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Abstract

In this thesis, we investigate two non-Noetherian rings of arithmetic interest:
the p-adic completed group ring Zp[[Zg]], where ZE denotes the direct product
of countably infinitely many copies of Z,, and the integral completed group ring
Z[|G]] associated to compact p-adic Lie groups. We further study the module
theory over these rings and explore arithmetic applications of the resulting

algebraic structures.

For the first ring Z,[[Z}]]], we establish a general structure theorem for finitely
presented torsion modules over a class of commutative rings that need not
be Noetherian. This theorem is then applied to the study of the Weil-étale
cohomology groups of G,, for curves over finite fields. A particularly striking
outcome is that we prove an Iwasawa Main Conjecture under mild assumptions.
As an application, we show that the inverse limit, taken with respect to norm
maps, of the p-primary parts of degree-zero divisor class groups can only form

a finitely generated Z,[[Z;]]-module under a small class of Z}-extensions.

For the second ring Z[[G]], we study its coherence properties. We prove that
for every compact p-adic Lie group G of rank d, the ring Z[[G]] is not coherent,
but is d 4+ 3-coherent. This result contributes to a better understanding of the

homological behavior of modules over this non-Noetherian Iwasawa algebra.



Impact Statement

This thesis contributes to pure mathematics, specifically within Algebraic
Number Theory and Iwasawa Theory. The primary impact of this research
lies in advancing the theoretical understanding of non-Noetherian algebraic
structures and their arithmetic applications, addressing technical limitations

that have previously constrained research in this area.
Beneficial Use within Academia:

1. Establishing a New Algebraic Framework: Traditional Iwasawa
theory relies heavily on Noetherian rings. This thesis bridges a critical
gap by establishing a general structure theorem for finitely presented tor-
sion modules over a class of non-Noetherian rings, specifically Z,[[Z})]].
By replacing previously ”ad hoc” arithmetic definitions with intrinsic al-
gebraic characterizations, this work provides future scholars with a stan-
dardized toolkit. This framework allows for a more conceptual approach
to studying characteristic ideals, which can be utilized by researchers to

explore broader classes of infinite extensions of global fields.

2. Advancing Arithmetic of Function Fields: The application of the
newly developed structure theorems has led to part of proof of an Iwa-
sawa Main Conjecture for degree-one Weil-étale cohomology groups un-
der mild assumptions. This result strengthens and generalizes existing
literature regarding divisor class groups and Drinfeld modular towers. It

offers researchers deeper insights into the arithmetic behavior of global
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function fields, potentially influencing future work on the special values

of L-functions and geometric extensions.

3. Foundations for Non-Commutative Integral Iwasawa Theory:
The thesis also impacts Integral Iwasawa Theory by investigating the
homological properties of the integral completed group ring Z[|G]]. By
proving that these rings are (d+3)-coherent for compact p-adic Lie groups
of rank d, this research resolves open questions regarding their coherence.
This finding lays a crucial algebraic foundation for the development of
non-commutative integral Iwasawa theory, opening new pathways for

investigating class group growth in non-abelian extensions.

Broader Impact: While this research is primarily theoretical, it contributes
to the fundamental advancement of mathematical knowledge. By clarifying
complex algebraic structures, it supports the long-term vitality of Number
Theory, a discipline that historically underpins modern advancements in cryp-

tography and information theory.
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Chapter 0

Introduction

0.1 Overview

The goal of this thesis is to advance the understanding of non-Noetherian alge-
bra that arises naturally in the development of Iwasawa theory, by establishing
a structural algebraic framework and exploring its arithmetic applications. We

focus on two main objects of study:

o Zp[[ZE]], the completed p-adic group ring of the direct product Zg of a

countably infinite number of copies of Z,;

e Z[[G]], the integral completed group ring associated to compact p-adic
Lie groups G.

This introduction is devoted to the former. For an introduction to the latter,

see Part II, Chapter 6.

Let us briefly review the motivation for studying the algebra Z,[[Z}]]. This
motivation is closely tied to the number of independent Z,-extensions of global
fields. Let us first recall the number field case. Fix a prime number p and a
number field K. For each prime p of K lying over p, let U, denote the group of
local units of K,, and U, denote the subgroup of units congruent to 1 mod-
ulo p. Set U = Hp‘p U, and U; = Hp‘p Uyp. There is a diagonal embedding
e : O — U, sending each global unit € to (e,...,¢) € U. Let £y C O
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be the subgroup whose image lies in U}, and let E; denote its closure. It is
well known that there exists at least one Z,-extension of K, but there may
be several independent such extensions. The number d of independent Z,-
extensions of K is related to the Z,-rank of F; (See Washington [79, Thm.
13.4]). According to the well-known Leopoldt’s Conjecture, for every number
field K, this number d is expected to satisfy d =ry +1 = rankZP(El) —r1+2,
where 71, ry denote the numbers of real and complex embeddings of K, respec-
tively. Leopoldt’s conjecture is known in many cases; in particular, it holds
for every finite abelian extension of Q or of an imaginary quadratic field (see,
for example, Ferri-Johnston [39, Thm 1.1} and the references therein; see also
Washington [79, Cor. 5.32]). Let K’ be the compositum field of all the Z,-
extensions of K. Then we have Gal(K’/K) = ZJ. This compositum field,
which is the canonical example for Zﬁ—extensions, has been extensively utilized
by many researchers, for example Greenberg [15] which studies Iwasawa invari-
ants. In particular, he proved that if K has only one prime lying over p, then
the p-invariant is bounded as the Z,-extension varies over all such extensions.
This shows that studying the compositum field is a meaningful and worthwhile

pursuit.

In contrast, it is of interest to investigate the analogous situation for global
function fields. Let us now recall the notion of Z,-extensions in the con-
text of global function fields. Suppose k£ denotes a global function field with
the constant field F;,. The first example that naturally comes to mind when
discussing such extensions is the constant field — that is, an extension of k
obtained by forming a tower of finite field extensions of the constant field. In
this case, the base field I, is extended by a union of finite fields F ». It should
be noted that this type of Z,-extension exhibits different properties from the
cyclotomic Z,-extension of number fields. For instance, any constant field ex-
tension of a global function field is unramified (See [68, Prop. 8.5]). Since such
Z,-extensions involve only the extension of the constant field, they arguably

carry relatively trivial arithmetic information about global function fields.
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However, for global function fields, the most significant departure from the
number field case arises in the case of geometric extensions of k — these are
algebraic extensions K /k whose constant field coincides with that of k. As
previously noted, the number of independent Z,-extensions is always finite in
the case of number fields. By contrast, this is no longer true for global function
fields. A prominent counterexample is provided by the Z,-extensions arising
from Drinfeld modules (See [68, P. 199]). In particular, a Carlitz module is a
rank-one Drinfeld module defined over A = F,[T] with base field k = F (7).
Since the existence of a Drinfeld module is often a delicate matter (See [0, P.
231]), we restrict our attention here to the Carlitz module ® associated with

A and use it to illustrate the constructions that follow.

Fix once and for all an algebraic closure k of k, and a non-zero prime ideal
p C A generated by an irreducible polynomial of degree d > 1. For each n € N,
define k,, := k(®[p""!]) as the field obtained by adjoining the p"-torsion of
® to k. Since p™ | p" ! implies ®[p"] C ®[p" "], we have a tower of fields:

kckocklc---ckm::Ukn.
It is well known that each k,/k is an abelian extension, with Galois group
G, = Gal(k,/k) = (A/p"™™)* = (A/p)* x (1 +pA)/(1+p"TA) = A xT,,

where A = Gal(ko/k) = (A/p)* is a cyclic group of order ¢ — 1, and T, =
Gal(k,/ko) is the p-Sylow subgroup of G,. The extension k,/k is totally
ramified at p and tamely ramified at the place oco. In particular, k,/ko is
ramified only at p. This motivates the definition of the p-cyclotomic extension

of k as

kP = k(D[p™]) = | k(@p"])
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which is a Galois extension with the Galois group

Goo = Gal(kP¥¢/k) = l'&lGal(kzn/k‘) =AxI, wherel := Hm T,

To analyze the group G, we consider the completion of A at p. We have
A, = Fy[[m,]], where 7, is the irreducible generator of p and F, is the residue
field of A,. The unit group A admits a filtration U, := 1+ p"A,. Let k,
be the completion of £ at p and C, be the completion of an algebraic closure
of k,. We establish, once and for all, an embedding k — C,. Via the Galois
action on the formal Drinfeld module @ : A, — A,{{7}} (See [07]), we obtain
a p-cyclotomic character £ : Goo — AJ which is, in fact, an isomorphism.
Then we know I' & U; since I', 2 Uy /U, 41 = (1 + pA,) /(14 p"TA,). Since
n — o0, the minimal number of generators of U; /U,,4; tends to infinity (See
68, Prop. 1.6]), it is obvious that U; = Z. Let K be the subfield of A" fixed
by I'. Then K/k is a Z;f—extension of k, which is totally ramified at p. This
provides a natural and concrete example demonstrating why the development
of Iwasawa theory for Zg—extensions of function fields is both meaningful and

necessary.

There has been considerable pioneering work on this topic. Let K/k be a Zg—
extension of a global function field k. The major difficulty in this setting is
that the completed p-adic group ring Z,[[Z}]] of Z} is not Noetherian, which
prevents the direct application of classical techniques in Iwasawa theory. In
response to this challenge, Bandini, Bars, and Longhi were the first to in-
troduce the notion of “pro-characteristic ideal” under certain conditions, as
a generalization of the classical Iwasawa-theoretic characteristic ideal (See [7,
Def. 1.3]). They applied this concept to the study of several natural Iwa-
sawa modules over K/k. For instance, the authors investigated degree-zero
divisor class groups in [7, 9], as well as the Pontrjagin duals of the p-primary
Selmer groups of abelian varieties defined over global function fields in [, 9].

These efforts culminated in their joint proof, with Angles, of a main conjec-
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ture for divisor class groups over Carlitz-Hayes cyclotomic extensions of k (see
[3]). More recently, Bandini and Coscelli [10], as well as Bley and Popescu
[12], have extended such results to broader classes of Drinfeld modular towers.
However, a significant issue arises in that the definitions of “pro-characteristic
ideals” used in the aforementioned works heavily depend on specific arithmetic
contexts. In particular, the definitions vary depending on the Iwasawa module
under consideration, each requiring arithmetic assumptions to define a pro-
characteristic ideal tailored to that module (See [7, Thm 1.2, Def. 1.3], [3,
Thm. 1.2]). As a result, the definition appears somewhat ad hoc—crafted to
align with arithmetic phenomena rather than arising as an intrinsic algebraic

characterization of the modules over the complete group ring Z,[[Z}]].

By adopting a more conceptual algebraic approach, Part I of this thesis aims to
strengthen the theoretical foundations established in earlier works. As a start-
ing point, we identify a natural class of commutative rings — which notably
includes all rings of the form Z,[[Z x G]] for finite abelian groups G' — that
are generally non-Noetherian, yet still admit a structure theorem for a broad
class of finitely presented torsion modules (see Theorem 2.2.1). This result
is potentially of independent interest and, in particular, leads naturally to a
generalized notion of the characteristic ideal, which both extends and refines

the pro-characteristic ideal constructions used in previous literature.

We then prove that the inverse limits (with respect to corestriction) of the
p-completions of the degree-one Weil-étale cohomology groups of G, over fi-
nite extensions of k in K are finitely-presented torsion Z,[[Z}]]-modules. By
applying our structure theory to these modules, we obtain strengthened and
more general versions of the main results in [3], [10] and [12] (see Theorem
4.3.2 and Remarks 4.4.2 and 4.4.3). Moreover, this approach also enables us
to prove surprisingly that the inverse limit (with respect to norm maps) of the
p-parts of the degree-zero divisor class groups of finite extensions of £ in K is

finitely generated as a Z,[[Z}]]-module for a remarkably small class of exten-
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sions K /k (see Corollary 4.4.1). Finally, we present two major open questions

whose resolution may lead to further advances in the theory.

0.2 Content

In this section, we present a summary of the content covered in Chapters 1-7

individually.

In Chapter 1, we introduce a general structure theorem for finitely presented
torsion modules over a broad class of unital commutative rings, including cer-
tain non-Noetherian cases. After presenting several types of rings, we then
establish the structure theorem for finitely presented modules over elementary

divisor domains, which form a special subclass of Priifer and Bézout domains.

In Chapter 2, to apply the structure theorems presented in 1, we introduce
the notions of admissible modules and admissible rings. We then prove two
structure theorems for finitely presented admissible modules. Furthermore, we
investigate the admissibility relationship between certain kinds of Z,-algebras
R and their group rings Z,[G] for finite abelian groups G, which sets the stage
for the arithmetic study of Z,[[Z} x G]]-extensions in Chapter 4.

In Chapter 3, in light of the two structure theorems we established in Chapter
2, we define two types of characteristic ideals and examine the relationship be-
tween them. Later, we develop a framework for inverse limits of compact rings
and introduce the notion of I,-completeness for finitely presented modules.
The I,-completeness is employed later in Section 4.2 to show that the defini-
tion of one of our two characteristic ideals encompasses the pro-characteristic

ideal for quadratically-presented torsion modules.

In Chapter 4, following a brief introduction to Weil-étale cohomology theory
and some preparatory steps to adapt our algebraic results for arithmetic appli-

cations, we show that the degree-one Weil-étale cohomology groups of G, over
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finite extensions inside a ZE x G-extension form quadratically-presented tor-
sion Z,([Z)) x G]]-modules. Furthermore, using the characteristic ideals defined
earlier, we formulate an Iwasawa Main Conjecture and prove it under certain
mild assumptions. Finally, we apply this result to the study of degree-zero

divisor class groups.

In Chapter 5, we propose two meaningful questions to be addressed in future
research. The first concerns the ring-theoretic properties of Z,[[Z"]]; the second
explores potential applications of our theory to the study of the arithmetic of

number fields.

In Chapter 6, we introduce the motivation to develop integral Iwasawa theory
and review recent progress in the field to clarify our interest in studying the
properties of integral completed group rings associated with p-adic Lie groups

in Chapter 7.

In Chapter 7, we complete the proof of a more general theorem showing that
for every compact p-adic Lie group G of rank d, Z[[G]] is d 4 3-coherent rather
than coherent. Along the way, we introduce the notion of pro-discrete Z[[G]]-
modules, establish a version of Nakayama’s Lemma for such modules, and

investigate the divisibility properties of Tor-groups.

0.3 Notation

In this thesis, Z denotes the ring of integers. N denotes the set of natural num-
bers. Q denotes the field of rational numbers. C denotes the field of complex
numbers. @, denotes the field of p-adic numbers, that is, the completion of QQ
with respect to the p-adic valuation. Z, denotes the ring of p-adic integers. I,
denotes the finite field with ¢ elements, where ¢ is a power of a prime number
p. Throughout this thesis, A and R always denote unital rings, the precise as-
sumptions on which will be specified as needed in context. M will be used to

denote a module over such rings, with additional structure specified as needed.
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Spec(A) denotes the spectrum of a commutative ring A. All other notations

will be introduced and explained as they arise in the text.



Chapter 1

Non-Noetherian algebra

In this chapter, we review several algebraic results concerning properties of
commutative unital rings that are not necessarily Noetherian, along with mod-

ules over such rings.

We begin with Warfield’s Structure Theorem (Theorem 1.1.2) which serves
as the starting point for the structural results developed in Chapter 2. This
theorem describes the structure of finitely presented modules over commutative

rings whose localizations at all maximal ideals are valuation rings.

Next, we introduce various classes of rings, including semisimple rings, von
Neumann regular rings, semihereditary rings, Priifer domains, Bézout domains,

elementary divisor domains. These classes form a hierarchy:
e “Von Neumann regular rings generalize semisimple rings”;
e “Semihereditary rings generalize von Neumann regular rings”;
e “An integral semihereditary ring is called a Priifer domain”;
e “A Bézout domain is a special case of a Priifer domain”;

e “An elementary divisor domain is a special case of a Bézout domain”.
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Finally we present the structure theorem (Theorem 1.6.1), which gives the
structure of finitely presented modules over elementary divisor domains. We
also highlight a key property of module presentations (Proposition 1.7.4) that
will be used frequently in the chapters that follow.

1.1 Warfield’s structure theorem

In this section, we follow Warfield [75] to show a decomposition property for
finitely presented modules over certain commutative rings. Throughout this
section, all rings are assumed to be commutative and unital. We begin by

recalling the definition of a cyclic module.

Definition 1.1.1. Let R be a commutative and unital ring. A cyclic R-module
1s a module generated by a single element, 1.e. M = Rx. If M is a cyclic R-
module, then it is isomorphic to R/ Anng(x). In addition, if Anng(z) is a

principal ideal, then the module M 1is said to be cyclically presented.

Theorem 1.1.2 (Warfield’s Structure Theorem). A commutative ring R has
the property that every finitely presented module s a summand of a direct sum
of cyclic modules if and only if the localisation Ry is a generalized valuation

ring for each maximal ideal m in R.

To prove this theorem, we first introduce the notion of a generalized valuation
ring, which extends the concept of valuation rings to the setting of non-integral

rings.

Definition 1.1.3. A commutative ring is a generalized valuation ring if it

satisfies one of the three equivalent conditions:
o for every element a and b, either a divides b or b divides a;
e the ideals of R are totally ordered by inclusion;

e R is a local ring and every finitely generated ideal is principal.
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Proposition 1.1.4. If M s a finitely presented module over a generalized

valuation ring, then M is a direct sum of cyclically presented modules.

Proof. See [75, Thm. 1]. O

The third item of the Definition 1.1.3 describes the relationship between gen-
eralized valuation rings and local rings. We now present a result that further

elucidates this relationship in the context of finitely presented modules.

Proposition 1.1.5. If R is a commutative local ring and every finitely pre-
sented module is a summand of a direct sum of cyclic modules, then R is a

generalized valuation ring.
To prove this result, we need the following two lemmas.

Lemma 1.1.6. Let R be a commutative local ring which is not a generalized
valuation ring. Then for every n > 0, there are finitely presented modules

which are indecomposable and cannot be generated by fewer than n elements.

Proof. See [75, Thm. 2]. O

Lemma 1.1.7. Any indecomposable summand of a direct sum of cyclic mod-

ules over a commutative local ring is again a cyclic module.

Proof. See [6, Thm. 1] O

Proof of Proposition 1.1.5. Assume R is not a generalized valuation ring.
Then by Lemma 1.1.6, there exists a finitely presented indecomposable module
M which is generated by no fewer than two elements. By the hypothesis of
Proposition 1.1.5, M is a summand of a direct sum of cyclic modules. Thus
we know it is again a cyclic module by Lemma 1.1.7. We obtain a contradic-

tion. O
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To complete the proof of Theorem 1.1.2, we need the following notion.

Definition 1.1.8. Let R be a commutative ring. An R-submodule A of an R-
module B is relatively divisible if for allr € R,rA = ANrB. An R-module P
is RD-projective if for every short exact sequence 0 - A — B — C' — 0 with

A relatively divisible in B, the map Hom(P, B) — Hom(P, C) is surjective.

Proposition 1.1.9. Let R be a commutative ring and M a finitely generated
R-module. Then M 1is RD-projective if and only if M 1is finitely presented and
for each maximal ideal m of R, the localisation My, is a direct sum of cyclically

presented Ry-modules.

Proof. See [76, Prop. 4]. O

Proposition 1.1.10. Let R be a commutative ring. Then an R-module is RD-
projective if and only if it is a summand of a direct sum of cyclically presented

modules.

Proof. See [76, Prop. 1, Cor. 1] O

Proof of Theorem 1.1.2. 1t is well known that if a ring R satisfies the con-
ditions of Theorem 1.1.2, then so does R, for every maximal ideal m. This
follows from the fact that every finitely presented Ry-module is of the form
My,, where M is a finitely presented R-module. The necessity then follows
from Proposition 1.1.5. Conversely, by Proposition 1.1.10, it suffices to prove
that every finitely presented module is RD-projective. By Proposition 1.1.9,
a finitely generated R-module M is RD-projective if and only if M is finitely
presented and M, is RD-projective for every m. Applying Proposition 1.1.10

and Proposition 1.1.4, we obtain the desired result. O]
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1.2 Semisimple rings

In this section, we recall some properties of semisimple rings, which will play

an important role in our theory. We begin by recalling the definition.

Definition 1.2.1. A module is called left (or right) semisimple if it is a direct
sum of left (or right) simple modules. A ring is called semisimple if as the left

(or right) module over itself, the ring is a semisimple left (or right) module.

In the proposition below, we list some alternative equivalent definitions of

semisimple rings (see [09, Chap. 4, §4.1, Prop. 4.5]).
Proposition 1.2.2. The following conditions on a ring R are equivalent.
(1) R is semisimple.
(11) Every left (or right) R-module M is semisimple.
(111) Every left (or right) R-module M is injective.
(iv) Every short exact sequence of left (or right) R-modules splits.
(v) Every left (or right) R-module M is projective.
(vi) The global dimension (gl.dim) of R is equal to 0.

As is well known, semisimple rings play a key role in many areas of mathe-
matics, including commutative algebra, representation theory, and algebraic

number theory. The examples below illustrate the ubiquity of such rings.

Example 1.2.3. We list several kinds of rings as examples of semisimple

TiNgs.

(i) Every field is semisimple. More generally, any division ring is also

semisimple.
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(ii) Every Artinian ring is semisimple over itself.
(i1i) If R is semisimple, then so is M,(R).
(i) If R and S are semisimple, so is R X S.

(v) By Maschke’s Theorem and Proposition 1.2.2(ii), for every finite group
G over a field F with characteristic not dividing the order of G, F[G] is
semisimple. As an application, for F = Q, and G = Gal(L/K) for any

finite extension K/Q,, we know Q,[G] is semisimple.

Next, we recall a well-known result that describes the structure of semisimple

rings: the Wedderburn—Artin Theorem.

Proposition 1.2.4 (Wedderburn-Artin). Let R be a semisimple ring. Then
R is isomorphic to a product of finitely many M, (D;) for some integers n;
and division ring D;, where D; and n;, up to permutation of the index, are

uniquely determined.

By Proposition 1.2.4, we know that any commutative semisimple ring is iso-
morphic to a finite direct product of fields. On the other hand, by identifying
matrix rings over division rings with simple Artinian rings, one obtains another

version of the theorem. (see [2, Chap 4, §13, Thm. 13.6]).

Proposition 1.2.5. A ring R is semisimple if and only if it is a finite product

of simple Artinian rings.

1.3 von Neumann regular rings

To extract further information from semisimple rings, we introduce a concept
originally formulated by John von Neumann in [74], where he referred to such

rings as ‘“regular rings”.

Definition 1.3.1. A ring R is a von Neumann reqular ring if for every element
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a € R there exists an x in R such that a = axa.

Note that if a is a unit in R, then z = a~! satisfies the equation a = aza.
Intuitively, the element x in this equation can be viewed as a weak inverse of
a. A ring is said to be von Neumann regular if every element in the ring admits
at least one such weak inverse. Several examples of von Neumann regular rings

can be found in [19, P. 110].

Example 1.3.2. We list several kinds of rings as examples of von Neumann

reqular rings

(i) Each field is von Neumann regular by taking x = a™' for every a # 0 and
taking x equal to any element for a = 0. Moreover, any division ring is

von Neumann regqular.

(i1) The matriz ring M, (R) for n > 1 over every von Neumann regular ring

R is von Neumann reqular again.

(111) Let K be a division ring and let V' be a (possibly infinite-dimensional) left
K -vector space. Then the endomorphism ring Endg (V') is von Neumann

reqular.

From the perspective of ideals and modules, we can gain further insight into
the structure of von Neumann regular rings, as illustrated in the following

proposition.
Proposition 1.3.3. The following conditions are equivalent.
(i) R is a von Neumann regular ring.
(ii) FEvery principal left (resp. right) ideal of R is generated by an idempotent.

(i1i) Every principal left (resp. right) ideal of R is a direct summand of the
left (resp. right) R-module R.
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(iv) Every finitely generated left (resp. right) ideal of R is generated by an

idempotent element.

Proof. For all items above, we just prove the claims about left ideals as the

right ideal cases can be deduced by symmetrical arguments.

(1) < (i7): (ii) means that for every a € R, there is an idempotent e € R
such that Ra = Re. By (i), we know for every a € R, there exists an x
such that a = axa. Let e = xa. It is easy to check e is an idempotent and
Re C Ra. Besides, we have a = axa = ae. Hence Ra C Re. Conversely,
suppose Ra = Re for some idempotent e, then we have e = za and a = ye for

some z,y € R. Then we have ara = ae = yee = ye = a for every a € R.

(71) < (uii): Since for every idempotent e € R, R = Re @ R(1 — e), then we
know every principal right ideal is a direct summand if it is generated by an
idempotent e. Conversely, since any direct summand of R is generated by an

idempotent, (i7) can be deduced from (7ii) naturally.

(77) < (iv): By (ii) and inductive method, we only need to prove the sum of
two principal left ideals is principal. By (ii) we know any principle left ideal is
generated by idempotent. Let Re; and Re, generated by idempotents e; and
es. By (i), we know the left ideal Rey(1 — e1) is generated by an idempotent
f. Thus there exist b,¢ € R such that es(1 —e;) = bf and f = cea(1 — €7).
Since ey = egse; + bf and fe; = ces(1 — e1)e; = 0. Thus we can have some

computations as follows.

er=e+f—fer— fP=(1—f)les+ f)
ey = ege; + bf = eger + eaf — eaf? — ea(fer) + b(fer) + bf?

= (62 — 62f -+ bf)<€1 —+ f),
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Hence we can know Re; + Res C R(e; + f). By

e1+ f=e+cex(l1—ep) = (1 —cex)er + cey,

we know R(e; + f) C Rey + Res. The proof of converse arrow is obvious. [

Corollary 1.3.4. All semisimple rings are von Neumann reqular.

Proof. By Proposition 1.2.2 (iv), every left ideal of a semisimple ring is a direct
summand. So is every finitely generated ideal. Since every direct summand
is generated by an idempotent, and by Proposition 1.3.3 (ii), we obtain the
result. [

To illustrate certain local-global properties of von Neumann regular rings, we

now present the following proposition.

Lemma 1.3.5. A commutative ring is von Neumann reqular if and only if for

every mazimal ideal m of R the localization ring Ry, is a field.

Proof. See ([37, Thm 1]). Note that in this paper, the author refers to local-

ization rings as “quotient rings”. O

We also require the following two lemmas concerning the homological dimen-
sion properties of von Neumann regular rings. Before stating the next lemma,
we briefly recall the notion of weak global dimension. The (left) global dimen-

sion gl. dim(R) of a ring R is defined as

gl.dim(R) := sup{pdz(M) : M is a left R-module},

where pdz(M) denotes the projective dimension of M. Similarly, the (left)
weak global dimension w.gl.dim(R) of R is defined as

w.gl.dim(R) := sup{fdg(M) : M is a left R-module},
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where fdg(M) is the flat dimension of M. Equivalently, w.gl.dim(R) < n if
and only if Tor’ (M, N) = 0 for all R-modules M and N. In particular, one
always has

w.gldim(R) < gl.dim(R),

so the weak global dimension is a priori a weaker invariant than the global

dimension.

Lemma 1.3.6. A commutative local ring R is a valuation ring if and only if
its weak global dimension (denoted by w.gl.dim) is less than or equal to 1. In

particular, it is a field if and only if w.gl.dim(R) = 0.
Proof. See [37, Thm 4]. O

Lemma 1.3.7. Let R be a ring, M, N be R-modules and S be a multiplica-
tively closed subset of R. For every integer n > 0, we have Torf(M, N)g =
Torf's(Mg, Ng). Thus w.gl.dim(R)= sup{w.gl.dim(Ry)}, where m runs over

all maximal ideals of R.
Proof. See [21, VII, Ex 9, 10, 11]. ]

Proposition 1.3.8. A commutative ring R is von Neumann reqular if and

only if w.gl.dim(R) = 0.
Proof. 1t is obvious by Lemma 1.3.5, Lemma 1.3.6 and Lemma 1.3.7. O]
The following proposition motivates the introduction of the notions of admis-

sible modules and admissible rings in Chapter 2.

Proposition 1.3.9. For a commutative ring R, w.gl.dim(R) < 1 if and only
if the localization ring Ry of R at every maximal ideal m of R is a valuation

Ting.
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Proof. 1t is obvious by Lemma 1.3.6 and Lemma 1.3.7. [

1.4 Semihereditary rings and Priifer domains

The main focus of this section is on certain properties of semihereditary rings,
a notion that generalizes von Neumann regular rings. We begin by recalling

the definition of a semihereditary ring.

Definition 1.4.1. If a commutative ring R has the property that every finitely
generated ideal of R is projective as an R-module, we call it a semihereditary

Ting.

One can also define left (resp. right) semihereditary rings by replacing ideals
with left (resp. right) ideals in the definition. Since our work primarily focuses
on the commutative case, we present the definition accordingly. Furthermore,
if every ideal of a ring is projective, the ring is called a hereditary ring. A

commutative semihereditary integral domain is referred to as a Priifer domain.
Example 1.4.2. There are several examples of semihereditary rings.
i) Fach field is semihereditary.

ii) Fach Dedekind domain is a hereditary ring. Indeed, every ideal I of a
Dedekind domain R is finitely generated. For a finitely generated R-
module, being projective is equivalent to being locally free. For every
ideal I C R and prime ideal p € Spec(R), the localisation I, is a free
Ry-module of rank one. Thus, Prifer domains can be viewed as a gen-
eralization of Dedekind domains to the non-Noetherian setting. Further-
more, semihereditary (resp. hereditary) rings extend this notion to the
non-integral and noncommutative context. For example, the matrix ring
M, (R) over a Prifer domain R is a semihereditary ring (see [52, P.44
Ezample 2.52(c)]).
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iii) The direct product of any two semihereditary(resp. hereditary) rings is

also semihereditary(resp. hereditary) (see [52, P.44 Ezample 2.32(c)]).

The following corollary, derived from Proposition 1.3.3(iv) and Definition 1.4.1,
demonstrates that semihereditary rings generalize the notion of von Neumann

regular rings.
Corollary 1.4.3. Fach von Neumann reqular ring is semihereditary.

As observed, the direct product of any two semihereditary (resp. hereditary)
rings is again semihereditary (resp. hereditary). We now present an equivalent

characterization of a semihereditary ring R in terms of its total quotient ring

Q(R).

Proposition 1.4.4. A commutative ring R is semihereditary if and only if
the total quotient ring Q(R) is von Neumann regular ring and the localization

ring Ry 1S a valuation ring for every maximal ideal m of R.

Proof. See [37, Thm 2]. O

The Proposition 1.4.4 offers a perspective for recovering semihereditary rings
from von Neumann regular rings. Consequently, using the weak global dimen-
sion properties of von Neumann regular rings, we can characterize semihered-

itary rings as follows (see [37, Thm 5]).

Proposition 1.4.5. For every commutative ring R and its total quotient ring

Q(R), the following two statements are equivalent:
i) R is a semihereditary ring.

i) w.gl.dim(R) <1 and w.gl.dim(Q(R)) = 0.

Proof. By Proposition 1.4.4, Proposition 1.3.8 and Proposition 1.3.9. ]
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Finally we explore the properties of Priifer domains. We briefly recall the
notion of an invertible ideal. Let R be a commutative ring. A (fractional)
ideal I of R is called invertible if there exists a (fractional) ideal J of R such

that IJ = R.
Proposition 1.4.6. The following conditions listed below are equivalent.
i) R is a Prifer domain.

ii) For every mazimal ideal m in R, the localization Ry, of R at m is a

valuation domain.

iii) FEvery non-zero finitely generated ideal is invertible.
Proof. See [13, P.558 12]. O

A characterization of the direct product of a finite number of Priifer domains

in terms of homological dimensions is given as follows (see [37, P.117 Cor]).

Proposition 1.4.7. For every commutative ring R and its total quotient ring

Q(R), the following two statements are equivalent:

i) R is a direct product of a finite number of Priifer domains.

i) w.gl.dim(R) <1 and gl.dim(Q(R)) = 0.

Proof. 1t is obvious by Lemma 1.3.6. m

1.5 Bézout domains and elementary divisor
domains

In the previous section, we studied the properties of Priifer domains. An
important subclass of Priifer domains is the class of Bézout domains, which

are defined as follows.
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Definition 1.5.1. A commutative ring is a Bézout ring if its finitely generated

ideals are principal.

By the definition above, Bézout’s identity holds for every pair of elements in
a Bézout domain. It is evident that principal ideals in a commutative domain
are projective, as they are free of rank one. Hence, every Bézout domain is a
Priifer domain. A natural question arises: which Priifer domains are in fact
Bézout domains? To address this question, we first recall the definition of

semilocal rings.

Definition 1.5.2. A commutative ring is semilocal if it only has finitely many

maximal ideals.

It is clear that a local ring is a special case of a semilocal ring. The finiteness
of maximal ideals in semilocal rings leads to the following proposition, which

answers the question raised above.

Proposition 1.5.3. Semilocal Priifer domains are Bézout domains.

Proof. See [11, III. Thm. 5.1]. O

On the other hand, we can use the notion of GCD-domain, i.e. every pair
of elements in the domain admits a greatest common divisor, to give another
comprehensive answer of the question about the relation between Priifer and

Bézout domains.

Proposition 1.5.4. A commutative ring R is a Bézout domain if and only if

R is both a Prifer domain and a GCD-domain.

Proof. For the only if part, we just need to prove every pair of elements in
Bézout domain has a greatest common divisor. This is because that for all
a,b € R, there exists an ¢ € R such that aR + bR = cR. Thus c¢ divides a and

b, and for every r € R, if r divides a and b, then r divides c.
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For the if part, by Proposition 1.4.6(iii), we only need to prove that in a
GCD-domain every invertible ideal is principal. Let I be an invertible ideal
of a GCD-domain R,I = (a;/b1)R + -+ + (a,/b,)R. Since R is a GCD-
domain. here we can assume for each 1 < i < n,(a;,b;) = 1. Since R is
also an LCM-domain, we can find ¢ as the least common multiple of all b;’s
and d as the greatest common divisor of all @;’s, thus I=! = (¢/d)R. We
hence know there exist m;’s of I such that my(c/d) + --- + m,(c/d) = 1.
Then we know I = uR, where u = my + - -- + m,, because for every x € I,

r=x-m(c/d)+ - +my(c/d) = uxc/d. O

Proposition 1.5.5. A commutative ring R is a principal ideal domain if and

only if R is both a unique factorization domain and a Bézout domain.

Proof. The only if part is trivial. For any a,b € I, where [ is an ideal in R,
we have (ged(a,b)) = (a,b) € I. Thus an ideal I # 0 is generated by an
element a with fewest prime factors. We can find it by the following steps.
Pick any 0 # ¢ € I. If I # (¢), then there exists some d € I such that c¢{ d, so

e = gcd(e,d) € I and e has fewer prime factors than a. O

Example 1.5.6. There are several examples for Bézout domains.
i) Fach principal ideal domain is a Bézout domain.

ii) Each valuation ring is a Bézout domain since the ideals are totally or-
dered. Thus every non-Noetherian valuation ring is an example of a

non-noetherian Bézout domain ,for example, the valuation ring of C,.
iii) The ring of algebraic integers Z C Q is a Bézout domain (see [/, 2.4]).

An important subclass of Bézout domains is that of elementary divisor do-
mains, which play a central role in the structure theorem for finitely presented

modules.
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Definition 1.5.7. A commutative ring R is said to be an elementary divisor
ring(EDR) if every rectangular m x n matriz A over R admits diagonal re-
duction, i.e. there are invertible square matrices P and Q) of orders m and n
respectively such that PAQ = D where D is a diagonal matrix with entries d;
satisfying the divisibility relations d; | d; 1 for all 1 < i < min{m,n}. We say

A is equivalent to D.

To investigate the relationship between elementary divisor rings (EDRs) and
Bézout domains, we consider the following proposition, which provides a

matrix-theoretic characterization of Bézout domains.

Proposition 1.5.8. R is a Bézout domain if and only if every diagonal matrix

over R admits diagonal reduction.

Proof. See ([11, III. Prop. 6.1}). O

Corollary 1.5.9. Elementary divisor domains are Bézout domains.

The following proposition characterizes those Bézout domains that are elemen-

tary divisor rings (EDRs).

Proposition 1.5.10. For a Bézout domain R the following properties are

equivalent.
i) R is an elementary divisor domain.
ii) Every 2 x 2 matriz admits diagonal reduction.

iii) If a,b,c € R satisfy aR + bR 4+ cR = R, then there exist p,q € R such
that
paR + (pb+ qc)R = R.

Proof. See ([18, Thm 5.1, Thm 5.2]). O
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The Proposition 1.5.10(ii) is particularly useful, as it reduces the problem of
proving that a Bézout domain is an elementary divisor domain to the case of
2 x 2 matrices. We now provide a more direct description of the relationship
between elementary divisor domains and Bézout domains. To do so, we first

introduce the following definition.

Definition 1.5.11. We say a ring of finite character (of countable character)
if every non-zero element of the ring is contained in a finite (countable) number

of mazimal ideals.

For instance, Dedekind domains and semilocal rings are both examples of rings
with finite character. In contrast, the ring of all algebraic integers, denoted Z is
not a ring of countable character, as every non-unit is contained in uncountably
many maximal ideals. We now introduce a more direct criterion — beyond
the matrix-theoretic characterization in Proposition 1.5.10(ii) — under which

a Bézout domain is also an elementary divisor domain.

Proposition 1.5.12. Bézout domains of countable character are elementary

dwisor domains.

Proof. By Proposition 1.5.8 and 1.5.10(ii), we only need to prove that every
2 x 2 matrix can be reduced to a diagonal matrix. The remainder of the proof

can be found in [41, III. Thm. 6.5]. O

Corollary 1.5.13. For a semilocal integral domain R the following are equiv-

alent:
i) R is a Prifer domain;
ii) R is a Bézout domain;

iii) R is an elementary divisor domain.

Proof. The equivalence between (i) and (ii) is given by Proposition 1.5.3. The



1.6. The structure theorem of finitely presented modules 26

equivalence between (ii) and (iii) is given by Corollary 1.5.9 and Proposition

1.5.12. [l

1.6 The structure theorem of finitely pre-

sented modules

In this section, we prove a fundamental structure theorem for finitely presented
R-modules over an elementary divisor domain. This theorem also characterizes
the class of domains over which finitely presented modules decompose into

direct sums of cyclic modules (See [18], [55]).

Theorem 1.6.1. A domain R satisfies the property that every finitely pre-
sented R-module is a direct sum of cyclic R-modules if and only if it is an
elementary divisor domain. Moreover, every finitely presented R-module M

can be decomposed in a unique way as

M=R/d\R®---®R/d, R, di|dis1 (1<i<n-—1). (1.1)

To prove the theorem, we first recall the following proposition concerning

finitely presented modules over Bézout domains.

Proposition 1.6.2. Let R be a Bézout domain and let M be a finitely pre-

sented R-module which is a direct sum of cyclic modules. Then

M=R/4R® - & R/d,R, di|diss (1<i<n-—1). (1.2)

Here the annihilator ideals d; R are uniquely determined by M.

Proof. Since every finitely generated ideal of R is principal, every cyclic sum-
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mand of M is cyclically presented. Thus M has a free presentation

R"— R"— M — 0,

where the first arrow is a diagonal matrix. By Proposition 1.5.8, the ma-
trix admits a diagonal reduction. The uniqueness of the form 1.2 is given by

Proposition 1.6.4. O

Proposition 1.6.3. A domain R has the property that every finitely presented
R-module is a summand of a direct sum of cyclic modules if and only if R is

a Prifer domain.

Proof. 1t is obvious by Theorem 1.1.2 and Proposition 1.4.6. m

The sufficiency of Theorem 1.6.1 can be proved now. Since every elementary
divisor domain is both a Priifer domain and a Bézout domain, Propositions
1.6.3 and 1.6.2 ensure the existence of the normal form (1.1). The uniqueness

of this form is guaranteed by the following proposition.

Proposition 1.6.4. Let R be a commutative ring, and let an R-module M

satisfy
M=R/I,=PR/J;
i=1 j=1
i.e. M has two direct decompositions by cyclic summands. If Iy > -+ > I,

and J; > -+ > J,, then m =n and I; = J; for all 1 <1 < m. Moreover, the
number of the non-zero summands of M cannot exceed the minimal cardinality

of systems of generators of the module M.

Proof. See [11, V. Prop. 2.10]. O

The necessity of Theorem 1.6.1 is not directly relevant to our work and can be

found in [11, V. Thm. 3.4].
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1.7 Presentations of modules

In this section, we study the notion of n-presentations of modules. Let R be a
commutative ring. Recall that an R-module M is said to be finitely presented

if there exists an exact sequence

Fy—Fy—M—=0, (1.3)

where Fy and F) are finitely generated free R-modules. For such modules, we

now state the following useful lemma.

Lemma 1.7.1. Let M be a finitely presented R-module. If there exists an
exact sequence

0—-K—>N-—=>M-—=0,

where N is a finitely generated R-module, then K 1is finitely generated.

Proof. Consider the commutative diagram

F > Fy > M > 0
[
0 y K >y N > M > 0

where a, f are given by the projectivity properties of Fy and F}, respectively.

By snake lemma Coker() = Coker(a), and so we have an exact sequence

0 — Im(B) - K — Coker(a) — 0.

Since Im(f) and Coker(«) are both finitely generated, thus K is finitely gen-
erated too. [

If we refer to the exact sequence 1.3 as a finite 1-presentation of M, then, by

analogy, we can define an n-presentation of M as follows.



1.7. Presentations of modules 29

Definition 1.7.2. An n-presentation of M is an exact sequence

F,—=F_4—-—=F—=M=0

with F; free R-modules. In addition, if F; is finitely generated, this presentation
s called a finite n-presentation of M. Sometimes, such an R-module M with

finite n-presentations is called n-presented in the later chapters.

It is obvious that a finitely generated R-module M has a O-presentation. We
now introduce a numerical invariant A(M) to study n-presentation, defined as

follows.

Definition 1.7.3. If M is a finitely generated R-module, then we define

A(M) = sup{n | there is a finite n-presentation of M}.

If M is not finitely generated, we put A\(M) = —1.

It is clear that M is finitely generated if and only if A(M) > 0 and M is finitely
presented if and only if A(M) > 1. The following proposition describes the

relationship between modules that are connected by an exact sequence.

Proposition 1.7.4. Let 0 - P — N — M — 0 be an exact sequence of

R-modules, then we have
1) A(N) > inf{\(P), \(M)}.
2) A(M) > inf{A(N), \(P) + 1}.
3) A(P) > inf{A(N), \(M) — 1}.

4) If N = M &P then A\(N) = inf{\(M), A(P)}. In particular, N is finitely
presented if and only if M and P are both finitely presented.

To prove 1) of Proposition 1.7.4, we need the following lemma.
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u

Lemma 1.7.5. Let N & N 5 N” — 0 be an exact sequence of R-modules
and P %5 N' = 0 and P 25 N” = 0 be two surjective maps. If P" is a
projective R-module then there exists a surjective map o : P' @ P" — N — 0

such that the following diagram commutes:

i

P P D P p P

R

N’ v N * 5 N” y ()
0 0 0

where i and p are the corresponding inclusion and projection maps.

Proof. See [14, Thm 1.1.4]. O

Proof of Proposition 1.7.4.

1) Utilizing Lemma 1.7.5 to combine an A\(P)-presentation and an A\(M)-
presentation together, we can construct an inf{\(P), A\(M ) }-presentation

of N.

2) Let n < inf{A\(N),A(P) + 1}. We want to show for each n, A(M) > n.
Using induction, if n < 0, the statement is obvious. For n > 1, by a
A(M)-presentation of M and an n — 1-presentation of P, we can obtain
an n — 1 = inf{\(M),n — 1}-presentation of N. If A(M) < n, then we
have A(N) > n > A(M) = n — 1. Thus the kernel at n — 1 stage of the
composite presentation of N which is constructed by a A(P)-presentation
of P and a A\(M)-presentation of M is a finitely generated module onto
which a finitely generated free module can be mapped. This can help us

increase the A\(M)-presentation. So we obtain a contradiction.

3) Similar to the proof of 2).
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4) fN=M@P,wehave 0 > P >N > M —-0and 0 - M — N —
P — 0. Use 1),2),3) to get the result.

]

A ring R is said to be n-coherent if every R-module that admits a finite n-
presentation also admits a finite (n-+ 1)-presentation. Rings with this property

will be the primary focus of our study, particularly in Part II of this thesis.



Chapter 2

The structure theorem

As noted in the introduction, many foundational contributions to Iwasawa
theory over function fields have been developed using the extrinsic notion of
the pro-characteristic ideal. The main obstruction to obtaining an intrinsic
definition of characteristic ideals — one that avoids reliance on field extensions

and inverse limits — is the lack of a well-behaved structure theorem.

In classical Iwasawa theory, the setting typically involves a Noetherian Iwasawa
algebra, such as A = Z,|[[Z,]]. For a finitely generated torsion A-module M,

one has a pseudo-isomorphism of the form:

s t
M~ G_?A/pm" ®G_?A/Ffj,

where p is a rational prime, the F} are distinguished polynomials of A, and
“~" denoting a pseudo-isomorphism. This structure theorem expresses M, up
to pseudo-isomorphism, as a direct sum of elementary modules over A, and
the integers r, m;, n;, and the prime ideals (F}) are uniquely determined by
M. A challenging problem arises: can this structure theorem be extended to

broader settings beyond Noetherian Iwasawa algebras?

The answer is, perhaps unexpectedly, affirmative—and the implications may

even surpass initial expectations.
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In this chapter, we establish a structure theorem 2.2.1 for a special class of
finitely presented torsion modules—referred to as admissible modules—over
an arbitrary unital commutative ring A. However, the generality of the ring
introduces two notable limitations. First, in this setting, the roles of p and
F; in the classical Iwasawa-theoretic decomposition are replaced by general
principal ideals, making it impossible, in general, to give an explicit description
of these ideals. Second, the module M is not necessarily pseudo-isomorphic to
a direct sum of elementary modules; rather, it appears as a direct summand
of a module that is pseudo-isomorphic to such a sum. Nevertheless, under the
mild additional assumption that the total quotient ring Q(A) is semisimple, we
obtain the improved version (Theorem 2.2.3), in which the principal ideals are
replaced by powers of height-one prime ideals. The proofs of both structure

theorems rely critically on the algebraic foundations developed in Chapter 1.

Furthermore, to apply Warfield’s Structure Theorem (Theorem 1.1.2) for
height-one prime ideals, we introduce the notion of an admissible module over
a commutative ring R in Definition 2.1.1. To meet the assumptions of Theo-
rem 2.2.3, we define the concept of an admissible ring in Definition 2.3.1 and
observe that it encompasses many rings commonly encountered in arithmetic
contexts. Finally, we investigate the relationship between admissibility for a
Z,-algebra R that is an integrally closed domain of characteristic zero, and

admissibility for the group ring R[G], where G is a finite abelian group.

This chapter is a joint work with David Burns and Alexandre Daoud.

2.1 Admissible modules

In this section we fix a commutative unital ring A and write Q)(A) for its total

quotient ring. We also write ht(p) for the height of each p in Spec(A) and
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consider the sets

P = Pa:={p € Spec(A) : ht(p) =1} and

Pfe = Pl .= {p € P:pis finitely generated}.

Given an A-module M, we write M, for its localisation at p in Spec(A4). We also
write Mior = M .40 for the A-submodule of M comprising all elements m that
are annihilated by a non-zero divisor of A (that may depend on m) and refer to
M as a “torsion A-module” if M = M., (or, equivalently, Q(A) ® 4 M = (0)).
We then define a (possibly empty) subset of P by setting

P(M) = Pa(M) := P N Support(Mio,) = {p € P : (Mior)p # (0)}.

Finally, we write M, for the quotient of M by M;,,.
The following notion will play a key role in the sequel.

Definition 2.1.1. A finitely generated A-module M will be said to be admis-

sible if it has both of the following properties:

(P1) for every p € Spec(A) that is mazximal amongst those contained in
qup(M) q, the localisation A, is a valuation ring (that is, its ideals are

totally ordered by inclusion).
(Py) P(M) is a finite subset of P%.

Remark 2.1.2. We consider several examples below to concretize the defini-

tion of the admissible module. Later these examples will be used repeatedly.

(i) If P(M) is finite (as required by (Py) and automatically satisfied if A is
Noetherian), then the prime avoidance lemma implies (Py) is valid if and only
if Aq is a valuation ring for every q in P(M). In particular, if A, is a valuation

ring for all p in P (as is the case if A is either a Krull domain or valuation
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domain of arbitrary dimension), then M is admissible if and only if My, is
supported on only finitely many primes in P, and each of which is finitely

generated.

(i1) Prime ideals that are contained in a union of primes in P need not have
height one. For example, if A is a Noetherian domain of dimension two, then
Krull’s Principal Ideal Theorem states that for every principal proper ideal I of
A, each minimal prime ideal containing I has height at most one. This implies
that every prime ideal of A is contained in Upepp, since for any prime ideal
P in A and any non-zero element x € P there is a principal proper ideal (x)
contained in a prime ideal p with height one. Hence the prime ideal in A with

height two must be contained in Upepp.

As usual, a torsion A-module will be said to be pseudo-null if its localization
vanishes at every prime in P, and a map of A-modules will be said to be a

pseudo-isomorphism if its kernel and cokernel are both pseudo-null.

2.2 Structure theorems

We are now in a position to prove two structural results that may be regarded
as the starting point of our theory. These results apply to a broad class of
modules: the first holds over arbitrary commutative rings, while the second
requires a mild additional assumption on the base ring A, namely that its total

quotient ring Q(A) is semisimple.

The proof of Theorem 2.2.1 rely on the preceding algebraic decomposition
result, Proposition 1.1.2, which can be applied using property (P;) introduced
in Definition 2.1.1. Notably, the condition (P;) provides a favorable setting for

localization.

The proof of the first structural theorem proceeds with minimal reliance on

auxiliary lemmas, whereas the second theorem — an improved and more re-
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fined version — builds upon various algebraic results established in the pre-
vious chapter, like the refined structure theorem 1.6.1 of finitely presented

modules, leading to a substantially more intricate argument.

Theorem 2.2.1. Let M be a finitely-presented A-module with property (P ).
If M is torsion, then there exists an A-module N, a finite family of principal

ideals {L,},e1 of A and a pseudo-isomorphism of A-modules
M@®&N — @TeTA/LT. (2.1)

Proof of Thm 2.2.1. To prove the theorem we assume that M is A-torsion.
We also note that if P(M) = (), then M is pseudo-null and there is nothing to
prove. We therefore assume that P(M) # 0, set S := A\ U,cp(pr) b and write

(=) for the localisation functor Sfl(—).

The maximal ideals of A’ are in one-to-one correspondence with the primes
of A that are maximal amongst those contained in (J,cp(y) b. Hence, from
condition (P), it follows that the localisation of A" at each maximal ideal is a
valuation ring. We may therefore apply the Warfield’s structure theorem 1.1.2
to deduce the existence of an A’-module N and a finite collection {a } 7 of

elements of A"\ (A")* for which there is an isomorphism of A’-modules

Y: M @& N = @TGTA'/(Q;). (2.2)

We now choose elements {a:}-er of A\ S = U,cpn P with (a;)" = (a})

T

for each 7 € 7. Then, since both M and @, _+A/(a.) are finitely-presented

A-modules (the former by assumption and the latter clearly), the canonical
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maps

Homy (M, ®TETA/(GT))/ = Hom (M, TeTA'/(a'T)),
HomA(GBTeTA/(aT), M)’ = HomA/(EBTGTA’/(a’T),M’)’ (2.3)

Ends (M) = End (M)
are all bijective. This implies the existence of homomorphisms of A-modules

1 M — @TeTA/(aT) and 9 : @TGTA/(CLT) — M

such that, for suitable elements s; and sy of S, the maps ¢{/s; and ¢}/sy are
respectively equal to the composites
i = i
YN VS NN A'f(a) and _AJ(a) L MaN' LNV
TE TE

Set N := ker(tz). Then, since the endomorphism /sy o ¢} /sy of M’ is the
identity map, which corresponds to the identity map in End4(M)’, the map
Loty is given by multiplication by sss; and the latter element is not contained

in any prime in P(M). Hence the modules ker(c;), coker(s2) and ¢; (M) NN

are all pseudo-null. In addition, by localising the exact commutative diagram

0 > N y (M) + N —2— (19004)(M) —— 0
H jil jz‘z (2.4)
0 > N » @, A/ (a;) —2— im(12) —— 0

one checks that the inclusion

iv:uu(M)+ N — @TGTA/(CLT>

is also a pseudo-isomorphism. Actually, by diagram 2.4 and snake lemma, we
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have the short exact sequence
0 — coker(i1) — coker(iz) — 0.

Since coker(tg) is pseudo-null, we know im(tp), = M, for all p € P. Notice

that we have the trivial short exact sequence
0 —— (1300)(M) —2— im(1y) —— coker(iy) — 0.

Since (13 0 t1)(M), = M, for all p € P, it follows that coker(cy), = 0 for
all p € P, and hence the same holds for coker(:;). Given these facts, the

tautological short exact sequence

x—(z,x)

0 u(M)NN (M@ N 2270 (M) + N =0

implies that the composite map

(¢1,id)
—_—

M&N n(M)o N E220 )+ N o @D A/a)  (25)

TET

is a pseudo-isomorphism. This proves (i) with L, = (a,) foreach 7 € 7. O

The structural theorem 2.2.1 expresses a finitely presented torsion admissible
A-module, up to pseudo-isomorphism, as a direct sum of quotient modules by
principal ideals. Although the theorem holds for every commutative ring A,
its main limitation lies in its dependence on the intermediate module N, which
arises during the proof. In fact, since N is defined as the kernel of a specific

morphism, its structure is generally difficult to describe explicitly.

Before stating the next theorem, we isolate the purely ring-theoretic input that
will be used in its proof. This result concerns only a suitable localisation of A

and its decomposition as a finite direct product of Priifer domains.

Proposition 2.2.2. Let A be a commutative ring and let S C A be a multi-
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plicative set. Set A’ := S7YA. Assume that:
(i) the total quotient ring Q(A) of A is semisimple; and
(ii) for every mazimal ideal m of A" the local ring Al, is a valuation ring.

Then A" has weak global dimension at most 1 and the total quotient ring Q(A’)
has global dimension 0. In particular, there exists a finite index set T and

Prifer domains A} (t € T') such that

A = T4
teT
Proof. Since Q(A) is semisimple, it has global dimension 0 by Corollary 1.2.2
(vi). Localising at S shows that Q(A") & S~'Q(A) is again semisimple. This
is because Q(A) is isomorphic to finite product of fields by Proposition 1.2.4.
Hence gl. dim(Q(A’)) = 0 by Corollary 1.2.2 (vi). By assumption (ii), each
localisation A/, at a maximal ideal m of A’ is a valuation ring. Hence Proposi-
tion 1.3.9 implies that w.gl.dim(A’) < 1. We may now apply Proposition 1.4.7
with R = A’ to deduce that A’ is a finite direct product of Priifer domains, as

claimed. ]

The next theorem shows that, under the additional hypothesis that Q(A) is
semisimple, the auxiliary module N in Theorem 2.2.1 can in fact be dispensed

with.

Theorem 2.2.3. Let M be a finitely-presented A-module with property (P ).

If Q(A) is semisimple, then the following claims are valid.
(a) There exists a pseudo-isomorphism of A-modules M — Mo, & M.

(b) Assume M is both admissible and torsion. Then for improving the
pseudo-isomorphism (2.1) one can take the module N to be (0). Further,

there exists a finite index set S and for each 0 € S a prime ideal p, in P
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and a natural number a,, for which there exists a pseudo-isomorphism

of A-modules M — @, sA/p5 .

Proof of Thm 2.2.53. In the remainder of the argument we no longer require,
except when explicitly stated, that M is a torsion module, but we do assume
that the ring Q(A) is semisimple. We keep the notation S and A’ = S~1A
introduced in the proof of Theorem 2.2.1. By Remark 2.1.2 and condition (P),
the localisation A, is a valuation ring for every maximal ideal m of A’. Hence

Proposition 2.2.2 yields a finite direct product decomposition

A= T4
teT

over a finite index set 7" in which each ring A} is a semi-hereditary (or Priifer)

domain.

In particular, if M is an admissible, torsion module, then P (M) is finite and,
for each ¢t € T, the ring A} is a semi-local Priifer domain because A’ only
has finitely many maximal ideals. Moreover, the A}-component of M’ is both
finitely-presented and torsion due to the structure of modules over direct prod-
uct of some rings. In this case, therefore, we can apply the Corollary 1.5.13
and the stronger structure theorem 1.6.1 to each ring A in order to deduce
the existence of an isomorphism (2.2) for which the module N’ is zero. Then,
in this case, the module coker(s;)" = coker(t) vanishes and so coker(¢),, and

hence also N,, vanishes for all p in P(M).

Next we suppose, in addition, that every prime ideal in (M) is finitely gener-
ated and we claim this implies that every prime ideal of A’ is finitely generated.
To see this we note every prime ideal of A’ is of the form B = B, x HteT\ {tO}A;
where 9B is a prime ideal of the domain Aj  for some to € T'. If By = (0), then
B is finitely generated. If By # (0), then Q := (0) X [[,ep\ 4, A4 is & prime
ideal of A’ that is strictly contained in 8. Now, since P(M) is assumed to be

finite, the prime avoidance lemma implies that 28 and £ correspond to prime
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ideals p and p; of A with p; C p C q for some q € P(M). In particular, since
q has height one, this implies p = ¢ and hence that B is finitely generated, as

claimed.

At this stage, we can apply Cohen’s Theorem [25, Th. 2] to deduce that A’, and
hence each of its components A}, is Noetherian. It follows that the localisation
Ay of A" at each prime ideal B is Noetherian, a domain (as each component A}
of A" is a domain) and either a field (if B corresponds to the zero ideal of some
component Aj}) or a valuation ring (by Remark 2.1.2 and the assumption M is
admissible). We further recall that every Noetherian valuation ring that is not
a field is a discrete valuation ring (cf. [56, Th. 5.18]). Taken together, these
facts imply that every component ring A} of A’ is a Dedekind domain. We
can therefore now appeal to the usual structure theorem for finitely generated
torsion modules over such rings to deduce that the isomorphism (2.2) can be
replaced by an isomorphism of the form M’ = @ _sA'/(p37)" in which S is a
finite index set, each p, a prime ideal in P(M) and each a, a natural number.
There are then also associated isomorphisms (2.3) in which 7 is replaced by S
and each of the terms (a,) and (a}) by p?~ and (p%7)’ respectively, and so one
can deduce the existence of corresponding analogues of the homomorphisms
t1 and t3. In addition, in this case the module N := ker(sy) is pseudo-null
(since N’ = (0) and we already observed that N, vanishes for all p in P(M))
and so can be taken to be zero in the pseudo-isomorphism that arises from the

analogue of the construction (2.5) in this case. This proves (ii)(b).

Finally, to prove (ii)(a), we do not assume either that M is torsion or that
Mo, is admissible. We do however continue to assume that QQ(A) is semisimple
and hence, by the above argument, that A’ is a finite direct product of semi-
hereditary domains. Thus, by the general result of [37, §5, Cor.], we know that
M;; is a projective A’-module and hence that there exists an isomorphism of

A'-modules of the form M’ = M/, & M{,,.
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Now, since M is a finitely-presented A-module, the natural map
HOH]A(M, Mtor)/ — HOIDA/(M,, Mt,or)

is bijective. In particular, there exists a homomorphism ¢ : M — M, and
an element s; € S with the property that ¢’/s; corresponds under this iden-
tification to the projector of M’ onto M;

tor*
submodule M/

As such, ¢'/s; restricts to the
to give the identity. We can therefore find an element s, of S

such that the map 7 := sy - ¢ restricted to M., is equal to s1ss - idyy,,, -

We now write 7 for the canonical projection M — M;¢ and consider the map
K:M — My ® Myoy; m— (m(m), 7(m)).

One then checks that ker(x) = ker(7) N M., and that coker(k) is equal to the
cokernel of the endomorphism of M;,, induced by 7 and, since s, € 5, these
modules are both pseudo-null. It follows that the above map & is the required

pseudo-isomorphism. O

2.3 Admissible rings

In view of Theorem 2.2.3, the following class of rings will be of interest to us

in the sequel.

Definition 2.3.1. A commutative unital ring A will be said to be admissible

iof it has both of the following properties:
(Ps) Q(A) is semisimple.

(P,) Every finitely-presented torsion A-module is admissible (as in Definition
2.1.1).

It is clear that a Noetherian integrally closed domain (or equivalently, a
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Noetherian Krull domain) is admissible in the above sense and also such that
every finitely generated module is finitely-presented. For such rings, Theorem
2.2.1 simply recovers the classical structure theorem of Bourbaki [13, Chap.
VII, §4, Th. 4 and Th. 5]. However, Theorem 2.2.1 can also be applied in
more general situations and, to end this section, we shall now discuss some

examples that are relevant to later arguments.
Remark 2.3.2.

(i) Let A be an arbitrary Krull domain. Then Q(A) is a field (and so semisim-
ple), Pa is non-empty, the localisation of A at each prime in Py is a dis-
crete valuation ring and every non-zero ideal is contained in only finitely many
primes in Pa. Hence, if M is a non-zero finitely generated torsion A-module,
then Pa(M) is finite (as it is the subset of P4 comprising primes containing
the annihilator of M) and so M has property (Py) (by Remark 2.1.2(i)) and
also admits a pseudo-isomorphism (2.1) with N = (0). In particular, A is ad-
missible if Py = Pjg. However, there are Krull domains A for which Py # 77};9
(see, for instance, the examples discussed by Fakins and Heinzer in [75]) and
no such ring is admissible. Indeed, in any such case, if p € Py is not finitely
generated and x € p\ {0}, then M = A/(zA) is a finitely presented torsion
A-module with p € Pa(M).

(i) If A is a unique factorisation domain, then A is a Krull domain for which
every prime in Py is principal and so the above discussion implies A is ad-
missible. In fact, for such a ring, the only essential difference between the
arqgument of Theorem 2.2.1 and that of Bourbaki referred to above is that we
require the module M to be finitely-presented, rather than merely finitely gen-

erated, in order to guarantee the existence of the isomorphism (2.3).

In this subsection we assume to be given a Z,-algebra R that is an integrally
closed domain of characteristic zero. For a fixed finite abelian group G, we

compare the notions of admissibility introduced above relative to R and to the
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group ring A := R[G] of G over R.

To do this, we write f for the ring inclusion R — A, f* : Spec(A) — Spec(R)
for the induced morphism of spectra and f*(M) for each A-module M for
the R-module obtained by restriction through f. We note that A is a free R-
module of finite rank (as G is finite) so that f is a finite, flat ring morphism. In
addition, since |G| is invertible in the field of fractions Q(R) of R, the algebra
Q(A) is equal to Q(R)[G] and is therefore a finite product [[,. K of finite

degree field extensions K; of Q(R) (and so is semisimple).

We write D(n) for the set of positive divisors of a natural number n. We also
fix a primitive n-th root of unity ¢, in Qf, set L, := Q,((,) and write O, for
its valuation ring Z,[(,]. We then set R, := R®z, O,, and write ¢,, for the ring

inclusion R — R,,.

Proposition 2.3.3. Fiz R,G,A = R|G| and f as above, and write H for the
maximal subgroup of G of order prime to p. Then the following claims are

valid.

(i) For q € Spec(R), the fibre (f°)"(a) = {p € Spec(A) : f*(p) = q} is
finite and non-empty. For p € Spec(A), one has ht(p) = ht(f*(p)) and
sop € Py <= f*(p) € Pr.

(it) Fizq € Pr and write Dy(|G|) for D(|G|) ifp ¢ q and for D(|H|) ifp € q.

(a) (f*)7(a) S PY <= (;)7'(a) C P, for every n € Dq(|G]).

n

(b) Assume Ry is a valuation ring. Then A, is a valuation ring for all
p € (f*)"*(q) if and only if both |G| ¢ q and f*(A)y is a mazimal
Rgy-order in Q(A).

(111) For every finitely generated A-module M the following equivalences are

valid:
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(a) M s finitely-presented (over A) <= f*(M) is finitely-presented
(over R);

(b) f*(Mior) is the R-torsion submodule of f*(M). In particular, M is

a torsion A-module <= f*(M) is a torsion R-module;

(¢) Pa(M) € ()7 (Pa(f*(M))) and so Pa(M) is finite if Pa(f*(M))

18 finite;

(d) M is a pseudo-null A-module if f*(M) is a pseudo-null R-module.

Proof. Since f is both finite and flat it has the lying over, incomparability and
going down properties and, in addition, its fibres are finite (cf. [59, Chap. 3,
Th. 9.3, Th. 9.5 and Exer. 9.3]). The first assertion of (i) is thus clear. For
the second assertion, it is enough to show ht(p) = ht(f*(p)) for p € Spec(A).
For this, we claim first that ht(p) > ht(f*(p)): indeed, this follows easily from
the fact that if {b’,b} C Spec(R) and a € Spec(A) are such that b’ C b and
f*(a) = b, then (by going down) there exists a’ € Spec(A4) with a’ C a and
f*(a’) = b’. On the other hand, one has ht(p) < ht(f*(p)) since for every
inclusion a’ € a with a’ and a in Spec(A), incomparability implies that the

inclusion f*(a’) C f*(a) is also strict. This proves (i).

We next make a general observation. For this, we fix a natural number m, a
quotient @ of G, an ideal J of O,,[Q)], set R,,[Q]/J := Ry ®o,, (0[Q]/J) and
use the canonical ring homomorphisms f,, j : Ry — R ®0,, (On[Q]/J) and
12 R,Q] — R,[Q]/J. We assume J N O, = (0) (in O0,,[Q]) and O,,[Q]/J
is Op,-free and hence that f,, ; o ¢, is an injective finite flat ring morphism
R — R,[Q]/J. Via this morphism, we regard R,,[Q]/J as an extension of R
and note the argument of (i) implies that any prime ideal of R,,[Q]/J lying over
q has height one. In addition, since ker(f;!) = R,, ®0,, J is finitely generated
(as On[Q]/J is Op-free and O,,[Q)] is Noetherian), for each p € Pg,,[0)/s one
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has

(me =q<= (f) ' (PNR = q) and (p = P]fzgm[Q]/J = (fn)'(p) € ,Pzigm[Q])‘
(2.6)

Turning now to the proof of (ii), we first note that, for each n € D(|G]), the
morphism ¢, is finite and flat and so the argument of (i) implies (¢%)7!(q) C
Pr,,. We next fix a homomorphism ¢ : G — Qp* of exact order n. Then the
kernel Jy, of the induced Z,-linear ring homomorphism ¢, : Z,[G] — Q5 is
such that J, NZ, = (0) and Z,[G]/J, = im(),) is Z,-free (so that the criteria
(2.6) are valid with m = 1, @ = G and J = Jy). In particular, since the
algebra R[G]/Jy identifies with R ®z, im(1),) = R, this shows that the stated

condition on the sets (:%)7'(q) in (ii)(a) are necessary.

To prove its sufficiency, we will show it implies, for every m € D(|G|) and
every quotient @) of G, that each prime ideal of R,,[Q] lying over q is finitely
generated. To prove this, we argue by induction on |Q], with the case |Q| =1
being obvious. To deal with the induction step, we fix m € D(|G]), a prime
divisor £ of |Q|, a non-trivial element o of @ that has f-power order t = (¢
and is such that @ decomposes as a direct product (o) x @' and a prime
ideal p of R,[Q] that lies over q. Now, if ¢*/* — 1 € p, then p is the full-
preimage under the canonical projection R,,[Q] — R,[Q/{c'/*)] of a prime
ideal and so, by induction (and an application of (2.6) with J the kernel of
OnlQ] — 0,[Q/{0'/%)]), is finitely generated. On the other hand, if o*/*—1 ¢ p
and we set T, := Zﬁ;é(at/f)j, then the equality (¢*/*—1)T, = 0 implies T,, € p.
To deal with this case, we fix an injective homomorphism ¢ : (¢) — O;° and

consider the induced (surjective) O,,-linear ring homomorphism

Ume : On[Q = Z,[(0)]©2,0m[Q'] = 01@2,0m[Q') = (0,22,0m)[Q' = [ [ L 0u[Q]

where a = a(m,t) € D(|G]) is the least common multiple of m and ¢ and, with

b denoting the greatest common divisor of m and ¢, we write C for a fixed
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set of coset representatives for Gal(L,/Ls) in Gal(L,/Q,), Then ker(¢,,.) =
On|Q] - T, and so the containment T, € p implies p is the full preimage under
the projection R, ®0,, Ym« : Rn|Q] = [ Ra[Q'] of a prime ideal. Hence, by
the induction hypothesis (and an application of (2.6) with J = ker(¢y,.4)), it

follows again that p is finitely generated.

To complete the proof of (ii)(a) we now only need to show that if G = H x P
with P a non-trivial p-group, then for any q € Pgr that contains p, one has
(f)7Ma) € PEif (15)"Y(q) C PE for all n € D(|H|). Now f factors as
the composite fp o fy of the finite, flat ring morphisms fy : R — R[H]| and
fp @ R[H] — (R[H])[P] = A and by what we have just proved, the given
condition implies that (f3) *(q) C P}gg[H]. It is thus enough to note that
it 9 € (f5)"'(q), then p € q’ and so the only prime ideal in (f5)~*(q) is
q + I(P) - R[G] which is finitely generated (over R) since ¢ is.

Turning to (ii)(b) we assume R, is a valuation ring and note that, as R is
a Z,-algebra, one has |G| € q if and only if both p € q and p | |G|. In
particular, if this last condition is satisfied, then (f*)~!(q) contains the ideal
p = q'+1(P)-R[G] discussed above. One then checks A, is equal to (R[H])y [P]
which is not an integral domain (as P is non-trivial) and so cannot be a
valuation ring. To prove (ii)(b) it is thus enough to assume |G| ¢ q and show
Ay is a valuation ring for all p € ¥ := (f*)"!(q) if and only if f*(A4), is a
maximal Rq-order in Q(A). In this case, there exist subrings O, of K; that are
integral over R, and have K; as their fraction field and are such that

J*(A)g = RqlG] = ieIOi- (2.7)
It follows that f*(A); is a maximal Rg-order if and only if each O; is the
integral closure O) of R, in K;. In addition, writing (i) for the (finite)
set of non-zero prime, and hence maximal, ideals of O;, the set (f*)~!(q)
corresponds bijectively to (J,.,;X(7) in the following way: for each p € 3, there

exists a unique i, € I and a unique ‘B, € ¥(i,) such that A, = O;, 5, (and
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By N R = q). In addition, by Chevalley’s Extension Theorem, each ring O is
the intersection of the finitely many valuation subrings of K; that extend R,
and the localisation of O] at any of its maximal ideals is equal to one of these

valuation rings (cf. [38, Lem. 3.2.6]).

We now assume A, is a valuation ring for every p € X. In this case O;, 3
is a valuation ring that extends R, for every € 3(i,) and hence, since
Oi, = Nyes,) (s, )p (as O, is an integral domain), one must have O; € O,
and therefore also O;, = O] . Thus, in this case, (2.7) implies that f*(A)q is

integrally closed in Q(A) and so is a maximal Rg-order.

Conversely, if f*(A), is a maximal Ry-order, then (2.7) implies that O; = O] for
all i € I. In particular, since the localisation of each O} at any of its maximal
ideals is a valuation ring that extends Ry, it follows that the localisation O; o
of A at each p € ¥ is a valuation subring of some field K;, as required to

complete the proof of (ii).

The proof of (iii) relies crucially on the fact A is a free R-module of finite
rank. In (iii)(a), the forward implication is clear and the reverse implication
a consequence of Schanuel’s Lemma. To prove (iii)(b) it is enough to prove
the first assertion and then, since every non-zero element of R is a non-zero
divisor of A, it is enough to show that any element m of M that is annihilated
by a non-zero divisor a of A is also annihilated by a non-zero element of R.
To prove this we write f,(X) for the monic polynomial of minimal degree in
R[X] with f,(a) = 0 and note that the constant term of f,(X) is non-zero
(since a is a non-zero divisor and f,(X) is chosen to be of minimal degree)
and annihilates m. To prove (iii)(c), we note (iii)(b) implies f*(M;o;) is the
R-torsion submodule of f*(M). We then fix p € P4(M) and an element m
of Mo, with non-zero image in Mo, ,. Then p contains the annihilator A(m)
of m in A and so f*(p) contains the annihilator R N A(m) of m in R. The
image of m in f*(Mior)s+(p) is therefore non-zero so that f*(p) € Pr(f*(M))
and hence p € (f*)"Y(Pr(f*(M)), as required. Finally, (iii)(d) is true since
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(iii) (c) implies that Ps(M) = 0 if Pr(f*(M)) = 0. O

We now consider, for each natural number n, the following subset of Spec(R)

Pr={q€Pr:n¢qand (.5) (q) C P,gfn for all m € D(n)}.

Example 2.3.4. By taking m =1 (€ D(n)) in the above definition, it is clear
Pr C P}Jég. Under certain hypotheses on R, such as the following, it is possible

to be much more precise.

(1) If R is Noetherian, then clearly Py ={q € Pr:p ¢ q} ifp|n and Py = Pr
if ptn.

(i1) If R,, is a unique factorisation domain for each m € D(n), then every
prime in Pg, is principal and so again one has Py ={q € Pr:p¢ q} ifp|n
and Py = Pr if ptn.

(111) If O,, C R, then, for each m € D(n), the Z,-algebra R, is a finite direct
product of copies of R and so one has P = {q € Pl :p ¢ q} ifp | n and
P =Pl ifptn. Inparticular, in all cases one has PE = P forn € D(p—1).

(iv) Fiz q € P2 with p ¢ q and set s := R/q. Fiz a field E containing Q(k)
and Q5 and, for m € D(n), set F,, = Q(k) N Ly, € E, write O,, for the
valuation ring of F,, and assume O C k (as occurs, for example, if either
F, = Q, or k is integrally closed in Q(k)). Then Oy, is a free O, -module of
rank [Ly, © F,] so that Ky, == £k ®0;, O, is isomorphic to a subring of the field
Q(k) ®p,, Ly, and hence (0) is its unique prime ideal lying over the zero ideal
(0x) of K. In particular, since the algebra k ®z, Op, is a finite direct product
of copies of K, each prime ideal that lies over (0,) is principal and so each

prime ideal of R,, that lies over q is finitely generated. It follows that q € Pg.

From Proposition 2.3.3 we now obtain the following useful criterion.
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Proposition 2.3.5. Let M be an A-module for which the R-module f*(M)
s finitely-presented, admaissible and torsion. Then M is a finitely-presented,
admissible torsion A-module if both Pr(f*(M)) C pII%GI and, in addition, R, is
Noetherian for every q € Pr(f*(M)).

Proof. Under the stated assumptions, Proposition 2.3.3(iii) implies that the
A-module M is finitely-presented and torsion and that P4(M) is finite since
Pr(f*(M)) is finite. Then, since Pa(M) C (f*)"1(Pr(f*(M))), Proposition
2.3.3(ii) (a) implies Py(M) C PE if Pr(f*(M)) C P, Finally we note that if
q € Pr(f*(M)) is such that R, is Noetherian, then it is a Noetherian valuation
ring that is not a field (as ht(q) = 1) and hence a discrete valuation ring. In this
case, therefore, the Ry-order Ry[G] is maximal if and only if |G| ¢ q (cf. [29,
Props. (27.1)]). The admissibility of M as an A-module now follows directly
from Proposition 2.3.3(ii)(b) (and the first assertion of Remark 2.1.2(i)). O

Remark 2.3.6. Fiz a natural number n, let R be the completed p-adic group
ring Zy|[Zy]] and assume p divides |G|. Then A = R[G] is Noetherian, Q(A) is
semisimple and Proposition 2.3.5 combines with Example 2.5.4 (i) to imply that
a finitely generated torsion A-module M is admissible if pR ¢ Pr(f*(M)). By
the classical structure theory of Iwasawa modules (cf. [02, Prop. (5.1.7)(ii)]),
this condition is satisfied if and only if the submodule M[p™] of M of elements
of finite (p-power) order is pseudo-null. Hence, in this case, Theorem 2.2.3(b)
provides the following ‘equivariant’ refinement of the structure theorem for
Twasawa modules: if M s a finitely generated torsion A-module for which
Mp>] is pseudo-null, then Pa(M) is finite and M is pseudo-isomorphic, as
an A-module, to a finite direct sum of modules of the form A/pe®) with p €
Pa(M) and e(p) € N.



Chapter 3

Characteristic ideals

In this chapter, we define the generalised characteristic ideals in Definition
3.1.1 drawing upon the algebraic results established in Chapter 2. However,
the two structural forms presented in Theorem 2.2.1 and Theorem 2.2.3 are
distinct: the former employs principal ideals, while the latter utilizes prime
ideals. This distinction gives rise to two different types of characteristic ideals.
In Proposition 3.1.2, we examine the relationship between them, which lays the
groundwork for the formulation of an Iwasawa Main Conjecture in Theorem
4.3.2(iii). Moreover, we point out that for rings arising in our arithmetic setting
and the modules defined over them, the characteristic ideal defined via prime
ideals is contained within that defined via principal ideals, and their quotient
is pseudo-null. In particular, if a module is quadratically presented over the
ring, then the characteristic ideal defined by principal ideals coincides with the

zeroth Fitting ideal.

In the second part of this chapter, we investigate the structure of modules
over a ring expressed as the inverse limit of a system of rings. We first treat
the general case and then deduce the compact case (Proposition 3.2.2): if a
ring is the inverse limit of compact Hausdorff rings and a module over it is
I,-complete (see the beginning of 3.2), then the two characteristic ideals also

arise as inverse limits. This perspective aids in understanding the modules
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encountered in our arithmetic contexts in Chapter 4.2.

This chapter is a joint work with David Burns and Alexandre Daoud.

3.1 Generalised characteristic ideals

In this section we assume Q)(A) is semisimple. Then, for any finitely-presented,
admissible, torsion A-module M, the set Pa(M) is finite and, by Theorem
2.2.3(b), for each p in Py(M) there exists a finite set {e(p); }1<i<n(p) of natural

numbers e(p); for which there exists a pseudo-isomorphism of A-modules

e(p)i
M= ®p€PA(M)@1§iSn(p)A/p : (3.1)

In addition, Theorem 2.2.1 implies the existence of a finite family of principal

ideals { L, } ., of A together with a pseudo-isomorphism of A-modules

M — @TGTA/LT. (3.2)

These pseudo-isomorphisms then naturally suggest the following definitions.

Definition 3.1.1. Assume Q(A) is semisimple and let M be a finitely-
presented, admissible, torsion A-module. Then the lower and upper generalised
characteristic ideals of M (with respect to the pseudo-isomorphisms (3.1) and

(3.2)) are the ideals of A that are respectively obtained by setting

chars (M) = HPEPA(M)p21§i§n<p) e(p)i

and

Chary (M) := eTLT'

The distinguishing features of these ideals are that chars (M) is defined via an

explicit product of primes in P4, whilst Chars (M) is defined to be principal. In
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the next result, we discuss the relation between them (and, in particular, justify
the ‘lower” and ‘upper’ terminology) and their dependence on the respective
choices of pseudo-isomorphism, and also show that they retain some of the key
properties of the characteristic ideals in classical Iwasawa theory (and see also

Remark 3.1.3 below).

In the sequel we write Fit(M) for the initial Fitting ideal of a finitely-
presented A-module M. We also refer to M as ‘quadratically-presented’ if,
for some natural number d, it lies in an exact sequence of A-modules of the

form

AL 4T M 0, (3.3)

Proposition 3.1.2. Assume Q(A) is semisimple.

(i) If M is a finitely-presented, torsion A-module, then the following claims

are valid.

(a) If M is admissible, then chara(M) is independent of the choice of
pseudo-isomorphism (3.1) and one has chary (M), = Chara (M), for
all p in Py.

(b) Assume A = R[G], with R a Z,-algebra that is a Krull domain and
G a finite abelian group. Then M is admissible if Pr(f*(M)) C
PI‘%G|. Assuming this to be the case, the following claims are also

valid.

(i) Chara(M) = (\,ep, [*(chara(M))q. In particular, Char4(M) is
independent of the choice of pseudo-isomorphism (5.2).

(ii) chara(M) C Chara(M), with equality if and only if chara(M)
is principal. In addition, the quotient Chara(M)/chara(M) is

pseudo-null.

(iii) If M is quadratically-presented, then Chara(M) = Fity(M).
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(ii) Let 0 — My — My — M3 — 0 be an exact sequence of finitely generated

A-modules. Then the following claims are valid.

(a) If My is a finitely-presented, admissible, torsion A-module, then
Ms is a finitely-presented, admissible, torsion A-module and

char 4(M3) C char4(Ms).

(b) If My and Ms are finitely-presented, admissible, torsion A-modules,

then My is a finitely-presented, admissible, torsion A-module and
char4(My) = chara (M) - chara(Ms).

Proof. To prove (i)(a) we fix p € Pa(M) and note that, if M is admissible, then
the ring A, = A}, that occurs in the proof of Theorem 2.2.3(a) is a discrete
valuation ring. Writing [,(N) for the length of a finitely generated, torsion

Ay-module N, one can then compute

e(p) :== Z e(p)i = Ip( @ Ap/(pAp)e(p)i)

1<i<n(p) 1<i<n(p)

(D D Aw,) =h0n),  (34)

aEPA M) 1<i<n(a)

where the last equality follows from the pseudo-isomorphism (3.1). One there-

fore has

ChaI‘A(M)p = pe(p)Ap = (pAp)lp(Mp)

which, in particular, implies the first assertion of (i)(a). In the same way, the
pseudo-isomorphism (3.2) implies that each Ap,-module A,/L,, is torsion and

that

ly(My) = ZTeT (Ap/Lrp) = lp( p/(HTeTLT)p) = lp(Ap/Chary (M)y)

and hence Chary(M), = (pA,)»™») = chary(M),. To complete the proof of
(i)(a), it is now enough to note that if p € Py \ Pa(M), then it is clear
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chary (M), = A, and also that the pseudo-isomorphism (3.2) implies L., = A,
for all 7 € T and hence Chary (M), = A,.

To prove (i)(b) we assume R is a Krull domain and A = R[G]. Then Pr(f*(M))
is finite and f*(M) is admissible if Pr(f*(M)) € P2 (cf. Remark 2.3.2(i)).
By applying the argument of Proposition 2.3.3(ii) in this case, we deduce that

M is admissible provided Pr(f*(M)) C 73}|%G‘ (as we assume henceforth).

Before proceeding, we next show that
f*(charg(M))q = f*(Chary(M)), for every q € Pg. (3.5)

For this, we first assume that q ¢ Pr(f*(M)). Then one has f*(M), = (0)
so that the pseudo-isomorphisms (3.1) and (3.2) imply f*(pe®¢), = f*(A)y =
f*(L;)q for each p € Py(M), integer ¢ with 1 < i < n(p) and 7 € 7. This
in turn implies f*(chara(M)), = f*(A)q = f*(Chara(M)),. It is thus enough
to verify (3.5) for q € Pr(f*(M)). For such q one has |G| ¢ q and so, in
order to deduce (3.5) from the final assertion of (i)(a), it is enough to show
that, for any such q and any ideal X of A the module f*(X), is uniquely
determined by {X, : p € (f*)"'(q)}. To see this, we note the argument
of Proposition 2.3.3(ii) implies f*(A)q = [[;c;O;, with each O; the integral
closure in K; of the discrete valuation ring I2;. There is also a natural bijection
7 (f*)71(q) = U,e; 2(é), where (i) denotes the (finite) set of maximal ideals
of O}, such that X, = (f*(X)q)jp for p € (f*)"*(q). In addition, each ring
O) is a principal ideal domain (as a Dedekind domain with only finitely many
prime ideals) and equal to gy Oig- In particular, f*(X)q = @, X (9),
with each X (i) := O, ®4 X an ideal of O,. In addition, X (i) = (0) if and only
if X (i)p = (0) for any B € (i) and, if X (¢) # (0), then it is isomorphic to O
and hence equal to (\gey;) X (). The claimed result is therefore true since

X(i)p = Xj-1() for each B € 3(i).

Next we observe that the claimed equality in (i)(b)(i) combines with the in-
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dependence result in (i)(a) to directly imply the second claim of (i)(b)(i). To
prove the equality of (i)(b)(i) and the first assertion of (i)(b)(ii) it is enough
to show that

f*(Charg(M)), = Chars(M).
(3.6)

chary (M) C ﬂquRf*(ChaTA(M))q = quPR
Here the inclusion is clear (since R is a domain) and the first equality follows
from (3.5). Since R is assumed to be a Krull domain, the second equality
will follow if Chars(M) is free as a (finitely generated) R-module. To prove
this it is enough to show that the principal ideal Chars(M) of A contains a
non-zero divisor (of A). To do this, we note first that each p € Pa(M) contains
a non-zero divisor (as if m € M has non-zero image in M,, then p contains
every non-zero divisor that annihilates m). This implies the existence of a non-
zero divisor a in chary(M). Then, for q € Pg, one has a € f*(chars(M)), =
f*(Charg(M)), and so ra = b for some r € R\ q and b € Chary(M). The
element b is then a non-zero divisor of the sort required to complete the proof

of (3.6).

In a similar way, if chars(M) is a principal ideal, then it is a free R-module
(as it contains a non-zero divisor) and so the first inclusion in (3.6) is an
equality. This proves the second assertion of (i)(b)(ii) and the third assertion
then follows directly from the final assertion of (i)(a). Lastly, to prove (i)(b)(iii)
we note that, for p € Py(M), the presentation (3.3) gives rise to an exact

sequence of A,-modules
0
Al = A — M, — 0. (3.7)

Hence, since M, is a torsion module over the discrete valuation ring A,, one
has
Ay - det(8y) = ppl ) = g — pe®) — Char (M), (3.8)

Here the first equality is valid since A, is an elementary divisor ring, the
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second follows from (3.7), the third from (3.4) and the last from the definition
of char, (M) and the final assertion of (i)(a).

Now, since M is torsion, the exact sequence (3.3) implies det(f) is a unit
of Q(A) (and hence a non-zero divisor of A). This implies f*(A - det(0)) is a
(finitely generated) free R-module and thereby implies the equality in (i)(b)(iii)

via the computation

Fith (M) = A-det(0) = (] f*(A-det(6))g = (] f*(Chara(M))q = Chara(M).
q9€Pr PR

Here the first equality follows directly from the definition of initial Fitting
ideal (and the resolution (3.3)), the second from the assumption R is a Krull
domain and the last from (3.6). In addition, since (A - det(f)), = A, - det(6,)
for all p € Py, the third equality is true since the equalities (3.8) imply that
f*(A-det(0))q = f*(Chary(M)), for all q € Pg (in just the same way that the
final assertion of (i)(a) implies (3.5)). This completes the proof of (i)(bh).

Turning to (ii), we note that the assertions regarding modules being torsion
and finitely-presented follow directly from the given exact sequence (and, in
the latter case, the Proposition 1.7.4). In addition, for each prime ideal p of

A, the given sequence induces a short exact sequence of A,-modules
0— My, — My — Mz, — 0.

Assuming M, (or equivalently, both M; and M3) to be torsion, these sequences
imply an equality P(Ms) = P(M;) U P(M;) that combines with Remark 2.1.2
to imply both of the assertions regarding admissibility, and also combines with

the fact, proved in (i)(a), that for each prime ideal p of A one has
chary (M), = (pA,)» "

to imply the stated inclusion, respectively equality, of characteristic ideals. [
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Remark 3.1.3. Fiz natural numbers m and n and write R for the completed
group ring Zy[Cnl[[Zy]]. Then R is both Noetherian and admissible in the sense
of Definition 2.5.1 (for example, by Remark 2.5.2(ii)) and, in addition, every
prime in Pg s principal. In this case, therefore, the argument of Proposition
3.1.2(i)(b) has two concrete consequences. Firstly, if pt |G|, then the ring R[G]
is admissible (by Example 2.3.4(i)). Secondly, for every finitely generated (and
hence finitely presented by Noetherianity), torsion R-module M, the ideals
charg(M) and Charg(M) are equal and are easily seen to coincide with the

classical characteristic ideal of M as an R-module.

3.2 Inverse limit rings

In this section we assume to be given an inverse system of rings
(An7 d)nAn — An—l)neN

in which every homomorphism ¢, is surjective. We study the associated inverse
limit ring

A= I'&HA”.

For every n we write ¢4,y : A — A, for the induced (surjective) projection
map, so that ¢, o ¢y = ¢y,—1y for all n, and we use the decreasing separated

filtration
]o = (In)nEN

of A that is obtained by setting I,, := ker(¢,y) for every n. For an A-module

M and non-negative integer n, we then define an A,-module by setting
My == M/(I,- M) = (A/L,) @4 M = A, @4 M.

We also use similar notation for morphisms, so that 0, : M) — N,y denotes

the morphism id 4, ® 40 induced by a given morphism of A-modules : M — N.
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We say M is ‘I,-complete’ if the natural map
s - M — @M(n)

is bijective, where the inverse limit is taken with respect to the maps ¢u,, :

M,y — M,—1y induced by ¢,.

3.2.1 The general case

The following result records some useful general facts about the notion of I,-
completeness. In this result we refer to the linear topology on A induced by

the subgroups {1}, as the ‘I,-topology’.
Lemma 3.2.1. The following claims are valid for every A-module M.
(1) If M is finitely generated, then yy is surjective but need not be injective.

(i1) M is I,-complete if it is a finitely generated submodule of an I,-complete

module. In particular, every finitely generated ideal of A is I,-complete.

(111) Assume M is I,-complete and that there exists a natural number t for
which both the I-adic topology on A is finer than the I,-topology and
the A;-module My is finitely generated. Then M is generated as an A-

module by any finite subset that projects to give a set of gemerators of

M(t)

Proof. To prove (i) we fix a natural number d for which there exists an exact

sequence of A-modules of the form
0— K= A5 M 0. (3.9)

For each n, we set K], := ker(y(,)) and use the exact commutative diagram
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N

#(n)

\an () dM,n
- P(n—

Write Ij,) for the image of I,,_; in A,. Then ker((¢,)?) = I[‘i} and ker(¢nr,) =
Ity - M. Thus, since each map (¢n)?¢ is surjective, the Snake Lemma applies
to the above diagram to imply that each map «, is also surjective. By passing
to the limit over n of these diagrams we thus obtain the bottom row of the

exact commutative diagram

s K s Ad L s M s 0
l l(MA)d lﬂM (3.10)

0—— @n K;L E— <1£1n A(n))d — lgln M(n) — 0.

>~

In addition, for each n the (surjective) map ¢,y induces an isomorphism A,
A, so that the map (u4)? is bijective (and hence A is I,-complete). From the

above diagram, one can therefore deduce that u,, is surjective.

To give an example in which i, is not injective we take A, to be the power
series ring Z,[[X1, ..., X,]] over Z, in n commuting indeterminates X; and ¢,
to be the projection map A,, — A, _; induced by sending X,, to 0. In this case
A identifies with one version (see [23]) of the power series ring over Z, in a
countable number of commuting indeterminates {X; },cn. We then define K to
be the (proper) ideal of A that is generated by the set {pX; }U{X,,—pX, 11 }nen
and take M to be the quotient A/K. In this case, one computes that, for each
n, the module M,y = A,,/ ¢y (K) = Z,, and hence that p,, is not injective.

To prove the first assertion of (ii) we fix an injective map 6§ : M — N in
which N is I,-complete. It is then enough to note that u,; is injective as a

consequence of the diagram
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M—"*% N

\LU']VI UN

0n
lim, My = Jim, N

and the fact that py is injective. The second assertion of (ii) is then an

immediate consequence of the fact A is I,-complete (as shown above).

To prove (iii) we mimic the argument of [59, Th. 8.4]. To do this we fix a
finite set of elements {m,}sex of M with M = (> . Am,) + I, - M. Then
M = (3, ex Amg) + I - M for every n and so, since for each n € N there

exists (by assumption) n; € N with (1;)™ C I,,, one therefore also has
M = (ZaezAma) + 1, - M for every n. (3.11)

We now fix m € M and set mg := m and Iy := A. Then, for each n € N,
we inductively choose {ayn}toes € I,,—1 and m,, € 1,11, - M C I, - M with
Mp—1 = (D yex Go.nMg) +My. That such elements can be chosen for n = 1is a
direct consequence of (3.11) with n = 1. Then, if one assumes their existence
for n = nyg, their existence for ng+ 1 is a consequence of the equality obtained
after multiplying (3.11) with n = ng+1 by I,,,. Now, since A is I,-complete, for
each o € X, there exists a unique element a, € A such that a, — Zl 1 G0 € 1,

for all n. Then one checks that

m— (Zaezagmi) € ﬂneNU" . M) = (0)

where the last equality is valid since M is I,-complete. This shows that M is

generated over A by {m,},ecx, as required. ]

3.2.2 The compact case
In the sequel we say that the inverse limit A is ‘compact’ if each ring A, is
endowed with a compact Hausdorff topology with respect to which the transi-

tion maps ¢,, are continuous. In this case we endow A with the corresponding
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inverse limit topology, so that A is compact and, for every n, the ideal I, is

closed and the projection map ¢, is continuous.

In particular, since A is compact, the inverse limit functor is exact on the
category of finitely generated A-modules and this fact allows us to prove a

finer version of Lemma 3.2.1.

Before stating the result, we note that if an A-module N is pseudo-null, then
the associated A,-module N, need not even be torsion. Such issues mean
that, in general, one cannot hope to compute the characteristic ideal of a
finitely-presented torsion A-module M directly in terms of the associated A,,-

modules M.

Despite this difficulty, claim (iii) of the following result shows that such a
reduction is possible for a natural family of compact rings A, at least after
possibly replacing M by a pseudo-isomorphic module. (In Proposition 4.2.4
below we will also prove a more concrete version of this result for certain power

series rings.)

Proposition 3.2.2. Assume that A is compact. Then the following claims are

valid for any finitely-presented A-module M .
(i) M is I,-complete.

(11) If M is an admissible, torsion module, then
charA(M) = lélll ¢<n> (charA(M)) and CharA(M) = l&l ¢<n> (CharA(M)),

where the limits are taken with respect to the maps ¢,.

(iii) Assume A and A, for each n are Z,-algebras and unique factorisation
domains. Let M be a finitely-presented, torsion A-module. Then M is

pseudo-isomorphic to an A-module M with the following properties: M

is finitely-presented, torsion and I,-complete; there exists ng € N such
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that, for all n > ng, the A, -module ]\A/f(n) 18 finitely-presented and torsion;
one has

Chary (M) = chary(M) = Um chary, (]\AJ/(n)),

n>ng

where the limit is taken with respect to the maps ¢,.

Proof. To prove (i) we fix an exact sequence of A-modules of the form (3.9).
Then the A-module K is, by assumption, finitely generated and thus, by
Lemma 3.2.1(ii), I,-complete. Hence, by passing to the limit over n of the
induced exact sequences of (compact) A,-modules K,y — A% — M) — 0

one obtains an exact sequence of A-modules
0= K = A — Jim M, — 0.

Comparing this to (3.9) one deduces the map iy is bijective, as required to

prove (i).

In the rest of the argument we assume M is torsion. Then, since char (M)
and Char4 (M) are both finitely generated ideals of A (cf. condition (Pj3) in
Definition 2.1.1), to prove (ii) it is enough to show that any finitely generated
ideal N of A is equal to l&ln Gy (N), where the limit is taken with respect to
the maps ¢,. To see this, we note that the above argument (with M = A/N,
d=1and K = N) implies that the map p14/x is bijective. The stated equality
then follows from the corresponding exact commutative diagram (3.10) and

the fact that, in this case, one has K], = ¢,y (V) for every n.

To prove (iii) we note that if B is equal to either A or A, for any n, then
the given assumptions imply it is admissible (cf. Example 2.3.2(ii)) and also
that every ideal in Pg is principal so that, for any finitely-presented torsion
B-module N, one has Charg(N) = charg(N) (by Proposition 3.1.2(i)(b)(ii)
with R = B and G trivial). In addition, by Theorem 2.2.3(b), any finitely-

presented torsion A-module M is pseudo-isomorphic to a finite direct sum
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M = @D,crA/L-, where, for each 7, L, = A-a, with a, € A\ {0}. In
particular, M is finitely-presented and torsion and thus also I,-complete by

(i). Further, for every n there is a natural isomorphism

Mwy =@ _ (A/L), =D _ A/ow(Lr) =D _ Au/(An- iay(ar).
(3.12)

In particular, if ng is the smallest integer for which ¢, (a,) # 0 for all 7 € T,
then for every n > ng the A,-module ]\AJ/(,L) is finitely-presented and torsion. It

is then enough to note that

CharA(M) - HTGTLT = @HTET¢<TL><LT> - @Cha‘rAn<‘7\Z(n))'

Here the first equality follows directly from our definition of upper generalised
characteristic ideal, the second from (ii) and the third is valid since, for each

n, the isomorphism (3.12) combines with Proposition 3.1.2(i)(b) to imply that

Chal"An (M(n)) = CharAn (M(n)) = HT€T¢<R>(LT)'



Chapter 4

Arithmetic applications

Let p be a prime, k the function field of a smooth projective curve over the field
of characteristic p and K/k a Galois extension such that Gal(K/k) = Z} x G,
where GG is a finite abelian group. This section aims to apply the algebraic

results developed in Chapter 2 and Chapter 3 to arithmetic contexts.

In the first part we provide a detailed introduction to Weil-étale cohomol-
ogy theory as a refinement of étale cohomology, which allows us to extract
deeper arithmetic information from function fields. We begin by presenting
the background on the Weil group, which plays the role of the absolute Ga-
lois group in étale cohomology theory. We then introduce the Weil-étale site
and topos, compute cohomology groups for certain sheaves, and establish the

corresponding duality theorem (Proposition 4.1.14).

In the second part, by Lemma 4.2.1 and Proposition 4.2.4 we demonstrate that
our notions of admissible rings and characteristic ideals are compatible with

the rings and modules that naturally arise in arithmetic applications.

Subsequently, in Theorem 4.3.2, by applying the algebraic structure theorem
established in Chapter 2, we prove that the degree-one Weil-étale cohomology
groups of G,, over finite extensions of k in K are finitely presented torsion

Z,|[Zy]]-modules. From this, we prove an Iwasawa Main Conjecture holding
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under certain mild assumptions.

Finally, under mild assumptions, we investigate the pro-p completion of the
Picard group in Corollary 4.4.1, whose finitely-generated property reflects be-
haviors of places of k ramified in K. Moreover, we show that our framework

encompasses and extends several earlier works in the literature.

The results in Sections 2-4 are joint work with David Burns.

4.1 Weil-étale cohomology theory

Over the past several decades, étale cohomology has demonstrated its tremen-
dous power. Numerous cohomology theories—serving as fundamental tools in
algebraic number theory, arithmetic geometry, and algebraic geometry—have
been unified under the framework of étale cohomology. In this section, we
introduce the Weil—étale topology, which possesses better cohomological prop-

erties than the étale topology and retains richer arithmetic information.

Grothendieck originally introduced the notion of a Grothendieck topology via
category theory to address the limitations of classical sheaf cohomology in
capturing nontrivial information. In particular, because the Zariski topology is
extremely coarse, the cohomology groups of many sheaves — such as constant
sheaves over irreducible varieties — are often trivial. To overcome this issue,
Grothendieck introduced the concept of a site, which generalizes the notion
of a topological space. A site consists of a category together with a specified
notion of covering families. In this framework, the category plays the role
of a topological space, while coverings serve as analogues of open coverings
in classical topology. Notably, the Zariski topology on a scheme X can be
equivalently described using the Zariski site X,.,. To remedy the deficiencies of
the Zariski site, Grothendieck defined the small étale site X, whose objects are
étale morphisms over X, arrows are X-morphisms, and coverings are surjective

families of étale morphisms. The notion of sheaf can then be extended to the
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étale site using contravariant functor concept and the sheaf condition expressed
via exact sequences. This provides the foundation for studying the category
of étale sheaves Tx ¢ which is an abelian category with enough injectives.
Consequently, one can define the étale cohomology groups as the right derived

functors of the global sections functor I'(X, —) on T ¢.

Compared with classical sheaf cohomology, a significant advantage of étale
cohomology is its ability to capture the action of the Galois group on sheaves.
A prominent example is the correspondence between étale sheaves on a scheme
X of finite type over finite field k = F,, and étale sheaves on the base change
X = X x;, k*P equipped with a continuous action of the absolute Galois group
Gy = Gal(k**?/k) (see [50, VIII, 1.1.3]). We will describe this correspondence
more precisely in the following sections. This mechanism plays a central role

in the proof of the Weil conjectures.

However, a major limitation of étale cohomology becomes apparent when we
attempt to study the special values and leading terms of the zeta functions
of varieties over finite fields. To address this issue, Lichtenbaum introduced a
new Grothendieck topology in [58] called the Weil-étale topology, in which the
role of the absolute Galois group is replaced by the Weil group (see proposition
4.1.7). We now proceed to introduce the definition and properties of the Weil

group.

4.1.1 Weil groups

Let K be a local or global field, we can define the Weil group axiomatically
(also see [72, 1.1]).

Definition 4.1.1. Weil group for K is a triple data (Wg, ¢, {rr}r/K), where
Wy is a topological group, ¢ : W — Gg is a continuous homomorphism
with dense image. Let Wy i be ¢3* (Gal(K*P /L)) where L runs through all the
finite extensions of K within K*®. The ry : Ay — Wi (Ap is L™ when L is

a local field and idéle class group Cp, when L is a global field) are isomorphisms
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between the topological groups satisfying the conditions (W1)- (W4).

(W1) For every finite extension L/K, the homomorphism ¢ induces homo-

morphism ng’K — G%, and the diagram below is commutative.

Wi —2— Gx

o]

Wik AN Gy, (4.1)

abl lab
ab

TL b L,K b
Ap —— Wik —— G
Moreover, the composition gb“LbK ory, of the bottom line is the local reci-

procity homomorphism 01, : A, — G%.

(W2) For any w € Wi and 0 = ¢(w) € Gi and every finite extension LK,

the diagram below is commutative.

Ap ——— Wy
Agry ——— Wat,

Here the left vertical map is induced by o and right vertical map is the

conjugation by w.
(W8) If L' C L, the diagram below is commutative.

T b
Ay —2 s Wb

[ |

T
A ——— Wff’K

Here the left vertical map is induced by the inclusion map and right ver-
tical map is the transfer homomorphism defined as follows. For any

topological group G and its finite index closed subgroup H, let s be a



(W4)
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section s : H\G — G of the projection p : G — H\G, i.e po s = id.
For any g € G and x € H\G, we pick hy, such that s(z)g = hgy.s(xg).

Then the transfer homomorphism is defined as

t5: G — H® ¢G°— ][ hge mod H,
z€H\G

where G¢ s the closure of commutator subgroup of G. Here the map t
on the commutative diagram is the transfer homomorphism decided by

Wik and its closed subgroup Wi, k.

Let Wik == Wi /WF . Then there is a topological group isomorphism

Wi — @ WL/K;
L/K

where the inverse limit taken for all finite extension L/ K inside K*P and

if L' C L, the homomorphism between Wp,x — Wik is the projection.

Remark 4.1.2. Let us give some interpretation of the definition 4.1.1.

i)

The second data in the definition of Weil group is required to be continu-
ous. This is because if ¢ is continuous, then we know Wi, i is an open
subgroup of Wy . Moreover, since the image of ¢ is dense, ¢ induces

a bijection
Wi /Wi = Gal(K**?/K)/Gal(K** /L) = Homg (L, K).

If L/K is a Galois extension, then the bijection becomes a group homo-

morphism Wi /Wy, = Gal(L/K).

Let (W, ¢or,{rr}r/x) be a Weil group of K. For any finite extension
L/K inside K, we can take the restriction for ¢x on Wik and pick
{reyeyn asry in{rp}o (L' is also finite extension of ). Then Wi, i

is also a Weil group of L. Thus we can reduce the symbol Wr, x to Wr.
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iit) In (W3), if H is a closed normal subgroup of G, then the composition

tG
H® — G* < H™.
is the norm map N = h = [[,cppgh”, where h* = s(@)hpes(x)™t =
hy . The transfer (Verlagerung) homomorphism plays a key role in the

construction of reciprocity maps in class field theory, serving as a bridge

that connects Galois groups on different layers.

There is a result (see [1, Chap 14. Thm 1, Thm 2]) that ensures the existence
and uniqueness (up to isomorphism) of Weil group for a local or global field.

So we can formulate Weil group for some types of fields.

Example 4.1.3. Let us determine the Weil group for a local p-adic field and
a global function field

i) If K is a p-adic local field with residue field k, which is equal to F,, as
we know Gy, is isomorphic to Z. On the other hand the Galois group of
the mazimal unramified extension K*" over K is also isomorphic to Gy,

thus we have an tautological exact sequence

1 y Ii s G s G, =27 — 1. (4.2)

Here I denotes the absolute inertia subgroup. We can choose the Wi
in the triple data as the inverse image in Gy of the discrete subgroup
in Gy generated by the Frobenius endomorphism Frob : z — z9, so we
have Wi [Ix = Z. Take ¢ : Wi — Gy as the inclusion map. For the

reciprocity maps, we can construct them from the local reciprocity map
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O : K* — G%. As we know, the classical diagram below is commutative.

] — Of > K~ - > L > 0

e

1 —— Gal(K*/K") —— Gal(K*/K) —— Gal(K*"/K) — 1

The isomorphism between Oy and Gal(K®/K"") is given by the eis-
tence theorem of local class field theory (see [22, P. 144, Thm 3a] ). Since
K* = O XZ and the profinite completion K* Gal(K®/K) = OXXZ,
and the exact sequence /.2 is split, we can define the maps ry be 0y and
identify the W2 with the image of 0y,. It is easy to check that ry satisfy
the conditions (W1)-(W4) (see [72, 1.4.1]).

For a function field K of a curve C over a finite field k, we have the
projection map 7 : G — Gal(Kk*P/K) = Gy, which is isomorphic to
7 and topologically generated by the Frobenius element. Then we have

an analogue of exact sequence /.2
1 —— Gal(K*?/Kk*?) —— Gx —— Gal(Kk**?/K) —— 1,

which is also split. Here Gal(Kk*P/K) = Gal(k*?/k) = Z. The Weil
group Wx for function field K is 7=1(Z) where Z denotes the discrete
subgroup of Gal(Kk*®/K). By similar analysis and a commutative dia-

gram

1 > CY » Ck d > Z > 0

E k]

1 —— Gal(K®/H) —— Gal(K*/K) —— Gal(H/K) —— 1

where d is a composition degree map given by Cx — Cl(K) 99, 7, with
the first arrow as the canonical map, C% is the degree-0 part, and H is

the mazimal constant field extension inside K, we can a have similar
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process as the p-adic local field case (see [72, 1.4.2])

iii) As a special case of function field, a finite field F, has Weil group Z as
the discrete subgroup of Galg, = Z.

We now analyze the motivation behind replacing absolute Galois groups with
Weil groups. First, the abelianization of the Weil group Wiy encodes more
refined arithmetic information than that of G g, particularly in relation to
the idéle class group Ck. In the classical setting, we only obtain the Artin
reciprocity map g : Cx — G%, which is, in general, not injective. Second,
in the global case, for each finite extension L/K, there exists a short exact

sequence
1 —— ng e WLJ{ e WK/WL — 1.

Given that W, /W§ = Cp and W /W, = Gal(L/K) for finite Galois extension
L/K, it follows that W, i is an extension of Gal(L/K) by Cy, corresponding
to a fundamental class v € H?*(Gal(L/K),Cr). By condition (W4) in def-
inition 4.1.1, Wy is the projective limit of Wy k, which demonstrates that
Wy contains ample arithmetic information. Moreover, the original motiva-
tion for Weil’s introduction of the Weil group was to resolve the discrepancy
between Hecke L-functions and Artin L-functions. Indeed, not every Hecke
L-function corresponds to an Artin L-function for a one-dimensional repre-
sentation of the Galois group. However, Weil constructed the Weil group so
that every Hecke L-function corresponds to an Artin L-function arising from
a one-dimensional representation of the Weil group (see [30, P. 1-35]). This
construction has since become classical in the study of automorphic forms and
plays a central role in the Langlands program—for instance, in extending Weil
groups to Deligne-Weil groups on the Galois side match automorphic data on
the automorphic side, as in the study of the local Langlands correspondence
for GL,, (see [72], [30, Chap 2], [20, Chap 7]). These developments highlight

the foundational importance and potential of the Weil group in arithmetic
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research. Later, we will also see that Weil-étale cohomology enjoys better for-
mal properties and can be regarded as more fundamental than classical étale

cohomology.

4.1.2 Weil-étale sites and topoi

The content of this section is a reformulation of [58, §2]. Throughout this
section, let k£ denote a finite field F,. Let X be a scheme of finite type over
k and let X denote its base change to the algebraic closure of k. In analogy
with the development of étale cohomology, we first define the site that will be

used in the construction of Weil-étale cohomology theory.

Definition 4.1.4. We define the Weil-étale topology as the following

Grothendieck topology on the underlying category Catyy(X).
o Objects: All étale schemes of finite type over X .

o Morphisms: Let m : X — X, 7y : X — k5P be the two projections. If
WL X and Z % X are two objects belonging to Caty(X) where W
is connected, then a morphism ¢ from (W, f) to (Z,g) is a morphism ¢
from W to Z such that

i) For my, the diagram following is commutative.

@
_—

e =
><I<TN

A
——
—

2

S
S

ii) For my, the diagram following is commutative where the bottom ar-
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row is an integral power of the Frobenius morphism on k.

~

— X — N
=
i)

Q

%
al
X

-

Jesep s kS

Frob™

[]

P

For arbitrary W, a morphism on W is a collection of morphisms on the

connected components of W.
e Covering: The surjective families {W; — W'} belonging to Catyy(X).

The Weil-étale site Xy is the category Catyw (X)) equipped with the Weil-étale

topology.

Remark 4.1.5. The Weil-étale site defined above closely resembles the struc-
ture of the small étale site. For instance, its coverings are induced by restricting
the étale topology from the small étale site X4 to the subcategory Catyy(X).

For this reason, Lichtenbaum/[58] also refers to it as the Weil-étale small site.
Next we introduce Weil-étale sheaves and the topos.

Definition 4.1.6. A sheaf F on Xwe is a contravariant functor Catyy(X) —

AbGrp such that

FW)=[IFmwy = [ FWixwwy)
i€l (i,9)eIxI
is exact for every object W — X and every covering {W; — W}. We use the

notation Tx we to denote the topos of Weil-étale sheaves.

We now provide an equivalent description of the Weil-étale topos. We begin by
recalling the correspondence between étale sheaves on X and Gj-equivariant

sheaves on the X. Let F be an étale sheaf on X, and let m; : X — X denote
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the natural projection. For any ¢ € G}, and any étale morphism U — X
of finite type, define gU = U Xg, 4 F,. Then we can define the pullback
g*F(U) = F(gU) and the pushward ¢.F(U) = F(g~'U). We say G}, acts on
F it for each g € G}, there exists an isomorphism ¢, : F — g¢*F such that
igh = 1401, For any f € F(U), we denote i,(f) € F(gU) by gf . Let
Gy C Gy denote the subgroup fixing the minimal finite extension F,r over
which U has a model U’ such that U = U’ XF Fq. This model exists because
every scheme of finite type over F, is the base change of a scheme over some
finite field F,r. If G}, acts on F, then so does Gy on F(U). We say that Gy,
acts continuously on F if for each U, the action of Gy on F(U) equipped with
discrete topology is continuous. This correspondence yields an equivalence
between the étale topos Ty of étale sheaves on X and the topos Tg’jét of
étale sheaves on X equipped with a continuous Gj-action as follows. Given
an étale sheaf G on X, its pullback G, = 717G to X carries a natural Gj-action
since for every g € Gy, there is an induced morphism ¢ : X — X which
induces a pullback ¢*G, and ¢*G, = Gi. This assigns G belonging to T x g

.- Conversely, given a sheaf F on the

corresponding to G belonging to T)G-(’jé
X with a continuous Gj-action, the corresponding étale sheaf on X is given
by m & F, defined by V — F(V xz, F,)%*. Moreover, using the isomorphism
H:(X,g*F) = H. (X, F), we can extract cohomological information from the

Gi-action on F.

Notice that any Gg-equivariant sheaf as described above naturally carries the
structure of a Wy-equivariant sheaf via the inclusion W, < Gy. In particular,
for any W belonging to Tx e, the global section I'(X, W) naturally form
a Wi-module. Analogously, for the Weil group W, and Weil-étale topos, a

similar correspondence holds, mirroring the discussion above.

Proposition 4.1.7. The category of Weil-étale sheaves on X is equivalent to

the category of étale sheaves on X equipped with a Wy-action.
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Proof. See [58, Prop. 2.2]. O

Next we explain the connection between the Weil-étale topos T x ¢, and the
étale topos Tx 4. Inspired by constructing equivalence between Tx ¢ and
T)G—(‘jét, we can define two similar functors ¢ : Tx we — Txe and ¢ : Tx gy —
T x we between Tx ¢ and Tx pye. For every object F' — X in X¢ and every
Weil-étale sheaf G in Tx e, we define ¢(G)(F) := G(F xx X)"r. For every
étale sheaf F on X, we set ¢(F) := wiF. In general the two functors ¢ and
do not yield an equivalence of topoi. However, as a second-best result the pair
(¢,7) forms an adjoint pair. Moreover, there exists a unit n : idy, , — o ¢

which implies ¢ is actually fully faithful. This shows that Tx « is equivalent
to a full subcategory of T x we (see [08, Prop. 2.4, (a),(b)]).

On the other hand, since Tx ¢ is a Grothendieck abelian category, it has
enough injectives. By taking the functor I'(X, —)"* as the zeroth cohomology
functor, we can define the i-th Weil-étale cohomology functor as its i-th right
derived functor. We denote the i-th Weil-étale cohomology group of an object
G belonging to Tx we by H'(Xwet,G). The functors (¢,1) provide insights
into the connection between Weil-étale and classical étale cohomology, via the
homomorphisms induced between cohomology groups by the action of functors

on the resolution complexes (see [58, Prop. 2.4, (e),(g)])-

Proposition 4.1.8. Let G belong to Tx we and F belong to Tx . There is
¢ Hy (X, 0(9)) = H(Xwe, G) and d; - Hy (X, F) = H (Xwe, 9(F)) such

that the following assertions are correct.
® ¢y is an isomorphism.
e ¢; are isomorphisms when G is a torsion sheaf.
e d; are isomorphisms when F is a torsion sheaf.

It also should be noted that the six standard functors for Weil-étale sheaves
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— namely (i*,4,,4') and (ji,j*,j.), corresponding respectively to the open
immersion j : U < X and the closed immersion i : Z — X with U = X\Z —
satisfy similar adjoint functor relationships as in the case of étale sheaves (see
[58, P. 693]). These functors are particularly useful for analyzing the structure

of Weil-étale sheaves. For instance, the exact sequence

0 —— 3" F > F y 1,0 F —— 0

remains valid for any Weil-étale sheaf F on X.

4.1.3 Weil-étale cohomology groups of sheaves

In this subsection we collect several basic properties of Weil-étale cohomology
groups for certain sheaves. Throughout we let k be a finite field and X a
scheme of finite type over k. In what follows we will mainly be interested in
the constant sheaf Z, the extension—by—zero sheaf j,Z associated to an open
immersion j : U — X, and the Weil-étale sheaf G,,, which is defined as the

restriction of the étale sheaf G,, on Xg to Xet.

For the constant sheaf Z on Xyy¢, Lichtenbaum has proved that the cohomol-
ogy groups HY( Xy, Z) are finitely generated for all integers g > 0, are finite
for all ¢ > 2, and vanish for all sufficiently large ¢ (see [58, Thm 3.1]).

Now we compute the extension by zero sheaf jZ. Let U be a smooth d-
dimensional quasi-projective variety over a finite field k. Since the proof of
the following proposition involves certain technical subtleties, we assume the
existence of an open dense immersion j : U — X, where X is a smooth
projective variety over k. The existence of X is justified by the existence of

resolution of singularities in positive characteristic when d < 3.

Proposition 4.1.9. Let d < 3, j : U — X as mentioned in the above para-
graph. Then HY(X, jiZ) are independent of the choice of X and j. Moreover,

the groups are finitely generated and vanishing for q large enough.
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Proof. See [58, Thm 3.3] O

Remark 4.1.10. It is well-known that the existence of resolution of singular-
ities for varieties over fields of characteristic zero was proven by H. Hironaka
in [/7]. However, for varieties of dimension more than 3 over fields of char-
acteristic p, the existence problem is still open. For curves, the problem is
relatively straightforward and can be handled via normalization. In dimension
d = 2, the existence was proven by S. Abhyankar in [1], and for d = 3, the
case was settled by V. Cossart and O. Piltant in [27].

It should be noted that in [55], S. Lichtenbaum proved the proposition 4.1.9 only
for the case d < 2. At the time S. Lichtenbaum completed [55], the result of
[27] for d = 3 had not yet been established. After reviewing the argument, the
author of this thesis believes that the proposition should also hold in dimension

d = 3, in light of the results in [27].

Proposition 4.1.11. Let X be a geometrically connected smooth curve over a
finite field k. Then the cohomology groups HY( Xwe, G,,) are finitely generated
for all q and vanishing for all ¢ > 3. In particular, when X s projective, we

have H*(Xwe, Gp) = k%, HY( Xwet, Gp) = Pic(X), H*(Xwer, Gp) = Z.

Proof. See ([58, Prop. 3.4]). O

4.1.4 Duality theorems in the derived version

Let U be a smooth geometrically connected curve over a finite field k&, equipped
with an open dense immersion j : U — X into a smooth projective curve X
over k. Let F be a sheaf in Tx 4. Notice that X has finite cohomological
dimension. Thus by taking an injective (bounded-above) resolution I* of F,
a sufficiently far-out truncation 7/° and an injective resolution J*® of G,,, we
construct RHomx (F,G,,) = Homx (71, J*). We can also define the derived
global sections RI"x (F) as the right derived functor of the global section functor
(X, —)We,
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Let D be the derived category of abelian groups consisting of those complexes
with finitely generated homology groups. Applying the functor RI" x (F), we ob-
tain a natural morphism kz : RHomx (F, G,,) — RHomp (RT'x (F),R['x(G,,))
in D. Moreover, by Proposition 4.1.11, there is a natural morphism f :
RTx(G,,) — Z[—2] in D . Then we define kz = f o kz which is the compo-
sition morphism from RHomx (F, G,,) to RHomy (RI'x (F), Z[—2]). The proof

of next proposition can be found in [58, Thm 5.1].

Proposition 4.1.12. Let F be either jZ or jZ/nZ. Then kx is an isomor-
phism.

Since the six standard functors applies well for Weil-étale sheaves, the functor
7% has the exact left j; and j* is exact. Consequently j* carries a resolution of
G, x to a resolution of j*G,, x = G, . By the adjointness of the pair (j*, 1),

we obtain the following lemma.

Lemma 4.1.13. Let F be a Weil-étale sheaf on U. There is a canonical

isomorphism in D between RHomy (jiF, Gy, x) and RHomy (F, G, 1r).

Notice that R['y(F) = RHomy (Z, F) and the functor is RHomp (—, Z[—2]) is
self-inverse. By combining Proposition 4.1.12 and Lemma 4.1.13, we obtain

the following duality theorem.
Proposition 4.1.14. The following two assertions are right.
1) RT'y(G,,) is naturally isomorphic to RHomp (RT x (/1Z), Z[—2]).

2) RUx()1Z) is naturally isomorphic to RHomp (RT'y(G,y,), Z[—2]).
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4.2 Arithmetic of function fields

4.2.1 Application of algebraic results

In this section we describe an application of the algebraic results in Chapters
2 and 3 to the rings and modules occurring in the context of Iwasawa theory.

For this, we write U(G) for the set of open subgroups of a profinite group G.

The Iwasawa algebra of ZE’ over a commutative Z,-algebra O is the completed

group ring

OlZ) = lm O[Z}/U])
Uel(ZE)
where the limit is taken respect to the natural projection maps. In particular,
after fixing a Z,-basis {7;}ien of ZE, the association X; — ~; — 1 induces an

isomorphism of rings between O[[Z}]]] and the power series ring
Ro = I.&HRmO with Rn,O = O[[Xl, N ,Xn”

in commuting indeterminates {X;};en. Here the inverse limit is taken with

respect to the (surjective) Z,-linear ring homomorphisms

Pn,0 - Rn,O - Rn—l,@

that send X; to X; if 1 <i < n and to 0 if 2 = n. For each n we also use the
maps

lno Rn,@ — 'R,@ and Pn),0 : Ro — Rmo,

that are respectively the natural inclusion and the (surjective) O-linear ring
homomorphism that sends X; to X; if 1 < ¢ < n and to 0 if ¢ > n (so

that the pair (t,,,0, pm),0) is a retract of rings and, for each n > 1, one has

Pn,0 O Pn),0 = Pin—1),0)-
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In the case O = Z,, we abbreviate Ro,Rno0,pn0;pm)y0 and i, o to
R, R, pn,piny and ¢, respectively. We then also fix a finite abelian group

G and consider the group rings
A:=R[G] and A, =R,[G],

together with the maps A, — A, 1,4, > A and A — A, that are respec-
tively induced by py,, t,, and pny (and which we continue to denote by the same

notation).

We then define a separated decreasing filtration Z, = (Z,),, of A by setting

T, = ker(pumy)

for each n, and we note that A is Z,-complete.

Now, since the submodule of Z,, that is generated by {X;};>, is not finitely
generated, the ring A is not Noetherian (cf. Remark 4.2.3 below) and its
module theory is complicated. For instance, the example discussed in the
proof of Lemma 3.2.1(i) shows that cyclic .A-modules need not be Z,-complete
(or even pro-finite). Nevertheless, claims (i) and (ii) of the following result
ensure that our theory developed in Chapter 2 and Chapter 3 can be applied
in this setting.

For each natural number m, we use O, to denote Z,[(,,] C Q5.
Lemma 4.2.1. For every n the following claims are valid.

(1) For all natural numbers m, the rings Ro,, and R, 0, are p-adically com-
plete unique factorisation domains, and hence admissible (in the sense

of Definition 2.5.1).

(i) The ring A is p-adically complete and compact (in the sense of §3.2.2)
and both rings Q(A) and Q(A,) are semisimple (as algebras over Q(R)
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and Q(R,) respectively). In addition, an A-module M is finitely-
presented, torsion and admissible if it is finitely-presented and torsion
as an R-module and, in addition, no height one prime of R that lies in
the support of M contains |G|. In particular, if p1 |G|, then the ring A,

and also the ring A, for each n, is admissible.

(153) If p is a prime ideal of A, then 1,(p).A is a prime ideal of A.

Proof. Since O,, is a regular local domain, the first assertion of (i) is classical
in the case of R, ,. This result then implies that the ring Rp,, satisfies
the condition (%) of Nishimura [0, Intro.] and hence that it is a unique
factorisation domain by [64, Th. 1]. The second assertion of (i) then follows

directly from Remark 2.3.2(ii).

To prove (ii) we note that, for each subgroup U in U(Z)) the ring Z,[(Z, /U) x
(] is finitely generated over Z, and hence compact with respect to the canonical
p-adic topology. The (inverse limit) ring Z,[[Z} x G]] is therefore compact with
respect to the induced inverse limit topology. This induces a compact topology
on A that is independent of the choice of Z,-basis {7, };en of Z§ and such that
each ideal Z,, is closed. This proves the first assertion of (ii). In addition, as R
and R, are both domains of characteristic zero, and G is finite, the algebras
Q(A) and Q(A,) are respectively equal to Q(R)[G] and Q(R,)[G] and so are

semisimple (see the discussion at the paragraph above Proposition 2.3.3).

Next we note that (i) combines with Proposition 2.3.5 (with R and A replaced
by R and A) to imply an A-module M that is finitely-presented and torsion
as an R-module is finitely-presented, torsion and admissible as an A-module
provided that both Pr (M) C 737|QG‘ and R, is Noetherian for every q € Pr(M).
In addition, since for each divisor m of n, the ring O,, ®z, R = Ro,, is a
unique factorisation domain, one has 777‘5' ={q € Pr:|G| ¢ q} (cf. Example
2.3.4(ii)) and the localisation of R at each prime in Px is a principal ideal

domain, and hence Noetherian. This proves the second sentence of (ii). Given
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this fact, it is clear that if p { |G| then A is admissible as no prime in Pgr can
contain |G|. Finally, we recall that the admissibility of each ring A4,, in this

case was already observed in Remark 3.1.3

To prove (iii) we note p is a (finitely generated) ideal of the (Noetherian) ring
A,,, and hence that B := ¢,,(p).A is a finitely generated ideal of A. Proposition
3.2.2(i) therefore implies that the map f14/y is bijective. Since, for m > n, the
image of the natural map Biny = Awm) = Am 18 pimy(B) = p[[ X1, - -, Xl

these observations combine to give a composite ring isomorphism

AP 2t (A/P) ) = Em A/ iy (F) 22 T (A /p)[Xi1, -+, X

m>n m>n m>n
Hence, since each ring (A, /p)[[Xns1,- -, Xw]] is a domain, the limit is a
domain and so P is a prime ideal of A. ]

Remark 4.2.2. Fvery non-zero prime ideal of R that is principal has height
one (since if a generating element x does not belong to any prime in Pr, then
Ry). Lemma
4.2.1(11) (with G trivial) therefore implies that v, (p)R belongs to Pr if p be-

x~1 belongs to Ry for all q in Pr and hence to R = ﬂquR
longs to Pr, . This observation is a special case of a result of Gilmer [/2, Th.

3.2] and is also related to the second part of [7, Prop. 2.3].

Remark 4.2.3. Since R is a unique factorisation domain, it is a finite con-
ductor ring in the sense of Glaz [/5] (so that every ideal with at most two

generators is finitely-presented).

The following result proves a more concrete version of Proposition 3.2.2(iii)
in this case. In particular, it shows that, for a natural class of torsion A-
modules, the notion of lower generalised characteristic ideal coincides with the

‘pro-characteristic ideal’ defined by Bandini et al in [7].
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Proposition 4.2.4. Assume |G| is prime to p. Then the following claims are

valid for any quadratically-presented, torsion A-module M.

(i) For any natural number n for which the A,-module M, is torsion, the

Ay -module (M,41))*"+=° is pseudo-null.

(1) The A-module M identifies with lgln My and its pro-characteristic ideal
(in the sense of [7, Def. 1.3]) is equal to chara(M).

Proof. Since p 1 |G|, there exists a finite set {m;};e; of natural numbers
and corresponding direct product decompositions A = [[.; Ro,,, and A, =
[Lic; Rno,, (for each n) that are compatible with all transition maps. Hence,
in this argument we can, and will, henceforth assume that A and A,, respec-

tively represent Rp,, and R, o,, for some natural number m.

To prove (i) we note A,;; is Noetherian. Hence, assuming M) to be a
torsion A,-module, the equality (M(,41))n) = M(n) combines with Nakayama’s
Lemma to imply (M41))p = (0) with p = (X,11) € Spec(A,41) and so
M11) is a torsion A, ;-module. In particular, since M,y and M, are both
quadratically-presented (over A, .1 and A, respectively), there are equalities

of A,-ideals

chara, (Mg41)) ¥+ =°) - ppy1 (chara,,, (M(u11))) = chara, (M) (4.5)
=Fit), (Mu))
= Pn+1 (FitOAn+1 <M("+1)))

= Pn+1 (Char.An+1 (M(n+1) )) :

Here the second and last equalities follow from Proposition 3.1.2(i)(b) (with G
trivial and R taken to be respectively A,, and A, 1), the first equality follows
from Remark 3.1.3 and the general result of [7, Prop. 2.10] (see also [67,
Lem. 4]) and the third from a standard property of Fitting ideals under scalar

extension.
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Next we note that, as M, is a quadratically-presented, torsion A,-module, the
ideal Fit% (M), and hence (by (4.5)) also pni1(chara,,, (Mm+1))), is prin-
cipal and generated by a non-zero divisor. The equalities (4.5) therefore imply
char 4, (Mns1))*+7°) = A,, and hence that (M,41)) =" is a pseudo-null

A,-module, as required to prove (i).

In a similar way, Proposition 3.1.2(i)(b) implies for every n that
ChaI‘An(M(n)) = Fit&n (M(n)) = p<n> (Flt&(M)) = p<n> (charA(M)).

Taking account of Proposition 3.2.2(ii) (and Lemma 4.2.1(ii)), these equalities
in turn imply that the pro-characteristic ideal of the A-module ann M) is
equal to char 4(M). To complete the proof of (ii), it is now enough to note that
the canonical map M — lgln My, is bijective as a consequence of Proposition

3.2.2(i) (and the first assertion of Lemma 4.2.1(ii)). O

Remark 4.2.5. The assumptions used in [7] are more general than those
of Proposition 4.2.J. Specifically, the authors of loc. cit. assume only to
be given a Krull domain A that arises as the inverse limit (over d € N) of
Noetherian Krull domains Ay and a A-module M arising as the inverse limit
of torsion Ag-modules My. Then, under suitable hypotheses on each Ay, they
formulate conditions on the modules My that are analogous to the conclusion
of Proposition 4.2.4(i) and, assuming these conditions to be satisfied, [7, Th.
2.13] provides a well-defined ‘pro-characteristics ideal’ (/]\BA(M) of M. We now
assume M s a finitely-presented, torsion A-module that is supported on only
finitely many primes in Py, each of which is finitely generated. Then M is
also an admissible A-module (cf. Remarks 2.1.2(i) and 2.5.2(i)) and so has a
generalised characteristic ideal chary(M) in the sense of Definition 5.1.1. As
a possible extension of Proposition 4.2.4 (and Proposition 3.2.2(iii)), it would
seem reasonable to expect that in any such case chary(M) should be closely

related to (A]BA(M)
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4.2.2 The Weil-étale cohomology group and Stickel-

berger element

In rest of this chapter, we fix a global function field k of characteristic p and a
Galois extension K of k that is ramified at only finitely many places and such
that the group I' := Gal(K/k) is topologically isomorphic to a direct product
ZS x G for a finite abelian group G. We fix such an isomorphism and, in
addition, a finite non-empty set of places X of k that contains all places that
ramify in K but no place that splits completely in K. For every intermediate
field L of K/k we set I', := Gal(L/k) and, if L/k is finite, we write OF for the
subring of L comprising elements that are integral at all places outside those

above Y.

This section aims to introduce the Stickelberger element associated with the
special value at 0 of the Dirichlet L-series, as well as the derived complex
over which we work to extract arithmetic information. These two objects,
representing two aspects of the Iwasawa Main Conjecture, will be the focus of

the following section.

For a finite extension F' of k in K, the result of [73, Chap. V, Th. 1.2] implies
that the sum

O == [F k) Y(y) Ls(®,0)

YeHom(I'r,Qp ™) Zyerp

is a well-defined element of Z,[I'r|, where Ly (¢, 0) denotes the value at 0 of the
Y-truncated Dirichlet L-series of 1) (here we use that, in terms of the notation
of loc. cit., 6% is equal to O©x(1) and, as p = char(k), the integer e is prime to
p). In addition, the behaviour of Dirichlet L-series under inflation of characters
implies the elements 6% are compatible with respect to the projection maps
ZypUpi] = Z,|I'p] for any finite extension F’ of k in K with F' C F’ and so, for
each extension L of k in K, one obtains a well-defined element of Z,[[I'.]] by

setting
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07 = I&H 0% .
UelU(Tyr)

For each such L, we also set

H'((Op)wet, Z,(1)) == lim (Z, ®z H' (Ov)wee, Gm))

Uel(Ty)

and both

Pic’(L), = @ (Z,@zPic"(LY)) and  CHOF), := I&H (Z,@2CLOFv)),
UeU(Ty) Ueu(Tr)

where (=) denotes the Weil-étale site and Pic’(LY) the degree zero divisor

class group of LY, and the respective limits are with respect to the natural

corestriction and norm maps.

We next recall some general facts about Weil-étale cohomology. For a com-
mutative Noetherian ring A, we write D(A) for the derived category of com-
plexes of A-modules and DP*(A) for the full triangulated subcategory of D(A)
comprising complexes isomorphic to a bounded complex of finitely generated

projective A-modules.

For a finite extension F' of k in K we also write C'r for the unique geometrically
irreducible smooth projective curve with function field F' and j3 for the natural
open immersion Spec(O7) — Cr. We then define an object of D(Z,[['r]) by

setting
Dy = RHOmzp<RF((CF)ét7j}%!(zp))a Zp[—2]).

We recall that D3} s, belongs to DP"(Z,[T¥]) (cf. [16, Lem. 3.3]), and also that

there exist canonical isomorphisms

H'(D}.5) = Z, ®z H' (RHomz (RT((Cr)we jr(Z)), Z[-2])) (4.6)

=~ 7., @7 H (OF)wes, Gm) = H ((OF)wer, Zp(1)).
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Here the first isomorphism is a consequence of Proposition 4.1.8 and the second
of the duality theorem 4.1.14 in Weil-étale cohomology and the equality follows
directly from our definition of H'((OF)wet, Z,(1)).

We next recall (from the proof of [10, Prop. 4.1]) that Df.y; is acyclic in degrees
greater than one and such that, for each intermediate field F’ of F/k, there
is exists a canonical projection formula isomorphism Z,[[s] ®2p[FF] D%y =
Dt 5 in D(Zy[Tpr]). These facts combine with (4.6) to imply that the natural

corestriction map H'((OF)wet, Gin) — H'((OF)wess, Gr) induces a canonical

isomorphism of Z,[I's|-modules

Zy[Tr) @z, jrp) H ((OF)wer, Zy(1)) = H ((Op)wer, Zy(1)).  (4.7)

Remark 4.2.6. Some explicit relations between the complexes Dy.y, and lead-
ing terms of YX-truncated Artin L-series have already been established elsewhere.
In the case of finite abelian extensions F/k, these relations are obtained by the
main result of Lai, Tan and Burns in [10] and in the case of arbitrary finite

Galois extensions F/k by the main result of Burns and Kakde in [15].

4.3 The structural result of the Weil-étale co-

homology group

In this section, we next fix a Z,-basis {7;}ien of Z (as at the beginning of
§4.2.1) and, for each n € N, write I'(n) for the Z,-module generated by {7;}isn
and K, for the fixed field of I'(n) in K (so that 'k, is isomorphic to Z; x G).
We also write I, for the decomposition group in I' of each v in ¥ and consider

the following condition on K and .

Hypothesis 4.3.1. There exists a natural number ng such that, for every v

in X, the group I'(ng) N T, is not open in T,.
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We note that this hypothesis is satisfied in the setting of the main results of
both Angles et al [3] and Bley and Popescu [12] and hence that the structural
aspects of the next result complement these earlier results (for more details

see the discussions in Remarks 4.4.2 and 4.4.3 below).

We use the fixed basis {7;}ien of Z} to identify the completed p-adic group
ring Z,[[I']] with the group ring A = R[G] of G over the power series ring
R = Z,[[Zy]]. In the sequel we shall thereby regard the inverse limit

M = H'((O%)wes, Zp(1))

as an A-module.
Finally, for each n we set A, := R,[G] = Z,[[I'x,]] and M, := A, @4 M.

Theorem 4.3.2 (Iwasawa Main Conjecture). The A-module M has the fol-

lowing properties.

(i) M is quadratically-presented and, for every n, the A,-module My, is
isomorphic to H'((O%, Ywes, Zp(1)).

In the remainder of the result we assume that K and ¥ satisfy Hypothesis
4.3.1.

(11) M is torsion and Ps(M) is finite.

(111) If |G| does not belong to any prime in Pa(M), then there exists a pseudo-

isomorphism of A-modules of the form

e(p)i
M= D,cp 0 Dicicin

(for suitable natural numbers n(p) and e(p);).  Setting e(p) =
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Z1§i§n(p) e(p); for each p € Py(M), one also has

(v) ® _ 4. 0%
HPGPA(M)p P C ﬂquR(HpepA(M)p D), =A%, (48)

with equality if and only if HpepA(M)pe(p) is a principal ideal of A.

(iv) If |G| is prime to p, then the inclusion in (4.8) is an equality and, in

addition, for every n > ng the A,-modules
Hl((OEn-‘-l)Wét? Zp(l))XnH:O and CI(OI%rH-l );(n-HZO

are both pseudo-null.

The proof of these results will occupy the remainder of this section.

Proof. At the outset we fix an exhaustive separated decreasing filtration
(Ap)nen of the subgroup Zg’ of I' by open subgroups. We set F, := K%»,

write J, for the kernel of the natural projection map
A = Ay = L[Tr,] = Z,[T/Ay) 2 Z,[(Z,) | A0)][G),

and for each A-module NV, respectively homomorphism of A-modules 6, we set

N[n] = A[n] ®4 N and H[n] = idA[n] ®.4 0. Then

‘]0 = (Jn)neN

is a separated decreasing filtration with respect to which A is complete. In
addition, the isomorphisms (4.7) with F//F’ equal to each F,,/F,_; imply the
A-module M is J,-complete and that, for every n, there is a natural isomor-

phism M, = Hl((Oi)WéuZp(l))-

Turning now to the proof of Theorem 4.3.2, we first observe the isomorphisms

in the second assertion of (i) are directly induced by the descent isomorphisms
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(4.7). We then claim that, to prove the quadratic-presentability of M (and
hence complete the proof of (i)), it suffices to inductively construct, for every

n, an exact commutative diagram of Ap,-modules

ALy = AL T My —— 0

T,gl T,{l Tnl (4.9)

O — Tn—
A?ﬂ*l} —1> Aflnfl] —1) M[nfl} —_— 0

in which the natural number d is independent of n, all maps 7, and 7° are sur-
jective and 7} and 7, are the tautological projections. To justify this reduction
we use the fact that A, /A, is a finite p-group and hence that the kernel
of the projection Ap,; — Ap,_q) is contained in the Jacobson radical of (the
finitely generated Z,-algebra) Ap,. This in turn implies that the natural maps
GLg(Apn)) = GL4(Ap—1)) are surjective and therefore, since A is J,-complete,
that the inverse limit of A‘[in] with respect to the maps 70 is isomorphic to A%
Then, since M is also J,-complete (and the inverse limit functor is exact on
the category of finitely generated Z,-modules), by passing to the limit over n

of the above diagrams one obtains an exact sequence of A-modules
AP S AT T M 0 (4.10)

(with 0 = m 6, and 7 = lim mn,) which shows directly that M is

quadratically-presented.

To complete the proof of (i), we must therefore construct the diagrams (4.9).
To do this, we note that F} is a finite extension of & and hence that M =
H'((O%, )wet, Z,(1)) is finitely generated over Ap (this follows, for example,
from (4.6) and the fact Dy, 5 belongs to D*"f(Apy;)). We can therefore fix a
natural number d and a subset {m;}i<;<q of M whose image in M};; generates
My over Ap). For each n, we write m;, for the projection of m; to Mj,.
We then note that, just as above, the kernel of the projection Ay, — Ap
lies in the Jacobson radical of the (Noetherian) ring Aj,;, and hence that the
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tautological isomorphism Ap; ® Apn) My, = My combines with Nakayama’s
Lemma and our choice of elements {m;}1<;<4 to imply {m;,}1<i<a generates
the Ap,-module Mp,). We therefore obtain the right hand commutative square
in (4.9) by defining 7, (and similarly m,_;) to be the map of Ap,-modules that

sends the i-th element in the standard basis of Afn] to My p.

By following the argument of [16, Prop. 4.1] it now follows that Df, 5 can
be represented by a complex of the form P, LN Afn] in which P, is a finitely
generated projective Ap,-module (placed in degree zero), im(6,) = ker(m,)
and 7, induces an isomorphism between coker(6,) and Mp,;. Then, since Ap,
is a finite product of local rings and the Ap,-equivariant Euler characteristic
of D}, s, vanishes (by Flach [10, Th. 5.1}), the Ap,-module P, is free of rank d
(and so, after changing 6, if necessary, can be taken to be Afn]). In particular,
if we choose both of the rows in (4.9) in this way, then they are exact and so
the commutativity of the right hand square reduces us to proving the existence
of a surjective map 70 that makes the left hand square commute. To do this
we can first choose a morphism of Ajp,_j-modules 7, : (Afln})[n_l} — A[dnfl} for

which the associated diagram

(On)[n-1)
(A -1 —— (Al -1

T’IILJ( gJ/(T'rlz)[n—l]

d On1 d
Al Al

[

commutes and represents the canonical isomorphism Ap,_j ®E4[n] Dy 5 =

Dy,

n

_,»- In particular, since the morphism of complexes represented by this
diagram is a quasi-isomorphism and (7, )j,—1) is bijective, the map 7,, must also

be bijective. The composite map
T?? : Afln} - (Afln])[”—l] — Afn—l]

(in which the first map is the tautological projection) is then surjective and

such that the diagram (4.9) commutes. This completes the proof of (i).



4.3. The structural result of the Weil-étale cohomology group 93

In the rest of the argument we assume that K and X satisfy Hypothesis 4.3.1.

To prove (ii) we note that, by Proposition 2.3.3(iii)(b), M is a torsion R-
module if and only if it is a torsion A-module. The exact sequence (4.10)
therefore implies that M is a torsion R-module if and only if det(#) is a non-
zero divisor of A. To investigate this condition, we recall that, for each n, K,
denotes K'™ and we set T, := I'/T'(n) = Gal(K,/k) so that A, = Z,[[T,]].
We also write I, := (I,)nen for the separated decreasing filtration of A in

which each I, is the kernel of the natural projection map p,y : A — A,,.

Then, for every n > ng, Hypothesis 4.3.1 implies that the decomposition sub-
group in I}, of every place in ¥ is infinite. Hence, for each such n, the results
of [16, Prop. 4.1 and Prop. 4.4] combine to imply that p,(det(d)) and 6%

are non-zero divisors of A,, such that
A, piy(det(0)) = A, - 05 (4.11)

This implies, in particular, that det(0) = (o, (det(#)))n>n, is a non-zero divi-
sor in the ring A = lim A, = @nZno A, and so the first assertion of (ii) is
proved. In addition, the fact that P4(M) is finite follows directly from Lemma
4.2.1(i) and Proposition 2.3.3(iii)(c). This completes the proof of (ii).

To prove (iii), we note first that the results of (i) and (ii) combine with Lemma
4.2.1(ii) to imply, under the stated hypotheses, that M is a finitely-presented,
admissible, torsion A-module. From Theorem 2.2.3(b), we can therefore de-

duce the existence of a pseudo-isomorphism of A-modules of the form

e(p)
M= @pePA(M)@lgign(p)A/p

for suitable natural numbers n(p) and e(p);. Upon setting e(p) :=
> 1<i<n(p) €(P)i and combining this pseudo-isomorphism with the explicit defi-

nition of the lower generalised characteristic ideal charg(M) (and the result of
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Proposition 3.1.2(i)(a)) one then obtains an equality

e(p) —
HpePA(M)p char(M).

Next we note that, as p;,(det(f)) is a non-zero divisor for each n > ng, the
equality (4.11) implies the existence for each such n of an element w,, of AX
with ) (det(6)) = u, - 0% . In particular, the family u := (u;)n>n, belongs to
AX = 1'&1@”0 A% and is such that det() = u - 03%. From the resolution (4.10)
one therefore has

Fit) (M) = A-det(0) = A- 03,

Given the last two displayed equalities, all of the claims in (iii) follow directly
from Proposition 3.1.2(i)(b).

To prove (iv) we assume |G| is prime to p and adapt the argument of Propo-
sition 4.2.4. Specifically, in this case every prime in P, is principal since
A is a finite direct product of unique factorisation domains. The first as-
sertion of (iv) therefore follows directly from the final assertion of (iii). To
prove the remaining assertions in (iv), we note that the resolution (4.10) com-
bines with the isomorphisms in (i) to imply that, for each n, the A,-module

cok(ida, ®40) = A, ®4 M = M, is isomorphic to H'((OF, Jwet, Zp(1)).

In particular, if n > ng, then the latter module is torsion since it is annihilated
by the non-zero divisor det(id4, ®4 0) = pmy(det(d)) of A,. Given this, the
pseudo-nullity of H*((O%, . )wet, Zy(1))*+1= follows directly from the argu-
ment of Proposition 4.2.4(i). The A,-module CI(O% );*+=" is then also
pseudo-null since, after taking account of the isomorphisms (4.6), the exact se-
quence [16, (4)] (with the field K in loc. cit. taken to be K1) gives a canonical
identification of CI(O%, ), with a submodule of H*((O%, Jwei, Zy(1)). O

Kn+1
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4.4 Some applications

Theorem 4.3.2 has the following concrete consequence for the A-module

Pic’(K),.

Corollary 4.4.1. Assume K and ¥ satisfy Hypothesis /.3.1. Then Pic’(K),
is a torsion R-module. In addition, if Pic’(K), is finitely generated over R,
then at most one place that ramifies in K has an open decomposition subgroup

in I' and, if such a place v exists, then one has ', =T.

Proof. For each subset ¥/ of ¥ we write esy for the canonical projection map
D, sy Zy[[I'/T,]] = Zy. Then, by taking the inverse limit over n of the exact
sequences [16, (4)] used above (for the fields K1), one obtains an exact

sequence of A-modules
0 — ClO%), = M — ker(es;) — 0. (4.12)

In a similar way, the corresponding limits of the exact sequences [16, (5) and

(6)] combine to give an exact sequence of A-modules
ker(egx ) — Pic’(K), — Cl(O%), — Z,/(nk) — 0, (4.13)

in which XX is the subset of 3 comprising places that have finite residue degree

in K/k and ng is a (possibly zero) integer.

We now assume that Hypothesis 4.3.1 is satisfied. In this case the A-module
M is finitely-presented and torsion (by Theorem 4.3.2(i) and (ii)) and the A-
module ker(ezgn) is torsion. The first of these facts combines with the sequence
(4.12) to imply both that the A-module Cl(O%), is torsion and also (by using
Proposition 1.7.4, 2) and 3)) that it is finitely generated if and only if the .A-
module ker(ey) is finitely-presented. From the sequence (4.13) we can then also

deduce that Pic’(K), is a torsion .A-module (and hence a torsion R-module)
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and also that C1(OF), is finitely generated (over A) if Pic’(K), is finitely

generated over R.

To complete the proof we now argue by contradiction and, for this, the above
observations imply it is enough to assume both that ker(ey) is finitely-presented
(over A) and that there are either two places v; and vp in ¥ such that I}, and
I',, are open, or at least one place v; in ¥ for which I, is open and not equal
to I'. We then define an open subgroup of I' by setting I'' := I',, N [},, in the
first case and I := I}, in the second case, we set A’ := Z,[[I"]] and we write
I and I" for the kernels of the respective canonical projection maps A — Z,

and A" — Z,,.

Then the definition of I'" ensures that the A’-module ker(es) is both finitely-
presented and contains a direct summand that is isomorphic to the trivial
module Z,,. This implies (via Proposition 1.7.4, 4) ) that Z, is finitely-presented
as an A’-module and hence, by applying Proposition 1.7.1 to the tautological
short exact sequence

0=-1'—-A—-27Z,—0,

that I’ is finitely generated over A’. However, writing d for the order of I"/T",

there exists an exact sequence of A-modules
nd d—1
0= )" =117,

and so one can deduce that [ is finitely generated over A’, and hence also over
R. However, this last assertion is easily shown to be false and this contradiction

completes the proof of Corollary 4.4.1. O

Remark 4.4.2. Assume that K is a Carlitz-Hayes cyclotomic extension of k,
as considered by Anglés et al in [7]. In this case I' = Z (so A = R) and
Y = {v} with v a place that is totally ramified in K. Hence T, = T (so that
Hypothesis 4.3.1 is clear) and, as v is totally ramified in K, for each U € U(T")
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the integers ¢V and m¥ that occur in [10, (5)] are both equal to 1 and so (4.13)
is valid with ng = 1. Thus, in this case, the exact sequences (4.12) and (4.13)
combine to induce identifications M = Cl(O%), = Pic’(K),.

In addition, since M is quadratically-presented as an R-module (by (4.10)),
the results of Proposition 3.1.2(i)(b) (with G trivial and R = R) and Propo-
sition 4.2.4(11) (with G trivial) imply that the generalised characteristic ideal
charr(M) coincides both with Fit% (M) and with the pro-characteristic ideal
6?171(]\/[) of M defined in [7]. Given this, one finds that the explicit structural
information concerning M that is provided by claims (iii) and (iv) of The-
orem J.5.2 strengthens the main results of [3] concerning Pic’(K), (see, in

particular, [9, Th. 5.2, Rem. 5.3]).

Remark 4.4.3. Assume that K is a Drinfeld modular tower extension L., of k
of the form specified by Bley and Popescu in [12, §2.2]. In this case A = R[G]
with G isomorphic to Gal(Hy,/k) for a ‘real’ ray class field Hy, of k relative
to a fived prime ideal p and integral ideal §. The set 3 therefore comprises p
and the set of prime divisors of f, and so the validity of Hypothesis 4.5.1 in
this case follows from the argument of [12, Prop. 3.22]. We now assume that
PR ¢ Pr(M) if p divides |G|. Then the arguments of Proposition 3.1.2(i)(b)
and Theorem /J.3.2(iii) combine to imply that the explicit ideal HpepA(M)pe(p)
that occurs as the first term in (4.8) is contained in FitQ(M), with equality
if and only if it is principal (as occurs automatically if |G| is prime to p).
Further, by comparing the sequence (4.12) to the sequences of [12, (24), (25),
(26)], and using the fact A, is a discrete valuation ring for p € Pa(M), one

verifies an equality of principal A-ideals
.10 _ 40 (c0)
Fit) (M) = Fit] (T, (ME)r).

Here the A-module Tp(MéOO))F is (quadratically-presented and) defined in [172,
§3.3] as an inverse limit lim Tp(Mé"))p over the p-adic Tate modules of a

canonical family of Picard 1-motives. In particular, as the main result [12,
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Th. 1.8] (with S = %) of loc. cit. concerning Stickelberger elements and

divisor class groups is an equality
A~ 65 = Fitg (T, (My)r),

it is strengthened by the explicit structural results obtained in Theorem
4.3.2(iii) and (iv). Finally, we note that if p decomposes in the field Hi,,
then Corollary 4.4.1 implies that PicO(Loo)p cannot be finitely generated as an
R-module. This observation implies, in particular, that the non-splitting hy-
potheses on p that are imposed in the results of [12, Th. 3.16 and Th. 3.17]

are actually necessary for the stated conclusions to be valid.



Chapter 5

Outlook on the future

development

When we establish the theory for Zg—extensions, we find two meaningful ques-

tions still waiting for exploring in the future.

Q1: Is the ring Z,[[Z)]] coherent? Or as a fallback, is the ring n-

coherent?

The definition of n-coherent rings can be found in Definition 6.0.3, and motiva-
tion for studying this property is discussed following Theorem 6.0.7. The main
difficulty in analyzing this question comes from the structure of the Iwasawa
algebra

Z,[Z5)) =l Z,[[Xy, .., X,

This inverse limit is strictly larger than the I-adic completion of the polynomial
ring Z,[ X1, Xo, ... ], where I = (p, X3, Xo,...). In the I-adic completion each
element is represented by a formal power series ) a,X® such that, for every
integer d > 0, only finitely many monomials of total degree < d have non-zero
coefficient. By contrast, in Z,[[Z}]]] there exist elements whose components of

a fixed degree involve infinitely many variables. For example, the compatible
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family
fn=Xa+4+ -+ X, €Zy[Xy,...,X,]]

defines an element of Z,[[Z]] which one may heuristically denote by »-.-; X;.
Its degree-1 part has a non-zero coefficient at every variable X;, so it does not
belong to the usual formal power series ring obtained as the I-adic completion
of Z,[X1, Xs,...]. Currently, we do not have a method for effectively handling

such terms.

Q2: Can we find arithmetic applications for our Z,[[Z}]]-theory over

number fields?

Thanks to a valuable comment from Meng Fai Lim, we discovered that the
answer to this question is affirmative. A notable example is provided by Minac,
Rogelstad and Tan [60]. Let F' be a number field satisfying the following

condition.

If p is odd then F' contains a primitive p-th root of unity C,. If p =2 then F

contains a primitive fourth root (4 of unity.

We define
CR(F)=F ( O\O/F_> = JF ("Va,Gm).

The union is taken over all positive integers m and all elements a € F*.
The field CR(F) is called the p-cyclotomic radical extension of F. Then the

following theorem has been proven in [60, Appendix, Thm A.1].

Proposition 5.0.1. Let F' be a field containing ji,~. Let I be a set of cardi-
nality of a basis for F*/ (F*)" over F,. Then

Gal(CR(F)/F) ~ (rii € I|[rn,m] =1, jel)~]]Z,

i€l

It should be noted that the cyclotomic radical extension is closely related to
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the false Tate extensions. Therefore, it is meaningful and worthwhile to pursue

further study on this topic.



Part II: Non-Noetherian study

in integral Iwasawa theory

102



Chapter 6

A review of integral Iwasawa

theory

For a commutative ring A and a prime p, the completed group ring A[[Z,]]
is defined as the inverse limit Jim A[Z/(p")], where the transition morphisms
AlZ)(p™™)] — A[Z/(p™)] are the A-linear group ring maps induced by the
natural projections Z/(p"*) — Z/(p").

Arithmetic modules over Z[|Z,]] naturally arise as the inverse limits of families
of modules in Z,-towers of global fields. For example, let K be a number field,

K be the cyclotomic extension of K, and consider the field tower
K=KyCK{C---CKg.

One can construct the inverse limit lglz CI(K;) where the transition maps are
induced by the norm maps. There is a natural action of the complete group
ring Z|[[Z,]] on Jim, CIl(K;). However, Z|[[Z,]] is neither a Noetherian ring nor
a compact topological ring. Iwasawa addressed this issue by passing to the
pro-p completion of lgll CIl(K;) and working instead over the associated ring

Zy||Zy)], which is both Noetherian and compact.

But what is the price of Iwasawa’s method? The passage to pro-p completion
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can result in a loss of significant arithmetic information. For instance, one
can only obtain an asymptotic formula estimating the growth of the p-part
of the ideal class group along the tower, rather than the growth of the entire
class group. Intuitively, current Iwasawa theory—which studies the p-part of
the ideal class groups—can be seen as a kind of “local theory.” In contrast,
the integral Iwasawa theory aims to become a more “global theory,” capable of
capturing information about the full ideal class group by working over complete

group rings Z[[G]], for certain p-adic Lie groups G.

Many researchers have commented on the benefits and challenges of working
over Z[[Zy)] or Z[[Z,)] for a prime ¢ # p instead of Z,[[Z,]], or have made
efforts to investigate specific aspects of this issue. For example, Washington

proved the following theorem in [75].

Theorem 6.0.1. Let K be an abelian number field and K., the cyclotomic
Zy-extension of K. Let £ # p be a prime and (°* be the power of { dividing the
class number h,, of the K, in the field tower. Then e, is bounded independently

of n. In fact, e, is constant for large n.

However, to the best of the author’s knowledge, no better result is currently
known. On the other hand, the proof of the theorem 6.0.1 of Washington is
not achieved by studying the properties of Zy[[Z,]]. In fact, as Washington
points out in [77, §VI], very little is known about the structure of modules
over Zy[[Z,]] for ¢ # p. Another well-known contribution concerning Z[[Z,|]
was made by Coleman [26, §II]. He proved an analogue of the Weierstrass
Preparation Theorem for Z[[Z,]], which plays a crucial role in characterizing

certain norm-compatible families of units in abelian fields.

As part of the broader puzzle of the integral Iwasawa theory, the first work,
[17], was recently published by David Burns and Alexandre Daoud on the
Nagoya Mathematical Journal. The aim of this article, and of the subsequent

articles in the series, is to develop some foundational aspects of a workable
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theory of arithmetic Z[[Z,]]-modules. This overall approach relies crucially on
ring-theoretical results, which in turn depend upon a detailed analysis of the
category of ‘pro-discrete’ Z[[Z,]]-modules introduced in [17, §3]. In particular,
natural ‘pro-discrete’ versions of both Nakayama’s Lemma and Roiter’s Lemma
are established. Furthermore, the authors provide several explicit criteria for
the finite presentability of pro-discrete modules (see [17, Thm. 3.8, Thm.
3.11]). These results are then applied to give an explicit description of the
finitely generated prime spectrum of Z[[Z,]] (see [17, Thm. 4.2, Remark 4.3]),
which in turn is used to establish a range of natural ring-theoretic properties of
Z[[Zy)]. To present the most important of these properties, we first introduce

some necessary notions.

Definition 6.0.2. For a non-negative integer n, one says that an R-module

M s finitely n-presented if there exists an exact sequence of R-modules

M, — M,y —---—=My—M—=0

in which each M; is both finitely generated and free.

In particular, M is finitely O-presented, respectively finitely 1-presented, if and
only if it is finitely generated, respectively finitely presented. One also says that
M is ‘finitely oo-presented’ if it is finitely n-presented for every non-negative
n. For example, if R is Noetherian, then every finitely generated module is

automatically finitely oco-presented.

Definition 6.0.3. For each non-negative integer n, the ring R is then said
to be ‘n-coherent’ if every finitely n-presented R-module is finitely (n + 1)-

presented.

In addition, a ring R is O-coherent if and only if every finitely generated module
is finitely presented, which is easily seen to be equivalent to R being Noethe-

rian. Similarly, R is 1-coherent if and only if every finitely generated ideal
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is finitely presented, which is equivalent to R being coherent. This notion
is further generalized at the beginning of §7.3.3 to accommodate the non-

commutative case. We now introduce a related notion from [28, §1].

Definition 6.0.4. For each pair of non-negative integers n and d, an integral
domain R is called a (n,d)-domain if every finitely n-presented module has
projective dimension at most d. R is called a strict (n,d)-domain if it is an

(n,d)-domain that is neither an (n — 1, d)-domain nor an (n,d — 1)-domain.
The following definition is taken from [32] and [13].

Definition 6.0.5. An integral domain is called a finite conductor domain if
it has the property that the intersection of any two of its principal ideals is

finitely generated.

It is then straightforward to show that any coherent integral domain is auto-
matically a finite conductor domain, though the converse does not hold. The

following definition is taken from [71].

Definition 6.0.6. A commutative ring R is said to have weak Krull dimension

equal to n if n is the maximum integer m for which there exists a chain

PoCPL & Chm

of finitely generated prime ideals of R.

By the definition, it is obvious that for a commutative ring R the weak Krull
dimension is less than or equal to its Krull dimension. If it is not possible
to calculate the Krull dimension, then the weak Krull dimension becomes an

acceptable substitute.

Finally, the ring-theoretical property of Z[[Z,]] that we aim to present holds
for all prime numbers p, except for finitely many. We call a prime number p

exceptional if it satisfies the following three conditions simultaneously:
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1. p is irregular.
2. p satisfies Vandiver’s Conjecture.

3. The p-adic A-invariant of every (odd) isotypic component of the ideal
class group of Q(e?™/?) is at least p — 1.

A probabilistic argument due to Lang [51, Chap. 10 App| suggests there are
only finitely many exceptional primes. According to the computations of Hart,
Wilson and Ong [16], no exceptional primes exist up to the bound 23'. We
are now in a position to state the important property of Z[[Z,]] established by
Burns and Daoud [17].

Theorem 6.0.7. The completed integral group ring Z[|Z,)] is not a finite con-
ductor ring. However, it is a 2-coherent domain of weak Krull dimension 2

and if p is not exceptional then it is also a strict (2,2)-domain.

We now explain the underlying significance of the algebraic properties involved
in Theorem 6.0.7. The property of coherency can be viewed as a suboptimal
substitute for Noetherianness, serving at least to ensure that certain arguments
in Iwasawa theory still function properly. For instance, it becomes much easier
to compute Extj\(]\/[ , \) when M is finitely presented over any unital ring A (see
[62, V. §4]). If A is a Noetherian Iwasawa algebra, then every finitely generated
A-module is finitely presented. This allows one to leverage the advantages of
finite presentability (see [62, Thm. 5.4.13]) to extract arithmetic information
from Ext-groups Ext) (M, A) (see [62, Prop. 5.5.10]). Although the integral
complete group ring Z[[Z,]] which we want to work with is not Noetherian,
if one could show that it is coherent, the above reasoning would still apply.
Unfortunately, Burns and Daoud demonstrated that Z[[Z,]] is not a finite
conductor ring, and consequently not coherent. However, one saving grace is
that Z[[Z,]] is at least 2-coherent. Moreover, Theorem 6.0.7 still yields several
favorable results — for example, the fact that Z[[Z,]] is strict (2,2)-domain of

weak Krull dimension 2 except finitely many primes p. These results which
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help control the homological dimension properties of Z[[Z,]], remain sufficiently
robust — especially when combined with the theory of pro-discrete modules

developed in [17]— to support a range of meaningful arithmetic applications.

As far as the author is aware, a series of works following [17] is currently under
development, including a Z[[Z,]]-version of Weil-étale cohomology theory and
arithmetic applications for global function fields and number fields. These
developments illustrate the potential power of integral Iwasawa theory, which

is poised to become a prominent direction in algebraic number theory.

To extend the study of integral Iwasawa theory to non-commutative settings,
the next chapter presents our generalization of the coherency results in [17]

from Z[[Z,)] to Z[|G]], where G belongs to certain classes of non-abelian groups.



Chapter 7

Coherency properties in

non-commutative cases

This chapter is based on joint work with David Burns and Yu Kuang. More
precisely, it is a slightly modified version of the article [19]. The material
is reproduced here with minor changes in notation and with some additional

explanations adapted to the context of this thesis.

Following Chase [21], and Bourbaki [13, Chap. 1], a ring is said to be (left, re-
spectively right) ‘coherent’ if every finitely generated (left, respectively right)
ideal is finitely presented. The theory of coherent rings is by now well estab-
lished (for a comprehensive overview see Glaz’s book [11]) and has important

applications, particularly in arithmetic geometry.

It is clear that every Noetherian ring is coherent, and it is also known that any
flat direct limit of coherent rings is coherent (cf. [loc. cit., Th. 2.3.3]). How-
ever, determining whether a given inverse limit of coherent—or even Noethe-
rian—rings remains coherent can be highly nontrivial, and no general results
in this direction appear to be known. In this chapter, we examine this problem

in the context of completed group algebras.

We recall that, for each commutative ring A and profinite group G, the com-
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pleted group algebra of G over A is defined (following Brumer [15]) to be the
inverse limit

AJ[G)) = lim, A[G/U]

in which U runs over open normal subgroups of G and the transition map
for U C U’ is the group ring homomorphism A[G/U] — A[G/U’] induced
by the natural projection G/U — G/U’. Such rings arise naturally in various
arithmetic contexts — for instance, when Z[|G]] acts on inverse limits of modules
(such as class groups, Selmer groups, etc.) defined over a tower of fields within

a given Galois extension of number fields with Galois group G.

In this chapter, we state and prove two theorems concerning properties related
to the coherency of the integral completed group ring Z[[G]] for two classes
of profinite groups G. The proof of the first theorem relies on an analysis of
the ring homeomorphisms induced by group characters. In Corollary 7.2.4,
we show that a broad class of profinite groups arising in arithmetic contexts
fails to be coherent. The proof of the second theorem is based on Nakayama’s
Lemma (Proposition 7.3.3) for pro-discrete Z[[G]]-modules, together with a
divisibility result for Tor-groups (Proposition 7.3.4).

As mentioned in the previous chapter, the aim of this work is to generalize
the results of Burns and Daoud [17] and to build the algebraic foundation of

non-commutative integral Iwasawa theory.

7.1 Statements of theorems

Our first result, which will be proved in §7.2.1, addresses the question of the
coherence of Z[[G]] under a mild technical assumption on G (see also Remark

7.2.3).

Theorem 7.1.1. If G has a countable basis of neighborhoods of the identity

and a non-torsion Sylow subgroup, then Z[[G]| is neither left nor right coherent.
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The existence of a non-torsion Sylow subgroup is a very mild condition, and
thus the above result applies to most groups that arise naturally in arithmetic

(cf. Corollary 7.2.4).

With potential arithmetic applications in mind, it is therefore natural to con-
sider the classification of non-coherent rings. In this context, we focus on
the hierarchy of n-coherence conditions (indexed by natural numbers n) intro-
duced by Costa in [28] where 1-coherence coincides with the classical notion
of coherence. In particular, we recall that n-coherent rings — whose definition
is explicitly reviewed at the beginning of §7.3.3 — possess a range of useful

properties, including a relatively well-behaved algebraic K-theory (cf. [30]).

However, despite the weaker nature of these conditions, verifying them for any
given n appears to be highly nontrivial — if possible at all — since Z[[G]] is
not a compact topological ring, and in cases where it is not coherent, there are

no general methods available for establishing finite generation.

To address these issues, in §7.3.1 we introduce a category of ‘pro-discrete’
modules over Z[[(]] , and establish a natural analogue of Nakayama’s Lemma
for this category (see Proposition 7.3.3). By combining this result with well-
known theorems of Brumer [15] and Serre [70], we then deduce the following

result in §7.3.3.

Theorem 7.1.2. IfG is a compact p-adic analytic group of rank d, then Z[|G]]
is (d + 3)-coherent.

Whilst this result is not in all cases best possible (see Remark 7.3.7(ii)), estab-
lishing any form of coherency for completed integral group algebras associated
with a general class of profinite groups is striking — and, as far as we are aware,
without precedent. Moreover, such results enable interesting arithmetic appli-
cations. More specifically, we recall that a stronger version of Theorem 7.1.2
was first proved in the special case G = Z, by Burns and Daoud in [17], and

that several of the techniques developed here generalize those in loc. cit. The
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results of [1 7] have already been applied to develop key aspects of an arithmetic
integral Iwasawa theory over Z[[Z,]], including new concrete results concerning
the structure of ideal class groups. The results of Theorem 7.1.2, as well as the
more general Proposition 7.3.3 and Proposition 7.3.4, are expected to similarly
contribute to the development of integral Iwasawa theory over broader families
of compact p-adic analytic extensions of global fields — a direction we aim to

pursue in future work.

7.2 Coherence theorem 1

7.2.1 Proof of Theorem 7.1.1

We shall only prove that the stated conditions imply that Z[[G]] is not left
coherent (with a completely analogous argument showing that it is not right

coherent).

To do this, we fix a countable basis { N, }.n>0 of neighbourhoods of the identity
of G comprised of open normal subgroups N,, with Ny = G and N,,,.1 C Ny,

for every m.

We also fix a prime p for which G has a non-torsion Sylow p-subgroup P and

an element 7 of P of infinite order. We set

R:=Z[|G]] and w:=m—-1€R.

For each natural number m we define a finite group by setting

[y i= G/N,y,.

We then write 7, for the image of 7 in I',,, and p" for the order of m,, (so

that ng = 0). We assume, as we may (after changing the groups {Ny,},, if
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necessary), that n,,,1 > n,, for every m. We set

i=p"m—-1 .
R, :=Z[Ty], Ty ::Z ? T, €R, and w, =m,—1€R,

=0

(so that Ry = Z,Ty = 1 and wy = 0). We then define a left R-ideal by setting
I(w) = T&lmmem C l'glmRm =R,

where the limits are with respect to the natural projection maps R,, — R,

for m > m/.

Finally, we write RP and RP, for the pro-p completions Z,[[G]] and Z,[I',,] of
R and R,, respectively.

Proposition 7.2.1. The element w is a right non-zero divisor in R and there

exists a canonical short exact sequence of (left) R-modules

0— Rw S I(w) 2% RP/(RPw + R) — 0

(in which ¢ is not induced by the inclusion I(w) C RP).

Proof. We write A for either R or RP, with A,, denoting the corresponding ring

R, or RP . Then, in both cases, there exists an exact commutative diagram

(@m

0 — [, AnTm EESEN IL,Am u I, Amwwm — 0

(1_p7rL)7rLl (1_p7n)7nl (1_P'm)'mJ/ (71)

Wm

0 — [L,AnTn EESEN IL,.An M IL, Anwm —— 0

in which p,, denotes the natural projection map A,, — A,,_1 (and its restric-
tions to both A,,,T,,, and A,,@,,). In particular, since p,,(T,,) = p" "1,

with n, > n,-1 and py,(A,) = Ap—1, the Snake Lemma applies to this dia-
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gram to give an exact sequence

A= Ao

0=1lim AT, —A =" lm A,w, - @;Ame — @;Am =0.

This sequence implies w is a right non-zero divisor in A and also gives a short

exact sequence

0= Aw S lim Ay, — lim! A, T, — 0. (7.2)

If A = RP, then the derived limit @;AmT ', vanishes since each module A,,,7T;,

is finitely generated over Z, and hence compact.

To compute l'&n:anTm we write e, for the idempotent p~"T,, of Q[I',,,] and

@, for the quotient of R,,e,, by R,,T,, and use the commutative diagram

0 — L, BnTn =, IL.Bnewm — 11,,@m —— 0
(1—pm)ml (1fpm)ml (l_p/m)ml (7.3)

0 — [L,BRnTn = IL,RBmem — 11,,@m —— O
in which each row is the tautological short exact sequence and p!, : Q,, —
Qm—1 is induced by p,,. Then, since p,,11(€mi1) = €m, by applying the Snake

Lemma to this diagram one obtains a short exact sequence
0— T&nmRmem — @anm — @;Rme — 0. (7.4)

In view of the natural isomorphisms of finite abelian p-groups

Qm = Rpen/(RyTy) = Ryem /(0" Rinem) = RE ey /(" RE ) = RE en [ RE T,

there are also analogues of the diagrams (7.3) in which each term R, is replaced

by RP . By passing to the limit over these diagrams and noting @;R%Tm
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vanishes since each module RP T, is compact, one obtains an identification
l'ﬁnmRZem = HﬂQO (7.5)

and hence a short exact sequence

0= lim Rye, = lim REe, — lim! R, T, — 0. (7.6)
In addition, for each m, there exists an exact commutative diagram

1I—>€m+1

C
0 —— Am—i—lwm—H — Am+1 Am+1€m+l — 07

! l l

0 —— Ao, ST A, — Ane,, —— 0

in which each vertical arrow is induced by p,,+1 and so is surjective. In par-
ticular, since Rfew = lim R} @y, (as a consequence of (7.2) with A = RP), by

passing to the limit over these diagrams we obtain short exact sequences
0—I(w)— R— hm  Ryem — 0 (7.7)

0= RPw — R — lim RY en — 0. (7.8)

These sequences combine with the sequence (7.6) to induce an identification of
the derived limit lgnjanTm with the quotient R-module R?/(RPw + R) and
then the claimed exact sequence follows directly from (7.2) with A =R. [

In the sequel we fix an element a € (Z, \ Q) C RP and write Q(a) for the
R-submodule of R?/(RPw + R) generated by the class of a. In the next result

we also use the surjective map ¢, from Proposition 7.2.1.
Proposition 7.2.2. The following claims are valid.

(i) The R-module Q(a) is isomorphic to R/I(w).
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(ii) There exists x, € I(w) with ¢ (x,) = a and such that the R-module Rz,

is free.

Proof. To prove claim (i) it is enough to show that if r = (7,,),, is any element
of R = l'glmRm such that, in RP = l'glmen, one has ra € RPw + R, then for
every m one hasr,, € R,,@,,. However, if ra € RPw+ R, then for every m there
exist elements b, of RP, and ¢, of R, such that ar,, = (ra), = bywm + cn

and, upon multiplying this equality on the right by 7}, we deduce that
armly, = bm@mTm + cnTm = Cmdim.

Since a ¢ Q, this equality implies r,,T,, = 0 and hence that r,, € R,,w@,,, as

required.

Next we note that, since (a) is non-zero (by claim (i)), any pre-image x, of
the class of a under ¢, is also non-zero. In particular, if R is a domain (as is
the case, by Neumann [63], if G is a torsion-free p-adic analytic pro-p group),
then the R-module Rz, is automatically free. In the general case, however,
the proof of claim (ii) requires more effort. To proceed, for each non-negative

integer ¢ we write a; for the unique integer with 0 < a; < p™+1~" such that

— i
a= Zizoa’p € L.

For integers j with 0 < j < m, we then define elements of R,, by setting

i=p"i—1 ; j=m—1 T
;L= 1 = . .
) E : m ) E : ,
T, j T and Ya,m AjLm j

i=0 =0

(so To =1 and T}, ,, = T,,,). It is then easily checked that the element

Lq = (wmya,m)m € HmRm

belongs to I(w) = @mmem and we aim to verify that this element has the
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properties stated in claim (ii).

As a first step, an explicit computation of the connecting homomorphism aris-
ing from the diagram (7.1) shows that the image in @;Ame of z, under the

map in (7.2) is represented by the element

(ya,m - /)erl(ya,erl))m = (_ame)m € HmRme~ (7-9)

In a similar way, an explicit computation of the connecting homomorphism
of (7.3) shows that this element of @;Ame is the image under the map in
(7.4) of the element of Wm @, that is represented by

m—1

((ZFO ap™)em),, € [ Ruem.

Then, since for each m one has a = Z;”:_Olajp”j modulo p""Z,, the latter

element corresponds under the identification (7.5) to the element (aey,),, of
Wm R} en. Hence, under the isomorphism of l'glianTm with RP/(RPw +
R) that is induced by the sequences (7.5), (7.7) and (7.8), the element of

r&ljanT m represented by (7.9) corresponds to the class of a.

This explicit computation has shown that ¢ (z,) = a and so, to complete the
proof of claim (ii), it is enough for us to prove that the R-module Rz, is free.
Hence, since z, = @ * (Yam)m in [[,,Rm and w is a non-zero divisor of R,
it is enough for us to show that, for every m, the element y,,, is a non-zero
divisor of R,,. To do this, we fix m and write A,, for the subgroup of I',,, that is
generated by 7,,,. We also write Q for the algebraic closure of Q in C, and note
that, since y, ., belongs to Z[A,,], it is enough to show that the annihilator in
Q[A,] of yu.m vanishes. Then, since the semisimple algebra Q[A,,,] decomposes
as a product of copies of Q, it is enough to show that the image of y,, in each
component of Q[A,,] is non-zero. More precisely, if for each homomorphism

X : A, — Q* we write Y, for the induced ring homomorphism Q[A,,] — Q,
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then it is enough for us to show that x.(v,m) # 0 for every such y.

If, firstly, x is trivial, then the sum

j=m—1 j=m-1
X (Yaym) = Z]‘ a;X«(Tnj) = Z a;p

=0 =0

is non-zero since 0 < a; < p™+1~" for every j. Then, if x is non-trivial, and

of order p? say (so d < n,,), the element y.(w,,) = x(7,) — 1 is non-zero and

X*(wm)X*<ya,m) :X*((’/Tm - 1)ya,m)
(0 e =) =Y aldm) — 1),

where J, is the set of integers j with n; < d. It is therefore enough to note
that this last sum is non-zero since the elements {x(7,)" — 1} e, are linearly

independent over Q (as n; > ny for j > j'). O

To prove Theorem 7.1.1 we now fix an element z, as in Proposition 7.2.2(ii).
Then, since each R-module Rw and Rz, is free (the former by the first asser-
tion of Proposition 7.2.1), Schanuel’s Lemma [29, (2.24)] applies to the exact

sequences

O—>RwﬂRxGMRw@Rxawa+Rxa—>0,

0 — ker(a) = R* % Rw + Ra, — 0

(for any suitable natural number k and surjective homomorphism of R-modules
«) to imply that the (finitely generated) ideal Rw + Rz, of R is finitely pre-
sented if and only if the R-module Rw N Rz, is finitely generated (see also [14,
Cor. 2.1.3]). It is therefore enough for us to show that Rewn Rz, is not finitely

generated. To do this, we use the composite isomorphism of R-modules

Rz,/(Rw N Rx,) = (Rw + Rx,)/Rw = Q, = R/I(w)
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in which the second isomorphism is induced by ¢, (and the exact sequence in
Proposition 7.2.1) and the third by Proposition 7.2.2(i). In particular, since
the R-module Rz, is free of rank one, the displayed isomorphism combines
with another application of Schanuel’s Lemma to imply that Rw N Rx, is
finitely generated if and only if [(w) is finitely generated. In view of the
surjectivity of ¢, it is therefore enough for us to show that the quotient

module R?/(RPw + R) is not finitely generated over R.

To establish this, we argue by contradiction and so assume that, for some
natural number ¢, the set {y;}1<;<; is a set of elements of R? whose images
generate RP/(RPw + R) as an R-module. Then, writing € : R? — Z, for the
natural projection map, and noting that £(w) = 0, it follows that {e(y;) }1<i<:
is a finite set of generators of the abelian quotient group e(R?)/e(R) = Z,/Z
and this is not possible since Z,/Z is uncountable. This completes the proof

of Theorem 7.1.1.

Remark 7.2.3. As a natural weakening of the notion of coherence, a domain is
said to be a (left, respectively right) ‘finite conductor domain’ if the intersection
of any two of its principal (left, respectively right) ideals is finitely generated
(see Glaz [/5], but note that the concept was first considered by Dobbs in [37]).
In particular, by showing that Rw N Rx, is not finitely generated over R, the
above argument implies that, under the conditions of Theorem 7.1.1, Z[[G]] is

not a (left, respectively right) finite conductor domain.

7.2.2 Examples

The assumed existence of a non-torsion Sylow subgroup rules out profinite
groups such as (Z/pZ)" for any prime p and [[,(Z/¢Z) where ¢ runs over
any infinite set of primes. However, it is satisfied by most of the groups that
arise naturally in arithmetic. In particular, Theorem 7.1.1 has concrete conse-

quences such as the following.

Corollary 7.2.4. Fiz a prime p. Then the ring Z[|G]] is neither left nor right
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coherent in each of the following cases:
(i) G is a compact p-adic analytic group of positive rank.

(i1) G is the Galois group of an algebraic extension of number fields, or of

p-adic fields, that contains a Zg-subextension for any prime (.

(i1i) G is a Sylow p-subgroup of the absolute Galois group of a number field.

Proof. To prove claim (i) we recall Lazard [57] has shown that any compact
p-adic analytic group is isomorphic to a closed subgroup of GL,(Z,) for some
n. It is then enough to note that, for any infinite subgroup G of GL,(Z,) the
collection {G N (L, +p™ - M,(Z,)) }m>1 is a countable basis of neighbourhoods
of the identity that comprises open, torsion-free, pro-p subgroups (that are

normal in G).

To prove claim (ii) we fix a finite extension K of either Q or @, an algebraic
closure K of K and a Galois extension L of K in K, with G := Gal(L/K),
for which there exists an intermediate field E for which I' := Gal(E/K) is
isomorphic to Z,. Then, for each natural number n, the composite K(n) of
all finite extensions K’ of K inside L with the property that the absolute
value of the discriminant of K’/Q is at most n is a finite Galois extension
of K. In the case of the number fields, respectively p-adic fields, this follows
directly from the Hermite-Minkowski Theorem (cf. [61, §II1.2]), respectively
[53, Prop. 14, II, §5]. The groups {Gal(L/K(n))},>1 then give a countable
base of neighbourhoods of the identity of G. Notice that we have a short exact
sequence

1 — Gal(L/F) — G —T — 1

Since I' = 7Z, is non-torsion, it contains elements of infinite ¢-power order.
Hence G also contains elements of infinite /-power order, and in particular
its Sylow /-subgroups are non-torsion. Together with the fact that G' has a

countable basis of neighbourhoods of the identity (as shown above), this shows
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that G satisfies the hypotheses of Theorem 7.1.1, and so Z[[G]] is neither left

nor right coherent.

To prove claim (iii) we fix a number field K and a Sylow p-subgroup P of
Gal(K/K). It is then enough to note that P has a countable base of neigh-
bourhoods of its identity (inherited from the countable base of Gal(K/K)
constructed in claim (ii)) and a subgroup that is a free pro-p group on count-

ably many generators (for a proof of the latter fact, see Bary-Soroker et al [11,

§3]).

7.3 Coherence theorem I1

In this section we continue to use the notation fixed at the beginning of §7.2.1,

so that R = Z[[G]] and R,, = Z[',)] with T',, = G/N,,.

We shall only consider the category of left R-modules (noting that com-
pletely analogous arguments prove the same results for the category of right
R-modules). In particular, for an R-module M and map ¢ of such modules,

and a non-negative integer n, we set

M(n) =R, ®r M, and gb(n) =R, ®r ¢,

respectively regarded, in the natural way, as a (left) R,-module and as a map

of (left) R,-modules.

7.3.1 Nakayama’s lemma

Following the approach of Burns and Daoud in [17, §3], we will find it useful

to consider the category of R-modules introduced in the following definition.

Definition 7.3.1. An inverse system (M, 7,), of R-modules indezed by non-

negative integers n is said to be a pro-discrete system if, for every n, the action



7.3. Coherence theorem 11 122

of R on M, factors through R, and the transition morphism m, : M,.1 — M,
induces an isomorphism of R,-modules R, ®p,., My41 = M,. An R-module
is then said to be pro-discrete if it is equal to the limit of a pro-discrete system

of R-modules.

Remark 7.3.2. The ring R is itself a pro-discrete R-module since it is the
limit of the inverse system (R, pn)n in which p, is the natural projection map
R,11 — R, (which induces the canonical identification R, ®g, ., Rny1 = Ry).
In addition, any R-module M gives rise to a pro-discrete system (Mny, Tp)n,
with 7, the canonical map M,41) — My, and hence to a pro-discrete R-
module @nM(n). In particular, an R-module M is pro-discrete if the canonical
map M — T&lnM(n) is bijective. In general, however, finitely presented R-
modules need not be pro-discrete and the category of pro-discrete R-modules

need not be abelian (cf. [17, Rem. 3.4]).

In the sequel, for any finitely generated (left) module M over a ring A we will

also write pa (M) for the minimal number of generators of M.

The next result establishes a natural analogue of Nakayama’s Lemma for the
category of pro-discrete R-modules (and thereby generalises aspects of [17, Th.

3.8)).

Proposition 7.3.3. Assume G is pro-p, fix a pro-discrete system (M, Tp)n
of R-modules, and write M for the associated pro-discrete R-module @n M,.

Then the following claims are valid.

(i) M is finitely generated (over R) if and only if it contains a finite subset
that, for every n, projects under the natural map M — M, to give a set

of generators of the R,-module M,.

(i1) If there exists a natural number d such that ug,(M,) < d for all n, then
M is finitely generated and pr(M) < pz(My) + d.
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Proof. To prove claim (i) we assume to be given a natural number m and a
subset Z = {2z = (Zin)nt1<i<m of M (so, for all i and n, 2, € M, and
Tn(Zin+1) = zin) such that, for all n, the R,-module M, is generated by
{Zin}1<i<m. It is then enough to show Z generates M over R and to do this

we consider the exact commutative diagram

ker(p7,y) — ker (1)

0 — ker(tp1) — R, Sy My, —— 0 (7.10)
NI R

0 — ker(s,) — R "% M, ——0.

n

Here ¢, is the (assumed surjective) map of R,-modules that sends the i-th
element in the standard basis of R to z;, (so that the lower right hand

square commutes) and 6,, and ¢, are the respective restrictions of p!" and

bp+1-

Write J,41 for the (two-sided) ideal of R, ; generated by {h — 1 : h €

Ny /Nps1}. Then the map pl* is surjective, with kernel the submodule J7

of R, and the (assumed) bijectivity of R, ®g,,, 7, implies ker(m,) =

1
Jni1 - Myi1. It follows that ¢, is surjective and hence, by applying the
Snake Lemma to (7.10), that 6, is surjective. This last fact then implies (via
the Mittag-Leffler criterion) that the derived limit @; ker(c,) with respect
to the maps #,, vanishes. Upon passing to limit over n of the commutative

diagrams given by the second and third rows of (7.10), one therefore deduces

that the map of R-modules
R™ = @nR? — MnMn =M

that sends the i-th element in the standard basis of R™ to z; is surjective. It
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follows that M is generated over R by the set Z, as required.

To prove claim (ii) we note Ry = Z and set k := uz(My) < d. We show
first that, for each n, there exists a subset X, := {2;,}1<i<x of M, with the

following two properties:

(P1) the R,-submodule M/ of M, generated by X, has finite, prime-to-p

index;

(P2) for each n’ < n, the natural map M, — M,, sends z;,, to z;, for every

Y

index ¢ and also induces an isomorphism of R,,-modules R,y ®g, M/ =

M,

To establish this we use induction on n. For n = 0 the necessary conditions are
satisfied by taking X, to be any set of generating elements for the (assumed to
be finitely generated) abelian group M, (so that M{ = M;). For the inductive
step we fix n > 0 and assume that suitable sets X,,, have been constructed for
each m < n. For each index ¢ with 1 < ¢ < k we then fix a pre-image z;,
of x;,—1 under the given map m,_ : M,, = M,_1, set X, := {x;, }1<i<x and

write M/ for the R,-submodule of M,, generated by X,,. It is then clear that

Zp Xz ’/Tnfl(M;,) = Zp Xz M;@_l = Zp Xz Mnfl = Zp Xz 7Tn71<Mn)7

where the second equality is a consequence of (P1) (for n — 1), and hence that

Zp ®Z Mn = Zp ®Z M7,1 -+ Zp ®Z ker(ﬂn,l) = Zp ®Z M7/1 + Jn . (Zp ®Z Mn)

Now, since N,,_1/N, is a finite p-group, the ideal J,, belongs to the Jacobson
radical of Z,®zR,, and so the last displayed equality combines with Nakayama’s
Lemma to imply that Z, @z M,, = Z, ®z M,,. It follows that the index of M,
in M, is finite and prime to p, and hence that (P1) is satisfied. The first

property in (P2) is also clear for this construction, and the second property is
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true provided that the natural composite map
Ry ®g, MrlL — Ry Qg, Mp = My

is injective. However, the kernel of this map is isomorphic to a quotient of the

group
Torf" (R, M, /M) = Tor ™™ Nz N /M) 2 Hy (N, /Ny, My, /M),

and the latter group vanishes since N,,//N,, is a finite p-group whilst the order

of M, /M) is prime to p.
For each n > 0 we now consider the exact commutative diagram

0 —— [LM, 2 LM, — [[,Qn — 0
| a-m | a-xn | (7.11)

0 — [, M), M LM, — I[@n — 0

in which ¢, : M — M, is the natural inclusion map, we set @, := cok(¢,),
7, is the map M) ., — M, obtained by restriction of m, and m is the map
Qn+1 — @Qp induced by m,. In particular, since the maps 7, are surjective,
the Snake Lemma applies to this diagram to give a short exact sequence of

R-modules

0= M —M-—Q—0, (7.12)

in which we set M’ := gnnM,’L and @ := I&an” (with the respective limits
taken with respect to the maps 7/, and 7//). In addition, the final assertion
of property (P2) implies that the inverse system (M« ), is pro-discrete and
so claim (i) implies that the set {(z;,)n}1<i<x generates M’ over R and hence

that
pr(M') < k= pgz(Mo). (7.13)

To establish that M is finitely generated and pur(M) < uz(My) + d, we are



7.3. Coherence theorem 11 126

therefore reduced, via the exact sequence (7.12) and inequality (7.13), to show-

ing that pur(Q) < d.

To prove this we note that, for each n, the diagram (7.11) gives rise to an exact

commutative diagram of R,-modules

(tn+1)(n)
E—

(M7/z+1)(n) (Mn+1)(n) — (Qn+1)(n) — 0

(W%)m)l (Tfn)(n)l (ﬂi)(ml

0o —— M s M, —— Q, —0.

In particular, since the first two vertical maps are bijective (as the systems
(M x), and (M, m,), are pro-discrete), the third vertical map is also bijec-
tive and so the inverse system (Q,,, 7 ), is pro-discrete. It follows that @ is a
pro-discrete R-module and so claim (i) reduces us to constructing a subset Z

of () such that ]Z | < d and, for every n, the module @, is generated over R,

by the image of Z.

We shall now inductively construct a suitable set Z and to do this we note
that, as (), has order prime-to-p, it is naturally a module over the algebra
R, = Z[1/p|[l',]. In particular, for each n’ with 0 < n’ < n, the central

idempotent

Enn/ = |<Nn’/Nn)|_IZ v

’YGNn//Nn
of R,, induces an identification of Q,, = R, ®g, Q, = Ry ®r, @, with
the submodule e, ,,Q, of J,,, and hence also a direct sum decomposition of

R,,-modules

Qn = (1 - en,n’)Qn S7) Gn,n’Qn = (1 - en,n’)Qn ©® Qn’- (714)

In addition, since each module @, is (by its very definition) a quotient of M,,,
one has pg, (Qn) < pg,(M,) < d, where the last inequality follows from the
stated assumption on M. For each n we can therefore fix a set of generators

{Zi, h1<i<a of the R,-module Q,,. We then set ey _; := 0 and, for each index 1,
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define an element

~ L ~/
o - Ca,a— i,a
Zin E (1 —e€4a-1)%, € Qn

0<a<n
(where we use (7.14) to regard each @, for n’ < n as a submodule of @Q,).
Then each family z; := (giv”)nzo belongs to the inverse limit () = lgann In
addition, for every n, the decompositions (7.14) imply that the R,-module @,
is generated by the elements {Z; , }1<i<4, and so the subset 7 = {Zi}1<i<a of
() has all of the properties that are required to complete the proof of claim

(i). 0

7.3.2 Divisibility of Tor-groups

Throughout this subsection we fix a rational prime p. For an abelian group A
and natural number m we set Ajm] := {a € A:m-a = 0}. We also write A,
for the inverse limit @meNA /p™ (with respect to the natural projection maps),
and use similar notation for homomorphisms. For a ring R, we write pdz(M)
for the projective dimension of a (left) R-module M. We also recall that, for
any natural number n, an R-module M is said to be ‘finitely n-presented’ if
there exists a collection of natural numbers {¢;}o<i<, and an exact sequence

of R-modules of the form

0 — ker(6,) = R 2 Rint .o By Rl 2o pp g, (7.15)

The following technical result will be useful for the proof of Theorem 7.1.2.

Proposition 7.3.4. Let p be a rational prime and let G be a profinite group
and M be a finitely generated Z[[G]]-module with the following properties:

(1) M[p] = (0).

(i) M is finitely n-presented, for some natural number n.

(i) pdz, c) (M) < n.
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Then, for every Z[|G]]-module L with L[p] = (0), and every integer a > n, the
higher Tor-group ToraZHG”(L, M) is p-divisible.

Proof. Set R = Z[[G]] and A := Ry, = Zy[[G]]. We first make an easy
observation about short exact sequences. For this we note that, if M; is any
R-module with Mj[p] = (0), then a short exact sequence of R-modules 0 —
M, — My — M3 — 0 gives rise, for each natural number m, to an exact

commutative diagram

0 —— M/p™" —— My/p"tt —— Mz/p™T —— 0

Ql,mJ/ QQ,MJ/ QB,mJ/

0 —— M/pm™ —— My/p" —— M3/p™ —— 0,

in which each map g; ,,, is the natural projection. Then, since g ,, is surjective,
the Mittag-Leffler criterion implies that, upon passing to the limit over m of
these sequences, one obtains a short exact sequence of A-modules 0 — M 1,y —

M27<p> — M37<p> — 0.

Turning now to the proof of the stated result, property (ii) allows us to fix
an exact sequence of R-modules of the form (7.15). Then, under condition
(i), this sequence breaks up into a finite collection of short exact sequences in
which no occurring term has an element of order p. Hence, by applying the
above observation to each of these short exact sequences, one deduces firstly

that for each m the induced sequence

m

0 = ker(6,)/p"™ L (R/p™)'™ 25 (R/p™)'= - 25 (R/p™)" = M/p™ =0
(7.16)
is exact and then, upon passing to the limit over m, that the induced sequence

of A-modules
L en D 91, D
0— ker(@n)<p> —E>—> Aln —<—)—> Aln=1 ... ——<—>—) Ao — M<p> —0 (7.17)

is also exact. By using this sequence to compute Tor-groups, one obtains an
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isomorphism
ker (L) @4 On,ip))

im (L) @a )

Tor) (L), M)

1%

(7.18)

To compute this group, we note that, for each index 4, the module Ly, ®x A"
identifies with (L))" = @m((L/pm) ®Qp/pm (R'/p™)). In particular, since
inverse limits are left exact, this observation (with i =n and i = n — 1) gives

an equality

ker (L) ®@a05,)) = im ker((L®@gby)/p™) = lim ker((L/p™)@p/pm (00/p™)),

where the limits are taken with respect to the transition maps induced by the
projections (L/p™)t" — (L/p™ '), In a similar way, one finds that there is

a corresponding inclusion

im (L) ©a 1) S lim im((L/p™) @rjpm tm)-

The isomorphism (7.18) therefore induces a surjective composite map of A-

modules

_lm, ker((L/p™) @p/pm (0n/p™))

Jm im((L/p™) @p/pm tm)
ker((L/p™) ®rypm (0,/P™))

mAm((L/p™) @rpm tm)

= lim Tor /" (L/p™, M/p™).

Torp (L), M) (7.19)

=

Here the first isomorphism follows from the Mittag-Leffler criterion since the

projections

m((L/p™) @gjpm tm) = ((L/p™") Sjpnt 1)

are surjective, and the second is obtained by computing the groups

TornR/pm(L/pm, M /p™) via the resolutions (7.16).
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Next we note that (since L[p] and M|[p] vanish) there are short exact sequences
0—)L£>L—)L/pm—>0 and 0—>Mﬂ>M—>M/pm—>O
which combine to give a composite injective homomorphism of abelian groups

Tor (L, M) /p™ < Tor®(L/p™, M/p™) = Tor®/?" (L/p™, M/p™).  (7.20)

Here the isomorphism is induced by the fact that the standard spectral se-

quence
Tor, "™ (L/p™, Tor®(M, R/p™)) = Tor,/*" (L/p™, M /p™)

collapses on its first page since Tor(M, R/p™) vanishes for all ¢ > 0 (as
Torf(M, R/p™) is isomorphic to M[p™]). After taking the inverse limit over
m of the maps (7.20), we deduce from (7.19) that Tors (L, M), is isomorphic

to a subquotient of Tor (L, M)

In particular, since property (iii) implies that Torﬁ(L@),M(m) vanishes, the
module Torf(L, M), must also vanish and so the group Torf(L, M) is p-

divisible.

This proves the stated claim with a = n. To prove the same result for all
a > n, one can then use an induction on a. The key point for this is that, if
0— L — F — L — 0is any short exact sequence of left R-modules in which
F' is free, then one has L'[p] = (0) and also, since a —1 > n — 1 > 0, the

natural exact sequence
(0) = Tor®(F, M) — Torf(L, M) — Tor®® (L', M) — Tor® [ (F, M) = (0)

implies Tor®(L, M) is isomorphic to Tor® (L', M). O
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7.3.3 Proof of Theorem 7.1.2

We henceforth fix a group G as in Theorem 7.1.2, and continue to set R :=
Z[|G]]. We also now fix natural numbers n and {t; }o<;<, and an exact sequence

of left R-modules of the form (7.15).

We recall that Costa [28] defines R to be ‘left n-coherent’ if, for every such
sequence, the R-module ker(6,,) is finitely generated. (This property is labeled
as ‘strong left n-coherence’ by Dobbs et al [33], and more conceptual treatments
are given by Zhu [81] and Bravo and Pérez [11]). We note, in particular, that
R is left 1-coherent if and only if it is left coherent in the classical sense of
Chase [24] and Bourbaki [13], and we recall that if R is left n-coherent, then

it is automatically left n’-coherent for every n’ > n.
We start by recording a useful technical result.

Lemma 7.3.5. If U is an open subgroup of G, then R is left n-coherent if and
only if Z[[U])] is left n-coherent.

Proof. Since the index of U in G is finite, the functor Z[[G]] ®zuy — is flat
and a Z[[U]]-module N is finitely generated if and only if the Z[[G]]-module
Z[[G]] @zquy N 1is finitely generated. The stated result is a direct consequence
of these facts. O

Following this result (and the observations made in the proof of Corollary
7.2.4(1)), to prove Theorem 7.1.2 it is enough for us to show the following: if
G is both pro-p and has no element of order p, and if n = d+ 3 in (7.15), then
the R-module K := ker(f,;3) is finitely generated. Our verification of this fact
will depend crucially on the properties of K that are established in claim (ii)

of the next result.
Proposition 7.3.6. Assume that G is pro-p and has no element of order p.

(i) The R-module im(0y3) is pro-discrete.
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(i1) Set t = ty.3 and, for each m, write o' for the natural projection R' —

m

Rt . Then the R-module K is equal to anmen(K) and is pro-discrete.

Proof. For each natural number a, there exists a commutative diagram of R-

modules

0 K——sR 2 -\ 0 (7.21)

7

K(a+1) Qat1 Qat1

tat1 O(at1)
00— QZ+1(K) - wal - M(/a+1) —0,
oL A
ta 0(a)
0 o (K) R! M, 0.

Here we set 6 = 64,3, K = ker(0), M’ :=im(0) = ker(f4+2), and write ¢ for the
tautological inclusion K C R*. We also write p!, for the projection R, , — R
(so that g}, = pl o0 1), Vas1 for the canonical map K41y — 0f 1 (K) and 444
for the inclusion ¢!, (K) C R! ;. In addition, all unlabelled arrows in the
diagram are the natural projections. Then, as v, is surjective and R!,,, =
(R")(a+1), the commutativity of the diagram implies that the second, and in
a similar way third, row is exact. In particular, since pf, (o', (K)) = o} (K)
for every a, the Mittag-Leffler criterion ensures that, by passing to the inverse

limit over a of these diagrams, we obtain an exact commutative diagram

0 K : R — M 0 (7.22)

Tt

(0(a))a
0——lim () = lim R}, =">lim M, —=0.

and hence, by applying the Snake Lemma to this diagram, an exact sequence
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of R-modules
0= K% lim o, (K) — M % lim M/, — 0.

To simultaneously prove claim (i) and the first assertion of claim (ii), it is thus
enough to prove p is injective. This is, however, a direct consequence of the

commutative diagram

/7
M 5 Rlae

| |

. (#/(a))a . t
/ d+2
l]maM(a) - l]maRa

in which g/ denotes the natural inclusion.

To prove the second assertion of claim (ii) it is then enough to show that the
map

Rg * Ra ®Ra+1 QZ—{-I (K) — QZ(K)

that is induced by the surjection p!, is injective (and hence bijective). For this
argument we write A for the finite normal subgroup N,/N,y; of T'yy; and

note that the functor R, ®g. ., — on left R,,;-modules identifies with taking

a+1

A-coinvariants. In particular, the second and third rows of the exact diagram

(7.21) give rise to an exact commutative diagram of R,-modules

TO"?QH(RaaM(/aH)) = (QZH(K))A M (RZJrl)A - (M(/a+1))A — 0

| 1

which implies that ker(k,) = ker((tqo41)a) = im(&,) is isomorphic to a quotient

of the homology group Torf”““(Ra,M’ ) = Hl(A,M(’aH)). In particular,

(a+1)

since the exponent of the latter group divides |A| (which is a finite power of

p), the same is true for the group ker(x,).
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On the other hand, the first row of (7.21) induces an isomorphism of
ker(voi1) = ker(t(aq1)) with Torf(Ra41, M') and hence gives rise to an exact

commutative diagram

(Torfi(RaJrl,M’))A —— (Ko1)o Lesila, (01 (K))y — 0

1 | -

0 —  Torl(R,M") —— Ko —25  d(K) ——0.

This diagram implies ker(k,) is isomorphic to a quotient of Torf(R,, M").
Hence, since the exponent of ker(k,) divides |A|, to prove &, is injective it is
enough to show Tor'(R,, M'), and hence also ker(k,), is p-divisible. To prove
this we first note that the exact sequence (7.15) (with n = d+3) induces an iso-

morphism between Tor{'(R,, M') = Tor"(R,, im(0443)) and Tor¥ (R, im(6;)).

The key point now is that, since G has no element of order p, its p-
cohomological dimension is finite and equal to d (by Serre [70, Cor. (1)]).
In particular, by applying a result of Brumer [15, Th. 4.1 with Q = Z,| in this
case, it follows that pd, (im(6;))) < d+ 1.

In addition, the sequence (7.15) (with n = d + 3) implies that the R-
module im(6;) is finitely (d 4 2)-presented. Hence, since neither im(6;) C R
nor R, has an element of order p, we may apply Proposition 7.3.4 with
M = im(6,),L = R,,n = d+ 2 and a = d + 3 in order to deduce that
Tork 4(Ra,im(6;)) = Tor{'(R,, M'), and hence also ker(k,), is p-divisible, as

required. O

In view of Proposition 7.3.6(ii), we can now apply Proposition 7.3.3(ii) to the
R-module K to deduce it is finitely generated provided that, as m varies,
the quantities g, (0%,(K)) are bounded independently of m. By applying
the Forster-Swan Theorem (cf. [29, Th. 41.21]) to each order R,,, the latter

condition is then reduced to showing the existence of a natural number ¢ such
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that, for every m and every prime ideal p of Z, one has

ILLRm,p (an(K)p) S C.

We therefore fix m and first consider pp,, , (0%, (K),) for prime ideals p # pZ.
To do this, we fix such a p and set A := R,,,, = Zy[[',] and A := Q,[I',,].
Then, since I'y, is a finite p-group (and so |I';,| ¢ p), A is a maximal Z,-
order in the finite-dimensional separable Q,-algebra A, and so the results of
Auslander and Goldman in [5] imply that A-lattices M and N are isomorphic
if and only if the associated A-modules Q, ®z, M and Q, ®z, N are isomorphic
(for details see Reiner [66, Th. (18.10)]). In addition, if we write {e;};cs for
the full set of (mutually orthogonal) primitive central idempotents of A, then

./461‘

the maximality of .4 implies that it decomposes as a direct product [,.;
of Z,-orders and, for a set of non-negative integers {d;};c;, there exists an

isomorphism of A-modules

Qy ®z, 0 () = (D, (Ae)™ = Qy @z, (P, (Ae))”

(see, for example, [29, Prop. (3.18)]). It follows that the A-lattice ¢f, (K), is
isomorphic to €0, ;(Ae;)% and hence that 114 (o, (K)p) is the maximum of the
set {d; : i € I}. On the other hand, since ¢! (K) C R! , for each i € I the
Qp-space (Ae;)% = e;,(Q, ®z 0, (K)) is a subspace of €;(Q, ®z R!,) = (Ae;)".
It follows that d; <t for all ¢ € I, and hence that .4 (0, (K),) < t.

We now compute pg,, , (gﬁn(K)p) for the ideal p = pZ. In this case, the kernel
of the projection R,,, — Ry, = Z, belongs to the Jacobson radical of R,,,

and so Nakayama’s Lemma combines with the isomorphism Z,®pg,, » 0, (K) =

0 (K), that is induced by (the argument of ) Proposition 7.3.6(ii) to imply that
PRy (00 (K)p) = 112, (Zy @2 6 (K)).

Thus, if one takes ¢ to be the maximum of ¢ and uz,(Z, ®z 0,(K)), then the
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above argument shows that ug, , (gﬁn(K )p) < c for every m and every prime

ideal p of Z. This therefore completes the proof of Theorem 7.1.2.

Remark 7.3.7. In this remark, we continue to assume G is a compact p-adic
analytic group of rank d, and consider the possibility of strengthening Theorem

7.1.2.

(1) In order to prove, by the same method, R is (d + 2)-coherent, it would be
enough to show, if n = d+ 2 in (7.15), then pd, (im(6:),) < d + 1. This
condition is satisfied if |, .M [p"] has no non-zero p-divisible subgroup (as is
the case if M is pro-discrete) since then the induced map im(6y)yy — R’é% is
injective and so [15, Th. 4.1] implies pd, (im(01)<p>) < d. In general, however,
establishing injectivity of all the possible maps im(6y)yy — RYZ;) is, in effect,
equivalent to showing R satisfies a variant of the Artin-Rees property relative

to the ideal pR and seems difficult.

(11) If d < 2, then an alternative approach (that does not rely on [15] and [70])
can be used to improve Theorem 7.1.2. Specifically, if either d =1, or d = 2
and G contains a pro-p meta-procyclic subgroup (in the sense of [71, Chap. 3,
Ez. 10]), then a special case of the exact sequence in Proposition 7.2.1 can
be used to show directly that, if n = 2d in (7.15), then Tork,(R,,im(6,)) is
p-divisible, and so (by the above argument) R is 2d-coherent. This approach
underlies the proof of [17, Th. 1.1] (for G = Z,), but does not apply in all
cases since pro-p compact p-adic analytic groups need not have any infinite
procyclic normal subgroups (for example, if m > 3, then results [51, Th. 1
and Th. 3(ii)] of Klingenberg imply all infinite normal subgroups of SL,,(Z,)
are open). In fact, by closely analysing the finite-presentability of pro-discrete
modules, it is also shown in [17, Th. 1.1 and Prop. 5.2] that Z|[Z,]] has weak
Krull dimension 2 (in the sense of Tang [71]) and, for ‘most’ p, is a (2,2)-
domain that is neither a (1,2)-domain nor a (2,1)-domain (in the sense of
Costa [28]). However, we do not know the extent, if any, to which such finer

structure results generalise.
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