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Mutations in the epidermal growth factor receptor (EGFR) are
common in non-small cell lung cancer (NSCLC), particularly
in never-smoker patients. However, these mutations are
not always carcinogenic, and have recently been reported
in histologically normal lung tissue from patients with
and without lung cancer. To investigate the outcome of
EGFR mutation in healthy lung stem cells, we grow
murine alveolar type II organoids monoclonally in a three-
dimensional Matrigel. Our experiments show that the
EGFR-L858R mutation induces a change in organoid structure:
mutated organoids display more ‘budding’, in comparison
with non-mutant controls, which are nearly spherical. We
perform on-lattice computational simulations, which suggest
that this can be explained by the concentration of division
among a small number of cells on the surface of the
mutated organoids. We are currently unable to distinguish the
cell-based mechanisms that lead to this spatial heterogeneity
in growth, but suggest a number of future experiments which
could be used to do so. We suggest that the likelihood
of L858R-fuelled tumorigenesis is affected by whether the
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mutation arises in a spatial environment that allows the development of these surface protrusions.
These data may have implications for cancer prevention strategies and for understanding NSCLC
progression.

1. Introduction
Lung cancer is the leading cause of cancer death worldwide [1]. Approximately a quarter of lung
cancer patients are ‘never-smokers’ (classified as those who have smoked fewer than 100 cigarettes in
their lifetime) [2], and this proportion appears to be increasing [3]. Never-smoking lung cancer is also
more common in women than men [4].

Lung adenocarcinomas are thought to arise from alveolar type II (AT2) cells within the healthy
alveolar epithelium [5]. The causes of lung cancer in never-smokers are unclear, although previous
studies have highlighted germline genetics [6] and exposure to external factors such as infections and
radon [7], as well as ambient air pollution [8]. Some specific lung cancer-associated mutations, in
particular, in epidermal growth factor receptor (EGFR), are known to occur more frequently among
patients with no history of smoking [9], and are found as clonal driver mutations in lung adenocar-
cinomas [10]. However, their presence alone is insufficient for tumorigenesis: Hill and colleagues
have recently reported that 18% of normal lung tissue samples in patients both with and without
lung cancer were found to carry EGFR mutations [8]. In order to determine the conditions necessary
for lung cancer initiation, we must look further, to the cellular and environmental context in which
carcinogenic mutations arise.

It is well-known that the emergence of cancer is probabilistic, and that tumours can take a variety of
winding evolutionary paths to acquiring their characteristic hallmarks [11]. No mutation is guaranteed
to cause cancer. The number of cells in the human body is such that every possible genetic mutation
is likely to exist in at least one cell in everyone [12]; the fact that some people do not develop cancer
suggests that not all of these mutations lead to disease in every case. The reproductive fitness of a
mutant cell depends not just on tissue context [13] but also on spatial constraints [14] and the ecology
of the wider cell population [15]. Subclonal cells interact with each other and compete for resources,
giving rise to highly genotypically heterogeneous tumours [16,17]. Within mathematics, the field of
evolutionary game theory describes the effect of such interactions on population composition and has
seen a variety of recent applications to cancer modelling [18]. However, to make full use of these
theories we need strategic quantification: in order to predict a phenotype’s success, we must determine
how it interacts with other phenotypes, and thus how its population will rise and fall within a tumour
population. To identify the evolutionary benefit of a particular mutation arising in a specific cell type,
then, we must consider the effect on that cell’s behaviour. Only then we will be able to predict its
contribution to tumorigenesis.

The aim of this study is to analyse the phenotypic changes conferred by the EGFR-L858R mutation
on AT2 cells. The single-nucleotide substitution L858R in exon 21 comprises around 40% of all EGFR
mutations in lung cancer patients [19]. It is a missense mutation, affecting the intracellular kinase
domain of the EGFR, which in turn affects a cell’s response to many common growth factors. Biochem-
ical and structural studies have shown that the EGFR-L858R mutation promotes dimerization [20]
and destabilizes the inactive formation [21] of EGFR, and thus causes abnormal levels of receptor
activity. The function of this mutation is also highly clinically relevant. EGFR-L858R mutations confer
sensitivity to treatment with EGFR tyrosine kinase inhibitors, although acquired resistance can rapidly
develop [22,23]. In addition, L858R has been shown to enhance invasiveness in adenocarcinomas [24],
and mice with L858R mutations induced in AT2 cells rapidly develop diffuse carcinomas [25]. It is this
particular aspect of mutant behaviour that we address in the present study.

We infer an invasive mutant phenotype using an agent-based model (ABM) of organoid growth in
a three-dimensional organoid culture, by comparing the structures of spheroids grown monoclonally
from mutant and wild-type AT2 cells. ABMs have been common throughout systems biology for many
years [26], and are useful for describing systems where individual ‘agents’ (here AT2 cells) interact
and reproduce probabilistically according to defined rules. Sometimes also called ‘cellular automata
models’, ABMs have been used for almost two decades to construct simulations of tumour growth,
in which cells are considered as discrete agents making ‘cell-fate decisions’ in response to changing
environmental conditions, such as oxygen depletion [27].
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Our focus here is on the emergence of a characteristic ‘budding’ structure in some mutant cell
clusters, as opposed to their wild-type counterparts, which grow spherically. These organoids are
composed of thousands or tens of thousands of cells and are smaller than is required for the develop-
ment of vascularity. The field of mathematical modelling of avascular tumour growth is larger than can
be fully summarized here (see [28,29] for an introduction). One common methodology is a ‘continuum’
approach, where cell density is described as a continuous scalar field, which evolves with time. Cell–
cell interactions and surface-dominated growth can be included in a continuum model [30,31], and
the resulting approach is amenable to mathematical analysis, which has shown surface-dominated
growth to drive the formation of non-spherical structures. These models are particularly advantageous
in the study of reaction–diffusion systems involving nutrient gradients which evolve with time [32],
and when analysing the contribution of various biomechanical processes to general morphological
instabilities [33]. While these approaches are broadly useful, in many situations the problem we are
modelling is three-dimensional, extremely asymmetric and involves fully developed and morphologi-
cally specific protrusions, which require high spatial granularity to model. Here, where we wish to test
nonlinear growth laws where the discrete number of neighbours a cell has is important, and where the
number of cells involved is relatively small (on the order of thousands or tens of thousands), it is both
conceptually and computationally easier to model the location and action of each cell directly.

While ABMs have recently been used to shed light on increasingly complex systems of cell–cell
interaction [34–37], ABMs built specifically to model organoid growth are relatively rare [38,39].
Most of the existing literature has focused on two systems: the growth of intestinal cells into in vivo
structures resembling colorectal crypts [40,41], and the morphogenesis of ‘optical cups’, which involves
the bending of hollow, initially spherical epithelial layers into characteristic concave structures [42,43].
Such models consider the detailed biomechanical interactions of tens or hundreds of cells, often using
off-lattice Voronoi networks, which represent cell centres as point masses that interact using spring
forces. These allow the consideration of complex spatial dynamics, such as the work of Thalheim et
al. [44], who modelled a feedback loop between cell differentiation and the curvature of the resulting
organoid to capture the influence of Notch-Wnt signalling on the development of crypt-like intestinal
cell organoids. However, such models are computationally expensive and struggle to scale to systems
such as ours, involving solid organoids of several thousand cells. ABM frameworks designed to model
organoids on this scale [45,46] often require some form of coarse-graining and so are unsuitable for
representing short-range interactions between individual cells. To balance this trade-off between scale
and detail, we decided to build our own custom model, which allows cell–cell interactions at both
short and long ranges, and includes an on-lattice representation of cell movement and extrusion. This
model is very cheap to run at scale (i.e. can simulate an organoid in roughly 1 min on a standard
laptop), and allows sweeps of our parameters of interest.

In our algorithm, in which space is divided into a fixed three-dimensional lattice, whose points
may be either occupied or empty, to simulate cells as they divide and push each other aside. This
approach significantly speeds up computation times compared with off-lattice simulation (where
the distance between each pair of cells must be recalculated at each time point), which allows for
thorough hypothesis testing and parameter sweeps. Our study is driven by the principles of mathe-
matical modelling, wherein complex biological processes are abstracted into high-level mathematical
functions. Here, we consider functions which take the number of neighbours a cell has and outputs
the probability that cell will divide in a given time step. Whether or not that division actually occurs is
decided stochastically, and over time this results in a simulated organoid with an observable morphol-
ogy. We can alter the forms and parameters of these functions to represent different hypotheses
concerning cell growth. The values of these parameters may not correspond to specific biological
quantities, but by altering these values—how many neighbours a cell must have before its probability
of division begins to decline, for example—we can change the hypothetical rules for cell growth which
apply to our system. We can then determine which set of models and parameter regions results in the
correct morphologies, and infer the validity of the corresponding rules, without needing to know the
biological mechanisms by which they are enforced.

We test various growth hypotheses, including those where cell division is limited by differentia-
tion and by the presence of surrounding cells, and compare the simulated organoids with experimen-
tally observed morphologies. We find that the structural difference between mutant and non-mutant
organoids can be explained by four possible hypotheses, all of which result in the concentration of
growth among a small number of surface cells. In the first model (Hypothesis A), this ‘surface-localiza-
tion’ arises from very high levels of differentiation among all cells, combined with more efficient use
of available nutrients by mutant cells. In the second model (Hypothesis B), ‘budding structures’ arise
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from long-range inhibition of cell division by their neighbours, combined with an increase in division
rate by mutant cells. In the third model (Hypothesis C), the mutation induces short-range inhibition
of neighbouring cells through mechanotransduction, allowing the formation of surface protrusions
without any assumed increase in cell fitness. In the fourth model (Hypothesis D), this induced
inhibition is long range, through either nutrient depletion or the active secretion of some inhibitor.
In all hypotheses, cells do not have to be completely surrounded to suffer inhibition, and are stopped
from dividing even when half of their surface is in contact with the nutrient-rich Matrigel. The overall
effect is to suppress division in all cells except those on the surface, localizing division within invasive
protrusions. We hope this will shed light on the origin of invasive EGFR-L858R-positive cancers and
the mechanisms by which they emerge from healthy tissue.

2. Results
2.1. Experimental design
To obtain data for comparison with our hypothesis-testing simulations, we used a genetically engi-
neered mouse model of EGFR-L858R-driven lung adenocarcinoma, as described in Hill et al. [8]
(Rosa26LSL-tTa/LSL-tdtomato; TetO-huEGFRL858R mice; referred to as ET mice). Here, both the EGFR-L858R
transgene and tdTomato fluorescent reporter protein are only expressed upon delivery of Cre recombi-
nase. Lox-stop-lox tdTomato mice were used as control (Rosa26LSL-tdTomato/LSL-tdTomato; referred to as T
mice). AT2 cells were purified from non-Cre treated T and ET mice, before inducing expression of the
oncogene and/or tdTomato in vitro with adenoviral–CMV–Cre incubation using published methods
[47,48]. A total of 10 000 AT2 cells were seeded in each organoid assay along with 50 000 supporting
lung fibroblasts [49]; in each experiment, only some AT2 cells grew into organoids (with organoid
forming efficiency of around 1–2%). After 14 days, organoids were extracted from Matrigel, stained
with antibodies and analysed by three-dimensional wholemount confocal microscopy [50]. These
analyses revealed a characteristic ‘budding’ structure occurring in mutant organoids, but not wild-type
organoids (figure 1). We quantify this effect by analysing the circularity of each organoid. An organoid
with cross-sectional area a and perimeter p has a circularity C = 4πap2 . A perfectly circular organoid hasp = 2 πa and so C = 1. As an organoid acquires protrusions, its perimeter increases relative to its area,
and so its circularity decreases. A shape with infinite perimeter and finite area (i.e. a fractal) has C = 0.
This is a dimensionless coefficient and so is invariant to the scale at which the organoid is observed. We
use the image processing libraries scikit-image [51] and Shapely [52] to automatically find the edges of
each organoid and calculate its perimeter and area. This analysis reveals a fairly clean delineation
between mutant and non-mutant organoids, with all but one mutant organoid with a circularityC < 0.78 (figure 1). Since only mutants have a circularity below this value, we will use this as our
criterion for whether a simulated organoid is ‘mutant-like’.

2.2. Simulation design
To simulate the development of these structures, we use an on-lattice algorithm. In this framework,
three-dimensional space is divided into a 30 × 30 × 30 grid (adjusted to 40 × 40 × 40 where necessary
to accommodate an expansive structure). At the end of each simulation step, every lattice point is
either occupied by one cell or by none. Each lattice point (except those on the grid’s faces) has 26
Moore neighbours, each of which is considered equally ‘close’ to it within the algorithm. This ensures
that when cells are pushed aside by new cells in a simulation step, they are not constrained to move
only in six directions (up, down, left, right, forwards or backwards) but can move in 26, allowing the
simulation of much more realistic organoid structures. A cell may therefore have up to 26 occupied
neighbours. Further model assumptions, and their experimental justification, are summarized in table
1.

The algorithm works as follows. At the start of the simulation, only a single cell is occupied at the
centre of the grid. At every time point, each existing cell either divides or does not, according to some
probabilistic function of the number of cells in its neighbourhood (which we vary according to the
hypothesis being tested). If a cell divides, that lattice point is instantaneously occupied by two cells.
This is referred to as the reproduction step.

The next step in the algorithm is spatial adjustment, where cells on multiply-occupied lattice points
are shifted around until they find empty points to settle on, mimicking the physical process of cells
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pushing each other aside. This step is iterative and repeats until every cell has its own point. At
each iteration of the adjustment step, one cell from every multi-occupied point is moved to one of its
neighbouring points. The rules for choosing a lattice point to move to are as follows:

— If there are any empty neighbour points, choose between them at random with probabilityp ∝ eτn1, where n1 is the number of occupied lattice points in the neighbour-point’s immediate
neighbourhood, and τ > 0 is a surface tension-like parameter.

— If there are no empty neighbour lattice points, choose one at random with probability p ∝ e−γn0,
where n0 is the number of cells currently occupying the candidate lattice point and γ > 0 is a
‘repulsion parameter’, such that the focal cell will be less likely to move to lattice points which
are already occupied (i.e. have n0 > 0).

The ‘effective surface tension’ parameter τ controls the cohesion of cluster shapes and is designed to
mimic the effect of cell–cell adhesion. When it is high, cells will preferentially move to empty points
next to occupied points. This is a variable parameter and can be used to qualitatively adjust the amount
of surface cohesion in an organoid. The repulsion parameter γ is included to dissuade cells from
moving between double-occupied points. Cells are pushed through the cluster to minimize compres-
sion, and so will move preferentially to points with fewer cells occupying them. This parameter is
designed to mimic the effect of a pressure gradient and is kept high (γ = 1).
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Figure 1. (a) Representativethree-dimensional confocal microscopy of AT2 organoids from T mice (top panel) and ET mice (bottom
panel). Organoids stained with anti-surfactant protein C (SPC, cyan) and anti-keratin 8 (Krt8, magenta), endogenous tdTomato
expression. Results shown from one experiment comprising three mice; n = 2 independent experiments. Scale bar represents 100 μm.
(b) A violin plot of the circularity of observed organoids, with medians indicated. Eight wild-type and nine mutant organoids were
captured with sufficient resolution to allow their circularity to be measured. The circularities of the mutant organoids are significantly
higher than those of the wild-type (Mann–Whitney U-test, p < 0.001).

Table 1. Assumptions made when modelling the system computationally and their experimental justifications.

model assumption experimental justification

all cells have the same volume (approximately 80 µ m3)

the Matrigel is soft enough that cells are not significantly
compressed and may push each other aside when they divide
to maintain a constant volume; the figure is extrapolated from
measurements of areas of individual cells, approximating cells
as spherical

cells remain in contact with their organoid of origin, and do not
drift freely through the Matrigel

organoids are cohesive and contiguous; ‘clouds’ of drifting
fluorescent cells are not observed

organoids grow independently and there is no cross-talk
between them

top-down images of the well suggest that the organoids are
seeded very far apart from each other relative to their diameter

external nutrient concentration does not deplete over time nutrients are regularly replenished by the experimenter

each organoid arises from a single cell fusion of growing organoids is not experimentally witnessed
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A key benefit of this algorithm is that whether or not two lattice points are neighbours is only
ever calculated once, when the grid is generated, and does not need to be worked out again with
every simulation (or, worse, with every simulation step). The number of cells touching a focal cell can
be calculated by looking up the list of its neighbouring lattice points and checking whether each of
them is occupied. It does not require calculating the distance between the focal cell and every other
cell in the organoid. Therefore, its computational cost does not scale with the square of the current
number of cells in the cluster, as it would in an off-lattice simulation, but linearly with the number of
occupied lattice-points in the system. This means that clusters of many tens of thousands of cells can
be simulated in a few seconds, in comparison with equivalent off-lattice simulations, which struggle
to simulate more than a few hundred cells efficiently. This computational efficiency allows for quick
parameter sweeps.

Clusters are simulated until they reach a certain experimentally realistic physical size, comparable
to the observed organoid sizes (maximum diameter of roughly 100 µm, which generally requires
around 5000 or 10 000 cells, depending on the division-probability function under investigation). The
structure of the resulting organoid is examined and compared with experimental observations.

We use this simulation framework to investigate two broad classes of models concerning organoid
growth. In the first class, we assume that the probability that a cell will divide depends only on the
number of cells in its immediate neighbourhood. This model is motivated by noting that the Matrigel
is highly diffusive (e.g. VEGF has a diffusion coefficient in it of the order of 106 µm2 h−1 [53]), and so
concentration gradients in nutrients and growth factors are difficult to maintain on the timescale of cell
division. Cells suppress or induce each other’s division only when their surfaces touch.

In the second model class, we relax this assumption. We suppose instead that a ‘depletion field’
exists around each cell, reducing the ability of nearby cells to divide. In this class, the influence of
one cell on another decreases with distance but never vanishes entirely, such that non-neighbouring
cells can suppress each other’s growth through either direct inhibitory signalling or competition for
resources.

Under both classes of model (i.e. assuming either short- or long-range interactions), mutant-like
organoids are created when this mutual inhibition is strong enough to concentrate growth among a
small number of surface cells, allowing the development of invasive protrusions. These allow mutant
organoids to reach a larger maximum radius using fewer cells than non-mutant organoids, resulting in
a highly efficient mode of spatial expansion and suppressing the growth of competing cells.

These results are discussed in more detail below. All parameters used in our model are laid out and
defined in table 2. A full list of all model classes and hypotheses considered in this study can be found
in table 3.

2.3. Nutrient absorption or anchorage-dependent growth alone is insufficient to produce
mutant-like organoid structures

2.3.1. Absorption-based growth

A plausible hypothesis for the emergence of ‘budding’ structures is that cells on the surface of the
organoid (i.e. those with fewer neighbouring cells) have better access to nutrients and so have a higher
probability of division. We hypothesize here that all cells have sufficient access to nutrients to maintain
a non-zero division rate even when completely surrounded (see table 1); later we will investigate
a regime in which surrounded cells are modelled as having a negligible division rate. This model
corresponds to candidate hypothesis 1 in table 3.

We test a division probability which is a monotonically increasing function of the number of empty
lattice points in a cell’s immediate environment, n, which eventually saturates on physical grounds
[54]. Within this framework, the probability p that a cell will divide in a given time step δt is

pabs α, β,ℎ, κ, S,n, δt = α + β
1 + e−ℎ κ − 1 − n/S δt,

where α > 0 is a ‘baseline’ division rate possessed by completely surrounded cells; β is the strength of
the nutrient-derived division rate boost (such that the maximum possible division rate of an isolated
cell is α + β); κ is the neighbour-occupation threshold, expressed as the fraction of all neighbours, at
which the proliferative capacity of a cell decreases; ℎ is the ‘steepness’ of that saturation; and S is the

6
royalsocietypublishing.org/journal/rsos 

R. Soc. Open Sci. 11: 240413



neighbourhood size. The variation of this fitness function with ℎ and κ is illustrated in the top row of
figure 2. We will refer to cells with a comparatively high probability of dividing in a given time step
as ‘fitter’ throughout this work, and the reader should understand ‘fitness’ here to refer to proliferative
capacity, as we do not model cell death.

Throughout these experiments δt = 0.01 days, or just under 15 min, to ensure the number of cells
generated in any given step is not too high. In figure 3, for example, we see that even completely
isolated cells only ever have a 3% probability of reproducing per time step. In general, we consider
very large values of ℎ to be biologically implausible, as they would imply sudden changes in a cell’s
ability to proliferate if it acquires one or two extra neighbours. We therefore generally restrict ourselves
to values of ℎ of order 1 or below. In a system, where β = 0 and α > 0, all cells would have equal ability
to divide and the resulting organoid would be necessarily spheroidal. To test whether any other sets of
parameters can result in the development of secondary spheroids, we fix α and vary other parameters
to test the possible results of the growth mechanism. Only the values of these parameters relative toα matter; increasing or decreasing all of them by some multiplication factor will simply change the
timescale of growth without altering the structure.

Some representative visualizations are shown in figure 3. Here, we display the fractional neighbour
threshold κ = c/S, instead of the absolute threshold c, for ease of comprehension. We use default
parameters of c = 20,ℎ = 1 when modelling fitness boost to surface cells; since this leaves a cell with

Table 2. The parameters used in this study, their definitions and their values, if fixed.

symbol parameter units fixed or variable

α
a cell’s baseline probability of division in

a time step days−1 variable

β

size of the increase in division probability
that a cell receives, depending on
how many cells are in its immediate
vicinity days−1 variable

h

steepness of saturation of the increase
in division probability that a cell
receives, depending on how many
cells are in its immediate vicinity dimensionless variable

c

threshold of saturation of the increase
in division probability that a cell
receives, depending on how many
cells are in its immediate vicinity

dimensionless, expressed in number
of occupied neighbouring lattice
points variable

S number of neighbouring lattice points dimensionless fixed, S = 26

κ

threshold of saturation of the increase
in division probability that a cell
receives, depending on how many
cells are in its immediate vicinity

dimensionless, expressed as a
fraction of a cell’s neighbouring
lattice points that are occupied defined as c /S and so varies as c

δt
size of the time steps used in the

simulation days fixed, δt = 0.01

τ surface tension or cell–cell adhesion dimensionless variable

q

the probability that a cell will be
born ‘inactive’, i.e. differentiated and
unable to reproduce dimensionless variable

σ

the probability per unit of time that a cell
will become ‘inactive’ as a result of
being surrounded by other cells days−1 variable

γ

repulsion from occupied lattice points
felt by cells being pushed through the
structure dimensionless fixed, γ = 1
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fewer than four neighbours (i.e. an occupied-neighbour fraction less than or equal to 0.85) with greater
than or equal to 95% of the fitness of an isolated cell; only after that point does fitness begin to decline.

Varying β, c,ℎ relative to α (the baseline division rate, kept at α = 1), and altering the cell–cell
adhesion parameter τ, results in uniformly spherical growth (with the surface rougher or smoother
depending on whether τ is high or low). The physical reason for this is that if all cells have a non-zero
baseline probability of division, then division will occur to some degree or another everywhere in
the cluster. Any protrusions that form momentarily at the surface will be evened out, as cells from
beneath the outer layer divide, producing new cells which are pushed outwards during the adjustment
step. Gaps at the surface, corresponding to unoccupied lattice points, will be filled quickly by newly
produced cells squeezed out from the organoid. This is true even when the division-probability boost
is very large (10 times the baseline) and when surface tension is low; in any structure where dividing
cells remain in contact with each other, the number of mostly surrounded cells will be much larger
than the number of completely isolated cells. Thus most reproduction will happen within the cluster,
so instabilities at the surface will not develop and the organoid will remain spherical. In all cases,
circularity remains above the mutant/wild-type criterion of C = 0.78, except for very low τ values,
where low cell–cell adhesion produces very rough surfaces.

2.3.2. Anchorage-dependent growth

Another plausible hypothesis is ‘anchorage-dependent growth’ [55], whereby cells require adhesion
to extracellular matrix (ECM), and thus contact with other cells, in order to progress through the cell
cycle. This suggests that division probability increases monotonically with the number of neighbouring
cells (candidate hypothesis 2 in table 3). This motivates a division-probability function of the form

panc α, β,ℎ, κ, S,n, δt = pabs α, β, − ℎ, κ, S,n, δt = α + β
1 + eℎ κ − 1 − n/S δt,

where all parameters have the same meaning as before. The variation of this fitness-function with ℎ
and κ is illustrated in the bottom row of figure 2. Now κ is the threshold fraction of the neighbourhood
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that must be occupied before a cell’s proliferative capacity increases. We find that this leads to spherical
growth since cells benefit from being as close to one another as possible, with protruding cells at a
disadvantage (see figure 4).

2.4. High levels of differentiation combined with efficient use of nutrients by mutant cells can
result in ‘budding structures’

A further testable hypothesis is differentiation-based growth (candidate hypothesis 3 in table 3). We
have previously assumed that all cells in the model are stem cells, and all equally able to divide given
the correct conditions. However, stem cells might also give rise to differentiated cells, which serve some
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Figure 3. Illustrations of the effect of varying (top row) ‘boost’ β, (second row) steepness h, (third row) cell–cell adhesion τ and
(fourth row) fractional threshold κ. Default parameters are β = 2, c = 20  κ = 0.77 ,  h = 1, τ = 1. Each graph shows organoid
circularity (blue) and the average fraction of an organoid cell’s neighbourhood lattice points which are occupied (red); a completely
surrounded cell has occupied-neighbour fraction 1 and an isolated one has an occupied-neighbour fraction 0. These measurements
are averaged over 10 simulated organoids and (in the case of circularity) nine different viewpoint angles of each organoid; standard
deviations are calculated across all 90 resulting observations, to take account of the variation produced by both underlying structure
and viewing angle. Error bars show standard deviations, computed across all observations. The circularity threshold below which an
organoid is ‘mutant-like’, C = 0.78, is indicated with the dotted blue line. Besides each graph, illustrations of the effects of extreme
values on organoid structure are included. Here, the colour of each cell indicates its relative reproductive fitness, scaled to the fittest
cell. Each simulation is run until the first time step in which the cluster contains more than 10 000 cells. All axes are in µm; here 10 000
cells give an experimentally realistic diameter of 100 μm.
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specialized functions but are not able to divide further. Could differences in the division patterns of
progenitor cells create budding structures?

To test this, we make a slight alteration to our framework. We use a division function of the formpabs, assuming some fitness boost to surface cells, but further divide cells into two types: ‘active’ (here
corresponding to stem cells) and ‘inactive’ (here corresponding to differentiated cells). Both types of
cells can be pushed aside when other cells reproduce, but only active cells can divide. When an active
cell divides, the new cell is active with probability 1 − q and inactive with probability q. We refer toq as the probability of differentiation (as defined in table 2). We also implement a change during the
adjustment step, to prevent newly produced cells from ending up very far from their mother cells as
soon as they are produced. We keep track of the type of cell last added to any lattice point. When
a cell is moved from that point, we make sure to keep at least one cell of that type there after the
movement step. The moved cell is chosen at random from those remaining. For example, if a point
initially contains one active cell, and has an inactive cell moved to it during the adjustment step (so that
it is double-occupied), then in the next step, the active cell will be moved. This ensures that cells are not
propagated too far through the cluster during a single adjustment step.

We see that high levels of differentiation enhance the structural effects of absorption-dependent
fitness to produce ‘bubbling growth’ (see figure 5). The combination of these two mechanisms is
sufficient to limit division to a small number of cells almost entirely located on the surface. In
the absence of absorption-dependent fitness, active cells are distributed throughout the body of the
organoid (as no benefit accrues to being located on the surface), but tend to be skewed towards one
side of the organoid or the other; as only active cells can produce other active cells, any chance bias in
their location will reinforce itself once it has arisen.

In §2.5, we consider other model systems which can produce organoids below the ‘mutant-like’
circularity threshold. While they differ in their physical motivation, all produce this same surface-local-
ization effect.

2.5. Strong neighbour suppression is sufficient to produce mutant organoid structures
The simulations above establish that so long as surrounded cells are able to reproduce, clusters will
remain largely spherical. What happens if surrounded cells are completely prevented from dividing
through means other than differentiation? To test this hypothesis, we use the division-probability
function

pNS n, δt = pabs 0, β,ℎ, κ, S,n, δt = βδt
1 + e−ℎ κ − 1 − n/S ,

which is a special case of pabs n, δt  with α = 0. Here, cells must have empty neighbour-points in order
to reproduce; the baseline division probability of surrounded cells is almost zero. (This corresponds to
candidate hypothesis 4 in table 3.) This particular dependency may arise for a couple of mechanistic
reasons. If cells are sufficiently densely packed that nutrients cannot reach cells at the centre of the
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Figure 4. Illustrations of the effect of varying (a) ‘boost’ β and (b) fractional threshold κ on organoid structure under a hypothesis
of anchorage-dependent growth. Default parameters are β = 10, c = 20  κ = 0.77 , h = 1, τ = 1. Secondary spheroids are never
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cluster, we might expect them to stop dividing. This would only happen when cells are completely
surrounded, however, and so would correspond to a high threshold κ. If cells were stopped from
dividing when not completely surrounded, however, we might attribute this to active inhibition by
neighbouring cells.

Using this growth mechanism, sustained protrusions can develop, and we observe structures which
look remarkably similar to those shown in experiments (figure 6). Mutant-like circularity is established
at a threshold of c = 13 or κ = 0.5 and a saturation steepness of ℎ = 1, regardless of the level of cell–cell
adhesion. This corresponds to a division probability which is saturated for a cell with fewer than 11
neighbours (where 42% of its surface is covered) and close to zero for a cell which has more than 15
(where 58% of its surface is covered). This low threshold is worth noting: cells that are still very much
in contact with the nutrient-rich Matrigel cannot divide. These extremely high levels of neighbour
inhibition suggest either that local competition for nutrients is so strong that even surface cells can
be deprived of resources by their neighbours, or else that mutant cells actively inhibit each other’s
growth through mechanotransduction. Both explanations take the same mathematical form and so are
permitted by this model.

Decreasing the steepness ℎ means that the benefit of neighbouring empty lattice points (i.e. the
inhibitory effect of neighbour–neighbour signalling) becomes approximately linear, which allows
surrounded cells to divide, leading to spherical growth. In order to generate secondary spheroids,
the benefit to surface cells must be steeply nonlinear, so the behaviour of these cells is a ‘switchlike’
function of their circumstances. Surface-dependent growth requires the ‘surface’ to be distinctly and
sharply advantaged, i.e. for the proliferative capacity of a cell to increase significantly when it has
below a certain number of neighbours.

Cross-sectional analysis of the simulation shows that these organoids grow as solid structures,
without ‘air pockets’, which also matches experimental observation (when grown organoids are
removed from the Matrigel and analysed at the end of the experiment, they are found to be solid).

We can also see that the baseline division rate of surrounded cells, α, must be very small compared
with β = 10 to allow the development of budding growth from figure 7, which shows the emergence of
mutant-like organoids as α is decreased from 0.1 (near-spheroidal growth) to zero (budding growth).
In order to stay beneath the mutant-like organoid threshold C = 0.78, the baseline division rate of the
cells must be negligible (i.e. α < 0.01β).

We make two further significant observations. Firstly, when neighbour suppression is high, the
experimentally witnessed diameter of about 100 µm can be replicated with only 5000 cells (versus
roughly 10 000 without suppression; see §2.4). Intuitively, this is the effect of protrusion-based growth:
organoids with high neighbour suppression limit their division to surface cells and so grow outwards,
as opposed to clustering together at the centre. In other words, neighbour suppression results in more
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Figure 5. The effect of varying differentiation probability on organoid structure: with (top) β = 0 and (bottom) with
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invasive organoid behaviour. This could partly explain why carcinomas induced in mice with this
mutation are so diffusive [25]: neighbour suppression would force cells to grow away from each other,
and a mutant cell at the boundary of an expanding clone would both be able to prevent the division
of its wild-type neighbours and be sharply advantaged compared with a mutant cell at the organoid’s
centre.

2.5.1. Accumulation of suppression produces deformations but not mutant-like ‘budding’

The picture that emerges is now clearer. Our simulations suggest that cells in budding organoids are
much fitter than cells in spheroidal organoids (represented by low β in our model), but surrounded
cells are prevented from reproducing by contact with neighbouring cells (represented by a negligibly
low baseline α). Possible mechanisms for this suppression are discussed in §3. One important note is
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that the mechanism of suppression does not necessarily have to be exclusively current; cells which
remember being surrounded can also produce deformations. To illustrate this, we can consider an
alternative model, similar to the differentiation model in candidate hypothesis 3, in which all cells
are born active and become inactive in response to being surrounded (candidate hypothesis 5 in table
3). In this model, all active cells have the same per-time-step division probability pdiff(n, δt) = αδt.
However, in a given time step, an active cell with n empty neighbouring lattice points has a probabilityσδt
1 + eℎ(κ − (1 − n/S))  of becoming inactive, for some ‘inactivation rate’ σ. This probability is almost zero when

the cell is isolated and maximal when it is surrounded. A cell which is surrounded for a long time may
initially be active, but is very likely to eventually be forced into inactivity through prolonged exposure
to other cells. Even if it is later pushed to the surface, it will remain inactive. We call this mechanism
‘suppression accumulation’. The results of simulations with similar ‘inhibition strength’ parametersα = 10, κ = 0.38,ℎ = 1, τ = 1.0 and various values of σ are shown in figure 8. (We use a high value of α
here for computational efficiency, since continual inactivation will considerably increase the timescale
of organoid growth without any corresponding increase in division rate.) For high rates of inactivation,
we observe non-spherical deformations, enough to bring the circularity below the threshold C = 0.78
required to classify an organoid as ‘mutant-like’ in some cases. However, visual inspection shows that
these structures are in fact ellipsoidal, not budding. As with differentiation-based growth, the fact that
active cells are only produced by other active cells means that proliferation can easily become lopsided;
here small groups of active cells proliferate from an off-centre point within the cluster, resulting in an
elongated ‘rugby-ball’ shape. As cells beneath the surface are still able to reproduce, however, we do
not see the development of protrusions. We conclude that, while cumulative suppression may exist
within the structure, it is insufficient to produce truly ‘mutant-like’ organoids.

2.6. Long-range neighbour suppression is sufficient to produce budding structures
Finally, we relax the assumption that cells can only interact when their surfaces touch, and consider a
model in which cells can interact at larger distances. This can happen because cells absorb nutrients
within the Matrigel, depleting the resources available to another cell further away (candidate hypothe-
sis 6 in table 3); or because cells actively secrete some inhibitory factor, whose concentration decreases
with distance (candidate hypothesis 7 in table 3). Both hypotheses result in mathematically equivalent
models. In the following explanation, we will discuss this phenomenon in terms of active inhibition.
We assume that cell i at position xi secretes some factor with concentration ρi(x, t) that inhibits the
growth of other cells (and that this may simply be ‘the absence of nutrients’). This factor is diffusive
and so, outside the cell itself, obeys the diffusion equation (for some diffusion constant D),

∂ρi
∂t = D∇2ρi .

We assume the nutrient, applied externally by the administrator, diffuses much more rapidly than it
decays and so we need not consider a degradation term (which would lead to an exponential solution
in one dimension and a Bessel function form in two). We assume that, on the scale of cell reproduction,
the concentration of this inhibitory factor has reached a steady state and further that it is radially
symmetric about the cell, so that at any point which is a distance ri from the centre of cell i (assuming
that ri > r0, the cell radius) the inhibitory factor obeys the equation

∇2ρi = 1ri2 ∂∂ri ri2∂ρi∂ri = 0.

We assume that ρi 0 as ri ∞, i.e. that the influence of one cell on another vanishes at infinite
separation. This leads to ρi = λri  for some constant λ, which we take the same for all cells within the
same organoid. We further assume that cells act as point sources of this factor, that cells can be
approximated by spheres and absorb this factor at their surfaces (where concentration is finite). We
need only calculate intercellular influence, as the effect of each cell’s secretions on its own division rate
is absorbed into the baseline fitness. When calculating the concentration of inhibitory factor secreted by
a distant cell at the surface of a focal cell, we neglect any variation in concentration across this surface
and assume that the concentration is dependent only on the distance between the two cell centres. This
leads to a fitness α − μΣj ≠ iρj(xi) for cell i, where ρj(xi) denotes the concentration of the inhibitory factor
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secreted by cell j at the position of cell i, and μ is some scaling factor representing the effect of this
substance on cell division rates. Adding this together, the probability that cell i will divide becomes

pLR δt = α 1 − ηΣj ≠ i 1rij δt,
where rij indicates the distance between the centres of cell i and cell j, and for some scaling factor η
which we vary, and which we refer to as the ‘inhibition level’. We take η small enough that this is
always positive in the two-cell case (i.e. to keep individual influences small); within the simulation, this
probability may drop below zero for a highly surrounded cell in the case of strong depletion, in which
case the cell simply cannot divide (i.e. has an effective pLR = 0).

Figure 9 shows the effect of increasing this long-range inhibition. At η ≈ 0.01, long-range depletion
is sufficient to create mutant-like organoids. As previously, this budding structure occurs because all
but a small number of cells located in surface protrusions are prevented from dividing, even those in
contact with the Matrigel. Figure 10 shows the dependence of this structure on organoid size (though
this cannot be assessed quantitatively, as our image processing pipeline is unable to accurately define a
perimeter for small organoids, where the scale of the structure is close enough to the scale of individual
cells that the protrusions of individual cells interfere with the determination of the outline). Thus, the
distinction between mutant and non-mutant organoids can be explained either by universal long-range
depletion and by an increase in division rate among mutant organoids, such that only mutants reach a
number of cells required to prompt the emergence of budding structures or by an increase in long-
range suppression by mutant cells, either through active inhibitory signalling or enhanced absorption
of key nutrients. This latter possibility does not preclude an increase in division rate, but does not
require it. We are unable to determine the number of cells included in a non-spherical structure
through cross-sectional areas, so it is unclear from our data whether mutant organoids necessarily
contain more cells than non-mutants. Further experiments should weigh all organoids to clarify this
question.

While higher inhibition should decrease the overall amount of division in the organoid, it may
not necessarily decrease the observed diameter, as the development of surface protrusions packs
cells very inefficiently and allows rapid expansion into the surrounding Matrigel. In general, we can
conclude that high levels of long-range inhibition are sufficient to concentrate division within surface
protrusions and result in bubbling growth.

3. Discussion and conclusion
In this study, we have developed an ABM approach to simulate the growth of mutant and non-mutant
organoids. We have found that the secondary spheroids formed by mutant clusters can be explained by
several hypotheses, all of which result in the restriction of division to a small number of surface cells in
order to facilitate protrusion. This study builds upon the body of theoretical and computational work
establishing the existence of instabilities in organoid growth [31–33], and our ABM approach allows us
to straightforwardly calculate the detailed morphology of the resulting developed protrusions.

We find that four possible models can predict the emergence of mutant-like organoids. In one
(Hypothesis A), high levels of differentiation exist in all organoids, but mutant cells make more
efficient use of available resources. In another (Hypothesis B), long-range inhibition of cell division
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allows budding structures to develop in mutant organoids but not non-mutants because of an increase
in inherent division rate. In the third and fourth, the mutation induces either short- (Hypothesis C) or
long-range (Hypothesis D) inhibition of division between neighbouring cells.

While we are unable to distinguish between these mechanisms at present, we can suggest the
following set of experiments which could be used to do so. To assess Hypothesis A, flow cytometry
can be used to determine the levels of differentiation across all organoids, and the relationship between
nutrient levels and division rate should be measured in both mutant and non-mutant cells. This
hypothesis predicts that all cells should be highly differentiated and that the proliferation of mutant
cells should be much more sensitive than non-mutants to differences in nutrient concentration.

Hypotheses B–D all predict that cells can inhibit each other’s division but are agnostic as to
whether this is active (through the secretion of some inhibitor) or passive (through nutrient deple-
tion). Hypothesis B predicts that mutant and non-mutant cells should be equally sensitive to nutrient
depletion (and that mutant cells should have a generally higher division rate). This dependence might
be strong (which suggests passive inhibition) or negligible (which suggests that inhibition is active,
or at least independent of any nutrients supplied by the experimenter). Hypotheses C and D suggest
that intercell influences are induced by the mutation, which could be detected by co-culturing mutant
and non-mutant cells and measuring their division rate with time-lapse video. If this inhibition is short
range (Hypothesis C), then division should be inhibited only for those cells directly in contact with
mutant cells. If it is long range (Hypothesis D), division will be suppressed for all non-mutant cells
co-cultured with mutant cells in comparison with those cultured alone. In general, we will be able
to detect active inhibition if the division rate of a cell can be lowered by contact or co-culture with
other cells, but not by an experimenter-induced decrease in nutrient levels. A summary of the expected
results of each experiment needed to confirm each hypothesis is provided in table 4.

The mechanism of this active inhibition, if present, is currently unclear. Contact-inhibited prolifer-
ation, the phenomenon whereby cells stop dividing in areas of high local density [56], is known
to be mediated by EGF concentration [57] and so might in theory be affected by the presence of
an EGFR mutation. Variations in contact inhibition were found to produce morphologically distinct
organoid structures in the simulations of Karolak et al. [58]. However, contact-inhibition is generally
lost during the development of cancer [59], and so it would be surprising if such a cancer-associated
mutation as EGFR-L858R were found to induce it. Instead, we expect either that mutants compete more
for nutrients than non-mutants or that mutant cells secrete an antagonist that halts the division of
their immediate neighbours, wild-type or mutant. A similar phenomenon has recently been observed
among intestinal stem cells with mutated Apc by Flanagan et al. [60]. If this is happening in our
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system, then this should give EGFR-L858R mutant AT2 cells a significant competitive advantage over
non-mutant cells in vivo and when grown in co-culture, and at least partially explain the invasiveness
of L858R-mutant carcinomas. Further experimental work is needed to verify this. If a signalling
pathway which leads to neighbour suppression could be identified, this might be pharmacologically
targetable and have implications for the prevention and treatment of non-small cell lung cancer among
never-smokers.

The existence of even passive inter-cell inhibition, if confirmed, would suggest that spatial environ-
ment strongly influences whether or not a pre-cancerous cell is able to develop into a lesion. Cell
clusters in narrow confines will inhibit each other’s division and stall the overall growth of the cancer.
However, given enough room, pre-cancerous cells can escape each other’s influence, allowing the
development of invasive protrusions. Our work emphasizes the importance of considering spatial
structure and cell–cell interaction in tumorigenesis, and to consider the circumstances of cell growth
when determining whether or not a particular mutation will lead to cancer. Only by considering
mutant cells within their full context, ecological and otherwise, will we be able to untangle the
mechanisms that lead to cancer.

4. Material and methods
4.1. Animal procedures
Animals were housed in ventilated cages with access to food and water ad libitum. All animal
procedures were approved by The Francis Crick Institute Biological Research Facility Strategic
Oversight Committee, incorporating the Animal Welfare and Ethical Review Body, conforming with
UK Home Office guidelines and regulations under the Animals (Scientific Procedures) Act 1986
including Amendment Regulations 2012. Both male and female animals aged 6–15 weeks were used.

EGFR-L858R [Tg(tet-O-EGFR-L858R)56Hev] mice were obtained from the National Cancer Institute
Mouse Repository. Rosa26tTA and Rosa26-LSL-tdTomato mice were obtained from Jackson laboratory
and back-crossed as previously described by Hill et al. and Politi et al. [8,25]. After weaning, the mice
were genotyped (Transnetyx, Memphis, TN, USA), and placed in groups of 1–5 animals in individually
ventilated cages with 12 hours daylight cycle.

4.2. Fluorescence-activated cell sorting
For flow cytometry sorting of AT2 cells, minced lung tissue was digested with Liberase TM and TH
(Roche Diagnostics) and DNase I (Merck Sigma-Aldrich) in HBSS (Gibco) for 30 min at 37°C in a
shaker at 180 r.p.m. Samples were passed through a 100 µm filter, centrifuged (300g, 5 min, 4°) and
red blood cells were lysed for 5 min on ice using ACK buffer (Life Technologies). Cells were blocked
with anti-CD16/32 antibody (BD) for 10 min. Extracellular antibody staining was then performed for
30 min on ice (see table 5), followed by incubation in DAPI (Sigma-Aldrich) to label dead cells. Cell
sorting was performed on Influx, Aria Fusion or Aria III machines (BD). AT2 cells were defined as
DAPI-CD45-CD31-Ter119-EpCAM+MHC Class II+CD49f- as previously described in Major et al. [47].

Table 5. The materials used in these experiments.

antigen fluorochrome vendor cat no. dilution

CD45 BV421 Biolegend 103134 1/150

CD31 BV421 Biolegend 102423 1/150

Ter119 BV421 Biolegend 1162 1/150

EpCAM APC-Fire750 Biolegend 118230 1/150

MHC Class II FITC Biolegend 107606 1/150

CD49f PE-Cy7 eBiosciences 25-0495-82 1/150
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4.3. Organoid forming assay
AT2 cells were isolated from control T or ET mice, without in vivo Cre induction, incubated in vitro
with 6 × 107 PFU ml−1 of Ad5-CMV-Cre in 100 µl per 100 000 cells three-dimensional organoid media
(DMEM/F12 with 10% FBS, 100 U ml−1 penicillin–streptomycin, insulin/transferrin/selenium, L-gluta-
mine (all GIBCO) and 1 mM HEPES (in-house)) for 1 hour at 37°C as detailed in Dost et al. [48]. Cells
were washed three times in PBS, before 10 000 cells were mixed with a murine lung fibroblast cell
line (MLg2908, ATCC, 1 : 5 ratio) and resuspended in growth factor reduced Matrigel (Corning) at a
ratio of 1 : 1. A total of 100 µl of this mixture was pipetted into a 24-well transwell insert with a 0.4
µm pore (Corning). After incubating for 30 min at 37°C, 500 µl of organoid media was added to the
lower chamber and media changed every other day, following previous methods [49]. Bright-field and
fluorescent images were acquired after 14 days using an EVOS microscope (Thermo Fisher Scientific)
and quantified using FiJi (.2.0.0-rc-69/1.52 r, ImageJ). For wholemount staining of organoids, organo-
ids were prepared according to previous methods [50] and stained with anti-proSPC (Abcam, clone
EPR19839) and anti-keratin 8 (DSHB Iowa, clone TROMA-1). Three-dimensional confocal images were
acquired using an Olympus FV3000 and analysed in FiJI.

4.3.1. Computational analysis

All organoids captured at sufficient resolution to accurately determine an area and perimeter were
analysed using the scikit-image and Shapely libraries. Images were converted to greyscale and passed
through a Gaussian filter with σ = 0.8, for all except the non-mutant organoid labelled ‘t2’, which
was captured at lower resolution and required σ = 1.0 for the perimeter to be found correctly. Con-
tours were found using the function shapely.measure.find-contours with parameter ‘level’ = 0.5; these
were then visually verified. The concave hull of these contours was then computed using shapely.con-
cave-hull with parameter ‘ratio’ = 0.05. Circularity was determined using the variables hull.area and
hull.length (to describe the perimeter). The same default parameters were applied to the analysis of
all simulated organoids. When calculating the circularity of these organoids, nine different images
were taken from different viewpoint angles, using all possible combinations of elevation and azimuthal
angles = −60°, −20°, 20°.
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