger version of Theorem 7.1.2

was first proved in the special case G = Zp by Burns and Daoud in [17], and

that several of the techniques developed here generalize those in loc. cit. The



7.2. Coherence theorem I 112

results of [17] have already been applied to develop key aspects of an arithmetic

integral Iwasawa theory over Z[[Zp]], including new concrete results concerning

the structure of ideal class groups. The results of Theorem 7.1.2, as well as the

more general Proposition 7.3.3 and Proposition 7.3.4, are expected to similarly

contribute to the development of integral Iwasawa theory over broader families

of compact p-adic analytic extensions of global fields — a direction we aim to

pursue in future work.

7.2 Coherence theorem I

7.2.1 Proof of Theorem 7.1.1

We shall only prove that the stated conditions imply that Z[[G]] is not left

coherent (with a completely analogous argument showing that it is not right

coherent).

To do this, we fix a countable basis {Nm}m≥0 of neighbourhoods of the identity

of G comprised of open normal subgroups Nm with N0 = G and Nm+1 ⊂ Nm

for every m.

We also fix a prime p for which G has a non-torsion Sylow p-subgroup P and

an element π of P of infinite order. We set

R := Z[[G]] and ϖ := π − 1 ∈ R.

For each natural number m we define a finite group by setting

Γm := G/Nm.

We then write πm for the image of π in Γm and pnm for the order of πm (so

that n0 = 0). We assume, as we may (after changing the groups {Nm}m if
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necessary), that nm+1 > nm for every m. We set

Rm := Z[Γm], Tm :=
∑i=pnm−1

i=0
πim ∈ Rm and ϖm := πm − 1 ∈ Rm

(so that R0 = Z, T0 = 1 and ϖ0 = 0). We then define a left R-ideal by setting

I(ϖ) := lim←−mRmϖm ⊂ lim←−mRm = R,

where the limits are with respect to the natural projection maps Rm → Rm′

for m > m′.

Finally, we write Rp and Rp
m for the pro-p completions Zp[[G]] and Zp[Γm] of

R and Rm respectively.

Proposition 7.2.1. The element ϖ is a right non-zero divisor in R and there

exists a canonical short exact sequence of (left) R-modules

0→ Rϖ
⊂−→ I(ϖ)

ϕϖ−→ Rp/(Rpϖ +R)→ 0

(in which ϕϖ is not induced by the inclusion I(ϖ) ⊂ Rp).

Proof. We write Λ for either R or Rp, with Λm denoting the corresponding ring

Rm or Rp
m. Then, in both cases, there exists an exact commutative diagram

0 −−−→
∏

mΛmTm
⊆−−−→

∏
mΛm

17→(ϖm)m−−−−−−→
∏

mΛmϖm −−−→ 0

(1−ρm)m

y (1−ρm)m

y (1−ρm)m

y
0 −−−→

∏
mΛmTm

⊆−−−→
∏

mΛm
17→(ϖm)m−−−−−−→

∏
mΛmϖm −−−→ 0

(7.1)

in which ρm denotes the natural projection map Λm → Λm−1 (and its restric-

tions to both ΛmTm and Λmϖm). In particular, since ρm(Tm) = pnm−nm−1 ·Tm−1

with nm > nm−1 and ρm(Λm) = Λm−1, the Snake Lemma applies to this dia-
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gram to give an exact sequence

0 = lim←−mΛmTm → Λ
λ7→λϖ−−−−→ lim←−mΛmϖm → lim←−

1

m
ΛmTm → lim←−

1

m
Λm = 0.

This sequence implies ϖ is a right non-zero divisor in Λ and also gives a short

exact sequence

0→ Λϖ
⊆−→ lim←−mΛmϖm → lim←−

1

m
ΛmTm → 0. (7.2)

If Λ = Rp, then the derived limit lim←−
1

m
ΛmTm vanishes since each module ΛmTm

is finitely generated over Zp and hence compact.

To compute lim←−
1

m
RmTm we write em for the idempotent p−nmTm of Q[Γm] and

Qm for the quotient of Rmem by RmTm and use the commutative diagram

0 −−−→
∏

mRmTm
⊆−−−→

∏
mRmem −−−→

∏
mQm −−−→ 0

(1−ρm)m

y (1−ρm)m

y (1−ρ′m)m

y
0 −−−→

∏
mRmTm

⊆−−−→
∏

mRmem −−−→
∏

mQm −−−→ 0

(7.3)

in which each row is the tautological short exact sequence and ρ′m : Qm →

Qm−1 is induced by ρm. Then, since ρm+1(em+1) = em, by applying the Snake

Lemma to this diagram one obtains a short exact sequence

0→ lim←−mRmem → lim←−mQm → lim←−
1

m
RmTm → 0. (7.4)

In view of the natural isomorphisms of finite abelian p-groups

Qm = Rmem/(RmTm) = Rmem/(p
nmRmem) ∼= Rp

mem/(p
nmRp

mem) = Rp
mem/R

p
mTm,

there are also analogues of the diagrams (7.3) in which each termRm is replaced

by Rp
m. By passing to the limit over these diagrams and noting lim←−

1

m
Rp
mTm
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vanishes since each module Rp
mTm is compact, one obtains an identification

lim←−mR
p
mem = lim←−mQm (7.5)

and hence a short exact sequence

0→ lim←−mRmem
⊂−→ lim←−mR

p
mem → lim←−

1

m
RmTm → 0. (7.6)

In addition, for each m, there exists an exact commutative diagram

0 −−−→ Λm+1ϖm+1
⊂−−−→ Λm+1

17→em+1−−−−−→ Λm+1em+1 −−−→ 0,y y y
0 −−−→ Λmϖm

⊂−−−→ Λm −−−→ Λmem −−−→ 0

in which each vertical arrow is induced by ρm+1 and so is surjective. In par-

ticular, since Rpϖ = lim←−mR
p
mϖm (as a consequence of (7.2) with Λ = Rp), by

passing to the limit over these diagrams we obtain short exact sequences

0→ I(ϖ)→ R→ lim←−mRmem → 0 (7.7)

0→ Rpϖ → Rp → lim←−mR
p
mem → 0. (7.8)

These sequences combine with the sequence (7.6) to induce an identification of

the derived limit lim←−
1

m
RmTm with the quotient R-module Rp/(Rpϖ + R) and

then the claimed exact sequence follows directly from (7.2) with Λ = R.

In the sequel we fix an element a ∈ (Zp \ Q) ⊂ Rp and write Q(a) for the

R-submodule of Rp/(Rpϖ+R) generated by the class of a. In the next result

we also use the surjective map ϕϖ from Proposition 7.2.1.

Proposition 7.2.2. The following claims are valid.

(i) The R-module Q(a) is isomorphic to R/I(ϖ).
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(ii) There exists xa ∈ I(ϖ) with ϕϖ(xa) = a and such that the R-module Rxa

is free.

Proof. To prove claim (i) it is enough to show that if r = (rm)m is any element

of R = lim←−mRm such that, in Rp = lim←−mR
p
m, one has ra ∈ Rpϖ + R, then for

everym one has rm ∈ Rmϖm. However, if ra ∈ Rpϖ+R, then for everym there

exist elements bm of Rp
m and cm of Rm such that arm = (ra)m = bmϖm + cm

and, upon multiplying this equality on the right by Tm we deduce that

armTm = bmϖmTm + cmTm = cmTm.

Since a /∈ Q, this equality implies rmTm = 0 and hence that rm ∈ Rmϖm, as

required.

Next we note that, since Q(a) is non-zero (by claim (i)), any pre-image xa of

the class of a under ϕϖ is also non-zero. In particular, if R is a domain (as is

the case, by Neumann [63], if G is a torsion-free p-adic analytic pro-p group),

then the R-module Rxa is automatically free. In the general case, however,

the proof of claim (ii) requires more effort. To proceed, for each non-negative

integer i we write ai for the unique integer with 0 ≤ ai < pni+1−ni such that

a =
∑

i≥0
aip

ni ∈ Zp.

For integers j with 0 ≤ j ≤ m, we then define elements of Rm by setting

Tm,j :=
∑i=pnj−1

i=0
πim and ya,m :=

∑j=m−1

j=0
ajTm,j

(so Tm,0 = 1 and Tm,m = Tm). It is then easily checked that the element

xa := (ϖmya,m)m ∈
∏

m
Rm

belongs to I(ϖ) = lim←−mRmϖm and we aim to verify that this element has the
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properties stated in claim (ii).

As a first step, an explicit computation of the connecting homomorphism aris-

ing from the diagram (7.1) shows that the image in lim←−
1

m
ΛmTm of xa under the

map in (7.2) is represented by the element

(ya,m − ρm+1(ya,m+1))m = (−amTm)m ∈
∏

m
RmTm. (7.9)

In a similar way, an explicit computation of the connecting homomorphism

of (7.3) shows that this element of lim←−
1

m
ΛmTm is the image under the map in

(7.4) of the element of lim←−mQm that is represented by

(
(∑m−1

j=0
ajp

nj)em
)
m
∈
∏

m
Rmem.

Then, since for each m one has a ≡
∑m−1

j=0 ajp
nj modulo pnmZp, the latter

element corresponds under the identification (7.5) to the element (aem)m of

lim←−mR
p
mem. Hence, under the isomorphism of lim←−

1

m
RmTm with Rp/(Rpϖ +

R) that is induced by the sequences (7.5), (7.7) and (7.8), the element of

lim←−
1

m
RmTm represented by (7.9) corresponds to the class of a.

This explicit computation has shown that ϕϖ(xa) = a and so, to complete the

proof of claim (ii), it is enough for us to prove that the R-module Rxa is free.

Hence, since xa = ϖ · (ya,m)m in
∏

mRm and ϖ is a non-zero divisor of R,

it is enough for us to show that, for every m, the element ya,m is a non-zero

divisor of Rm. To do this, we fixm and write ∆m for the subgroup of Γm that is

generated by πm. We also write Q̄ for the algebraic closure of Q in C, and note

that, since ya,m belongs to Z[∆m], it is enough to show that the annihilator in

Q̄[∆m] of ya,m vanishes. Then, since the semisimple algebra Q̄[∆m] decomposes

as a product of copies of Q̄, it is enough to show that the image of ya,m in each

component of Q̄[∆m] is non-zero. More precisely, if for each homomorphism

χ : ∆m → Q̄× we write χ∗ for the induced ring homomorphism Q̄[∆m] → Q̄,
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then it is enough for us to show that χ∗(ya,m) ̸= 0 for every such χ.

If, firstly, χ is trivial, then the sum

χ∗(ya,m) =
∑j=m−1

j=0
ajχ∗(Tm,j) =

∑j=m−1

j=0
ajp

nj

is non-zero since 0 ≤ aj < pnj+1−nj for every j. Then, if χ is non-trivial, and

of order pd say (so d ≤ nm), the element χ∗(ϖm) = χ(πm)− 1 is non-zero and

χ∗(ϖm)χ∗(ya,m) =χ∗((πm − 1)ya,m)

=χ∗
(∑j=m−1

j=0
aj(π

pnj

m − 1)
)
=

∑
j∈Jχ

aj(χ(πm)
pnj − 1),

where Jχ is the set of integers j with nj < d. It is therefore enough to note

that this last sum is non-zero since the elements {χ(πm)nj −1}j∈Jχ are linearly

independent over Q (as nj > nj′ for j > j′).

To prove Theorem 7.1.1 we now fix an element xa as in Proposition 7.2.2(ii).

Then, since each R-module Rϖ and Rxa is free (the former by the first asser-

tion of Proposition 7.2.1), Schanuel’s Lemma [29, (2.24)] applies to the exact

sequences

0→ Rϖ ∩Rxa
x7→(x,x)−−−−→ Rϖ ⊕Rxa

(y,z)→y−z−−−−−−→ Rϖ +Rxa → 0,

0→ ker(α)→ Rk α−→ Rϖ +Rxa → 0

(for any suitable natural number k and surjective homomorphism of R-modules

α) to imply that the (finitely generated) ideal Rϖ + Rxa of R is finitely pre-

sented if and only if the R-module Rϖ∩Rxa is finitely generated (see also [44,

Cor. 2.1.3]). It is therefore enough for us to show that Rϖ∩Rxa is not finitely

generated. To do this, we use the composite isomorphism of R-modules

Rxa/(Rϖ ∩Rxa) ∼= (Rϖ +Rxa)/Rϖ ∼= Qa
∼= R/I(ϖ)
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in which the second isomorphism is induced by ϕϖ (and the exact sequence in

Proposition 7.2.1) and the third by Proposition 7.2.2(i). In particular, since

the R-module Rxa is free of rank one, the displayed isomorphism combines

with another application of Schanuel’s Lemma to imply that Rϖ ∩ Rxa is

finitely generated if and only if I(ϖ) is finitely generated. In view of the

surjectivity of ϕϖ, it is therefore enough for us to show that the quotient

module Rp/(Rpϖ +R) is not finitely generated over R.

To establish this, we argue by contradiction and so assume that, for some

natural number t, the set {yi}1≤i≤t is a set of elements of Rp whose images

generate Rp/(Rpϖ + R) as an R-module. Then, writing ε : Rp → Zp for the

natural projection map, and noting that ε(ϖ) = 0, it follows that {ε(yi)}1≤i≤t
is a finite set of generators of the abelian quotient group ε(Rp)/ε(R) = Zp/Z

and this is not possible since Zp/Z is uncountable. This completes the proof

of Theorem 7.1.1.

Remark 7.2.3. As a natural weakening of the notion of coherence, a domain is

said to be a (left, respectively right) ‘finite conductor domain’ if the intersection

of any two of its principal (left, respectively right) ideals is finitely generated

(see Glaz [43], but note that the concept was first considered by Dobbs in [32]).

In particular, by showing that Rϖ ∩ Rxa is not finitely generated over R, the

above argument implies that, under the conditions of Theorem 7.1.1, Z[[G]] is

not a (left, respectively right) finite conductor domain.

7.2.2 Examples

The assumed existence of a non-torsion Sylow subgroup rules out profinite

groups such as (Z/pZ)N for any prime p and
∏

ℓ(Z/ℓZ) where ℓ runs over

any infinite set of primes. However, it is satisfied by most of the groups that

arise naturally in arithmetic. In particular, Theorem 7.1.1 has concrete conse-

quences such as the following.

Corollary 7.2.4. Fix a prime p. Then the ring Z[[G]] is neither left nor right
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coherent in each of the following cases:

(i) G is a compact p-adic analytic group of positive rank.

(ii) G is the Galois group of an algebraic extension of number fields, or of

p-adic fields, that contains a Zℓ-subextension for any prime ℓ.

(iii) G is a Sylow p-subgroup of the absolute Galois group of a number field.

Proof. To prove claim (i) we recall Lazard [57] has shown that any compact

p-adic analytic group is isomorphic to a closed subgroup of GLn(Zp) for some

n. It is then enough to note that, for any infinite subgroup G of GLn(Zp) the

collection {G∩ (In + pm ·Mn(Zp))}m≥1 is a countable basis of neighbourhoods

of the identity that comprises open, torsion-free, pro-p subgroups (that are

normal in G).

To prove claim (ii) we fix a finite extension K of either Q or Qp, an algebraic

closure K̄ of K and a Galois extension L of K in K̄, with G := Gal(L/K),

for which there exists an intermediate field E for which Γ := Gal(E/K) is

isomorphic to Zℓ. Then, for each natural number n, the composite K(n) of

all finite extensions K ′ of K inside L with the property that the absolute

value of the discriminant of K ′/Q is at most n is a finite Galois extension

of K. In the case of the number fields, respectively p-adic fields, this follows

directly from the Hermite-Minkowski Theorem (cf. [61, §III.2]), respectively

[53, Prop. 14, II, §5]. The groups {Gal(L/K(n))}n≥1 then give a countable

base of neighbourhoods of the identity of G. Notice that we have a short exact

sequence

1 −→ Gal(L/E) −→ G −→ Γ −→ 1.

Since Γ ∼= Zℓ is non-torsion, it contains elements of infinite ℓ-power order.

Hence G also contains elements of infinite ℓ-power order, and in particular

its Sylow ℓ-subgroups are non-torsion. Together with the fact that G has a

countable basis of neighbourhoods of the identity (as shown above), this shows
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that G satisfies the hypotheses of Theorem 7.1.1, and so Z[[G]] is neither left

nor right coherent.

To prove claim (iii) we fix a number field K and a Sylow p-subgroup P of

Gal(K̄/K). It is then enough to note that P has a countable base of neigh-

bourhoods of its identity (inherited from the countable base of Gal(K̄/K)

constructed in claim (ii)) and a subgroup that is a free pro-p group on count-

ably many generators (for a proof of the latter fact, see Bary-Soroker et al [11,

§3]).

7.3 Coherence theorem II

In this section we continue to use the notation fixed at the beginning of §7.2.1,

so that R = Z[[G]] and Rn = Z[Γn] with Γn = G/Nn.

We shall only consider the category of left R-modules (noting that com-

pletely analogous arguments prove the same results for the category of right

R-modules). In particular, for an R-module M and map ϕ of such modules,

and a non-negative integer n, we set

M(n) := Rn ⊗RM, and ϕ(n) := Rn ⊗R ϕ,

respectively regarded, in the natural way, as a (left) Rn-module and as a map

of (left) Rn-modules.

7.3.1 Nakayama’s lemma

Following the approach of Burns and Daoud in [17, §3], we will find it useful

to consider the category of R-modules introduced in the following definition.

Definition 7.3.1. An inverse system (Mn, πn)n of R-modules indexed by non-

negative integers n is said to be a pro-discrete system if, for every n, the action
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of R on Mn factors through Rn and the transition morphism πn :Mn+1 →Mn

induces an isomorphism of Rn-modules Rn ⊗Rn+1 Mn+1
∼= Mn. An R-module

is then said to be pro-discrete if it is equal to the limit of a pro-discrete system

of R-modules.

Remark 7.3.2. The ring R is itself a pro-discrete R-module since it is the

limit of the inverse system (Rn, ρn)n in which ρn is the natural projection map

Rn+1 → Rn (which induces the canonical identification Rn ⊗Rn+1 Rn+1
∼= Rn).

In addition, any R-module M gives rise to a pro-discrete system (M(n), πn)n,

with πn the canonical map M(n+1) → M(n), and hence to a pro-discrete R-

module lim←−nM(n). In particular, an R-moduleM is pro-discrete if the canonical

map M → lim←−nM(n) is bijective. In general, however, finitely presented R-

modules need not be pro-discrete and the category of pro-discrete R-modules

need not be abelian (cf. [17, Rem. 3.4]).

In the sequel, for any finitely generated (left) module M over a ring Λ we will

also write µΛ(M) for the minimal number of generators of M .

The next result establishes a natural analogue of Nakayama’s Lemma for the

category of pro-discrete R-modules (and thereby generalises aspects of [17, Th.

3.8]).

Proposition 7.3.3. Assume G is pro-p, fix a pro-discrete system (Mn, πn)n

of R-modules, and write M for the associated pro-discrete R-module lim←−nMn.

Then the following claims are valid.

(i) M is finitely generated (over R) if and only if it contains a finite subset

that, for every n, projects under the natural map M →Mn to give a set

of generators of the Rn-module Mn.

(ii) If there exists a natural number d such that µRn(Mn) ≤ d for all n, then

M is finitely generated and µR(M) ≤ µZ(M0) + d.
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Proof. To prove claim (i) we assume to be given a natural number m and a

subset Z := {zi := (zi,n)n}1≤i≤m of M (so, for all i and n, zi,n ∈ Mn and

πn(zi,n+1) = zi,n) such that, for all n, the Rn-module Mn is generated by

{zi,n}1≤i≤m. It is then enough to show Z generates M over R and to do this

we consider the exact commutative diagram

ker(ρmn+1)
ι′n+1−−−→ ker(πn+1)y y

0 −−−→ ker(ιn+1) −−−→ Rm
n+1

ιn+1−−−→ Mn+1 −−−→ 0

θn

y ρmn

y πn

y
0 −−−→ ker(ιn) −−−→ Rm

n
ιn−−−→ Mn −−−→ 0.

(7.10)

Here ιn is the (assumed surjective) map of Rn-modules that sends the i-th

element in the standard basis of Rm
n to zi,n (so that the lower right hand

square commutes) and θn and ι′n+1 are the respective restrictions of ρmn and

ιn+1.

Write Jn+1 for the (two-sided) ideal of Rn+1 generated by {h − 1 : h ∈

Nn/Nn+1}. Then the map ρmn is surjective, with kernel the submodule Jmn+1

of Rm
n+1, and the (assumed) bijectivity of Rn ⊗Rn+1 πn implies ker(πn) =

Jn+1 · Mn+1. It follows that ι′n+1 is surjective and hence, by applying the

Snake Lemma to (7.10), that θn is surjective. This last fact then implies (via

the Mittag-Leffler criterion) that the derived limit lim←−
1

n
ker(ιn) with respect

to the maps θn vanishes. Upon passing to limit over n of the commutative

diagrams given by the second and third rows of (7.10), one therefore deduces

that the map of R-modules

Rm = lim←−nR
m
n → lim←−nMn =M

that sends the i-th element in the standard basis of Rm to zi is surjective. It
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follows that M is generated over R by the set Z, as required.

To prove claim (ii) we note R0 = Z and set κ := µZ(M0) ≤ d. We show

first that, for each n, there exists a subset Xn := {xi,n}1≤i≤κ of Mn with the

following two properties:

(P1) the Rn-submodule M ′
n of Mn generated by Xn has finite, prime-to-p

index;

(P2) for each n′ < n, the natural map Mn → Mn′ sends xi,n to xi,n′ for every

index i and also induces an isomorphism of Rn′-modules Rn′ ⊗Rn M
′
n
∼=

M ′
n′ .

To establish this we use induction on n. For n = 0 the necessary conditions are

satisfied by taking X0 to be any set of generating elements for the (assumed to

be finitely generated) abelian group M0 (so that M ′
0 =M0). For the inductive

step we fix n > 0 and assume that suitable sets Xm have been constructed for

each m < n. For each index i with 1 ≤ i ≤ κ we then fix a pre-image xi,n

of xi,n−1 under the given map πn−1 : Mn → Mn−1, set Xn := {xi,n}1≤i≤κ and

write M ′
n for the Rn-submodule of Mn generated by Xn. It is then clear that

Zp ⊗Z πn−1(M
′
n) = Zp ⊗Z M

′
n−1 = Zp ⊗Z Mn−1 = Zp ⊗Z πn−1(Mn),

where the second equality is a consequence of (P1) (for n− 1), and hence that

Zp ⊗Z Mn = Zp ⊗Z M
′
n + Zp ⊗Z ker(πn−1) = Zp ⊗Z M

′
n + Jn · (Zp ⊗Z Mn).

Now, since Nn−1/Nn is a finite p-group, the ideal Jn belongs to the Jacobson

radical of Zp⊗ZRn and so the last displayed equality combines with Nakayama’s

Lemma to imply that Zp ⊗Z Mn = Zp ⊗Z M
′
n. It follows that the index of M ′

n

in Mn is finite and prime to p, and hence that (P1) is satisfied. The first

property in (P2) is also clear for this construction, and the second property is



7.3. Coherence theorem II 125

true provided that the natural composite map

Rn′ ⊗Rn M
′
n → Rn′ ⊗Rn Mn

∼= Mn′

is injective. However, the kernel of this map is isomorphic to a quotient of the

group

TorRn
1 (Rn′ ,Mn/M

′
n)
∼= Tor

Z[Nn′/Nn]
1 (Z,Mn/M

′
n)
∼= H1(Nn′/Nn,Mn/M

′
n),

and the latter group vanishes since Nn′/Nn is a finite p-group whilst the order

of Mn/M
′
n is prime to p.

For each n > 0 we now consider the exact commutative diagram

0 −−−→
∏

nM
′
n

(ιn)n−−−→
∏

nMn −−−→
∏

nQn −−−→ 0

(1−π′
n)n

y (1−πn)n

y (1−π′′
n)n

y
0 −−−→

∏
nM

′
n

(ιn)n−−−→
∏

nMn −−−→
∏

nQn −−−→ 0

(7.11)

in which ιn : M ′
n → Mn is the natural inclusion map, we set Qn := cok(ιn),

π′
n is the map M ′

n+1 → M ′
n obtained by restriction of πn and π′′

n is the map

Qn+1 → Qn induced by πn. In particular, since the maps π′
n are surjective,

the Snake Lemma applies to this diagram to give a short exact sequence of

R-modules

0→M ′ →M → Q→ 0, (7.12)

in which we set M ′ := lim←−nM
′
n and Q := lim←−nQn (with the respective limits

taken with respect to the maps π′
n and π′′

n). In addition, the final assertion

of property (P2) implies that the inverse system (M ′
n, π

′
n)n is pro-discrete and

so claim (i) implies that the set {(xi,n)n}1≤i≤κ generates M ′ over R and hence

that

µR(M
′) ≤ κ = µZ(M0). (7.13)

To establish that M is finitely generated and µR(M) ≤ µZ(M0) + d, we are
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therefore reduced, via the exact sequence (7.12) and inequality (7.13), to show-

ing that µR(Q) ≤ d.

To prove this we note that, for each n, the diagram (7.11) gives rise to an exact

commutative diagram of Rn-modules

(M ′
n+1)(n)

(ιn+1)(n)−−−−−→ (Mn+1)(n) −−−→ (Qn+1)(n) −−−→ 0

(π′
n)(n)

y (πn)(n)

y (π′′
n)(n)

y
0 −−−→ M ′

n
ιn−−−→ Mn −−−→ Qn −−−→ 0.

In particular, since the first two vertical maps are bijective (as the systems

(M ′
n, π

′
n)n and (Mn, πn)n are pro-discrete), the third vertical map is also bijec-

tive and so the inverse system (Qn, π
′′
n)n is pro-discrete. It follows that Q is a

pro-discrete R-module and so claim (i) reduces us to constructing a subset Z̃

of Q such that |Z̃| ≤ d and, for every n, the module Qn is generated over Rn

by the image of Z̃.

We shall now inductively construct a suitable set Z̃ and to do this we note

that, as Qn has order prime-to-p, it is naturally a module over the algebra

Rn := Z[1/p][Γn]. In particular, for each n′ with 0 ≤ n′ < n, the central

idempotent

en,n′ := |(Nn′/Nn)|−1
∑

γ∈Nn′/Nn

γ

of Rn induces an identification of Qn′ ∼= Rn′ ⊗Rn Qn = Rn′ ⊗Rn Qn with

the submodule en,n′Qn of Qn, and hence also a direct sum decomposition of

Rn-modules

Qn = (1− en,n′)Qn ⊕ en,n′Qn = (1− en,n′)Qn ⊕Qn′ . (7.14)

In addition, since each module Qn is (by its very definition) a quotient of Mn,

one has µRn

(
Qn

)
≤ µRn(Mn) ≤ d, where the last inequality follows from the

stated assumption on M . For each n we can therefore fix a set of generators

{z̃′i,n}1≤i≤d of the Rn-module Qn. We then set e0,−1 := 0 and, for each index i,
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define an element

z̃i,n :=
∑

0≤a≤n

(1− ea,a−1)z̃
′
i,a ∈ Qn

(where we use (7.14) to regard each Qn′ for n′ < n as a submodule of Qn).

Then each family z̃i :=
(
z̃i,n

)
n≥0

belongs to the inverse limit Q = lim←−nQn. In

addition, for every n, the decompositions (7.14) imply that the Rn-module Qn

is generated by the elements {z̃i,n}1≤i≤d, and so the subset Z̃ := {z̃i}1≤i≤d of

Q has all of the properties that are required to complete the proof of claim

(ii).

7.3.2 Divisibility of Tor-groups

Throughout this subsection we fix a rational prime p. For an abelian group A

and natural number m we set A[m] := {a ∈ A : m · a = 0}. We also write A⟨p⟩

for the inverse limit lim←−m∈NA/p
m (with respect to the natural projection maps),

and use similar notation for homomorphisms. For a ring R, we write pdR(M)

for the projective dimension of a (left) R-module M . We also recall that, for

any natural number n, an R-module M is said to be ‘finitely n-presented’ if

there exists a collection of natural numbers {ti}0≤i≤n and an exact sequence

of R-modules of the form

0→ ker(θn)
ι−→ Rtn θn−→ Rtn−1 · · · θ1−→ Rt0 θ0−→M → 0. (7.15)

The following technical result will be useful for the proof of Theorem 7.1.2.

Proposition 7.3.4. Let p be a rational prime and let G be a profinite group

and M be a finitely generated Z[[G]]-module with the following properties:

(i) M [p] = (0).

(ii) M is finitely n-presented, for some natural number n.

(iii) pdZp[[G]]

(
M⟨p⟩

)
< n.
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Then, for every Z[[G]]-module L with L[p] = (0), and every integer a ≥ n, the

higher Tor-group TorZ[[G]]
a (L,M) is p-divisible.

Proof. Set R := Z[[G]] and Λ := R⟨p⟩ = Zp[[G]]. We first make an easy

observation about short exact sequences. For this we note that, if M3 is any

R-module with M3[p] = (0), then a short exact sequence of R-modules 0 →

M1 → M2 → M3 → 0 gives rise, for each natural number m, to an exact

commutative diagram

0 −−−→ M1/p
m+1 −−−→ M2/p

m+1 −−−→ M3/p
m+1 −−−→ 0

ϱ1,m

y ϱ2,m

y ϱ3,m

y
0 −−−→ M1/p

m −−−→ M2/p
m −−−→ M3/p

m −−−→ 0,

in which each map ϱi,m is the natural projection. Then, since ϱ1,m is surjective,

the Mittag-Leffler criterion implies that, upon passing to the limit over m of

these sequences, one obtains a short exact sequence of Λ-modules 0→M1,⟨p⟩ →

M2,⟨p⟩ →M3,⟨p⟩ → 0.

Turning now to the proof of the stated result, property (ii) allows us to fix

an exact sequence of R-modules of the form (7.15). Then, under condition

(i), this sequence breaks up into a finite collection of short exact sequences in

which no occurring term has an element of order p. Hence, by applying the

above observation to each of these short exact sequences, one deduces firstly

that for each m the induced sequence

0→ ker(θn)/p
m ι/pm−−→ (R/pm)tn

θn−→ (R/pm)tn−1 · · · θ1−→ (R/pm)t0 →M/pm → 0

(7.16)

is exact and then, upon passing to the limit over m, that the induced sequence

of Λ-modules

0→ ker(θn)⟨p⟩
ι⟨p⟩−−→ Λtn

θn,⟨p⟩−−−→ Λtn−1 · · ·
θ1,⟨p⟩−−−→ Λt0 →M⟨p⟩ → 0 (7.17)

is also exact. By using this sequence to compute Tor-groups, one obtains an
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isomorphism

TorΛn(L⟨p⟩,M⟨p⟩) ∼=
ker

(
L⟨p⟩ ⊗Λ θn,⟨p⟩

)
im

(
L⟨p⟩ ⊗Λ ι⟨p⟩

) . (7.18)

To compute this group, we note that, for each index i, the module L⟨p⟩ ⊗Λ Λti

identifies with (L⟨p⟩)
ti = lim←−m((L/p

m) ⊗R/pm (Rti/pm)). In particular, since

inverse limits are left exact, this observation (with i = n and i = n− 1) gives

an equality

ker
(
L⟨p⟩⊗Λθn,⟨p⟩

)
= lim←−m ker((L⊗Rθn)/pm) = lim←−m ker((L/pm)⊗R/pm(θn/pm)),

where the limits are taken with respect to the transition maps induced by the

projections (L/pm)tn → (L/pm−1)tn . In a similar way, one finds that there is

a corresponding inclusion

im
(
L⟨p⟩ ⊗Λ ι⟨p⟩

)
⊆ lim←−m im((L/pm)⊗R/pm ιm).

The isomorphism (7.18) therefore induces a surjective composite map of Λ-

modules

TorΛn(L⟨p⟩,M⟨p⟩) ↠
lim←−m ker((L/pm)⊗R/pm (θn/p

m))

lim←−m im((L/pm)⊗R/pm ιm)
(7.19)

∼= lim←−m
ker((L/pm)⊗R/pm (θn/p

m))

im((L/pm)⊗R/pm ιm)
∼= lim←−mTor

R/pm

n (L/pm,M/pm).

Here the first isomorphism follows from the Mittag-Leffler criterion since the

projections

im((L/pm)⊗R/pm ιm)→ im((L/pm−1)⊗R/pm−1 ιm−1)

are surjective, and the second is obtained by computing the groups

TorR/p
m

n (L/pm,M/pm) via the resolutions (7.16).
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Next we note that (since L[p] andM [p] vanish) there are short exact sequences

0→ L
pm−→ L→ L/pm → 0 and 0→M

pm−→M →M/pm → 0

which combine to give a composite injective homomorphism of abelian groups

TorRn (L,M)/pm ↪→ TorRn (L/p
m,M/pm) ∼= TorR/p

m

n (L/pm,M/pm). (7.20)

Here the isomorphism is induced by the fact that the standard spectral se-

quence

Tor
R/pm

b

(
L/pm,TorRc (M,R/pm)

)
=⇒ Tor

R/pm

b+c (L/pm,M/pm)

collapses on its first page since TorRc (M,R/pm) vanishes for all c > 0 (as

TorR1 (M,R/pm) is isomorphic to M [pm]). After taking the inverse limit over

m of the maps (7.20), we deduce from (7.19) that TorRn (L,M)⟨p⟩ is isomorphic

to a subquotient of TorΛn(L⟨p⟩,M⟨p⟩).

In particular, since property (iii) implies that TorΛn(L⟨p⟩,M⟨p⟩) vanishes, the

module TorRn (L,M)⟨p⟩ must also vanish and so the group TorRn (L,M) is p-

divisible.

This proves the stated claim with a = n. To prove the same result for all

a > n, one can then use an induction on a. The key point for this is that, if

0→ L′ → F → L→ 0 is any short exact sequence of left R-modules in which

F is free, then one has L′[p] = (0) and also, since a − 1 > n − 1 ≥ 0, the

natural exact sequence

(0) = TorRa (F,M)→ TorRa (L,M)→ TorRa−1(L
′,M)→ TorRa−1(F,M) = (0)

implies TorRa (L,M) is isomorphic to TorRa−1(L
′,M).
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7.3.3 Proof of Theorem 7.1.2

We henceforth fix a group G as in Theorem 7.1.2, and continue to set R :=

Z[[G]]. We also now fix natural numbers n and {ti}0≤i≤n and an exact sequence

of left R-modules of the form (7.15).

We recall that Costa [28] defines R to be ‘left n-coherent’ if, for every such

sequence, the R-module ker(θn) is finitely generated. (This property is labeled

as ‘strong left n-coherence’ by Dobbs et al [33], and more conceptual treatments

are given by Zhu [81] and Bravo and Pérez [14]). We note, in particular, that

R is left 1-coherent if and only if it is left coherent in the classical sense of

Chase [24] and Bourbaki [13], and we recall that if R is left n-coherent, then

it is automatically left n′-coherent for every n′ > n.

We start by recording a useful technical result.

Lemma 7.3.5. If U is an open subgroup of G, then R is left n-coherent if and

only if Z[[U ]] is left n-coherent.

Proof. Since the index of U in G is finite, the functor Z[[G]] ⊗Z[[U ]] − is flat

and a Z[[U ]]-module N is finitely generated if and only if the Z[[G]]-module

Z[[G]]⊗Z[[U ]] N is finitely generated. The stated result is a direct consequence

of these facts.

Following this result (and the observations made in the proof of Corollary

7.2.4(i)), to prove Theorem 7.1.2 it is enough for us to show the following: if

G is both pro-p and has no element of order p, and if n = d+3 in (7.15), then

the R-module K := ker(θd+3) is finitely generated. Our verification of this fact

will depend crucially on the properties of K that are established in claim (ii)

of the next result.

Proposition 7.3.6. Assume that G is pro-p and has no element of order p.

(i) The R-module im(θd+3) is pro-discrete.
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(ii) Set t = td+3 and, for each m, write ϱtm for the natural projection Rt →

Rt
m. Then the R-module K is equal to lim←−mϱ

t
m(K) and is pro-discrete.

Proof. For each natural number a, there exists a commutative diagram of R-

modules

0 // K

yy
ϱta+1

��

ι // Rt

ϱta+1

��

θ //M ′

��

// 0

K(a+1)

νa+1

%%
0 // ϱta+1(K)

ιa+1 //

ρta
��

Rt
a+1

ρta
��

θ(a+1) //M ′
(a+1)

��

// 0,

0 // ϱta(K)
ιa // Rt

a

θ(a) //M ′
(a)

// 0.

(7.21)

Here we set θ = θd+3, K = ker(θ),M ′ := im(θ) = ker(θd+2), and write ι for the

tautological inclusion K ⊆ Rt. We also write ρta for the projection R
t
a+1 → Rt

a

(so that ϱta = ρta◦ϱta+1), νa+1 for the canonical map K(a+1) → ϱta+1(K) and ιa+1

for the inclusion ϱta+1(K) ⊆ Rt
a+1. In addition, all unlabelled arrows in the

diagram are the natural projections. Then, as νa+1 is surjective and Rt
a+1 =

(Rt)(a+1), the commutativity of the diagram implies that the second, and in

a similar way third, row is exact. In particular, since ρta(ϱ
t
a+1(K)) = ϱta(K)

for every a, the Mittag-Leffler criterion ensures that, by passing to the inverse

limit over a of these diagrams, we obtain an exact commutative diagram

0 // K

ι′

��

ι // Rt

∼=
��

θ //M ′

µ

��

// 0

0 // lim←−aϱ
t
a(K)

⊆ // lim←−aR
t
a

(θ(a))a // lim←−aM
′
(a)

// 0,

(7.22)

and hence, by applying the Snake Lemma to this diagram, an exact sequence
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of R-modules

0→ K
ι′−→ lim←−aϱ

t
a(K)→M ′ µ−→ lim←−aM

′
(a) → 0.

To simultaneously prove claim (i) and the first assertion of claim (ii), it is thus

enough to prove µ is injective. This is, however, a direct consequence of the

commutative diagram

M ′ µ′−−−→ Rtd+2

µ

y ∥∥∥
lim←−aM

′
(a)

(µ′
(a)

)a
−−−−→ lim←−aR

td+2
a

in which µ′ denotes the natural inclusion.

To prove the second assertion of claim (ii) it is then enough to show that the

map

κa : Ra ⊗Ra+1 ϱ
t
a+1(K)→ ϱta(K)

that is induced by the surjection ρta is injective (and hence bijective). For this

argument we write ∆ for the finite normal subgroup Na/Na+1 of Γa+1 and

note that the functor Ra ⊗Ra+1 − on left Ra+1-modules identifies with taking

∆-coinvariants. In particular, the second and third rows of the exact diagram

(7.21) give rise to an exact commutative diagram of Ra-modules

Tor
Ra+1

1 (Ra,M
′
(a+1))

κ̃a−→
(
ϱta+1(K)

)
∆

(ιa+1)∆−−−−→
(
Rt
a+1

)
∆
−→

(
M ′

(a+1)

)
∆
−→ 0

κa

y ∼=
y y

0 −→ ϱta(K)
ιa−→ Rt

a −→ M ′
(a) −→ 0,

which implies that ker(κa) = ker((ιa+1)∆) = im(κ̃a) is isomorphic to a quotient

of the homology group Tor
Ra+1

1 (Ra,M
′
(a+1))

∼= H1(∆,M
′
(a+1)). In particular,

since the exponent of the latter group divides |∆| (which is a finite power of

p), the same is true for the group ker(κa).
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On the other hand, the first row of (7.21) induces an isomorphism of

ker(νa+1) = ker(ι(a+1)) with TorR1 (Ra+1,M
′) and hence gives rise to an exact

commutative diagram

(
TorR1 (Ra+1,M

′)
)
∆
−−−→

(
K(a+1)

)
∆

(νa+1)∆−−−−→
(
ϱta+1(K)

)
∆
−−−→ 0y ∼=

y yκa
0 −−−→ TorR1 (Ra,M

′) −−−→ K(a)
νa−−−→ ϱta(K) −−−→ 0.

This diagram implies ker(κa) is isomorphic to a quotient of TorR1 (Ra,M
′).

Hence, since the exponent of ker(κa) divides |∆|, to prove κa is injective it is

enough to show TorR1 (Ra,M
′), and hence also ker(κa), is p-divisible. To prove

this we first note that the exact sequence (7.15) (with n = d+3) induces an iso-

morphism between TorR1 (Ra,M
′) = TorR1 (Ra, im(θd+3)) and TorRd+3(Ra, im(θ1)).

The key point now is that, since G has no element of order p, its p-

cohomological dimension is finite and equal to d (by Serre [70, Cor. (1)]).

In particular, by applying a result of Brumer [15, Th. 4.1 with Ω = Zp] in this

case, it follows that pdΛ

(
im(θ1)⟨p⟩

)
≤ d+ 1.

In addition, the sequence (7.15) (with n = d + 3) implies that the R-

module im(θ1) is finitely (d+ 2)-presented. Hence, since neither im(θ1) ⊆ Rt0

nor Ra has an element of order p, we may apply Proposition 7.3.4 with

M = im(θ1), L = Ra, n = d + 2 and a = d + 3 in order to deduce that

TorRd+3(Ra, im(θ1)) ∼= TorR1 (Ra,M
′), and hence also ker(κa), is p-divisible, as

required.

In view of Proposition 7.3.6(ii), we can now apply Proposition 7.3.3(ii) to the

R-module K to deduce it is finitely generated provided that, as m varies,

the quantities µRm

(
ϱtm(K)

)
are bounded independently of m. By applying

the Forster-Swan Theorem (cf. [29, Th. 41.21]) to each order Rm, the latter

condition is then reduced to showing the existence of a natural number c such
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that, for every m and every prime ideal p of Z, one has

µRm,p

(
ϱtm(K)p

)
≤ c.

We therefore fix m and first consider µRm,p

(
ϱtm(K)p

)
for prime ideals p ̸= pZ.

To do this, we fix such a p and set A := Rm,p = Zp[Γm] and A := Qp[Γm].

Then, since Γm is a finite p-group (and so |Γm| /∈ p), A is a maximal Zp-

order in the finite-dimensional separable Qp-algebra A, and so the results of

Auslander and Goldman in [5] imply that A-lattices M and N are isomorphic

if and only if the associated A-modules Qp⊗ZpM and Qp⊗ZpN are isomorphic

(for details see Reiner [66, Th. (18.10)]). In addition, if we write {ei}i∈I for

the full set of (mutually orthogonal) primitive central idempotents of A, then

the maximality of A implies that it decomposes as a direct product
∏

i∈I Aei
of Zp-orders and, for a set of non-negative integers {di}i∈I , there exists an

isomorphism of A-modules

Qp ⊗Zp ϱ
t
m(K)p ∼=

⊕
i∈I

(Aei)
di ∼= Qp ⊗Zp

⊕
i∈I

(Aei)di

(see, for example, [29, Prop. (3.18)]). It follows that the A-lattice ϱtm(K)p is

isomorphic to
⊕

i∈I(Aei)di and hence that µA
(
ϱtm(K)p

)
is the maximum of the

set {di : i ∈ I}. On the other hand, since ϱtm(K) ⊆ Rt
m, for each i ∈ I the

Qp-space (Aei)
di ∼= ei(Qp ⊗Z ϱ

t
m(K)) is a subspace of ei(Qp ⊗Z R

t
m) = (Aei)

t.

It follows that di ≤ t for all i ∈ I, and hence that µA
(
ϱtm(K)p

)
≤ t.

We now compute µRm,p

(
ϱtm(K)p

)
for the ideal p = pZ. In this case, the kernel

of the projection Rm,p → R0,p = Zp belongs to the Jacobson radical of Rm,p

and so Nakayama’s Lemma combines with the isomorphism Zp⊗Rm,pϱ
t
m(K) ∼=

ϱt0(K)p that is induced by (the argument of) Proposition 7.3.6(ii) to imply that

µRm,p

(
ϱtm(K)p

)
= µZp(Zp ⊗Z ϱ

t
0(K)).

Thus, if one takes c to be the maximum of t and µZp(Zp ⊗Z ϱ
t
0(K)), then the
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above argument shows that µRm,p

(
ϱtm(K)p

)
≤ c for every m and every prime

ideal p of Z. This therefore completes the proof of Theorem 7.1.2.

Remark 7.3.7. In this remark, we continue to assume G is a compact p-adic

analytic group of rank d, and consider the possibility of strengthening Theorem

7.1.2.

(i) In order to prove, by the same method, R is (d + 2)-coherent, it would be

enough to show, if n = d + 2 in (7.15), then pdΛ

(
im(θ1)⟨p⟩

)
< d + 1. This

condition is satisfied if
⋃
n∈NM [pn] has no non-zero p-divisible subgroup (as is

the case if M is pro-discrete) since then the induced map im(θ1)⟨p⟩ → Rt0
⟨p⟩ is

injective and so [15, Th. 4.1] implies pdΛ

(
im(θ1)⟨p⟩

)
≤ d. In general, however,

establishing injectivity of all the possible maps im(θ1)⟨p⟩ → Rt0
⟨p⟩ is, in effect,

equivalent to showing R satisfies a variant of the Artin-Rees property relative

to the ideal pR and seems difficult.

(ii) If d ≤ 2, then an alternative approach (that does not rely on [15] and [70])

can be used to improve Theorem 7.1.2. Specifically, if either d = 1, or d = 2

and G contains a pro-p meta-procyclic subgroup (in the sense of [31, Chap. 3,

Ex. 10]), then a special case of the exact sequence in Proposition 7.2.1 can

be used to show directly that, if n = 2d in (7.15), then TorR2d(Ra, im(θ1)) is

p-divisible, and so (by the above argument) R is 2d-coherent. This approach

underlies the proof of [17, Th. 1.1] (for G = Zp), but does not apply in all

cases since pro-p compact p-adic analytic groups need not have any infinite

procyclic normal subgroups (for example, if m ≥ 3, then results [51, Th. 1

and Th. 3(ii)] of Klingenberg imply all infinite normal subgroups of SLm(Zp)

are open). In fact, by closely analysing the finite-presentability of pro-discrete

modules, it is also shown in [17, Th. 1.1 and Prop. 5.2] that Z[[Zp]] has weak

Krull dimension 2 (in the sense of Tang [71]) and, for ‘most’ p, is a (2, 2)-

domain that is neither a (1, 2)-domain nor a (2, 1)-domain (in the sense of

Costa [28]). However, we do not know the extent, if any, to which such finer

structure results generalise.
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