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Abstract

This work is conducted within the framework of the ExoMol project, which pro-
vides molecular line lists for species of astrophysical interest. With the growing ap-
plication of high-resolution Doppler spectroscopy and cross-correlation techniques,
there is an increasing demand for line lists with enhanced spectroscopic accuracy.
To meet this need, ExoMol integrates theoretical predictions with empirical spec-

troscopic data, and improves the accuracy of key molecular parameters.

This thesis mainly focuses on the use of experimental data in order to improve
theoretical calculations. The core methodology is the MARVEL (Measured Active
Rotational-Vibrational Energy Levels) approach, which constructs self-consistent
sets of empirical energy levels from high-resolution experimental spectra, by per-

forming a least-squares fitting procedure.

In this thesis, new MARVEL analyses have been carried out for methane (CHy)
and magnesium oxide (MgQO), both of which are of significant interest in atmo-
spheric and astrophysical contexts. For methane, which is a key molecule in plan-
etary atmospheres, a comprehensive compilation of high-resolution experimental
data was processed to yield a complete and accurate set of empirical rovibrational
levels. Similarly, for MgO, which is relevant especially for terrestrial environments,
a full MARVEL treatment was performed for the first time. Additionally, this work
includes an updated MARVEL analysis for titanium monoxide (TiO), a molecule of

great importance in the spectra of exoplanets.

Finally, this thesis introduces a systematic procedure to assign quantum num-

bers to previously unassigned or partially assigned experimental methane transitions
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drawn from the literature. Using the ExoMol MM line list as a reference, newly
assigned transitions were incorporated into the MARVEL framework, enabling the
derivation of additional empirical energy levels. This iterative process leads to fur-
ther improvements in the accuracy and completeness of the methane spectroscopic
model, advancing the quality of data available for high-resolution spectroscopic ap-

plications.
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Impact statement

This thesis contributes to the field of molecular spectroscopy through the refinement
of high-resolution molecular line lists, for the molecules methane (CH4), magne-
sium oxide (MgO), and titanium oxide (TiO). These species play vital roles in the
characterisation of planetary and exoplanetary atmospheres, substellar objects, and
in the interpretation of remote sensing data across the solar system and beyond.
High-quality line lists are essential for the reliable retrieval of molecular abun-
dances, temperature profiles, and atmospheric compositions of exoplanets. A cen-
tral theme of this work is the extensive use of experimental data to refine variational
calculations, improving the accuracy and reliability of the resulting spectroscopic

models.

For all three studied molecules, experimentally derived energy levels were in-
corporated through the MARVEL (Measured Active Rotational-Vibrational Energy
Levels) procedure to enhance the spectroscopic accuracy of the line lists. This ap-
proach allows line positions to reach accuracies suitable for high-resolution appli-

cations (R > 100,000), ensuring reliable interpretation of observational data.

Magnesium oxide is expected to form in the high-temperature atmospheres
of rocky exoplanets. This work improves the spectroscopic precision of existing
ExoMol data to enable future detections of MgO, which may serve as a tracer of
the atmospheric composition of ultra-hot super-Earths, commonly known as lava

worlds.

Titanium oxide is a very significant molecule for understanding the thermal
structures of M-dwarfs and hot Jupiters, among various other astronomical envi-
ronments. It contributes to high-altitude optical opacity, strongly absorbing stellar
radiation and leading to the heating of the upper atmosphere. This may induce ther-
mal inversions in exoplanet atmospheres. The update of the Toto line list for TiO
will hopefully enable more precise spectral modelling of such atmospheres and help

understand the dynamics of hot exoplanets.

Methane, which is the primary molecule studied in this thesis, is one of the key
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absorbers in the atmospheres of exoplanets and cool stars, and it is important for
the study and classification of brown dwarfs. Improving the accuracy of spectro-
scopic data for methane helps refine models of atmospheric chemistry and potential

biosignatures.

In addition, it is a species vital for climate change science, as it is a potent
greenhouse gas with significant impact on Earth’s climate. The improvement of the
methane line list may help enhance the precision of satellite-based retrieval algo-
rithms, which rely on detailed spectroscopic data, and better constrain the methane

abundances in our planet’s atmosphere.

An iterative strategy is proposed in this thesis to improve methane spectroscopy
by systematically extending accurate energy level coverage to higher vibrational

states.
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Chapter 1

Introduction

1.1 Molecular Spectroscopy

Molecular spectroscopy is the study of the interaction between electromagnetic ra-
diation and matter. Electromagnetic radiation can be described in terms of massless
particles called photons. Each photon carries a specific amount of energy given by
the relation E = hv, where E is energy in Joules (J), v is frequency in Hz, and £ is

Planck’s constant (4 = 6.63 - 10734 Js).

This fundamental relationship was first proposed by Max Planck in 1900 dur-
ing his work on blackbody radiation, as the experimental data disagreed with the
classical view that matter and energy behave continuously. Later, in 1905 Einstein
proposed that light itself is quantised, consisting of discrete packets of energy called
photons. This was crucial in explaining the photoelectric effect and paved the way

for the development of quantum theory.

In molecules, internal energy arises from various types of motion, including
electronic transitions, vibrations, and rotations. These motions are also quantised,
meaning that molecules can only exist in specific energy states. Transitions between
these states occur when a molecule absorbs or emits a photon of energy that exactly
matches the energy gap between the levels, with the frequency of the corresponding
radiation given by v = AE /h. These transitions between quantised energy levels

are the basis of molecular spectra. Each transition corresponds to a specific energy
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change AE and a certain probability of occurrence also characterises each transition.
The spectral line resulting from such a transition has a wavelength A = hc/AE. In
spectroscopy, wavelength is often expressed in centimeters, and it’s common to use
the wavenumber instead, defined as ¥ = 1 /A in units cm~ !, Wavenumber is directly
proportional to energy. As a result, a collection of spectral lines (spectrum) is pro-
duced, each representing a distinct transition. The pattern and position of these lines
provide a unique fingerprint of the molecule, revealing information about its struc-
ture, bonding, and energy levels. The type of transition that a molecule undergoes
determines the region of the electromagnetic spectrum in which it absorbs or emits
radiation. Electronic transitions, which involve relatively large energy changes, typ-
ically occur in the ultraviolet or visible regions. Vibrational transitions require less
energy and are observed in the infrared region, while rotational transitions corre-
spond to smaller energy changes and appear in the microwave region. In increasing

frequency, the regions of the spectrum are illustrated in Table 1.1.

The Rydberg-Ritz combination principle describes an important feature of
molecular spectra [19]. This empirical rule states that it is possible to find pairs
of spectral lines with the property that the sum or difference of their wavenum-
bers is also an observed spectral line. This principle is very important because it
forms the basis for combination differences (CD), where the difference between the
wavenumbers of two transitions that share an energy level yields the energy separa-
tion of the other two levels involved (see Figure 1.1). Therefore, spectral lines can
be predicted from existing lines, and the self-consistency of the energy levels can

be evaluated.



1.1. Molecular Spectroscopy 27

ﬁ,‘k - ‘;jk = (E, - E])/hC

Vik

Ex

Figure 1.1: Schematic energy level diagram illustrating the combination difference (CD)
method. Observed transitions V;; and Vj; share a common level Ey. The differ-
ence of the two observed wavenumbers equals the energy separation between
E; and E; expressed in wavenumber units.

Table 1.1: Regions of the electromagnetic spectrum in order of increasing frequency, with
approximate values and associated molecular transition types. Table from [16].

Region Frequency (Hz) ‘ Wavelength | Transition Types

Radio 3.10°-3-1010 | 10m-lem | uclearspin.
electron spin

Microwave 3-1019-3.10' | 1cm-100um | Rotational

Infrared (IR) 3-102-3.10" | 100um—1pum | Vibrational

Visible and 14 16 .

Ultraviolet (UV) 3-10""-3-10 lum—-10nm | Electronic

X-ray 3-10'6-3-.10'® | 10nm—100pm | Inner-shell electronic

y-ray 3-10%-3.10% | 100pm—1pm | Nuclear transitions

In the radio frequency region, the transitions arise from the interaction of the
magnetic moment of a nucleus or an electron with an external magnetic field. The
resulting absorption spectra are described as nuclear magnetic resonance (NMR)
and electron spin resonance (ESR), respectively. The radio region also includes hy-
perfine structure transitions, which result from the interaction between the nuclear
spin and the electron spin. A well-known example is the 21 cm line of neutral hy-

drogen which arises from a spin-flip transition in the ground state. This line serves
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as a key probe of atomic hydrogen in the interstellar medium. Molecular species
can also exhibit hyperfine splitting. The hydroxyl radical (OH) for example, shows
hyperfine transitions near 18 cm. These lines are often observed in star-forming
regions and can also appear as maser emission (microwave amplification by stimu-

lated emission of radiation).

In the microwave region, we can observe an absorption or emission spectrum
as a result of the rotation of a molecule that has a permanent electric dipole. Such
molecules include, for example, all diatomic molecules composed of non-identical
nuclei (heteronuclear). Emission arises from the radiation produced by the rotating
dipole, while absorption occurs due to the interaction between the dipole and the
electric field of the incident radiation. One way to measure microwave spectra is
by millimeter-wave absorption spectroscopy, where a tunable source of radiation is
passed through a low-pressure gas sample and the absorption of specific rotational

transitions is detected [20].

In the infrared region, transitions are caused by vibrational motion of the
molecular bonds that lead to a change in the dipole moment. The absorbed en-
ergy corresponds to the excitation of vibrational modes within the molecule, such
as stretching and bending of chemical bonds.

These transitions are commonly measured using Fourier-transform infrared (FTIR)
spectroscopy [21], which offers broadband coverage by recording an entire spec-
trum simultaneously through an interferometer. For higher resolution and sensitiv-
ity, laser-based techniques are used. These include tunable diode laser absorption
spectroscopy (TDLAS) [22], which uses a narrow-linewidth tunable laser to scan
specific absorption lines, and cavity ring-down spectroscopy (CRDS) [23], which is
very good for measuring weak transitions. Advanced methods include dual-comb
spectroscopy (DCS) [24], that uses two optical frequency combs [25] to enable
broadband, fast, and high-resolution measurements. Techniques like optical-optical
double-resonance (OODR) spectroscopy [26, 27] achieve very high resolution by
using a narrow-linewidth pump laser to selectively excite molecules to specific vi-

brational states, followed by a frequency comb probe that drives and measures tran-
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sitions from those excited states. This technique is especially effective for accessing

weak or congested transitions in highly excited states of polyatomic molecules.

Raman spectroscopy can also be used to probe vibrational transitions that in-
volve changes in molecular polarizability. Since Raman and IR spectroscopy follow
different selection rules (see subsection 1.1.5), they provide complementary infor-
mation about the vibrational structure of molecules. Relevant nonlinear Raman
methods include stimulated Raman spectroscopy [28] and coherent anti-Stokes Ra-

man scattering (CARS) [29, 30].

Ultraviolet (UV) and visible radiation possesses sufficient energy to excite
electrons from one electronic energy level to another. The resulting spectra arise
from the interaction of an incident electromagnetic field with electronic charge dis-
tributions in the molecule, leading to electronic transitions.

Traditionally, grating-based and monochromator-based spectrometers have been
widely used to measure such electronic absorption spectra in the UV-visible range
[31]. Laser-based techniques such as laser-induced fluorescence spectroscopy are
also used [32], where molecules are excited by the laser to an electronically excited
state and detection is based on spontaneous emission as molecules relax to lower
states. Other methods include resonance-enhanced multiphoton ionisation (REMPI)

and its two-photon variant (R2PI) [33, 34].

X-rays can eject electrons from inner atomic orbitals (such as the K or L shells).
The resulting transitions, when electrons from higher levels fall to fill these vacan-

cies, emit X-ray radiation.

Gamma rays have the highest energy in the electromagnetic spectrum and can
induce transitions within atomic nuclei. These transitions are typically observed in

nuclear decay processes and are studied in nuclear spectroscopy.

1.1.1 The Born-Oppenheimer approximation

We now turn to the quantum mechanical principles that explain the transitions of

a molecule. The Schrodinger equation is central to determining the energy levels
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and wavefunctions of molecules, which correspond to the rotational, vibrational,
and electronic states observed in spectroscopy. Generally, the Born-Oppenheimer
approximation (BO) is used, which assumes that the motions of the nuclei and elec-
trons can be treated separately due to their mass difference. As a result, the total
internal energy of a molecule is often expressed as the sum of two components:
electronic and ro-vibrational energy. This separation simplifies the problem, as it
allows us to focus on the nuclear dynamics while treating the electronic energy sep-
arately. The BO approximation can fail in regions where the electronic and nuclear
motions become strongly coupled, typically when two electronic states are close in

energy, leading to nonadiabatic effects.

The time-independent Schrodinger equation for a molecule is written like this
AY(#,R) = E¥(7,R) (1.1)

where E is the total energy, the R are the nuclear coordinates and 7 the electronic
coordinates, and W is the total molecular wavefunction, which depends on both.
The Hamiltonian operator consists of several terms: kinetic energy of the nuclei
(Thue), kinetic energy of the electrons (T, potential energy from electron—electron
repulsion (Ve), potential energy from nucleus—nucleus repulsion (VnN), potential

energy from electron—nucleus attraction (Vne), as

A = Thue + Tet + Vee + VAN + Vie. (1.2)

The electrons are much less massive than the nuclei; hence, we can consider
the nuclei to be stationary relevant to the motion of the electrons. This is the Born-
Oppenheimer (BO) approximation, and it allows us to fix the nuclei at certain co-
ordinates R. The total wavefunction can then be separated in the electronic and the

nuclear part, as

¥(7,R) = Wi (F: ) Youe (R) (1.3)
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where R is now a parameter, not a variable, and the electronic wavefunction

Ve (7 R) depends on the electronic coordinates 7.

The electronic Schrodinger equation for the fixed nuclei geometry can be
solved as

A

Hei (7 R), Yer (7, R) = Ee1(R) Wt (7 R). (1.4)

ﬁel includes all the electronic terms of the Hamiltonian (Tel + Vee + VNe) from
Equation 1.2. The total energy of each state depends on the nuclear configuration.
This equation is solved for each configuration, leading to a potential energy surface

(PES) upon which the nuclei move, given by Eq(R).

Once the electronic energy has been determined for a particular electronic

state, we can rewrite the Equation 1.1 as

A

[V (B) + Tee (R)] Wnue (R) = E Wiue (R). (1.5)

where we have set V(R) = Van(R) + Eqi(R).

If we consider the case of a diatomic molecule of nuclei a and b, Equation 1.5
is written as
72

1’ .
(_2m Vg — 2—”le[% +V(R) —E) Wnuc(Ra;Rb) = 0, (16)

where R, and R,, are the position vectors of the two nuclei, and the potential energy
only depends on the internuclear separation R = |féa — I_éb|. This two body problem
can be reduced to one body motion by rewriting the kinetic energy in terms of the

reduced mass
nmgniy,

red = ) 1.7
Myed My +my, (L.7)
The kinetic energy operator will then be equal to
n? h?
_ V2 V2 (1.8)

2<ma + mb) Rew 2myeq R
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where ﬁCM is the centre of mass coordinate and R = ﬁa — Eb is the relative co-
ordinate between the two nuclei. We can neglect the translational motion of the
whole molecule as it is not interesting for the spectrum, and get the equation for the

internal motion:
2

2 P\ _
3 Vit VR —E | ynue(R) = 0. (1.9)

The potential V(R) only depends on the magnitude of R, so the problem has spher-
ical symmetry. It is therefore convenient to express R in spherical coordinates
(R,0,¢), where R is the internuclear distance, and (6, ¢) describe the orientation of
the molecular axis in space. As a first approximation, we can separate the rotational

and vibrational motions of the nuclei:

‘VnuC(E) = Wib(R) Vit (0,9)
E = Evib + Erot-

(1.10)

1.1.2 Rotational motion

Expressing the Laplacian operator in spherical coordinates gives:

[ B9 <R21>+ L +V(R)

T 2meaR2 IR\ OR) T 2R Ve (B) = Eyuc(R),  (1.11)
re re.

where we have substituted the squared angular momentum in spherical coordinates

o [ L9 (el N, L 97
L= [sin@&@ 9356 ) T 50 997 | (1.12)

Solving the angular part of the nuclear Schrodinger equation (1.11) leads to the

identification of the rotational wavefunctions as spherical harmonics

Wrot(ev(p):YJMJ(e’(p)' (1.13)

The spherical harmonics are the eigenfunctions of the squared angular momentum
operator L2 and its projection onto the molecular axis [, with eigenvalues #2J (J+

1), and nMj, respectively. The rotational angular momentum quantum number J
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takes integer values J = 0,1,2,.. and M; ranges from —J to J with integer steps and

has a total of 2J + 1 possible values. The eigenvalues are, therefore:

2

Erot= ———
rot 2m,edR2

J(J+1). (1.14)

In the rigid rotor approximation, the molecule rotates while the two atoms
maintain a constant distance between them. This way, we can fix R to be a constant
Ry, where the subscript indicates the vibrational level, and write Equation 1.14 in

terms of the moment of inertia of the molecule Iy = mredR%.

2

h
0

Here we defined the rotational constant of the molecule as:

hz

By = —.
YA

(1.16)

We notice from Equation 1.15 that the separation between the rotational levels in-
creases with the rotational quantum number J. The differences between the energy
levels give us the rotational spectrum. The transition frequency between rotational

levels J and J 41 is given by

fr=i+1 = Erotg+1 — Erory = 2Bo(J +1). (1.17)

The bond length R represents the average internuclear separation in the vibrational
ground state and is slightly larger than the equilibrium bond length R, because of
zero-point vibrations. Consequently, By is slightly smaller than B, defined at R,. As
J increases, centrifugal distortion must be included because rotation stretches the
bond and increases the moment of inertia. To describe this effect, it is convenient

to work about the equilibrium geometry R,. In a classical picture, we equate the
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centrifugal force with the binding force at the new bond length:

L? 1
+ —k(R,—R.)* (1.18)

Bt = ————
O dmygR2 2

where the force constant is the second derivative of the potential at the equilibrium
2 . . .

bond length, k = ZT‘; . Replacing the squared angular momentum with the eigen-

values of the operator L2, we obtain the expression for the rotational energy that

accounts for the centrifugal distortion as:

Erot = BoJ(J +1) = DoJ*(J +1)? (1.19)
where:
4B3
— ¢ 1.20
e hz(l)ez ( )

and @, being the vibrational angular frequency. The constant B, = 7%/ (2m,qR?) is
the equilibrium rotational constant, which is larger than the experimentally observed

By defined for the vibrational ground state.

To generalise the discussion of rotational motion to rigid polyatomic
molecules, we describe the rotation in terms of the principal moments of iner-
tia. In the rigid-rotor approximation, these are taken in equilibrium geometry,
analogous to the definition of B, for diatomic molecules. The corresponding rota-
tional constants are usually denoted by A, B and C. We describe rotation by writing
the Hamiltonian as

_Ja I R

Hypy= % 4 b 4 ¢ 1.21
RSYARDTA + 21 (1.2

where we have chosen an orthogonal set of principal axes, in which the moment of
inertia matrix is diagonal. The moments of inertia are 1, , 1}, , I, corresponding to the

three perpendicular axes of rotation, so that

L, <I,<I. (1.22)
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The angular momentum components in this coordinate system are

J, = Ly, (1.23)
Jp =1,y (1.24)
Jo =10, (1.25)

and the rotational constant introduced in Equation 1.15 becomes

with

h2
- (1.26)
214
hZ
B=- (1.27)
215
hz
c= (1.28)
20c
A>B>C. (1.29)

The relation between 1,,1,,I. determines how molecules are classified into four

different types of rotors.

1.

Linear molecules (e.g. CO; have I, =0, I, = I.. Their energy levels within

the rigid rotor approximation are given by

Erot=BJ(J+1) (1.30)

. Spherical top molecules have I, = I, = I.. They are high symmetry

molecules (e.g. CHy), their rotational energy levels are

Erot=BJ(J+1) (1.31)

like the linear molecules.

. Symmetric top molecules have one unique moment of inertia and two others

equal to each other: I, = I, # I.. If the unique moment of inertia is smaller
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than the other two, the molecule is a prolate symmetric top (e.g. CHsI, NH3)
with the unique axis being the a axis, and A > B = C. If the unique moment is
larger than the other two, the molecule is an oblate symmetric top (e.g. B3F),

and the unique axis is the c axis, with A = B > C. Their energy levels are
Ewt =BJ(J+1)+(A—B)K? (1.32)

for the prolate top, where K is the projection of J to the a axis, and
Ewt=BI(J+1)—(B—C)K? (1.33)

for the oblate top, where K is the projection of J to the ¢ axis.

4. Asymmetric top molecules have three unequal moments of inertia: I, # I, #
I.. Most molecules fall into this category. Unlike the other rotor types, their
rotational energy levels cannot be expressed with a simple analytical formula
and must be determined numerically by solving the rigid rotor Hamiltonian.
The energy levels are typically labeled using the quantum numbers J, K, K,
which serve as approximate labels based on the limiting cases of prolate and
oblate symmetric tops. Spectroscopic transitions in asymmetric tops are often

more complex, producing dense rotational spectra.

1.1.3 Vibrational motion

The radial part of the Equation 1.11 is

_hZ d2

mdﬁ +V<R) lI/vib(R) = Evivaib<R)' (134)

The potential function V(R) can be approximated to have a parabolic form for
bound states of the molecule, near the bottom of the potential. Near the minimum

R, (equilibrium bond length), the Taylor expansion of the potential gives
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B dv 1d*V 2
V(R) =V (Re)+ RE(R—RE)%—EW RB(R—Re) = (1.35)
V(R) = %k(R—Re)z, (1.36)

where we set the minimum of the potential to be zero, V (R, ) = 0. The first derivative

of the potential vanishes Z—X =0 at R = R,, and the second derivative defines the
e
2 . . . .
force constant k = ZT‘; . .This leads to a form of the potential that gives harmonic

oscillator solutions. Equation 1.11 becomes

—m d* 1 )
2y ﬁ + Ek(R - Re) lI/Vib(R) = EVibWVib(R)' (1.37)

The solution for the energy levels of the harmonic oscillator is

1
Evi, = ho, (V+ 5) 5 (1.38)

where the angular harmonic frequency is @, = \/k/m,.y and the vibrational quan-
tum number v takes integer values = 0,1,2... Equation 1.38 shows that there is a zero
point energy of %ha)e, and that the vibrational levels have equal distance between

them.

The harmonic oscillator model provides a useful first approximation for de-
scribing the potential energy of a real molecule, but it falls short of capturing the
full complexity of molecular behaviour. In reality, the potential is much steeper at
short bond lengths as a result of exchange interaction. At longer bond lengths, the
attractive Coulomb forces between the electrons and nuclei gradually weaken as the
atoms move apart, eventually reaching the dissociation limit where the bond breaks.
This means there is a finite number of energy levels in contrast to the harmonic os-
cillator case. Also, unlike the evenly spaced energy levels of a harmonic oscillator,
the vibrational energy levels in an anharmonic system become progressively closer

as the vibrational quantum number v increases. To better describe real molecular
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behaviour, the cubic and quartic terms of the potential are treated as perturbations

to the harmonic Hamiltonian. In cm™! this leads to the following expansion:

1 1\? 1\?
Eyip = o (V+ E) — WeXe (V+ 5) + WY, (V+ E) + 0(\/4) (1.39)

As aresult, the separation between the vibrational levels is not constant. The coeffi-
cients appearing in Equation 1.39 are known as vibrational spectroscopic constants
and provide an empirical description of anharmonic effects in molecular vibrations.
Specifically, w, is the harmonic vibrational wavenumber, corresponding to the fun-
damental frequency of the harmonic oscillator. The constant x, is the first-order an-
harmonicity constant, which accounts for the decrease in vibrational level spacing
with increasing vibrational quantum number. Higher-order anharmonic corrections
are described by constants such as y,, which become significant only at higher vi-
brational excitation. These constants are characteristic of a given electronic state

and are determined experimentally.

An empirical expression for potential energy that is often used to describe the

electronic state potential is the Morse Potential, defined as:

2
V(r)=D |1 —e¢ *ER)| " (1.40)

where D is the well depth. Figure 1.2 illustrates the difference between the har-
monic and Morse potential. A diatomic molecule has only one vibrational mode
corresponding to the stretching of the bond along the internuclear axis. However,
polyatomic molecules, possess many more vibrational degrees of freedom. A non-
linear molecule with N atoms has 3N — 6 normal modes of vibration, and a linear
molecule has 3N — 5. These normal modes represent collective motions of atoms
that oscillate harmonically about the equilibrium geometry. Each normal mode is
an independent motion characterised by a single frequency, either IR active, Raman
active, or inactive, depending on symmetry. For example, in water H,O, three vi-
brational modes appear in IR and Raman: symmetric stretch (~ 3650 cm~!), bend

(~ 1595 cm™!), and asymmetric stretch (~ 3755 cm™!) [16].
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Figure 1.2: Comparison of the harmonic (dashed red) and Morse (solid blue) potential
curves. The vibrational energy levels for both potentials are indicated by hori-
zontal lines. For the Morse potential, the energy levels are labelled on the right,
with quantum numbers v =0,1,2,... showing the anharmonic nature of the
potential as the levels become progressively closer together at higher energies.
The dissociation energy of the molecule is marked by a grey dashed line.

1.1.4 Ro-vibrational motion

By solving the Schrodinger equation with the Morse potential, we can get a more
complete expression for the energy corresponding to both the ro-vibration (vibration

and rotation) of a diatomic molecule:

1 1\?
En =, <v+§> + B J(J 4+ 1) — @, <v+§> —DJ*J+1)°— (141

ae (v+%) JU+D+.... (142

The spectroscopic constant B, is the equilibrium rotational constant. The constant
D, is the centrifugal distortion constant, which accounts for the non-rigid nature
of the molecule and describes the stretching of the bond due to rotation at high
J values. The constant a, is the vibration—rotation interaction constant, reflecting
the dependence of the rotational constant on vibrational excitation, arising from the

increase of the average bond length as the vibrational quantum number increases.



1.1. Molecular Spectroscopy 40

The rotational constant for a vibrational state v can be expressed as

1
B,=B,—a, <v—|—§>—|—.... (1.43)

Each term in this expression accounts for corrections to the idealised models: an-
harmonicity in vibration, non-rigidity in rotation, and the interaction between the
vibration and rotation. Ro-vibrational spectra appear as series of sharp lines in the
infrared region, and their spacing provides direct information about bond strengths

and moments of inertia.

1.1.5 Selection Rules

The likelihood that a molecule transitions between energy levels upon absorbing a
photon is called the transition probability. It depends on the properties of the initial
and final states, and how effectively the photon can interact with these states to
cause a transition. Selection rules help determine whether a particular transition is

permitted.

In the dipole approximation, an external electric field E is assumed to interact
uniformly with a molecule. The interaction is described by the interaction Hamil-
tonian Hip = —f1 - E, where the dipole moment operator is I = g -7. The negative
sign indicates that the interaction lowers the energy of the system when the electric
field aligns with the dipole moment. The transition probability is determined by the
matrix element of the dipole moment operator between the initial (y;) and final (y¢)
wavefunctions. If the matrix element (y¢|[1|y;) has a non-zero value, the transition
is dipole allowed, otherwise, it is dipole forbidden. It may be observed, although
weak from other mechanisms such as magnetic dipole or electric quadrupole inter-

actions. The electric dipole transition probability is then expressed as:

P=(yslalvi) P (1.44)
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1.1.6 Rotational Transitions

Only molecules with a non-zero dipole moment can interact with electromagnetic
radiation via electric dipole transitions. Applying this to the four molecule cate-

gories mentioned in subsection 1.1.2 we have:

Linear Molecules lack a permanent dipole moment when homonuclear (e.g.,
N3, O,), and they do not exhibit a pure rotational spectrum. However, polar linear

molecules (e.g., CO, HCI) do.

Spherical Top Molecules have highly symmetric charge distributions (e.g.,
CHy4, SF¢) and possess no permanent dipole moment. As a result, they do not
exhibit an allowed pure rotational spectrum in the context of dipole-allowed transi-

tions.

Symmetric Top Molecules have one unique principal moment of inertia. If
they possess a permanent dipole moment along the unique axis (e.g., CH3Cl), they

exhibit a pure rotational spectrum.

Asymmetric Top Molecules have a permanent dipole moment and exhibit pure

rotational spectra (e.g., H,O).

The intensity of rotational transitions is proportional to u?, so, molecules with
large permanent dipoles have more intense transitions. The selection rule for a

dipole allowed rotational transition is
A =—1,0,1, J'+J"#£0, (1.45)

steming from the fact that a photon contains one unit of angular momentum. For
symmetric tops there is also the non-rigorous rule AK = 0. Equation 1.45 leads to

the R (AJ =+1), Q (AJ =0), and P (AJ = —1) branches as illustrated in Figure 1.3.

1.1.7 Electronic Transitions

The electronic state notation

25“1\3@ o (1.46)
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=T J=2
: J=1
| J=O
j=3
v=0 Jic2
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Figure 1.3: Simplified illustration of rotational energy levels and transitions for two vibra-
tional states of a diatomic molecule. The plot shows rotational energy levels
for the ground (v=0, green lines) and first excited (v=1, red lines) vibrational
states. Arrows represent transitions between rotational levels, with the P, Q,
and R branches in blue, yellow, and pink, respectively.

for diatomic molecules is defined based on the symmetry properties and angular

momentum of the electronic wavefunctions.

1. Ais the projection of the orbital angular momentum on the internuclear (usu-
ally z) axis. The associated symbols are: ¥ for A =0, Il for A = £1, A for
A==+2, P for A = £3 etc.

2. The multiplicity factor 25 + 1 comes from the total spin S of the electrons. It

indicates the number of possible spin orientations.

3. Qs the projection of the total angular momentum along the internuclear axis:
Q = |A+XZ| where X is the projection of the total spin S on the internuclear

axis.
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4. The g/u label (from the German gerade = even, ungerade = odd) applies
only to homonuclear diatomic molecules which have a center of inversion. A
wavefunction is g if it is symmetric under the inversion through the center, or

u if it is antisymetric under inversion through the center.

5. The +/— symbols apply only to X states and indicate the parity under reflec-
tion through a plane containing the internuclear axis. The + sign indicates
the wavefunction is symmetric to the reflection in that plane, and — antisym-

metric.

Electronic transitions happen when a molecule undergoes a transition from one
potential energy curve to another. Typically they are accompanied by a transition to
a different rotational and vibrational state as well. The selection rules for electronic
transitions are a consequence of the symmetry properties of the molecular wave-
functions and the transformation behavior of the electric dipole operator under the

relevant symmetry operations.

1. The spin selection rule applies to all molecules and requires that the total spin

remain unchanged during an electronic transition:

AS = 0. (1.47)

This can be shown by writing the total electron wavefunction as y =

Wspace Wspin- The dipole moment operator fi then acts on it as

Aye = 1 Yspin Yspace = ‘Vspin.a Wspace (1.43)

since fl acts only on the spatial part of the wavefunction. Consequently, from
Equation 1.44, the probability has non-zero value only if the final spin wave-
function is the same as the initial one. The orthogonality of different spin

states would otherwise make the integral zero.

2. For diatomic molecules, the change in the projection of the orbital angular
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momentum along the internuclear axis (A) must satisfy:

AA=0,+1. (1.49)

This rule stems from the fact that the electric dipole operator carries angular

momentum with quantum number / = 1.

3. Parity conditions refer to how the molecular wavefunction changes under in-
version through the symmetry axis. For homonuclear diatomics, since they
have an inversion center, a subscript g or u is used to show the symmetry with
respect to the inversion operator. The dipole moment operator is antisymmet-
ric (ungerade) under this inversion. The integral Equation 1.44 needs to be
symmetric overall to be non-zero, and this happens when one wavefunction

is gerade and the other ungerade.

For heteronuclear diatomics, and specifically for states with A = 0, reflection
through a vertical plane is a valid symmetry operation. The electric dipole
operator is symmetric under such reflection, so initial and final states must
transform the same way under this operation for the integral to be non-zero.

This means that the allowed transitions are X7 <+ X7, ¥~ <> X

For polyatomic molecules, the selection rules for electronic transitions cannot
be framed in terms of A, g/u, or reflection labels, since there is no unique internu-
clear axis and often no inversion center. Instead, selection rules are derived from
the symmetry properties of the molecule, which are described by point groups and
analysed using group theory.

An electronic transition is allowed if the direct product of the irreducible repre-
sentations (I') of the initial electronic state, the dipole moment operator, and the
final electronic state contains the symmetric representation of the molecule’s point
group:

Dinitiat @ I'g @ Tfinal D Tiotally symmetric (1.50)

Here, I'; represents the transformation symmetry of the electric dipole moment op-
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Figure 1.4: Franck—Condon principle: Electronic transitions occur vertically between vi-
brational levels. Arc¢ indicates the displacement between equilibrium positions.
Figure credit: [6].

erator. For example, in most point groups, the dipole components (L, iy, lL;) trans-

form as the same irreducible representations as the Cartesian coordinates (x,y,z).

In CH4 (methane), for instance, the ground electronic state transforms as the
totally symmetric representation A of the 7; point group. If an excited electronic
state transforms as an irreducible representation that does not appear in the decom-

position of A| ® F>, then the transition is forbidden by symmetry.

During an electronic transition, the likelihood of a simultaneous vibrational
transition is determined by the Franck—Condon principle. This principle states that
electronic transitions occur on timescales much faster than nuclear motion, meaning
the nuclei remain effectively fixed during the transition. This is consistent with the
BO approximation. As a result, the atomic positions and bond lengths are assumed
unchanged at the moment of transition. In potential energy diagrams, where energy
is plotted against internuclear distance, such transitions (vibronic transitions) are

plotted as vertical lines as in Figure 1.4.

As a result of this approximation we can write the wavefunctions of the initial
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and final states of a transition as products:

Vi = Yiue,i (R) el (75 R) (1.51)
Vr = Vouet(R) Yer£(7:R) (1.52)

The probability of the transition occurring is then:
(Werfl 1| Weri) (Whue.f| Wauc.i) - (1.53)

The electronic transition dipole is taken as approximately constant with respect to
R, so that the transition intensity is proportional to the square of the vibrational

overlap integral,
2

[ ' / v (R) vii(R)dR| . (1.54)
This quantity, known as the Franck—Condon factor, represents the overlap between
the vibrational wavefunctions of the initial and final states, which belong to different
electronic potential energy surfaces. Consequently, the strongest transitions occur
between vibrational states for which this overlap is largest. An additional overlap
integral involving the rotational wavefunctions also contributes to the overall tran-
sition amplitude. This rotational factor gives rise to selection rules AJ = +1 for

one-photon transitions.

1.1.8 Vibrational Transitions

Transitions with Av = £-1 are allowed within the harmonic oscillator approximation.
For anharmonic molecules, all transitions with Av = +1,+2, +3, ... are allowed, but
the intensity becomes rapidly weaker as Av increases. The transition from v = 0 to
v =11is normally called the fundamental vibration, and the transitions with larger Av
are called overtones. Vibrational transitions are usually accompanied by a rotational
transition. The selection rule for J is given by Equation 1.45. The AJ = 0 rule is
only valid for non - ¥ states of diatomics, and for polyatomic molecules. So, the

rovibrational spectrum of a molecule in a X electronic state lacks a Q branch.
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Figure 1.5: Morse potential energy curve for a diatomic molecule illustrating vibrational
energy levels and types of scattered radiation observed in Raman spectroscopy.
Green arrow: Rayleigh scattering (elastic); red arrow: Stokes Raman scattering
(energy transferred to the molecule); blue arrow: anti-Stokes Raman scattering
(energy transferred from the molecule). Figure credit:[7]

1.1.9 Raman Selection Rules

Raman spectroscopy is based on the inelastic scattering of light, known as Raman
scattering. When a molecule interacts with incident photons, most photons are elas-
tically scattered (Rayleigh scattering), but a small fraction are scattered at different
energies due to excitation or de-excitation of vibrational modes. These energy dif-

ferences correspond to molecular vibrational transitions Figure 1.5.

Unlike infrared (IR) spectroscopy, which requires a change in the dipole mo-
ment during vibration, Raman spectroscopy requires a change in the molecular po-
larizability. So, even if a vibrational mode is IR inactive, it can still be Raman-active
if it changes the molecule’s polarizability. This leads to the Raman selection rule:
A vibrational mode is Raman active if it transforms according to the same irre-
ducible representation as one of the components of the polarizability tensor. This
contrasts with IR spectroscopy, where only modes that transform as the same ir-
reducible representations as the components of the dipole moment vector (x,y,z)
are IR-active. Due to their differing selection rules, IR and Raman spectroscopy
are often complementary. Raman spectroscopy is particularly useful for studying
symmetric stretching modes that may be weak or inactive in the IR spectrum. It is a

powerful tool for characterising molecular vibrations in systems where fluorescence
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or water absorption can interfere with IR measurements.

1.2 Spectroscopy of Exoplanets

Exoplanets are planets that orbit stars beyond our Solar System. They are typically
classified into categories based on their physical properties [35]. Rocky, small plan-
ets such as Earth composed of rock, silicate, water, or carbon are called terrestrial
planets. Super Earths are terrestrial planets more massive than Earth and less mas-
sive than Neptune. Gas giants are massive planets composed mainly of helium and
hydrogen, similar to Jupiter and Saturn in our Solar System. Gas giants orbiting
close to their host stars resulting in their high temperatures, are referred to as Hot
Jupiters. The Neptunian exoplanets are similar in size and composition to Neptune,
with atmospheres rich in hydrogen and helium. Ice giants are planets like Uranus
and Neptune, composed primarily of water, ammonia, and methane ices. Brown
dwarfs are substellar objects that can be more massive than giant exoplanets but not
massive enough to sustain hydrogen fusion like stars. They share characteristics

with giant exoplanets and are studied with similar spectroscopic techniques.

As of 1 May 2025, there are 5,889 confirmed exoplanets in 4,395 planetary
systems [36]. The first published claims of a planet beyond the solar system date
back to the 19th century. Jacob W.S. [37] suggested the presence of a planetary
companion in the binary star system 70 Ophiuchi, based on observed orbital irregu-
larities. Later, See T. J. J. [38] supported similar interpretations. These early claims

were discredited by Heintz [39], who found no evidence for such companions.

In the late 1980s, several radial velocity studies searched for unseen stellar
companions, many interpreted as possible brown dwarfs [40, 41], helping refine
techniques later applied to exoplanet detection. The first confirmed brown dwarfs
were not discovered until 1995. Gliese 229B was identified as a companion to a
nearby M dwarf star [42], and Teide 1 was found in the Pleiades cluster [43]. Both

were confirmed via direct imaging.

In 1992, the first confirmed exoplanets were discovered by Wolszczan and Frail
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[44]. Using pulsar timing they identified two Earth-mass planets orbiting the pulsar
PSR B1257+12. A third, moon-mass planet (Draugr) was detected in 1994 in the
same pulsar system, adding to the first known multi-planet system beyond our solar
system. In 1995, Mayor and Queloz [45] announced the discovery of 51 Pegasi b,
a Jupiter-mass planet in a close orbit around a solar-type star, using radial velocity
measurements. This contradicted the planet formation theories at the time, which
had assumed gas giants could not form or survive near their stars. The discovery,
which earned a share of the 2019 Nobel Prize in Physics, marked the beginning
of the modern era of exoplanet research and was soon confirmed by independent
studies [46], and it overturned the assumption that other planetary systems must

resemble our own [47].

The discovery of the first multi-planet system around a main-sequence star
came in 1999, when multiple planets were identified orbiting Upsilon Andromedae
[48], marking a key step toward understanding the complexity of planetary systems
beyond our own. In 2001, HD 28185 b became the first exoplanet found to or-
bit entirely within its star’s habitable zone. Its mass, however, is at least six times
that of Jupiter, suggesting that it is more likely a gas giant with no Earth-like sur-
face and therefore unlikely to be habitable in the same way Earth is [49]. A major
milestone in atmospheric characterisation was achieved shortly after, when Char-
bonneau et al. (2002) measured the atmosphere of HD 209458 b using the Hubble
Space Telescope’s STIS spectrograph, detecting sodium absorption in the planet’s
transit spectrum [50]. In 2005, the first direct detection of light from exoplanets was
accomplished using the Spitzer Space Telescope, which captured infrared emission
from both HD 209458 b and TrES-1, offering the first constraints on exoplanetary

temperatures and atmospheres [51, 52].

Several observational techniques have been developed to detect exoplanets.
Figure 1.6 shows the confirmed exoplanets plotted according to the method of their
detection. The radial velocity method and transit photometry are among the most
prominent detection techniques. Some of the detection techniques are analysed in

the following paragraphs.
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Figure 1.6: Plot of exoplanet mass versus orbital period for confirmed detected exoplanets.
The mass is given as a projected value along the line of sight, where M is the
planet’s mass and i is the orbital inclination angle. The orbital period is shown
in days. The different markers and colours indicate the detection methods for
every planet. The magenta lettered circled points correspond to the planets
of our Solar System. Figure is from the NASA Exoplanet Archive (exoplan-
etarchive.ipac.caltech.edu)

The Radial Velocity (Doppler) Method was used in the discovery of 51 Peg b
and remains one of the most productive techniques. By observing periodic vari-
ations in a star’s spectrum, we can infer the presence of a planet or brown dwarf
orbiting the star and causing gravitational pull on it. The period of these varia-
tions corresponds to the planet’s orbital period (P). Using Kepler’s third law, the
planet’s distance from its host star can be determined. From this, the planet’s ve-
locity semi-amplitude (K,) can be calculated, which, combined with the star’s mass
and an estimated orbital inclination, allows for the estimation of the minimum of

the planet’s mass (M),) via the expression as given by Birkby [53]:

22G\'® Msin(i) 1
K= (=2 P . 1.
(%) (M, + M. (1= )17 (123

Here, e is the orbital eccentricity, i is the orbital inclination, G is the gravitational
constant. A disadvantage of this method is that measurements are most effective

when the planet’s orbit is aligned with the observer’s line of sight, and the calcu-
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lated mass depends on the estimation of the orbital inclination. When these ob-
servations are combined with astrometric measurements, however, additional in-
formation about the inclination of the orbit can be acquired, which lowers these
uncertainties. Additionally, measurements can be affected by brightness variations
caused by the star itself. Ground-based observatories have contributed with instru-
ments like High Accuracy Radial Velocity Planet Searcher (HARPS) at the Euro-
pean Southern Observatory’s (ESO) telescope [54], High Resolution Echelle Spec-
trometer (HIRES) at Keck Observatory [55], and Echelle SPectrograph for Rocky
Exoplanets and Stable Spectroscopic Observations (ESPRESSO) on the Very Large
Telescope (VLT) [56]. These spectrographs can detect very small motions of stars,

allowing the discovery of small, close-in exoplanets.

The Transit Photometry Method detects drops in a star’s brightness when a
planet passes in front of it, as observed from Earth. It is the most sensitive method
and most known exoplanets have been discovered using it. Both radial velocity and
transit techniques are most sensitive to large planets orbiting close to their stars.
The planet’s radius can be calculated based on the drop in the star’s brightness, and
when combined with radial velocity measurements that provide the planet’s mass,
the planet’s density can be estimated. This, in turn, helps determine whether a planet
is likely to be rocky, gaseous, or of mixed composition. A secondary transit (or oc-
cultation) happens when the planet passes behind the star from the observer’s point
of view. During this phase, the combined light from the system briefly decreases
again, not because the star is being blocked, but because the planet’s emitted or
reflected light is temporarily hidden. Measuring the depth of this secondary dip,
especially in infrared wavelengths, allows for the estimation of the planet’s dayside
temperature, thermal emission spectrum, and reflectivity (albedo). The Transit Pho-
tometry Method was used extensively by the Kepler [57] and is used by Transiting
Exoplanet Survey Satellite (TESS) [58] missions.

The Astrometry Method involves measuring the precise positions of stars over
time. If the star exhibits small, periodic shifts in its position, this can indicate the

gravitational influence of an orbiting object. These positional shifts measured are
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very small and require very high accuracy. So the astrometry method is technically
demanding. With Gaia of the European Space Agency (ESA) [59], several exoplan-
ets have been discovered using this technique. Furthermore, astrometry has been
used to make follow-up observations for planets detected via other methods. Fu-
ture missions like NASA’s Nancy Grace Roman Space Telescope (RST), formerly
known as WFIRST-AFTA [60] are expected to enhance astrometric capabilities fur-

ther.

The Transit Timing Variations Method is used to detect small deviations in the
timing of a planet’s transits across its host star. In multi-planet systems, gravita-
tional interactions between planets can cause these transits to occur slightly earlier
or later than expected. These variations can reveal the presence of additional plan-
ets, even if they do not transit. From the amplitude and shape of the timing devia-
tions, and by modelling the gravitational interactions of the planets, the mass ratios
can be estimated, as well as the orbital periods, eccentricities, and other parame-
ters. A notable example is the multi-planet system around Kepler-19, where a non-
transiting planet was inferred through the transit timing variations of the transiting
planet Kepler-19b [61]. Missions that have significantly contributed to the detection
of exoplanets via this method include primarily space-based observatories such as

Kepler [57], TESS [58], and CHaracterising ExOPlanets Satellite (CHEOPS) [62].

The Pulsar Timing Method involves the detection of planets by measuring vari-
ations in the arrival times of pulses from a rotating magnetised neutron star (pulsar).
These objects emit highly regular radio pulses, with periods typically ranging from
Ims to 15s [61]. Deviations from the expected pulse timing indicate the presence
of orbiting bodies exerting gravitational influence on the pulsar. This method is ex-
tremely sensitive and can detect planets with masses comparable to or even smaller
than that of Earth. Pulsar timing for exoplanet detection is carried out by several
radio telescopes and international collaborations, including but not limited to the In-
ternational Pulsar Timing Array (IPTA) [63] that combine data from multiple radio

telescopes.
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The Gravitational Microlensing Method is based on the gravitational lens ef-
fect. When a star and its planet pass in front of a background star, they can act as
a gravitational lens, magnifying the light from the background star. This method
is particularly sensitive to planets in the habitable zone of their star and farther
out and can be used to detect free-floating planets that are not bound to a star. It
should be noted that, due to the transient and unique nature of each gravitational
microlensing event, the results obtained are not reproducible. Ground-based sur-
veys that have made significant contributions using this method include the Optical
Gravitational Lensing Experiment (OGLE) [64], Microlensing Observations in As-
trophysics (MOA) [65], and the Korea Microlensing Telescope Network (KMTNet)
[66]. In the near future, the RST [67] is expected to advance this method further

through high-precision space-based observations.

The Direct Imaging Method captures images of exoplanets by blocking out the
host star’s light, typically using coronagraphs or starshades. This method is most
effective for detecting young, massive planets that emit thermal infrared radiation
and are located far from their stars, where the star—planet contrast is larger. More-
over, targeting nearby stars is advantageous because for a given orbital separation,
the angular distance between the planet and its host star is greater. Although tech-
nically challenging due to the brightness of the host star, direct imaging provides
valuable insights into planetary atmospheres and orbital characteristics. Notable in-
struments contributing to direct imaging include the Gemini Planet Imager (GPI)
[68], SPHERE on the VLT [69], and Subaru Coronagraphic Extreme Adaptive Op-
tics System (Subaru/SCExAQ) [70]. Future mission RST will include a dedicated

exoplanet imaging instrument.

Research efforts in exoplanet science have progressively moved beyond detec-
tion toward atmospheric characterisation. Below, we outline the main observational

techniques and the role of spectroscopy in understanding exoplanet properties.

Exoplanet atmospheric characterisation involves deciphering the composition

and properties of an exoplanet’s atmosphere by studying its spectrum. The diverse
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chemical compositions observed in the atmospheres of solar system planets imply
that exoplanetary atmospheres are likely to exhibit an even greater range of vari-
ability [71]. The main observational spectroscopic methods for studying exoplanet
atmospheres are transit spectroscopy, high-resolution Doppler spectroscopy, and di-

rect imaging.

1.2.1 Transit spectroscopy

The first atmospheric measurement was atomic sodium in the atmosphere of HD
209458b with the Hubble Space Telescope (HST) spectrograph in 2002 [50]. It was
achieved with the transit method from four transits of the planet. Observations using
this method have already successfully detected atomic and molecular absorption

features in approximately 100 exoplanet atmospheres [72].

During a transit, when the planet passes in front of the star from the observer’s
line of sight, we get the transmission spectrum. A small fraction of starlight fil-
ters through the planet’s atmosphere before reaching the observer, and the resulting
spectrum reveals how the transit depth varies with wavelength [73]. Different gases
in the atmosphere absorb or scatter light more or less effectively at different wave-
lengths, and so, the atmosphere appears to be more opaque at some wavelengths
than others. Consequently, the planet seems larger where the atmosphere is more

opaque.

The transmission depth at a given wavelength A quantifies how much stellar
light is blocked or absorbed by the planet and its atmosphere during a transit. It is

defined by Kempton et al. [74] and Sengupta et al. [75] as:

D) =1-
A F*

(1.56)

where, Fj, the stellar flux when the planet is in transit and F; is the out of transit

stellar flux.

The in-transit stellar flux is expressed as a sum of the direct stellar flux plus

a part (F)) that is filtered through the planet’s atmosphere and goes through ab-
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sorption and scattering. This component depends on the atmospheric composition.

Following Sengupta et al. [75], the transmission depth can then be written as

R%, Fp
D, =-£A_"C 1.57
A Ri F, ( )

where Rpy is the radius of the planet and the atmosphere, and R, is the stellar ra-
dius. By measuring how D varies with wavelength, we can infer the composition
and vertical structure of the atmosphere. Interpreting the transmission spectrum
typically involves the use of a forward model, which simulates the expected atmo-

spheric signature based on various parameters.

Broad absorption features in the infrared indicate the presence of molecules
(e.g. H,O, CHy, COy) that exhibit strong spectral signatures due to their rovibra-
tional transitions. These occur primarily in the infrared but can also extend into
the visible. In the visible, atomic species such as Na and K have produce absorp-
tion lines [76, 77]. Additionally, scattering affects the transmission spectrum by
attenuating stellar light, with Rayleigh scattering producing a steep slope at short

wavelengths and Mie scattering from clouds or hazes flattening spectral features.

The planetary flux transmitted at wavelength A is given by integrating the spe-

cific intensity across the atmospheric annulus:

Rpa
Fyy = / L(2)dz. (1.58)
RP

Here, Pp is the base radius of the planet. Using the Beer—Bouguer—Lambert law, the

transmitted intensity at altitude z is
I(A,z) = Ip(A)e™™/Ho (1.59)

where [j is the intensity of the incident stellar radiation, 7, is the optical depth along
the path, and L is the cosine of the angle between the incoming ray and the surface

normal.

The optical depth quantifies how much stellar radiation is attenuated via ab-
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sorption and scattering as it travels through the planet’s atmosphere. At altitude z it
is expressed [75] as:
I(z)
T(A,2) =2 A p(2)x(A,z)dl (1.60)
where p(z) is the atmospheric density, y(4,z) is the extinction coefficient (scatter-

ing and absorption), and /(z) is the optical path length. This expression sums up the

contributions to extinction.

For example, the transmission spectrum of Earth shows characteristic absorp-
tion features of molecules such as H,O, O,, CO,, O3, CHy, and NO;, [78]. Each
of these species produces absorption bands in well-known spectral regions. For
instance, ozone absorbs at ~ 4.5 and ~ 9 um, carbon dioxide has a steep feature
at ~ 2.7 um, and water vapour absorption is prominent mainly in the mid infrared
[79, 80]. Earth’s transmission spectrum has been observed indirectly. During a to-
tal lunar eclipse, sunlight passes through Earth’s atmosphere and reaches the Moon
after being refracted and filtered. Observations of the Moon during such eclipses
capture a transmission spectrum of Earth’s atmosphere [78]. These observations
serve as important benchmarks for modelling exoplanet spectra and assessing the

detectability of biosignatures on Earth-like planets.

During the planet’s secondary eclipse, where the planet passes behind the host
star, we get the planet’s emission and reflection spectrum. By comparing the com-
bined light from the star and planet just before eclipse with the stellar light observed
during eclipse, the contribution from the planet’s dayside can be isolated. Reflec-
tion dominates the visible region, where stellar photons are scattered off the planet’s
atmosphere or surface, while thermal emission dominates in the infrared, where the

planet radiates its own heat.

The reflection spectrum provides information about the atmosphere’s albedo.
The emission spectrum probes the temperature structure of the dayside atmosphere
along with its chemical composition [81, 82]. At each wavelength, the radiation es-
capes primarily from a depth where the atmosphere becomes optically thin (7), ~ 1).

This allows us to get the brightness temperature 7'(A), and assuming black body
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radiation, we can then retrieve the vertical temperature profile 7(z) [83]. The tem-
perature profile helps identify possible thermal inversions. Also, by fitting synthetic
spectra based on the temperature profile, and varying molecular abundances, one
can retrieve the chemical composition and assess the presence of clouds, hazes, or

non-equilibrium processes.

Reflected light spectra reveal the planet’s albedo and surface or cloud proper-
ties but provide no information about temperature or vertical distribution of gases.
In contrast, thermal emission spectra contain information about both the tempera-
ture structure and atmospheric composition, though interpreting them is more com-
plex. Each method has its strengths and limitations, so combining both offers a
more complete view of the atmosphere. This requires observations across a wide

spectral range, from visible to mid-infrared [84].

Challenges in obtaining emission spectra include low contrast between the
planet’s faint infrared light and the bright host star, especially for small or cool
planets, and contamination from the instrument and Earth’s thermal background.
Also, because secondary eclipse measurements rely on the planet-to-star flux ratio,
any inaccuracies in the assumed stellar flux can introduce systematic errors into the

derived planetary emission spectrum [85].

In addition to primary and secondary eclipse observations, monitoring the total
brightness of the star—planet system over the full orbital period, known as a phase
curve, provides insight into the planet’s emission at different phase angles. This
measured light effectively combines the planet’s true brightness map and how its
visible surface is projected toward the observer at each point in the orbit [86]. A
large variation in brightness over the orbit means there is a strong temperature con-
trast between the dayside and nightside, whereas a small variation suggests more ef-
ficient heat redistribution. Therefore, such observations can constrain atmospheric
dynamics and temperature contrasts between the dayside and nightside [87]. For ex-
ample, shifted thermal hotspots can be detected, caused by winds. First observed on

HD 189733b [87, 88], such hot spot shifts have since been detected in several other
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hot Jupiters, confirming predictions made by 3D atmospheric circulation models
[89]. Because they require uninterrupted, high-precision measurements over mul-
tiple days, these observations are typically conducted from space [84]. Combined
with eclipse and transit data, phase curves contribute to a more complete picture of

an exoplanet’s atmospheric structure and climate.

Transit spectroscopy is particularly effective for studying hot Jupiters and
Neptune-sized planets, whose large, extended atmospheres generate strong spectral
features. Characterising the atmospheres of smaller, Earth-sized exoplanets is more
challenging. Also, this method is most effective for close-in planets, as the probabil-
ity and frequency of transit events decrease significantly with orbital distance [90].
Another issue regarding this method is that hazes and clouds can obscure or flatten
spectral features [91]. High-resolution spectroscopy offers a potential solution to

this problem [92, 93].

Earlier missions like the Hubble Space Telescope (HST) and Spitzer laid the
foundation for exoplanet atmospheric studies [50, 94]. Building upon these achieve-
ments, the James Webb Space Telescope (JWST) (0.6 to 28.5 um) has expanded our
observational capabilities, enabling the study of cooler planets and the detection of a
broader variety of atmospheric molecules. Early JWST observations, such as those
of WASP-96b, revealed clear water vapour features that surpass the sensitivity of
previous instruments [95]. In addition, JWST achieved the first thermal emission

detection from a temperate rocky exoplanet, TRAPPIST-1b [96].

The future ESA’s ARIEL mission, launching in 2029, will survey around 1,000
exoplanets in the infrared range of 1.95 to 7.8 um [97]. ARIEL aims to characterise
atmospheric composition, temperature structures, and clouds to better understand

planet formation and evolution.

1.2.2 High-Resolution Doppler Spectroscopy

High-resolution ground-based spectroscopy, when combined with Doppler tech-

niques, offers a powerful method for probing the atmospheres of exoplanets [98—
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101]. The planet’s lower mass compared to the star’s means that its orbital motion
produces a much more pronounced change in its radial (line-of-sight) velocity over
the course of its orbit. As a result, the planet’s spectral lines are Doppler-shifted
by tens to hundreds of kilometers per second as it moves, while the stellar lines re-
main relatively stationary over the same timescale [53]. This large, time-dependent
Doppler shift allows the planet’s faint spectral features to be separated from both the
bright stellar spectrum and the telluric lines. Consequently, high-resolution Doppler
spectroscopy has proven especially effective for detecting and characterising exo-

planet atmospheres.

The signal-to-noise as given by Snellen et al. [102] is:

S
S/N: il V Nlines (1-61)

2 2 2
\/S* + Gbg + ORN + ODark

where S, is the planet signal, S, is the stellar signal, and G, Ogn, Opgrk are the
photon noise from the sky and telescope background, the read-out noise, and the
noise from the dark current from the instrument. Their units are photons per reso-
lution element, which is defined by the spectrograph’s resolution R = A /AA. Njjes
is a multiplication factor that takes into account the number and strength of the

spectral lines detected and is also dependant on the spectral resolution.

Time-series observations from the ground are used to follow the planet’s orbit
and track changes in its radial velocity. Especially for close-in planets for which
the Doppler shifts are significant, the separation of the planet’s spectral lines from
the host star’s and the telluric lines is simpler than the case of large orbital sepa-
ration (@ > 1AU). When the signal from the planet is isolated, the noise has to be
reduced. To increase the S/N ratio, the cross-correlation technique is used. High-
Resolution Cross-correlation Spectroscopy (HRCCS) is used to detect signals from
exoplanets that are buried within noisy or contaminated stellar and telluric spectra.
It involves cross-correlating observed high-resolution spectra with model templates
of expected molecular absorption features. Essentially, cross-correlation is an oper-

ation that measures the similarity between two signals (or functions) as a function
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of a shift () applied to one of them. One signal (f(¢)) is compared to another

(g(t+ 7)) and the degree of similarity is measured at each step:

Ryo(T) = / F(0)glt+1)d. (1.62)

A high value of the cross-correlation function (CCF) Ry, (7) indicates that the two

signals are well correlated in that shift.

The accuracy of the template spectrum critically depends on the quality of
molecular line lists [53, 103]. A line list includes line positions, strengths, and opac-
ities at various temperatures and pressures. Such data come from laboratory mea-
surements or from theoretical quantum chemistry calculations. In addition to accu-
rate line positions and intensities, reliable modelling of spectral line shapes is es-
sential. Molecular absorption lines are broadened by several physical mechanisms,
including thermal (Doppler) broadening due to molecular motion and pressure (col-
lisional) broadening arising from intermolecular interactions. Accurate broadening
parameters are particularly important for high-resolution cross-correlation analyses,
as they determine the detailed shape of spectral lines. Incorrect broadening widths
or temperature dependences can weaken the correlation signal even when line posi-
tions are accurate. This is especially relevant for hot exoplanet atmospheres, where

pressure and temperature vary strongly with altitude.

Several databases provide molecular line lists, such as HITRAN [104],
HITEMP [105], and ExoMol [4]. The reliability of cross-correlation results is
highly sensitive to the precision of these line lists. In high-resolution spectroscopy
(R ~ 100000) even small inaccuracies in line positions can lead to significant mis-

matches, reducing the effectiveness of signal detection [106, 107].

Each observed spectrum is cross-correlated with the model template across
a range of trial radial velocities. By stacking the CCFs over a series of spectra
taken at different orbital phases, a strong signal emerges when the correct radial
velocity semi-amplitude of the planet (K),) is assumed. This alignment enhances

the S/N ratio and allows for the detection of specific molecules, such as CO, as
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demonstrated in the case of HD 209458b [99] and T Booétis b [108]. Typically, a 5S¢

S/N ratio is considered a strong detection [109].

Several ground-based instruments have been important in advancing high-
resolution Doppler spectroscopy for exoplanetary atmospheric characterisation.
Notable facilities include the VLT equipped with CRIRES+ (an upgraded version
of CRIRES with greatly enhanced wavelength coverage) [110], the CARMENES
dual-channel spectrograph at Calar Alto Observatory [111], Keck Observatory’s
NIRSPEC (Near-Infrared Spectrograph) [112], and Subaru Telescope’s InfraRed
Doppler spectrograph [113]. These ground-based observatories can achieve the re-
quired spectral resolution to isolate planetary absorption features, despite the chal-
lenges posed by telluric absorption. The space-based spectrograph ANDES (At-
mospheric and Near-Infrared Exoplanet Spectrograph) [114], proposed for the Ex-
tremely Large Telescope (ELT), is expected to operate in 2028 and further expand

the potential for characterising exoplanet atmospheres.

1.2.3 Direct Imaging

For planets with large angular separations from their star as seen from Earth, the
Doppler shifts change very little over a night’s observation, making time-resolved
Doppler detection less effective. However, if their angular separation from their
star is resolvable, their spectra can be analysed through direct imaging using high-
contrast imaging techniques such as adaptive optics or coronagraphy [102, 115].
The planet’s spectrum is fainter than the stellar and the telluric spectral lines, but
it is very localised in the image, which helps isolate it and directly observe the
planet’s thermal emission, particularly in the near-infrared (NIR). This is especially
effective for young, self-luminous giant planets (7 > 1000K) [116, 117]. Although
such systems are rarer than transiting exoplanets, their spectra are often of higher
signal-to-noise ratio and resolution due to the use of large telescopes, both ground-
based (e.g., VLT, Keck Observatory) with adaptive optics and coronagraphy, and
space-based observatories like JWST. The atmospheric information derived from

direct imaging analysis includes temperature profiles and molecular composition,
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similar to the transiting method.

The detectability of weak molecular absorption features can be further en-
hanced in the planet’s spectrum with the use of the cross-correlation technique.
Although the planet’s Doppler shift does not vary significantly over a single night, it
still possesses a non-zero radial velocity. Therefore, the observed spectra are cross-
correlated with a model template shifted across a range of trial radial velocities to
search for molecular absorption features [118]. This produces a cross-correlation
map, and a strong peak in the map reveals both the planet’s location and the presence

of specific molecules in its atmosphere [119, 120].



Chapter 2

ExoMol

The ExoMol project [121] focuses on producing high temperature line lists for key
molecular species significant in the analysis of the atmospheres of extrasolar plan-
ets and cool stars. This spectroscopic data is essential for modelling atmospheric

opacities and interpreting observational spectra accurately.

Originally launched in 2012, ExoMol focused on generating line lists that were
as complete as possible. Such completeness was crucial for reproducing broad-band
spectra and opacity profiles, particularly in low and medium resolution applications
[122]. By 2024, ExoMol had produced line lists for 67 molecules, and nearly 150
isotopologues. However, the emergence of high-resolution Doppler spectroscopy
and the cross-correlation technique introduced new requirements. These methods
rely not only on completeness but also on high spectroscopic accuracy of line posi-
tions and intensities. Several early ExoMol line lists, though comprehensive, lacked
the precision needed for high-resolution studies that require a resolving power of
R ~ 100000 [106, 107]. This challenge motivated a shift in focus for the project.
The project ExoMolHD (ExoMol in high definition) starting in 2020, aims to pro-
vide molecular line lists of the necessary spectroscopic accuracy. ExoMolHD com-
bines theoretical approaches with available laboratory data to refine molecular con-

stants, improve line positions, and extend the existing ExoMol database.
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Table 2.1: Transitions file specification.

Field Description

i Upper state ID

f Lower state ID

A Einstein A coefficient in s~

Vi Transition wavenumber in cm ™! (optional).

Table 2.2: Specification of the . states file.

Field  Description

i State ID

E Recommended state energy in cm™!

Lot State degeneracy

J Total angular momentum quantum number, J or F (integer/half-integer )
Unc Uncertainty in the state energy in cm™!

T State lifetime (aggregated radiative and predissociative lifetimes) in s
(o) Landé g-factor (optional)

(QN)  State quantum numbers, may be several columns (optional)
(Abbr) Abbreviation giving source of state energy, see Table 2.5.
(Ep) Calculated state energy in cm™! (optional)

2.1 Data provided

In the basic ExoMol format [123] a line list consists of two files: the . states and
.trans files. The .states file lists energy levels (cm~') with corresponding
quantum numbers and unique indices called state IDs. The recommended state en-
ergy E is the either a calculated value or, if available, a value refined using MARVEL
or another method (see subsection 2.2.2). The . t rans file provides Einstein A co-
efficients, the upper and lower state IDs corresponding to the . states file, and
optionally transition frequencies (cm ™). The structure of these files is illustrated in
Tables 2.1 and 2.2, adapted from the 2024 ExoMol updates paper by Tennyson et
al. (2024) [4].

Table 2.3 provides a summary of the various datasets available for each iso-
topologue on the ExoMol website (www.exomol.com). Table 2.4 shows the line
lists created by the ExoMol group, as adapted from the 2024 ExoMol updates paper
by Tennyson et al. (2024) [4].
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Table 2.3: Summary of data provided by the ExoMol Database [4].

Data type

Line lists

Absorption cross sections

Pressure broadening coefficients

Temperature dependent super-lines (histograms)
Partition functions

Cooling functions

Specific heat - heat capacity

Temperature and pressure dependent opacities
Photo-absorption continuum cross section
Photo-dissociation cross sections including VUV absorption
Spectroscopic Models

65

Table 2.4: Datasets created by the ExoMol project and included in the ExoMol database:

recommended line lists only. Line lists denoted with a ¢ are suitable for high
resolution studies [4].

Paper Molecule DSName Reference
I HCN/HNC Harris ¢/ [124]
A% NaCl Barton [125]
\'% KCl Barton [125]
VII PH; SAITY [126]
VIII H,CO AYTY v [127]
IX AlO ATP v [128]
X NaH Rivlin [129]
XI HNOs3 AlJS [130]
XII CS JnK ¢ [131]
XTI CaO VBATHY v [132]
X1V SO, ExoAmes ¢ [133]
XV H,0O, APTY [134]
XVI H,S AYT2 v [135]
XVII SO3 uYym v [136]
XIX H,!7:180 HotWat78 ¢ [137]

Continued on the next page...
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Table 2.4 — continued from previous page

Paper Molecule DSName Reference
XX HY MiZATeP v [138]
XXII SiH,4 OYT2 [139]
XXIIT PO POPS [140]
XXIII PS POPS [140]
XXIV SiH SiGHTLY [141]
XXV SiS UCTY [142]
XXVI NS SNaSH [143]
XXVII  CoHy MaYTY [144]
XXIX CH;Cl oYT [145]
XXX H,'%0 POKAZATEL v [146]
XXXI C 8states ¢/ [147]
XXXII  MgO LiTY v [148]
XXXII  TiO Toto ¢ [149]
XXXIV  PH LaTY ¢ [150]
XXXV  NH; CoYuTe v [151]
XXXVI  SH GYT v [152]
XXXVII HCCH aCeTY [153]
XXXVII SiO2 OYT3 [154]
XXXIX  CO2 UCL-4000 ¢ [155]
XL H30* eXeL Vv [156]
XLI KOH OYT4 [157]
XLI NaOH OYTS5 [157]
XLIT NO XABC v [158]
XLIII NaO NaOUCMe v [159]
XLIV SiO SiOUVenIR v [160]
XLV CaH XAB Vv [161]
XLV MgH XAB v [161]

Continued on the next page...
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Table 2.4 — continued from previous page

Paper Molecule DSName Reference
XLVI SiN SiNful ¢ [161]
XLVII CaOH OoYT6 v [161]
XLVIIT H2CS MOTY v [162]
XLIX AICI1 YNAT v [163]
L H3* MiZo Vv [164]
LI LiOH oYT7 [165]
LIT CH* PYT [166]
LIIT YO BRYTS [167]
LIV AlH AloHa ¢ [168]
LV VO HyvO v [169]
LVI SO SOLIS v [170]
LvII CH4 MM v [2]
LVIII OCS OYT8 v [171]
LIX N20 TYM v [172]
LX ISNH; CoYuTe-15 ¢ [5]
LXI OH MYTHOS v [173]
LXII C3 AtLast ¢ [174]
LXIII HDO TBD v [175]
LXIV PN PaiN ¢ [176]
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To visualise the content of line lists, precomputed cross sections at various

temperatures and zero pressure are also provided [177]. Pressure and temperature

dependent opacity cross sections for all ExoMol molecules, as well as O,, Na, and

K, are available as computed by Chubb et al. [178].

Quantities such as temperature-dependent specific heat capacities and parti-

tion functions are also available for the main isotopologue of each recommended

line list. Other available data include cooling functions, super-lines (temperature-

binned line histograms), temperature-dependent photodissociation cross sections,
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and broadening parameters for pressure-dependent line profiles [4].

ExoMol supports extensive post-processing through two main tools:
EXOCROSS (Fortran) [8] and PYEXOCROSS (Python) [179]. These tools enable
users to export line lists in the ExoMol and HITRAN format, generate cross sec-
tions, radiative lifetimes, partition functions, specific heats, absorption and emission

stick spectra, and electric dipole, electric quadrupole and magnetic dipole spectra.

ExoMol has launched a new high-resolution molecular spectroscopic
database called ExoMolHR (ExoMol High-Resolution) [180] available at
www.exomol.com/exomolhr. The ExoMolHR database provides line positions
of low uncertainty from the ExoMol database, suitable for high-resolution studies
such as line identification or simulations of high-resolution spectra. Initially, re-
duced line lists are constructed by scraping the ExoMol database for energy levels
and transitions with uncertainties unc < 0.01 cm~!. Then, the transitions with re-
solving power R = A /AA > 100000 are stored. These transitions provide the core

of the database.

For each transition, ExoMolHR provides the frequency, uncertainty, Einstein
A-coefficient, intensity at a user specified temperature, lower energy, total level de-
generacy, angular momentum and quantum numbers for upper and lower states.
The ExoMolHR database currently contains data for 55 isotopologues from 32
molecules. This number is growing rapidly with the completion of more MARVEL

studies (see subsection 2.2.3).

2.2 Methodology

The general methodology used to compute molecular line lists begins with ab ini-
tio calculations of the potential energy (PES) and dipole moment surfaces (DMS),
typically performed using quantum chemistry programs such as MOLPRO [181],

which compute the electronic structure of the molecule.
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2.2.1 Nuclear Motion Calculations

The PESs and DMSs serve as inputs to nuclear motion programs that solve the
Schrodinger equation for the nuclei. Depending on the molecular system, different
programs are used: DUO for diatomics [182], DVR3D and EVEREST for triatomics

[183, 184], and TROVE for general polyatomic molecules [185].

Using the BO approximation, the nuclear Schrodinger equation (Equation 1.9)

is then solved variationally using the PES:

A

Hnuc Vhuc (ﬁ) =FE Yhue (ﬁ) y (2- 1)

where H,,. includes kinetic, potential energy from the PES, and additional coupling

terms.

Dipole transition moments are computed using the rovibronic wavefunctions

and the DMS:
fiir = (wi(R)|0(R)|ws(R)), (2.2)

which are then used to calculate the Einstein A coefficients, that measure the prob-
ability per unit time (1/s) for spontaneous emission. In S.I. units this is expressed
as [186]:

64mtv?

Aif = 3hc3lf|l~lif|2, (2.3)

where V; 1s the transition frequency.

From the energy levels E, the partition function can be calculated:

(1) =Y gne En/kT, (2.4)

where g, is the degeneracy of level n, k is Boltzmann’s constant, and 7T is temper-
ature. The Einstein A coefficients, energy levels, and partition functions are used
to compute temperature-dependent line intensities in units of cm/molecule, and fi-
nally, spectra can be simulated by applying physical conditions such as temperature

and pressure.
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2.2.2 Hybridisation of the Line Lists

To optimise accuracy and approach resolutions of R = 100 000 or even higher, a
standard process is to refine the computed PESs by fitting to high-resolution experi-
mental data. Empirically derived energies are used for this refinement. Additionally,
the final line lists are often hybridised by incorporating empirically derived levels.
Depending on the method used to obtain the energy levels in the final line lists, we

use appropriate labels in the . states files as shown in Table 2.5.

For the variationally calculated energies the label used is “Ca”. For data di-
rectly taken from the HITRAN database [104], the abbreviation used is HI. These
data are often experimentally derived. The abbreviation Mo is used for data origi-
nating from the MoLLIST project by Bernath et al. [187], which provides empirical
line lists designed for use at higher temperatures. The label “EH” is used for en-
ergy levels obtained with the effective Hamiltonian method. The “EH” energies are
calculated with the use of a simplified Hamiltonian that is constructed to model the

energy structure of a molecule based on observed spectra.

When available, the calculated energy levels are replaced with empirical ener-
gies derived from the MARVEL procedure (subsection 2.2.3). This process is hereby
referred to as Marvelisation. For the MARVELIised levels, the label used is “Ma”.
Another way to improve the quality of the predicted transitions, even when we lack
experimental data, is the Predicted Shifts method (PS). The associated abbreviation
is “PS”. Details on the PS method can be found in subsection 2.2.5 and section 3.6.
Finally, the “IE” label is used for the levels that have been updated using isotopic

extrapolation method as discussed in subsection 2.2.4 and section 3.7.

2.2.3 MARVEL

To provide empirical energy levels we use the Measured Active Rotation Vibration
Energy Level (MARVEL) algorithm [188—191]. MARVEL is a very important ele-
ment for the work described in this thesis. The MARVEL procedure starts with the

collection of a comprehensive dataset of measured spectroscopic transitions (the
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Table 2.5: Source type abbreviations used to describe energy levels in hybrid (MAR-
VELized) line lists.

Abbr Meaning

Direct Predictions

Ca Calculated

Ma MARVEL

EH Effective Hamiltonian

Mo MOLLIST

HI HITRAN

Corrections

PS Predicted Shift

IE Isotopologue Extrapolation

frequencies or line positions) from all relevant sources of the literature. Each tran-
sition is a connection between two energy states in the molecule; a lower state and
an upper state. It is characterised by its frequency and an associated uncertainty, a
measure of how precise the measurement is. It is essential that the transitions of the
dataset are assigned a consistent set of quantum numbers that uniquely identify the
energy states involved. To keep track of all these transitions, each one is labelled

with a unique tag that specifies its origin and provides an identifier for reference.

The MARVEL algorithm interprets this dataset of spectral lines using a graph-
theoretical approach. A graph is a mathematical structure made up of nodes and
edges. For MARVEL, the nodes represent the molecule’s discrete energy levels,
while the edges represent the measured spectroscopic transitions between these lev-
els (Gl-‘;.bs). The edge weights are associated with each line’s uncertainty. This struc-
ture is referred to as a spectroscopic network (SN) [192-194]. The quantum me-
chanical selection rules form the connectivity of the spectroscopic network. They
determine which transitions between energy levels are allowed, giving the network
its specific shape and structure. Since the input transitions originate from vari-
ous experimental sources with differing uncertainty estimates, previous versions of
MARVEL (e.g. MARVEL3) initially grouped these transitions into segments based

on the similarity of their uncertainties [191].
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MARVEL minimises the residuals:

E;—E;)—oc®™]?
Z[( gz_ i . (2.5)
ij

ij

Here, Gi(}bs is the observed transition frequency, E; and E; are the empirical energy
levels determined by MARVEL, and §;; is the uncertainty associated with the mea-

sured line. This leads to a system of linear equations

AX =B, (2.6)
where,

A=adga (2.7)
and

B=algy. (2.8)

The matrix a contains elements 1,—1,0: 1 if E; is the upper level of the ij,, tran-
sition, —1 if E; is the lower level of the ij;, transition, O otherwise. The matrix g
contains the uncertainties of the transitions, the N x 1 matrix Y contains N input
measured lines, and the resulting matrix X contains the energy values that connect

all these transitions.

A network is considered self-consistent when all cycles within it satisfy the
Ritz condition [19] within experimental uncertainty. Only self-consistent, well-
connected networks can yield reliable rovibrational energy levels. Networks that do

not connect with other components are called floating networks.

The goal is to transfer the high accuracy of the line position measurements to
the empirical energy values that are determined through MARVEL. This process
involves a meticulous evaluation of the self-consistency of the input transitions and
their assignments, and iterative adjustments of their uncertainty values. Identifying
the optimal set of transition uncertainties poses a significant challenge, however.

Often, a manual increase of the transition uncertainties is required to create a self-
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consistent network. This process is complicated because the uncertainties provided
in experimental sources may be overly optimistic or pessimistic, making it difficult
to determine the appropriate adjustments. If a transition has an overly optimistic un-
certainty, MARVEL may place greater trust in it compared to another transition with
a larger uncertainty, even if the latter is more accurate. Consequently, an incorrect

energy may be derived for a state even though it is defined by multiple transitions.

For this reason, the most recent version (MARVEL 4) offers a feature known
as the bootstrap method, which iteratively performs calculations to determine the
optimal energy uncertainties [195]. MARVEL randomly increases each transition
uncertainty multiple times, and for every sample, it recalculates the energies. Af-
ter every calculation, it compares the resulting energies with the energies when the
original uncertainties are used. Based on their difference, MARVEL assesses how
reliable the final energy values are and gives a final set of suitable energy uncertain-

ties that prevent overconfidence in potentially inaccurate measurements.

The self-consistency of the spectroscopic networks are assessed through com-
bination differences; differences between pairs of transitions that share a common
energy level. For example, if two transitions originate from the same lower state
and lead to two different upper states, the difference in their transition frequencies
should match the energy spacing between the two upper states. Agreement of such
differences within uncertainty confirms the reliability of the transitions. Discrep-
ancies can indicate experimental errors or misassignments. This is how MARVEL
helps to identify outliers. Transitions are flagged as invalid if the ratio between the
optimal uncertainty (i.e., the uncertainty a transition would require to be consistent
with the network) and the original uncertainty exceeds a threshold of 100. These
invalidated transitions are either corrected or annotated with a negative sign applied
to their wavenumber values, to exclude them from further analysis by MARVEL.

The MARVEL 4 Online version [195] also offers enhanced flexibility in han-
dling transition energy units. Unlike previous versions that exclusively used cm ™!,

Marvel 4 Online can accommodate various units (cm_1 , Hz, kHz, MHz, GHz, and
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THz). To support this expanded functionality, a segment file is included as an input,

containing a list of source names paired with their respective units.

In practice, the MARVEL methodology is implemented using the MARVEL
software written by Tibor Furtenbacher of Eotvos University, which automates the
inversion of the measured transitions, iterative bootstrap uncertainty estimation (for
MARVEL 4), and identification of inconsistent transitions. Nevertheless, careful
preparation of the input dataset is the essential first step. Users must compile as-
signed spectral transitions from the literature, each including the line position, as-
sociated uncertainty, and quantum number labels. Consistency in quantum num-
ber assignment is critical, as it ensures correct construction of the spectroscopic
network, and using the correct input uncertainty is important to allow MARVEL
to weight transitions appropriately during the inversion. Once the dataset is pre-
pared, MARVEL constructs the network, performs the initial inversion, and flags
transitions that violate self-consistency criteria. Users should not blindly trust these
flagged misassignments; manual review and, if necessary, correction are required
to account for poorly estimated experimental uncertainties or other possible errors.
While the software’s bootstrap procedure proposes optimal energy uncertainties au-
tomatically, final verification by the user ensures the reliability of the results. In this
way, the MARVEL procedure combines automated computation with targeted user
data handling and oversight to ensure the highest reliability of the resulting energy

levels.

2.2.4 Isotopic Extrapolation

In spectroscopic modelling, it is common practice to optimise the model for the
main isotopologue of a given molecule, primarily due to the scarcity of experimen-
tally assigned spectral data for other isotopologues. The variational line lists for
other isotopologues can be constructed by adjusting the atomic masses in the model

corresponding to the main isotopologue and preforming a new calculation.

Polyansky et al. [137] show that a more refined pseudo-hybrid line list for a

given isotopologue can be derived by shifting each energy level regarding those in
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the main variational and hybridised line lists, as expressed by the following equa-
tion:

(7180 __ fiS0 [-main F-main
IE — Ca+< obs _ECa >7 (2'9)

Here, E‘C“;‘in represents the variational energy of the main isotopologue, E(‘:S;’ is the
variational energy of the isotopologue of interest, and EIIISEO refers to its isotopologue-
extrapolated (IE) energy. Egt‘gin can originate from either MARVEL, or the Predicted
Shifts method described in subsection 2.2.5. Essentially, this approach assumes
that the energy residuals between the hybridised and variational line lists remain
constant across all isotopologues, equivalent to assuming the Born-Oppenheimer
approximation is accurate.

The energy levels that have been calculated with this method are assigned the label

“IE” in the energy .states file.

2.2.5 Predicted Shifts

Variational line lists often extend to higher total angular momentum quantum num-
bers (J) than those available from experimental data, requiring extrapolations for
levels beyond the observed range. Similarly, experimental data may be incomplete
even within the observed J range, necessitating interpolations to fill in missing lev-

els.

A more accurate estimation of the energy levels for unobserved rotational states
can be achieved by applying a shift to the calculated energy levels. This synthetic
shift can be estimated from the trends in the observed minus calculated (obs.-calc.)
energy differences in that band, where “obs.” refers to the experimentally-derived
MARVEL energy levels and “calc.” to the variationally computed energy levels. As
a result, any discontinuities between MARVELised and calculated energy levels are
removed. For the missing energies this is done by fitting to the obs.-calc. trends
and predicting synthetic obs.-calc. values for them. Energy levels updated with this

method are labelled “PS”.



Chapter 3

Magnesium Oxide

3.1 Motivation

Due to the cosmic abundance of magnesium and oxygen and the strength of the
bond, diatomic magnesium oxide (MgO) in the gas phase is known to be present in
the upper atmosphere of Earth [196] and Mercury [197, 198], where it is believed
to be produced by micrometeoroid impact. However, searches for gaseous MgO in

the interstellar medium have thus far been unsuccessful [199, 200].

In its solid form, magnesium oxide is considered one of the most abundant
rocks in the interiors of planets [201] and to be a component of interstellar dust
[202—-205]; certainly it is an important part of Earth’s mantle [196], but the chemical

identity of solid species is difficult to confirm remotely.

However, in ultra-hot rocky exoplanets like hot rocky super-Earths, often re-
ferred to as lava or magma worlds, the higher temperatures in the atmosphere are
thought to favour the production of MgO vapour [206-209]. With high-quality

spectral line lists, these hypotheses can be experimentally tested.

Li et al. [148] produced the LiTY variational line list covering the isotopo-
logues 2*Mg'®0, *Mg!70, ?*Mg!30, ’Mg!'®0 and 2°Mg!60. While this line list
was heavily tuned to experimental data, no formal MARVEL project was undertaken
previously. In order to facilitate the detection of MgO in high-resolution studies we

performed a MARVEL analysis of 2*Mg!%0 and updated the line list to get spec-
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troscopic accuracy for many of the strong spectral lines. The quantum numbers
used for 24Mg160 are the electronic state, the vibrational number v, the rotational

quantum number J, and the projection of the total electronic angular momentum €.

3.2 Quantum numbers and selection rules

Magnesium oxide is a heteronuclear diatomic molecule, and its energy-level struc-
ture is therefore much simpler than that of polyatomic systems. For a diatomic
molecule, the total molecular energy is commonly separated into electronic, vibra-
tional, and rotational contributions with additional fine-structure terms where rel-
evant. The ground electronic state of MgO is the closed-shell singlet X '~ and
the lowest electronically excited states relevant to this work include a 311, which is
the first excited triplet, A 'TI, and B '2*. The electronic angular momentum pro-
jection quantum number is A = 0 for the X states and A = 1 for the II states. For
triplet states such as a >IT, the total spin is S = 1, producing three spin components

¥ =—1,0, 41, and the associated fine-structure splitting.

As a diatomic molecule, MgO has a single vibrational degree of freedom de-
scribed by the vibrational quantum number v =0, 1,2,.... The vibrational energies

follow the approximate anharmonic expansion,

Eip= @, (v+1) — o, (v+ 1)+ 3.1)

For each vibrational level of each electronic state, rotational motion is de-
scribed by the rotational quantum number J, where J = 0,1,2,.... For X states

the rotational energy reduces to the rigid-rotor expression:
E,=BJ(J+1). (3.2)

The projection of the total angular momentum along the internuclear axis is defined
as

Q=[A+3
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Thus, ©Q =1 for singlet IT states, and = 0, 1,2 for triplet IT states.

Since MgO is heteronuclear, it does not possess inversion symmetry and there-
fore has no gerade/ungerade classification. Instead, each rovibronic level is assigned
a total parity, + or —, and a rotationless parity, e or f. These are the parity labels

used in the . st ates file in this work.

Both 2*Mg and 90 have nuclear spin I = 0. Consequently, all MgO isotopo-
logues considered in this work possess only a single nuclear-spin configuration and

therefore exhibit no ortho/para distinction.

The dominant electric—dipole selection rules for heteronuclear diatomic

molecules are

AJ=0,£1(J=0+4AJ=0), (3.3)
Av = %1 (fundamental transitions), (3.4)
AN =0,=+1, (3.5)
AQ =0,=£1. (3.6)

For real anharmonic molecules, overtone and hot-band transitions with Ay =
42,43, ... also acquire non-zero intensity. Accordingly, the MgO MARVEL data
set in this work includes transitions with Av > 1 in addition to the fundamental

bands.

3.3 A new MgO MARVEL analysis

A MARVEL analysis for the spectroscopic data of 2*Mg!%0 was performed with
results summarised in Table 3.1. A part of the final states file is shown in Table 3.2.
We used Marvel4.1 and produced the MARVEL energy uncertainties with the boot-
strapping method as described in [195]. The MARVEL uncertainties are shown in

Figure 3.1.

A total of 1181 transitions were collected from 9 sources [20, 210-217]. 1169

of these transitions are validated through the MARVEL procedure and inverted to
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Table 3.1: Overview of the MgO MARVEL compilation energy levels (EL) and comparison
against DUO variational calculated energy levels (|Ma — Cal), in cm™".
State  vrange Jrange #ELs Unc.range Avg. Unc. EL range |Ma — Ca| range Mean |Ma — Cal|
X't 04 061 125 0025 0.06 0-3042.13 0-1.54 0.07
Alll 03 1-62 368 0.001-025  0.09 3504.32-7055.19 0.0003-0.1 0.02
B!zt 0-1 0-42 71 0.003-0.14 006  20003.59-21387.62  0.00004-0.06 0.02
a’l 0-1 1-43 256 0.001-0.15  0.07 2551.29-4129.27  0.00006-0.33 0.03
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Figure 3.1: The MARVEL (Ma) energy uncertainties for 2*Mg!®O as a function of energy

determine 820 empirical energy levels and uncertainties for the four lowest elec-

tronic states (X !X, a 31, A 'TI, B '2 ") and vibrational levels v = 0 — 4, with the
highest rotational quantum number being Jiax = 62.
The relevant details can be found within section 3.4, including a full list of all

the experimental data used in this analysis, a segment file connecting the sources

to the wavenumber units used, a justification of the uncertainties considered for the
line positions, a list of our MARVEL energy levels, and a list of papers considered

but not used in the current work as well as the reasons for their exclusion.
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3.4 Overview of experimental sources

Table 3.3 and Table 3.4 present all the experimental papers considered. They are
given name tags composed of the last two digits of the year of their publication as
well as the letters of the names of up to the first three co-authors. Further details of

the papers considered and the use of the experimental data are provided below.

06KaKa [20] Observations of pure rotational transitions of MgO in the X Iyt+.
X 2+ and a 3T1- a 3T systems (v = 1 — 3) are reported. The transitions are in the 7
- 14 cm™! region and their uncertainty given in the paper and used in our network

is~10%cm!.

86ToHo [212] Eight measured transitions are reported in this paper in the
X I3+ electronic state for the vibrational bands (v=0-2), in the 2 - 10 cm~!
frequency range. An uncertainty is provided in the original paper for each transi-

tion.

91CiHeBI [214] In this work twenty two observed lines are observed in the in
the X 127 electronic state. The frequency range is 731 - 806 cm~!. We estimated

the uncertainty from combination differences to be 1073 cm™! .

84StAzCa [211] Three measured transitions for the X 'ZTelectronic state
(v=0-1) and the 1.14-2.27cm™! frequency range are reported. An uncertainty is

given in the original paper for each transition.

94MuRiPf [216] Observed transitions of the a ’IT - X '™ (v =0-1) and
A 'TT - X 2+ (v = 0 — 2) bands are reported in this work. It is estimated that the
accuracy of the data is better than 107> cm™!, and we used this as the line position

uncertainty.

94KaHiTa [215] This paper provides observed transitions in the infrared ab-
sorption spectrum of the A 'TT - X 2% system and the five vibrational bands
(1-0),(2—0),(3—0),(0—1). No line position uncertainty was provided in this
work so it was estimated to be 0.008 cm~! for the unblended and 0.016 cm™! for

the blended lines based on the magnitude of the combination differences.
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Table 3.2: A part of the final . states file for >*Mg'%0 .
i E go J unc T 8 P+/— DPe/f State v A X Q Label Ec,
1 0.000000 1 0.0 0.000000 NaN 0.000000 + e X(1SIGMA+) 0 0 0.0 00 Ma  0.000000
2 774738739 1 0.0 0.001420 1.3596E+00 0.000000 + e X(1SIGMA+) 1 0 0.0 0.0 Ma 774.737704
3 1539174552 1 0.0 0.001730 6.3331E-01 0.000000 + e X(1SIGMA+) 2 0 0.0 0.0 Ma 1539.136871
4 2292.687940 1 0.0 0.003610 3.9854E-01 0.000000 + e X(1SIGMA+) 3 0 0.0 0.0 Ma 2293.035126
5 2621.208578 1 0.0 0.004809 2.5844E-02 0.000000 + e a(3PI) 01 -1.0 0.0 PS 2621207376
6 3037.070194 1 0.0 0.040000 2.2228E-01 0.000000 + e X(ISIGMA+) 4 0 0.0 0.0 Ca 3037.070194
7 3265.064334 1 0.0 0.043377 2.0867E-02 0.000000 + e a(3PI) 11 -1.0 00 PS 3264.977473
8 3770264143 1 0.0 0.050000 9.7014E-02 0.000000 + e X(1SIGMA+) 5 0 0.0 0.0 Ca 3770.264143
9 3900.848866 1 0.0 0.030000 1.8289E-02 0.000000 + e a(3PI) 21 -10 0.0 Ca 3900.848866
10 4478.700487 1 0.0 0.040000 2.3189E-02 0.000000 + e a(3PI) 31 -10 0.0 Ca 4478.700487
11 4543.125919 1 0.0 0.060000 2.7738E-02 0.000000 + e X(1SIGMA+) 6 0 0.0 0.0  Ca 4543.125919

it State counting number
E: Energy (incm™')
gior: Total degeneracy

J: Total angular momentum
unc (AE): Uncertainty (in cm™ )
T: Lifetime (in s; calculated in EXOCROSS [8])

g: Lande g-factor
P4/ Total parity

Pe/ s+ Kronig rotationless parity

State: Electronic state

v: Vibrational quantum number

A: Projection of electronic orbital angular momentum on the internuclear axis

X: Projection of electronic spin angular momentum on the internuclear axis
Q: Projection of the total angular momentum excluding nuclear spin along the internuclear axis
Label: Ma for experimental MARVEL energies, PS for energies from Predicted Shift method, Ca for unchanged calculated

energy by Li et al. [148]

Ec,: DUO calculated energy by Li et al. [148]

84AzDyGe [210] Measured transitions in the band B !X+-X I+ (v =1 —

1, v =0—0) are reported, in the 19971-20067 cm~! range. An uncertainty is given

in the original paper for each transition.

91IpCrFi [213] Observed transitions in the a *TI-X 'E* (v =0—0) and (v =
0—1), and D 'A-a ’TI(v = 0 — 0) and (v = 1 — 1) bands are being reported. No

line position uncertainty was provided in this work so it was estimated to be 0.02

cm~! based on the magnitude of the combination differences. We only used the

a 3TI-X 'S transitions for this project.

95MuThPf [217] Line measurements in the X ', a 3II, A 'IT states are

reported in the range 1640-3510 cm™~!. In the paper it is mentioned that the data

accuracy is better than 1073 cm™! and this is the uncertainty we used for the line

positions.
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Table 3.3: Experimental data for MgO used in our analysis. State’: Upper electronic state,
State”: Lower electronic state, v’:upper state vibrational quantum number, v’
lower state vibrational quantum number, wavelength range and mean line posi-
tion uncertainty given in cm~!, V/A: number of validated experimental transi-
tions/total number of transitions.

Source State’ State” v’ V" Jrange Wavelength — Mean V/A
range Unc.
06KaKa [20] X'zt X!zt 1 1 6-11 79-12.5 10°%  4/4
X'zt Xzt 2 2 6-12 7.8-13.5 10°%  5/5
X!zt X'zt 3 3 6-12 7.7-13.3 10°%  4/4
a3l a’Mm 0 0 7-13 7.02 - 13.03 107% 23/23
O5MuThPf[217] a3 X!Xt 0 0 0-15 2551.3-262295 1073 373
a’lm X!'Tt 1 0 0-12 3193.1-32423 1073  5/5
AT X'st 0 0 1-7 349242-35043 1073  5/5
Al X'st 0 1 7-11 2709.13-271596 1073 2/2
AT X'st 1 3 2-14 1841.26-1872 1073 14/14
Alll X'zt 1 1 1-14 3356.9-3387.75 1073  4/4
Alll X'zt 1 2 1-9 2606.1-2623.34 1073  7/7
AT X'zt 2 2 10-11 3249.8302 1073 1/1
AT X'st 3 3 0-6 3150.37-315823 1073  4/4
AT X'st 2 4 1-4 1775.07-1776.5 1073  3/3
94KaHiTa [215] Al X!Tt 1 0 1-57 39342-4163.8 1072 153/155
Alll X'zt 2 0 3-67 3970.7-4812.03 1072 199/200
Al X'st 3 0 3-58 5168.02-5452.4 1072 128/128
AT X'st 0 1 8-38 2648.6-39342 102 87/87
AT X't 2 1 11-32 4794.5-4812.03 102 24/26
94MuRiPf [216] a3 X!Tt 0 1 0-16 17754-1851.3 1073 12/12
Alll X'zt 0 2 0-15 1961.8-1967.03 103  9/9
91IpCrFi [213] B!zt a1 0 0 1-46 17378.3-27256.1 1073 326/328
BIZt a31 0 1 0-49 16734.7-16979.1 1073 147/149
91CiHeBI [214] X!zt X!zt 1 0 2-32 733 - 805.6 1073 15/15
X1yt X1yt 2 1 7-28 73843-791.73 1073 7/7
86ToHo [212] Xyt X!zt 0 0 1-8 2.28-9.16 10°¢ 373
Xyt X!yt 11 1-8 2.26 -9.06 107 33
Xyt xlyt 2 2 2-8 3.36 - 8.97 1076 212
84StAzCa [211] X!'¥t X!'st 0 0 0-1 1.14 1075 1/1
Xyt X!zt 11 0-2 1.13-2.27 1075 212
84AzDyGe [210] B!t X!zt 0 0 0-40 19971.3-20062.5 1073 72/75
Blxt X1zt 1 1 0-56 20007.8-20066.7 1073 59/62
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Table 3.4: Experimental data for MgO considered but not used in this analysis.

Source States Reason for exclusion

22LiMal.i [218] - No line measurements
21BaQiLi [219] No line measurements
20BaQulLi [220] - No line measurements
18Bauschlicher [221] - No line measurements
17BaSc [222] - No line measurements
12StPeRa [223] B!rt-X Izt No line measurements

10MaBeYa [224]
06WaBr [34]
04WaVaBe [33]
04SoBolev [225]
03BeBuVa [226]
02DaDrAb [227]
01DrDaAb [228]
01KiLiWa [229]
98SaWhKa [200]
94GeHaTa [230]
91BoRo [231]
91IpCrFi [213]
89Matsui [232]
88Yarkony [233]
80BaSiYa [234]
78PaBaDo [235]
771kWoHa [236]
76AnBoPe [237]
76ScGa [238]
73Singh.b [239]
73Singh.a [240]
71MaVoCh [241]
71Singh [242]
65TrEwxx [243]
62Nicholls [244]
62BrTrBe [245]
49LaUh [246]
32Mohanti [247]
30GhMaMu [248]

X1yt Elxt X Ixt-FIIL, X 12+-G 11

X1yt Elxt

X1zt F I

Blyt-X!lxt Blxt-A Tl

B!xt-Alll

X1zt x 1zt

dPAy-A T, d3A-a TT
D'A-a’l

Blxt-X!yx*t Blxt-Alll
Blxt-X !yt Blxt-Alll
E!Xxt-AIT

G 'TI-X '+, G 'TI-A 'T1
FIII- X 2+

E'rt-X 1zt

D 'A-A'TT

B!rt-X !zt Blxt-Alll
Clxz—-A'lll

No line measurements
higher electronic states
higher electronic state
No line measurements
higher electronic state
No line measurements
no lines measurements
No line measurements
two lines from 86 ToHo
No line measurements
higher electronic state
higher electronic state
No line measurements
No line measurements
No line measurements
No line measurements
not very accurate data
higher electronic state
No line measurements
higher electronic state
higher electronic state
No line measurements
higher electronic state
higher electronic state
No line measurements
higher electronic state
No line measurements
Band heads only

Band heads only
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3.5 Uncertainties

The uncertainties for the MARVEL energy levels are illustrated in Figure 3.1. They
were derived solely from the input transition uncertainties, resulting in an average

value of 0.02 cm™!

across the four electronic states, without the bootstrap method.
The input line position uncertainties were either taken as given in the individual
sources, or manipulated so that they create a consistent energy level network as
described in subsection 2.2.3. Details on the uncertainties used for every source
are in section 3.4. However, applying the bootstrap method increased the average

MARVEL energy uncertainty to 0.07 cm™!.

For variationally calculated levels, the uncertainties are estimated assuming
that the errors grow linearly with vibrational excitation but quadratically with rota-
tional excitation; these assumptions are in accordance with our previous experience
for a variety of species, as first adopted in [155]. We therefore estimate the uncer-

tainties using the expression:

Abc,=a-v+b-J(J+1)+c, 3.7

where a, b and ¢ are constants in units of cm~!. This functional form is an empirical
model chosen to reflect the observed increase in variational errors with increasing
vibrational and rotational excitation. The initial minimum uncertainty determined
for each electronic state is denoted by ¢, while a and b quantify the uncertainty
scales for the vibrational v and rotational J(J + 1) parameters, respectively. Here,
we adopted values of a = 0.0001 cm~ ! and » =0.01 cm™! for all electronic states,
¢=0cm™! for the ground state, and ¢ = 0.01 cm~! for all excited electronic states
to estimate the uncertainties, with a maximum cutoff of 10 cm™!. Unfortunately,
due to a lack of experimental data for the b >XF state we have little information to
base the uncertainties of the energy levels in this state on; we estimated an uncer-

tainty of 10 cm™! for all energy levels in this state.

The availability of high-quality experimental data allows an assessment of the

accuracy of the spectroscopic model for 2*Mg!60 in [148] and thus improves the
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quality of our predicted uncertainties. For the four lowest-lying electronic states
we find a high accuracy, with an average error of 0.029 cm~! and maximum value
0.2 cm~! within the states for which we had experimental data and applied the PS
method (see Table 3.1 for J and v ranges). For all other cases, the errors exceed this
value. For calculated levels, the errors are within 2 cm~! for J values up to 140 and

increase to a maximum of 10 cm~! for the highest J values (J > 300).

3.6 Predicted shift energy levels

The predicted shift methodology has been previously employed in the construction
of high-resolution line lists for AlO [249] and VO [169]. We also applied the PS

method in this work to update calculated energy levels.

As is common with variational line lists, our computed levels extend to higher
total angular momentum quantum numbers J than available experimental obser-
vations, and incomplete experimental data within this J range necessitate further
adjustment. For the unobserved rotational states we interpolated by fitting to the
obs. — calc. trends in a given spin-orbit and parity component of a vibronic state,
defined by the electronic state, vibrational quantum number v, Q and rotationless
parity, and predicting synthetic obs. — calc. values for the missing levels. Specif-
ically, for 2*Mg!%0 this trend was captured by fitting the obs. — calc. values as a
function of J(J + 1), either using a single linear fit or, when necessary, two separate
linear segments to better represent the observed behaviour (see Figure 3.2). The
apparent discontinuity in Figure 3.2 near J = 15 arises because low-J levels were
partially constrained by experimental data incorporated into the potential energy

surface by Li et al. [148], resulting in smaller obs. — calc. residuals in this region.

Energy shifts were also estimated conservatively for levels beyond the ob-
served J range by extrapolating up to the highest J value included in the variational
calculations. Similarly, this approach enables the estimation of energy levels at
lower J values than those detected experimentally, which is particularly valuable

when low-J transitions form dense band heads, making their assignment challeng-
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Figure 3.2: The predicted shifts (updated- calculated energy) for the X 'X*, v = 1 state of
X '2* as a function of the J(J + 1) quantum number. The fitting was done using
two linear segments. The blue points correspond to real obs. — calc. values and
the red to PS.

ing. For the extrapolation to higher J, the predicted shifts were calculated as the
mean of the last 10 obs. — calc. values within the observed range. Likewise, for ex-
trapolation to lower J when necessary, we used the mean of the first 10 obs. — calc.

values.

The uncertainties for PS levels for every state within the J range for which
we have experimental data were calculated the same way as the energy values, as
a fit of the MARVEL uncertainties. When extrapolating to lower J values, the PS
level uncertainties were estimated to be simply equal to the standard deviation o of
the obs. — calc. Outside this range, the PS energy uncertainties were estimated as a
function of the standard deviation of the known obs. — calc. data point in the band,
o. This o value was used as a starting minimum uncertainty for the extrapolation;
uncertainties were scaled for a level based on how much larger its J value was than
the maximum J that occurred for the MARVEL data in that band, J¥2 . Taking Jex

=J —JM2 the following equation was used:

AEps = a-Jext(Jext +1) + 0, (3.8)
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Figure 3.3: The updated MARVEL (Ma) and predicted shift (PS) energies for the X 'XF,
A 'TI, a°T1, B 'Z7 electronic states of 2*Mg'®O as a function of the J quantum
number. The ‘0’ symbol indicates f parity and the ‘+’ symbol indicates e parity.

where a and Epg are determined for each individual molecule. Where necessary,
the uncertainties were extrapolated using a = 0.0001 cm~! (see Equation 3.8) and

a maximum cutoff for AEpg of 10 cm™!.

The interpolation and extrapolation of
predicted energy levels from the MARVEL energies to other rotational levels of the
same vibronic state is visualised most clearly in Figure 3.3. For example, for the
case of B 'Z7 electronic state with Q = 0 and v = 1 the observed data range from
J =0to J = 31. By calculating the predicted shifts we estimate the obs. — calc. of
the missing levels as shown in the Figure 3.4. For levels of J > 31, we calculated
a predicted shift of -0.0235 cm~!. In the case of a *II electronic state with v = 1
and Q = 0 we only had experimental data and, hence, MARVEL energies for the e

parity. For this case, we applied the predicted shifts of the e parity to the energies

of the f parity, for which we lacked empirical energies.
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Figure 3.4: The predicted shifts (updated- calculated energy) for the B X%, v = 1 state of
B !T* as a function of the J(J + 1) quantum number. The blue points corre-
spond to real obs. — calc. values and the red to PS.

3.7 Isotopologue-extrapolation energy levels

The isotopologue-extrapolation (IE) method is a very effective way to provide im-
proved accuracy for isotopologue spectra as outlined in subsection 2.2.4. This
method is grounded in the well-established understanding of how nuclear mass in-
fluences vibrational energy levels, combined with the assumption that, to a high
degree of approximation, the potential energy surface remains the same across iso-
topologues. The IE method has been used in several works [149, 249-260] in order
to improve the accuracy of variational calculations for several important isotopo-

logues.

The line lists for the **Mg!'’0, **Mg'80, ®Mg'°0 and *Mg!%0 isotopo-
logues were updated in this work, using the isotopologue extrapolation (IE) cor-
rection methodology according to the Equation 2.9. For the energy levels of the
main isotopologue 2*Mg!®0 which were updated either with a MARVEL energy
(Ma) or with the predicted shifts (PS), we updated the respective level of the other

four isotopologues applying the same final pseudo-experimental correction.

In total, 7017 energy levels were updated for each of the five isotopologues
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i E go J unc g Dijm Pess State v A X Q Label Eca

10000000 6 0 0.000000 0.000000 + e X(ISIGMA+) 0 0 0 0 IE  0.000000
638 1125503 18 1 0.000100 0.000000 - e X(ISIGMA+) 0 0 0 0 IE  1.125759
1025 3377053 30 2 0.000142 0.000000 + e X(ISIGMA+) 0 0 0 0 IE 3377247
2290 6754304 42 3 0.000173 0.000000 - e X(ISIGMA+) 0 0 0 0 IE 6754408
2739 11.256836 54 4 0.015880 0.000000 + e X({ISIGMA+) 0 0 0 0 IE 11.257156
4004 16.885036 66 5 0.016980 0.000000 - e X({SIGMA+) 0 0 0 0 IE 16.885375
4453 23.641140 78 6 0.034200 0.000000 + e X(ISIGMA+) 0 0 0 0 IE  23.638924
5718 31517369 90 7 0.035000 0.000000 - e X(ISIGMA+) 0 0 0 0 IE 31.517628
6167 40.521272 102 8 0.041600 0.000000 + e X(ISIGMA+) 0 0 0 0 IE  40.521289
7432 50.643556 114 9 0.047800 0.000000 - e X(ISIGMA+) 0 0 0 0 IE  50.649676
7881 61.897073 126 10 0.054400 0.000000 + e X(ISIGMA+) 0 0 0 0 IE  61.902532
9146 74.277525 138 11 0.060000 0.000000 - e X(ISIGMA+) 0 0 0 0 IE  74.279569

Table 3.6: An extract of the final . states file for **Mg!’0

i E go unc & DP+/— DPejf State v A X Q Label Eca

10000000 6 0 0.000000 0.000000 + e X(ISIGMA+) 0 0 0 0 IE  0.000000
643 1103342 18 1 0.000100 0.000000 - e X(ISIGMA+) 0 0 0 0 IE  1.103598
1033 3310571 30 2 0.000142 0.000000 + e X(ISIGMA+) 0 0 0 0 IE 3310765
2307  6.621344 42 3 0.000173 0.000000 - e X(SIGMA+) 0 0 0 0 IE  6.621448
2759 11.035243 54 4 0.015880 0.000000 + e X(ISIGMA+) 0 0 0 0 IE  11.035563
4033 16.552661 66 5 0.016980 0.000000 - e X(ISIGMA+¥) 0 0 0 0 IE 16.553000
4485 23.175837 78 6 0.034200 0.000000 + e X(ISIGMA+) 0 0 0 0 IE 23173621
5759 30.897003 90 7 0.035000 0.000000 - e X(ISIGMA+) 0 0 0 0 IE  30.897262
6211 39.723712 102 8 0.041600 0.000000 + e X(ISIGMA+) 0 0 0 0 IE  39.723729
7485 49.646681 114 9 0.047800 0.000000 - e X({ISIGMA+) 0 0 0 0 IE  49.652801
7937 60.678773 126 10 0.054400 0.000000 + e X(ISIGMA¥) 0 0 0 0 IE  60.684232
9211 72.815701 138 11 0.060000 0.000000 - e X(ISIGMA+) 0 0 0 0 IE 72817745

for the four lowest electronic states using the IE method. The energy uncertain-

ties for the four isotopologues were estimated as twice the uncertainty of the main

isotopologue. For the cases without matches to the main (labelled as Ca in the

.states file), Equation 3.7 was used with a maximum cutoff of 10 cm™

1 and

with a = 0.0001 cm~! 5=0.01 cm~! for all electronic states, and ¢ as the average

shift for each electronic state. Tables 3.5 to 3.8 contain extracts of the states files

for the isotopologues.

Table 3.7: An extract of the final . states file for 2*Mg!80.

i E go 7 unc g DPij— DPely State v A X Q Label Ec,

1 0.000000 1 0 0.000000 0.000000 + e X(ISIGMA+) 0 0 0 O 1IE 0.000000
649  1.067541 3 1 0.000100 0.000000 - e X(ISIGMA+) 0 0 0 O 1E 1.067797
1043 3.203171 5 2 0.000142 0.000000 + e X(ISIGMA+) 0 0 0 O 1IE 3.203365
2327  6.406549 7 3 0.000173 0.000000 - e X(ISIGMA+) 0 0 0 O IE 6.406653
2783 10.677263 9 4 0.015880 0.000000 + e X(ISIGMA+) 0 0 0 O IE 10.677583
4067 16.015714 11 5 0.016980 0.000000 - e X(ISIGMA+) 0 0 0 O 1IE 16.016053
4523 22424148 13 6 0.034200 0.000000 + e X(ISIGMA+) 0 0 0 O IE 22421932
5807 29.894808 15 7 0.035000 0.000000 - e X(ISIGMA+) 0 0 0 O IE  29.895067
6263 38.435260 17 8 0.041600 0.000000 + e X(ISIGMA+) 0 0 0 O IE  38.435277
7547 48.036236 19 9 0.047800 0.000000 - e X(ISIGMA+) 0 0 0 O IE  48.042356
8003 58.710613 21 10 0.054400 0.000000 + e X(ISIGMA+) 0 0 0 O IE  58.716072
9287 70.454122 23 11 0.060000 0.000000 - e X(ISIGMA+) 0 0 0 O IE  70.456166
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Table 3.8: An extract of the final . states file for 2°Mg!%0.

i E go J unc g Pijo Pesy State v A X Q Label Eca

1 0.000000 1 0 0.000000 0.000000 + e X(ISIGMA+) 0 0 O O IE 0.000000

643 1.108687 3 1 0.000100 0.000000 - e X(ISIGMA+) 0 0 O O IE 1.108943
1033 3.326606 5 2 0.000142 0.000000 + e X(ISIGMA+) 0 0 O O IE 3.326800
2306  6.653412 7 3 0.000173 0.000000 - e X(ISIGMA+) 0 0 O O IE 6.653516
2757 11.088688 9 4 0.015880 0.000000 + e X(ISIGMA+) 0 0 O O 1IE 11.089008
4030 16.632825 11 5 0.016980 0.000000 - e X(ISIGMA+) 0 0 O O 1IE 16.633164
4481 23.288062 13 6 0.034200 0.000000 + e X(ISIGMA+) 0 0 O O IE 23.285846
5753 31.046626 15 7 0.035000 0.000000 - e X(ISIGMA+) 0 0 O O IE 31.046885
6204 39.916072 17 8 0.041600 0.000000 + e X(ISIGMA+) 0 0 O O 1IE 39.916089
7472 49.887114 19 9 0.047800 0.000000 - e X(ISIGMA+) 0 0 O O IE 49.893234
7921 60.972610 21 10 0.054400 0.000000 + e X(ISIGMA+) 0 0 O O IE 60.978069
9186 73.168273 23 11 0.060000 0.000000 - e X(ISIGMA+) 0 0 O O IE 73.170317

We directly verified the quality of our isotopologue-extrapolation correction
by comparing against available experimental data. Specifically, we assessed a small
part of the updated line lists for the isotopologues 2>Mg!®0 and 2°Mg!®0 for which
we found measured spectra recorded by Kagi et al. [215] and Torring et al. [212]:
Kagi et al. [215] recorded transitions in the A ITT — X >+ electronic band and
the vo —vx = 1 — 0 vibrational band with J = 6 —41 for 2Mg!®0 and J = 6 — 42
for 2°Mg!0, and Torring et al. [212] published six microwave transitions with

J =0—7 for 2Mg!%0 with v = 0.

26Mg160

For 2°Mg!®0 the average residues in positions against experiment for four rota-
tional X 'E*-X 12+ transitions are 1.2 x10~* cm~! without IE correction and
6.7x107% cm~! with IE correction, while for the rovibronic A 'TI-X !X * band,
the IE correction had a more modest reduction in errors from 0.027 cm~! to 0.021
cm~!. The experimental data mostly agreed with our line list energies within their

mutual estimated uncertainties.

25Mg160

Similar comparisons for >Mg!®0 rovibronic A 'TT =X '£7 transitions found that
for the P and Q branches, applying the IE correction led to a reduction in average

residual from 0.017 cm~! to 0.012 cm~!. However, the residuals associated with

1

the R branch transition were notably larger (0.05 cm™ " average) and did not signif-
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icantly change with applying the IE correction; the likely cause of this difference is

incorrect assignments of the experimental data.

3.8 Outlook

The LiTY line list [148] for 2*Mg!'®0 was updated by incorporating 820 MAR-
VEL (Ma), 6197 predicted shift (PS) energy levels into the line list, with 179 825
variationally calculated (Ca) energy levels retained for vibronic levels without any
experimental data. 21.4% of the transitions between the MARVEL energy levels
have a resolving power R = A /AA larger than 100000. These transitions are now
available in the new ExoMolHR database [180]. The distribution of energy levels
within each electronic state depending on their source is shown in Figure 3.5. A
consistent pattern is observed across most molecules, where the MARVEL energy
levels primarily focus on the low-lying rovibronic states within each electronic state,

complemented by the predicted shifts (PS) and the calculated levels.

The . trans files for all isotopologues were cleaned to remove negative tran-
sition frequencies. Specifically, 92, 136, 139, 131, and 127 transitions were re-
moved for the 2*Mg!%0 2*Mg!70, **Mg'®0, *Mg!®0 and 2°Mg!®0 isotopo-
logues, respectively. The . states files for the >*Mg!’0, ?*Mg!30, ’Mg!%0 and
26Mg!®0 isotopologues were updated using the isotopologue extrapolation (IE) cor-
rection methodology. Due to lack of experimental data, we verified a small portion
of the lines for the two isotopologues 2Mg!%0 and 2°Mg!®0.

The transition source type plot for MgO is shown in Figure 3.6. This peak in

Ma and PS involved transitions near 10~ 18/19

is atypical and indicates that some of
the weaker spectral bands have been more heavily studied than the spectral band
that is strongest at 2000 K. The MARVEL data for this molecule is reasonably mod-
est with the predicted shift data crucial for dramatically extending the number of

transitions whose wavenumbers are known to reasonably high accuracy.

The absorption cross section between the several electronic bands computed at

2000 K is illustrated in Figure 3.7. The strongest transitions around 2000 cm~! or
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Figure 3.5: The energy distribution for the rovibronic states of >*Mg'®0O as a function of
energy source type in each electronic state.

500 nm are the B !X - X X band, but the hot band B !XT - A 1T transition dom-
inates for most of the visible spectra with the A 'TT - X '* transition dominating
the near IR region. The spin forbidden B 'X* - a 3II band displays significant in-
tensity due to a 3IT - A 'TI spin-orbit coupling that mixes their wavefunctions. The
experimentally unobserved band b >~ *-a 3IT is confirmed to be less intense than the

rovibronic A 'TI - X X% manifold across the full spectral region.

The high-resolution and total cross-section of MgO is shown in Figure 3.8 at
2000 K. In spectral regions where the MARVEL and total cross-sections overlap,
then the line list is very suitable for high-resolution cross-correlation (HRCC). In
the case of MgO, due to the limited experimental data, this region is very small (a
few narrow windows between around 1.9 and 3 pm, and between 0.64 - 0.7 um). In
the absence of perturbations, predicted shift may be sufficiently reliable for HRCC
especially for high signal-to-noise observations; in this case, the suitable spectral
windows for HRCC in MgO extend to approximately 0.58 - 0.7 ym and 1.9 to 10
um). Comparing with Figure 3.9 we see that in cooler temperatures the line list is
potentially more suitable for high-resolution studies as the overlap becomes slightly

larger.
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Figure 3.6: The transition source type for 2*Mg!®0 , i.e. the cumulative density of transi-
tions as a function of intensity depending on energy source type, computed at
2000 K using the program EXOCROSS [8]. Colours indicate the source type of
the transition, defined by the pair of energy-level origins (calculated, MARVEL,
or predicted shifts), irrespective of whether a given label refers to the upper or
lower level.
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Figure 3.7: The **Mg'®0 absorption cross section computed at 2000 K using the pro-
gram EXOCROSS [8] with Gaussian line profiles of 1.0 cm ™! half-width half-
maximum. The black cross section shows all transitions in the line list with
decomposition into dominant electronic bands.
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Figure 3.8: The **Mg'®0 absorption cross section computed at 2000 K using the pro-
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gram EXOCROSS [8] with Gaussian line profiles of 1.0 cm~! half-width half-
maximum. The black cross section shows all transitions in the line list, whereas
the orange cross section shows only MARVEL (Ma) experimental transitions
(with variational intensities), and the blue cross section shows all possible tran-
sitions between MARVEL (Ma) and predicted shift (PS) energy levels (with
variational intensities).
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Figure 3.9: The 2*Mg'%0 absorption cross section computed at 296 K using the pro-

gram EXOCROSS [8] with Gaussian line profiles of 1.0 cm ™! half-width half-
maximum. The black cross section shows all transitions in the line list, whereas
the orange cross section shows only MARVEL (Ma) experimental transitions
(with variational intensities), and the blue cross section shows all possible tran-
sitions between MARVEL (Ma) and predicted shift (PS) energy levels (with
variational intensities).



3.8. Outlook 95

The PS methodology used in this work enabled the extrapolation of experi-
mental data to higher J values, offering a potentially reliable approach for HRCC
detections of MgO. While the experimental data available were limited to small
rotational quantum numbers, higher-resolution data for the four lowest electronic
states of MgO are essential for more robust searches. Furthermore, Predicted shift
methodology is only feasible if some rotational states of a given vibronic level are
known. Data for the v =2,3 B 'L+ state, as well as for any levels of the b 3£+ elec-
tronic states, would significantly enhance the analysis. As illustrated in Figures 3.6
and 3.8, acquiring such data is a high priority for advancing high-resolution cross-

correlation techniques.



Chapter 4

Titanium Oxide

4.1 Motivation

An accurate molecular line list for titanium oxide (TiO) is essential for constraining
titanium abundances in low-temperature environments (< 4000 K), where titanium
is primarily bound in titanium oxide (TiO) molecules [251, 261-263]. TiO absorp-
tion features dominate the spectral optical and near-infrared regions [149]. This
makes TiO line lists useful for probing features of several objects, including M
dwarfs [264, 265], cool giant stars [266—269], and protostars [270-272]. In addi-
tion, numerous studies have investigated the presence of TiO in the atmospheres of
hot Jupiters, with tentative detections reported in several cases. Evidence of TiO
has been tentatively observed on planets such as WASP-69 b [273], WASP-33 b
[274-276], HAT-P-41b [277, 278], WASP-127b [279], HD 209458b [280, 281],
and WASP-12b [282]. However, subsequent studies have failed to confirm TiO
in WASP-12b [283, 284]. For WASP-19b, a probable detection has been reported
[285], but other studies have not confirmed its presence [286, 287]. It is generally
accepted to also be present on the atmosphere of WASP-189 b [288, 289] and has
not been detected in WASP-121b after initial evidence of its presence [290], fol-
lowed by studies that suggest depletion of Ti-bearing species via a cold-trap mech-

anism [291-297].

The presence of TiO and vanadium oxide (VO) in these planets’ atmospheres
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is thought to increase the optical opaciy at high altitudes (low pressures) and to sub-
sequently contribute to the formation of temperature inversions [298, 299], where
the upper atmosphere is hotter than the lower atmosphere. The first evidence of
such thermal inversions was observed by Richardson et al. [300] for HD 209458b
and by Harrington et al. [301] for HD 149026b. The two molecules are expected
to exist in significant quantities at temperatures exceeding ~ 1400 K, creating two
distinct regimes in which hot Jupiter atmospheres can be classified [299, 302, 303]:
those hot enough to retain TiO and VO in the gas phase and develop temperature
inversions, and those cooler where these species condense out, preventing inver-
sions from forming. Accurately quantifying TiO abundance is essential for under-
standing atmospheric dynamics in hot Jupiters, requiring high-accuracy and high-
completeness spectral data for reliable detection and precise measurement across
different exoplanetary atmospheres [302]. Given the ongoing controversy surround-
ing TiO detections in some hot Jupiters [276], ensuring the completeness and accu-

racy of TiO spectral data is critical for robustly assessing modeling results.

Various TiO line lists have been developed [149, 304-309]. The ExoMol TiO
line list, Toto, was published by McKemmish et al. [149] and contained 301 245 Ca
(variational DUO) and 17 802 Ma (experimentally-derived MARVEL) energy levels
for the electronic states X 3A, a 1A, d '=, E3T1, A 3@, b !T1, B °T1, C %A, ¢ 1@, f 1A,
e !X*. Pavlenko et al. [251] assessed the Toto line list and found that it provides a
more accurate representation of M-dwarf spectra compared to other available TiO
line lists. It effectively captures the fine details in line positions and intensities,
reproduces the observed band heads of TiO isotopologues, and can be used to de-
termine Ti isotope abundances in M-star atmospheres. However, as pointed out by
Hoeijmakers et al. [103] it is important to keep improving the accuracy of the line

list to spectral resolutions equal or better than ~ 100 000.

In mid-2021, the Toto line list for TiO was updated to correct an oversight in
the original 2019 release in which the a 'A and e 'Z " electronic states were initially
not MARVELised. This 2021 update replaced the original DUO variational energy

levels with experimentally-derived MARVEL energy levels for 660 energy levels in
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the a ' A state and 98 energy levels of the e ! 2T state. This update improved the high-
resolution accuracy of the line list, particularly in the spectral regions dominated by
transitions involving these states, particularly 2000 — 2500 cm~! (4 — 5 um), 3000
—3500 cm~! (2.8 — 3.3 um), 9000 — 9500 cm™! (1.05 — 1.10 um), 10000 — 10 500
cm™! (0.95-1.00 um), 11000 — 11500 cm~! (0.87 — 0.91 um).

Here, I report on updates to the Toto line list for all isotopologues. The 2021
update is superseded by the 2024 update which was published by McKemmish et
al. [1]. Specifically, in this 2024 TiO update, we construct a hybridised line list by
combining the calculated variational DUO energy levels (Ca) from the 2019 Toto
spectroscopic model [149], an updated MARVEL compilation (Ma) and new pre-
dicted shift energy levels (PS). This update also provides uncertainty estimates for
all energies, which were not present in the original 2019 line list. The spectroscopic

model for TiO has not been refit for this update.

4.2 Quantum numbers and selection rules

Titanium oxide is a heteronuclear diatomic molecule, and its energy-level structure
is described using the same set of quantum numbers and conventions as for MgO
(see section 3.2). The primary difference is the open-shell character of TiO and the

larger number of low-lying electronic states relevant to this work.

The ground electronic state of TiO is the open-shell triplet X 3A. The elec-
tronically excited states considered here include the singlet states a A, d '3t
b 11, ¢ ', f A, and e ', as well as the triplet states A 3®, B31L, C 3A, and
E 3T1. The electronic angular momentum projection quantum number takes the val-
ues A=0,1,2, and 3 for X, I, A, and P states, respectively. All remaining quantum
numbers, parity conventions, and electric—dipole selection rules for TiO are identi-
cal to those described for MgO in section 3.2. So, the quantum numbers used for
BTi160 are the electronic state, the vibrational number v, the rotational quantum

number J, and the projection of the total electronic angular momentum €.



4.3. 2024 MARVEL update 99

4.3 2024 MARVEL update

The MARVEL energy levels of “®Ti'®0O were first compiled by McKemmish et
al. [310] and were used to update the 2019 Toto line list [149]. We performed an
update on the MARVEL energies using MARVEL4.1 [195] by expanding the TiO
MARVEL dataset to incorporate new experimental data for the E 3IT — X 3A [311]
(659 transitions, all validated) and B 3IT — X 3A bands [312] (5506 transitions, all
validated), as well as new experimental transitions for the X 3A rovibrational band
were included from 19BrWaTu [313] (16 transitions, all validated) and 21WiBrDo
[314] (514 transitions, all validated). For details on the experimental sources, see

Table 4.1.

In cases of inconsistencies in the network, the newer data was preferred, and
inconsistent older data were removed from the final spectroscopic network. Most
notably, 179 lines from the 73Phillips [315] data were invalidated, which were pre-

viously found to be unreliable [310].

The scope of the data used is summarised in Table 4.2. The most significant
difference from the 2019 MARVEL dataset is that B 3T1, v = 2 lines are available for
the first time; there has also been a significant increase in the J range of data for the
E 3IT and B >I1 states as expected. Furthermore, 515 out of 517 lines by Kobayashi
et al. [316] and Simard et al. [317] in the band E 3IT — X 3A with unresolved
upper state parities were assigned e and f parities using the MARVEL energy levels.
No significant changes in the X 3A state were identified. Both the 2019 and 2024

compilations consider 11 electronic states and the same set of vibronic levels.

In addition to the MARVEL update, the predicted shifts methodology was fol-
lowed to fill gaps in observations and to estimate the energy residuals for the miss-
ing states, as well as to calculate extrapolated predicted shift uncertainties, as de-
scribed in subsection 2.2.5. The MARVEL energies and the predicted shift levels
with respect to the rotational quantum number J are shown in Figure 4.1 for the 11

electronic states included in this analysis.

In addition, the .states files for the *°Ti'®0Q, 4’Ti'®0, *Ti'®0, and °Ti'®0O
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Figure 4.1: The updated MARVEL (Ma) and predicted shift (PS) energies for the lowest
electronic states of **Ti'®0 as a function of the J quantum number. Blue and
magenta points indicate the “Ma” energies of e and f parity, respectively. Green
and yellow points indicate the “PS” energies of e and f parity, respectively.

isotopologues were updated using the isotopologue extrapolation (IE) correction

methodology, as outlined in subsection 2.2.4.

This analysis, as well as the details on the hybridisation of the line list are not
part of this thesis as they were conducted by colleagues and co-authors Dr. Charles

A. Bowesman and Armando N. Perri.

4.4 Uncertainties

We use MARVEL4.1 to produce the MARVEL energy uncertainties shown in Fig-
ure 4.2. MARVEL4.1 allows for the uncertainties in the energies to be calculated

using a bootstrapping approach, as described by Tennyson et al. [195].

This method accounts for inconsistencies between multiple transitions to or

from a given level by applying an increase to the level’s final uncertainty. Accord-
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Table 4.1: Experimental data for TiO used in our analysis. State’: Upper electronic state,
State”: Lower electronic state, v’:upper state vibrational quantum number, v’
lower state vibrational quantum number, wavelength range and mean line posi-
tion uncertainty given in cm~!, V/A: number of validated experimental transi-
tions/total number of transitions.

Wavelength

Mean

Source State’ State” v’ V" J range V/A
range Unc.
20BeCaxx E3T X3A 0 0 13-61 11682.9 - 5-1072 659/659
[311] 11854.0
21CaBexx B3I X3A 0 0 0-102  15711.7 - 5-1072 1752/1752
16233.2
[312] B3I X3A 1 0 0-161  16326.1 - 5.1072 1862/1862
17096.4
B3Il X3A 0 160 16773.8 51072 /1
B3Il X3A 1 0-130 16385.5- 5-1072 1891/1891
16958.0
19BrWaFu X3A X3A 0 0 7-12 2532290- 3-107! 14/14
384151.1
[313] X3A X3A 11 8-10 286512.7 - 1-107! 2/2
318333.0
21WiBrDo X3A X3A 1 0 1-33 971.2-1031.8 5-107* 207/207
[314] X3A X3A 2 1 1-38 971.8-1026.9 5-10~% 176/176
X3A X3A 3 2 1-34 971.8-1013.6 5-107* 89/89
X3A X3A 4 3 4-30 977.5-1000.8 5.-10~* 42/42

ingly, the uncertainties in the MARVEL energy levels present in the 2024 update

that were also present in the 2019 data set have uncertainties on average 14% larger.

These uncertainty changes have a large standard deviation of 87% however, with

uncertainties in the extreme cases being up to 200 times smaller or 50 times larger

in the 2024 MARVEL data. These uncertainties are incorporated into the 2024 TiO

line list update for the MARVELised energy levels.

4.5 Outlook

The Toto MARVEL compilation [149] was updated by including measured transi-

tions from four new sources for the X 3A rovibrational, B 3IT — X 3A and E 3I1
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Table 4.2: Overview of the 2024 TiO MARVEL energy levels (EL) and comparison against

DUO variational energy levels (|[Ma — Cal) incm™".

1

State v range J range EL range #ELs
Uncrange  Avg. Unc |Ma—Cal|range Mean |Ma— Ca|
X 3A 0-5 1-162 0- 14878 5000
0.0000 - 7.92 0.40 0.0000 - 5.50 0.19
LA 0-3 2-100 3446 - 8978 638
0.0215 - 2.02 0.12 0.0001 - 7.45 0.12
dlst 0-5 0-92 5661 - 12259 402
0.0273 - 0.36 0.06 0.0002 - 0.28 0.05
K 0-1 0-61 11838 - 13969 386
0.0100 - 0.10 0.04 0.0022 - 1.82 0.69
A3D 0-5 2-163 14021 - 28825 5152
0.0002 - 8.06 0.48 0.0000 - 3.19 0.36
b I 0-4 1-100 14717 - 20507 806
0.0245 - 1.20 0.08 0.0002 - 1.05 0.15
B3I 0-2 0-148 16224 - 27727 2275
0.0080 - 3.62 0.16 0.0011 - 68.2 4.25
C3A 0-7 1-158 19341 - 31462 4756
0.0010 - 6.32 0.28 0.0001 - 11.1 0.50
S 0-3 3-101 21290 - 26685 608
0.0245 - 2.31 0.13 0.0001 - 8.27 0.20
FIA 0-2 2-72 22515 - 25321 302
0.0245 - 0.15 0.05 0.0004 - 0.63 0.08
Iy+ 0-1 1-59 29960 - 32515 98
e
0.0582-0.11 0.07 0.0107 - 3.57 0.77
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Table 4.3: A part of the final . states file for ¥*Ti'®0.
i E gt J unc T 8 Py/— DPe/f State v A X Q Label Eca
1 5661.898155 1 0 0.041180 7.6104E+03 0.000000 + e d(1SIGMA+) 0 0 0 O Ma 5661.946212
2 6675291935 1 0 0.042330 2.9150E-02 0.000000 + e d(1SIGMA+) 1 0 0 O Ma 6675.201129
3 7678749695 1 0 0.050790 1.4712E-02 0.000000 + e d(1SIGMA+) 2 0 0 O Ma 7678.740969
4 8672.576682 1 0 0.045563 9.9027E-03 0.000000 + e d(1SIGMA+) 3 0 0 O PS 8672.544044
5 9656.625935 1 0 0.055780 7.5003E-03 0.000000 + e d(1SIGMA+) 4 0 0 O Ma 9656.588560
6 10630.952776 1 0 0.050239 6.0608E-03 0.000000 + e d(ISIGMA+) 5 0 0 O PS 10630.852666
7 11595.314399 1 0 0.365317 5.1027E-03 0.000000 + e d(1SIGMA+) 6 0 0 O Ca 11595.314399
8 11838.204653 1 0 0.010000 3.7253E-06 0.000000 + e E(3P) 01-10 Ma 11839.872151
9 12293.863078 1 0 4.684229 3.5418E-01 0.000000 + e D@3SIGMA-) 0 0 0 O Ca 12293.863078
10 12549.951692 1 0 0.415317 4.4199E-03 0.000000 + e d(1SIGMA+) 7 0 0 O Ca 12549.951692
11 12751.138832 1 0 0.016147 3.6251E-06 0.000000 + e E@PD) 11-10 PS 12752.897046
12 13268.347028 1 0 4.734229 1.4200E-01 0.000000 + e DBSIGMA-) 1 0 0 O Ca 13268.347028

it State counting number

E: Energy (incm™1)
gior: Total degeneracy

J: Total angular momentum

unc (AE): Uncertainty (in cm™!)

T: Lifetime (in s; calculated in EXOCROSS [8])
g: Lande g-factor
P4/ Total parity
Pe/ s+ Kronig rotationless parity
State: Electronic state
v: Vibrational quantum number
A: Projection of electronic orbital angular momentum on the internuclear axis

X: Projection of electronic spin angular momentum on the internuclear axis

Q: Projection of the total angular momentum excluding nuclear spin along the internuclear axis
Label: Ma for experimental MARVEL energies, PS for energies from Predicted Shift method, Ca for unchanged calculated

energy by [149]

Ec,: DUO calculated energy by [149]
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Figure 4.2: The MARVEL (Ma) energy uncertainties for **Ti'®0 as a function of energy.
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Figure 4.3: The black cross section shows all transitions in the new 2024 Toto line list,
whereas the pink cross section shows only MARVEL (Ma) experimental transi-
tions (with variational intensities). The blue cross section shows the Ma — Ma
cross section produced from the 2021 Toto line list (with variational intensi-
ties).

— X 3A bands (see Table 4.1). This updated MARVEL data set was then used to
rehybridize the 2021 Toto line list for each isotopologue with novel predicted shift

calculations.

The 2024 TiO MARVEL compilation contains 12 164 energy levels from 61 509
validated (62 935 total) transitions compared to 2019 compilation of 10761 energy
levels from 51 547 validated (56 240 total) transitions. The updated states file also
includes 17001 predicted shifts (PS) energy levels and 263821 variationally calcu-
lated (Ca) energy levels. Part of the final states file is shown in Table 4.3. 31 %
of the transition between the Ma levels have resolving power larger than 100000.

These transitions are now available in the new ExoMolHR database [180].

Figure 4.3 shows the high-res vs total cross-section for **Ti'%0 with the new
2024 Toto line list, as well as the partial cross sections for transitions between
only MARVEL (Ma) states using the 2024 and 2021 Toto line lists. There is very
high MARVEL coverage for TiO between 450 nm - 1.5 um (6000 — 22000 cm ™)
(fig. 4.3). The high MARVEL coverage of the strong spectral lines for most of
the visible and near-IR region means a wide spectral window is possible for high-
resolution cross-correlation (HRCC) studies. This new update added experimental
data supporting HRCC between 590 and 630 nm (15870 — 16950 cm™!), which

corresponds to the B 3IT — X 3A rovibronic transitions. Possible improvements for
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the future could be in the 565 - 580 nm (17200 — 17700) cm ™! region, which would

require experimental data for transitions involving B 3IT, v = 3 levels.



Chapter 5

MARVEL project on Methane

5.1 Motivation

Methane ('>C'Hy) is the simplest stable hydrocarbon molecule, with wide-ranging
implications in atmospheric and astrophysical chemistry. Methane on Earth has bi-
ological, and geological origins. It is produced by methanogenic microorganisms
on wetlands as a metabolic byproduct [318]. A natural reservoir of methane exists
in the permafrost regions and beneath the oceans in the form of methane hydrates
[319, 320]. Methane is central in atmospheric chemistry, and its presence in the
atmosphere affects the planet’s temperature and climate system. The concentration
of methane in the troposphere has been increasing after a decade of constant value
[321-324] and annual increases in methane are accelerating [325], making it an im-
portant global warming species [326]. In particular, since the preindustrial era, the
tropospheric concentration of >’C'H, has more than doubled [327, 328]. Methane
also contributes substantially to tropospheric ozone production, which itself is a key

component to driving climate change [329].

Methane has been identified as the second anthropogenic greenhouse gas after
carbon dioxide [330, 331]. Its atmospheric lifetime is notably shorter than that of
carbon dioxide, primarily due to its reactivity with hydroxyl radicals (OH). Despite
that, it is a ~ 28 times more potent greenhouse gas over a 100-year period [328,

332], contributing significantly to heat-trapping in the atmosphere [330].
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Global methane emissions stem from a variety of human activities, surpass-
ing those originating from natural processes. In particular, about 60% of global
methane is derived from human activities [322]. These anthropogenic sources in-
clude emissions from agriculture, biomass burning, the gas and oil industry, large-
scale deforestation, industrial processes, combustion, and wastewater treatment. In
contrast, the number of natural methane sinks remains limited [333], and the pri-
mary methane sink is atmospheric oxidation from hydroxyl radicals [325]. It is
crucial to gain deeper insight into how methane is removed from the atmosphere
to evaluate ways to strengthen these natural processes and establish the scale of

removal needed.

At the same time, precise measurement and monitoring of methane concen-
trations are of paramount importance for researchers dedicated to combating cli-
mate change [327, 334], and of great complexity due to the diversity of methane
sources and the geographical disparity of emissions. Monitoring of '>C'Hy is typ-
ically achieved using infrared observations [335]. Instruments are generally based
on absorption optical techniques [323, 336]. Fourier Transform Infrared (FTIR)
spectroscopy [337, 338], Tunable Diode Laser Absorption Spectroscopy (TDLAS)
[22], Frequency Comb Spectroscopy [339], Cavity Ring Down Spectroscopy [340],
Correlation Spectroscopy [341], High Spectral Resolution Lidar [342] are some of
the main methodologies employed, and they use spectroscopy databases to obtain

accurate values for line strengths and line broadenings.

Methane’s role in atmospheric chemistry and climate impact is not limited to
Earth; methane is notably abundant within our Solar System [343]. Primarily found
on the outer planets, methane is prevalent in the atmospheres of Jupiter [344], Sat-
urn [345], Uranus [346], and Neptune [347]. It has also been detected on Venus
[348] and several moons, including Titan [349-351] and Triton [352-355], which
renders it invaluable for atmospheric analysis and modelling. In addition to these
celestial bodies, methane has sparked extensive debates regarding its presence and
significance on Mars [356-362], as well as its origin on the Martian surface [363]

and seasonal variations [364]. Moreover, it has been detected in some distant ob-



5.1. Motivation 113

jects like comets [365, 366] by flyby missions and ground observations, as well as

Pluto [367].

The primary focus and motivation for this study is the importance of methane
in the characterisation of extrasolar planets. It is one of the key absorbers in the
atmospheres of exoplanets and cool stars, and it is important for the study and clas-
sification of substellar objects (brown dwarfs) [368-370]. The quality of methane
line lists has been proven to be crucial for the atmospheric retrievals of such ob-
jects [122, 371]. Type T brown dwarfs are fundamentally defined by the presence
of methane, which dominates their infrared absorption spectra [372-374]. This
defining characteristic has even led to them being referred to as *'methane dwarfs’
[375]. The T brown dwarfs are distinguished from warmer types (L) by the strong
absorption signatures of methane in the NIR 1 — 2.5 um region [376-378]. This
is a direct consequence of thermochemical equilibrium; at temperatures below
~ 1500K, methane becomes the most stable carbon-bearing molecule, replacing
carbon monoxide (CO) as the dominant carrier of carbon [379]. This transition,
driven by the CH4 = CO equilibrium reaction, marks the shift from L to T dwarfs.
Consequently, measuring methane’s abundance is essential for determining the key
C/O ratio [380]. L dwarfs, in contrast, exhibit strong metal-hydride bands, promi-
nent neutral alkali absorption features, and weak or absent TiO and VO absorption
[381]. However, weak methane absorption features of the strong v3 band can been
observed in L dwarfs [382—-384], indicating the onset of this chemical transition at
the cooler end of the L-dwarf sequence. Methane is also dominant in the spectra of
Y dwarfs which have even lower temperatures (~ 300 — 500 K), and are character-
ized also by strong ammonia absorption features and condensation of H>O clouds

[385-387].

Substantial advances in exoplanet discovery have ignited a strong interest
within the scientific community to identify exoplanets that may be inhabited or
possess habitable conditions. High-resolution infrared spectroscopy (R > 100000)
is a crucial tool for understanding the chemical composition of the atmosphere of

such planets. Recognizing and detecting biosignatures is one of the main goals of
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researchers in this field. Methane is considered a biosignature for terrestrial planets
[388, 389], which means that it can be a very good indicator of the presence of life

beyond Earth, and maybe a sign of early Earth-like environments.

The gas giants known as hot Jupiters are expected to contain methane, along
with other molecules such as water and carbon monoxide [390]. In fact, after its
original detection in HD 189733b by Swain et al. [391] with the use of transit spec-
troscopy, methane has been observed in the atmospheres of hot Jupiters, including
HD 209458b [392], XO-1b [393], HD 102195b [394], and it has also been sug-
gested to be present in WASP-69b [395] and HAT-P-12 b [396].

Warm Neptunes like GJ 436b and GJ 3470b are expected to exhibit methane-
rich atmospheres, although its abundance on these planets has occasionally been a
subject of debate [397—400]. The Q-branch band head of CH4 was detected in the
atmosphere of the warm Neptune WASP-107b, where methane is found to be highly
depleted, significantly more than predicted by chemical equilibrium models [401].
Tentative indications of CH4 in the atmosphere of the warm Neptune HAT-P-11b
have also been reported [402, 403].

Strong evidence of CH4 was also reported in other exoplanetary atmospheres
including the warm Jupiter WASP 80b [404, 405], the habitable zone, sub Neptune
and possible Hycean world K2-18 b [406], the young Jovian planet 51 Eridani b
[407] from direct imaging, the gas giant HR 8799 b [408].

The importance of methane has led to the construction of numerous line lists
[13, 14, 104, 105, 409—413], and plenty of experimental works aimed at accurately
characterizing methane’s spectral properties. In the current analysis, a large num-
ber of such works have been utilized (see section 5.3). The first ExoMol line list
for methane “10to10” by Yurchenko & Tennyson [410] containing almost 10 billion
transitions, was constructed to describe the opacity of methane for temperatures up
to 1500 K. An extension of the “10to10” line list was made in 2017 by Yurchenko et
al. [414] to higher temperatures up to 2000 K using the super-lines approach [415].

The completeness of this line list at higher temperatures allowed for the identifi-
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cation of methane spectral features in T type dwarfs [416]. The line list was also
used to model the bright T4.5 brown dwarf 2MASS 0559-14, and agreed very well
with observations [122]. “10to10” has been used in several studies of exoplane-
tary atmospheres [417], including HR 8799 b [408], WASP -189b [418], KELT 1b
[419], WASP-127 b, WASP-79 b, WASP-62b [420], HD 209458b [421], WASP -
43b [422], GJ 1214 b [423], WASP 39b [424], HAT-P-18b [425], 55 Cancri e [426],
LTT 9779 b [427], WASP -76b [428], WASP-12b [429], 51 Eridani b [430] and has
been implemented in several atmospheric retrieval codes [431-433]. The “10to10”
line list improved methane high-temperature absorption data by making it more
complete, in a time when existing laboratory spectra mostly came room-temperature
measurements. However, it lacks the accuracy needed, especially in the weak lines
in the near-infrared (NIR), for high-resolution spectroscopy of brown dwarfs and ex-
oplanets [371, 434-436]. This motivated the development of the MARVEL project
for methane, with the goal of producing highly accurate experimental energy levels
to support accurate atmospheric modelling in astrophysical and planetary applica-

tions.

5.2 Quantum numbers and selection rules

Methane has tetrahedral symmetry (see Figure 5.1) where the carbon atom is at the
centre of mass and the hydrogen atoms are on the four vertices of a regular tetra-
hedron. It is a spherical top molecule since the moment of inertia about any axis
passing through the centre of mass is the same. Within the rigid rotor approxima-

tion, it has the same energy level structure as linear molecules [437, 438],

E,=BJ(J+1) (5.1)

Methane belongs to the symmetry group 7; with five irreducible representa-

tions Ay, As, E, Fi, and F> [438]. We can decompose the symmetry of the ro-
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Figure 5.1: The tetrahedral symmetry of the CH4 molecule. Figure Credit: [9].

Vi: symmetric stretch
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Vy: symmetric bend

Vy4: antisymmetric bend

Figure 5.2: The four normal vibrational modes. Figure Credit: [10].
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Figure 5.3: The first eight vibrational polyads of methane and the number of vibrational
levels and sublevels in each one. Figure Credit: [11].

vibrational states in terms of these representations as:

I'=5A, ®5A, ®2E ©3F, ©3F>. (5.2)

We use the quantum number C to label the symmetry species of ro-vibrational states,
corresponding to one of the five irreducible representations. The coefficients in
Equation 5.2 are the nuclear statistical weights [439], which have effect on the tran-

sition strengths.

Methane has nine vibrational degrees of freedom (3N-6) and four normal
modes of vibration (see Figure 5.2): The non-degenerate symmetric C-H stretch-
ing vibration V| (A; symmetry), the doubly degenerate C-H bending vibration (£
symmetry) known as the v, mode, and two triply degenerate modes (£, symmetry);
the v3 mode corresponds to the C-H stretching vibration, while the v4 mode is as-
sociated with the C-H bending vibration. Each vibrational level is identified by a
set of nine normal quantum numbers. The quantum numbers vy, v,,v3 and v4 de-
scribe the excitations of the four normal modes vy, V,, V3 and vy, respectively. The

quantum numbers [, I3 and /4, describe the vibrational angular momenta of v, v3
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Table 5.1: Symmetries of the fundamental vibrational modes of methane in 7.

I

mode Components Symmetry Vem™  Type
\% 1 Aq 2916.45 Symmetric stretch
%) 2 E 1533.33  Symmetric bend
V3 3 F 3019.49  asymmetric stretch
V4 3 2 1310.76  asymmetric bend

and vy, while the non-degenerate v; mode does not carry an associated angular mo-
mentum quantum number. Finally, the m3 and m4 denote the multiplicity indices of
the degenerate modes [410]. The fundamental frequency wavenumbers are shown

in Table 5.1.

The four normal mode wavenumbers V; exhibit the following approximate re-
lation:

V) ~ V3 29, ~ 29, ~ 3000cm ™. (5.3)

This leads to the vibration energies of methane being grouped in a polyad structure

[440]. The integer polyad number P is defined as

P:2(v1 —|—V3)—|—V2—|—V4 5.4)

and is numbered with increasing energy starting with n = 0 for the Monad, n = 1
for the Dyad, P = 2 for the Pentad, P = 3 for the Octad, efc. The first eight polyads
of methane with the number of levels and sublevels within each one are shown
schematically in Figure 5.3. Each polyad is labeled with a Greek prefix for the
number of the levels. Here a vibrational level is defined simply by the quantum
numbers (v, v2,v3,v4) while the sublevels comprise all the vibrational angular mo-
mentum or symmetry products that are allowed for this vibrational level. Thus, the
vibrational level (vi,v,v3,v4) is split into several sublevels as soon as it is not just
one fundamental level. For instance, “2v3” or level (0,0,2,0) has three sublevels
A1, E and F;. The degeneracy exhibited by three of the normal modes results in an
increasing number of vibrational sublevels as the molecule is excited. The levels of

each polyad are listed on Table 5.2 for the 8 first polyads, which are relevant to this
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study.

In the case of higher polyads, the number of sublevels m within a particular
symmetry species tend to closely approximate a regular representation, with a ratio

of m(Ay) :m(Ay) :m(E) :m(Fy) :m(F;) equalto 1:1:2:3:3[441].

The total angular momentum of the molecule is denoted J. This quantum num-
ber characterises the rotational motion of the molecule and can take non-negative

integer values: J =0,1,2...

Methane is classified into three nuclear spin isomers: meta (I = 2, Ay, A»),

ortho (I =1, F, F>) and para (I =0, E).

The full assignment using the normal mode quantum numbers albeit being
theoretically most appropriate gets quickly very complicated with the vibrational
excitations. In addition, the different vibrational states become strongly mixed, and
the assignment of a set of normal mode quantum numbers to a particular state is no
longer well-defined. As a practical alternative, the full set of four rotation-vibration

quantum numbers used for the assignment of methane lines in this work is

P,J,C,c. (5.5)

Here, the counting number o counts the levels with the same (C,J) within a polyad

from lowest to highest energy.

The electric dipole transitions follow specific selection rules determined by
their symmetry:

A1HA2,EHE,F]<—>F2 (56)

with the standard rotational angular momentum selection rules:

AT =—1,0,1, J'+J" 40, (5.7)

leading to the three well-known P, Q and R branches, respectively.

The symmetric v stretching (A1) and the asymmetric v, bending (E) modes
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Table 5.2: Vibrational Polyads and their Associated Levels

120

4  Tetradecad

5 Icosad

6 Triacontad

7 Tetracontad

P Name Vibrational Levels

0 Monad Ground State

1 Dyad V2, V4

2 Pentad ViVo, Vo +Vy,2V4,2V5

3 Octad 3v2,3Ve,2Vo 4+ V4 Vo + V3, V3 + V4, Vo +2V4 , Vi + V4, VI + Vo

AV, Vo 43V, Vi +2V4, V3 +2V4 ,2Vo +2V4 , Vo + V3 + V4,4V

Vi+V3,3Vo4+Vy, Vi +2V2,2v3,2V ,2Vo + V3, Vi + Vo + Vg

S5V4,5vo , Vo +2V3, Vi + Vo + V3, Vu +2Vv3,3V, + 2V
Vo + 2V, Va+2V 4V + Vs, Vo +4vs, vy +3V2,
3Vo4+ V3, Vi 4+ V3+ V4, 2Vo + V3 + V4, Vi + 3V, 2Vo + 3y,

V3+3Va, Vi +2Vo+ V4, Vo + V3 + 2V, Vi + 2V + Wy

6Vy, Vo +5V4,2Vy +4v4, V3 +4Vy , Vi +4V4, 2V +2Vy,
Vo4+V3+3vs, Vi +V3+2V4,3V0 +3V4,5Vo + V4, 4Vvo + V3
VI+2Vo+2V4,2Vv3+2V4, 3V, 4Vvy + 2V, ,2Vo + V3 +2Vy,
Vi+Vo+V3i+Ve,Vi+2V3, Vo +2V3+ V4,2V +2Vo,
3Vo4+V3+ V4,2V +2V3,6V4, Vi + Vo +3v4,3v3,2V + V3

VI+4Vvy,2Vi+ Vo 4+ V4, Vi +3Vo 4+ V4,V +2V2 4+ V3,

TV4, Vo +6Vy, Vi +5V4,V3+5V4,2Vo +5V4, Vi + Vo +4Vy,
3vp+4vy , Vo +Vv34+4vy,2vi +3Vy , Vi + V3 +3V4,3V + Wy,
Vi+4Vo +V4,2V3+3V4,2Vo + V3 4+ 3V ,2Vi + V3 + Vg,

Avo +3Ve, Vi+ Vo + V3 +2V4, Vi +3Vo +2V4,3V0 +2V3,

Vo +2V3+2V4, Vi +2V34+ V4,3V + V3 +2V4, Vo + 33,

S5V 4+2Va, Vi+2Vo +V3+ V4, 3V3 4+ V4,2V + 3V ,6V) + V4,
2V +2V3+ Va4 , 4V + V3 + V4, Vi + 5V, TV 2V + Vo + 24,
VIi+2Va+3ve,3vi+ Vo, Vi+ Vo +2V3,5V + V3,
2Vi+2Vo+ V4, Vi+3Vo+ V3,2V + Vo + V3
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lead to no change in the dipole moment and as such, are infrared inactive. Only the
two F> modes V3, V4 (and more generally, all F;, vibrational sublevels) are infrared
active for transitions starting in the ground vibrational state, as a first approximation.
The ro-vibrational transitions of the IR non-active bands get intensities through ro-

vibrational interactions with IR active states.

In this analysis, we have used transitions both from Raman and infrared spec-
tra. The selection rules for the Raman spectrum of methane follows: all four vibra-

tional modes are active and the rotational selection rules in the general case are:
A =-2,-1,0,1,2, (5.8)

leading to the five O, P, O, R and S branches. One should notice however that for
the A vibrational sublevels, such as v; fundamental band, there is only a Q Raman

branch (AJ = 0).

5.3 Overview of Experimental Sources

In this work, we compiled all the available experimental spectroscopic data up until
July 2023 and put them through the MARVEL procedure in order to determine a
dataset of empirical rovibrational energy levels with experimental accuracy. We
built the dataset of the observational spectra from lowest to highest polyads testing
with MARVEL at each step. In particular, for our final runs, we used the MARVEL4
Online version [195]. Finally, the ExoMol MM methane line list was improved
by Yurchenko et. al. [3] with the use of empirical energy levels in place of the
computed values with the variational program TROVE [442], and by fitting the PES

with the empirical energies.

A MARVEL (Measured Active Rotational Vibrational Energy Levels) analysis
of the available spectroscopic data on methane ('>C'H,) was performed. A total of
82173 measured rovibrational transitions were gathered from 96 literature sources
and put through the MARVEL procedure which led to the determination of 23292

1

empirical energy levels with uncertainties, up to ~ 9900 cm™ " covering the lowest
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eight polyads. A comparison with Effective Hamiltonian (EH) evaluated levels,
variational calculations by the TheoReTS project, and the MeCaSDa database is

performed.

A comprehensive collection of high-resolution spectra of '>C'Hy has been as-
sembled for this study. A total of 279 research articles were reviewed, and from this
pool, 96 were selected for inclusion in our current research. A summary of these
selected sources, along with details regarding their observational data is presented
in Table 5.3 and Table 5.4, and their distribution among different polyad bands is

shown in Figure 5.4.

Notably, in our compilation we have 11 sources with pure rotational transitions
[11, 443-452]. Pure rotational transitions in methane can be observed due to slight

asymmetries introduced by centrifugal distortion and vibration—rotation coupling.

Information about the sources that were considered but ultimately excluded
from our analysis can be found in Table 5.5. Comments related to Table 5.4, espe-
cially referring to the assignment of unassigned lines are found in section 5.7. For

discussion on the treatment of the uncertainties refer to section 5.6.

Table 5.4: Experimental data for >?C'Hj used in our analysis. Wavelength range and mean
line position uncertainty are given in cm~'. A/V: number of available transi-
tions/number of validated transitions. “given” indicates an uncertainty provided
in the source. “CD” means no uncertainty was given, so it was derived using
combination differences or CDs. “Inc” means the uncertainty was increased.
See section 5.6 for comments on individual sources.

Mean Unc.
Source Polyad Band Wav. Range AV
Origin
Ps— P, 5.0E-03
23DuViGa [453] 5909 — 6216 22/19
P — P CD
4.7E-04
23RiTeJo [454] P, —F 3009 — 3015 12/12 .
given

Continued on the next page...
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Mean Unc.
Source Polyad Band Wav. Range AV
Origin
P — P 1.9E-02
22GeHjBo [455] 1250 —-1379 711/711 i
PP given
Ps— P 7.5E-03
22RoNiMa [456] 4100—-4300 11337/11311
Py— P CD
21FoRuSiVtype 4.9E-05
Py— P 5972 — 6047 24/24 )
[457] given
1.0E-04
21FoRuSi [457] Ps— P 5910 — 6057 8/8 .
giv
21FoRuSi 5.0E-04
P —PF 3028.75 1711
(pump) [457] CD
7.1E-08
210kInOk [458] Py—P 3017 —3019 10/10 .
given
1.0E-03
21LiDiLi [459] P —P 1396 — 1398 8/8
CD
6.3E-05
20YaLiPI [460] Py — Py 6076 — 6078 6/6 i
given
Ps— P 9.0E-03
20NiRoTh [461] 4300 —4600  9749/9734 i
Py — P nc
3.9E-05
19Pine [462] P, —F 3012 —-3019 66/66 .
inc
1.7E-07
19LiYaFe [463] Py— P 6105 — 6108 11/11 .
given
1.2E-06
19YaLiFe [464] Py— Py 6076.1 171 i
given
P3— Py 5.0E-03
19RoNiTh [465] 3760 —4100  6835/6722
Py — Py CD
. 5.0E-03
19NiPrRe [466] Ps— Py 8736 —9160 329/329 .
inc
2.0E-03
18MaZhCa [467] Py—PFy 4975 — 4985 32/32

inc

Continued on the next page...
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Mean Unc.
Source Polyad Band Wav. Range AV
Origin
1.5E-03
18GhMoKa [468] Py— P 5695 —5850  2066/2039 i
given
1.8E-07
18GoPrKa [469] Py—P 6076 — 6078 6/6 .
given
9.8E-07
18YaLiFe [470] Py— P 6077 — 6078 2/2 i
given
1.1E-05
18KoMaEs [471] P, —P 2885 —-3123 35/35 .
given
Py — Py 1.0E-03
18NiThDa [472] 5550 —-5815  3356/3337
Ps—P, CD
1.5E-03
17NiThDa [473] Py —Py 5300 — 5550  2843/2839 D
Py— Py 8.9E-06
17BrCuHi [443] 37-285 10/10 i
P — P given
1.0E-04
17HaPrNi [474] P;— Py 4300 — 4492 59/55 D
6.2E-04
17HaPrNi(2) [474] Ps— P 4300 — 4482 102/102 i
given
1.0E-03
16NiReTa [475] Ps— Py 6539 — 6800  2333/2333 D
3.8E-05
16DeMaRe [476] Py— P 6076 — 6078 12/12 .
given
. 1.0E-03
16ReNiCa [477] Ps— Py 6294 — 6781 299/299 D
PP 2.7E-03
16AmLoPi“ [12] 1100 — 1488  5062/5062 i
P, — P given
. ‘ 5.0E-03
15NiLyMi [411] Py— Py 5550—-6205  1928/1927 i
given
3.9E-04
15DeBeSm [478] P;—Fy 4499 — 4629 302/300 .
given

Continued on the next page...
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Mean Unc.
Source Polyad Band Wav. Range AV
Origin
5.4E-05
14SmBePr [479] P —PF 1398 — 1645 154/151 i
giv
3.0E-03
14NiThRe [480] Py — Py 4801 —5300  2725/2716 oD
1.0E-03
13NiBoWe [481] Py—Py 4885—-6205  1177/1159 .
given
1.4E-07
13AbIwOk [482] P, —P 2894 — 3105 150/150 )
giv
1.0E-03
13DaNiTh [483] P —PF 4600 — 4869 1570/1561 D
1.5E-03
13Cal.eWa [484] Pr—Py 5855 —6244  3400/3379 D
1.2E-03
13Z0GiBa [485] Py— P 5870 — 6138 348/341 i
given
1.5E-03
12CaWaMo [486] Ps— Py 6256 —6789  2512/2489 i
given
1.0E-03
12TaQu [487] Ps— P 7509 — 7564 19/19 .
given
2.4E-03
11NiThRe [488] Ps— Py 6256 — 6789 7171717 D
9.2E-06
11BaGiSw [489] P —-PF 2905 — 3049 132/132 .
given
7.7E-08
110kNalw [490] P, —P 2943 —3019 54/54 )
given
5.0E-03
10NiLyMi [491] Py— P 5550 —-6205  2544/2543 i
given
7.2E-04
10SmBePr [492] P —PF 1159 — 1495 435/435 i
inc
Py—Py 3.0E-03
10BoPiRo [444] 59 -277 193/193
P —P CD

Continued on the next page...
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Mean Unc.
Source Polyad Band Wav. Range AV
Origin
09AIBaBoBr- 1.0E-03
P —P 1189 — 1931 1046/1046 )
PentDyad [11] inc
09A1BaBoBr- 5.0E-03
Ps—P 3518 —4747  7898/7896 )
OctadGs [11] inc
1.0E-03
09NiLyPe [493] Pyi—Py 5556 — 6181 449/441 D
09A1BaBoBr- 5.0E-03
P —P 1088 — 1752 1189/1182 )
DyadGs [11] inc
09AIBaBoBr- 2.0E-03
Ps—P 2334 — 3299 1707/1707 )
OctadDyad [11] inc
3.6E-07
09TaKoSa [494] bh—-PR 2947 — 2959 12/12 )
given
09AIBaBoBr- 5.0E-03
P —PR 2466 — 3275  2246/2246 )
PentadGs [11] inc
1.0E-03
09ScKaGa [495] Ps— Py 7478 — 7564 24/23 D
1.0E-03
05Brown [496] Ps—Py 7478 — 7564 26/25 )
inc
2.8E-04
05PrBrMa [497] P;— Py 4100 — 4635 1432/1402 )
inc
1.0E-03
02HiQu [498] Ps—Py 7478 — 7553 23/22 )
given
4.2E-04
02GrFiTo [499] b —PR 3182 — 3225 100/100 )
given
7.0E-04
O1HiRoLoToa [500] Ps—P 3848 — 3872 96/90 )
given
1.0E-03
O1RoHiLo [501] Pi—P 4909 — 5272 189/184 D
1.0E-04
01HiRoLoTob? [500] Ps—P 3797 — 4100 206/205 -

Continued on the next page...
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Mean Unc.
Source Polyad Band Wav. Range AV
Origin
2.0E-04
00FeChJoBr [502] P —-F 2884 — 3150 257/256 i
given
6.6E-09
98ErTyKr [503] P, —PR 2947.8 1/1 )
given
1.0E-03
98GeHeHi [504] Py— P 5577 - 6077 22/15 oD
P —P
P, —P 2.0E-03
98BrKaRu [505] 1260 — 1334 285/275 )
P—-P nc
Py—P;
Py— P 8.7E-03
97MaBeSa“ [506] 2868 — 6058 66/61 i
Pi— P given
P, —P
2 1.5E-03
93HiBaBr [507] P;—P 1262 — 1276 40/40 i
given
P —P
. Ps— P 7.0E-03
92HiLoBr [508] 1382 — 4653 434/431 )
P —P nc
Py— Py 9.3E-07
92PuWe [450] 0.3-0.6 18/18 )
Ph—-P giv
] 1.0E-03
92BeSaCa“ [509] P, —PFR 2910 —2921 82/81 i
given
6.6E-09
92KrLiWe [510] P —F 2947.9 171 i
given
, 5.7E-04
91MiLaSt¢ [511] P, —P 3063 — 3067 13/13 i
given
1.0E-03
91Jouvard [512] P —F 3063 — 3071 37/37 -

Continued on the next page...
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Mean Unc.
Source Polyad Band Wav. Range AV
Origin
1.1E-04
88Brown [513] P;s— P 3876 — 3891 12/10 )
given
2.8E-06
87HiLoCh [449] P—-P 4—-9 14/14 )
given
1.5E-05
8701BaHi [448] P —P 0.4—-0.6 6/6 )
given
1.5E-07
85ChKINi [514] b —PR 2947 — 2948 3/3 )
given
1.0E-03
85Dreizler? [11] Py—Py 0.16—0.76 717
CD
2.1E-06
8501AnBa [446] Py—Py 0.26 —-0.51 27127 )
given
1.0E-01
83DeFrPr [515] P—P 3034 — 3068 10/1 )
given
1.0E-02
82JeRo [516] P —P 1170 — 1317 49/49
CD
1.0E-07
82ChGoKIl [514] PP 2947.9 1/1 )
given
4.6E-08
81DoKoTa [514] P —P 2947.9 1/1 )
giv
6.0E-13
80ItOz [517] Py—Py 0.00027 1/1 )
giv
1.0E-07
80KnEdPe [518] P —P 2947.9 1/1 )
giv
4.6E-07
80CIDaRu [514] PP 2947.9 1/1 )
given
5.0E-04
79DaPiRo [519] P —PR 2937 — 3068 30/30 D
1.2E-02
79PiDu [520] PP 1259 — 1307 128/123 )

mc

Continued on the next page...
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Mean Unc.
Source Polyad Band Wav. Range AV
Origin
1.0E-02
79ReCa [521] P —F 1292 — 1307 89/81 .
inc
3.3E-07
79DoKoTa [514] P —P 2947.9 171 )
given
1.4E-06
76BIEdJo [522] P, —F 2947.9 171 .
given
5.0E-04
76Pine [523] P, —P 2916 —3123 155/149 i
given
6.6E-06
75HoGeOz [447] Py—Fy 0.6 —0.64 3/3 .
given
‘ 6.1E-02
75ChBe¢ [524] P —P 1359 —-1771 196/193 i
inc
6.6E-07
73Curl [445] Py—Fy 0.01 —0.04 2/2 .
given
3.3E-06
73HoGeOz [452] Py— Py 0.3-0.5 3/3 '
given
3.3E-07
73TaUeSh [451] Pp—-P 0.5 171 .
given
1.6E-06
72EvDaWe [514] P, —P 2947.9 171 i
given
MAGIC* Py— Py 10—-3105 10/10 6.0E-03

“ The P; — P, and P, — P lines were inconsistent with the rest of the network, so they were not included.
b Lines assigned by Rodina et al. [465].

¢ Raman lines.

4 Pyblished in [11] from private communication.

¢ Refer to section 5.5.
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Table 5.3: Information on the number of experimental sources and transitions per vibra-
tional band included in our input list of transitions. Average uncertainty is given
in cm~!. A/V: total number of available transitions/number of validated transi-
tions.

Bands A/V Sources  Av. Unc. (cm™)
Py— PR 143/143 9* 0.002262
P —PR 3452/3433 12 0.008287
P —P 140/140 4 0.002144
P —P 3406/3397 29 0.003453
P — P 5932/5931 6 0.003850
p—-P 16/16 2 0.000001
Py —Py 32369/32308 13 0.006160
P—P 1699/1699 1 0.002000
P—-pP 149/149 2 0.001907
Py—Py 21154/21028 21 0.002323
Pi—P 7316/7275 3 0.007303
P—P 31/17 3 0.015161
Py —P; 44/34 1 0.002000
Ps— PRy 5953/5927 8 0.001381
Ps— P 22/22 1 0.001000
Ps— Py 329/329 1 0.005000
Ps—P 26/26 2 0.003492
P —P 4/2 1 0.005000

* Excluding the “magic” numbers explained in section 5.5
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Distribution of Sources per Band
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Figure 5.4: The distribution of the experimental sources utilized, across the several polyad
bands with respect to line position in cm~'. Green color is for the cold bands
and magenta for the hot bands.
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Table 5.5: Experimental '>?C'Hy papers not used in MARVEL analysis

Source

Wavenumber range cm ™

Comments

48NePIBe [525]
52BoThWi [526]
55FeRoWe [527]

60RaEaSk [528]

65MoGaMo [529]
65Moret [530]
66HeMoGo [531]
66McDowell [532]
70CISte [533]

70HeHuAn [534]

700zYiKh [535]

71HuDa [536]

71HuPo [537]

72BaSuHu [538]

72Bobin [539]

72Botineau [540]
72R00zKu [541]
73BeFaCh [542]
73BoFo [543]

73CaDe [544]

5900 — 6200
2700 — 3200
1300 — 1800
5983 - 6115
2884 — 3141
2884 — 3141
1225 - 1376
2884 —3139
5891 - 6107
1225 — 1400
100 — 180
2840 — 3167

old measurements
low accuracy
old measurements
not fully assigned
low accuracy
no line measurements
no line measurements
low accuracy
low accuracy
no line measurements
different assignments
low accuracy
no line measurements
different assignments
low accuracy
different assignments
low accuracy
low accuracy
not fully assigned
low accuracy
low accuracy
no line measurements
no line measurements

no new measurements

not accurate J assignments

low accuracy

Continued on the next page...
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1

Source Wavenumber range cm ™ Comments

73CuOkSm [545]
73DaMa [546]
73Susskind [547]

75Berger [548] 1271 — 1311
75BoHi [549]

75Champion [550] 1481 — 1747
75R00z [551]

75TaDaPo [552] 3019 — 3021
76GrRo [553]

76HaBoUe [554]

77A1KoSm [555]

77Berger [556]

77Champion [557]

77ToBrHu [558] 2862 — 3000
78BoGu [559] 4157 — 4425
78ChHuSc [560]

78HuBrTo [561] 2700 — 2862
78MaHeBy* [562]

780wPaDo° [563] 2916 —2918
780zRo [564] 94 — 145
79BIGoLu [565] 1120 — 1800
79BoBr [566]

79GrRo [567]
79GrRoPi [568]
79KoPrSm [569]

no new measurements
no line measurements
no new measurements
different assignments
low accuracy
different assignments
low accuracy
no line measurements
no new measurements
different assignments
no new measurements
no new measurements
no new measurements
different assignments
no line measurements
different assignments
different assignments
low accuracy
no new measurements
unassigned lines
no line measurements
not fully assigned
low accuracy
low accuracy
no line measurements
no new measurements
not fully assigned

no measurements provided

Continued on the next page...
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Source

Wavenumber range cm ™

1

Comments

80ChPiBe [570]
80HiDeCh [571]
80Jennings [572]
800rRo [573]
80VaEsOw [574]
81GhHeLo [575]
81HuBrTo [576]
810zGeRo [577]
81Robiette [578]
81ToBrHu [579]
82BrRo [580]
82BrToRo [581]
82L.oBrRo [582]
82LuPiPiCh [583]
82RaCa [584]
82PoPaCh [585]
83BrMaNo [586]
83FrlIFi [587]
83VaGiVa.a [588]
85BrTo [589]
85GrLa [590]
85ThFaKo* [591]
86KeCoSm [592]
87Kim [593]
86TyChPi [594]
89BrLoHi [595]
89VaCh [596]
90VaCh [597]

2832 —3018
0.00026 — 0.64
2385 —3200
2700 — 3000
2460 — 2675
2250 —3250
2916 — 2917
1270 — 1317
1332 - 1350

no new measurements

low accuracy

no new measurements

low accuracy
difficult to scan table
no new measurements
no new measurements
no line measurements
no new measurements
difficult to scan
different assignments
no line measurements
no new measurements
no line measurements
no new measurements
different assignments
unassigned lines
no line measurements
no line measurements
low accuracy
no new measurements
no line measurements
no new measurements
no new measurements
not fully assigned

no new measurements

no measurements provided

no measurements provided

Continued on the next page...
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Source Wavenumber range cm ™ Comments
91RoCh [598] no new measurements
92BrMacCh [599] no new measurements
92Pine [600] 3012 —-3018 we used the lines from [462]
92SaCaDo° [601] 2916 — 2917 no new measurements
92SmRiDe [602] no new measurements
960uHiLo [603] no new measurements
98WeCh [604] no line measurements
00MeDoMe [605] 2942 — 2982 not fully assigned

low accuracy
01NaMi [606] 3009 — 3039 not fully assigned

low accuracy
02BrCa [607] 10635 — 13300 no line measurements
05GhBu [608] no new line measurements
05JoChSa [30] 1200 — 5500 no line measurements
05MoChVa [609] 2914 — 2922 no new line measurements
06BoMeMa[610] 2931 —2996 no new line measurements
06BoReLo [440] no line measurements
07JoGaChe [611] 2905-2925 no line measurements
07RuWoHa [612] 2990 — 3070 not fully assigned

low accuracy
07WiOrOz [613] 0.06—-0.24 no line measurements
10HoSKSa [614] not fully assigned

low accuracy
10TrHaTo [615] 6000 no new line measurements
10ZiWh [616] no line measurements
12SaAuPi [617] 59 — 288 no new line measurements
12YuFaYa [618] no new line measurements
13ThDaAn [323] no new line measurements

Continued on the next page...
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Source

1

Wavenumber range cm™ Comments

13TyTaRe [619]
14ReNiTY [620]
14UlIBeAl [441]
15LiWaTa [621]
15MaKcVa“ [622]
15ReNiTy [623]
17ReNiTy [13]
18NiPrRe [624]
18Petrov [625]
18ReNiBe [626]
19BuAmBe [627]
19DeGhHo [628]
19GhHeBe [629]
19KiMaPe [630]
20GiNaTu [631]
20HaGoRe [413]
20PeMaZa [632]
21CuHiMo [633]
21FaArVa [634]
21FoRuSib [635]
21EsFa [636]
227hXuWa [637]
23MaThCa [638]
23VaDeKa [639]

no line measurements
no line measurements
1000 — 12500 no line measurements
no new line measurements
882 —3434 unassigned
no line measurements
no line measurements
no line measurements
no new line measurements
0— 3400 no line measurements
no line measurements
no new line measurements
no new line measurements
no new line measurements
no new line measurements
no line measurements
no line measurements
no new line measurements

no new line measurements

3028 — 6058 no new data
2884—-2969 no new line measurements
3225 — 3857 no line measurements

no line measurements

no new line measurements

¢ Raman lines

In some instances, we found lines that were measured in earlier works and
documented elsewhere, or they were assigned in later publications. Here are details

for such cases:
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83DeFrPr and 83DeFrPrb [515, 640]: We used the lines as published and
assigned in 97MaBeSa [506].

81DoKoTa [641]: Measurements of one F-symmetry line at 88 THz were
published in 85ChKINi [514]. We could not find the original papers 79DoKoTa
[642] and 81DoKoTa [641] (references 6 and 8 of [514] respectively).

98BrKaRu [505]: We used the more recent assignments from 16 AmLoPi [12].
02HiQu [498]: We got the full assignments from 12TaQu [487].

0SBrown [496]: We got the full assignments of 27 of the published lines from
12TaQu [487].

09ScKaGa [495]: We got the full assignments of 27 of the published lines
from 12TaQu [487].

13AbIwOKk [482]: We got the full assignments from 18 AmBo [643].

13Cal.eWa [484]: The transitions were published unassigned, but have been
assigned in other works; we used 3436 lines assigned by 17NiChRe [644], and 2445
lines by 16NiReTa [475].

5.4 Raman spectra

The following data sources provided Raman spectra we evaluated and considered
in our analysis. We included 379 Raman transitions in total. The sources we used

are the following:

75ChBe [524] reported 196 v, Raman transitions in the range 1360-1770
cm™! belonging to the O,P,R, and S branches which were assigned by Gray et al.
(76GrRo) [553] and Champion (77Champion) [557].

92BeSaCa [509] reported 83 v; and v, + v4 Raman lines in the range 2911-
2921 cm~! belonging in the Q branch.

91MiLaSt [511] reported 13 v, Raman lines in the range 3063-3066 cm~!

belonging to the Q Branch.



5.4. Raman spectra 138

94HiChTo [512] reported 37 2v, Raman lines in the Q branch and the range
3063-3070 cm™! from a thesis by J.M. Jouvard, University of Bourgogne (1991).

97MaBeSa [506] measured 21 2v; — v; Raman lines in the QO branch. In addi-
tion, they reported 4 Raman lines in the 2v3 — v3 band in the R and P branches and
the 2800-6000 cm~! range that are originally from 83DeFrPr [515], as well as 6
lines from 83DeFrPrb [640]. The 83DeFrPrb lines were not validated by MARVEL.

92SaCaDo [601] reported 45 v; Raman lines that have also been published
and assigned by Bermejo et al. 92BeSaCa [509], as well as 13 lines by Koslov et al.
(79KoPrSm) [569] and 6 lines by Graener et al. (85GrLa) [590]. The assignments

of these lines were also done using lines by Bermejo, et al. (92BeSaCa) [509].

The following Raman sources were not used. It is possible that some of these
sources could have been recovered by assigning them ourselves, but given their low

accuracy, they were unlikely to provide significant value to this analysis.

85ThFaKo [591]: The Raman lines reported were not used because of low

accuracy.

780wPaDo [563]: 32 v; Raman lines were measured in the 2916-2918 cm ™!
range with assignments without counting numbers. 70CISt [533]: No measured

wavenumbers.
75Champion [550]: Only calculated values were provided.
78MaHeBy [562]: No measured wavenumbers.

15MaKcVa [622]: Measured Raman spectra were reported at temperatures
ranging from 300 K to 860 K covering the 882 — 1791 cm™' and 2548 — 3434 cm™!
regions without assignments.

I'to

77Berger [556]: Raman v3 lines were reported ranging from 2850 cm™
3100 cm~!. The lines were assigned in this source as well as by Champion et al.
(80ChPiBe) [570] but the counting numbers follow a different convention that we

could not use.

83FrllFi [587]: vi Raman Q branch lines were reported from 2916 to 2917
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1

cm™ assigned with a different convention for the counting numbers.

06JoChSa [30]: No measured wavenumbers.

82LoBrRo [582]: Measurements of 2v4 Raman transitions in the 2460-2675

cm~! region were published. The assignments were different and due to low accu-

racy, we were not able to include them in the analysis at this stage.

07JoGaCh [611]: No measured wavenumbers.

5.5 Magic numbers

To interconnect previously unlinked networks, including the ortho, para, and meta
networks, we use artificial transitions that we call ‘magic numbers’. In addition to
these, the two measured transitions from Itano et al. [517] and Ozier et al. [535]

physically link the E (para) and F (ortho) networks.

We used some magic numbers to link unconnected components (refer to sec-
tion 5.8). Specifically, the first three (MAGIC.1, MAGIC.2, MAGIC.3) were used
to link the ortho (F), para (E), and meta (A) networks, the next three (MAGIC.4,
MAGIC.5, MAGIC.6) were used to improve the connection between unlinked net-
works, and the last four (MAGIC.7 to MAGIC.10) connected the first four larger
energy components. For this work, the Effective Hamiltonian wavenumber values
by Amyay, et al. (16AmLoPi) [12] were used as magic numbers, which are listed
in Table 5.6.

5.6 MARVEL energy uncertainties

When running MARVEL we have to include line position uncertainties. We started
by using the uncertainties given in the experimental sources, where available. To
make the network self-consistent though, we increased some of these initial uncer-
tainties, and when missing in the original papers, we estimated them by assessing
the degree of their agreement with the rest of the network (Combination Differ-

ences). The last column of Table 5.4 shows the origin of the uncertainty adopted
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Table 5.6: Magic Numbers. Wavenumber values were selected from the Effective Hamil-
tonian energy values by Amyay et al. (16AmLoPi) [12].

Wavenumber (cm ™) Upper State Lower State Label
Value Unc P J Cc o PJ o
10481641 0.000001 0 1 F 1 0 O A; 1 MAGIC.1
31.442100 0.000001 0 2 E 1 0 0 A; 1 MAGIC2
31.442366 0.000001 0 2 FK 1 O O A 1 MAGIC3
62.878129 0.000001 0 3 A, 1 0 O Ay 1 MAGICA4
104.772781 0.000001 0 4 A; 1 O 0 Ay 1 MAGICS
62.875738 0.000001 0 3 F 1 O O A 1 MAGICS6
2179.816  0.030 0 20 E 1 0 0O A 1 MAGICT
2620.967  0.010 0 2 FE 1 0 0 A 1 MAGICS
3104.763  0.010 0 24 A, 1 0 0 A 1 MAGICY
3104.752  0.010 0 24 F,b 2 0 0 A 1 MAGIC.10

for each source. These input transition uncertainties are used by the MARVEL al-
gorithm to derive the uncertainties for the final energy levels (see Table 5.7 for the
mean energy uncertainty per polyad). This manual handling of the transition un-
certainties was the first method we followed, but a more sophisticated way to deal
with this is the bootstrap method, for which we performed 100 iterations [195].
The MARVEL energy uncertainties with and without the bootstrap method are pre-
sented in Figure 5.5. Without the bootstrap method, MARVEL yielded an average
energy uncertainty of 0.0036 cm~! based purely on the stated input uncertainties.
However, when the bootstrap method was applied, the average energy uncertainty
increased slightly to 0.0049 cm~! suggesting that the input uncertainties are too
low for the cases of polyad 0, 1, and 2. Interestingly, this increase in uncertainty on

bootstrapping is very similar to that found for other systems (e.g. N,O [195].

5.7 Reassignment of spectra

Regarding the line assignments, we faced the challenge that some sources used
different conventions for the non-rigorous quantum number ¢, or the lines provided

were not assigned fully or at all. For those without assignments, we either assigned
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Figure 5.5: The MARVEL energy uncertainties with respect to the energy with and without
the application of the bootstrap method. The width of the violins indicates the
number of energy levels in each energy range.
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Table 5.7: Summary of the MARVEL energies. Energy range is in cm~!. MU/MUb: The
Mean Energy Uncertainty before (MU) and after bootstrap (MUb). Mean obs. —
calc.incm™': *obs’ is referring to the MARVEL value and ’calc’ to the calculated

value by Yurchenko et al. [3]

Polyad Energy rangecm™! #E.L. maxJ MU/MUb  Mean obs. — calc.

P 0—3628.25 247 26 0.005/0.01 -0.0114
P 1310.7 —5054.83 1088 27 0.005/0.01 0.0093
P 2587.04 —6239.03 3154 27 0.005/0.009 0.0184
Py 3870.48 —7017.60 7708 23 0.005/0.006 0.0099
Py 5121.72—-7417.90 8232 18 0.002/0.002 0.0022
Ps 6377.52—-7903.64 2528 15 0.001/0.001 -0.1193
Ps 8562.46 —9629.88 333 10 0.005/0.005 -0.1769
Py 9832.06 —9986.23 2 4 0.005/0.005 -0.3876

them ourselves or excluded them, leaving them for a future project (see chapter 6).
In particular, Table 5.8 shows a list of sources that provided unassigned or partly
assigned transitions, or transitions with different notations. The second column of
the table shows the other sources we used to help fully assign these lines and convert
them to our notation scheme. Table 5.9 presents a few cases where we changed the

assignment of a line based on the resulting MARVEL network.

5.8 The MARVEL network

Out of a total of 82 173 transition frequencies assessed, 308 were not validated and
were assigned a negative wavenumber in the input line list. At this stage, six arti-
ficial transitions were included called “magic” numbers (the first six in Table 5.6).
Three of them to connect the different nuclear spin isomers, and three to improve
the network connectivity as explained above in section 5.5. This resulted in a spec-
troscopic network comprising 81865 lines, separated into 305 sub-networks, which
I will refer to as as components here. The largest component consisted of 80598
transitions connecting 23060 energy levels, with 109 of these components contain-

ing one single transition linking two levels.

The next four components were two E symmetry, one Aj /A, and one Fj/F,
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Table 5.8: List of partly assigned experimental sources used in this work, and the sources
we used for their full assignments.

Source

Used for assignment

P —P

79PiDu [520]
82JeRo [516]

72Botineau [540] and 16 AmLoPi [12]
16 AmLoPi [12]

P, — PR

72EvDaWe [645]
76Pine [523]
76BIEdJo [522]
79DaPiRo [519]
80KnEdPe [518]
80CIDaRu [646]
92KrLiWe [510]
92PuWe [450]
98ErTyKr [503]
00FeChlo [502]
18KoMaEs [471]

09AIBaBo [11]
EH fit [12]
09AlBaBo [11]
several other sources
09AIBaBo [11]
09AIBaBo [11]
09AlBaBo [11]
EH fit [12]
09AIBaBo [11]
09AlBaBo [11]
13TyTaRe [619]

P;— P
88Brown [513] EH fit [12]

Py — Py

10NiLyMi [491] mainly 15NiLyMi [411]
13ZoGiBa [485] EH fit [12]
16DeMaRe [476] EH fit [12]

18GoPrKa [469]
18YaLiFe [470]
19LiYaFe [463]
19YaLiFe [464]
20YaLiP1 [460]

16DeMaRe [476].
several other sources
HITRAN [104], EH fit [12]
HITRAN [104], 13ZoGiBa [485], 13Cal.eWa [647]

several other sources

Ps — Ry

12CaWaMo [486]
12TaQu [487]
16ReNiCa [477]

HITRAN [648]
HITRAN [104], 15ReNiTy[623], 02HiQu [498].

several other sources

Pi—P

210kInOk [458]
P—P

several other sources, EH fit [12]

21FoRuSi [457]

several other sources, EH fit [12]
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Table 5.9: Specific lines reassigned because they were not validated.

Source Line position cm™!'  Old assignment New assignment

Line tag P.Jy.c.o P .C" o
05PrBrMa [497]

05PrBrMa.218 4286.9494 3,4,F,41;0,5, F, 1 3,4, F,41;0,5, F,2
05PrBrMa.157 4492.21562 3,4,/,52;0,3,F, 1 3,4,F,58,0,5 F, 1
05PrBrMa.957 4509.85664 3,10,A1,37;0,9,42,1  3,10,A45,35;0,9,A4;, 1
05PrBrMa.1196 4522.04973 3,11, [, 117;0, 10, /»,3 3,11, F», 114;0, 10, F1, 2
10NiLyMi [491]

10NiLyMi.1575 5998.2405 4,10, F», 325;0, 10, F1,2 4,10, F;, 32650, 10, F7, 2
13NiBoWe [481]

13NiBoWe.1198 5940.473 4,8, F, 180;0, 8, F1, 1 4,8, F, 181;0,8, F, 1
13Cal.eWa [647]

13CaLeWa.1094 5931.3501 4,8,F,207;0,7, F5, 1 4,8,F,208;0,7, F, 1
I5NiLyMi [411]

15NiLyMi.2170 6102.64367 4,10, ,325;0,9, F,3 4,10, F»,326;0,9, F, 3
17HaPrNi [474]

17HaPrNi(2).74 4417.887686 3,7,F,66;0,6, F, 1 3,7, F,66;0,6, F,2
17HaPrNi(2).54 4427.8182 3,8,/,75;0,7, F, 1 3,8,/,75;,0,7, Fi, 2
17HaPrNi(2).31 4432.66252 3,8,/,76,0,7, F, 1 3,8,,76,0,7, F,2
17HaPrNi.53 4469.326872 3,6,F,80,0,7, F, 1 3,6,F,80,0,7, F,2
17HaPrNi.57 4489.942539 3.4,F,56,0,5,F, 1 3,4, F,56;0,5, F,2
18GhMoKa [468]

18GhMoKa.911 5753.75715 4,8, F,207;0,9, F, 1 4,8, F1,208;0,9, 5, 1

symmetry networks which consisted of 103, 57, 48, and 44 transitions respectively.
To establish connections between them and the largest component four new magic
numbers were added (the last four in Table 5.6). We connected only these four to
the largest network because the next was a much smaller one consisting of only
29 transitions. As a result, we ended up with 81872 validated transitions in total
separated into 301 components, the largest one of which includes 80854 transitions

that link 23292 energy levels.

The distribution of energy levels according to their symmetries is as follows:
21.4% are of A| /A, symmetry, 18.4% are of E symmetry, and 60.2% are of F;/F,

symmetry. This is consistent with the ratio 1 : 1 :2: 3 : 3 expected at highly excited
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states. The energy distribution with respect to J is illustrated in Figure 5.6. Relevant
details (wavenumber range, J range, average energy uncertainties, number of energy

levels) are given in Table 5.7.
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Figure 5.7: Difference between the MARVEL energies (obs) and the a. Effective Hamilto-
nian [12] (blue), b. Variational calculations (pink) [13].

We compared our empirical rovibrational energy levels to the Effective Hamil-
tonian results of 16 AmLoPi [12] and variational energies (purely calculated) from
the TheoReTS project [13] as shown in Figure 5.7. We also compared with calcu-
lated levels from the MeCaSDa database [649] as shown in Figure 5.8.

For the first two polyads the agreement with the Effective Hamiltonian energies
is very good for J < 17 with a maximum difference of less than 0.007 cm~!. For
the next two polyads, the agreement with the Effective Hamiltonian energies is very
good for J < 15 with a maximum difference of less than 0.014 cm~!. Regarding the
comparison with the TheoReTS variational energies, the agreement is always within
1 cm~! for the first five polyads. Additionally, in polyad 3 the TheoReTS energies
exhibit better agreement with the MARVEL energies than the Effective Hamiltonian
energies in high J values. The comparison with the MeCasDa database follows a
similar trend to the one with the Effective Hamiltonian results as seen in Figure 5.8.
The differences grow with J and polyad P in all cases and grow more in the cases
of polyad 5 and polyad 6 where our data are limited. For polyad 2 Figure 5.7 shows
a difference of ~ 0.4 cm~! between MARVEL and the Effective Hamiltonian ener-
gies, as well as the TheoReTS energies for four J = 20 levels. These differences are
much smaller when compared with MeCaSDa. These four levels, comprising two
E levels and two A, levels, are part of two weakly coupled components within the

network. Their connections to the broader network are limited, leading to less accu-
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rate definitions. Additionally, the single transition defining the states (2,20,A,,14)
and (2,20,E,28) is given three different assignments in the original source [12]; it is
assigned as an F line, an E line, and an A line. We note that F states are generally
better defined, as they are stronger, and characterised by more transitions. More ex-
perimental data are required to resolve the above problem and enhance the accuracy

of the A and E networks.

Regarding the large residuals for four polyad 2 levels, Table 5.10 and 5.11
show the connections of these levels with the rest of the network. For the two Aj
energy levels; their only connection with the network is through the level (1, 21, Ay,
5) for both of them and (1, 20, A}, 6) for one of them. Regarding the level (1, 20,
Ay, 6), it is only related through a single transition to one other level: (2, 21, A,
12) and this has no further links. As for the (1, 21, Ay, 5) level, it couples weakly
as well with the rest of the network; it is connected with single transitions with two
levels of higher energy and a single transition with the lower level (0, 22, A, 1)

which is defined only by higher levels.

Furthermore, the two E levels have a single connection to the network through
(1, 21, E, 11). This, in turn, has a weak connection with the rest of the network
because it leads to three higher energy levels with single transitions and only one
lower level (0, 22, E, 1) with one line. The level (0, 22, E, 1) is linked through single
transitions with three higher energy levels and is defined with a single artificial

transition (MAGIC number) with the ground state.

5.9 MARVELous Methane

Yurchenko et al. [3] generated the MARVELous Methane (MM) line list in 2024,
which covers wavelengths A > 0.83 um (wavenumbers up to 12000 cm™') and

contains over 50 billion transitions between 9 155 208 states with total angular
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Table 5.10: Details of the connections of the two E energy levels with large residuals. The
obs. — calc. values are in cm~!. The subscript 7 is for the comparison with the
TheoReTS variational calculations, gy is for the comparison with the Effective
Hamiltonian values, and j; is for the comparison with the MeCaSDa energies.
The quantum numbers are: p, J, C, «.

MARVEL Energy Levels

obs-calcy obs-calcgy obs-calcy; Main links Secondary links

220 E 28,4974.164 cm™! 0.41 -0.49 -0.003 21 E 1

220 E 27,4967.845 cm™! -0.39 0.35 -0.0009

Main connecting level

121 E 11,3796.475 cm™! -0.004 -0.0004

(121 E 11) links

1.222E 14 0.013 -0.0098 122E6

2.221E15 0.079 -0.006 -
122E4

3.022E 1 0 -0.00056 123E4
223ES5I
00A; 1

Table 5.11: Details of the connections of the two A, energy levels with large residuals. The
obs. — calc. values are in cm~!. The subscript 7 is for the comparison with the
TheoReTS variational calculations, gg is for the comparison with the Effective
Hamiltonian values, and j; is for the comparison with the MeCaSDa energies.
The quantum numbers are: p, J, C, a.

Energy Levels obs-caler obs-calcgy obs-calcy; Main links Secondary links

220 A, 14,4974.134 cm ™! 0.37 -0.52 -0.035 121A,5

220 A, 13,4967.815 cm™! -0.42 0.32 -0.031 121A;5and 1204, 6

Main connecting levels

a. 121 A 5,3796.445 cm™! -0.03 -0.03

b. 120 A, 6,3725.267 cm™! -0.16 -0.018 -0.038

a. (121 A, 5) links

1.221A,8 0.059 -0.027 1,22,A1,3

2.220A,23 -0.1 -0.036 -0.025
122A,3
121A,5

3.0224A;5 1 -0.03 -0.03 223A,24
321436
323A19

b. (120 A; 6) links

221412 -0.06 -0.037
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momentum J < 60. The line list was generated through solving the nuclear motion
Schrodinger equation using the variational program TROVE for an empirically-
derived potential energy surface (PES) and a new high-level ab initio dipole moment
surface. The PES was constructed by fitting the ro-vibrational energies of CHy to
the set of MARVEL derived energies. Moreover, the line list is adapted to high-
resolution applications by replacing the calculated ro-vibrational energies with the
experimentally-derived values where available. Table 5.7 shows the average obs. —
calc. values for each polyad, where obs is referring to the MARVEL value and calc

to the calculated with TROVE.

5.10 Outlook

We compiled a thorough database of published experimental methane spectra up to
July 2023 and used them to extract accurate empirical rovibrational energy levels.
We ended up with 82 173 measured transitions assembled from 96 articles. We used
Combination Differences to attribute quantum numbers to transitions where they
were missing, or to convert to our counting number notation where necessary. As
can be seen in tables 5.4 and 5.3 we could find assigned methane spectra in the lit-
erature up to polyad 7 and mainly for cold bands. However, starting from even the
lower part of the icosad (polyad 5) the number of well assigned lines starts decreas-
ing. For polyad 7 we have almost no assigned measured transitions. This makes the
confidence of the assignments that we have in these higher energies smaller, since
we do not have enough combination differences starting from ~ 8000 cm~!. This is
something to expect, as spectral congestion in the near-infrared and visible regions
because of the increasing number of interacting levels makes it harder to resolve in-
dividual lines. The 82173 lines yielded 23292 energy levels through the MARVEL
procedure. With the bootstrap method, 66.8% of MARVEL energy levels have an

uncertainty lower than or equal to 0.005 cm™".

The MM line list [3] contains over 50 billion transitions and covers the fre-
quency range from 0 to 12000cm™' with rotational excitation up to J = 60. The

line list is based on a new empirical potential energy surface, which was refined by



5.10. Outlook 152

fitting to the experimentally derived energies of CH4. The accuracy of the line list
is further improved via the MARVELisation procedure, where the computed ener-
gies are replaced by the experimentally derived values as described in this chapter.
Using the MARVELised energy levels only, near 1000000 new lines were generated

of that quality. The high-resolution transitions are available in ExoMolHR [180].

Several recent studies have used the MM line list for methane to refine atmo-
spheric models and retrievals for exoplanets. Zhang et al. [650] used it to update
opacities in their analysis of JWST/NIRCam emission spectra for HD 189733b, one
of the most extensively studied exoplanets, and found evidence of methane deple-
tion. Schleich et al. [651] generated synthetic spectra to assess the impact of differ-
ent temperature-pressure profile assumptions on retrieval accuracy for WASP-39b,
showing that an isothermal profile does not adequately describe the atmosphere.
Schmidt et al. [652] confirmed the detection of '2C'H, (~ 40) in K2-18b, using
opacities from MM in their POSEIDON model and the “10to10” line list in their
BeAR model, demonstrating that their methane detection is robust across retrieval
frameworks. Lastly, [653] incorporated the line list into their radiative transfer
model PUMAS to study aerosols in WASP-39b. Additionally, for GI 229 B, the
first T-type brown dwarf discovered, Kawashima et al. [654] obtained a C/O ratio
consistent with its host star. Their study also validated molecular line lists using a
high-resolution spectrum of the atmosphere, revealing a poorer fit with the ExoMol
“34t010” line list [414], but better agreement with HITEMP [105] and the MM line

list.



Chapter 6

Assignment of methane spectra

This project builds upon the previous work involving the Marvelisation of the MM
line list performed by Yurchenko et al. [3]. The aim is to improve the line list qual-
ity through the incorporation of newly assigned experimental transitions. During
the MARVEL project for methane, we compiled an extensive collection of sources
containing valuable and accurate methane spectral data. Table 6.1 summarises in-
formation from 51 such sources that contain lines we did not use because they are
unassigned, or partly unassigned. Our goal was to provide full quantum number
assignments to as many of these lines as possible, using the MM line list (stick
spectrum at 296 K shown in Figure 6.1) as a reference guide. These newly assigned
transitions were then incorporated into MARVEL, allowing us to derive updated
empirical energy levels. This iterative process ultimately will lead to further im-
provements in the MM line list. In this chapter, I present the work performed on
14 of the 51 sources incorporated into the MARVEL project update (see Table 6.2).
This update includes new line assignments derived from these sources, as well as

newly published assigned transitions from recent experimental studies.



range in wavenumbers cm ™!, and number of provided spectral lines.
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Table 6.1: Summary of experimental sources collected. Each entry lists the source, spectral

Sources Wavenumber Range # Lines
72HuPoVa [655] 41364288 452
T7Berger [556] 2850-3100 237
780wPaDo [563] 2916-2918 32
80PiHiBe [656] 9000-9155 108
81BrToHu [17] 2400-3200 33
82HuLoRo [657] 2930-3250 595
83FrlIlFi [587] 2916-2917 13
83PiChGu [658] 2250-3260 191
84MaFrPr [659] 2940-2995 6
85HiLoBr [660] 1568-1932 13
85MaFrPr [661] 289272933 20
8876-8938 10
88Brown [513] 3700-4136 223
88Margolis [662] 5500-6180 1312
89VaCh [596] 1270-1317 11
90Margolis [663] 5597-5635 1600
91CaChSt [664] 13702-13887 39
93LuLoGa [665] 11539-12756 32
94BoLiRe [660] 11220-11313 137
95CaPelo [667] 11245-11312 30
95Si0b [668] 13470-14025 869
95TsSa [669] 11200-11335 269
96Si10b [670] 7128-7373 293
97Pine [671] 3028-3122 103
98BoRePI [672] 5500-6180 40
15434 (800 K)
03NaBe [673] 2000-6400 22163 (1000 K)
25727 (1273 K)

Continued on next page
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Sources Wavenumber Range # Lines
6775-6789 14
05Brown [496] 7467-7564 9
9001-9111 27

07LuGo [674] 11870-11930 48
08FrWaBu [675] 5860-6185 1309
08KaGaRo [676] 5860-7700 128
09GaKaCa [677] 5852-6181 845
09ScKaGa [495] 7351-7655 3474
10CaWaKa [678] 6716-7655 12865

5070 (80 K)
11MoKaWa [679] 7541-7919

7690 (294 K)
12CaWaMo [486] 5854-7919 23138
12HaBeMi [14] 1067-4900 160840 (573K -1673 K)

19940 (80 K)
12WaMoKa [680] OTIT=T89 24001 (296 K)
12GaChZh [681] 6038-6050 72
13CaleMo [647] 5855-6183 9228
13MaPrMo [682] 7040-7378 654
15BeKaCa [683] 7908-8345 12703
15BeLiCa [684] 9028-10435 7786
15HaBeBa [412] 2600-5000 194129 (473K -1173 K)
15MaKcVa [622] 882-3434 2422
18GhVaMo [685] 5693-6257 177
18SeSiLu [686] 9057-9167 36
19WoBeRe* [687] 5200-9200 4047349 (295 K-1000 K)
20YaLiPI [460, 688] 6075-6078 90
20YaLiPIb [688] 6077 2
21MaYuSu [689] 6770-7570 23390
21YoBeDu [15] 2750-3200 300
22Lucchesini [690] 12799-12840 112

Continued on next page
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Sources Wavenumber Range # Lines

23CaKaVa [691] 10800-14000 12800

* Compilation of measured spectra in several temperatures and resolutions.

6.1 Methodology

The general methodology we followed can be broadly described in the following

steps:

1. We collect the experimental line positions along with intensities, when avail-
able, and generate the corresponding MM line list at the appropriate temper-

ature for comparison.

2. We match individual or grouped spectral lines between the experimental data
and the MM line list at the corresponding temperature, using Python tools.
In more detail, as a first step, we find “trivial” matches to transitions which
are already present in our database, and usually correspond to the strongest
lines. These lines are the so-called “Ma”-“Ma” transitions, as they connect
two levels already MARVELised in the . states file. Matching new mea-
sured spectral lines with such transitions gives us an idea for the accuracy of
the lines in this specific source.

The second step is to identify matches with transitions linked to “Ca” (cal-
culated) energy levels in the MM line list. These matches are particularly
valuable because including them in MARVEL yields new empirical energy
levels, improving the accuracy of the line list beyond purely theoretical pre-
dictions. To illustrate this, we present a spectral segment where lines labelled
as “Ma” and “Ca” have been matched between the experimental data and the

MM theoretical predictions (see Figure 6.2).

3. We validate the assignments through the MARVEL procedure, mainly by
checking combination differences; this involves comparing the energy dif-

ferences between pairs of transitions that share a common upper or lower
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Figure 6.1: MM stick spectrum at 296K generated with EXOCROSS [8].

level. This step often requires revisiting and refining assignments when in-

consistencies are detected. For example, one recurring difficulty involved the

characteristic triplet patterns of methane, arising from its A, E, and F sym-

metry components. These triplets often appear as closely spaced lines in the

spectrum, making it challenging to assign each transition unambiguously.

The general strategy of the codes used starts with filtering the MM lines to

correspond to the approximate spectral range of each experimental dataset. This

reduces computational load and excludes irrelevant transitions. We also apply a

minimum intensity threshold.

Initial intensity tolerance criteria are set relatively relaxed, typically allowing
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Figure 6.2: Assigned lines from 12HaBeMi [14] at 573 K, distinguishing “Ma” (light blue)
and “Ca” (dark red) labelled transitions.

up to a 60-80% difference between experimental and MM intensities to accommo-
date uncertainties in both measurements and theoretical predictions. This allowed
for multiple candidates in some cases, and then the closest match of intensity and
position was chosen. Beyond numerical tolerances, stick spectra were visually as-
sessed to strengthen assignment confidence. For instance, when a particular line’s
assignment was well established, differences in intensity and line position relative

to neighbouring lines aided in assigning nearby transitions with greater certainty.

Line position tolerances vary depending on the specific case. We typically be-
gin with a very strict tolerance such as the reported experimental uncertainty, to
identify any obvious matches. However, in many instances, especially at higher
polyads where the differences between calculations and MARVEL are more promi-
nent, we applied a more relaxed tolerance, ranging from a few times the experi-

mental uncertainty up to 1-4 cm™!.

This broader window allowed us to capture
all potential candidates, after which we selected the closest match based on line
position. Outliers were further scrutinised. MARVEL helped eliminate inconsistent

assignments, and we also reviewed the observed—calculated (obs. — calc.) deviations
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Figure 6.3: Large obs. — calc. values between experimental 21YoBeDu spectral lines and
matched “Ca” MM lines.

across each source to flag any remaining mismatches. “Calc” in the context of this
chapter refers to values taken from the MM line list. These may correspond either
to theoretical calculations or to energy levels that have already been MARVELised.
We use the term “calc” primarily to contrast with “obs”, which denotes values ob-
tained directly from the experimental datasets discussed throughout this chapter.
An example of this are five lines from the source 21YoBeDu [15] that displayed
obs. — calc. values between -0.05 cm™'to -0.08 cm™!with the MM lines that they

matched with as seen in the Figure 6.3.

Even though the upper levels of these transitions were calculated, we don’t
expect such large obs. — calc. values in polyad 2. Therefore, these lines require
reassessment, and unless a more reliable assignment can be made, they should be

left unassigned at this stage.

When lower-state energies were available in the experimental source, these
values were used as supplementary constraints to support or confirm assignments,

applying loose matching criteria to accommodate possible deviations.

Robust quantum numbers, such as the rotational quantum number J and the
symmetry label C, were fixed in the matching process if they were available from

the experimental source. In cases where this strict matching failed, these quantum
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number criteria were relaxed to identify plausible assignments without compromis-

ing overall accuracy.

To assist with complex line assignments involving closely spaced transitions,
we used a Combination Differences (CD) method, where we computed all plausible
transitions between a set of excited state energies produced by MARVEL, and lower
energy states (e.g., ground vibrational states), applying the quantum number selec-
tion rules (see Equation 5.6 and Equation 5.7). These generated transitions were
then matched against experimental spectral lines. This comparison helps identify
which transitions are reliably assigned and which may be outliers or require reas-

signment.

In particular, we used this method to resolve conflicts in the assignments we
attributed to some of the 21MaYuSu [689] transitions. The CD code generated all al-
lowed transitions between polyad 5 and polyad 0 levels. For example, two such lines
matched on wavenumber and loosely on lower state energy with the two measured
lines labelled 21MaYuSu.2174 and 21MaYuSu.3945. The other transitions defining
the same upper energy level have the tags 21MaYuSuc¢,.1259, 21MaYuSuc,.1679,
21MaYuSuc¢,.1351, 21MaYuSuc,.1527, and 21MaYuSuc,.15819 and have taken
their assignments from MM lines connected to a “Ca” upper level. So, in total a
single level is defined by these seven transitions, all from this new source. These
lines form two groups that support conflicting assignments for the same upper en-

ergy level. The Table 6.3 summarises these groups:

Group 1 includes the lines 21MaYuSu.2174 and 21MaYuSuc,.1259. Their
closely matching MARVEL energies indicate one consistent assignment of the up-
per energy level. Group 2 consists of the 21MaYuSu.3945 together with the lines
21MaYuSuCa.1351 and 21MaYuSuCa.1679. This set supports an alternative as-

signment for the same upper level, differing slightly in energy from Group 1.

The outliers 21MaYuSuc,.1527, and 21MaYuSuc,.15819 are transitions that
do not fit clearly into either group and require reassignment. By comparing the

average energies derived by these transition groups, we can identify which assign-
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Table 6.2: Overview of methane spectroscopic sources evaluated, including reference,
spectral range in cm~!, total and assigned line counts, experimental method,

and temperature of measurement.

Sources Range Total # lines  # Assigned lines Method Temperature (K)
780wPaDo [563] 2916-2918 32 32 Stimulated Raman Gain 296 (assumed)
81BrToHu [17] 2400-3200 33 32 FTIR absorption 296
82HuLoRo [657] 2930-3250 599 599 FTIR absorption 296 (assumed)
85HiLoBr [660] 1568-1932 13 13 FTIR absorption 302
88Margolis [662] 5500-6180 1312 1254 FTIR absorption 296
88Brown [513] 3700-4136 223 223 FTIR absorption 296
89VaCh [596] 1270-1317 11 11 Tunable Diode Laser absorption 130-296
97Pine [671] 3028-3122 103 103 Difference-Frequency Laser absorption 295
6775-6789 14 14
05Brown [496] T467-7564 9 9 FTS absorption 296
9001-9111 27 26
12HaBeMi [14] 1067-4900 3256 1124 FTIR emission 573-1673
13MaPrMo [682] 7040-7378 654 16 Tunable Extended Cavity Diode Laser absorption 28
20YaLiPl1 [460, 688] 6075-6078 90 56 Cavity Ring-Down absorption 296
21MaYuSu [689] 6770-7570 23390 7248 Dual-Frequency Comb absorption 296-1000
21YoBeDu [15] 2750-3200 300 240 FTIR absorption 296-1098

Table 6.3: Energy Level: P=5,J =4, C=F, a = 146. Avg Energy Value: E =
7171.650221 cm™~'derived from a MARVEL run.

Tag Transition Energy Level Diff. from Avg Lower State Avg. Group Energy
Group 1

21MaYuSu.2174 7066.532488 7171.311662 -0.339 04,F,1 7171.311927
21MaYuSu_Ca.1259  7108.436188 7171.312192 -0.338 0,3,F3,1 7171.311927
Group 2

21MaYuSu.3945 7014.415513  7171.542612 -0.108 0,5,F>,1 7171.543122
21MaYuSu_Ca.1351  7108.667288 7171.543292 -0.107 0,3,F,1 7171.543122
21MaYuSu_Ca.1679  7066.764288 7171.543462 -0.107 0.4,F,1 7171.543122
Outliers

21MaYuSu_Ca.1527  7066.828288 7171.607462 -0.043 04,F,1 7171.607462
21MaYuSu_Ca.15819 7067.911688 7172.690862 1.040 0.4,F,1 7172.690862

ment is more consistent with the observed data and try to reassign one of the groups

accordingly to a more accurate upper (and maybe lower) level.

6.2 The experimental sources

Below we consider each of the fourteen sources in turn and include details on the

assignment procedure. Information about the sources can be found in Table 6.2.

1. 21YoBeDu

The experimental data from the study by 21YoBeDu [15] consist of high-
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Figure 6.4: Residuals (obs — calc) for assigned transitions in the 21 YoBeDu dataset. La-
bel “Ma”/“Ca” detones that the matching MM line is linked to a MAR-
VELised/calculated upper level.

resolution infrared measurements of methane line positions. A total of 953
lines were observed in the v3 vibrational band (polyad 2) over the wavenum-
ber range of 27503200 cm~! with average line position uncertainty 0.00015
cm~!. The spectra were recorded at five different temperatures: 296 K, 463
K, 681 K, 894 K, and 1098 K, using a high-resolution Fourier transform in-
frared (FTIR) spectrometer. The line positions are provided assigned except
for the counting numbers. To get the counting numbers we matched the ex-
perimental data with the MM lines based on matching the upper and lower
quantum labels (J/,PI,C/,J”,P",C”). Among candidates meeting these criteria,
the match with the closest line position and best agreement in intensity was

selected.

The residuals between the observed and the corresponding MM line posi-
tions (obs. — calc.) were analysed in two spectral regions. For transitions
with line positions < 3000 cm~ !, the mean residual was 0.0007 cm~! with a
standard deviation of 0.004 cm~!. For transitions with line positions >3000
cm~!, the mean obs-calc value was 0.001 cm~! with a standard deviation
of 0.004 cm™!, indicating tighter agreement in this region as shown in Fig-
ure 6.4. Some transitions were observed at multiple temperatures, exhibiting

very similar line position wavenumbers. After accounting for duplicates, al-
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Figure 6.5: Stick spectra of methane as reported in 21 YoBeDu [15], grouped into two pan-
els by temperature range. Assigned lines are in pink, unassigned in green.

lowing their difference in wavenumber to be up to 0.005 cm™!, the number
of unique transitions is 300. Of these, we assigned 240 transitions fully and
included them in the MARVEL procedure. We validated 234 out of the 240.
One line was invalidated, and from the remaining, the 219 were validated
against other lines in the network. Figure 6.5 shows the measured transitions
across various temperatures, highlighting those we successfully assigned ver-

sus those that remain unassigned.

For a small number of transitions we manually increased the uncertainties
from ~ 1070 to ~ 10~ to achieve better agreement with the other transitions

used as input for MARVEL.

A small subset of transitions had discrepancies between our quantum num-
ber assignments and those reported in the experimental source [15]. These

differences are detailed in Table 6.4.

2. 21MaYuSu



6.2. The experimental sources 164

Table 6.4: Comparison of assigned transitions (J branch and C') with those reported in
21YoBeDu [15]. Only transitions where discrepancies in quantum number as-
signments occur are shown.

Line position (cm~!) Our assignment Paper’s assignment

3048.1527 RQ2) F» R2) F
2999.0604 PQ)E P()E
2885.3514 P(13) Fy P(13) K,
2885.7612 P(13) A, P(13) A,
2885.8479 P(13) Fy P(13) F,
3157.4815 R(14) E R(14) B,
3166.0836 R(15) F, R(15) P,
3166.7250 R(15) P, R(15) F
3174.5349 R(16) A R(16) A,
3183.0475 R(7)E R(17) B,
2886.6087 P(13) > P(13) F,
3113.7068 R(1) B R(I)E
3157.5059 R(14) Fy R(14) E
3148.8127 R(13) Fy R(13) E

Malarich et al. [689] recorded methane spectra across a temperature range
of 296 — 1000 K with an accuracy of approximately 107> cm™' with a dual-
frequency comb spectrometer. Line positions are reported along with inten-
sities at 296 K and estimated lower-state energies (E”) for 11647 transitions

out of the 23390 provided.

To assign complete quantum labels using MM, we performed a matching pro-
cedure based on both line position and intensity. In cases where multiple
potential assignments were identified, we applied a combination difference
method. This approach involved generating all plausible icosad—monad tran-
sitions using MARVEL with our full set of experimental transitions. These

lines were then evaluated to identify consistent assignments.

In total, 10,275 transitions were fully assigned. Of these, 7,248 were validated

with MARVEL. This means that they were either consistent with the network
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of all the other transitions in our database, or the network lacked other tran-
sitions leading to the same upper levels to flag inconsistencies. Among the
these transitions, 4 belong to the polyad band 6-1, while the remaining tran-
sitions fall within the 5-0 band. Since relatively few transitions have been
assigned in the 5-0 band so far, some of the matches were ambiguous. Re-

1

garding the input uncertainties, we increased them to 10~ cm~! in order to

achieve agreement with the rest of the transitions in the MARVEL network.

The residuals (measured minus MM) for the assigned lines exhibit a mean of
-0.11 cm™'and a standard deviation of 0.33 cm~!. The obs-calc with Ma-Ma
lines have a mean value of 0.0005 cm ™!, so the large residuals are caused by
the differences of the experimental values with the calculated values. This
is also shown in Figure 6.6. Notably, 6,832 of the transitions contribute new
energy levels that had not been previously MARVELised, covering rotational
quantum numbers from J=0 to J=16. However, due to the lack of enough
assigned transitions on these high polyads, 3,626 of these transitions define
new levels on their own, with no other transitions connected to the same level,
making these levels more uncertain until further supporting transitions are
identified. The assigned, unassigned, and assigned but not validated lines are

illustrated in Figure 6.7.

. 20YaLiP1

Yasoufi et al. [460] provide a total of 96 line positions, one of which is also
measured in [688]. These measurements were performed using cavity ring-
down spectroscopy. Of the 96 lines, 6 were identified in the original ex-
perimental paper corresponding to the 2v3 R(6) transition in polyad 4 and
included in the earlier MARVEL project (see chapter 5) after we added count-
ing numbers to them. The remaining 90 lines had not been assigned in the
experimental study; in this work, we assigned 56 of them and validated them
all through MARVEL. Among these newly assigned lines, 7 transitions be-
long to the 5-1 polyad band and 49 to the 4-0 polyad band. Additionally,

27 of these transitions contribute to new MARVEL energy levels, with only 3
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Figure 6.6: Residuals (obs — calc) for assigned transitions in the 21MaYuSu dataset.

of them supported by other transitions leading to the same levels. Figure 6.8
shows the coinciding lines between the experiment and MM, as well as the

lines that do not match.

The residuals for the assigned lines have a mean value of -0.0013 cm ™! with

a standard deviation of 0.007 cm~! as shown in Figure 6.9.

4. 13MaPrMo covers the wavenumber range 7050-7350 cm~! using a direct
absorption tunable diode laser spectrometer. Line intensities are reported at
two temperatures: 28K and 81K. The authors explicitly identified 16 of the
observed transitions as R(0) transitions; however, no counting numbers were
provided. Since the ground state is of A| symmetry, we were able to determine
the appropriate counting numbers by cross-referencing with the data by Rey

et al. [623].

One line at 7152.7205 cm~! was excluded from our assignment because it is

identified in Rey et al. (16ReNiCa) [477] as a 13CH, transition.
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Figure 6.7: Stick spectrum of 21MaYuSu at 296K. Pink: assigned (validated through MAR-
VEL), Blue: assigned (not validated), Green: unassigned lines.

The authors also reported 655 additional unassigned transitions with esti-
mated lower-state energies in the supplementary material. These lines include
intensity data, but due to time constraints, we were not able to assign them as

part of this thesis.

In total, the 15 transitions define 15 MARVEL levels in polyad 5, C = A,. Five

of these are confirmed with combination differences.

5. 12HaBeMi

Hargreaves et al. [ 14] recorded laboratory emission spectra of hot methane us-
ing a Fourier transform infrared spectrometer over a broad temperature range
from 573 K to 1673 K. The data cover both hot and cold polyad bands in
the wavenumber range 1067-4900 cm~!, with line position uncertainty bet-
ter than 0.005 cm™!. This is the uncertainty we used as input for MARVEL.

Many of the observed lines are identified as HITRAN lines; the remaining
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Figure 6.8: Top subplot: Experimental data from 20YaLiPl. Bottom subplot: MM data.
Pink lines indicate matched transitions, light blue lines represent unassigned
experimental lines, and black lines show MM transitions that do not match any
20YaLiPI lines.

lines, not found in the HITRAN database, were the focus of our assignment
project.

Lower-state energies were estimated by the authors for 1923 of the lines not
present in HITRAN, for the temperature 573 K. Out of 3256 lines reported
at this temperature, we have successfully assigned 1124 transitions. All but
14 assigned transitions were validated against the MARVEL database—the 14

lead to floating polyad 2 and 3 levels not supported by other transitions.

The residuals between the experimental and MM line positions for the as-
signed lines have a mean of 0.00019 cm ™! and a standard deviation of 0.0039
cm™!. A significant number of lines remain unassigned due to spectral con-

gestion (see Figure 6.10).

The authors reported consistent line positions across all temperature measure-
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Figure 6.9: Residuals (obs — calc) for assigned transitions in the 20YaLiPl dataset. La-
bel “Ma”/“Ca” detones that the matching MM line is linked to a MAR-
VELised/calculated upper level.

ments, assigning the same wavenumber to transitions observed at multiple
temperatures. This consistency enables a powerful strategy: starting from the
well-assigned 573 K spectrum, we can track the same transitions at higher
temperatures and use them as anchors to assist in assigning additional lines in
these more congested spectra. We have begun applying this approach to the
673 K and 1073 K datasets. Although a full analysis is still in progress, an
example plot of the 1073 K spectrum is shown in Figure 6.11, where the blue
lines represent transitions successfully identified by referencing their coun-

terparts at 573 K.

6. 05Brown

Brown et al. [496] performed Fourier Transform spectroscopy, providing a to-
tal of 87 lines across several wavenumber ranges. Specifically between 9001

and 9111 cm~!, 37 lines were reported. Of these, 10 lines were already as-
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Figure 6.10: Top subplot: Experimental 573 K data from 12HaBeMi. Bottom subplot:
MM lines. Pink lines indicate matched transitions, light blue lines represent
unassigned experimental transitions.

signed by Nikitin et al. [466] and included in our first MARVEL project. From
the remaining 27 lines, all but one were assigned in this work, as belonging

to the polyad 6 band.

Between 7467 and 7564 cm ™! 36 lines were reported. Out of these, 27 lines
were included in the initial MARVEL project after we provided full assign-
ments by using transitions by Tanner et al. [487]. In the present project, we
used lines from the newly assigned source 21MaYuSu (5-0 band) for the re-
maining lines. All except one were validated through MARVEL. Between
6775 and 6789 cm~! 14 lines were reported, all of which have been assigned

with the MM line list.

Overall, the transitions assigned from this source are connected to already
MARVELised energies with only one determining a new energy level. The
stick spectrum is shown in Figure 6.12. The residuals for the assigned lines

have a mean value of —4.8 x 107> ¢cm~! with a standard deviation of 0.003
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Figure 6.11: The 1073 K spectrum from 12HaBeMi [14], with blue lines indicating tran-
sitions previously assigned at 573 K. These matches can help guide new as-
signments at higher temperatures.

cm~! for the range 9001 and 9111 cm™~!. For the range 6775 - 6789 cm™!
the residuals show a mean of —3 x 10~* cm~! with a standard deviation of

5% 1072 cm L.

7. 97Pine

Pine [671] used direct absorption spectroscopy employing a difference-
frequency laser to measure the v3 band (polyad 2) P and R branches of the
methane spectrum in the range 3028-3122 cm~!. Intensities are provided at
room temperature, along with line positions, J assignments, and symmetries.
We assigned counting numbers to the 103 lines provided based on line posi-
tion and intensity at 296 K (Figure 6.13). They all contribute to energy levels
that have already been MARVELised. No uncertainty is mentioned in the
original source for the line positions, so we used 0.0001 cm~! based on com-

bination differences. The residuals between the experimental and the MM
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Figure 6.13: Top subplot: Experimental data from 97Pine. Bottom subplot: MM P and Q

branches in the same range.

lines have a mean value of -0.0002 cm ! with a standard deviation of 0.0002

cm_l.

. 89VaCh

Varanasi et al. [596] reported measurements of 11 spectral lines in the v4 vi-
brational band using a tunable diode laser at several temperatures. All relevant
quantum numbers, except for counting numbers, were provided; the missing
counting numbers were straightforwardly assigned by cross-referencing with
other sources in our database. No new MARVEL energy levels were derived
from these transitions. Although line position uncertainties were not reported
in the original study, we adopted a value of 0.001cm™!, based on consistency

with other transitions.

. 88Brown

Brown et al. [513] measured the methane spectrum in the range 3700-4136

cm~! using Fourier transform spectroscopy. The line position uncertainties
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Figure 6.14: Top subplot: Experimental data from 88Brown. Bottom subplot: MM data.

10.

Pink lines indicate matched transitions, and black lines show MM transitions
that do not match any 05Brown lines.

range from 0.0002 to 0.003 cm~!. A total of 235 spectral lines are provided
with line strengths at room temperature. Of these, 12 lines had already been
incorporated into the MARVEL database, having been identified by the au-
thors as the R(0) and R(4) transitions of the 3v4 band. In our earlier MARVEL
work, we determined their symmetry assignments and the counting numbers.
For the remaining 223 lines, we assigned them using the MM line list based
on line position and intensity at 296 K (Figure 6.14). They correspond to tran-
sitions within the 3—0 polyad band and they all contribute to energy levels that
have already been MARVELised. The residuals between the experimental and
the MM lines have a mean value of -0.0001 cm™! with a standard deviation

of 0.003 cm™!.

88Margolis

Margolis et al. [662] measured line positions and intensities in the

5500-6180 ¢cm™! spectral region, covering the 2v3 band of methane, with
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average line position uncertainty of 0.0002 cm~'. The measurements were
performed at room temperature (296 K) using high-resolution Fourier trans-
form spectroscopy. The dataset includes 144 lines with assigned rotational

quantum number J values and 1168 lines without.

In total, we assigned 1255 lines in this region (Figure 6.15). Among these, 52
lines are connected to previously calculated energy levels, thereby yielding
new empirical energies in the tetradecad (polyad 4) for J = 11 to J = 14, with
7 of these lines being reinforced by additional transitions that link to the same
upper levels. Notably, as illustrated in Figure 6.15, four intense features near

5690 cm~! remain unassigned.

The residuals between the experimental and the MM lines have a mean value
of 0.001 cm~! with a standard deviation of 0.005 cm~!. As shown in Fig-
ure 6.16 systematic deviations are evident. In two distinct regions along the
wavenumber axis, the residuals show a clear upward drift, suggesting local
discrepancies of the experimental data with the calculated values. Notably,
the Q-branch transitions with J=11-14 near 5990 cm ™! exhibit residuals con-

1

sistently between 0.01 and 0.05 cm™". In addition, a group of R(13) lines

near 6141 cm~! also shows similar elevated deviations.

85HiLoBr

Hilico et al. [660] measured 13 lines in the hot band vz — v4 band between
1568-1932 cm™~! using a Fourier transform spectrometer. We assigned count-
ing numbers based on proximity in line position and matching values of J
and symmetry with MM lines. The reported line position uncertainty is 0.002
cm~!. None of these lines contributes to new empirical energy levels. The
residuals between the experimental and the MM positions have a mean of
0.0004 cm™! and a standard deviation of 0.0004 cm~!, which likely suggests
an issue with calibration. The experimental stick spectrum with the corre-

sponding MM lines is shown in Figure 6.17.

12. 82HuLoRo
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Figure 6.15: Top subplot: Experimental data from 88Margolis. Bottom subplot: MM data.

13.

Pink lines indicate matched transitions, light blue lines represent unassigned
experimental lines, and black lines show MM transitions that do not match
any 88Margolis lines.

Hunt et al. [657] recorded spectra using a Fourier transform spectrometer
with the accuracy of line positions estimated to be 0.0005 cm~! for isolated
lines and 0.001 cm~! for blended lines. A total of 599 lines are reported in the
range 29303250 cm~! within polyad 2. Symmetries and J assignments are
provided. We assigned counting numbers to all the lines (Figure 6.18), with
88 of them yielding new MARVEL energies, but 20 of them leading to energy
levels as single transitions. In addition, 7 of the newly assigned lines were
not validated with MARVEL. The residuals between the experimental and the
MM line positions have a mean of —0.002 cm~! and a standard deviation of

0.05 cm™ !,

81BrToHu

Brown et al. [17] reported 33 line positions and intensities in the range
2400-2100 cm™! for the P and R branches of the vy + v3 — vy hot band, us-

ing a Fourier transform spectrometer. The measurements were made at room
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Figure 6.16: Residuals (obs — calc) for assigned transitions in the 88Margolis dataset.

14.

Label “Ma”/*“Ca” detones that the matching MM line is linked to a MAR-
VELised/calculated upper level.

temperature with estimated uncertainties of 0.001 cm~!. J assignments are

provided for all lines, but not symmetries C.

We successfully matched 32 of the 33 lines to transitions already present in
other sources and they do not result in any new MARVEL energy levels. All
lines are validated with MARVEL. The residuals between the experimental
and the MM line positions have a mean of -0.001 and a standard deviation of
0.004 cm™~!. In Table 6.5, we highlight several lines for which our proposed

quantum number assignments differ from those reported in the original work.

780wPaDo

Owyoung et al. [563] reported 32 Raman spectral lines from the v{ band and
Q branch using direct continuous-wave stimulated Raman gain spectroscopy.
The line position uncertainty is 0.01cm™', which we adopted as the input un-

certainty for our MARVEL analysis. Rotational quantum numbers (J) and
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Table 6.5: Comparison of assigned transitions (P — P", J branch, and C") with those re-

ported in 81BrToHu [17]. Only transitions where discrepancies in quantum
number assignments occur are shown.

Line position (cm~!) Our assignment Paper’s assignment

3101.0968 3-1R(B) E 3-1R)
3101.3079 3-1R(8) F» 3-1R)
3101.5996 3-1R(8) F» 3-1R9)
3109.2032 3-1RO9) F; 3-1 R(10)
3109.3033 2-0R(8) Ay 3-1 R(10)
3109.3893 3-1R9) F» 3-1 R(10)
3109.7850 2-0R(8) F» 3-1 R(10)

symmetry assignments were provided in the original study. We assigned
counting numbers by cross-referencing these transitions with others in our

database. No new MARVEL energy levels were derived from this dataset.

6.3 CH; MARVEL update

We incorporated into MARVEL several newly published experimental spectra for
methane, including the lines we assigned, as described in the previous subsection.
Since our initial MARVEL analysis, which included data published up to July 2023,
we have expanded our database with the sources listed in Table 6.6 and described

below.

1. 24DiCaWa

Ding et al. [18] reported high-resolution methane spectra measured using a
tunable external-cavity diode laser in combination with a stabilised optical
cavity. The spectra were recorded at 296 K, with a frequency accuracy better
than 6.7 x 107> cm™ 1.

A total of 20 transitions were reported with room-temperature intensities, and

with full assignments for seven of them, no assignments for two, and partial
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For each source, the
wavenumber range, associated polyad bands, number of assigned and validated
lines (A/V), and the mean uncertainty used are provided.

Source Range (cm™!) Polyad Band(s) AV Mean Unc. (cm™!)
24HjOISi [27] 5800-6100, 9070-9370 Py—Py, Ps—P> 145/145 3x 1077
24NiReCa [692] 7606-7919 PPy 1382/1382 2% 1073
24NiSoPr [693] 900-1050 P-P, PPy 1246/1244 1073
24DiCaWa [18] ~5997 PPy 15/14 2% 1073
21MaYuSu [689] 6770-7570 Ps—Py, Ps—P; 10274/7248 1073
21YoBeDu [15] 2750-3200 PPy 234/240 104
20YaLiP1 [460] 6076-6078 P,—P 62/62 7% 1074
13DaNiTh [483] 4600-4869 P —P 1570/1560 1.0E-03
13MaPrMo [682] 7040-7378 Ps—Py 15/15 3x1073
13CalLeWa [484] 5855-6244 P,—F 3400/3378 1.5%x 1073
12HaBeMi [14] 1067-4900 Pi=bo. PPt B=Ps o104 5%1073
Pr-Ry, P3—Py, P+—P,

6775-6789, 7478-7564 3

05Brown [496] Ps— Py 85/86 2x10
9001-9111

05PrBrMa [497] 4100-4635 P;—F 1432/1398 2% 1073
98BrKaRu [505] 1260-1334 P —P 285/270 2% 1073
97Pine [671] 3028-3122 I o)) 103/103 x 1070
89VaCh [596] 1270-1317 P —F 11/11 1073
88Margolis [662] 5500-6180 PL—P 1255/1255 2% 1074
88Brown [513] 3876-3891 P;— P 235/232 104
85HiLoBr [660] 1568-1932 b —P 13/13 2x1073
83DeFrPr [515] 3034-3068 Pi—P 10/0 2% 1073
82HuLoRo [657] 2930-3250 P —F 599/588 5% 1074
81BrToHu [17] 2400-3200 Ps—P,P—P 32/32 1073
780wPaDo [563] 2916-2918 bP—-P 32/32 102

assignments for the rest. Out of these 20 transitions, we provided complete

quantum number assignments in the Py — Py polyad band for 15 using the MM

line list. One of the 15 lines was invalidated, and 12 were validated against

other transitions in the network. However, a few discrepancies were observed

between our assignments and those proposed in the original paper, as detailed

in Table 6.7.

2. 24NiSoPr
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Table 6.7: Lower-state quantum number discrepancies between Ding et al. [18] and the

MM assignments (J,C o).

Wavenumber (cm~!)  Paper Assignment MM Assignment

5997.275347 11 Ay 1 11 F 2
5997.336688 11 Ay 1 11 E 1
5997.358972 11 Ay 1 11 K 1
5997.440732 11 Ay 1 11 K 3
5997.490137 11 K 2 11 1 3
5997.503450 11 Ay 1 11 F1 1

Nikitin et al. [693] measured 1246 assigned lines in the 900-1050 cm ™! range
and the P, — P;, P| — Py polyd bands, using a Fourier transform spectrometer.
The reported line position uncertainties are better than 0.001 cm~!, which is

the value we adopted as the input uncertainty for our MARVEL analysis.

During validation, we found that one of the reported assignments required
modification: the transition labeled 24NiSoPr.907 at 1025.714936 cm~! was
originally labelled as a P(14) F; line, but further analysis indicated that it
should instead be classified as a Q(13) F, transition. Additionally, two lines
could not be confirmed through MARVEL validation, but the rest 1244 were

validated with combination differences.

3. 24HjOISi

Optical-optical double-resonance spectroscopy was employed by Hjiltén et
al. [27] to measure transitions in the 9070-9370 cm ™! region. A total of
118 transitions were reported between the v3 and 3v3 vibrational bands. In
addition, 27 were measured between the vibrational ground state and the 2v3
state in the 58006100 cm ™! range. Altogether, 145 transitions were included
in MARVEL, 92 of which were successfully validated against other lines in the

1

MARVEL network. An average uncertainty of 10> cm~! was reported and

used in the MARVEL input.

4. 24NiReCa
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Nikitin et al. [692] reported 1382 measured and fully assigned transitions in
the wavenumber range 7606-7919 cm~! and polyads Ps — Py. As the au-
thors did not provide explicit uncertainties for the line positions, we adopted
a default uncertainty of 0.002 cm~! based on consistency checks using com-
bination differences. All transitions were successfully incorporated into the
MARVEL network. The MARVEL energies derived from these transitions in
polyad 6 show significant discrepancies when compared with the MM calcu-
lated energies with obs-calc ranging from -8 to -13 cm~! (the MM energies
are larger). This is likely due to differences in the labelling of polyad numbers
or counting numbers. Since no additional transitions are available to confirm

or refute these assignments, we have chosen not to modify them.

In total, incorporating the transitions we assigned using the MM line list from
the 14 sources described in section 6.2, along with newly published experimen-
tal data from the 4 sources detailed in section 6.3, resulted in 16,837 transitions
included in MARVEL, with 3050 of them being invalidated, 9440 of them being
validated by other transitions in the MARVEL network, and the rest 4347 of them
leading to floating energies (defined only by these single lines). These transitions

1

span a wavenumber range from 902 to 9111 cm™". The most densely populated

region of transitions lies between 6971 and 7510 cm~ ! (see Figure 6.19). The un-

-1

certainties of the lines vary, with a minimum of 10~ cm™!, a maximum of 8 x 103

cm~!, and an average uncertainty of approximately 1073 cm~!.

Table 6.6 summarises the experimental sources newly included in the present
MARVEL update. For each dataset, we provide the wavenumber range, associated
polyad bands, the number of assigned and validated transitions (A/V), and the mean
uncertainty used in the input. Here, “validated” refers to transitions that are either
not inconsistent with others or have no conflicting alternatives in the dataset. The
table also includes some previously incorporated sources for which the number of
validated transitions has changed compared to the earlier compilation (see Table 5.4
in the previous chapter). The distribution of all the lines in several polyad bands,

with the associated J ranges is shown in Table 6.8.



6.3. CH4y MARVEL update 183

Table 6.8: Summary of total input transitions per polyad band P —P" including number
of transitions and ranges the rotational quantum number J.

PP # Transitions MaxJ Min]

Cold bands
0-0 154 24 0
1-0 3948 29 0
2-0 4623 24 0
3-0 32592 23 0
4-0 22500 17 0
5-0 16262 16 0
6-0 1748 10 0
Hot bands
1-1 126 15 1
2-1 7040 29 1
3-1 2108 20 0
2-2 16 12 4
3-2 315 15 0
4-1 7316 18 0
4-2 35 8 0
4-3 43 9 1
5-1 29 9 1
6-1 3 5 1
6-2 144 9 0
7-3 4 4 1
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Figure 6.19: Distribution of newly assigned and validated methane transitions as a function
of wavenumber, binned in intervals of 100 cm~'. The height of each bar
indicates the number of transitions found within that wavenumber range.

Table 6.9: Summary of MARVEL energy levels per polyad. For each polyad, the table lists
the total number of energy levels, the range of rotational quantum numbers J,
the wavenumber energy range (cm~!), the number of states defined by more
than one transitions, and the mean uncertainty (cm~") of the energy levels.

Polyad # Levels Jrange Energyrange with CDs Mean Unc

0 281 0-27 0-3904 280 0.006
1 1190 0-28 1310 - 5334 1174 0.005
2 3389 0-29 2587 - 6760 2311 0.005
3 7727 0-23 3870-7018 6180 0.005
4 8303 0-18 5121 - 7669 5933 0.002
5 7580 0-16 6377 -8783 3126 0.002
6 1332 0-10 7696 - 9630 451 0.003
7 2 2-4 9832 - 9987 0 0.005

In total, with this update, we derive 29802 energy levels from 99006 transi-
tions. The new energy levels that were not included in the first MARVEL project
are illustrated in Figure 6.20. Most of the new levels belong to polyads 5 (5052
states) and 6 (999 states). With these additions, the total number of states in polyad
5 increases to 7580, of which 3 126 are confirmed through combination differences

(CD). For polyad 6, there are now 1332 states in total, with 451 confirmed by CD.
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Figure 6.20: Newly assigned MARVEL energy levels (in cm™!) as a function of rotational
quantum number J. Each point represents an energy level, with colour indicat-
ing the polyad to which it belongs. The size of each circle reflects the number
of combination differences (CDs) confirming that level (maximum CDs =14).

As a summary, Figure 6.21 shows the percentage of MARVELised levels in the
MM .states file before and after this assignment and update project, in com-
parison to the total number of states in each polyad. The main improvements are
observed in the increased number of MARVELised energies in polyads 5 and 6.
The uncertainties of the MARVEL energy levels were estimated using the bootstrap
method performed with 100 iterations. Table 6.9 provides a detailed overview of
the energy levels for each polyad, including the count of states, the rotational quan-
tum number J ranges, the spectral coverage in wavenumbers, and the number of
energies confirmed by CDs. The relevant files (transitions, energy levels, and seg-
ment file which maps the experimental sources with the right unit) are available in

https://github.com/kyrrk/Methane-Update.
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6.4 OQOutlook

A central goal of this work is to refine the methane line list by improving the accu-
racy of experimentally derived energy levels at progressively higher vibrational ex-
citations, with the ultimate aim of extending reliable coverage into the near-infrared
and eventually the visible region. Through the MARVEL framework, we have be-
gun to construct a highly accurate spectroscopic network of energy levels, validated
through combination differences, and compared with theoretical predictions. This

provides input for improving variational calculations.

Residuals between MARVEL and TROVE energies are found to increase with
both the rotational quantum number J within a polyad and with overall vibrational
excitation as seen in Figure 6.22. In polyad 4 we observe residuals as large as
0.8 cm™! even at low J values. Interestingly, the corresponding MARVEL levels
changed very little during this assignment project, implying that the discrepancies
may arise from systematic misassignments carried over from previous work. One
plausible explanation is that some transitions were mistakenly attributed to polyad
4, despite originating from nearby polyads. This case underscores the difficulty of

assigning transitions in spectrally dense regions.

In polyad 6, a branch of particularly large residuals is traced to transitions
included in the MARVEL input based on assignments that could not be verified
against other sources. The challenge ahead is to resolve ambiguities in existing as-
signments and to expand coverage into higher-energy regions. Addressing both will
require new experimental data, ideally under conditions that populate high-energy
states more strongly. In this regard, high-temperature spectra offer a promising path
forward. Data sets such as that of 12HaBeMi [14], along with other sources listed
in Table 6.1, contain numerous transitions, including hot bands, that could be as-
signed and incorporated into the MARVEL compilation moving forward. Another
promising method is the double-resonance approach, which selectively excites spe-
cific intermediate states to probe higher-lying vibrational levels. This technique can

provide highly accurate transition frequencies in otherwise sparsely characterized
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Figure 6.21: Comparison of the percentage of MARVELised states before and after incor-
porating new transitions.
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Table 6.10: Sources considered but not used in the assignment and MARVEL update project.
The wavenumber range in cm ™', and reason for exclusion are listed.

Source

Wavenumber range

Comments

72HuPoVa [655]
77Berger [556]
80PiHiBe [656]
82PoPaCh [585]
84MaFrPr [659]
85MaFrPr [661]
96Si0b [670]
91CaChSt [664]
93LuLoGa [665]
94BoLiRe [666]
95CaPelo [667]
95Si0b [668]
95TsSa [669]
07LuGo [674]
15BeLiCa [684]

22Lucchesini [690]

23CaKaVa [691]

4136-4288
2850-3100
9000-9155
2250-3250
2940-2995
2892-2935, 88768938
7128-7373
13702-13887
11539-12756
11220-11313
11245-11312
13470-14025
11200-11335
11870-11930
9028-10435
12799-12840
10800-14000

low accuracy
could not assign this range
observed energies provided

low accuracy

low accuracy

low accuracy
could not assign this range
could not assign this range
could not assign this range
could not assign this range
could not assign this range
could not assign this range
could not assign this range
could not assign this range
could not assign this range

could not assign this range

range covered by more recent measurements

regions, such as polyad 6, and can help resolve ambiguities in assignments while

expanding the coverage of high-energy states [457].

It is also worth noting that several sources in Table 6.1 contain transitions in-

volving very high polyads that were not analysed in the present study because the

energy ranges provided are too high to be able to assign with confidence currently.

Table 6.10 lists such articles along with all other sources we considered but ulti-

mately did not use, as well as the reasons for their exclusion. In contrast, Table 6.11

presents sources with transitions suitable for future analysis.
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Table 6.11: Summary of experimental sources for future work.
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Sources Wavenumber Range # Lines
83FrIlF1 [587] 2916-2917 13
83PiChGu [658] 2250-3260 191
90Margolis [663] 5597-5635 1600
98BoRePI [672] 5500-6180 40
15434 (800 K)
03NaBe [673] 2000-6400 22163 (1000 K)
25727 (1273 K)
08FrWaBu [675] 5860-6185 1309
08KaGaRo [676] 5860-7700 128
09GaKaCa [677] 5852-6181 845
09ScKaGa [495] 7351-7655 3474
10CaWaKa [678] 6716-7655 12865
5070 (80 K)
11MoKaWa [679] 7541-7919
7690 (294 K)
12CaWaMo [486] 5854-7919 23138
12HaBeMi [14] 1067-4900 160840 (573 K-1673 K)
19940 (80 K)
12WaMoKa [680] 6717-7589
24001 (296 K)
12GaChZh [681] 6038-6050 72

Continued on next page
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Sources Wavenumber Range # Lines
13Cal.eMo [647] 5855-6183 9228
13MaPrMo [682] 7040-7378 654
15BeKaCa [683] 7908-8345 12703
15BeLiCa [684] 9028-10435 7786
15HaBeBa [412] 2600-5000 194129 (473 K - 1173 K)
15MaKcVa [622] 882-3434 2422
18GhVaMo [685] 5693-6257 177
18SeSiLu [686] 9057-9167 36
19WoBeRe™* [687] 5200-9200 4047349 (295 K-1000 K)

* Compilation of measured spectra in several temperatures and resolutions.




Chapter 7

General Conclusions

The overarching motivation for this thesis as part of the ExoMol project is to en-
hance the accuracy and completeness of spectroscopic data used in high-resolution
cross-correlation spectroscopy (HRCCS), a powerful technique for detecting and
characterising exoplanet atmospheres. We have contributed to the improvement of
molecular line lists for three species of astrophysical interest: methane (CHy), mag-

nesium oxide (MgO), and titanium monoxide (TiO).

For MgO, we updated the LiTY line list [148] to include over 7000 empirical
(MARVEL) and semi-empirical (PS) energy levels to provide improvements to the
resolving power R = A /AL of transitions. The predicted shift (PS) methodology es-
timates missing energies by identifying systematic trends in the differences between
observed and calculated energy values (obs. — calc.) across a given vibronic state.
For unobserved levels, shifts were predicted via interpolation or extrapolation in J,
with associated uncertainties estimated conservatively from the local uncertainties
of existing MARVEL energies. In cases where experimental data existed for only

one parity component, the method allowed propagation of corrections to the other.

Notably, the PS method proved especially valuable for MgO due to the sparse
available experimental information. It enabled the inclusion of energy levels and
uncertainties for transitions otherwise inaccessible through direct measurement, sig-
nificantly improving spectral completeness. Ultimately, the updated LiTY line list
for MgO is considered suitable for HRCC studies in the windows 580 - 700 nm
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and 1900 to 10000 nm. However, the predicted shift methodology is only viable
when at least some rotational transitions of a given vibronic level are experimentally
known. The availability of data for the v =2,3 B 'X¥ state, as well as for any levels

of the b >X* electronic states, would greatly strengthen and extend the analysis.

Similarly, due to the limited availability of experimental spectra for the iso-
topologues *Mg!'70, **Mg!80, 2Mg'®0 and 2°Mg!%0, the isotopic extrapola-
tion (IE) method was employed. This approach uses accurate energy levels from
the main isotopologue **Mg!'®0 , obtained either from MARVEL or PS, to im-
prove the energy predictions for other isotopologues. This method relies on the
assumption that the differences between observed and variational energies in the
main isotopologue can be transferred to the others. This is in agreement with the
Born—Oppenheimer approximation, according to which all isotopologues share es-
sentially the same potential energy surface, since it is governed by the electronic

structure and only weakly affected by changes in nuclear mass.

In total, over 7,000 energy levels per isotopologue were updated using this
method, improving the expected accuracy of the resulting line lists. Uncertainties
were estimated based on those of the main isotopologue, scaled conservatively to
account for the extrapolation, and comparison with limited available experimental

data for the isotopologues 2>Mg'®O and °Mg!'®0O was performed.

In the case of TiO, new measured rovibronic transitions were incorporated into
the MARVEL framework, leading to a more complete and accurate energy level net-
work. These MARVEL-derived energies have been used to improve the Toto line list
[149], which now offers broad spectral coverage across the visible and near-infrared
regions, with high resolving power in the range 450-1500 nm. While external to
the work described in this thesis, the inclusion of Predicted Shift (PS) energy levels,
has extended the line list’s accuracy to higher rotational quantum numbers. No-
tably, the updated line list includes experimental data supporting HRCC studies in
the 590-630 nm range (15 870-16 950 cm™h).

Methane was the primary focus of this study, owing both to its critical role in
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exoplanetary characterisation, atmospheric modelling, and climate physics, and to
the abundance of available experimental spectroscopic data. To improve the avail-
able spectroscopic data, we performed an extensive collection of spectra from 96
experimental sources, which we processed using the MARVEL (Measured Active
Rotational-Vibrational Energy Levels) procedure. This allowed us to construct a
reliable set of empirical rovibrational energy levels for methane. These empirical
levels were used by Yurchenko et al. [3] to refine variational calculations using the
TROVE program. The resulting line list, MARVELous Methane (MM) contains over

7 million transitions with resolving power R > 100000.

Currently, Marvelised energy levels are complete and well-confirmed up to the
tetradecad (polyad 4), with partial and increasingly sparse coverage in the icosad
(polyad 5) and triacontad (polyad 6). As a result, the MM line list is highly accurate
in far- and mid-infrared region but loses accuracy at near-infrared wavelengths. Our
strategy to improve methane spectroscopy is based on an iterative approach that

gradually extends accurate energy level coverage to higher vibrational excitations.

In this study, we analysed previously unassigned or partially assigned experi-
mental spectra using the MARVELous Methane line list, allowing us to incorporate
6507 new empirical levels into the MARVEL compilation. Of these, 2009 are
confirmed through combination differences. Many newly assigned states belong to

polyad 5, a region previously lacking high-accuracy assignments.

The first step moving forward will be to investigate the large residuals observed
in regions such as polyad 4, and to determine whether these discrepancies arise from
systematic shifts or isolated misassignments. Where appropriate, we will attempt
to revise or reassign affected transitions in order to correct the observed deviations

between MARVEL and TROVE energy levels.

The MM line list will be updated by refitting the potential energy surface (PES)
to this expanded set of empirical levels. A new hybrid line list will be generated by
replacing theoretical energies with MARVEL ones wherever available. This updated

line list will then serve as a reference for assigning further high-resolution spec-
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tra. Table 6.11 contains 24 such experimental sources of various ranges and polyad
bands. We will particularly target transitions to higher polyads (Ps,Ps and beyond).
As these new assignments are validated and incorporated into MARVEL, they will
be used to refine the variational calculations again, and the accuracy and complete-
ness of the line list will be successively improved. During this process, the quality

change of the line list will be assessed by comparing with known data.

This iterative procedure ensures that each stage improves the accuracy of the
next, allowing assignments to be made in increasingly higher polyads, and increas-
ingly dense and blended spectral regions above 10,000 cm™~!, eventually reaching

into the visible.

The detection and characterisation of methane in the visible spectral region is
important for exoplanetary science, particularly for high-resolution reflected-light
spectroscopy of temperate rocky exoplanets and for understanding methane-rich
atmospheres in the Solar System, including Titan and the giant planets [691, 694,
695].

One promising avenue is to use the CHy line list not only to refine the PES
for the main isotopologue, but also to improve on the variational calculations of
methane isotopologues such as 3CH, and CH3D. High-quality spectroscopic data
for these species are of particular importance for planetary and exoplanetary stud-
ies. The '3CHj isotopologue enables determination of the '3C/!2C isotopic ratio
in planetary atmospheres. This can provide insight into methane formation path-
ways on Earth [696], and may eventually inform studies of atmospheric processes
and formation histories on other planets [697]. In addition, 13CH, is the second
most abundant isotopologue of methane, making it a natural target for spectro-
scopic modelling. Moreover, the deuterated isotopologue CH3D is important for
the estimation of the D/H ratio, which serves as a tracer of planetary origin and
evolution [698]. From a spectroscopic perspective, however, the two isotopologues
differ significantly in complexity. While '3CHy retains the tetrahedral symmetry of

CHy, allowing its treatment within the existing MARVEL-TROVE framework with
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relatively minor modifications, CH3D exhibits reduced molecular symmetry due to
isotopic substitution. This symmetry reduction lifts degeneracies and leads to a sub-
stantially more complex rovibrational structure. As a result, the empirically refined
PES for '2CHy, in combination with an ab initio electric dipole moment surface,
can be directly reused to compute high-accuracy line lists for 1>CHy. This method-
ology was succesfully applied to water isotopologues H%7O and HyO by Polyansky
et al. [137] and to ammonia 'YNH; by Yurchenko et al. [5].

In addition, the isotopic extrapolation (IE) method can be used, as there is lim-
ited available experimental data for methane isotopologues. In this approach, the
obs. — calc. residuals from '?CH4 MARVEL energy levels are used as empirical cor-
rections applied to the calculated energy levels of the isotopologues. Since 'CHy
retains the tetrahedral symmetry and polyad structure, the IE method is expected
to yield high accuracy in this case. In contrast, for lower symmetry isotopologues

such as CH3D the extrapolation is less reliable.
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