
BRIEF COMMUNICATION OPEN

Assessment of ability of a DNA language model to predict
pathogenicity of rare coding variants
David Curtis 1✉

© The Author(s) 2025

A recently described method to predict pathogenicity of DNA variants uses a DNA language model and can be applied to both
coding and non-coding variants. For coding variants the performance of this method, termed GPN-MSA (genomic pretrained
network with multiple-sequence alignment), was reported to be superior to CADD. We compare the performance of this method
against 45 other predictors applied to rare coding variants in 18 gene-phenotype pairs. We find that while GPN-MSA produces
stronger evidence for association than CADD it is not the best-performing method for any gene and on average other prediction
methods are superior. While GPN-MSA may be useful for predicting the pathogenicity of non-coding variants, it would seem
sensible for clinicians and researchers to utilise other methods when dealing with coding variants.

This research has been conducted using the UK Biobank Resource.

Journal of Human Genetics (2025) 70:603–607; https://doi.org/10.1038/s10038-025-01385-3

INTRODUCTION
A key issue in genetics research and clinical practice is to predict
the deleteriousness of nonsynonymous variants. We recently
reported a systematic comparison of 45 such predictors, using
weighted burden rare variant analysis of exome sequence data
applied to 18 gene-phenotype pairs [1].
A new study describes a deleteriousness prediction score based

on a DNA language model termed GPN-MSA (genomic pretrained
network with multiple-sequence alignment) [2]. Since this is based
only on DNA sequence it can be applied to both coding and non-
coding variants and the authors reported that it performs well
compared to the CADD predictor when applied to nonsynon-
ymous variants [3].
Here, we extend our previous assessment of predictors of

pathogenicity of nonsynonymous variants in order to include
GPN-MSA alongside the other predictors.

MATERIALS AND METHODS
The methods used are essentially the same as those described in
the previous study [1].

Dataset
The UK Biobank Research Analysis Platform was used to access
the Final Release Population level variants for 469,818
exomes obtained using the protocols described here: https://
dnanexus.gitbook.io/uk-biobank-rap/science-corner/whole-
exome-sequencing-oqfe-protocol/protocol-for-processing-ukb-
whole-exome-sequencing-data-sets [4]. UK Biobank had obtained
ethics approval from the North West Multi-centre Research Ethics
Committee which covers the UK (approval number: 11/NW/0382)

and had obtained written informed consent from all participants.
The UK Biobank approved an application for use of the data (ID
51119) and ethics approval for the analyses was obtained from the
UCL Research Ethics Committee (11527/001).

Variant annotation
Attention was restricted to rare variants with minor allele
frequency (MAF) <= 0.01. Variants were annotated using Variant
Effect Predictor (VEP) [5]. Variants annotated as stop gained,
frameshift and essential splice site were given a score of 1 for the
loss of function (LOF) category while variants annotated as protein
altering, missense, start lost or stop lost were given a score of 1 for
the protein altering category. Variants not included in either the
LOF or protein altering category were not considered further in
these analyses.
The scores for GPN-MSA for all possible single DNA base

changes were downloaded from the website provided by the
study authors https://huggingface.co/datasets/songlab/gpn-msa-
hg38-scores. The score provided consists of the logarithm of the
likelihood ratio for the ALT allele compared to the REF allele, so
before use the score was multiplied by -1 so that a high score
would indicate an ALT allele with a lower likelihood and hence
with higher predicted pathogenicity. In order to obtain scores
using AlphaMissense, VEP was run with the options b --canonical
–regulatory --plugin AlphaMissense [6]. This produces two Alpha-
Missense annotations, a raw score and a categorisation of likely
pathogenic, likely benign or ambiguous. These three categories
were converted to numerical scores of 2, 0 or 1 respectively and
this was used, termed the prediction score, as well as the raw
score. To obtain scores for other predictors, dbNSFP v4 was used
[7]. For the nonsynonymous and splice site variants listed in
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dbNSFP v4, scores were obtained consisting of the rank scores for
a variety of different prediction and conservation methods. A total
of 43 such scores were used, as presented below and as detailed
at http://database.liulab.science/dbNSFP.
For each variant and each of these prediction methods, the

pathogenicity score was multiplied by a weight based on allele
frequency, with rarer variants having higher weights [8]. The LOF
or protein altering score for each variant was also multiplied by
the weight based on allele frequency. For each gene, an individual
would be assigned an overall score consisting of the sum of the
relevant scores for the variants carried by that individual, meaning
that each individual received an overall LOF score and protein
altering score as well as 46 scores for the 46 different
pathogenicity predictors evaluated. The GENEVARASSOC and
SCOREASSOC programs were used to obtain these scores [9].

Gene-phenotype pairs
The gene-phenotype pairs selected for this study are shown in
Table 1 and consisted of those which had previously produced
exome-wide significant results in weighted burden analyses using
phenotypes of hypertension, hyperlipidaemia and type 2 diabetes
[10–12]. For each phenotype, a mixture of self-report, recorded
diagnoses and medication reports was used to designate a set of
participants as cases, with all other participants taken to be
controls. There were a total of 469,818 exome-sequenced UK
Biobank participants, of whom 167,127 were designated cases for
hypertension, 106,091 for hyperlipidaemia and 33,629 for type 2
diabetes. As noted in the previous report, for some genes variants
predicted to impair function were protective and were associated
with lower risk of developing the clinical phenotype [1]. Thus, rare
damaging variants in these genes were positively associated with
being a control rather than being a case. For the purpose of the
current study, in order to make it easier to interpret the results for
these genes alongside the others, the phenotype of interest for
these genes is taken to be “being a control”.

Comparison of pathogenicity predictors
To gain an understanding of the relationships between the
different prediction methods, a correlation matrix was produced
of their scores across all the variants annotated as missense by
VEP in all the genes and this matrix was visualised using the correl
package in R [13, 14].
In order to assess the relative performance of the pathogenicity

predictors, for each gene logistic regression analysis was carried
out with the relevant phenotype as the outcome and using a
model including 20 population principal components and sex as
covariates along with the LOF score, protein altering score and
predictor score. The Wald statistic was used to obtain the p value
for the predictor score and this was converted into a signed log p
value (SLP), consisting of the logarithm base 10 of the p value and
given a positive sign if the score was positively correlated with the
phenotype in question. For each gene-phenotype pair, this
process was repeated 46 times to obtain an SLP for each
prediction method.
Data manipulation and statistical analyses were performed

using GENEVARASSOC, SCOREASSOC and R [9, 14, 15].

RESULTS
Correlations between pathogenicity predictor scores
In order to gain insights into the relationships between the
predictors, pairwise correlation coefficients were obtained
between all pairs across variants annotated as missense in all
genes, comprising 9568 variants, and a heatmap illustrating these
correlations is shown in Fig. 1. The raw correlation coefficients
themselves are tabulated in Supplementary Table 1. It can be seen
that GPN-MSA, in the first row and column, is positively correlated
with a number of other predictors and falls in a block whichTa
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includes AlphaMissense, SIFT and PolyPhen [6, 16, 17]. As noted in
the previous analysis, other predictors have scores which show
little or no correlation with the scores produced by these
predictors, indicating that the different prediction algorithms
can produce markedly different results.

Performance comparison of pathogenicity predictors
Figure 2 shows a heatmap which illustrates the relative magnitude
of the SLP produced by each predictor for each gene and the SLPs
themselves are presented in Supplementary Table 2. Table 1
shows the SLPs for GPN-MSA and for the ten other predictors
which have the highest average SLP across all genes. As reported
in the previous analysis, there is considerable variability in
performance of different methods and no method consistently
generates high SLPs across all genes. There is no gene for which

GPN-MSA yields the highest SLP and across all genes it produces
an average SLP of 2.05 compared to the AlphaMissense score
which produces an average of 7.48. However GPN-MSA does
produce a similar SLP to AlphaMissense for GCK, though PolyPhen
produces a much higher SLP. Interestingly, for DBH GPN-MSA
produces an SLP of 4.11 while the AlphaMissense score only yields
an SLP of 1.84 (although SIFT4G produces and SLP of 5.59). CADD,
to which GPN-MSA was previously compared, was not among the
top ten predictors and in fact yielded an average SLP of only 0.76.

DISCUSSION
When applied to this dataset, GPN-MSA does demonstrate an
ability to identify variants which are more likely to be pathogenic
in some of the genes studied and its performance overall is better

Fig. 1 Heatmap showing pairwise correlations between predictor scores across 9568 variants annotated as missense. Black circles
indicate positive correlations and white circles negative correlations
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than that of CADD. However, in general its performance is inferior
to a number of other methods which have been specifically
developed to predict the pathogenicity of nonsynonymous
variants. We note that the phenotypes studied here are common
and we do not know what the relative performance of these
methods would be for identifying variants causing rare Mendelian
diseases.
From a theoretical machine-learning point of view, it is of some

interest that a method trained to recognise pathogenicity of
variants across the genome has inferior performance for
nonsynonymous variants than methods which have been
specifically developed to assess the effects of amino acid changes.

Presumably GPN-MSA may to some extent “recognise” when it is
dealing with coding variants but if so this is not sufficient to
overcome the effects of also being trained on non-coding variants.
In practical terms, researchers and clinicians analysing both

coding and non-coding variants might consider using GPN-MSA to
predict pathogenicity of non-coding variants while applying other
methods when dealing with coding variants.

DATA AVAILABILITY
The raw data is available on application to UK Biobank.

Fig. 2 Heatmap of SLPs produced by each prediction method for each gene. The sizes of the dots for each gene are proportional to the SLP
for each annotation relative to the maximum SLP produced by any annotation for that gene. White circles indicate negative SLPs
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CODE AVAILABILITY
Scripts and relevant derived variables will be deposited with UK Biobank. Software
and scripts used to carry out these analyses are also available at https://github.com/
davenomiddlenamecurtis.
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