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Abstract

Problem definition: Influencer marketing has become a prevalent strategy to promote
products through social media. This paper examines the value of influencer marketing when
followers not only learn from the influencer’s signal but can also engage in social learning
by observing peers’ purchase behaviors and reviews. Methodology /results: We adopt
an information design framework to analyze how a firm should value an influencer based on
two key dimensions: the accuracy of the influencer’s past recommendations (informativeness)
and the extent to which followers rely exclusively on the influencer versus learning from peers
(charisma). Managerial implications: Our model uncovers insights about the interaction
between information design and social learning. First, the naive intuition that the influencer
is less valuable with social learning does not always hold. The influencer holds greater value
under the social learning context when customers have a moderate intention to buy, as her
endorsement reinforces customer convictions, making them resilient against later negative
feedback from other followers. Second, when the firm can strategically select an influencer,
the optimal information structure is biased towards the positive signals: always endorse good
products (true positive rate of 1) but sometimes endorse bad products (nonzero false positive
rate). Third, the optimal influencer when social learning exists has a lower false positive
rate than the one without social learning, meaning that, when there exists subsequent social
learning, it becomes even more important to have an influencer whose positive endorsement is
trustworthy. In other words, the optimal influencer should be able to reveal more information

with social learning than without.

1 Introduction

Promoting products through social media influencers has grown dramatically over the past
decade. Influencers create content and share their impressions of products with followers on
platforms such as YouTube, Instagram, TikTok, and Facebook. Influencer Marketing Hub, a
platform that collects data on influencer marketing, reports that the influencer marketing indus-
try grew to $21.1 billion in 2023, up from $1.7 billion at the beginning of 2016 (InfluencerMarket-
ingHub, 2024). One source reports that the top ten highest-paid content creators (influencers)
on YouTube earned $10.5 million to $29.5 million in 2024 (Bennett, 2024).



Companies increasingly recognize the value of influencers’ ability to drive sales. A key reason
for partnering with influencers rather than communicating directly with consumers is credibility
(Lin and Liu, 2024). Customers often perceive companies as overly optimistic and willing to
promote even poor products. As a result, company-generated messages are frequently regarded
as cheap talk and are heavily discounted by consumers. In contrast, messages from reputable
influencers—those who have built their credibility through informative and honest reviews—can
carry significantly greater persuasive power.! Influencers can also communicate with their follow-
ers in ways that companies cannot, such as showcasing a makeup kit’s pros and cons through a
live demonstration on Instagram. For these reasons, many companies invest heavily in influencer
partnerships despite substantial costs.

However, finding effective influencers remains challenging. A survey found that 61% of firms
struggled to find the ‘right” influencers. The difficulty arises because the influencer landscape
is vast and diverse. In 2020, there were over 50 million influencers worldwide (Gagliese, 2022).
These influencers greatly differ product category, channels, follower size, number of active fol-
lowers, informativeness, and credibility (Geyser, 2024). This challenge has led to specialized
agencies and platforms that identify and recruit influencers. For example, Upfluence.com main-
tains a database of three million influencers with over 20 search parameters. Despite these tools,
quantifying an influencer’s value remains challenging. Our paper addresses this gap by answering
three questions:

(Q1) When is it advantageous to use an influencer, and when is it not? How much benefit can
a firm derive from working with an influencer with specific characteristics?

(Q2) How does social learning among followers—where customers observe peers’ purchases and
reviews—affect an influencer’s value? Does organic social learning make the influencer
more or less valuable?

(Q3) Who is the ideal influencer for a given product? Should the ideal influencer in environments
with strong social learning reveal more or less information than in environments without
social learning?

While characteristics such as follower count and platform are easily observable, much less is

known about an influencer’s informational value. Our focus is to study this informational value

and how it changes when customers update beliefs through social learning.

We model an influencer’s value along two dimensions of persuasiveness. First, informative-
ness represents the influencer’s precision in revealing the true product quality. An influencer
who positively evaluates every product (even poor ones) has different informational value than
one who is more selective. We explicitly model how followers form beliefs based on this infor-
mativeness. Second, charisma captures the extent to which followers rely exclusively on the
influencer’s endorsement versus seeking additional information. Some followers are devotees who
listen solely to the influencer, while others are skeptics who also gather information from peers

through purchase behaviors and reviews—a process we call social learning.? Charisma measures

LOf course, not all influencers are truthful and highly informative. The characteristics of an influencer are the
main features of our model.
2 Although the influencer is part of the social network, we do not consider the influencer’s signal as social



the fraction of devotees among followers, reflecting how much the influencer’s initial signal is
diluted by social learning.

These two dimensions of persuasiveness—charisma and informativeness—jointly determine
how follower beliefs evolve in response to the influencer’s message and subsequent peer actions,
ultimately impacting the firm’s revenue. We provide a theoretical framework to quantify the
value of an influencer in promoting a product based on these dimensions. To our knowledge, this
is the first model that analyzes how the informational value of an influencer’s message changes in
these two dimensions, going beyond easily measurable factors such as follower count and message
format. Our paper also extends the Bayesian persuasion literature (Kamenica and Gentzkow,

2011) to settings with organic social learning.

Main findings. Our analysis yields insights about when and why influencers create value:

(F1) A firm should consider not only how positive an influencer’s messaging is, but also how
discerning and selective she is in her endorsements. This insight emerges from our model,
which shows that an influencer’s false positive and false negative errors have an asymmetric
impact on the value of influence. Specifically, a high rate of false positives (i.e., endorsing
a bad product) is more detrimental than false negatives (i.e., not recommending a product
that is actually good).

(F2) When customers need to be persuaded to purchase, it is beneficial for a firm to collaborate
with an influencer, regardless of how skeptical her followers are (Proposition 2, Lemma 6,
and Theorem 1).

(F3) Surprisingly, when customers already hold a high prior belief, sponsoring an influencer
can still be beneficial. However, this is only the case when a sufficiently large proportion
of her followers are skeptics who engage in social learning. Otherwise, if a large propor-
tion are devotees who exclusively rely on the influencer’s endorsement, then the influencer
can actually decrease the firm’s expected revenue. In the case of social learning, when
customers’ prior belief is moderately high, value creation happens because the influencer’s
signal strengthens followers’ beliefs so that they are robust against any subsequent negative
signals by other followers (Theorem 1). This finding is counterintuitive. One might expect
that in the presence of social learning, the influencer’s signal value might be diminished
because of the large amount of information from social learning. Our results show that the
instances that make the influencer valuable are even richer than in the no-social-learning
environment.

(F4) Regardless of the composition of followers, it is always beneficial for a firm to partner
with an influencer who is effective in lowering followers’ beliefs about a product’s quality
after sending a negative signal (Proposition 2, Proposition 5, and Theorem 2). In practical
terms, this means that an influencer who rarely makes false negative errors (i.e., one who
is rarely dismissive of good products) is more likely to be valuable to the firm.

(F5) When firms can choose among influencers, the optimal information structure has an h-

learning because we view the influencer as implementing the firm’s information policy rather than being socially
motivated.



biased structure: always endorse a “good” product but sometimes endorse a “bad” product
(Theorem 2). Surprisingly, the optimal rate of false positives (endorsing a bad product)
is lower with social learning than without, meaning firms should seek more accurate in-
fluencers when social learning is present. This occurs because greater belief spread after
the message of an accurate influencer interacts beneficially with the diffusion process. One
might expect abundant organic information to make precise influencer signals less impor-
tant, but the opposite holds: informativeness becomes more valuable precisely when social
learning is active.

A critical factor that makes our model insightful (and challenging) is modeling the dynamic
interactions through which skeptics update beliefs via social learning. We handle this complexity
using a diffusion approximation (Glynn, 1990), which makes the model tractable without losing
the effect of social learning on the revenue. This tractable approximation makes comparison
among different influencers possible. A static model fails to capture the natural evolution of
followers’ beliefs over time as their experience with the product accumulates, and consequently,
it cannot provide our insights (see Appendix H).

In summary, this paper makes four contributions. First, we provide a tractable framework
for quantifying influencer value that accounts for both the influencer’s characteristics (informa-
tiveness and charisma) and the information environment (presence or absence of social learning).
Second, we leverage asymptotic analysis via diffusion limit to extract valuable insights on the
value of influencers with social learning, a problem that is generally not well-behaved and does
not lead to analytical results. Third, we characterize optimal information design in the presence
of social learning, extending Bayesian persuasion to dynamic environments where receivers learn
from each other. Finally, we analyze the setting where the firm has a private signal of the product
state and show that private information forces full disclosure, thereby undermining the strategic
value of information design.

The rest of the paper proceeds as follows. Section 2 reviews related literature. Section 3
introduces the model framework. Section 4 analyzes how to value a given influencer. Section 5
examines how the degree of social learning changes influencer value. Section 6 characterizes
optimal influencer selection. Section 7 studies privately informed firms and shows how private

information forces full disclosure. Section & concludes.

2 Connections to existing literature

Our model and results are closely related to two areas: (i) the marketing and economics literature
on information transmission from firms to customers and (ii) operations and computer science
literature on algorithmic information design and optimal signaling mechanisms.

The problem of how firms use information to manipulate the opinions of customers has
been extensively studied in the marketing literature. This includes papers that have explored
mechanisms for shaping the opinions of their customers. A prime example is the manipulation
of online reviews by firms (e.g., Mayzlin 2006 and Dellarocas 2006). However, today’s consumers

are becoming more discerning and aware of the potential manipulation of anonymous information



and online opinions. This awareness partially explains the rise in prominence of social media
influencers whose success relies on maintaining credibility in online spaces. Consequently, it is
the goal of firms not to manipulate the messages of influencers but rather to select those whose
genuine and unaltered messaging naturally aligns with the firm’s interests. Jalloul and Kostami
(2022) recognize the effectiveness of influencer marketing using a two-period model.

Influencers, however, do not operate in a vacuum. It is important to consider their fol-
lowers’ effect on each other. Kozinets et al. (2010) studied word-of-mouth marketing among
bloggers—influencers who create written content on a blog—and found that, after the initial
campaign by the blogger, the network co-production of the marketing message by the blog
readers can shape the narrative. Using empirical evidence, Hamami (2019) found that product
reviews from early adopters can change the beliefs about product quality among later-arriving
customers. Effects of this type are captured in our model by the existence of skeptic followers
who “shape” the influencer’s message and must be considered in valuing an influencer’s post.

Our framework also contributes to the economics literature on information transmission
and persuasion. The economics literature has long understood the importance of credibility
in communication (Crawford and Sobel, 1982). To effectively model information transmission,
researcher have developed models of communication with commitment power, as explored in
the Bayesian persuasion literature, which hold great relevance for studying word-of-mouth mar-
keting. Kamenica and Gentzkow (2011) and Rayo and Segal (2010) provide conditions under
which a persuasive signal is effective, i.e., the sender achieves a higher expected payoff by com-
mitting to a signaling strategy. Our work is closely related to the persuasion literature because
the influencer’s signaling strategy cannot be changed in the short run, thereby adhering to the
notion of commitment. The firm only benefits from sponsoring an influencer if the influencer’s
signaling strategy can “persuade” more followers to purchase. Moreover, our setting does not suf-
fer from the implementability issue faced by traditional Bayesian persuasion models as different
influencers are practical vehicles to implement the information policy.

Since the seminal work of Kamenica and Gentzkow (2011), the study of Bayesian persuasion
has developed rapidly. The most relevant strand to our setting is generalizations to multiple
receivers. This literature can be divided into two settings, whether the sender sends private
signals or public signals. Arieli and Babichenko (2019) and Candogan and Drakopoulos (2020)
study the optimal signaling mechanism in the setting where the sender sends private (possibly
different) signals to different receivers. Our focus is on public signaling mechanisms. In practice,
a social media influencer sends public messages to all of her followers. This public display of
“content” is the key driver of follower engagement. For Bayesian persuasion literature with
public signals, Alonso and Camara (2016a) and Alonso and Camara (2016b) consider the public
signaling mechanism in a voting setting. The most significant distinction with our model is that
we allow a certain group of receivers to learn not only from the signal sent by the sender but
also from the purchasing behavior of others in the social network. Candogan (2019) studies a
persuasion game where receivers are socially connected via a network. He proposes tractable

algorithms to solve for the static equilibrium. Fach receiver’s utility depends on the state of



the world and the decisions of others in the network. Our work differs from his by specifying
the dynamic learning of receivers from the organic information generated within the system.
Specifically, we model decision dependency among receivers via their dynamic learning behavior.

Applications of the Bayesian persuasion framework in marketing and operations management
applications have developed rapidly in recent years. Boyaci et al. (2022) is the most relevant
and recent paper using these tools to study influencer marketing. They also use the Kamenica
and Gentzkow (2011) framework, where the firm can commit to a static information structure.
However, our model differs from theirs because we model the dynamic social learning behavior
among followers, which is triggered by the influencer’s signal. In a relevant context but not
adopting the Bayesian persuasion framework, Fainmesser and Galeotti (2021) analyze the equi-
librium in a market with many influencers, followers, and marketers where there is competition
between intermediaries (influencers) to send the signals. Mostagir and Siderius (2023) study the
dynamic decision of reviewers over time to maintain their reputation while accepting “bribes”.
Simplifying assumptions are made to study the competition among many influencers and the
dynamic choice of reviewers. Fainmesser and Galeotti (2021) use a “reduced-form” approach to
model the relationship between an influencer and a follower, and Mostagir and Siderius (2023)
model reviewers to have either a high or low type in terms of “skill”. Our work (and similarly,
Boyaci et al. 2022) comprehensively analyzes the information transmission from the influencer
to the followers. Kiigiikgiil et al. (2022) use a dynamic Bayesian persuasion framework to study
the optimal information policy when customer arrivals are deterministic and cannot directly ob-
serve the actions/reviews realized by previous customers. To the best of our knowledge, we are
the first to consider a Bayesian persuasion sender (the influencer) followed by stochastically and
sequentially arriving receivers (followers) that can learn from one another (social learning), and
strive to understand how social learning distorts the initial information policy.

Indeed, a firm’s various decisions can be impacted by social learning. Ifrach et al. (2019)
considers the pricing decision when customers sequentially learn from reviews in a Bayesian
manner using the asymptotic analysis of the underlying stochastic system. Product ranking
decision is considered in Maglaras et al. (2022). Besbes and Scarsini (2018) characterize the
statistical properties of customers’ beliefs under social learning by assuming different degrees of
observations, ranging from observing all past reviews (fully rational) to only observing the average
of past reviews (boundedly rational). Papanastasiou and Savva (2016) study dynamic pricing
in environments where demand is shaped by social learning. In their model, consumers revise
their beliefs after observing the purchasing behavior of others, affecting their decision to buy
immediately or wait. In contrast, Debo and Secomandi (2018) examine pricing when customers
update their beliefs about product value based on private signals that remain unobserved by
both other consumers and the seller. We are the first to consider optimal information disclosure
in the presence of social learning.

In our setting, we assume that influencers have the commitment power to a static information
structure. Consumers observe the influencer’s historical reviews and learn how accurate she is by

comparing her reviews to the ex-post-realized success of the products. These consumers’ beliefs



Table 1: Utility U for different combinations of decision and state

State
H L
Decision
Purchase g—p —p
Do not purchase 0 0

about the influencer’s informativeness cannot be established within one or two reviews but rather
over a long period of time. Therefore, practically, the assumption that the influencer can commit
to dramatically changing “informativeness” for the review of a single product could be fragile.
Given that little has been done to understand the value of influence where the signal from the
influencer triggers a series of social learning among followers, we focus on the static information
policy with subsequent social learning in this paper. It would be interesting to explore a dynamic
information disclosure policy in the presence of social learning under an applicable context in

future research.

3 Model

A monopolist firm sells a new product at a fixed price p during a selling season of length 7.
Before the season begins, the firm can sponsor an influencer to promote the product to her
followers. The product’s true value is uncertain at the outset: the state w € Q = {H, L} is either
high (H), meaning the product is highly valued by the followers (a “good” product), or low (L),
meaning the product has low value (a “bad” product).

The true state is unknown to the firm, the influencer, and the followers. This uncertainty
arises because no one knows whether the product’s technology is sufficiently mature, whether
it will achieve widespread adoption, or, in the context of fashion products, whether it will gain
social acceptance. At time zero, the firm and the followers share a common prior belief about
the state: (u®(H),u°(L)), where p°(H) is the probability that the product is in the high state
and p°(L) is the probability that it is in the low state.

3.1 Customer purchase decisions
Customers arrive according to a Poisson process with rate A. Upon arrival, each customer decides
whether to purchase based on her expected utility, which depends on her belief about the state
and the utility structure shown in Table 1. We normalize the utility from not purchasing to zero.
A customer who purchases receives utility g — p if the state is H and utility —p if the state is L,
where g > 0 represents the value of a good product (a bad product has 0 value).

Consider a customer who arrives with belief y that the state is H. Her expected utility from
purchasing is —p + yg, while her expected utility from not purchasing is 0. She purchases if and
only if —p 4+ yg > 0, or equivalently, y > p/g:

purchase, ify>p/g, 1)

not purchase, otherwise.

Decision(y) = {

The threshold p/g is the price per unit value of a good product, and the customer will purchase



her belief exceeds this threshold. The belief y is formed by updating the customer’s prior u°
using any information the customer has received, such as a signal from a sponsored influencer or

signals generated by other customers’ purchases.

3.2 Influencer signal and Bayesian updating

If the firm sponsors the influencer, the influencer sends a signal to her followers at time zero,
before customers begin arriving. In practice, sponsorship involves sending a product sample and
paying a fee in exchange for a post (e.g., a blog entry, YouTube video, TikTok clip, or Instagram
post) featuring the product. After evaluating the sample, the influencer creates her post based
on her experience, which provides a signal about the product’s state.

We model the influencer’s post as a signal s € S = {h, £} that is observable to all her followers,
where h represents an endorsement of the product (high signal) and ¢ represents no endorsement
(low signal). The signal s € {h,¢} is realized with probability m(s|w) when the true state is
w € {H, L}, where the distribution 7 is publicly known from the influencer’s posting history.

We represent 7 as a two-by-two matrix:

N (WhH 7T€H> a (W(h\H) 7T(£|H)> (2)
ThL  TUL m(h|L) w(¢|L)
where the middle notation is condensed for convenience. We call w the informativeness of the
influencer and refer to an influencer with informativeness m as a w-influencer. The matrix m
corresponds to a statistical experiment in the sense of Blackwell and Girshick (1979), which
is also called an information structure or signal structure in the information design literature
(Kamenica and Gentzkow, 2011).

The term “informativeness” reflects that m captures the historical accuracy of the influencer’s
endorsements as observed from past data. For example, an influencer who has correctly identified
“oood” products 80% of the time and “bad” products 70% of the time would have mpg = 0.8,
meg = 0.2, wyr, = 0.7, and 7, = 0.3. Observers can assess an influencer’s informativeness by
comparing her past signals with the ex-post realized states of previously reviewed products.

A rm-influencer’s signal updates followers’ beliefs from the prior to a post-signal prior?, calcu-
lated according to Bayes’ rule. Given the realized signal s € {h, ¢}, the post-signal prior belief
of state w € {H, L} is:

o WO(w)r(shw) 5

#1) = = 0wy (sl
w’' €N

Since pu(L|s) =1 — u(H|s) for any signal s, it suffices to track only the belief in the high state.
Doing so simplifies our notation. We denote the post-signal prior belief in the high state after a
high signal as " £ p(H|h) and after a low signal as u’ £ p(H|¢). Similarly, we use scalar 10 to
denote the prior belief in the high state u®(H).

3We use the term “post-signal prior” instead of “posterior” to distinguish the fact that, in Section 4.3, the
beliefs of followers can evolve after the influencer’s signal is released. This makes the generic term “posterior”
somewhat ambiguous. We maintain the word “prior” in “post-signal prior” to connote that this belief is prior to
the dynamics of arriving followers.



Note that p/ and p’ are functions of 10 via (3). Specifically, for signal s € {h, £}, we have:

0
s K TsH
= 4
. ,uoﬂ'sH + (1 — /«LO)WSL ( )

Throughout the paper, we assume

¢ h
pt <t ()
which implies mpr, + g > 1. This condition states that the belief in a good product is greater
when receiving a high signal compared to receiving a low signal. This assumption is without loss
of generality because, otherwise, followers can “bet against” the influencer’s recommendation by

interpreting ¢ as the high signal.

3.3 Post-signal dynamics
At time zero, all customers hold a common initial belief: the post-signal prior (u’ or p”) if
the influencer is sponsored, or the initial prior (u°) otherwise. We now describe the subsequent
dynamics during the selling season [0, T'] as customers arrive and make purchase decisions, where
according to (1) a customer purchases if his belief at the time of arrival exceeds threshold p/g.
Customers are heterogeneous and fall into two categories: devotees and skeptics. An arriving
follower is a devotee with probability « and a skeptic with probability 1 — a. We call « the
influencer’s charisma, reflecting the extent to which followers adhere to the influencer’s signal
while ignoring information from others. Devotees do not engage in social learning and rely
exclusively on the initial common belief when making purchasing decisions. Skeptics engage in
social learning: they start with this common belief but update it dynamically based on additional
information generated organically by other customers. We denote by u; the belief of a skeptic
at time t. Consistent with the social learning literature (e.g., Ifrach et al. 2019), information
is generated by followers who have bought the product (for example, the purchase behavior
of other followers and feedback posted as comments on the influencer’s endorsed posts). In
this way, customers become co-producers of market signals (Kozinets et al., 2010), generating
information that affects subsequent arrivals. This additional information is sometimes called
organic (Fainmesser and Galeotti, 2021) because it evolves spontaneously among consumers.
Let Dy(n) denote the cumulative number of purchases by time ¢ when the initial common
belief is y1, where p € {u°, u”, u*}. The dynamics of the demand process Dy(y) depends on the
influencer’s charisma. Without social learning (o = 1), D¢(u) is a homogeneous Poisson process
(Section 4.2). With social learning (o < 1), the purchase rate is affected by skeptics’ dynamically
evolving beliefs p;, and the information generated from purchases feeds back into these beliefs,
creating a feedback loop (Section 4.3).

Given the initial common belief y € {u%, u, 1}, the firm’s expected revenue is

T
o) 2| [ pani) . 0
where p is the selling price. Hence, the expected revenue from sponsoring a m-influencer is:

S 10w) 3 w(slw)o (). (7)

we seS



This expectation has two layers: the outside layer is an expectation over the unknown state,
and the inner layer is an expectation over the unknown signal of the influencer (which is itself

conditional on the state).

Remark 1. Although we refer to a specific influencer as a w-influencer, note that there are three
key characteristics that describe an influencer and her followers: informativeness 7, charisma «,

and follower size (embedded in the arrival rate A).

4 Valuing an influencer

We study a firm’s decision of whether to sponsor a specific influencer, which we refer to as the
sponsorship problem. The firm will sponsor the influencer when the expected benefit outweighs
the cost. The cost is in the form of influencer fees that are often exogenously determined by
market rates (e.g., $500 per Instagram post for a micro-influencer, Hitchcock 2025). The spon-
sorship problem can be easily extended to a setting where the firm has to choose the influencer
from a short list provided by a marketing agency. For instance, if the firm has to choose from
k finite influencers with each costing ¢, the optimal influencer can be found by comparing the
net benefits of the k influencers.

On the other hand, the benefit of sponsoring an influencer is the change in the firm’s expected
revenue with and without the influencer’s signal. For a m-influencer, this can be calculated as:

M(m, 1%) £ 3" pO(w) Y w(slw)o (1) — v(u?), (8)
we ses
which represents the expected revenue gain from the influencer’s signal updating the initial
common belief from p° to u?.

We refer to II as the value of the influencer. Our goal in the remainder of this section is to
characterize this value. Section 4.1 presents some preliminaries that simplify our analysis. We
then gain insights into the interaction between influence and social learning by studying how the
influencer’s value changes under two scenarios: one without social learning (Section 4.2) and one

with social learning (Section 4.3).

4.1 Some preliminaries
We first present preliminaries. For readers familiar with the Kamenica and Gentzkow (2011)
framework, these preliminaries should be familiar. We include these preliminaries to make our
work self-contained and to clarify our main analytical technique, which relies on visualizing the
influencer’s value IT by plotting the expected revenue function v(-) (see Figure 1 below). The
technique allows our analysis to proceed visually (as will be seen in Figures 2, 4, 5, 8, 9 and 13
throughout the rest of the paper).

The technique is based on a simple transformation. Given the influencer’s informativeness
7 and the prior p°, we define a distribution 7(-) over the set of post-signal beliefs in [0, 1].
Since there are two possible signals |S| = 2, there are two possible post-signal beliefs ut and pl

(determined a posteriori after observing the signal). However, before the signal is realized, we

10



Figure 1: Visualization of IT in (10) as the vertical height of the gray-colored rectangle. By (10),
the horizontal axis is the post-signal prior z.

can compute the a priori probability of each post-signal belief as:
(') 2 p(w)m(s [ w). (9)
wel2
Hence, a priori of observing the signal, the expected revenue from sponsoring an influencer is
(M) 4+ 7(uf)v(pt). This observation leads to the following lemma which reformulates the

influencer’s value IT using the distribution 7(+).

Lemma 1. The value of the influencer in (8) is equivalent to:
H(m, 1) = (r, 1) = Y r(w)o(p®) = o(u) (10)
se{l,h}

where 7(-) and u° satisfy
() + ("t = 1. (11)

Proof. See Appendix D.1.

Equation (10) shows that the influencer’s value can be expressed as a weighted average
of revenues under different post-signal beliefs, minus the revenue without the influencer. The
weights are the a priori probabilities 7(u") and 7(u*) of each belief occurring. Condition (11),
known as “Bayes plausibility,” ensures consistency: the expected post-signal belief (weighted by
the probabilities of each signal) must equal the prior belief u°. This prevents the influencer
from systematically biasing beliefs upward or downward on average—any change in beliefs must
balance out across the two possible signals. Interested readers are referred to Appendix B for a
concrete numerical example.

Geometrically, this lemma allows us to visualize the influencer’s value using the revenue
function v(-). For given post-signal beliefs p” and uf, the influencer’s value II is the vertical
distance between the revenue function v(-) evaluated at the prior u° and the secant line connecting
the points (uf,v(u’)) and (u,v(u")). This is illustrated in Figure 1. Importantly, by the
Bayes plausibility condition, the prior x° always lies between uf and p”, ensuring this geometric

interpretation is well-defined.
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This geometric perspective reveals when the influencer creates value. If v(-) is convex over the
interval [p”, 4f], then T > 0: the influencer is valuable when the revenue function curves upward
between the two possible post-signal beliefs. Conversely, if v(-) is concave over this interval, then
IT < 0: the influencer destroys value when the revenue function curves downward. The intuition
is straightforward: a convex revenue function means the weighted average of revenues at the
extreme beliefs exceeds the revenue at the average belief, while a concave function produces the

opposite result.

4.2 Baseline setting: No social learning
We first analyze a baseline model where all customers are devotees (o = 1). In this setting,
customers form their beliefs exclusively from the influencer’s signal and do not engage in social
learning. We use the term “social learning” to refer to learning from additional signals or reviews
besides the influencer’s message. This baseline case allows us to obtain closed-form solutions for
the influencer’s value and establish a benchmark for comparison with the social learning case
studied in Section 4.3.

For a given arrival rate A and a common prior u € {u°, u?, ,uﬁ}, the demand process is a

Poisson process with a constant rate

A 2 A ifp>p/g, (12)

0 otherwise.
This result comes directly from the threshold decision rule in (1). Using (6), the expected revenue

v(p) for a given prior belief pu is:

v(y) = pE [ / "Dy | fo] _JE [ / "D | Fl | R| —pAT  (13)

where the first equality is by definition, the second equality uses the tower rule of conditional
expectation, and the third evaluates the expected total arrivals in [0, 7] given a Poisson rate A(u).
Therefore, v(-) is a step function with a discontinuity at u = p/g, as illustrated in Figure 2.

We next examine how the value of an influencer is affected by the prior x° and her informa-
tiveness w. Following the Bayesian persuasion literature, we express this value as a function of

the post-signal priors, u and p”, which depend on x° and 7 through (4).

Proposition 1 (Value of the influencer without social learning). By (5) and (11), we have
pt < p® < pP. When all customers are devotees that exclusively learn from the influencer’s
signal, the influencer’s value is determined as follows:

(i) If u* <p/g < p" and p° < p/g, then I > 0 with

0 J4
10— p
(ii) If uf <p/g < p” and p/g < u°, then II < 0 with:
h _ ,0
= —p\T- ﬁ (15)

(iii) Otherwise, I = 0.
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Figure 2: An illustration of Proposition 1

This proposition characterizes when an influencer creates value in a setting without social
learning. The key requirement is that p‘ < p/g < p”, meaning that the influencer is sufficiently
informative so that her signal changes purchase decisions. Followers will not purchase after a
low signal but will purchase after a high signal. If this condition fails, the influencer creates no
value because followers’ decisions remain unchanged regardless of which signal she sends.

Given this requirement, the influencer’s value depends on where the prior belief u° sits relative
to the purchase threshold p/g. Figure 2 illustrates cases (i) and (ii) geometrically, with the
vertical height of the red rectangle representing the influencer’s value II.

Case (i) describes the scenario where influencers are valuable. When customers initially
hold a low belief about the product (u° < p/g), they will not purchase without additional
information. An influencer who can send a positive signal raises the belief above the threshold,
leading to purchases that would not have occurred otherwise. Formula (14) shows that the
influencer’s value increases linearly with how far the prior x° is from the lower post-signal belief
1!, normalized by the spread p® — uf.

Case (ii) reveals a cautionary finding: influencers can actually harm revenue when the prior
belief is already high (u° > p/g). In this case, customers would purchase based on their prior
belief alone. However, the influencer introduces risk. A negative signal could lower beliefs
below the purchase threshold, converting buyers into non-buyers. The positive signal provides
no additional benefit since customers were already going to purchase. This asymmetry makes
the expected value negative.

These results are relatively standard in the applied information design literature (see, e.g.,
Boyaci et al. 2022; Alizamir et al. 2020). However, a less common area of investigation is how the
influencer’s value depends on her informativeness m. Our framework enables us to characterize
this relationship in Proposition 2 below. The proof is in Appendix D.2. Since there are only two

signals, the pair (7, 7oz ) fully characterizes the two-by-two informativeness matrix .
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Figure 3: An illustration of Proposition 2. When p® < p/g the region AT corresponds to the
region where the value of the influencer is positive and the region A~ is the region where the
influencer’s value is zero. The heatmap shading shows the influencer’s value, with darker colors
indicating higher value.
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Proposition 2 (Impact of 7 on influencer value). Let m = and define the regions

AT &2 {(v1,20) € [0, 1P N{w2a < 1—m1} 129 > 1 —may }
A7 2 {(er,2) € 0,1 N{zz <1 —a1} iwo < 1—mar} .

The influencer’s value II is positive if u° < p/g and (7,57, mr) € AT, and nonpositive otherwise.

Figure 3 uses heatmap shading to illustrate the influencer’s value as a function of informa-
tiveness, with regions A and A~ marking the boundary between positive and zero value. Since
customers do not purchase under the prior (u° < p/g), an information structure is valuable if
and only if a positive signal can raise the belief u* above the purchase threshold p/g. When in-
formativeness (7,7, 7o) lies in region AT, this condition is satisfied and the resulting post-signal
belief yields positive influencer value as in case (i) of Proposition 1. Otherwise, the post-signal

belief u* remains below p/g, so the influencer has zero value as in case (iii).

We first discuss the impact of 1°. Note that m = I = ZO 1;7 g/ ? is the slope of the line separating
region At from A~. As p° increases toward p/g, customers are closer to the purchase threshold,
making it easier for a positive signal to trigger purchases. This expands the set of information
structures (region A™) that can shift customers above this threshold.

Beyond the role of the prior, the figure also reveals how different types of errors affect value.
A key insight is that false positive errors (7,1, = 1—myz,) and false negative errors (myg = 1—7mpp)
have asymmetric impacts. As the false negative rate increases, fewer information structures be-
come valuable. However, for any false negative rate, there always exists an information structure
with sufficiently high true negative rate that creates positive value. In contrast, when the false
positive rate is too high, no information structure creates value, even one that perfectly detects
good products (7w = 1).

The implication is that high false positive rate is more detrimental than high false negative

rate. When an influencer frequently endorses bad products (high false positive rate), her positive
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signals lose credibility. Even if she perfectly detects good products, followers may treat the influ-
encer’s positive signal to be false, limiting its ability to raise beliefs above the purchase threshold.
Such an influencer brings no value to the firm. Conversely, an influencer who frequently fails to
endorse good products (high false negative rate) can still create value if she rarely endorses bad
products. When false positives are uncommon, her endorsements remain highly credible and can
push followers’ beliefs above the purchase threshold, triggering purchases.

Finally, the heatmap reveals patterns in how value varies with informativeness. For fixed
true negative rate gy, the influencer’s value increases monotonically with the true positive rate
mpi. However, for fixed true positive rate mpy, the maximum value occurs at an interior value
of mgr, € (0,1) rather than at the extreme my;, = 1. This implies the ideal influencer sends a
somewhat noisy signal in the bad state. The intuition is straightforward: an influencer with
perfectly accurate signal generates zero revenue when the state is bad, since she never endorses
bad products and thus never triggers purchases in that state. By introducing noise, the influencer
occasionally endorses bad products, generating positive expected revenue even in the bad state.
This benefit from occasional false positives must be balanced against the credibility loss discussed

earlier, yielding an interior optimum.

4.3 A model with social learning

We now introduce social learning into the model by allowing a fraction of customers to be skeptics
(a < 1). Recall that devotees rely exclusively on the influencer’s signal when making purchase
decisions, while skeptics also incorporate information generated organically by other customers,
such as observed purchase behaviors and posted reviews. This organic information accumulates
over time as customers arrive and make purchase decisions, creating a dynamic feedback loop
that fundamentally changes the structure of demand.

We model the additional organic information-generating processes as follows. With proba-
bility v, each purchase generates a public signal r € {h, ¢}, where h denotes a positive signal
and ¢ denotes a negative signal. These signals represent organic feedback such as online reviews,
ratings, or social media posts about the product. This signal r is drawn from a conditional

probability 7 (r|w) distribution, where w € {H, L} is the true state. For convenience, we write:

ra (Thu T\ a (7(WH) 70 H)
™=\ r _rR|] "\ R R
The 7oL m(h|L) 7 (L)

The distribution 7 represents the average accuracy of the organic signals, which can be
interpreted as the historical reliability of the online community. Note the distinction between 7%
(accuracy of organic signals) and 7 (informativeness of the influencer). Our approach of treating
78 as exogenously given by historical data is standard in the information economics literature
(see, e.g., Banerjee 1992; Bikhchandani et al. 1992). We provide a micro-foundation of 7% in

Appendix I.

Remark 2 (Justification of assumptions). Our model makes three key assumptions about the
organic signal generation process: (i) only buyers generate signals, (ii) the propensity to generate

signals () is independent of the true state, and (iii) the customer arrival rate () is independent
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of the true state. These choices reflect institutional characteristics of most e-commerce platforms
and standard modeling practices. Requiring verified purchases limits reviews from non-buyers,
which supports (i). Separating the rate of signal generation from signal informativeness aligns
with the information economics literature. This makes the problem tractable and allows us to
emphasize how quality impacts review content rather than volume, which supports (ii). In many
e-commerce sites, customer arrival is driven by platform algorithms or marketing, which are
often independent of underlying quality, which supports (iii). In Appendix I, we examine the

robustness of our analysis to alternative assumptions.

Demand process. By the decision rule in (1), a customer purchases if and only if her belief
exceeds p/g. Let p; denote the belief of a skeptic at time ¢ about the probability that the state
is H. At time ¢ = 0, all customers share the same initial belief: g = u® if the influencer is
not sponsored, or pg = p® if the influencer sends signal s. Devotees maintain this initial belief

po throughout the selling season, yielding a constant purchase rate of Aal In contrast,

1o>p/g-
skeptics update their beliefs to u; as they observe organic signals over time, yielding a time-

varying purchase rate of A(1 — a)1 Note that we assume skeptics do not purchase when

ne=p/g-
exactly indifferent (u; = p/g), while devotees do. This technical assumption ensures well-defined
boundary conditions, but has negligible impact on the analysis.

The overall demand rate at time ¢ is therefore X - f(«, po, pt), where

f(a, Mo, :ut) £ alugZp/g + (1 - a)lut>p/g' (16)

Let D; denote the cumulative demand up to time ¢, and let F; denote the information available
at time t. Since demand follows a nonhomogeneous Poisson process with time-varying rate
M (e, po, p1t), conditional on Fi, the transition probabilities for D,y over a time interval of

length h are:

1 — Af(a, po, )b +o(h), if k=0,
P(Dipnh =Dy +k | Fr) = Mf(a, po, jue)h + o(h), if k=1, (17)
o(h), if k> 2,

where o(h) denotes a term where limy,_, % =0.

Belief dynamics. We now formalize how skeptics’ beliefs u; evolve over time. We denote by
Hy = {Rpu, Row,0 < u < t} the information set available to skeptics at time ¢, where Rp,, is
the cumulative number of h (positive) signals by time u and Ry, is the cumulative number of ¢
(negative) signals by time u. We let F; £ o(Rpy, Rpu, 0 < u < t) denote the filtration generated
by these signal processes.

Importantly, the purchase history {D,,,0 < u < t} does not provide additional information to
skeptics. Because the arrival rate A is not state-dependent, the rate of purchases reveals nothing
about the state. Therefore, skeptics update their beliefs solely based on the signal history H;.
When only purchase counts (without signals) are observed, the model reduces to the baseline

setting in Section 4.2 where charisma « plays no role (see Appendix C).
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The signal process {Rp: + Rpu,t > 0} is a nonhomogeneous Poisson process with rate
My f (e po, p1¢) at time ¢, where v is the probability that a buyer sends an organic signal. The
likelihood of the signal history {Rpy, Rew,u < t} corresponds to the likelihood of inter-arrival
times {t1,%2,...,tR,,+R,, } in this Poisson process, where ¢, is the time that the kM signal occurs.
Given state w € {H, L}, the likelihood of the signal history at time ¢ is:

]P({RhuaRﬁuyu < t} ‘ w)

. Rpi+Re (18)
= el t(emon) ) ST O f (e o, o)) (nfly) ™ (e, )
k=1

This is the standard likelihood function for inter-arrival times in a nonhomogeneous Poisson
process (Zhao and Xie, 1996). Given the prior belief 1 and the likelihood function (18), we
derive the posterior belief p; using Bayes’ rule. The proof is in Appendix D.3.

Lemma 2. A skeptic with prior belief € {u°, u*} who observes signals H; = {Rpy, Rew,u < t}

would have a posterior belief at time ¢ equal to:

I
Mt = <R \Bht o r N\ Ree” (19)
p+ (L —p) (%) (%)
ThH TeH

The expression in (19) in intuitive. If no signal arrives, u; does not change because the
signal generation rate is not state-dependent. By contrast, when a positive signal arrives and
TrffL / ﬂfH < 1, skeptics strengthen their belief that the product is good. The ratio W,IL%L / W,IL%H <1
means positive signals are more likely under the high state, so positive signals naturally increase
the belief in product quality. In simple terms, skeptics become more confident about product
quality when they see positive reviews, but only if positive reviews are more common for good
products than bad ones. The updating is faster when skeptics are initially uncertain and slower
when they already have strong convictions (u close to 0 or 1).

Since p; depends on the discrete processes Rp; and Ry through the nonlinear function (19),
a differential form for the dynamics of u; is not immediately obvious. However, we can apply
[t6’s lemma to derive a stochastic differential equation. It6’s lemma is a chain rule defined on
stochastic processes. While many readers may be familiar with It6’s lemma applied to functions
of Brownian motion, here we use a version that applies to jump processes. The proof is in
Appendix D 4.

Lemma 3. The posterior belief p; satisfies the following stochastic differential equation:
() (el =) e (L ) (el — 7l
-~ R R dBn + —5 R

Tpgrbt— + T (1 — ) Ty be— + T (1 — )

where pg is the prior belief, and p;— denotes the left limit p— = limp,_,q pts—p.

dpg ) dRy. (20)

These results characterize how customer beliefs evolve. Devotees maintain static beliefs,
while skeptics’ beliefs follow a stochastic jump process. The posterior belief p; jumps when
signals arrive, with jump sizes that are small when skeptics already hold strong beliefs (either

pi— close to 1 or close to 0). The jump magnitude reflects the accuracy of the online community:
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for positive signals, it depends on FEH and WfL; for negative signals, on WfH and Wﬁ.

Expected revenue. Similar to Section 4.2, the key to computing the influencer’s value is eval-
uating the expected revenue function v(p) for the common initial prior u where pu € {1, u”, u’}.
When all followers are devotees, v(-) is a simple step function. However, when skeptics are
present, computing v(-) is more challenging because of its dependence on skeptics’ belief u; that

evolves dynamically. We can see this from:

o(p) =E [/OTpth ’ ]-'0] —E [/OTpE(th | Fo) ‘ ]—'0] ~E [/OTp/\f(oe,u,,ut) dt ’ ]-'0] (21)

where the last equality uses the evolution of D, from (17). In this expression, we assume that the
firm’s belief is the same as that of the skeptics since both have access to the same information.

Our approach is to utilize the dynamics of y; to evaluate the expected revenue using dynamic
programming (DP). We define a revenue-to-go function with two state variables: (i) the posterior
belief of skeptics y € [0, 1], and (ii) the remaining time ¢ € [0, T'] until the end of the selling season.
(The reader should not confuse the DP state variables y and ¢ with the state of nature w.) These
state variables are sufficient based on the belief dynamics in Lemma 3. Let V(y,t;2) denote
the expected revenue-to-go when skeptics hold posterior belief y, the remaining time is ¢, and
devotees hold a fixed belief z. Note that the total expected revenue is then v(u) = V(u, T p),
since skeptics and devotees start with the same belief at time ¢ = 0.

We derive the DP formulation of V(y,t; z) by considering a outcomes during a small time
interval of length h. From the transition probabilities in (17), a purchase will occur with proba-
bility Af(a, z,y)h + o(h), earning a revenue p. If a purchase occurs, the buyer produces a signal
with probability . Conditional on the current belief y, this signal is positive with probability
yﬂfH +(1- y)ﬂ,?L and negative with probability yﬂfH +(1- y)ﬂﬁ. The belief updates to y+ Jpy
after a positive signal, to y + Jy, after a negative signal, and remains y if no signal arrives, where

Jhy and Jp, are the jump sizes given a positive and negative signal, respectively. From Lemma 3:

y(1—y) (ﬂ-fH - Wﬁ)
Wny + Wﬁ(l - y)

1— R _ _R
oy 2 y( _ y) (TFII;H ) . and  Jy 2

Ty + T (L= y)

Therefore, we can write V (y,t; 2) as:
V(. E2) = Mo, z,9)h [p+ (nhegy + 7 (1= 1) V(Y + Juy, T = b3 2)
7 (figy + 7l (L= ) V(g + T T hi2) + (1= )V (. T = hsz)|  (29)
+ (1= Af(a,z,y)h) - V(y,t = h; z) + o(h),

Subtracting both sides by V(y,t — h; 2), dividing by h, and taking the limit as h — 0 yields the

Bellman equation.

(22)

Lemma 4. The expected revenue-to-go function V satisfies the Bellman equation:
oV (y,t; z )

(24)
+ (7lgy + 1 (L= ) V(y + Joy T 2) = V(y, ; Z)} A fla,z,y)7,
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where Jy,, Jy, are as defined in (22). The boundary conditions are
V(y,0;2) =0, Vye€l0,1];
V(L t;2) = Af(a, 2, 1)pt, VE€[0,T]

The Bellman equation (24) captures a fundamental trade-off: the firm earns immediate rev-
enue from current purchases, but must also account for how these purchases generate information
(through organic signals) that affects future sales. The first term represents the instantaneous
revenue rate, while the second term captures the expected change in value due to information

that updates skeptics’ beliefs.

Asymptotic analysis. The Bellman equation in Lemma 4 is analytically intractable because
the belief y jumps up by Jp, or down by .Jy,, which are complicated nonlinear functions of y,
as defined in (22). Thus, we instead characterize value function V' through asymptotic analysis.
Ifrach et al. (2019) similarly use asymptotic analysis to make the pricing problem under social
learning tractable.

A natural first approach might be to use fluid approximation, which takes a “law of large
numbers” limit where randomness is averaged out to reveal the underlying deterministic trends.
This approach is widely used in analyzing state-dependent queueing networks (Béauerle, 2002;
Zychlinski, 2023). However, fluid approximation is not suitable for our model because the belief
process {u¢} is a martingale, a stochastic process with no systematic drift. From Lemma 3
we have E[du|F;] = 0, meaning that in expectation, beliefs do not change. Since there is no
deterministic trend, removing randomness would cause the belief process to remain constant at
its initial value pg. This would eliminate the dynamic updating that defines social learning,
reducing our model to the static baseline case without skeptics (see Appendix H).

We instead use the diffusion limit which approximates a discrete jump process with a contin-
uous process (Glynn, 1990). Think of the belief p; as a particle that jumps randomly: it jumps
up by Jp,, when a positive signal arrives, and down by Jy,, when a negative signal arrives. These
jumps occur at random times following a Poisson process. The diffusion approximation is valid
when jumps are frequent but individually small—that is, when many signals arrive over time, but
each individual signal does not completely flip beliefs. In this regime, the accumulated effect of
many small random jumps can be well-approximated by continuous random fluctuations, similar
to how the discrete path of many coin flips converges to a smooth random walk in the limit.
We validate through Monte Carlo simulations (Appendix K) that this approximation is highly
accurate, particularly when the customer arrival rate A is large.

Mathematically, this approximation is justified by the functional martingale central limit
theorem, which states that appropriately scaled martingales converge to Brownian motion. The

formal result is as follows (proof in Appendix D.5).

(

Lemma 5. Let ,utn) denote the belief process when the arrival rate is An with arrival jump
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size 1/+/n, and let {(ﬂ(”)>t,t > O} denote the quadratic variation*. For ug > p/g, the following
holds:

(n) _
K~ Ho —4 N(0,1) as n — oo
(ulm)y

where —¢ denotes convergence in distribution and A(0, 1) denotes standard Normal distribution.

This result says that the belief change, when properly normalized by its variability, converges
to a normal distribution. This convergence justifies replacing the discrete jump dynamics with
continuous Brownian motion.

Using Lemma 5, we can replace the Bellman equation involving discrete jumps with a partial
differential equation involving a continuous diffusion term. The result is as follows whose proof

is in Appendix D.6.

Proposition 3. Let V be the diffusion approximation of the value function V. If z > p/g, then

V satisfies the partial differential equation:

S 201 — )2 (2R — 7R )2 217 (2 7.
VW52 po s + 22 @207y (L=9)* (miu = ™) 9°V(y.b; 2 (25)
ot 2 (W}?Hy + WEL(l — y)) (ﬂny + Wﬁ(l — y)) Oy?

with boundary conditions:

V(y,0;2) =0, Vyel0,1],
V(1,t2) = \pt, Vtel0,T),
V(p/g,t:2) = apt, VEie[0,T).
The PDE in (25) is a forward parabolic equation on the domain y € [p/g,1], t € [0,T]. The
82V

Oy?
assumption that W}?H > W,IL%L (organic signals are informative). The PDE is equipped with an

diffusion coefficient of

is positive and continuously differentiable for y € (p/g,1) given our

initial condition (for ¢ = 0) and Dirichlet boundary conditions (for y = 1 and y = p/g). Standard
PDE theory (see, e.g., Friedman 1964) guarantees existence and uniqueness of a classical solution
under these conditions.

The first term in the PDE (25) represents the instantaneous revenue rate from current pur-
chases. The second term captures how uncertainty in beliefs evolves over time. The coefficient
of % can be interpreted as the volatility of the belief process: when organic signals are highly
informative (large ‘W}?H — ﬂ}?LD, beliefs change more rapidly in response to signals, increasing
this volatility. This second-order term, which is not present in the baseline model without social
learning, captures the option value of information: beliefs can move in either direction, and this
uncertainty affects the firm’s expected revenue.

We approximate the expected revenue function by o(u) = V(u, T; p). The tractability gained
from the diffusion limit allows us to characterize the structure of o(-) analytically, which would
be impossible with the original jump process formulation. The proof of the following result is in

Appendix D.7.

4Quadratic variation of a martingale is defined as lima¢—o Z?:l(Xti thi_1)2 where0=tg<t1 <...<t, =t
and At £ max;(t; — t;—1).
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Lemma 6. When Tr,lfH #* ﬂfL, the following results hold:
(i) For u € [0,p/g), we have o(u) = 0.

(ii) For u € [p/g,1], the function ¥(u) is concave and nondecreasing in f.

Lemma 6 reveals a key structural property: with social learning, the value function is increas-
ing for p € [p/g,1]. This contrasts with the baseline model without social learning (studied in
Section 4.2), where the expected revenue is constant for u € [p/g,1]. The concavity reflects di-
minishing marginal returns: when the prior is already high, skeptics start with strong convictions,
so organic signals produce smaller belief updates, limiting the value of social learning. When the
prior is moderate (just above p/g), organic signals produce larger belief changes, creating more
potential for positive value of information.

Figure 4 plots both o(u) (the expected revenue with social learning) and v°(u) (the expected
revenue without social learning). Both are zero for u < p/g with a discontinuity at = p/g. In
p € [p/g,1], v°(u) is a constant while v(u) is increasing and concave. This visual comparison
highlights how social learning creates sensitivity to the initial belief: unlike the baseline case
where only crossing the threshold matters, with social learning the magnitude of the initial belief
affects revenue through its influence on the subsequent information learning. In the next section,
we explore these implications in detail, characterizing how social learning affects the value an

influencer creates for the firm.

5 Impact of social learning on influencer value

The structure of ©(u) revealed in Lemma 6 has important implications for when influencers
create value. To understand these implications, we must examine where the purchase threshold
p/g falls relative to the three belief levels: u’ (belief after a low influencer signal), u® (belief
without influencer), and p”* (belief after a high influencer signal). Since p < u® < p”, there are
four distinct cases depending on where p/g falls among these beliefs. Figure 4 illustrates these
four cases, extending the comparison between o(u) and v°(u) to show how the influencer’s value
varies across these scenarios.

In each panel of Figure 4, the black curve shows expected revenue with social learning v, while
the red curve shows expected revenue without social learning v°. The shaded areas represent
influencer value: gray for Ils; (with social learning) and red for IIys. (without social learning).

These values equal the vertical heights of the respective shaded regions.

Cases (a) and (d): Influencer provides no value. When all belief levels fall on the same
side of the threshold p/g, the influencer is not informative since her signal alone cannot change
purchase decisions. In these cases, the influencer cannot create value. In panel (a), all beliefs
exceed p/g. Without social learning, IIys. = 0. With social learning, IIs; < 0: the influencer
actually has a negative value, since a low signal weakens beliefs and makes consumers more
susceptible to the subsequent signals. In panel (d), all beliefs are below p/g, so no one purchases
even after a high signal. Since there are no purchases, there are no organic signals. Both with

and without social learning, IIg; = Il = 0.
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Figure 4: Four cases, (a) through (d), of the possible arrangement of uf, u°, and p” with respect
to p/g, and the impact on the value of the influencer with and without social learning.

Case (c): Social learning discounts value. When 1" < p/g < p”, customer purchases are
initiated only after a positive signal from the influencer. Panel (c¢) shows that IIys. > IIs > 0.
Without social learning, all followers who see the high signal purchase throughout the season.
With social learning, skeptics may stop purchasing if subsequent organic signals are negative,
reducing the influencer’s value. This aligns with intuition: social learning dilutes the influencer’s

impact by introducing competing information sources.

Case (b): Social learning boosts value. When u‘ < p/g < u°, panel (b) shows a counter-
intuitive result. Here, IIns. < O but IIs. > 0. Without social learning, the influencer adds no
value because customers already purchase at prior x°, so a high signal provides no benefit while
a low signal stops all purchases. With social learning, however, a high signal raises skeptics’
starting belief from 49 to u. This higher starting point means beliefs are less likely to fall below
p/g during the diffusion process (even after negative organic signals), generating more purchases
over time. The influencer becomes valuable precisely because of social learning that introduces
curvature of the value function due to the variance term in (25).

These cases reveal a nuanced picture: social learning’s impact on influencer value depends
critically on whether customers would purchase without the influencer’s signal. When customers

need persuasion to purchase (case ¢, where u® < p/g), social learning reduces influencer value
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Figure 5: An illustration of how influencer value can either increase or decrease as charisma
increases depending on the relative position of u° with respect to p/g. Three curves corresponding
to increasing levels of charisma: a; < as < ag

by introducing competing organic signals that can override the influencer’s message. Conversely,
when customers already intend to purchase (case b, where u® > p/g), social learning increases
influencer value since an endorsement strengthens skeptics’ starting belief, protecting the belief
from drifting downward when organic signals are negative.

Figure 5 further reveals how the proportion of devotees () interacts with these effects. The
figure shows three curves corresponding to increasing levels of charisma: a; < as < ag. In
case (c), panel (ii), influencer value increases with fewer skeptics that rely on competing organic
signals. In case (b), panel (i), influencer value decreases with fewer skeptics whose belief is
strengthened by a positive signal.

Figure 6 summarizes these findings by mapping when influencers are valuable as a function
of the decision threshold (horizontal axis) and charisma (vertical axis). Note that the informa-
tiveness m changes the position of uf and p” on the horizontal axis via (4). Several insights
emerge: (i) When priors are low (u° < p/g), influencers are always (weakly) valuable regardless
of charisma. (ii) When priors are high (p/g < p°) and a “no endorsement” signal is credible (7,
is sufficiently high so u* < p/g), the only influencers that create value are those with a sufficient
proportion of skeptical followers. (iii) As the no-endorsement signal becomes more credible (as
7o, increases and decreases), the influencer with social learning becomes more valuable.” In
the extreme case, an influencer with perfectly credible negative signals (inducing pf = 0) always
has non-negative value as long there are enough skeptics.

Our main analytical result formalizes these observations and its proof is in Appendix E.1.

Theorem 1. For a given prior ° and an influencer with a given information structure r, if an
influencer is valuable (i.e., IIys. > 0) without social learning, then that same influencer is also

valuable when there is social learning (i.e., IIs; > 0). However, the converse is not always true.

5This insight is further illustrated in Figure 9 in Appendix A.
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Figure 6: A visual summary of observations and intuitions arising in Figures 4 and 5.

Figure 7: Parameter values (o, u°,p/g) that make the 7-influencer valuable

Moreover,
(i) if sy > 0, then Tygy > IIs. > 0;
(ii) if sy = 0, then Iysy > Il .
(iii) if MnsL < 0, then sy < Is;

Theorem 1 reveals a surprising asymmetry: the set of instances where influencers create value
is strictly larger with social learning than without, as illustrated in Figure 7. One might expect
social learning to always weaken influencer value by introducing competing information sources
that dilute the influencer’s message. Though this is true, those influencers still create positive
(though weakened) value. The expansion of the set valuable influencers occurs because social

learning can transform value-destroying influencers into value-creating ones.

6 Optimal information structure

We now consider a firm’s decision when choosing among multiple available influencers. Which

influencer should the firm select? This question is central to Bayesian persuasion (Kamenica
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and Gentzkow, 2011), where a sender (the firm) chooses how to reveal information to a receiver
(customers) to maximize its objective. In our setting, the firm selects an influencer characterized
by informativeness m, effectively choosing the information structure that followers observe.

We assume the firm has commitment power: it can commit to working with a particular
influencer whose information structure 7 is publicly known. Following standard assumptions in
Bayesian persuasion, we adopt a perfect Bayesian equilibrium (PBE) where both the firm and
followers behave optimally. The firm’s problem is to choose 7 from the feasible set [0, 1]2 N {myr +
mhy < 1} to maximize its expected revenue.

Formally, the optimal influencer problem for given parameters u°, X, o, and T is:

max}rmize (r, u°)

:U’Oﬂ-sH <26)

,U'Oﬂ'sH + (]— - No)ﬂ-sL

subject to p® = , se{ht}

where TI(7, u°) is a 7-influencer’s value defined in (8) and the constraints ensure consistency with

Bayesian updating from (3).
6.1 An LP reformulation

Using the transformation from Lemma 1 and standard techniques in Bayesian persuasion (Ka-
menica and Gentzkow, 2011), we can reformulate (26) in terms of the distribution over posterior
distributions 7 defined in (9). This reformulation reveals the problem’s structure more clearly

and the proof is in Appendix F.1.

Proposition 4. The optimal influencer problem (26) is equivalent to:

1
maxiTmize E, [v(2)] — v(u®) = /0 7(2)v(2)dz — v(u®) (27a)
1
subject to E; (z) = /0 7(2)zdz = p° (27b)

/1 T(2)dz =1 (27¢)
0
7(z) > 0 for all z € [0, 1] (27d)

where E, is the expectation operator with respect to distribution 7 of post-signal beliefs z for
z € 10,1].

The reformulation (27) has an important structural property: constraint (27b) requires that
the expected posterior equals the prior (Bayes plausibility), while constraints (27¢)—(27d) en-
sure 7 is a valid probability distribution. Since there is only one moment constraint, the dual
Carathéodory theorem implies that the optimal 7 has support on at most two points (see Barvi-
nok 2002 and Lemma A.3). In other words, the optimal influencer sends signals that induce

exactly two possible posterior beliefs.
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This insight allows us to characterize the solution of (27) using the dual problem:

minimize A; + p®Xo — v(u°) (28a)
AL, 2
subject to A\j + 22 > v(z) for all z € [0, 1]. (28b)

The dual problem has an intuitive interpretation: find the linear function A\; + zA2 that upper-
bounds v(z) everywhere and is tightest at the prior u°. Hence, A\; + zA2 can be thought of as a
linear approximation of the expected revenue v(z). The dual has only two variables, so at most
two constraints are active at optimality. We denote these active constraints by their indices z;
and zg. By complementary slackness, 7(z) = 0 for all z # z1, z9. Hence, the optimal influencer
of the primal (27) has informativeness 7* with post-signal beliefs z; and zo.

The following theorem characterizes the optimal influencer’s value based on the solution to

the dual problem. Its proof is in Appendix F.3.

Lemma 7 (Optimal influencer from z1, 2z2). Suppose v(-) is differentiable almost everywhere.
Let z; and z (where 21 < z9) denote the indices of active constraints to the dual problem (28)
under the optimal solution.

(i) If 21 < 22, the optimal influencer’s a priori probabilities of post-signal beliefs are

0 0
2 — M K =2
= = 2
T(Zl) 2 — 21 ) 7(22) 2 — 21 ) ( 9)
and the optimal influencer’s value is
N v(z2) —v(z
I = o(er) + (60 — o) L) ) (30)

(ii) If 213 = 29, then II* = 0 (no influencer provides value).

Corollary 1. Suppose v(-) is differentiable almost everywhere. Let z; and zo (where z; < z9)
denote the indices of active constraints to the dual problem (28) under the optimal solution.
Sponsoring any influencer is beneficial to the firm if and only if v(z1)+ (u® — zl)% —v(u?)
is nonnegative.

In Figure 10 in Appendix A, we visualize the optimal influencer value in the case of z; < z5.
Geometrically, (30) represents the vertical distance between v(u") and the chord connecting
(z1,v(21)) and (z2,v(z2)). Motivated by this, we provide a general Algorithm 1 for computing z;
and zy (and hence IT*) in Appendix J. Algorithm 1 implements a secant-slope search to identify
the active constraints (z1,22) in the dual formulation. Starting from the left, the algorithm
repeatedly finds the point that maximizes the secant slope from the current position, effectively
constructing the concave hull of v(-) segment by segment. The search terminates when it identifies
the secant line segment whose interval [z1, 22| contains the prior belief po; these endpoints are
the two active constraints that determine the optimal information structure. Algorithm 1 has
complexity O(n?) if the grid precision of [0, 1] is n.

We next apply Lemma 7 to characterize the optimal influencer to both our baseline model

(Section 4.2) and social learning model (Section 4.3). To do so, we must verify that the respective
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Figure 8: Optimal influencer value with social learning (IIg , solid black) and without (IIyg,
solid red) as a function of the prior u°. Dashed curves show the underlying revenue functions
o(-) (black) and v°(-) (red). Shaded regions on the horizontal axis indicate ranges of u° where
optimal influencers create positive value with social learning (black shade) and without (red
shade). We use o'(z1) to denote the right differential of ¥ at .

value functions are monotone, which ensures they are almost everywhere differentiable (see, e.g.,
page 112 of Royden and Fitzpatrick 1988). The proof is in Appendix F 4.

Lemma 8. The value functions v°(z) (baseline model) and ©(z) (social learning model) are both

weakly increasing in z € [0, 1].

This monotonicity result is crucial: it allows us to apply Lemma 7 to characterize optimal
influencers in both settings. For the baseline model without social learning, we can derive a

closed-form solution.

Proposition 5 (Optimal influencer without social learning). In the baseline model:

(i) If u° < p/g, the optimal influencer’s value is II* = u’pAT/(p/g). The optimal information
structure is 7, = 1 and 7r, = (p/g— p°)/[(1 — p°)(p/g)] which induces post-signal beliefs
pt = 0and " = p/g with a priori probabilities 7(u’) = 1—p°/(p/g) and (") = 1°/(p/g).

(ii) If 4 > p/g, optimal influencer’s value is IT* = 0.

The optimal influencer without social learning has a simple structure: it always sends a
positive signal in the high state (7,7 — 1) and calibrates the true negative rate (71, to place u”
exactly at the purchase threshold p/g. Intuitively, the firm wants followers reach the purchase
threshold after a high signal, but gains nothing from pushing beliefs higher.

With social learning, closed-form solutions are difficult to obtain. However, we can compute
optimal values numerically using the algorithm in Appendix J. Figure 8 illustrates how optimal
influencer value differs with and without social learning across different prior beliefs x® and

charisma levels a.
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When the prior is low (1 < p/g), the figure shows that the optimal influencer without social
learning creates more value than with social learning, regardless of charisma level. This aligns
with the intuition from case (c¢) in Section 5: when customers need persuasion to purchase, social
learning dilutes the influencer’s impact by introducing competing organic signals.

However, when the prior is high (1 > p/g) and charisma is low (panel b), a striking reversal
occurs: the optimal influencer with social learning can be more valuable than without. Without
social learning, no influencer creates value when % > p/g since customers already purchase.
With social learning, however, the optimal influencer raises skeptics’ starting belief from p° to
p", reducing the probability their beliefs drift below p/g over time. This reversal only occurs
when charisma is low (many skeptics benefit from the raised starting point). Furthermore, the
effect is weakest when u° is just above p/g, since beliefs starting just above the threshold face
high drift risk even after being raised to p”, limiting the protection the influencer can provide.

More broadly, Figure 8 shows that the set of instances where the optimal influencer with
social learning creates positive value subsumes the set where the optimal influencer without
social learning creates positive value. This pattern mirrors the observation from Theorem 1, but
now applies to optimally designed influencers rather than arbitrary ones. This relationship is
further illustrated in Figure 11 in Appendix A.

Beyond these comparisons of optimal influencer value, social learning fundamentally changes
the structure of the optimal information policy. To formalize this, we introduce a standard

definition from information economics.

Definition 1 (Adapted from Blackwell 1953). Let 7 and 7/ be the distributions over posterior
beliefs induced by the information structure 7 and 7’ under the same prior u°. We say that m

Blackwell dominates w' if T is a mean-preserving spread of 7.6

Blackwell dominance provides a formal way to compare information structures. When 7
Blackwell dominates n’, the posteriors induced by 7 have more spread while maintaining the
same mean as those induced by 7’. Greater spread means the signals are more informative:
they distinguish more sharply between states. Our main result shows that the optimal infor-
mation structure with social learning Blackwell dominates the optimal structure without social

learning—in other words, social learning increases optimal informativeness.

Theorem 2. When the prior satisfies u° < p/g:
(i) The optimal influencer with and without social learning induces posteriors pf = 0 and
uh € (0,1), corresponding to information structure 7,z = 1 and 7y, € (0, 1).
(ii) Let 75t and 7NSt denote optimal information structures with and without social learning.

Then ﬂgsk > W?LSL > 0, meaning 7" Blackwell dominates 7NSt.

We call the information structure in part (i) h-biased because it biases followers toward

observing positive signals: the influencer always sends signal h in a high state, but sends h with

SA distribution 7 is a mean-preserving spread of 7’ if there exists random variables X ~ 7 and X' ~ 7/
satisfying E(X|X’) = X’. Intuitively, each realization of X’ is spread out into a random X with the same
conditional mean.
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positive probability even in the low state (since 7, = 1 — mpy, > 0). Part (ii) reveals the key
insight: with social learning, the optimal h-bias is weaker (higher 7y, means lower false-positive
rate m,z), making the optimal influencer more informative.

This finding is counterintuitive. One might expect that abundant organic information would
make precise influencer signals less important, leading firms to prefer less informative influencers.
The opposite holds: social learning increases the value of informativeness. To see why, recall
that higher informativeness creates more spread between p and pf. When combined with the
concavity of 9(-) and the diffusion process, this spread generates more value by strengthening
initial beliefs so that they are more robust against drift.

Concretely, suppose an influencer with a 10% false-positive error rate is optimal with social
learning. Then an influencer with a 20% false-positive error rate might be optimal without social
learning. The firm should seek more accurate influencers when social learning is present.

Thus, social learning has two effects. First, it expands the set of instances where influencers
create value—some influencers that would be rejected without social learning become worth
sponsoring. Second, among settings where influencers are used, social learning shifts the optimal
information structure toward greater informativeness. Both effects arise from the same mecha-
nism: the interaction between the influencer’s signal and the subsequent belief diffusion process

that social learning enables.

Remark 3 (The impact of influencer’s cost.). When the influencer’s cost is a function of its
signaling structure, i.e., a function of , then the optimal influencer problem is related to another
literature: Bayesian persuasion with costs of acquiring information. Such costs are commonly
modeled as (i) prior dependent cost, or (ii) prior independent cost. When the cost depends on
prior belief, it is often interpreted as the cost of absorbing the information content relative to
what the signal receiver already knows, so it is a cost related to customers, not the influencer.
When the cost is independent of the prior, it is commonly modeled as a function of the noise.
Pomatto et al. (2023) propose axioms that such cost functions should satisfy and characterize the
cost functions over Blackwell experiments under their axioms. However, modeling the general
cost of producing information has remained an unsolved problem. It is an interesting future

direction to explore the costly information acquisition under social learning.

7 Privately informed firms

We now consider a setting where the firm has private information about the state w € {H, L},
for example, from extensive test-market studies or prior experience in similar markets. After
observing a private signal, the firm knows the true state. We refer to a firm that knows the state
is w as the type-w firm. The type-w firm then chooses an influencer with information structure
™8 x Qs [0,1].7

Followers are rational and understand the firm is privately informed. In this setting, followers

learn information through two channels: (1) from observing which influencer the firm selects,

“In this section, we focus on the optimal influencer only because we want to analyze how the initial private
signal might affect the equilibrium choice of signaling strategy .
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and (2) from observing the signal that influencer subsequently sends.
The firm’s choice of influencer potentially reveals information about its type. Let 8(m) denote
followers’ interim belief that the state is H after observing the firm’s choice 7, but before seeing

the influencer’s signal. This belief depends on which types would choose 7 in equilibrium:

0  if only L-type chooses 7

B(m) =<1 if only H-type chooses 7 (31)

u® if both types choose 7

If different types choose different information structures (7% # m7), we call this a separating
equilibrium because the firm’s choice perfectly reveals its type and the true state. If both types
choose the same information structure (7% = 7f), we call this a pooling equilibrium because the
firm’s choice reveals no information, leaving followers’ interim belief at the prior u°.

After updating the prior to B(n"), followers observe the influencer’s signal s generated ac-
cording to %, and the update beliefs dynamically following Section 4.3. The only difference
from the common prior setting is that the firm now has an extreme prior (0 or 1 since it knows
the true state) while followers have interim belief 5(7%). Given the firm’s type w, the expected
profit from choosing influencer 7 is:

I (m, B(m),w) £ Y (Lumnm(s|H) + Loz (s|L)) v(p®) = v(u°) (32)
seS
where p® = B(m)n(s|H)/ (B(m)w(s|H) + (1 — B(x))n(s|L)). All the proofs of this section are in
Appendix G.

This two-stage updating process means followers can learn the true state even in a pooling
equilibrium if the firm pools on a fully revealing information structure. We distinguish two
extremes: A full disclosure signal satisfies mpy = mpr, = 1, meaning the influencer’s signal
perfectly reveals the true state. A no disclosure signal leaves the posterior belief unchanged
from the interim belief (7).

Our main result characterizes equilibrium behavior when the firm is informed.

Theorem 3. When the firm is privately informed about the state:

(i) All equilibrium outcomes can be supported by a pooling equilibrium where 7 = 7%,

(ii) In any equilibrium, we have 77 = 71 = 7FP where 7FP. In other words, followers learn the

true state.

Theorem 3 has a striking implication: when the firm knows the true state, it always uses a
full disclosure influencer in equilibrium. The reasoning is straightforward. The high-type firm
prefers full disclosure because v(1) > v(z) for any z < 1. The low-type firm cannot benefit
from choosing any other structure because followers would correctly infer the firm is low type.
Therefore, both types pool on the fully revealing structure, and followers learn the true state—not
from the choice of influencer (since both types make the same choice), but from the influencer’s
subsequent signals. This result holds regardless of whether social learning is present, as followers

learn the state immediately from the influencer’s signal.
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This changes the influencer’s role. Strategic information design (i.e., choosing how much to
reveal) becomes redundant because incentive compatibility forces complete revelation. However,
the influencer is essential for credible communication: the firm cannot simply announce “our
product is high quality,” as followers would rationally discount such claims. In settings where
firms have verified quality information, influencer marketing serves primarily to credibly transmit
this known information rather than to strategically manage uncertainty.

Connecting back to our main model reveals a striking implication: private information can
harm the firm. An uninformed firm can implement sophisticated partial disclosure strategies
through Bayesian persuasion (e.g., choosing an influencer with 7(h|H) = 0.7, w(h|L) = 0.3). In
contrast, an informed firm must fully disclose despite having access to the same commitment
technology.

Why does commitment fail to enable partial disclosure when the firm is informed? This
connects to the cheap talk literature (Crawford and Sobel, 1982) where a firm can send costless
messages without commitment. Our firm possesses more power than in cheap talk: it can commit
ez-ante to any information structure. Yet Theorem 3 shows this commitment becomes irrelevant
once the firm has private information. The reason is that the firm’s choice of information
structure is itself observable. Despite having commitment power unavailable in cheap talk, the
informed firm cannot avoid full separation.

The economic consequence is substantial. An informed firm’s ez-ante revenue (before learning
the state) is pov(1) + (1 — p0)v(0), lying on the line segment connecting v(0) and v(1). As shown
in Figure 8, this is always weakly below the concave curve achieved by an uninformed firm using
optimal Bayesian persuasion. The firm would prefer to remain ignorant since commitment to
partial disclosure (available when uninformed) is more valuable than conditioning on the realized
state (available when informed). This “ignorance is bliss” result highlights why the uninformed
firm setting in Sections 5 and 6 (where firms genuinely do not know product quality and followers
understand this uncertainty) may better reflect modern marketing environments. It is precisely
in this setting where the interaction between influencer signals and social learning creates the

richest strategic considerations.

8 Conclusion

This paper analyzes how influencer marketing interacts with social learning in product markets.
We develop a model where firms can sponsor influencers to send signals about product quality,
and customers may learn both from these sponsored signals and from organic information gen-
erated by other customers’ purchases. Our analysis characterizes when influencers create value
and how firms should optimally design information structures, yielding several key insights.
First, social learning affects when and by how much influencers are valuable to the firm.
When customers need persuasion to purchase (low priors), the influencer can be beneficial with
or without social learning, but its value under social learning is always smaller, as social learn-
ing introduces competing organic signals. However, when customers already intend to purchase

(high priors), the influencer can be even more effective under social learning than without so-
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cial learning. This occurs when influencers raise skeptics’ starting beliefs enough so that the
customers’ beliefs become robust to organic negative signals that can be generated from social
learning. As a result, the influencer may become more likely to be valuable with social learning.
The set of parameter values where influencers create value is strictly larger with social learning
than without, a contradiction to the intuition that abundant organic information should diminish
influencers’ impact.

Second, when firms can choose among influencers, social learning increases the optimal infor-
mativeness. Firms should seek more accurate influencers (lower false-positive rates) when social
learning is present compared to when it is absent. This finding is counterintuitive: one might
expect abundant organic information to make precise influencer signals less important. Instead,
higher informativeness creates a greater spread in posterior beliefs, which strengthens skeptics’
prior beliefs to be robust against alternative information.

Third, when firms have private information about the state, these strategic considerations
disappear. Incentive compatibility forces both high- and low-quality firms to pool on fully reveal-
ing information structures, making followers learn the true state immediately. This “ignorance is
bliss” result shows that private information can harm firms: commitment to information struc-
tures only creates value when genuine uncertainty exists.

The traditional distinction between paid advertising and organic word-of-mouth may be too
stark. Influencer marketing occupies a middle ground: it is paid persuasion that operates through
trusted intermediaries, whose signals interact dynamically with organic information flows. Un-
derstanding these interactions becomes increasingly important as social learning mechanisms
proliferate across digital platforms, i.e. from product reviews to public health messaging. The
analytical tools we develop here, particularly for handling dynamic belief diffusion in networks,
provide a foundation for analyzing how actors can strategically navigate complex information
environments where centralized control gives way to distributed learning.

Several extensions could enrich our framework and broaden its applicability. First, one could
examine how signal format choices (text, photo, video) as costly signals affect influence value.
In public health contexts, for instance, video testimonials from healthcare workers may be more
credible than text posts, but also more expensive to produce and verify. Second, the timing of
information release deserves attention. In the video game space, for example, it has traditionally
been a sign of poor quality that a game is released to reviewers close to the launch date. However,

8 Public health authorities must

recent trends have pushed the release of preview copies later.
decide when to release information during evolving crises: releasing too early risks misinformation
to take root, while releasing too late allows competing narratives to take hold. Lastly, dynamic
disclosure policies merit investigation, where firms sequentially sponsor different influencers.
However, one needs to be careful about the applicability of the model assumptions. For example,

one would need to assume that influencers have similar groups of followers.

8For a discussion, see the article: https://arstechnica.com/gaming/2016/10/
why-early-reviews-of-video-games-are-getting-rarer-and-rarer/
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Appendix A Additional figures
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Figure 9: Ilg| increases as u’ decreases in case (b) of Figure 4.
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Figure 10: Visualization of the optimal value in Lemma 7. The solid line connecting (z1,v(21))
and (z2,v(z2)) is AT + zA5.

Appendix B Visualizing the value of the influencer

Example A.1. Suppose the common prior belief is that the low state and the high state are

equally likely to occur; i.e., u®(H) = p°(L) = 1/2. The influencer’s informativeness 7 has

Al



Figure 11: Parameter values (a,p/g, u°) that make the optimal influencer valuable

wpg = 0.8, myg = 0.2, mpr, = 0.4, and 7wy, = 0.6.

The post-signal priors u* and u are computed a posteriori (after observing the signal) using
Bayes’ rule according to (4). However, before the signal is realized, we can compute the a priori
probability of each post-signal belief using (9): 7(u”) represents the probability of observing "
and 7(u%) represents the probability of observing uf.

Specifically, we have post-signal priors

- 0.5 % 0.8 2
b 05 %x08+05x04 3
Y 0.5 % 0.2 1

T 05x02+05x06 4
with a priori probabilities

7(2/3) = 0.5 x 0.8 + 0.5 x 0.4 = 0.6,
7(1/4) =1—-7(2/3) = 0.4.
From (10), the influencer value II can be expressed in the following way

H=7@v@+rHvd)-v(r@i+7()1). (A1)

Hence, we can visualize II geometrically as the height of the gray rectangle in Figure 12. In
particular, it is the difference evaluated at the point z = 1/2 between the curve v(-) and the
secant line that passes through (1/4,v(1,4)) and (2/3,v(2/3)).
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Figure 12: Visualization of IT in Example A.1 as the vertical height of the gray-colored rectangle.
By (10), the horizontal axis is the post-signal prior z.

Appendix C When demand information is revealed, skeptics and

devotees have the same belief over time

Lemma A.1. For a given arrival rate A\ and a prior belief in the high state u (i.e., u® or u®),
if the only information revealed at time ¢ is the demand history {D,,u < t} then the demand

process is a Poisson process with some constant rate

NS SR (A2)

0 otherwise.
In particular, charisma « does not affect the value of the influencer.
Proof. We know that the arrival rate A is not state-dependent. Also, a follower’s purchase

decision is not state-dependent. Thus, for a given state j € {H, L}, the likelihood of {D,,,u < t}

18

Dy t
P({Du’u S t} | .]) = H f(a7H07Mtk) : ADt exp <_)‘/0 f(O‘u/'LOuUfu)) du.
k=1

Then, by Bayes’ rule, we have
. P({Duu <t} | H) o
P({Dy,u <t} | H) po+ P ({Dy,u <t} | L) (1= po)

= Mo

where p equals to x° or ®. This means that follower beliefs are always equal to the prior. This

concludes the proof. O

Appendix D Proofs of Section 4

D.1 Proof of Lemma 1

Proof. Note that (10) is a direct reformulation of (8) following the definition of 7(-). Because
the post-signal prior is computed from Bayes’ rule (4), we can verify that E[;*] = u°, where the
left-hand side is the expected value of the belief for the high state after the influencer’s signal.
Note that this equation is equivalent to the following: 7(u®)u + 7(u)u = u°. O
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D.2 Proof of Proposition 2
The following is a technical lemma derived from Proposition 1 to characterize the value of the
influencer for any fixed ratio %, which is indicative of the accuracy of the influencer because

it is the ratio of a true negative to a false negative. Note that (5) implies my;, + Ty > 1 and

TeL > 1.

TeH —

Lemma A.2. Keeping § £ % fixed, if % < mpg < ,B—ﬁ)%;’/g and p’ < p/g, we have
1—p r/g9

IT > 0; otherwise, we have II < 0.

Proof of Lemma A.2. Let m & mpp,m = mer,. Also, in this proof, we use Lo to denote uO(H)

for simpler expressions. Then, by definition, we have

= po(1 — 1) _ 110 _ 1o
po(l—m) + (1 —po)me  po+ (1—po)t™%  po+ (1 — po)B’
J%ust Ho Ho

Yo = — — = — .
pom + (1= po)(1—m2)  po+ (1 —po) 522 g+ (1— MO)%

Thus, by fixing 3, we fix y;. Also, by assuming 8 > 1, we have y; < ys.
Letting y2 > p/g, we have

Ho
- > p/g,
o + (1 — po) =20

which gives us

-1
m< -1
B — Lo 1-p/g
I—po p/g
Moreover, yo < 1, which yields
-1
T > L
p
Then, according to Proposition 1, we prove Lemma A.2. O

Proof of Proposition 2. In Lemma A.2, we derive the cases that give us II > 0 and II < 0 for
fixed 5. Also, we know 3 > 1. Therefore, we can identify the boundary by solving the following
curve parameterized by 8 with 8 > 1:

_ p—-1
ThH = "0 1-p/g
1-u% p/g
B8—1
L == n® 1-p/g + 8.
p- 1—u% p/g
This gives us
0
p 1-p/g
T, = 1 — hH -
L—pub plg
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D.3 Proof of Lemma 2
Proof. According to Bayes rule, we have
[y = P(He | H) po
]P)(’Ht | H)MO +P(Ht | L) (1 —MO)
_ pro (e ) o ()
 po(mhy) e (w i) Bee 4+ (1 — pao) () Fome () Res

_ Ho
aR Rh <R Ryt *
po+ (L= o) (Zhe ) ()

D.4 Proof of Lemma 3
Proof. To prove the proposition, we need Itd’s lemma for a jump process (see Shreve (2004)
Section 11.5.1). Specifically, suppose that Z; = X; + J; is a stochastic process, where J; is a pure

jump process and X; is a continuous-path process with differential form:

t t
Xt:Xo—i—/ Fsds+/ Osds,
0 0

where ¢ is a standard Wiener process (Brownian motion) and I's and ©, are adapted processes.
Then the following theorem (Theorem 11.5.1 in Shreve 2004) provides the expression for the

dynamics of a function of Z;.

Theorem 4 (It6-Doeblin formula for a jump process). Let Z; be a jump process and h(z) a

function for which h'(x) and h”(x) are defined and continuous. Then,

h(Zy) :h(zo)+/0th’(zs)dxs+;/Oth"(zs)dxsdxs+ 3 (Zs) ~ h(Z).
0<s<t

Armed with Theorem 4, we are now ready to prove the proposition.
R R
Define Z; £ Ry In % + Ry 1n %. Then we have pg; = h(Z;) where
hH ¢H
Ho
h(z) & .
(=) po + (1 — po)e®
According to Theorem 4 in its differential form, the following holds:

dpy = [h (Zt_ +1In ”j?) - h(Zt_)] ARy, + [h (Zt_ +1In ”j}) - h(Zt_)] dRy,
ThH ToH

o= (= ) (mhy — il

T B+l (1 )

pre— (1 — i) (WfH _ Wﬁ

Tl + (L~ )

) dRp:

) dRy;.

D.5 Proof of Lemma 5

Proof. We only need to check the conditions of the martingale central limit theorem (Feigin, 1985;
Johansson, 1994; Ethier and Kurtz, 1986). First, we have 0 < uﬁ”) < 1 almost surely. Second,

we have | ,ugn) — ,ug"/)] < 2 almost surely for any n and n’ so the jumps vanishes as n — co. Third,
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we know {Mgn),t > 0} is square integrable and E((u(™);) converges as n — oo because Ry, and
Ry are nonhomogeneous poison processes. Lastly, the limits 0 and 1 are absorbing.
O

D.6 Proof of Proposition 3
Proof. When z > p/g, following the definition diffusion approximation (for example, Ethier
and Kurtz (2009) Theorem 4.1), the approximated expected revenue-to-go function ‘N/(y, t; z) for
y > p/g is governed by the following partial differential equation

OV (y,1; 2)

En = Ap+ [(“f?Hy—i‘Wl]fL(l -y))

oV (y, t;
+ (mfy + 7 (1 —y)) Wjﬁy] - Ay

1 (72 r.
3l +rfy (- y)) B g (A3)

+ (mpy + mp (1 — ) 672"]@] - Ay

2 - _
1 My* (1= y)? (g — ) OV (y,1; 2)
2 (rffyy +m (1 —y)) (7fiy + 74 (1 —y)) dy?

The boundary conditions are

V(y,0;2) =0, for any y € [p/g,1],
V(1,t2) = \pt, for any ¢ € [0,7], and
V(p/g.t;z) = aXpt, for any 7 € [0, 7.

D.7 Proof of Lemma 6

Proof. When p € [0,p/g), we know that f(a,u, ) = 0. Thus, we have 9(u) = Vi, T;p) =

(y,t;2)

V(u,T; ) = 0. Next consider any given p € [p/g,1]. We know BVT < A\p because Ap is the

maximum revenue rate we can have no matter the belief of skeptics. Moreover, we have

2
Ay? (L —y)* (mhpy — ) .-
(mhy + i (L= y)) (rfgy + mp(L—y)) —
then according to (A.3), we have %yjz) < 0. This concludes the proof. O
y=n

Appendix E Proofs of Section 5

E.1 Proof of Theorem 1

Proof. TIysy > 0 if and only if u° < p/g < p". From Figure 4c and Lemma 6, we know
IInse = IIs > 0.

st = 0 if and only if p/g < p* < pu® < ph or p* < u® < p p/g. From Figure 4a,
Figure 4d and Lemma 6, we know Ilg, < IIns. = 0.
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st < 0 if and only if uf < p/g < p® < p”. From Figure 4b, Figure 5i and Lemma 6, we
know IIg. > IIng| . O

Appendix F  Proofs of Section 6
F.1 Proof of Proposition 4

Proof. We first show that for any feasible solution 7 to (26), we can construct a feasible solution

7 to (27) and they yield the same value of the objective functions. For any s € S, we simply let
0
() 2 [, hsrms Sowea HO(w)T (o | )ds and (w5 & i

This solution 7 is feasible to (27) because it satisfies constraint (27b):
/ / O(w)ﬁ(s | w)dsdz (A4)
(H|s)=z wEQ
pO (H)m(s|H)
/ Z;Z“ (s 10 s o wotuymtam 4% (A.5)
we

- /0 WO (H (| H)ds = 0 (H).

Here, (A.4) comes from the construction of 7(z) and (A.5) comes from the construction of

p(w | s). It is easy to check that 7 also satisfies the remaining constraints. Further, the objective

value of 7 in (27a) is the same as the objective value of 7 in (26) since:
1
E. o(2)) = | [ / S W0(wy(s | w>] 2)dsdz = 3 w) [ nls | w)o (u(r]s) ds
0 ssu(H|s)=2 e we
(A.6)

Next, we show the opposite direction. For the optimal solution 7 to (27), we construct
a feasible solution 7, and show they have the same objective values. We first show that the
optimal solution to the linear program (27) is a distribution with at most two points in its
support. Because the optimal solution is an extremal distribution for problem (27). It suffices
to show that the extremal distributions are discrete with support on at most two points. Proof

of Lemma A.3 can be found in Appendix F.2.

Lemma A.3 (Extremal distributions). The extremal distributions for problem (27) are discrete

with support on at most two points.

Consider 7(-) to be a solution to (27) with a two-point support z¢ and 2", where 2¢ < 2"
Note that:

AT



Let 7(s|w) be a solution to the following system equations:

(") = (1 = p*)w(¢|L) + pO (€| H)
7(z") = (1 = p®)w(h|L) + pm(h|H)
1= n(h|L) + 7(¢|L)
1 = n(h|H) + m(¢|H)
0

W= zeT(ze) + th(zh)

We next check that this constructed solution has the same objective value as 7:

> 1lw) ) w(slw)v (1)

we sesS

O(W(m " r(eH)u(=) + (1= 1) (= (BID)(E") + m(UL)u(=1))
= v(2’ [wfle (1= @)m (D)) + v(=") [0m (R H) + (1 — p”)r (| L)]
= v(zé)T(z ) +u(")(2") = Eq[v(2)]

Thus, completing the proof. O

F.2 Proof of Lemma A.3

Proof. For problem (27), there is only one moment constraint (27b). According to Lemma 3.1

in Shapiro (2001), the support of the extremal distributions contains at most 2 points. O

F.3 Proof of Lemma 7

Proof. For case (i), A} and A} are solved from the following system of linear equations:
AT+ Y15 = v(z1), AT + 2205 = v(22).

With the primal solution defined in (29), we can easily check it generates the same objective

value as (A}, A3), where

A= () — 22 0
zZ9 — 21

= v(z2) —v(z1)

22— 2

9

For case (ii), it is the case where there is only one active constraint at the optimal solution.
The only way we can have this case is when the objective function is tangent to or coincide with
the boundary of the feasible set generated by the infinitely many linear constraints (28b).

If part of the boundary of the feasible set is \; = —uXs + v(u®) for some range of Ay, then
the optimal value is v(u?). This is the only case where the objective function coincides with the
part of the boundary, and there are infinitely many optimal solutions generating the objective
value of v(uP).

For the other case that the objective function is tangent to the boundary at a single point
that gives us the optimal solution, we must have that the boundary is continuous, differentiable
and strictly convex around the tangent point (otherwise, we have two active constraints or part
of the boundary is A\; = —u®Ag + v(u?)). We define F(z,A1,A2) = A1 + 2zX2 — v(2). We must
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have the following relationship satisfied by (A1, A2) to describe this part of the boundary

lim M+ (z+e) e —v(z4€) — [+ 2h2 — v(2)]

e—0 €

= 0. (A7)

This is because any point (A1, A2) on the boundary should satisfy F'(z + €, A1, A\2) = 0 for any e.
We define the subdifferential of v(+) as v/(2) £ lim¢_,o M Therefore, according to

(A.7), we can characterize the boundary in the following parametric form (parametrized by z)

Ao = 0'(2),
A =v(z) — 20/ (2).
Moreover, we have %\; = —z. Let z* denote the parameter value at the tangent point. Then,
it satisfies —2* = —u°, which gives us the optimal solution to be \¥ = v(u%) — p'(u°), N3 =
v'(u0), and the optimal objective value is v(u). O

F.4 Proof of Lemma 8

Proof. According to its definition in (13), v°(z) is monotonically increasing in z.

According to Lemma 6, we know 0(z) = V(2,71 2) solved from (25) is concave in z. Since

0(p/g) = a\pT < 0(1) = ApT', we know ¥(z) is monotone increasing in z. O

F.5 Proof of Proposition 5
Proof. The proof directly follows from Lemma 7 and (13). O

F.6 Proof of Theorem 2

Proof. Following from Lemma 6, all the possible cases of 9(-) are illustrated in Figure 4. Following
from Lemma 7, the concave closure of 9(-) is the optimal value and can be depicted in Figure 8.
Because 9(p/g) < v°(p/g), we know the optimal " in the social learning model is greater or
equal to p/g. By Bayes’ rule, we have Wl% > F?ILSL, which means 73t Blackwell dominates 7Nt

by definition (see, for example, Blackwell and Girshick (1979) Chapter 12). O

Appendix G Proofs of Section 7

G.1 Proof of Theorem 3
Proof. (i) Suppose there exists a fully separating equilibrium in which the L type chooses 7

and the H type chooses 71 # 7L, Then, we have f(7) = 1 and B(7’) = 0. To make the L
F FD

L

type have no incentive to deviate to 7, we must set 7 = 7FP, where 7P is a full disclosure

information structure. However, the same outcome can be obtained by a pooling equilibrium by
setting 7F = 7l = 7D,

(ii) The H type firm prefers to hire an influencer having a 7"® information structure because
v(1) > v(z) for any z < 1 in both no-social-learning and social-learning settings. In other words,
the H type firm is always weakly better off by deviating to selecting a 7F® influencer. Thus, along
with Theorem 3 (i), we conclude the outcome that followers know the true state is supported as

an equilibrium. 0
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Appendix H Why use a dynamic social learning model?

One might be interested in the question of whether a simpler setting without dynamic beliefs
updates (20) could have already conveyed the same messages captured in Figures 4 and 5 and
Theorem 1. Indeed, suppose the additional information to followers arrives in a “single shot”
instead of growing dynamically with staggered follower purchases. To this end, we present two
static models such that only one piece of additional information is involved. As before, only

skeptics learn from this additional information.

(a) A static model with one external signal (Static Model 1). In the first static model
with additional information, we consider the setting that skeptics receive one additional signal
generated from the distribution {7 ¥ (s|w), s € {h, £},w € Q} and this distribution 7% is optimally
chosen in the sender-preferred way. Following from the Bayesian persuasion literature (Kamenica
and Gentzkow, 2011) (also proved in Lemma 7 in the next section), for a given prior z, the
expected revenue v(z) is

(1-— oa)%z for z < p/g,

v(z) = (A.8)

pAT for z > p/g.

We can visualize (A.8) together with that of no additional information model (13) in Figure 13
in Appendix H. The first part of (A.8) (z < p/g) comes from the fact that skeptics’ belief will
be changed by the additional signal generated from the optimally designed 7%, but devotees will
not purchase because z < p/g. Therefore, the expected revenue will be positive. The second
part of (A.8) (z > p/g) is because everyone will purchase when z > p/g. Thus, it is obvious
that the interesting cases (b) (c) in Figure 4 will be lost, as well as (iii) in Theorem 1. In the
Static Model 1, the influencer will never have any value if the prior belief is high (i.e., u® > p/g).
The reason is that the market demand is fully deterministic when the prior belief is high, and
there is no dynamic learning among followers. However, in our dynamic social learning model,
the randomness in demand will not disappear even when the prior belief is high. This is because
the noisy {Rps, Ry, t > 0} realizations generate stochastic skeptics’ beliefs, which again will feed
back into market demand to generate future organic information.
(b) A static model with one additional “organic” signal (Static Model 2). In the
second static model with additional information, instead of an external additional signal, we
consider this additional signal to be generated “organically”, meaning that this additional signal
is generated from someone who purchased the product. Only skeptics will learn from this organic
piece of information.

When z < p/g, no one will purchase, and no organic information can be released, so v(z) = 0
for z < p/g. When z > p/g, everyone will purchase, so the optimally designed organic information
will choose not to change the beliefs of skeptics, which gives us v(z) = pAT for z > p/g. Therefore,

this case collapses to our basic mode in Section 3.

Thus, from the analysis of both Static Models 1 and 2, it is the nonlinear structure of the

expected revenue in post-signal prior that makes the problem interesting. The nonlinear part of
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v(z) comes precisely from the dynamic social learning aspect of our model: skeptics dynamically
learn from the accumulated market organic information over time, which is triggered by the
starting signal posted by the influencer and will dynamically feed back into demand generation,

thus generates more organic information.

v(z)

PAT oo e

(1 —a)pAT

N N z
0 p/g 1

Figure 13: Black curve: v(z) for the Static Model 1; Red curve: v(z) for the basic model defined
in Section 4.2.

Appendix I The micro-foundation of model for organic signals

In our model, we assume that buyers generate organic signals (reviews) at rate Ay f(a, po, fit)-
We assume that the informativeness of organic reviews, characterized by 7% (h|H) and 7% (¢|H),
depends only on the true state. This section provides a behavioral foundation for this specification
and discusses why a seemingly natural alternatives are analytically intractable.
Micro-foundation for the review model. Our assumption that 7% is exogenous follows
standard practice in the information economics literature (Banerjee, 1992; Bikhchandani et al.,
1992) and admits a natural behavioral foundation. Suppose that review decisions are driven by
experienced quality rather than purchase value, and that the experience utility is independent of
the purchase utility defined in Table 1. Specifically, for a purchaser i, the experience utility is:

Uexperience
7

=W+ €
where w € {H, L} is the true product quality and ¢, ~ F(-) is i.i.d. across consumers and
independent of their ez-ante purchase decisions. A purchaser generates a positive review h if

U;s xperience > g and a negative review ¢ otherwise. This yields:

(W H) 2 P(e; >0 — H)=1—F(0 — H),
af(hL) 2 P(e; >0 —L)=1—F(0 — L),
with 7f(¢|H) = F(6 — H) and 7f(¢|L) = F(6 — L).
This two-component utility structure is behaviorally plausible: consumers decide whether to
purchase based on their expected value (incorporating prior beliefs and personal preferences),
but they decide whether to post a positive or negative review based on their actual experi-

ence with the product. The independence of ¢; from the purchase decision ensures that review

informativeness is determined solely by product quality. Importantly, this specification cap-
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tures the essential economic feature that high-quality products generate more positive reviews
(7 (h|H) > 7R (h|L)), while maintaining analytical tractability.

We next discuss alternative specifications and discuss their tractability.

What if v depends on state (selection bias)? A natural extension would link the prob-
ability of generating organic reviews directly to followers’ realized purchase utilities, creating
state-dependent review informativeness through the purchase decision itself. Specifically, for a
follower ¢ who purchases the product, one might assume she generates a positive review h if
her realized utility U; (as defined in Table 1) exceeds a threshold 6, and a negative review ¢
otherwise. We now show why this specification, while intuitive, is analytically intractable.
Under this alternative, conditional on state H and given devotees’ belief z and skeptics’
belief s, the probabilities that follower i releases a positive signal, a negative signal, or does not

purchase are denoted by ~v.(h|H), v (¢|H), and v (N|H), respectively:
v¢(h|H) £ P (U; > 6,i makes a purchase|H)

=aly p>0,—ptzg>0 + (1- a)lg—p29,—p+m920

v (¢|H) 2 P (U; < 0,i makes a purchase|H)

= g p<t,—przg>0 T (1 = )1y pct—prug>0
Y (N|H) £ P (i does not make a purchase|H)

= al—p+zg<0 + (1 - O‘)l—p+ut9<0-

Similarly, conditional on state L, the probabilities are:
v:(h|L) £ P (U; > 6,4 makes a purchase|L)

=al_p>g _przg>0 + (1- a)l—pZH,—pﬂugZO =1_p,>0,

v (¢|L) 2 P (U; < 0,i makes a purchase|L)

= al_pcg,—pizg>0 + (1 — @)1 pco,—prug>0
7 (N|L) £ P (i does not make a purchase|L)
= al_pizg<0 + (1 — a)l_pipg<0-

Under this specification, the organic signal processes {Rp:,t > 0} and {Ry,t > 0} are
nonhomogeneous Poisson processes whose rates at time ¢ equal Ay (h|j) and \vy.(¢|7) for state
j € {H,L}. The likelihood of the history H; := {Rpy, Reu, v < t} can be expressed in terms
of the inter-arrival times {¢1,tm2,...,tHrR,,} and {tr1,tr2,...,tLR,, }, Where tg) denotes the
time of the k" positive signal and tr;, denotes the time of the k" negative signal. Given state
j € {H, L}, the likelihood at time ¢ is:

Ryt Ry

P (Hy | j) = exp <— /0 >\f(017ﬂo,uu)dU> T v 1) TT e (1)) - (A.9)

k=1 k=1
Bayes’ rule can be applied to update beliefs. Specifically, immediately after a signal s arrives
at time ¢, we have the following update:
_ peye(s|H)
peye (s H) + (1 = pe)we(s| L)’

i+
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We can understand the analytical challenge of the alternative specification by comparing the
Bayesian update under the original model:
oy = per " (s|H)
t+ — )
+ 7 R + (1 — p) e (s|L)

The challenge arises when deriving a stochastic differentiation equation for du; using Itd’s lemma.

The functions v (s|H) and 7:(s|L) are discontinuous in the posterior belief y; due to the indi-
cator functions. When p; crosses the purchase threshold p/g, skeptics begin purchasing, which

discretely changes the informativeness of reviews. Specifically, the likelihood ratio:
Ye(s|H)

Ye(s|L)
depends on py itself, creating a complex endogenous feedback: the informativeness of signals
depends on beliefs, which in turn are updated based on those signals.
This differs fundamentally from our original model, where the likelihood ratio 7;2((73
stant. The original model maintains constant signal informativeness, which enables the applica-

tion of It6’s lemma on a jump process (see the proof of Lemma 3). In contrast, the discontinuous

ye(s|H)
Ye(s|L)

dependence of on u; prevents the application of It6’s lemma, which makes the analysis

intractable.

What if non-buyers can post reviews? Following current practice on most shopping plat-
forms where only verified buyers can post reviews, we assume only buyers can post. However,
we now examine how our results extend if non-buyers can also post negative reviews.

Suppose non-buyers post negative reviews at the same propensity as buyers, characterized
by the same state-dependent probability 7% (¢|w). At time ¢ in state w, the arrival rates are:

e Positive reviews (only from buyers): My f(c, po, pe) 7= (h|w)

e Negative reviews (from both buyers and non-buyers):

My f (e o, pe) ¥ (Ew) + ML = f (@, po, ) (Ew) = Al (¢w)

Note that the negative review rate becomes independent of f(«, po, ) when both buy-
ers and non-buyers post at the same propensity. The likelihood of the review history H; :=
{Rhy, Rey,u < t} in state w is:

P (| w) = exp (= [ (oo m)n (hlu) + An"e)) )

Rpy Ry
< [T v f (e po, o )R (hlw)] TT [ (¢fw)]
i=1 Jj=1

where t5; and ty; denote the arrival times of the i-th positive and j-th negative review, respec-

tively.
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When computing the likelihood ratio for Bayesian updating, observe that:

m = exp <—/0 Ay [, pos o) [WR(MH) - TFR(h|L)} du>

X exp <— /Ot A [f e\ H) — =B (e|L)] du)

The key observation is that the exponential term depends on the cumulative purchase behav-
ior over time but not on the specific timing of individual reviews. Since negative reviews arrive at
a constant rate independent of purchases, they provide the same belief update as in the original
model. Positive reviews, which only come from buyers, also maintain their original informative-
ness. Therefore, the belief dynamics characterized in Lemmas 2 and 3 remain unchanged, and
all our main results continue to hold.

When tractability breaks down. If buyers and non-buyers have different propensities to post

R

non-buyer (£|w), then the negative review rate becomes:

negative reviews, say quyer(ﬁ |lw) # 7

)‘/Yf(a’ Ho, :U’t)wkl;zuyer(ﬁw) + )‘(1 - f(O[, Ko, Ht))ﬂ-ljl%on—buyer(aw)

In this case, the state-dependent terms cannot be factored out, and the entire timing history
{tej,7 = 1,..., Ry} matters for belief updating. This path-dependence makes the problem

analytically intractable, similar to the selection bias issue discussed in the previous discussion.

What if )\ is state-dependent? We now consider the case where the arrival intensity A
depends on the true state. Let A, denote the arrival rate in state w € {H, L}, where we
naturally assume Ay > Ar, (high-quality products attract more customer traffic). In this setting,
purchase counts themselves become informative about product quality.

Let {D,,u < t} denote the cumulative purchase count process. Given state w, the number
of purchases D; by time t follows a Poisson distribution with mean fg A f (@, o, iy )du, where

f (e, po, p1t) is the purchase probability. The likelihood is:

t
P (D; | w) oc APt exp (—)\w/ f(a,uo,,uu)du) for w e {H, L}.
0
Applying Bayes’ rule, the posterior belief of skeptics at time £ is:

i = 0 ; . (A.10)
to + (1 — po) (%) exp (()‘H — L) Jo f(a, po, uu)dU)

This formula is intuitive: more purchases D; increase belief in state H (since A\g < Ar).

Conversely, if time passes without purchases, the exponential term grows, diminishing belief in
state H. Hence, observing no arrivals suggests the product may not be a good match.
Applying It6’s lemma to (A.10), we derive the stochastic differential equation for posterior
beliefs:
pre— (1 — pe—) (A — Ar)
Agpi— + Ap(1 — )

dpr = —pe— (1 — e YAy — Ap) f (v, o, pre— )dt + dD;. (A.11)
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Equation (A.11) differs from our original model (Lemma 3) in two key ways:

1. Drift term: The term —py— (1—pe— )(Ag—Ar) f (v, o, pe—)dt represents belief degradation
over time when no purchases occur. This serves a similar function to negative reviews in
our baseline model. It pulls beliefs downward.

2. Information structure: Purchase events themselves (rather than reviews) carry informa-

pt—(I—pr—)(Ag—ArL)

N () 8 always positive, meaning every purchase increases

tion. The jump size
belief in state H.

Despite these differences, our main economic insights remain intact. The belief process (20) is
still a martingale (the drift and diffusion terms balance in expectation), so the variance of belief
evolution captured in Lemma 5 continues to determine how social learning affects the firm’s
revenue. Hence, the firm faces a similar tradeoff as before.

The presence of the drift term introduces an additional consideration: even without negative
reviews, beliefs naturally decay when purchases are sparse. However, the fundamental optimiza-
tion problem remains tractable due to the Markovian structure of the belief process in (20). A
complete characterization would require resolving the optimization problem with these modified

belief dynamics.

Appendix J An algorithm to find the optimal influencer
According to Lemma 7, we provide the following algorithm to solve the problem (27). In the

algorithm, we find the indices z; and 29 of the two active constraints in (28) that characterize
the optimal solution. To find the indices of these active constraints, we do a simple search under
the assumption that the indices lie within a given grid of precision parameterized by n.

Recall that the optimal value of (27) is the height of the shaded rectangle in Figure 10. The
following simple algorithm can efficiently find the optimal solution when restricted to a chosen
grid. The input to the algorithm is the value of v at discretized points in the post-signal belief
space. That is, we discretize [0,1] to 29 = 0,21 = 1/n,22 = 2/n,..., 2z, = 1 and calculate v(z)
forall k=0,1,...,n.

Algorithm 1 Finding the indices of active constraints in Lemma 7.

1: procedure OPTIMALACTIVEINDICES(9(z;), k= 0,1,...,n)

2 19 < 0,21 + 2z, 22 < 2, > initialize zq, 29
3 while z;, < o do

4 1 4 argmax;>;, %:Ejo)

5: if i == i3+ 1 then

6 21 ¢ Zi, 20 < 25

7 101

8 else

9 if z; > o then

10: 29 < z; break
11: else

12: 21 & Zi, 20 < 25
13: 1o <1
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14: return zi, 2o

Proposition A.1. Under the assumption that the indices of the active constraints lie in a grid
of precision n, Algorithm 1 gives the indices of the active constraints at the optimal solution to
problem (28).

Proof. According to Lemma 7, the optimal value of the objective function is either (30) or o(uP).
9(22)—v(21)

Thus, for a given z1, (30) is maximized at zj = argmax,,>, . Moreover, because v(-)

29—21
is a monotone increasing function, for any zj > z;, we have
= = = =)
V(z9) — V(21 V(z9) — V(2
z92>21 29 — 21 22221 22— 2
Therefore, Algorithm 1 starts from z; = 0, and search for 2z to maximize Uz)=o(z1)

20—21
Gradually increasing z1, once it finds a pair of (21, 22) that satisfies 21 < p®(H) < 2o, this

B(z2)—0(z1) 7

and decreases
20—21

pair is the optimal indices (because increasing z; decreases max,,>,

0(22)—9(21)

— , as a result, decreases the value (30)).
221

arg maXz, >z,

If the algorithm cannot find such a pair, it returns the index at u°. O

Appendix K Monte Carlo validation of diffusion approximation

Our key approximation is to approximate the belief jump process by its diffusion limit. In the
simulation, we compare the original belief jump process u; with its diffusion limit fi; and show the
following figures. To illustrate the approximation (Lemma 5), Figures 14 and 16 is an example
of the sample belief path, and Figures 15 and 17 are the normalized error over time (L\;{“l),

ZtT:o |M§n)—ﬁt| )
n

and Figure 18 is the normalized total error ( i when A scales up at the rate of n. All

expectations are calculated based on 200 sample paths.

Sample path: jump vs diffusion Normalized error between jump process and diffusion limit over time
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Figure 15: Normalized error (based on 200
Figure 14: Sample path (A = 500) sample paths, A = 500)
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Sample path: jump vs diffusion
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Figure 16: Sample path (A = 50)
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Figure 17: Normalized error (based on 200
sample paths, A = 50)
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Figure 18: Normalized total absolute error during [0, 7]
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