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Abstract: We address the problem of parameter estimation for degener-
ate diffusion processes defined via the solution of Stochastic Differential
Equations (SDEs) with diffusion matrix that is not full-rank. For this class
of hypo-elliptic SDEs recent works have proposed contrast estimators that
are asymptotically normal, provided that the step-size in-between obser-
vations A = A, and their total number n satisfy n — oo, nA, — oo,
A, — 0, and additionally A, = o(n~'/2). This latter restriction places a
requirement for a so-called ‘rapidly increasing experimental design’. In this
paper, we relax this limitation and develop a general contrast estimator sat-
isfying asymptotic normality under the weaker condition A, = o(nfl/p)
for general p > 2. Such a result has been obtained for elliptic SDEs, but its
derivation in a hypo-elliptic setting is highly non-trivial and requires a sep-
arate approach. We provide numerical results to illustrate the advantages
of the developed theory.
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1. Introduction

We consider the problem of parameter inference for multivariate Stochastic Dif-
ferential Equations (SDEs) determined via a degenerate diffusion matrix. Let
(Q, F,{Fi}t>0,P) be a filtered probability space and let W = (WL ..., W,
t > 0, be the d-dimensional standard Brownian motion, d > 1, defined on such
a space. We introduce N-dimensional SDE models, N > 1:

d
dX; = p(Xy, 0)dt + Y A;(Xy,0)dW{,  Xo =z RV, (1)
j=1

with p, 4;(-,0) : RY — RN, 1 < j < d, for parameter 6. This work focuses
on the case where the diffusion matrix A = [A1,..., A4] is not of full-rank,
i.e. the matrix a = AA" is not positive definite. The law of the solution to (1)
is assumed to be absolutely continuous with respect to (w.r.t.) the Lebesgue
measure. Such models are referred to as hypo-elliptic diffusions and constitute
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an important class of Markovian processes used in a wide range of applications.
E.g., this class includes the (underdamped) Langevin equation, the Synaptic-
Conductance model [6], the NLCAR(p) model [27, 26], the Jansen-Rit neural
mass model [5], the SIR epidemiological model [25] and the quasi-Markovian
generalised Langevin equations (¢-GLE) [29]. We investigate two (sub-)classes
of hypo-elliptic SDEs which cover a wide range of models, including the ones
mentioned in the above examples. The first model class is specified via the
following SDE:

dXg, ps(Xt, Bs) UN j

dX = ’ = ’ dt S dW]
' [dXR,J [HR(Xn Br) + Z i( X, 0 v (Hypo-I)
ypo-

The involved drift functions and diffusion coefficients are specified as follows:

MS:RNx@ﬂS—)RNS, uR:RNxG)ﬁR—)RNR,
Arj RV x0, »RV® 1<j<d,

for positive integers Ng, Ng such that N = Ng + Ng. Here, the unknown pa-
rameter vector is

0 = (Bs,Br,0) €O =0Ops, x Op, x O, CRVss x RVor x RN-,

for positive integers Ng., Ng,, N, satisfying Ng, + Ng, + N, = Ny. The pa-
rameter space O is assumed to be a compact subset of R™V¢. Later on we place a
condition on (Hypo-I), related to the so-called Hérmander’s condition, so that
such an SDE gives rise to a hypo-elliptic process, i.e. its finite-time transition
distributions admit a Lebesgue density. In brief, the condition will guarantee
that randomness from the rough component Xp: propagates into the smooth
component Xg; via the drift g. The second hypo-elliptic model class we treat
in this work is specified via the following SDE:

dXs, ¢ ps, (Xs,t, Bs,) d Ong, 4
dXt = dXSz,t = HS, (Xtv 552) dt + Z ONS2 thJa
dX g+ wr(Xt, Br) i=1 | Agr ;(X¢,0) (Hypo-II)
1‘51
Xo=z=|zg,| € RN,
TR

T
where we have set Xg; = [X;—l)t,X:ng] . Also, we now have the parameter
vector:

0= (ﬁslaﬁ527BR7U) S 0= @651 X 6552 X (—)BR X 60'

N N
CRs1 x R"Ps2 x RVer x RNe,
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with integers Ngg , Ngg, such that Ng, = N, + Ngg,, and the drift functions
are now specified as:

. N, N, N N,
us, R S)(@]\[ﬁs1 =R pug, R X@Nﬁsz — RS2,

with integers Ng,, Ng, > 1 so that Ng, + Ng, = Ng. Again, © is assumed to
be compact. Note that the drift pg, depends on the smooth component Xg
and not on Xpg ¢, thus randomness from Xp; does not directly propagate onto
Xs, - We refer to an SDE of the form (Hypo-II) as a highly degenerate diffusion.
Throughout the paper the class (Hypo-II) is treated separately from (Hypo-I).
Later on we introduce a Hérmander-type condition guaranteeing that (Hypo-IT)
gives rise to hypo-elliptic SDEs.

We consider parameter estimation for the classes (Hypo-I), (Hypo-1I), given
discrete-time observations of the full vector X; at instances t; = iA,, 1 < i < n,
for step-size A,, > 0. We develop contrast estimators for models in (Hypo-I),
(Hypo-1I), and study their asymptotic properties under a high-frequency com-
plete observation scenario. In particular, we assume the setting n — oo, A,, — 0,
nl, — oco. Over the last two-three decades, numerous works have studied para-
metric inference for diffusion processes in a high-frequency setting. These works
were initially focused on elliptic diffusions, i.e. SDEs in (1) with a positive defi-
nite matrix a = AA". The work in [16] proposed a contrast estimator for scalar
elliptic diffusions and proved asymptotic normality (via a CLT) under the design
condition A, = o(n™/?), p > 2. [28] extended such a result to multivariate el-
liptic SDEs and proposed an adaptive-type contrast estimator achieving a CLT
under the same design condition as in [16]. In contrast, hypo-elliptic SDEs have
been relatively under-explored until recently, though an interesting empirical
study, without analytical results, was provided by [22].

To obtain asymptotic results in the hypo-elliptic setting similar to the ones
available for elliptic SDEs, one must deal with a number of challenges. A stan-
dard Euler-Maruyama discretisation leads to a Dirac measure due to the in-
volved degenerate diffusion matrix. This can be resolved by considering a higher-
order Ité-Taylor expansion for Xg; that propagates additional Gaussian vari-
ates onto the smooth components. For class (Hypo-I) such a direction leads to a
discretisation scheme with Gaussian increments of size O(Ai/ %) for the smooth
components. However, recent works [6, 8, 13] have highlighted that introduction
of high-order Gaussian variates in the smooth components must be accompanied
by an appropriate high-order mean approximation of the rough components. If
such a balance is not achieved, estimation of Sz becomes biased. Within class
(Hypo-I), [6] developed a non-degenerate discretisation scheme in the setting of
Ng = 1 and of the diffusion matrix A being diagonal. [6] proposed contrast esti-
mators separately for Bg and (8g, o) and proved a CLT under A,, = o(n~'/?),
i.e. for a ‘rapidly increasing experimental design’ [23]. [7, 8] addressed the is-
sue of disjoint estimation, within (Hypo-I), by working with an approximate
Gaussian density for the complete vector X; and providing a joint contrast esti-
mator for the full parameter vector (8g, 8s,0). They showed that the estimator
is asymptotically normal under the same design condition A, = o(n_l/ 2). For
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bivariate models in class (Hypo-I), [18] used a local linearisation [4] of the drift
function to obtain a non-degenerate Gaussian discretisation scheme and con-
struct a contrast estimator attaining a CLT under A, = o(nfl/ 2). For class
(Hypo-II), [13] worked in a general multivariate setting and established a joint
contrast estimator achieving a CLT under A, = o(n~'/2). The design condi-
tion A,, = o(n~'/2) assumed in the above works can be restrictive in practice.
Indicatively, if a user tries to design a dataset with a large interval T,, = nA,,
and a large number of samples n to obtain accurate estimation results, then
A,, should be set to a quite small value so that condition nA? = T,,A,, — 0 is
satisfied, e.g. for T, = 1000, A,, could be much less than 1073, Datasets with
such small step-sizes are not always available in applications.

An apparent open question in the hypo-elliptic setting is the weakening of the
design condition A, = o(n"'/?). Indicatively, [18, 7] required A, = o(n~/?)
to control terms of size O(A, %), ¢ > 1/2, when proving consistency for their
contrast estimators. Thus, to arrive to a CLT under a weaker design condition,
one needs to develop a different approach compared to previous works to prove
consistency without requiring that A,, = o(n_l/ 2). Furthermore, the construc-
tion of a general contrast function for degenerate SDEs is not straightforward
due to the degenerate structure of the diffusion matrix. For class (Hypo-I), [14]
developed a contrast estimator achieving the CLT under the weaker condition
A, = o(n"'/?) via a novel closed-form transition density expansion for SDEs
within (Hypo-I). However, a general asymptotic theory under the condition
A, = o(n_l/p), p > 2, has yet to be established for degenerate SDEs.

Our work closes the above gap in the research of hypo-elliptic SDEs. We
propose a general contrast estimator for a wide class of hypo-elliptic diffusion
models and show its asymptotic normality under the weaker design condition
A, = o(n_l/ P), p > 2. Specifically, our contributions include the following:

(a) We develop two contrast estimators for the two model classes (Hypo-I) and
(Hypo-II), for the purposes of joint estimation of the unknown parame-
ter vector (Bs,SRr,o). The contrast functions are based on approximate
log-likelihood terms which we construct by making use of Gaussian ap-
proximations with high-order mean and variance expansions, while at the
same time dealing with the degenerate structure of the involved SDEs.

(b) We show that within the high-frequency, complete observation regime, a
CLT is obtained provided that the design condition A, = o(n~'/?), for
p > 2, is satisfied. To the best of our knowledge, this is the first work to de-
fine a contrast estimator achieving a CLT under the weak design condition
that nAP — 0, for arbitrarily large p > 2, in the hypo-elliptic setting. For
reference, Table 1 summarises existing works with corresponding design
conditions, including our contribution in this setting.

(c) We provide numerical experiments to demonstrate that the proposed es-
timator is asymptotically unbiased in the high-frequency complete ob-
servation regime under the weaker design condition A, = o(n~'/?), for
p > 3. The numerical results highlight that the estimators requiring
A, = o(n~'/?) proposed in the literature can indeed suffer from bias
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TABLE 1
Contrast estimators for Hypo-elliptic SDEs (high-frequency, complete observation regime).

Design Condition

‘Work Model on A, for CLT

(6] Difggs}i]gr? rIr)lavtvl:ltil i]svfiiagir.lal. An = O(n_l/Q)

(18] (Hypo-1) with Ng = Ng = 1. Ay = o(n~1/?)

[7, 8] (Hypo-T) An = 0(”71 %)

[14] (Hypo-T) Ay = o(n~1/3)

[13] (Hypo-II) A, =o(n"1/?)
This paper (Hypo-I) & (Hypo-II) A, =o(n~P), p>2

when nA? is not sufficiently small.

(d) Our methodology is relevant beyond the setting of high-frequency and/or
complete observations. The developed Gaussian approximation of the SDE
transition density can be used as part of a broader data augmentation
algorithm (e.g., MCMC or EM) given low-frequency and/or partial obser-
vations. Analytical results for such a setting are beyond the scope of this
paper. We provide a numerical result showcasing the advantage of the use
of the developed approximate log-likelihood under the weaker condition
A, = o(nfl/”), p > 3, in a setting of high-frequency partial observations.

To add to point (d) above, often in applications only smooth components are
observed. [6, 13] have shown empirically that filtering procedures incorporating
the developed approximate likelihood of the full state vector (within a data aug-
mentation approach) can lead to asymptotically unbiased parameter estimation
in a partial observation regime.

The rest of the paper is organised as follows. Section 2 prepares some condi-
tions related to the hypo-ellipticity of models (Hypo-I) and (Hypo-II). Section 3
develops the new contrast estimators and states their asymptotic properties,
thus providing the main results of this work. Simulation studies are shown in
Section 4 (the code is available at https://github.com/Yugalgu/Parameter-
estimation-hypo-SDEs). The proofs for the main results are collected in Sec-
tion 5. Section 6 concludes the paper.

Notation. For the model class (Hypo-IT), and for z = (zg,2r) € RYS x RVN7 =
RY, we write:

ﬂS = (5517ﬂ52) € @ﬁs = 6551 X ®BS27 'LLS(I’BS) - [N:;Z(&Txi7éil))] '

We can now use the following notation, for both (Hypo-I), (Hypo-II) for z € RY,
0= (65761370') €0O:

o0 = [nGh) s A0 = L] 12950
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For a test function ¢(-,6) : RY — R, § € ©, bounded up to second order
derivatives, we introduce differential operators £ and £;, 1 < j < d, so that for
(z,0) € RY x @:

a dp
Loo(,0) == Y pi(@,0) 5= (2,0)
i=1 v
2

N d ) ) o 7
+3 3 D AR @ AR, 0)——(@,0) (2)

0x;, 0x;
i1,i2=1k=1 e

Lip(x,0): E:Az

0), 1<j<d. 3)

P
We denote by Py the probability law of {X;},>¢ under 8. We write —"y and

i> to denote convergence in probability and distribution, respectively, under
the true parameter @7. The latter is assumed to be unique and to lie in the
interior of ©. We denote by S the space of functions f : [0,00) x RY x © — R
so that there are constants C,q > 0 such that |f(A,z,0)] < C(1 4+ |z|9)A
(A, x,0) € [0,00) x RY x ©. We denote by Cf(R" x ©;R™), n,m, K € N, the
set of functions f : R” x © — R™ such that f is continuously differentiable up
to order K w.r.t. x € R"™ for all # € O, and f and its derivatives up to order
K are of polynomial growth in z uniformly in 8 € ©. C;°(R™,R™) is the set
of smooth functions such that the function and its derivatives of any order are
bounded. For a sufficiently smooth f : R® — R, for o € {1,...,n}!, 1 > 1 and

1 < i < n, we write 0%f(u) = ﬁ_lﬁu&lf(u), Ou,if(u) :== a%f(u) We write
Oy = [au,i, ... ,8%”} T, 85 = &ﬁ;r, for the standard differential operators acting

upon maps R" — R, n > 1. For a matrix A, we write its (4, j)-th element as
[Alij-

2. Model assumptions and contrast estimators

We start by stating some basic assumptions for the classes (Hypo-I), (Hypo-II).
In particular, Section 2.1 provides Hormander-type conditions implying that
the SDEs of interest are hypo-elliptic, thus their transition distribution admits
a density w.r.t. the Lebesgue measure. The stated conditions also highlight that
classes (Hypo-I), (Hypo-II) are distinct. We proceed to develop our estimators
in Section 2.2. We often denote by Xt(l)7 X(H) the solutions to SDEs (Hypo-I),
(Hypo-II), respectively.

2.1. Conditions for hypo-ellipticity

We first introduce some notation. We write the drift function of the Stratonovich-
type SDE corresponding to the It6-type one, given in (Hypo-I) or (Hypo-II), as
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Ao(x,0) := p(x,0) — 3 S0, L Ax(x,0), (2,0) € RY x ©. We often treat vector
fields V : RY — RY as differential operators via the relation V < Ef\il Vidy.i.
For two vector fields V, W : RY — R their Lie bracket is defined as [V, W] =
VW —WYV. That is, for the SDE vector fields Ay, A;, 0 < k,I < d, we have that:

[AmAﬂ(I,H)
= Ap(2,0)0::Ai(x,0) = Y Aj(x,0)0, Ak(x,0),  (x,0) e RV x O,

i=1 i=1

For 1 <4 < j < N, we define the projection operator proj; ; : RN — R~

as r = [xl, e ,xN]T > proj; ;(r) = [xl-, e ,xj]T. We impose the following
conditions on classes (Hypo-I) and (Hypo-II).

H1 (). For class (Hypo-I), it holds that, for any (z,6) € RY x ©:
span{AR,k(x,U), 1<k< d} = RVx,
Span{{ Ai(z,0), [Ao, Al(z,0) }, 1 < k < d} =RV, (4)
(#). For class (Hypo-IT), it holds that, for any (z,0) € RY x ©:

span{ARk(ac,U), 1<k< d} = RV=,

span{projivy, 41w {Ak(2.0)}. proj,, 1.n{ o, Ail(@.0)}, 1 <k < d}
= RNVso+Nr,

Span{{ Ar(z,0), [Ao, Ax)(z,0) , [Ao, [Ao, Axl] (z,0) }, 1 < k < d}
—RY. (5)

H2(K) (7). For class (Hypo-I):
ps, A; € CEP2RY x ©;RYN), pupe CERY x0;RYr), 1< j<d
(i7). For class (Hypo-II):
ps, € CETHRY x ©;RYs1), pug,, A; € CEP(RY x ©;RY%2);
pr € CERYN x ©;RVR), 1< j<d

Remark 2.1. We use HI to introduce some structure upon the degenerate SDE
models (Hypo-I) and (Hypo-1I) and so that contrast functions developed later on
are well-defined. H1 is stronger than Hormander’s condition. The latter states
that there is M € N so that for any (z,0) € RN x ©:

span{V(ac,H) :V(x,0) € U Vm} =RV,

1<m<M
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where we have set Vo = {Al,...,Ad}, V. = {[AZ,A] cAeV_,0<I< d},
E>1.

If u(-,0), A;(-,0) € C°(RY;RYN) then Hormander’s condition implies that
there exists a smooth Lebesgque density for the law of X;, t > 0, for any initial
condition x € RN (see e.g. [20]). Thus, (Hypo-I), (Hypo-II) belong to the class of
hypo-elliptic SDEs. We note that H1 is satisfied for most hypo-elliptic SDEs used
in applications, as e.g. is the case for the models cited in Section 1. Condition
H2 allows the SDE coefficients to lie in the larger class C’;{(RN; RYN) for some
K € N rather than C° (RN RY). K is determined so that the contrast functions
proposed later are well-defined and error terms obtained from Ito-Taylor expan-
ston in constructing the contrast functions are appropriately controlled. We also
note that the drift functions in the smooth components, i.e. ug in (Hypo-I) and
sy s s, in (Hypo-II), require more regqularity compared to pg. This is because
our construction of the contrast functions uses higher order stochastic Taylor
expansions for those functions. More details are given in Sections 2.2.2, 2.2.3.

Example. We provide some examples of SDEs satisfying the above conditions

in applications.

i. Underdamped (standard) Langevin equation for one-dimensional particle
with a unit mass:

dg; = pdt;
dpy = (=U'(q:) + ~yp)dt + odWy,

where 6 = (v,0) is the parameter vector and U : R — R is some smooth
potential with polynomial growth. The values of ¢; and p; represent the
position and momentum of the particle, respectively. This model belongs in
class (Hypo-I) and indeed satisfies condition H1(i).

ii. Quasi-Markovian Generalised Langevin Equation (¢-GLE) for the case of an
one-dimensional particle with an one-dimensional auxiliary variable:

(6)

dg, = pedt;
dpe = (=U'(qr) + As¢)dt; (7)
dSt = (_)\pt - OéSt)dt + O'th,

where 6 = (A, «,0) is the parameter vector and U is as in (6). Note that
component s; is now introduced as an auxiliary variable to capture the non-
Markovianity of the memory kernel. The ¢-GLE class has been recently ac-
tively studied as an effective model in physics (see e.g. [17]) and parameter
estimation of the model also has been investigated in [15]. The drift function
of the smooth component g; is now independent of the rough component s;.
Model (7) belongs in the SDE class (Hypo-II) and satisfies condition H1(ii).
Details can be found, e.g., in [13].

2.2. Contrast estimators for degenerate SDEs

Under H1-H2, we define contrast functions for the classes of hypo-elliptic SDEs
(Hypo-I) and (Hypo-II), so that the corresponding parameter estimators attain
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a CLT under the design condition A, = o(n~'/?), p > 2. The development of
our contrast functions is related to the approaches of [16, 28] where, in an elliptic
setting, contrast functions delivering CLTs with A,, = o(nil/ P) are obtained.
However, carrying forward such earlier approaches to the hypo-elliptic diffusion
is far from straightforward, mainly due to the degeneracy of the diffusion matrix.
After a brief review of the construction of contrast functions that deliver a CLT
with A, = o(nfl/p) in the elliptic case, we proceed to the treatment of the
hypo-elliptic class of models. Hereafter, we make use of superscripts (I) and (II)
as necessary to specify the class of hypo-elliptic SDEs we work with.

2.2.1. Review of contrast estimators for elliptic SDEs

We review the construction of contrast estimators for elliptic SDEs in [16, 28],
where the diffusion matrix a(z, o) = A(x,0)A(z,0)" for the SDE in (1) is now
assumed to be positive definite for any (z,0) € RY x 6,.

Remark 2.2. We introduce the following notation. For a vectory € RY and a
symmetric matriz ¥ € RN*N | N € N, we define q(y; ) =y ' Sy.

Step 1. Via an It6-Taylor expansion, one obtains high-order approximations
for the mean and variance of X, given X, ,, that is:

Eq [Xti fti—l] = er(A’Xti—wg) + O(AKP—H);
Varg [Xtil}—ti—ljl =A- EKp (A’Xti—ua) + O(AKP—H)v

where K, = [p/2], with rg, (A, X;
determined as follows:

0) € RN and Ex, (A, Xy, ,,0) € RVN

i—19

TK(A7Xti—179) = Xti,—l + Z Ak : Lkil/u'(Xti,_ue);
1<k<K,

B, (A X, 0)= > AFN(Xe_,,0).
0<k<K),

In the above expression for g, we have ¥y = a = AAT, and X, k > 1, are
matrices available in closed-form and which include high-order derivatives of the
SDE coefficients.

Step 2. [16, 28] make use of a Gaussian density with mean g, (An, X¢,_,,0) and
variance A, - Ex, (A, Xt,_,,0) as a proxy for the intractable transition density
of Xy, given Xy, ,.Furthermore, to ensure that the approximation is well-defined
(notice that Zg, is not guaranteed to be positive-definite) and avoid cumber-
some technicalities, they apply a formal Taylor expansion on E;(i (Ap, Xt,_,,0)
and logdet Zx, (A, Xy, _,,0) around A, = 0 so that the positive definite-
ness of the matrix a(x,o) is exploited. Thus, they define the estimator as
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éElliptic

WU = argminge gl P(6), p > 2, for the contrast function:

[E’E‘iptic(e) = Z AZ . {Aan(th — ’I’Kp (An7Xti71,9); Gk(Xtiflve))

+Hk(Xti179)}7 (8)

where G, : RY x © — RY*Y and Hy, : RY x © — R are analytically available
and correspond to the coefficients of the A¥-term in the formal Taylor expansion
of Ef}i(A, Xt,_,,0) and of logdet 2, (A, Xy, ,,0) at A = 0, respectively.

Remark 2.3. Due to the fact that K, = [p/2], p > 2, the contrast function/es-
timator has the same form for p = 2k,2k+1, k € N. However, as [16, 28] noted
in their works, when p = 2, a simpler estimator based upon the Euler-Maruyama
discretisation is asymptotically normal under the condition A, = o(n_1/2), with
a contrast function given as:

n

KSM(H) = Z{AL,L : q(Xti - Xti—l - An /’[/(Xti—l’/g); a_l(Xtiflaon))

=1

+logdet a(Xy,_,, a)},

2.2.2. Contrast estimators for SDE class (Hypo-I)

We will adapt the strategy of [16, 28] to construct contrast functions for de-
generate SDEs, starting from the hypo-elliptic class (Hypo-I). However, the
development is not straightforward because now the diffusion matrix a(z, o)
is not positive definite. Another important difference between the hypo-elliptic
and the elliptic setting is that an It6-Taylor expansion for moments of the SDE
can involve A with varying orders across smooth and rough components.

Example. We consider the under-damped Langevin equation defined in (6).
For the model, the It6-Taylor expansion gives:

A% AZ 4 3
_ 2T 3 O(A) O(A?) .t
Vare[XtHl |./_‘.t1] =0 [%2 A + |:O(A3) O(Ag) 5 A= tl+1 tl.

Thus, the order of A is larger for the smooth component. Note that the leading
term 0?A®/3 in the variance of X ; derives from the Gaussian variate o fOA Wds
arising in the It6-Taylor expansion of Xi.

One must now find a positive definite matrix instead of a(z,8) to obtain a
general contrast function in the form of (8) in a hypo-elliptic setting while deal-
ing with such structure of varying scales amongst the components of degenerate
SDEs. We thus begin by considering a standardisation of X A(I) (conditionally on
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XO(I) = z) via subtracting high-order mean approximations from smooth/rough
components and dividing with appropriate A-terms. In particular, we introduce
the RV -valued random variables as:

1 (1) (I .

Y(I) I I) A X(I) 9) — VA3 (XS,A_TSK +1(Aaxa9)>
p,A .—mp ( s Ly A )_ 1 o) (I) A

VA (XR,A ( T ‘9))

)

where we have set K, = [p/2] and for ¢ € N,
@ 9 Ak [pk-1
7582, 0) T A" L s (x, 0) T N
: — = = R
+ kZ:l k| L ugp(z,0)]” v TR < ©)

rg?q(A,x,H) TR

with this latter quantity obtained from an It6-Taylor expansion of Eo[X A(I)]. We
note that Y, o is well-defined under H2(2K,,). Also, note that different orders
(by one) of mean approximation are used for smooth and rough components in
the above standardisation. We will provide some more details on this in Remark
2.6 later in the paper. We denote the Lebesgue density of the distribution of
XA(I) given XO(I) =xand § € © as y — ]P’(;(XA(I) € dy)/dy = pXA(I) (z,y;0).
Transformation of random variables gives that, for (z,y,0) € RY x RN x ©:

O 1 v, 4

pa (%%@ZWP (& 0) | e—nd (a.2,y.0)"

where pYP(’I)A (&0) =Py (Y;z € d€)/d¢ denotes the Lebesgue density of the law

of YI()I)A given the parameter 6 € ©. Following the standarisation, an It6-Taylor
expansion now gives, under H2 (2J), J € N:

J
Ey [Y;Ig (v2) ] =200+ A7 -0 (2,0) + RO, 2,6), (10)
j=1

where RV € § , for some analytically available N x N matrices X ].(I)(:c, 0). In

particular, matrix 3 (z,0) has the following block expression:

I I
s (,0) =) (x,0)

D(z,0) =
0,0 =) (x,0)

)

where we have set:

EI(%IR (z,0) ZARk (x,0)Api(z,0)" =agr(z,0);
k=1

d
EéIR (z,0) = %Zﬁkﬂs z,0)Ag (2, 0)", Eg%(x,e) = Eé%(x,@)—r;

k=1
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d
B{0(2,0) = 13" Lips (@, 0)Lrps(2,0)T = Las(x,0).
k=1

Matrix 3 (U (z, 0) plays a role similar to a(z, #) in the elliptic setting due to the
following result whose proof is in Section A.2 of the Supplementary Material [12].

Lemma 2.4. Under Hi(i), the matrices ag(z,0), as(z,0) and £V (z,0) are
positive definite for all (z,0) € RN x ©.

©)

We form a Gaussian approximation for p* ».a (&;0) to obtain a contrast func-
tion that will be well-defined due to the positive definiteness of matrix £ (z, §).
We introduce some notation. For h > 0,0 € ©,0 <+ < n,1 < j < K and
K e N,

m") (n,0) == m® (h, X\ XD, 0);
>00) =x0(x,,,9), 25};(9) =32V (X,,,0);

B, (h,0) =30 (0) + > W -sM0), AP©) = (=" 0)
1<<K

-1

Note that the above functions are well-defined under H2(2K,); see (9) (10). We
write the formal Taylor expansion of ( =zl (h,H))_1 and log det ._.Kz(h 6) u

to the level K € Nas Y g o h"- Gi k( )7 Y ocrer A7 HZ(-I,)C(G)7 respectlvely,
where o 7 o ’

1 B
G = =k (ER,h.0) 7",y

1
H{)(0) = 0} (log det Ei¢, (1, 0)) 0<k<K.

|h:0’
For instance, one has:

) s

C
o) =—(cho=EN ) + AP e)=00)A0 0)

) T k)

Gl0) = A" ©), GH©) =-AY <9>z£?<9>A“><9>
5
and
H(0) = logdet =V (), H(0) = Te[a " (0)=0)
H(0) = T [1610)=00) + AP O)2H0).

Note that the terms G( 1 (0) and H(I) +(0) involve the inverse of the matrix 21(.1) (9),
and are well-defined followmg Condltlon H1(:) and Lemma 2.4. We now con-

struct the contrast function €p’n’A( ), 8 = (Bs, Br,0) € O, for the hypo-elliptic
class (Hypo-I) as follows. Under Condition H2(2K},):



Parameter inference for hypo-elliptic diffusions 1349

(i) For p = 2,

n

£4500) = > {mf) (2, 0)TAL, () mf)(A,.0) + logdet 2, (0) | (11)

i=1
(ii) For p > 3,
I 1 1 1
(0.0 ZZN {m{(a,.07 60 O)m)(A,,0)+HY, ()} (12)
1=1 j=0

Thus, the contrast estimator 9}517)1 = (Bspms Bropm, Opm), p > 2, is defined as

00 = argmin £V (9).
P Gge@) pn(f)

2.2.3. Contrast estimators for SDE class (Hypo-II)

To construct the contrast function and corresponding estimator for the highly
degenerate diffusion class defined via (Hypo-II), we proceed as above, that is
we consider an appropriate standardisation that takes under consideration the
scales of the three components (Xg, A, Xs, A, Xr a), A > 0. Note that the first
smooth component Xg, o has a variance of size O(A®) due to the largest (as
A — 0) variate in the Ito-Taylor expansion being fOA Jo Wyduds, where we

have made use of the fact that the drift ug, is a function only of the smooth
components. Thus, under Condition H2 (2K,), we introduce:

1 11 11
5 (X6, — 76 08X, 0))

(11 II IT II
p,i)( ,0) = \/1A_§7.< é27)ti _ng?KP+1(A Xt(L )1’9)) )
1

11 1 1
(Xies, = ik, (A, X070, 6))

VA,
where we have set, for ¢ € N, (A, z,6) € (0,00) x RN x ©:

(I1)
Talq(A7m79) rs, q Ak ﬁ /'le(‘r79)
T52 q(A’ x, 9) = |xzg, | + Z F El;:ll'uSQ (;Z}, 9)
rD@Ae,e) | Lol T LET ar(@f)

We will explain the choice of the truncation levels used above in the mean
approximation 'V in Remark 2.6. Via an It6-Taylor expansion, we obtain under
Condition H2 (2K,) that:

Egi [m7,,(A,0)7 SZl(Aﬂ)IFn]

=xM9) + Z A= (9) + R(AKH X 0), (13)
j=1
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for some analytically available matrices EEH)(H), ESIZI)(G) e RV*N 1< <
n, j € N, and a residual R(-), such that [R(‘)|kk, € S, 1 < ki,ke < N.
In particular, the matrix El(-H)(Q) = E(H)(Xt(iu), 0) admits the following block
expression:
11 I 11
25, (#.0) By, (2.0) B h(,0)
11 11 I I
2W(2,0) = |25 (2.0) =5 (2,0) =5 (2.0) (14)
11 11 11
Sho,(0.0) g, (2.0)  gp(.0)

for (x,0) € RY x ©, where we have set:

21(2111%) (z,0) ZARIc z,0)Ag 1 (r,0)" = ag(z,0);

k=1
d

S0 (2,0) =1 Lips, (@,0)Arp(z,0)T, S5 (2,0) =28 %(2,0)T;
k=1

d
S8 @,0) = 137 Lilps, (,0)Api(z,0)T, 58 (2,00 = 28 (2,0)7;
k=1

d
S0 (@.0) = 13" Lups, (2,0) Lrps, (2,0)T = Las, (2,6),

k‘ﬁl

S0 @.0) = 137 Lilps, (1,0) Laps, (2,0)T, BEY (2,0) =B (2,0)7,
=

Zélllgl( ,0) = % LiLus, (x,0)LiLis, (x,H)T = 2—10(151 (z,0).
k=1

As is the case with the matrix XU (z,6), (z,0) € RN x O, for the matrix
> (z,0), we have the following result whose proof is provided in Appendix B
of [13].

Lemma 2.5. Under condition H1(ii), the matrices ag(x, ), ags,(x,0), as, (z,0)
and 2" (x,0) are positive definite for all (x,0) € RY x ©.

For h >0,0<i¢<nand 0<k<K,=[p/2], we write:

AT0) = (200) ", 200 =30 +Zhﬂ- =,

K2

G (0) = & ok (ER (n.0)7|,_, HY(8,0) = ah(logdet_“’ (h,0)) 0.

|h:0’

We now obtain our contrast function EID(},IL)(H), p > 2, for the hypo-elliptic class
(Hypo-II). Under Condition H2 (2K,,):
(i) For p = 2:
50 0) =3 {mdP (20,07 AL 0) mP (A, 0) + log det 510(0) |

i=1
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(ii) For p > 3:

n Kp
W) =3"3" A1 (mP (A, 0T G 0y m V(A0 + BT (0)).
i=1 j=0

Thus, the contrast estimator is defined as:

A 5 (II A (11 II N .
08 = (B AL Bl 90) = mngmin 20(6).

Remark 2.6. In the definition of contrast estimator, we make use of mean
approximations with different number of terms for the various components, so
that it holds that, for any 0 € ©, p>2, 1<i<n,and 1 <k < N:

Ee[mg‘;%’“(An,e)\ftH}:Rk( AT XM 6) we (1), (15)

i—17

with some Ry, € S. This is one of the key developments to obtain the CLT under
the weaker design condition A, = o(n~?), p > 2. Notice that we divide the
smooth components by smaller quantities in terms of powers of Ay, e.g., \/ A2

and /A3 for the components X gll) and Xg;), respectively, thus we require more
accurate mean approximations for those components to obtain (15).

3. Asymptotic properties of the contrast estimators

To state our main results, we introduce a set of additional conditions for the
two classes (Hypo-I) and (Hypo-II). Recall that we write the true parameter
as 07 = (5};,@;,&), under the interpretation that Bg = (ﬁgl,ﬂgz) for class
(Hypo-IT), and that 67 is assumed to be unique and to lie in the interior of ©.

H3 For any z € RY and any multi-index a € {1,..., N}', 1 > 0, the functions:

0 — 0Lu'(x,60), 0 OLAY(x,0), 1<j<d, 1<i<N,

are three times differentiable. For any multi-index g € {1,..., Ng}l, l e
{1, 2,3}, the functions:

x e 0505 (2,0), x> 0505 Ak(x,0), 1<j<d, 1<i<N,

are of polynomial growth, uniformly in 6 € ©.

H4 The diffusion process {X; }+>0 defined via (Hypo-I) or (Hypo-II) is ergodic
under 0 = 07, with invariant distribution denoted by . Furthermore, all
moments of vy are finite.

H5 It holds that for all > 1, sup,~ o Eg+ [| X¢|"] < o0.
H6 If it holds:

ps(z, Bs) = ps(x, BY), nr(x,Br) = ur(z, By), Ar(z,0) = Ag(z,o"),

for x in set of probability 1 under vy:, then Sg = 52;, Br = B};, o=ol.
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~

We first show that the proposed contrast estimators 6
in the high-frequency, complete observation regime:

(M Han
s O are consistent

Theorem 3.1 (Counsistency). Let p > 2 be an arbitrary integer and K, = [p/2].
Assume that conditions H1, H2(2K,), H3, H4, H5 and H6 hold. If n — oo,
A, — 0 and nA,, — oo, then:

6 26, G el i,

Also, the proposed estimators are asymptotically normal under the condition
A, =o(n~VP), p>2.

Theorem 3.2 (CLT). Letp > 2 be an arbitrary integer and K, = [p/2]. Assume
that conditions H1, H2(2K,), H3, H{, H5 and HG6 hold. If n — oo, A,, — 0
and nA,, — oo, with A, = o(n~/P), then:

L For the hypo-elliptic class (Hypo-I):

A(1
VA (Bs = BY)
. c B
Vb (BY L~ Bh) | == N (0n,, TN,
\/ﬁ(6g?p,n - UT)
where TW(#') = Diag [F(ﬁls) 67, Fg}l(m), Fgl)(GT)] is the asymptotic precision

matriz with the involved block matrices specified as:

[r5261],,;, =12 / Ope.i s (y, ) Tas (5,0 gy ps (y, B vr (dy);
[T5(6M)],,,, = / Osrinttre (s B) it (4,07 Dy o 1o (v, BY) v (dy);
[T6"].,,,

=4 [ (00 B0 (. 0)A 50110, B (5,07 A (0] i ()

fOTlSil,jlfNBS, 1§i2,j2§NﬁR andlgi,jgNU.

II. For the hypo-elliptic class (Hypo-II):

NE LS

\/ATH( Ag;,)p,n - ng) % N (0y F(H)(GT)—l)

Vi, (B~ ) : ’
V(e — o)
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. 11 11 11 . .
where T (91) = Diag [F(Bsi 61, Fési (61, F(BR)(HT), Fgl)(QT)] is the asymptotic
precision matrix with the involved block matrices specified as:

501, . =720 / Ops, i 115, (4 BL) a5, (4, 01) g, 5, s, (v, BE, ) vir (dy);
[FSQ ON],; = 12/3/3s2,i2/~tsz (v, 8%,) T ag) (y.01) Ope, ja 5. (. BL, ) ver (dy);

TG 0M],,, = / Oprishin (v BR) T ar' (u,0) s sy 1im (v, BE) vor (dy);

P& (eh)]

i4]4

= %/Tr[aa,uE(H)(y,9T)A(H)(y,9*)50,1'42(11)(%GT)A(H)(y,@T)]Vm(dy),

Jor 1 <iy,j1 < Npg , 1 <iig,ja < Ngg,, 1 <3, j3 < Ng, and 1 <iig, js < N,.
The proofs are given in Section 5.

Remark 3.3. The design condition A, = O(nfl/p), p > 2, i.e. nAY — 0,
appears in the CLT result (Theorem 3.2). As we explain later in the proof in
Section 5.2, the condition is required so that the expectation of the score function,
specifically, the gradient of the contrast function Ep,n(m), tends to 0. This is
relevant for the mean of the asymptotic Gaussian distribution to converge to 0. If
the given design condition is not satisfied, the distribution of estimators will tend
to concentrate on an area that deviates from the true value, thus the estimators
will suffer from bias. We observe this issue in the numerical experiments in
Section 4, where the standard contrast estimator 927n exhibits the described bias

when nA? is not sufficiently small, while ép,n for p > 3 avoids such a bias.

4. Numerical applications

In the numerical examples shown below, for given choices of A, and n, we
observe gradual improvements in the behaviour of the estimates when moving
from p = 2 to p = 3 and then to p = 4. Indeed, discrepancies are stronger in the
experiment that contrasts p = 2 with p = 4.

4.1. Quasi-Markovian generalised Langevin equation

We study numerically the properties of the proposed contrast estimator for
the ¢-GLE model defined via (7) in Example 2.1 and which belongs in class
(Hypo-II). We consider the following two choices of potential function U, leading
to a linear/non-linear system of degenerate SDEs:

Case I. Quadratic potential: R 3 ¢ — U(q) = Dg¢*/2 with some parameter
D > 0.

Case I1. Double-well potential: R > ¢ — U(q) = (¢* — D)?/4, with some
parameter D > 0.
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TABLE 2
Designs of experiment.

Case 1. Case II.

Design A (A, T,) = (0.008,1000) (A, Ty) = (0.01,1000)
Design B (A, T,) = (0.005,500)  (An,T,) = (0.005,1000)

0.00075
0.00050 0.0004

0.00025
0.0002

o 000000

-000025 0.0000

-0.00050

-0.0002
-000075

0.0008 00006
0.0004 0.0004
0.0002 0.0002

~ 00000 00000

-0.0002
-0.0002

-0.0004

-0.0004 00008

~0.0008 00008
0075
0.050
0025

® 0000

0025

0050

0075

0004
0002
0000

-0.002

-0.004

0006

0008

0010

(a) Case I (b) Case II.

Fic 1. Boxplots of M = 100 independent realisations of (épyn — 9”/6”L for the models Case I
(left) and Case II (right). The black points show the individual realisations.

For the above two cases, we generate M = 100 independent datasets by apply-
ing the locally Gaussian (LG) discretisation scheme defined in [13] with a small
step-size A = 10~%. We treat such data as obtained from the true model (Hypo-
IT) in the understanding that the discretisation bias is negligible. We then obtain
the synthetic complete observations by sub-sampling from the above datasets
with coarser time increments. For the two choices of potential above, we con-
sider the designs of high-frequency observations given in Table 2. We specify
the true values for 0 = (D, A\, a, o) as (2.0,2.0,4.0,4.0) and (2.0, 1.0,4.0, 4.0) for
Case I and Case II, respectively. We compute the estimators ép,n(: 0}2)) =

~

(Dp.ns Apms Gp.n, Gp ) for p = 2,3. To find the minima of the contrast functions
we used the adaptive moments (Adam) optimiser with the following specifica-
tions: (step-size) = 0.1, (exponential decay rate for the first moment estimates)
= 0.9, (exponential decay rate for the second moment estimates) = 0.999, (ad-
ditive term for numerical stability) = 107® and (number of iterations) = 8, 000.
Figure 1 shows boxplots of the individual realisations of relative discrepancies
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TABLE 3
Average running times (seconds) of one realisation of estimators for the g-GLE model.

Experiment égm éS,n

Design A - Case I 38.25  44.33
Design A - Case II  24.46 28.34
Design B - Case I 27.48 28.71
Design B - Case I  90.26 104.12

(égm —017)/679 1 < j < 4. In all four designs, when p = 2 we observe that
estimator &9 ,, suffers from a severe bias, as its realisations do not cover the true
value of (see the boxplots at the bottom of Figure 1). In contrast, when p = 3 the
100 realisations of &3 ,, are concentrated around o'. We observe that the estima-
tors of parameters D, A in the drift functions of the smooth components converge
quickly to the true values for both p = 2, 3. This agrees with the fast convergence
rate of /A, /n obtained in the CLT result (Theorem 3.2). In Table 3 we show
the mean computational time of one realisation of estimators corresponding to
p =2 and p = 3 from 10 independent sets of observations. Notice from the table
that in all experiments the calculation of 9A3,n does not add a significant cost
compared with that of ég,n. We can thus conclude from Figure 1 and Table 3
that use of é3,n provides a reliable estimation that does not suffer from the bias
observed in the case of ég,n, under a competitive computational cost.

4.2. FitzHugh-Nagumo model

We consider the FitzHugh-Nagumo (FHN) model belonging in class (Hypo-I),
and specified via the following bivariate SDE:

dX, = 1(X, — (X3)® - Y, — s)dt;

N (16)

dY: = (v Xy — Vi + @)dt + odW,,
with 8 = (e,7v,a,0). We consider parameter estimation of the FHN model in
both complete and partial observation regimes, where only the component X,
is observed in the latter case.

4.2.1. Complete observation regime

We consider the estimator 6,,,,(= 9}52) = (épnsYpns Qp oy Opn) for p=2,4. As
[18], we fix s = 0.01 and set the true values to 67 = (0.10,1.50,0.30, 0.60). We
generate M = 50 independent datasets by using the LG discretisation for the
(Hypo-T) class defined in [7, 14] with a step-size A = 10~%. Then, we obtain
M = 50 synthetic complete observations for the FHN model by sub-sampling
from the above datasets so that n = 250,000, 7,, = 5,000 and A,, = 0.02.
To obtain the minima of the contrast functions we used the Adam optimiser
with the same settings as the experiments with the ¢-GLE earlier, except for
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0010 E p=2 —

0007 = p=2 - = p=2 o
% 1 p=4 1 p=4 . 0.075 — 0000 [ p=4 %
2 " . %
0.006 0008 . 0050 .

. -0.005

0.000 ot - . r.
. 0.025 E
> - o -0010

0.005

0.004 -0.005
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Fi1c¢ 2. Boxplots of the M = 50 realisations of (ép,n - OT)/@Jr for the FHN model, under the
design n = 250,000, T,, = 5,000, A, = 0.02. The black points show the individual values.

(step-size) = 0.01. Figure 2 shows boxplots of the corresponding 50 realisations
of relative discrepancies (Hfm —079)/6"3 1 < j < 4. Note that the means of

0. — 0 with p = 4 are closer to 0 than those with p = 2 for all §-coordinates
while both estimators attain similar standard deviations. Importantly, when
p = 2, we see in Figure 2 that £, and 62, are severely biased as the true
values are not covered by the 50 realisations. In contrast, when p = 4, the
realisations of é47n are spread on areas close to the true parameters.

4.2.2. Partial observation regime

We use the proposed contrast function, and the corresponding approximate log-
likelihood, under the partial observation regime where only the smooth com-
ponent {X;.} is observed. In particular, we compute maximum likelihood esti-
mators (MLEs) based upon a closed-form marginal likelihood constructed from
the Gaussian approximation corresponding to the contrast function 6191 (9) for
p = 2,3. To be precise, we use the high-order expansions for the mean and the
variance, but do not make use of the Taylor expansions for the inverse of the
covariance and of its log-determinant, so that we obtain quantities that corre-
spond to proper density functions. Here, we mention that due to the structure
of the FHN model, the obtained one-step Gaussian approximation correspond-
ing to the developed contrast function for p = 2,3 is a linear Gaussian model
w.r.t. the hidden component Y;, given the observation X;,. Thus, one can make
use of the Kalman Filter (KF) and calculate the marginal likelihood of the par-
tial observations. See e.g. [13] where a marginal likelihood is built upon KF
for the ¢-GLE model belonging in class (Hypo-II). We provide the details of
the Gaussian approximation and the marginal likelihood for the FHN model
in Section D of the Supplementary Material [12]. Then, the MLE for partial
observation is defined as:

P

Hp,n (: (ép,nv fAYp,vu dp,na a'p,n)) = ar% HéaX IOg fp,n({Xti }i:O,...,n§ 9); (17)
€
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(6p,n—01)01

-0.10

-0.15

-0.20

€ Y a o

Fic 3. Boxplots of (ép,n - GT)/HJf from M = 50 sets of partial observations for the FHN
model, under the design n = 200,000, T, = 1,000 and A, = 0.005. The black points show
the individual values.

TABLE 4
Average running times (seconds) of one realisation of estimators for the FHN model, from
partial observations.

92,77, 93,71

100.976  138.428

for p = 2,3, where fpn({Xy, }izo0,... n; 6) is the marginal likelihood. As with the
experiment under complete observations, we fix s = 0.01 and set the true val-
ues to 7 = (0.10,1.50,0.30,0.60). We generate M = 50 independent datasets
from the LG discretisation with a step-size A = 107*. Then, we obtain 50
synthetic partial observations of {Xy, }i=o,..» with n = 200,000, T,, = 1,000
and A,, = 0.005 by sub-sampling from the datasets and removing the rough
component {Y;, }i=o,...n. The Nelder-Mead method is applied to optimise the
log-marginal likelihood for p = 2,3 with the initial guess 6, = (0.5,0.5,0.5,0.5).
Figure 3 shows boxplots of the corresponding 50 realisations of relative discrep-
ancies (é{m —017) /0T 1 < j < 4. First, we observe that both estimators share
almost the same standard deviations. Second, the bias in €3, is clear from the
boxplot in the sense that the true value ' is not included in the interval be-
tween the minimum and the maximum of the 50 realisations of €5 ,. Finally,
the square of the mean of ép,n — 6" (eq. bias) is reduced in the drift parameters
(e, v and «) for p = 3. Table 4 presents the average computational times of
one realisation of estimators égm and égm from 10 independent sets of partial
observations. The increase in the average time of égvn from that of égm is about
40%, thus use of ég’n is quite feasible.
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5. Proof of main results

We provide the proof for our main results, Theorems 3.1 and 3.2, which demon-
strate the asymptotic normality of the proposed contrast estimators under the
design condition A,, = o(n_l/p), p > 2. We show all details of the proof for class
(Hypo-II) as the proof for (Hypo-I) follows from similar arguments. Through-
out this section, for simplicity of notation, we frequently omit the subscript
(IT) appearing in the estimator and the functions introduced in Section 2.2.3. A
number of technical results are collected in the Supplementary Material [12]. We
make use of the notation op , (-): for a sequence of random variables {F,} and a
numerical sequence {a, A, } depending on n or A,,, we write F,, = OF,; (an,n,)

ig
if F,/an A, —' 0asn — 00, A, — 0 and nA,, — oo. Throughout this section,
p > 2 is an arbitrary integer, and we set K, = [p/2] as before.

5.1. Proof of Theorem 3.1 (Consistency)
We show the consistency of the contrast estimator via the following procedure:

A~ P
Step 1. We show that if n — 0o, A, — 0 and nA,, — oo, then s, pn —ety ﬂj;l.
In particular:

Bsipn — BY, = 02,y (A7), (18)
Step 2. Making use of the rate of convergence found in (18), we show that if

. P
n — 00, A, — 0 and nA,, — oo, then fg, pn —oty ﬂgQ. In particular:

BSg,p,n - ﬁgQ = OP,; (Ai/Q)' (19)
Step 3. Using the rates obtained in (18)—(19), we show that if n — oo, A, = 0
R P
and nA, — oo, then (Brp.n, Gpn) — (8L, 7).

In the sequel, we express the matrix A(z,0) = (S (z,60))7", (z,0) € RN x O,
as:
AS1S1 (l‘,@) A5'152 (.’L‘,@) ASIR(x79)
A(z,0) = | As,s5,(2,0)  As,s,(2,0) As,r(z,0)],
ARS1 (I’,G) A’RSQ (LE,Q) ARR(I,G)

for block matrices A,,,,(x,0) € RNa*Nez 4y 45 € {8}, S5, R}. Note that from
Lemma 13 in [13] we have:

Ag, s, (x,0) =720 a;}(x,@), (x,0) € RN x ©,
where ag, (z, 0) is specified in the definition of the matrix X M (z,0) in (14).

Remark 5.1. The strategy outlined above is technically different from proofs in
[18, 7], where they require that A,, = o(n_l/Q) to prove consistency. Our proof
of consistency proceeds without relying on A, = 0(n71/2), and such an approach
then leads to a CLT under the weaker condition A, = o(nfl/p), p > 2. More
details on this point are given in Remark 5.4.
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5.1.1. Step 1

The consistency of the estimator le p.n is deduced from the following result.

Lemma 5.2. Assume that conditions H1, H2(2K,), H3, H} and H5 hold. If
n — oo, A, = 0 and nA,, — oo, then:

sup
0co

Bug,n(0) = Y1(0)] 25 0, (20)

n

where, for 0 € ©:

Yi(6) = [ a(ps (os: 55,) - s o5. 54, A, (0,6) s (o).

The proof is given in Section B.1 of the Supplementary Material [12]. Lemma
5.2 indeed implies the consistency of le pn via the following arguments. We
first notice that the matrix Ag, g, (z,0) = 720ag" (z, 0) is positive definite for any
(x,0) € RY x © under H1 due to Lemma 2.5. From the identifiability condition
H6 and the positive definiteness of Ag,s,, the term Y1(6), 6 € ©, should be
positive if Bg, # ﬁgl. Thus, for any € > 0, there exists a constant § > 0 so that:

Byt (|Bsv.pn = 5,1 > €) < Bor (Ya(Bya) > 0).
From the definition of the estimator and Lemma 5.2, we have:
Pyr (Y1(0y0) > 9)
< Por (220,(8L, Bsu s Brpms Fpn) = 2260 (Bpn) + Y1(By0) > 6)

%igpyn(ﬁgl7652aﬁ}:iva) - ATigpm(e) + Yl(g)‘ - 5) - O’

< Pyi (sup
0o

asn — oo, A, — 0 and nA,, — oo, thus le .p,n 15 a consistent estimator.
We now prove (18). A Taylor expansion of dgg £pn(0pn) gives:

Apn (Bjs‘lvBSz,p,mﬁAR,p:m6p,n) =Bpn (ép,n) X ﬁ(ﬁsl,p,n - 5;1)7

where we have set, for § = (551,932’3) € 0, 958 = (Bsys Br,0) € Opg, X
@5R X @US

A3/2
Ap,n (0) == :L 651 ép,n (0)’
1
3
Bp,n(e) = %\/ 6%516137" (6»15-'1 =+ A(,le — BT%)’HS%R)d/\.
0
For simplicity of notation, we write O, g0 = Ops, X O, X Oy Limit (18)

holds from the following result whose proof is given in Section B.2 of the Sup-
plementary Material [12].
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Lemma 5.3. Assume that conditions H1, H2(2K,), H3, H4, H5 and H6 hold.
If n — oo, A, = 0 and nA,, — oo, then:

Pyt
sup ’Ap,n (5;7582»5&0)‘ — 0; (21)
(6S27BR7U)EGBS276R55
N P
sup ‘Bpﬂ(ﬁslapm’ﬁSz?BR7U) - 2B(ﬁgl’ﬁS2’U)‘ — 0, (22)

(ﬁ52»ﬁRvU)€@Bs2=BRwO‘
where for (Bs,, Br,0) € Opg, X Oy X Oy

B(8s,.8s,,0)
= 720/(3511 s, (xs,ﬁsl))Tagf (x, (551,552,0))3511 ps, (xs, Bs,) vot (dx).

Remark 5.4. We point here to a key fact to obtain (21) leading to the rate
Bsy.pm — Bgl = op,, (A%/2). The term A, is given in the form of:

S

ZD n(ﬁsl 632 ) ﬂRa

]- th 19 ﬂsl ﬁSmﬁRa ))

=1

( (ﬁsl 5527ﬂR7 ))7 (23)

where F' = [Fk]1<k<NﬁS with F* e S, and the second term is a residual such
- - 1
that:

P
sup ’R(An7(521755275}?70—))| i> 0.
(Bs3:8R,0)€O85, XOp, xO0

The first term of the right side of (23) includes A;1/2, however F*(1,,0) is
identically 0 for any (z,0) € RN x© following some matriz algebra (as indicated
in Lemma B.1 of the Supplementary Material [12]) and then (21) holds. A
similar argument related with matriz algebra (see, e.g., Lemmas B.2, B.3 [12])
is also used in the proofs of other technical lemmas below to deal with terms of

size O(A,, 1/2), and then the proof of consistency proceeds without requiring that
A, =o(n~1?).

5.1.2. Step 2

Making use of limit (18), we obtain the following result whose proof is postponed
to Section B.3 of the Supplementary Material [12].

Lemma 5.5. Assume that conditions H1, H2(2K,), H3, H4, H5 and H6 hold.
If n — o0, A, = 0 and nA,, — oo, then:

~ P
sup %Kp,n(ﬁsl,p,n7ﬁsz761?aa) - YQ(BSQaBRaU) i> 07

(Bs3:8R,0)€EOpg, XOp, xO0
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where:
Y2(Bs,, Br.0)
—12 [ (s, (o, Bs) — s, (8L, )5 (o, (3l s ) s ().

Lemma 5.5 leads to the consistency of B&,p,n following arguments similar to the

ones used in Section 5.1.1 to show the consistency of le -
To obtain the rate of convergence in (19), we consider the Taylor expansion

of aﬁsgp,n(ép,n) at (ﬁ;a BR,p,ny 6'p,n):

~ ~ ~ N ; (651 pn 6;‘ )
A,n (5;1 ) ﬂgz ) ﬂR,p,m Upyn) =Byn (gp,n) 1A A Tl
A (552,1’," - /BSQ)

where we have set for § = (8s, Br,0) € © with 8s = (8s,,8s,) € Oay:

v

; (24)

ﬁ

A (9) T \/Faﬁsl lpn(0) .
DM - )
- \/ﬁ_naﬁsg gpm(e)

—~ 1 __
By (6) = V([ 086,051 4+ MBs — 81). 6, 0)ar )AL

for the matrix M,, = Diag(vy, ), where:

~ N A3 Ay a1
Un = Voo o Vos VooV |

Nag, Nsg,

The convergence (19) is immediately deduced from (24) given the following
result whose proof is provided in Section B.4 of the Supplementary Material [12].

Lemma 5.6. Assume that conditions H1, H2(2K,), H3, H4, H5 and H6 hold.
If n = 00, A, — 0 and nA,, — oo, then:

~ P

sup |Apn (8L )| 5 0 (25)
(Br,0)€OB xOs ~ P,

sup ‘Bp,n(B;uBR7U) _2B(ﬂg7ﬂ3u0—)’ 5 0;, (26)

(BR,J)E@QR X0,

where we have set for § € ©, ]~3(9) = Diag[ﬁsl (9), ]§S2(9)} with B (0) €

R8s *Nos, gnd BS2 ) € RY2s2 *Nosy defined as:
- T _
BSI (9) = 720/(82—51 sy (‘TS7/351)) asll(z79) a;sl sy ($S,551)V9T (dI)7 (27)

BS(6) = 12 [ (9], uss (. 65)) a5 (0.0) O], s o B (dn). (29
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5.1.53. Step 3

Finally, we show the consistency of estimators (8g,p.n,&p.n). Working with the
rates of convergence obtained in (18) and (19), we prove the following result
leading to the consistency of &y .

Lemma 5.7. Assume that conditions H1, H2(2K,), H3, H4, H5 and H6 hold.
If n — oo, A, = 0 and nA,, — oo, then:

3 P
sup %Ep,n (ﬁS,p,nv Br, 0') — Yg(U)‘ i> 0,

(Br,0)€EOs, XO0

where we have set for o € O,

Ys(o) = /{Tr(A(a;, (8L, 0)(x, (8L, o)) + log det 35z, (5;,0-))}Vm (d).

We provide the proof in Section B.5 of the Supplementary Material [12]. We
will show that Lemma 5.7 indeed leads to the consistency of &, . We have:

Y3(0) - Ys(o') = 2/(/RN o(y;z,07) log %dy) vyi(dz), o €0,

with y — o(y;z,0), (£,0) € RY x © being the density of the distribution
N0y, 2(z, (6;, )). Thus, under condition H6, Y3(c) — Y3(o') should be pos-
itive if o # o'. Hence, for every e > 0, there exists a constant § > 0 so that:

Pyi (|6p,n — 0t > &) < Ppi (Y5(6pn) — Ys(ot) > 0)

< ot (LB 0) = 2pn(Bp) + Ya(Gp0) — Ya(o) > 8) =0,

as n — 0o, A, — 0 and nA,, — co.
To show the consistency of g p.rn, we consider, for 8 = (8s,, 8s,,Or,0) € O:

K(0) = —Llpn(0) — A Lpn(Bs,: B Bl 0). (29)

The consistency of B R,p,n follows from the result below whose proof is given in
Section B.6 of the Supplementary Material [12].

Lemma 5.8. Assume that conditions H1, H2(2K,), H3, H4, H5 and H6 hold.
If n — oo, A, = 0 and nA,, — oo, then:

sup
BRE®OgL

. . . P
K(ﬂshp,n» 652,[),77,7 6R7 Up,n) - Y4(BR)‘ JL) 0,
where we have set for fr € Ogy:

Y.(Br) = /Q(MR(ﬂﬂ,ﬂR) — ur(x, B ag! (z,01)) vi (dx).

Thus, the proof of consistency for the proposed estimator is now complete.
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5.2. Proof of Theorem 3.2 (CLT)

We define the Ny x Ny matrix M,, as M,, = Diag(v,,), where:

Ngp, No

Nﬁsl N/is2

Noting that dglp,(0,.,) = On,, a Taylor expansion of dglp,(0,.,) at the true
parameter 67 gives:

1
L. (0") = / Jpn (00 + X(0pn — 0))dN x M,(B,,,, — 07, (30)
0
where we have set for 0 € ©:
I, (0) = —M, ' 0glp.n(0), J,n(0) =M, 03¢, ,(0) M, *.

To prove the asymptotic normality, we exploit the following two results.

Lemma 5.9. Assume that conditions H1, H2(2K,), H3, H4, H5 and H6 hold.
If n = 00, A, — 0 and nA,, — oo, then:

Sup [Ty (67 + A0y, — 0) —20(67)| L5 0.

A€[0,1]

Proposition 5.10. Assume that conditions H1, H2(2K,), H3, H4 and H5 hold.
If n — o0, A, = 0 and nA,, — oo, with the additional design condition A, =
o(n~Y/P), then:

1,..(07) =25 N (O, AT (0T)).

We provide the proof of Lemma 5.9 in Section C.1 of the Supplementary Ma-
terial [12]. We show the proof of Proposition 5.10 in the next subsection where
we highlight the manner in which we make use of the condition A,, = o(n_l/ Py,
p > 2. By applying these two results to equation (30), the proof of Theorem 3.2
is complete.

5.2.1. Proof of Proposition 5.10

For simplicity of notation, we write 9y 0y (0) = > i, E8(0), 6 € ©,1 < k <
Ny, where:
€8(0) = M i x

p

A, - Op ey (A, 0) T Gim j(0) myi (A, 0) + Hizy j(0) ). (31)

=

<.
I
o

Due to Theorems 4.2 & 4.4 in [10], Proposition 5.10 holds once we prove the
following convergences:
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(i) If n = oo, A, — 0 and nA,, — oo with A, = o(n~*/P), then:
P,
ZEGT BON)Fr, ] 250, 1<k< N, (32)
(i) If n — o0, A, — 0 and nA,, — oo, then:

S g[8 (015 (61|, ] 225 4[0(61)]
=1

ZEQT Il ’“2(9T))2|}}i71] S0t 0, 1<k, ke < Np. (34)

kikso’ 1§k17k2§N9; (33)

Notice that the design condition A,, = o(nfl/ P} is used in the proof that the
expectation of the score function converges to 0, i.e., for convergence (32). We
provide the proof of the two convergences (33) and (34) in Section C.2 of the
Supplementary Material [12] and focus on the proof of (32) in this section.

Proof of convergence (32). Let 1 < k < Ny. We write for § € © and 1 < i < n:
80,kmp,i(An7 9) = ’Up7k(An, Xt'i—l 5 9)

Note that the RN -valued function Up & (A, Xy
then follows that:

> Egr [€F(00)|F, ] Z{F(l (01 + FZ 0N},
=1

0) is independent of X,. It

i—17

where we have set:

FOM O = 2[M;, Y

K, N
X D AL (A Xi 00 [Gisa 5 (00)] ) Bor [m, (A, 00)|F, ]
j: ll l2:1
FEMOY = M,

)
K, N

XZAZL{ N [00£Gio13(01)], , Egt [ml,(An, 01)mi2, (A, 01)|F, ]
j=0 1

1,l2=1

+ 897kHi_17j(9T)}.

For the first term, it follows from (15) that:

2K, +1
FOR gty = La ROV AT X 00, 1<k < Ny
%R(1)7k(\/ TLA%KP+2,Xti_1,9T), Nﬁ +1 S k S NO;
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for some RM* € 8, under condition H2 (2K,). Thus, it follows from Lemmas
A.1-A.2 in the Supplementary Material [12] that if n — oo, A, — 0 and
nA, — oo with A,, = o(n~'/P), then:

n
P
STELRON) 0, 1<k < N
=1

We consider the convergence of the term Y7 F{*/"(81). We introduce the
following subsets in the event space €
Q.= {weﬂ“zl L FPR 0t > } e > 0;

D, ;= {w € Q‘ det .:.Kp,i(An,GT) > 0}7 0<i<n-—1.

We also set Da, = ﬂ;;l Da,, i—1. We then have for any € > 0:
Ppi () < Pps (QE N DAn) + Py+ (QE N DCAn) (35)
For the first term of the right hand side of (35), we have the following result

whose proof is provided in Section C.3 of the Supplementary Material [12].

Lemma 5.11. Assume that conditions H1, H2(2K,)), H3, H}, H5 and H6 hold.
For any e > 0, if n — oo, A, — 0 and nA,, — oo with A,, = o(nfl/p), then
]P)gf (QE N DAH) — 0.

We next consider the second term of the right hand side of (35). We have:
Ppi (- N DY) Z}P’m D& i 1)

= Z]P)m ({w S Q‘ det EKP71‘_1(A”,9T) = 0})

i=1
Since it follows that:

o")

i—17

detZg, ;—1(An,01) — det B;_1(0") = R(A,, Xy

for R € S, and detX;_1(A") > 0, 1 < i < n, under condition H1-(ii) due to
Lemma 2.5, we have that P+ (QE ODCAH) — 0 as A,, — 0. Thus, we obtain that

P
Dy Fi(ﬂ”“(eT) % 0if n — 00, A, — 0 and nA, — co with A, = o(n~/?),
and the proof of convergence (32) is complete.

6. Conclusions

We have proposed general contrast estimators for a wide class of hypo-elliptic
diffusions specified in (Hypo-I) and (Hypo-II), and showed that the estimators
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achieve consistency and asymptotic normality in a high-frequency complete ob-
servation regime under the weakened design condition A, = o(n~'/?), p > 2.
For elliptic diffusions, contrast estimators under such a general weak design
condition have been investigated in earlier works, e.g. [16, 28], however in the
context of hypo-elliptic SDEs, established results (e.g. [6, 8, 18, 13]) before our
work typically relied on a condition of ‘rapidly increasing experimental design’,
i.e. the requirement that A, = o(n~'/2). The numerical experiments in Sec-
tion 4 illustrated cases where for a given step-size A,, in-between observations
and given n, estimators requiring the condition A,, = o(n_l/ 2) can induce unre-
liable biased parametric inference procedures. In contrast, the bias was removed
upon consideration of estimators which required the weaker design condition
A, = o(n~?), p > 3. We stress that computations w.r.t. the contrast function
that delivers estimators under the weakened design condition can be automated
via use of symbolic programming and automatic differentiation, so that that
users need only specify the drift and diffusion coefficients of the given SDE
model.

Our research opens up several potential future directions.

1. Development and analytical study of estimators under alternative observation
designs, such as partially observed coordinates and/or low-frequency obser-
vation settings. Such designs are important from a practical perspective but
have yet to be investigated analytically even for elliptic diffusions. The re-
sults in this paper are already relevant for such different observation designs
as they can be regarded as providing a minimum requirement on the step-size
A,, (for given n) that needs to be used when considering smaller amounts
of data compared to the complete observation regime treated in this work.
E.g., in a low-frequency setting where data augmentation procedures (within
an Expectation-Maximisation or MCMC setting) will introduce latent SDE
values, the user-specified step-size A,, will need to satisfy the weakened de-
sign conditions obtained in our work (i.e. if the likelihood-based method is
not supported in the case where imputed variables were indeed observations,
there is absolutely no basis for the method that uses imputed values to pro-
vide reliable estimates). In general, it is of interest to explore the type of
convergence rates and step-size conditions obtained and required, respec-
tively, in CLTs under such different observation designs.

2. Parametric inference for Mckean-Viasov type hypo-elliptic SDEs and related
interacting particle system models. Recently, parametric inference for SDEs
with coefficients depending on the (empirical) law of the process has become
an active research area in Statistics, e.g. [2, 24|, though these works focus
on elliptic models. Law-dependent hypo-elliptic SDEs appear in several ap-
plications [3], and it is of high interest to establish estimators and analytic
results that cover such hypo-elliptic models.

3. Non-parametric estimation for hypo-elliptic SDEs. Established results in the
literature have focused on elliptic diffusions. In the scalar case, [11] stud-
ied non-parametric estimation of drift and diffusion functions from high-
frequency observations and obtained optimal convergence rates, with ex-
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tensions to low-frequency observations regimes given in [9]. [1] studied a
Bayesian non-parametric approach using high-frequency data. For multivari-
ate elliptic models, see [19] for a work in a Bayesian setting and [21] which
proposed a non-parametric drift estimator based on deep-learning and ob-
tained a convergence rate under the condition of A,, = o(n"*/?). Providing
results for hypo-elliptic models along the above lines makes up a very inter-
esting research direction.
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technical results introduced in Section 5 and derivation of the marginal likeli-
hood used in the numerical experiment of Section 4.2.2.
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