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Abstract  
This thesis addresses the critical need to develop computational frameworks to manage 

the nested hierarchy of decision-making complexities that emerge across the 

operational, transactional, and strategic scales of multi-energy systems (MES), driven 

by the global transition towards sustainable and resilient energy infrastructures. The 

global transition towards the sustainable MES is driving fundamental shifts in 

uncertainty, decentralisation, and strategic evaluation.  

Three significant research gaps are identified. First, at the operational scale, existing 

optimisation methods lack the capacity to manage deep uncertainty associated with 

novel assets like Liquid Air Energy Storage (LAES) under volatile market conditions. 

Second, at the transactional scale, current aggregation models lack consideration of 

dynamic competitive interactions among multiple aggregators and prosumers, 

particularly concerning computational efficiency and data privacy. Third, at the 

strategic scale, there is a lack of integrated Multi-Criteria Decision-Making (MCDM) 

frameworks for international hydrogen supply chains that simultaneously account for 

discounted techno-economic performance, life-cycle environmental impacts, and 

carrier efficiencies. 

This thesis systematically addresses these gaps through novel methodological 

contributions and case studies. First, a novel hybrid optimisation method combining 

Information Gap Decision Theory (IGDT) and State Transition Algorithm (STA) within 

a multi-agent framework is proposed to enable risk-aware scheduling of LAES-

equipped micro-grids. Second, a novel decentralised aggregation framework employing 

multi-leader-multi-follower game theory is developed. The proposed aggregation 

framework is solved by a computationally efficient and privacy-preserving graph-based 

consensus algorithm using edge computing. Lastly, an integrated MCDM framework 

that includes techno-economic, environmental, and efficiency criteria assessments is 
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developed and applied to an unexplored South Africa–UK green hydrogen supply 

corridor. 

The methodological advancements introduced in this thesis offer novel computational 

frameworks that provide a theoretical basis for future decision-support tools. The 

results offer quantitative insights relevant to micro-grid operators, aggregators, 

policymakers, and investors. 

  



III 
 

Impact Statement  
The global energy transition is driving fundamental shifts in how energy systems are 

operated, coordinated, and evaluated. The increasing penetration of intermittent 

renewable resources, the decentralisation of market actors, and the emergence of 

international green hydrogen trade create a nested hierarchy of decision-making 

complexities. This thesis contributes to addressing these challenges through three 

methodological advancements: (1) a hybrid optimisation framework for managing deep 

operational uncertainty; (2) a decentralised intelligent aggregation architecture for 

coordinating competitive market interactions; and (3) an integrated multi-criteria 

evaluation framework for strategic hydrogen supply chain selection. 

Within the academic and research fields, this thesis advances multi-energy systems 

engineering by bridging the gap between computational frameworks and the emerging 

complexities of the energy transition. This thesis introduces novel framework 

hybridisation, specifically the coupling of IGDT with the STA, and a novel graph-based 

consensus algorithm for Multi-Leader Multi-Follower Games (MLMFG). Furthermore, 

it provides comprehensive quantitative datasets, particularly on the techno-economic 

and environmental performance of the South Africa–UK green hydrogen corridor, 

supporting future research on green hydrogen innovations.  

Beyond academia, the computational frameworks developed in this thesis offer 

potential to inform the development of future decision-support systems. At the 

operational scale, the proposed IGDT-STA framework demonstrates how micro-grid 

operators could quantify and manage risks associated with price volatility and novel 

storage assets such as LAES, thereby offering a theoretical basis for resilient scheduling. 

At the transactional scale, the decentralised aggregation framework illustrates the 

feasibility of coordinating competitive markets while preserving prosumer privacy, 

providing a computational blueprint for future smart grid architectures. At the strategic 

scale, the integrated MCDM framework provides policymakers and investors with a 
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transparent mechanism for navigating the complex trade-offs among economic viability, 

environmental impact, and energy efficiency in hydrogen infrastructure planning. 

Collectively, these contributions developed the computational framework for MES, 

from local micro-grids to international hydrogen supply chains.  
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Chapter 1  

1. Introduction  
 

1.1 Research background and energy system shifts  

The transition towards sustainable, resilient, and low-carbon energy systems has 

become one of the most pressing global trends of the 21st century. Climate change 

mitigation targets and increasing renewable energy integration require transformative 

changes in how energy systems are planned, operated, and optimised (Čuček et al., 

2021). Within this context, multi-energy systems (MES) have emerged as critical 

infrastructures capable of harmoniously integrating diverse energy vectors, including 

electricity, heat, liquid air, and hydrogen, thus enhancing energy system efficiency, 

flexibility, and resilience (Mancarella, 2014; Qi et al., 2022). The transition to a future, 

sustainable MES is driven by three shifts: in the source of operational complexity, in 

the architecture of system control, and in the criteria for strategic evaluation. These 

shifts collectively create the new class of complexities that are critical in the MES 

transition.  

The first shift is in the source of operational uncertainty, driven by the increasing 

adoption of intermittent renewable energy sources. The computational frameworks of 

traditional energy systems were built on dispatchable thermal power plants, which can 

be precisely controlled to meet demand. However, the integration of intermittent 

renewable energy sources introduces volatility in the energy generation, which is driven 

by the weather (Bhandari, 2025). Therefore, deep uncertainty poses a challenge for 

traditional scheduling models, as historical data-derived probabilistic distributions 

cannot capture the actual state of energy systems.  
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The second shift is from centralised control to decentralised coordination. The 

conventional energy system is controlled by a centralised architecture with utility 

companies delivering energy to passive consumers. This architecture was changed by 

the penetration of distributed energy resources, such as rooftop photovoltaic panels 

(Ren et al., 2022). This penetration transformed consumers into prosumers. In addition, 

decentralised decision-making technologies have matured, allowing autonomous local 

decisions and dynamic interaction (Pan & McElhannon, 2018). These prosumers now 

have the computational power to interact dynamically with each other and with a new 

class of market mediators: aggregators (Burger et al., 2017). This transformation from 

a centralised architecture to a network of interacting agents requires a different 

computational framework than the traditional centralised framework.  

Finally, the third shift is in the criteria for strategic evaluation. In traditional methods, 

long-term decisions were primarily driven by frameworks based on single metrics, 

usually the levelised cost of energy. The global shifts to address climate change indicate 

that the traditional economic-centric framework no longer applies. An example of this 

shift is the strategic decision to establish large-scale intercontinental green hydrogen 

supply chains. Countries with rich renewable energy sources and established port 

infrastructure have set an ambitious goal for green hydrogen export. (Scholvin et al., 

2025). In addition, nations also seek to import green hydrogen to meet net-zero goals; 

however, choosing the appropriate green hydrogen carrier (GHC) remains a critical 

challenge (IRENA, 2022). The decision of the GHC pathway extends beyond the 

traditional single metric decision frameworks. Policymakers and investors face the 

trade-off between GHC performance, economic performance, environmental footprint, 

and carrier efficiency.  

1.2 Emergent complexities and challenges  

The shifts described in the previous section create a nested hierarchy of decision-

making complexities across multiple scales of energy systems. The first complexity is 
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in the operational scale. The challenges of making decisions when future states of key 

decision variables, particularly market prices, are subject to deep uncertainty, leading 

to uncertainty complexity. This complexity creates a practical problem for micro-grid 

operators with new energy storage assets. In a volatile market with intermittent energy 

sources, the electricity prices could be unpredictable. The operator faces challenges in 

scheduling the micro-grid operation with appropriate risk levels. Thus, there is a lack 

of a computational framework to manage the deep uncertainty.  

Moving beyond the operational challenges, the shift towards decentralisation in energy 

generation and decision-making creates the interactional complexity at the transactional 

scale. This complexity brings challenges to managing a system of autonomous and 

competing agents with private information and objectives. Especially when multiple 

aggregators compete by setting attractive prices to incentivise prosumers, this creates a 

game-theoretic dynamic where the competing agents must achieve market equilibrium 

while preserving data privacy. This practical challenge for incorporating new market 

participants (aggregators and prosumers) requires a new computational framework that 

can coordinate with dynamic market interactions while preserving data privacy. 

At the strategic scale, the shift in evaluation criteria creates evaluative complexity. This 

is the challenge of choosing long-term technology pathways with distinct performance, 

specifically the strategic decision of selecting a GHC pathway for international 

hydrogen trade. Policymakers and investors are no longer choosing GHC based on a 

single criterion, such as economic performance. Instead, their decisions become multi-

dimensional, where the trade-offs among different criteria performance should be 

considered. This requires a computational framework that can handle the multi-criteria 

evaluation problem.   
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1.3 Thesis scope and aims  

The emergent complexities arising from uncertainty, interaction, and evaluation make 

the traditional deterministic, centralised, and single-objective computational 

framework inadequate for managing them. Therefore, this thesis aims to address the 

framework gap by developing and validating new computational frameworks. Each of 

the new frameworks is developed to manage a specific layer of complexity, providing 

decision support for the multi-scale MES transition. Specifically, the new 

computational frameworks are:  

 At the operational scale, this thesis addresses uncertainty complexity by 

developing a framework that moves beyond probabilistic forecasting to enable 

risk-aware scheduling for novel energy assets under deep market uncertainty. 

 At the transactional scale, this thesis then addresses interactional complexity by 

formulating a decentralised and game-theoretic framework capable of 

coordinating a market of multiple competing aggregators to achieve a stable 

equilibrium, while preserving the prosumers’ privacy.  

 At the strategic scale, the thesis addresses evaluative complexity by 

constructing an integrated multi-criteria framework that provides a transparent 

process for resolving the trade-offs inherent in long-term technology pathway 

decisions. 

By developing methodological innovations for each of these layers, this thesis 

contributes a coherent set of computational tools designed to navigate the complexities 

of the modern energy transition. 

1.4 Thesis structure  

The structure of this thesis is designed to address the overarching research question by 

navigating the nested hierarchy of complexities outlined in this chapter. As illustrated 

in Figure 1-1, the thesis is organised into seven chapters. Chapter 1 introduces the real-
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world problem context and identifies the three shifts in the energy transition that give 

rise to emergent complexities. Chapter 2 reviews the existing academic literature 

through the lens of the complexity taxonomy. It examines current approaches to 

managing uncertainty, interactional, and evaluative complexities, identifying the 

specific research gaps that this thesis aims to address. 

Chapter 3 formalises the research design. It presents the overarching research question, 

the taxonomy of decision-making complexity, and the three subsidiary research 

objectives that guide the three studies of this thesis. 

Chapter 4 addresses the first layer of uncertainty complexity. It develops a novel hybrid 

computational framework combining Information Gap Decision Theory (IGDT) and 

the State Transition Algorithm (STA). This framework is then applied to the practical 

challenge of scheduling an LAES-equipped micro-grid, demonstrating its ability to 

manage deep market uncertainty and accommodate different risk preferences. 

Chapter 5 addresses interactional complexity in the transactional scale. It formulates a 

Multi-Leader Multi-Follower Game (MLMFG) to model the dynamic market 

interaction between aggregators and prosumers. A decentralised graph-based consensus 

algorithm is developed to solve this game.  

Chapter 6 addresses evaluative complexity at the strategic scale. It contributes an 

integrated Multi-Criteria Decision-Making (MCDM) framework that synthesises 

discounted techno-economic analysis, comprehensive life-cycle assessment, and carrier 

efficiency metrics. The proposed framework's utility is demonstrated by applying it to 

the strategic evaluation of green hydrogen carriers for the previously unexamined South 

Africa-UK supply chain. 

Finally, Chapter 7 concludes the thesis. It provides a synthesis of the findings of the 

thesis. In addition, this chapter reflects on the socio-technical and ethical implications 
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of the proposed frameworks, discusses research limitations, and provides 

recommendations for future work. 

 

Figure 1-1 Thesis structure 
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Chapter 2 

2. Literature review1  
 

2.1 Chapter introduction  

Through the lens of nested complexity, this review systematically examines state-of-

the-art computational frameworks for managing uncertainty, interactional, and 

evaluative complexities in energy systems. By assessing the limitations of existing 

methods in each of these three domains, this chapter identifies the specific research 

gaps that motivate the overarching research question and subsidiary objectives in 

Chapter 3. This process provides the academic literature background for the new 

computational frameworks developed in this thesis. 

 
1 Part of this chapter is adapted from  

 

Yao, R., Hu, Y., & Varga, L. (2023). Applications of Agent-Based Methods in Multi-Energy 

Systems—A Systematic Literature Review. Energies, 16(5), 2456. 

https://doi.org/10.3390/en16052456  

Yao, R., Xie, H., Wang, C., Xu, X., Du, D., Varga, L., & Hu, Y. (2024). A multi-agent-based 

micro-grid day-ahead optimal operation framework with liquid air energy storage by hybrid 

IGDT-STA. Journal of Energy Storage, 86, 111318. https://doi.org/10.1016/j.est.2024.111318  

Cheng, X.†, Yao, R.†, Postnikov, A., Hu, Y., & Varga, L. (2024). Decentralized intelligent multi-

party competitive aggregation framework for electricity prosumers. Applied Energy, 373, 

123860. https://doi.org/10.1016/j.apenergy.2024.123860 
†Authors have equal contributions  

Yao, R., Li, Y., Varga, L., & Hu, Y. (2025). A multi‑criteria framework for evaluating hydrogen 

carriers for large‑scale intercontinental exports. Energy Policy, 210, 115040, 

https://doi.org/10.1016/j.enpol.2025.115040  
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2.2 Uncertainty complexity in operations 

At the operational scale of multi-energy systems, such as microgrids, a key decision-

making challenge is the shift from deterministic scheduling to managing uncertainty 

and complexity. This form of complexity is caused by the intermittency of renewable 

generation and the increasing volatility of electricity markets. This section critically 

reviews existing computational frameworks for addressing this complexity.  

2.2.1 Challenges of deep uncertainty  

The operation and planning of a micro-grid are affected by uncertainties in wind and 

photovoltaic power generation, system load, and market electricity prices. To address 

uncertainties, the existing literature on multi-energy scheduling mainly uses two 

branches of programming methods: Stochastic Programming (SP) and Robust 

Optimisation (RO).  

SP is a probabilistic method for optimisation under uncertainty, which models 

uncertainty through probabilistic distribution functions. SP formulates the decision-

making process as a two-stage process, where the first stage focuses on making 

decisions before the uncertainty is realised, and the second stage generates actions after 

the uncertainty is realised (R. Zhang et al., 2021). SP usually include using Monte Carlo 

simulation to generate scenario sets representing future states, aiming to optimise 

system costs across the weighted scenarios.  

A study adopted SP with 100 Monte Carlo simulations to optimise a multi-energy 

micro-grid with hydrogen vehicle fuelling (Mei et al., 2021). The results show that the 

stochastic approach with forecast updating can save daily operational costs by 18% 

compared with static baselines. Another study adopted two-stage stochastic 

programming to size a hybrid energy storage system, including battery and thermal 

storage (Shen et al., 2021). By generating 200 scenarios to represent wind, load, and 

temperature uncertainty, the results show that leveraging thermal inertia within a 
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stochastic approach can reduce total investment cost by 6.7%. Furthermore, a study 

integrates SP with global sensitivity analysis for the planning of distributed energy 

sources in high-rise buildings (J. Zhang et al., 2023). The comparative analysis results 

show that static models consistently underestimate the annual costs, with CO2 

emissions varying by 10% across scenarios.  

Despite the quantitative benefits, the three studies collectively mentioned the 

limitations of adopting SP. First, the accuracy of SP solutions relies on the accuracy of 

the underlying known and stationary probability distribution of random variables, 

including solar irradiance (Mei et al., 2021), wind profile (Shen et al., 2021), or feed-

in tariff (J. Zhang et al., 2023), where the distributions are usually Gaussian or Normal 

distributions. The reliance on assumed distributions highlights the limitations of SP in 

the context of deep uncertainty, where historical data may not accurately predict market 

volatility. Hence, some researchers use RO as an optimisation method in multi-energy 

systems.  

Instead of assuming specific distribution functions, RO addresses uncertainty by 

modelling with uncertainty sets (He et al., 2017). Then the RO is used to optimise the 

multi-energy system under the worst-case realisation of uncertain variables (Martinez-

Mares & Fuerte-Esquivel, 2013). However, the results of RO could be overly 

conservative, sacrificing economic opportunities in multi-energy system scheduling. 

The traditional RO framework lacks the ability to generate risk-seeking strategies that 

align with decision-makers' risk profiles. The Information Gap Decision Theory (IGDT) 

is a viable computational framework for handling deep uncertainty. Specifically, IGDT 

does not require probabilistic distributions of key decision variables. In addition to 

maximising the system robustness for risk-averse decision-makers, it can also pursue 

opportunities for risk-seeking decision-makers to exploit favourable deviations (Nasr 

et al., 2020).  
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Some researchers have recently used the IGDT method to model the micro-grid system. 

The IGDT method can help decision-makers choose the most economical and feasible 

solutions for the micro-grid system under uncertainty. A robust framework is proposed 

using the IGDT method to realise the effective operation of island micro-grids, 

considering the uncertainty of photovoltaic power generation and demand (Nasr et al., 

2019). In addition, a short-term power generation dispatch method for grid-connected 

micro-grids is proposed to obtain the optimal bidding strategy, considering the demand 

response program based on the IGDT method under uncertain upstream grid prices 

(Mehdizadeh et al., 2018). 

2.2.2 Challenges of novel storage assets  

In addition to the uncertainty complexity from prices and renewable energy, the 

emerging energy storage assets also introduce complexity from physical operation. 

Liquid air energy storage (LAES) is an emerging energy storage technology that 

involves complex thermodynamic processes, including compression, liquefaction, and 

expansion. The complex thermodynamic process introduces additional complexities 

into the multi-energy system scheduling. Current research on LAES mainly focuses on 

thermodynamic and economic analysis (Borri et al., 2021; Cui et al., 2021; Su et al., 

2023; Y. Zhou et al., 2023). When LAES operation scheduling is considered, studies 

use a simplified linear model for operation optimisation (B. Lin et al., 2019). To address 

the combined complexity from uncertainty and physical operation, researchers 

integrated the IGDT with heuristic algorithms, such as genetic algorithm (GA) and 

particle swarm optimisation (PSO) (Kennedy & Eberhart, 1995; Tezer et al., 2017).  

A study integrates IGDT with modified PSO to construct robust step-wise offer curves 

for a price-taker generation station in a day-ahead market (Nojavan et al., 2015). Kim 

and Kim (2021) present an energy management framework for grid-connected micro-

grids. The framework constructs staircase bidding strategies for micro-grid operators 

with incentive demand programmes, which are optimised by a modified PSO algorithm 
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(H. J. Kim & Kim, 2021). These traditional intelligent optimisation algorithms, such as 

GA and PSO, are mainly inspired by imitating social phenomena or natural laws. Unlike 

conventional intelligent optimisation algorithms, the state transition algorithm (STA) is 

an intelligent optimisation algorithm based on structural learning and shows better 

performance than conventional algorithms (X. Zhou et al., 2012). The core concept of 

STA is treating a solution to an optimisation problem as a state. The generation and 

update process of the solution is treated as a state transition process. The algorithm's 

solution process is based on the state-space expression in modern control theory, and 

four state transformation operators are constructed during optimisation.  

2.2.3 The need for a hybrid framework 

The literature review reveals a gap in the computational frameworks used for 

uncertainty handling and for complex asset optimisation. As detailed in Section 2.2.1, 

IGDT is a viable computational framework for handling deep market uncertainty. 

However, existing applications of IGDT in energy systems predominantly rely on 

convex optimisation techniques or heuristic algorithms such as PSO (Majidi et al., 2019; 

Nojavan et al., 2015). Hence, the Research Gap 1 is identified. 

Research Gap 1: There is currently no optimisation framework that couples the 

risk-averse/risk-seeking logic of IGDT with the structural learning capabilities 

of STA. Such a hybrid computational framework is necessary to simultaneously 

address the uncertainty complexity of volatile markets and the physical 

complexity of assets like LAES.  

This thesis addresses this specific gap in Chapter 4 by developing a novel multi-agent 

IGDT-STA framework that can handle the different risk preferences of decision-makers.  
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2.3 Interactional complexity in decentralisation  

This section critically reviews the computational architectures and market mechanisms 

proposed to manage the transition of decentralisation. This section begins by examining 

the role of Multi-Agent Systems (MAS) as the enabling infrastructure for local 

autonomy in Section 2.3.1. Then, Section 2.3.2 critiques the limitations of cooperative 

coordination models. Section 2.3.3 analyses the emerging need for competitive, game-

theoretic frameworks to capture the strategic interactions between aggregators and 

prosumers. 

2.3.1 Multi-agent system for energy management  

To address the interactional complexity of the energy system transition, the first 

requirement is computational architectures that enable energy assets to make 

autonomous decisions. Multi-agent systems (MAS) have emerged as a computational 

framework to provide bottom-up autonomy. Section 2.3.1 reviews the application of 

MAS architecture across scales in the MES.  

2.3.1.1 Enabling local autonomy  

The principal objective of the agent is to act as a digital representation of physical assets, 

abstracting the operational information to make local decisions and communicate with 

other agents. Studies reviewed in this section demonstrated how diverse local energy 

assets could be represented as distinct agents to collectively manage the local multi-

energy system at the building scale.  

The earliest published research on local energy system management was a framework 

for the cognitive construction of agents in building energy management systems (Conte 

et al., 2009). Zhao et al. (2013) designed a MAS control strategy with three distinct 

agents: an electricity agent, a heating agent, and a cooling agent responsible for 

optimising the three end-demands, respectively. The decision-making of the heating 

agent and the cooling agent is based on energy cost minimisation with the responding 
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energy carrier. The decision-making of electricity agents includes two objectives: 

minimising the peak load and communicating with grids (electricity grid and natural 

gas grid) for price updating. The CPLEX solver achieves the agents’ optimisations 

(Zhao et al., 2013). The control strategy demonstrates that the decomposition of the 

central objective is important for scalability. A MAS-based building energy 

management system was adopted to enhance distribution-grid resilience by leveraging 

the multi-energy flexibility of smart home appliances (Ahrens et al., 2021). 

Cai et al. (2016) proposed a general multi-agent control approach for the HVAC system. 

This approach consists of an agent definition framework and a control optimisation 

procedure. The agents are required to define a collection of objective functions and 

constraints based on the framework guidelines (Cai et al., 2016). The framework then 

formulates the optimisation problem based on the consensus algorithms, including the 

sub-gradient method and ADMM. Cai et al. (2016) also pointed out a potential issue in 

implementing the consensus-based algorithm, in which the algorithm could not reach a 

consensus point when the decision time had been reached.  

In addition, the integration of MAS with Internet of Things (IoT) technologies 

established a connection between the physical and cyber layers. González-Briones et al. 

(2018) proposed a multi-agent building temperature management system to increase 

energy usage efficiency. On the physical side, the authors deployed temperature-

monitoring and occupancy-sensing sensors within wireless sensor networks to gather 

data for system optimisation. On the logic side, the multi-agent system processes 

collected data and returns an optimised HVAC system’s control strategy (González-

Briones et al., 2018). The case study demonstrated that this control strategy could 

achieve an average energy savings of 41%. W. Li et al. (2021) developed a multi-agent 

control scheme for the HVAC system on an IoT-based wireless sensor network. This 

scheme balances the performance and power consumption of battery-powered sensors 

through multi-objective optimisation using ADMM. The power consumption of the 
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sensors is reduced by using the event-driven control approach rather than the time-

driven optimisation approach (W. Li et al., 2021). 

Demand response (DR) or demand-side management (DSM) is a popular research field 

in energy system management at the local scale. DR or DSM is a management strategy 

to manage the demand load based on the availability of the electricity supply. The 

selected articles show that an MAS is a valuable approach to implementing the DR or 

DSM. Devia et al. (2021) adopted distributed co-evolutionary optimisation algorithms 

with agent-based architectures to reduce consumption profiles. The control strategy is 

divided into two phases. The first phase is to extract and store energy-use information 

for every room, along with temperature variance. The second phase is to control every 

heating device in the house with distributed optimisation. Other than cost reduction, the 

results also show that the inclusion of thermal storage units could increase the overall 

system’s efficiency (Devia et al., 2021).  A MAS control architecture DSM is proposed 

for thermostatically controlled loads (TCLs), enabling anonymous communication 

among TCL agents via a network while preserving TCL internal temperature privacy 

(Franceschelli et al., 2021). The MAS optimisation was based on a dynamic consensus 

algorithm.  

The literature reviewed in this section confirms that MAS provides a foundational 

architecture for establishing local autonomy and preserving privacy at the local building 

scale. The coordination of these agents introduces an emergent complexity. If local 

agents focus solely on individual objectives, aggregate behaviour may affect network-

level performance. Therefore, it is essential to review the literature that focuses on the 

coordination of agents in a connected network. The following section examines how 

MAS architectures are scaled to manage the system performance at the district level.  

2.3.1.2 Enabling district-scale management 

Scaling up from the local autonomy at the building level, the next level of interactional 

complexity occurs when coordinating agents within a shared physical system, such as 
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a multi-energy district system. The literature addresses the coordination challenge 

through three research themes: optimal design of the multi-energy district energy 

system, fully decentralised operational control, multi-energy micro-grid management, 

and management with district heating system & heating clusters.  

 District energy system design 

Beyond the operation of a single building, a key challenge is the collective planning 

and designing of interconnected assets. Kyriakarakos et al. (2013) developed an energy 

management system for optimal component sizing of poly-generation micro-grids that 

can meet the needs of consumers in remote areas for potable water, hydrogen, space 

heating, space cooling, and electricity. A multi-agent-based DSM is embedded in the 

management system for load shedding when generation capacities cannot meet demand. 

The MAS is designed in a hierarchical manner. The components in a building, such as 

lighting and refrigeration, are controlled by the intelligent agents, which are supervised 

by an upper-level building control agent (Kyriakarakos et al., 2013). The component 

control agents are responsible for disconnecting the virtual power lines when load 

shedding is required. Karavas et al. (2015) further developed the agent-based poly-

generation micro-grid management system from a hierarchical architecture to a 

decentralised architecture, which does not require a central agent for optimisation. The 

component agents communicate with each other to update the system parameters, such 

as surplus power, consumed power, or remaining capacity (battery agent). The energy 

management system aims to minimise net present cost (optimal design) and optimise 

fuzzy cognitive map weights (optimal control). The system optimisation results 

compared with a centralised management system, showing that the decentralised 

approach presented a 2% lower net present cost than the centralised approach. Karavas 

et al. (2017) investigated the multi-agent decentralised management of the poly-

generation micro-grid with game theory. The previous decentralised management 

system is a cooperative case where agents work cooperatively to minimise the global 
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cost function (Karavas et al., 2017). However, the agents could have conflicting 

interests, so agents interact with each other in a non-cooperative way. Thus, Karavas et 

al. (2017) used a non-cooperative game model with a Nash equilibrium to simulate the 

competitiveness between electrolysis agent and desalination agent as both compete to 

consume more power. Another cooperative game is modelled with fuel cell and battery 

agents since these two agents aim to meet the corporation’s load demand. Compared 

with the previous purely cooperative management system, the game-theory-based 

approach reduced costs by 1.62%. 

H. Wang et al. (2021) proposed a game-theory-based optimal component-sizing method 

for the multi-energy district energy system configuration. The authors used compressed 

air energy storage (CAES) for electricity and thermal storage instead of using batteries 

and thermal tanks. Each component agent’s utility function is defined by the net present 

value function in both cooperative games and non-cooperative games (H. Wang et al., 

2021). The Shapley value and Nash equilibrium were used to solve the cooperative and 

non-cooperative game models (Nash, 1950; Shapley, 1971). The results showed that 

coalition formation results in better economic outcomes for individual agents and the 

system. S. Jin et al. (2021) proposed a game theory-based component optimisation 

method for a multi-energy micro-grid. The main contribution of the proposed method 

is the incorporation of uncertainties in the renewable energy generation with a 

probability density function (S. Jin et al., 2021). Moreover, the agents' utility function 

was set to annualised economic profit throughout the life cycle. It has also been noted 

that future research could focus on incomplete information games when information 

asymmetry occurs. These studies demonstrate that decentralised agents can 

successfully negotiate the complex capacity sizing problem (a form of interactional 

complexity) without sending complete information to the central planner.  

 Fully decentralised district energy system control 
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In terms of control of the district energy system, the literature researches replacing the 

central controller with a coordination mechanism by direct agent-to-agent 

communication. Harb et al. (2015) introduced a decentralised day-ahead scheduling 

strategy for a multi-energy micro-grid for cost minimisation with Mixed-Integer Linear 

Programming (MILP). The global MILP problem is decomposed into a series of local 

problems with Dantzig-Wolfe decomposition (Dantzig & Wolfe, 1961). The local 

problem is the local objective function for each agent, which is solved by the iterative 

column generation procedure (Nemhauser & Wolsey, 1988). After comparing the 

decentralised control with a centralised scheduling approach, it has been shown that the 

centralised approach offers a better solution than the decentralised approach. 

Nonetheless, the centralised approach to computation time increases exponentially with 

the increasing number of agents. Thus, the decentralised approach has advantages in  

terms of system scalability as the decentralisation reduces the computation time 

required (Harb et al., 2015). Blaauwbroek et al. (2015) proposed a multi-agent-based 

decentralised algorithm with mixed-integer quadratic programming to balance the 

distributed energy resources and flexible appliances, such as HP and CHP. Y.-S. Li et 

al. (2016) proposed a decentralised control method for coupled heat and power systems. 

This control method involves two first-order consensus protocols for heat supply 

optimisation and electricity supply optimisation. The optimisation is carried out in an 

alternating iterative way so that electricity supply and heat supply converge on an 

optimal solution alternatingly. The decentralised method results in a better solution than 

the centralised method with Lagrangian relaxation (Henwood, 1996). 

Nguyen & Ishihara (2021) proposed decentralised management for household clusters 

with fuel cells (FCs) and CHP with a peer-to-peer trading architecture. The non-

convexity problem in fuel cell operation is addressed by linearising the FC consumption 

and production. As a result, the peer-to-peer trading problem could be solved with the 

ADMM algorithm. Alishavandi & Moghaddas-Tafreshi (2019) presented a 

decentralised operation strategy for multi-energy micro-grids with interactive clearing 
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energy prices. The clearing price is determined through communication between 

generation and consumption agents. In each time step, the clearing price is used in 

calculating each agent’s profit function and the system’s social welfare. In addition, the 

gradient projection method was used for profit function and social welfare optimisation 

(Bertsekas, 1997). The results showed that this decentralised method had slightly better 

performance in cost reduction than the centralised method, as photovoltaics (PV) agents 

tended to maximise their own profit. However, social welfare decreased when an 

individual agent’s profit increased. Shabani and Moghaddas-Tafreshi (2020) presented 

a similar decentralised approach with interactive clearing prices to optimise a multi-

energy system micro-grid. The agents were programmed to optimise the social welfare 

at the first stage, then to optimise their own profit. The results agreed with (Alishavandi 

& Moghaddas-Tafreshi, 2019) in that the fully decentralised approach had lower social 

welfare but higher individual profits than the centralised approach. Shabani & 

Moghaddas-Tafreshi (2019) also observed that the demand response program was able 

to increase both system social welfare and agent profit. Moreover, an investigation of 

the peer-to-peer trading scheme in a decentralised model was suggested for future 

research. 

Samadi et al. (2020) proposed a decentralised management strategy with reinforcement 

learning (RL). The optimal agent behaviour policy was evaluated with the action-value 

Q function (Bowling & Veloso, 2002; Sutton & Barto, 2018). The agents can find an 

optimal action policy by interacting competitively with one another. The trade-off 

between exploration and exploitation is an important consideration for an agent to 

determine the best action. Thus, Samadi et al. (2020) compared three action selection 

methods, including soft-max, epsilon-greedy, and upper confidence bound methods. 

They showed that the soft-max method had the best performance over the other methods. 

Kumari & Tanwar (2021) extended the Q-leaning-based RL management on micro-

grids with blockchain communication. The communication and agreement among the 

stakeholders are achieved based on blockchain-encrypted smart contracts to ensure 
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privacy. Instead of using the discrete Q-learning method, Dong et al. (2021) proposed 

multi-energy micro-grid management with the asynchronous advantage actor-critic 

algorithm based on deep RL, which was first introduced by (Mnih et al., 2016). The 

result shows that the asynchronous algorithm could shorten the training time by 30% 

compared with the deep Q network. The decentralised computational methods reviewed 

in this section demonstrate that agent architecture can provide privacy and scalability 

to the multi-energy system. However, effective communication among agents remains 

a key bottleneck in implementation. Therefore, Section 2.3.3 explores this topic in 

greater detail.  

 Multi-energy micro-grid management 

Coupling of multiple energy carriers into agent interaction is another source of 

interactional complexity. Literature investigated how agents can handle this complexity. 

Anvari-Moghaddam et al. (2017) proposed an optimal control scheme for a building-

integrated micro-grid with distributed generation units and demand response. A mixed 

objective function was formulated to optimise energy operation costs and convenience 

levels by building agents. At the micro-grid level, a central grid battery is responsible 

for compensating for the energy mismatch. The central battery agent was optimised 

with the Bayesian reinforcement learning (BRL) algorithm (Firouzi et al., 2012). The 

proposed BRL method was compared with Q learning (Wei et al., 2015) and time-based 

reinforcement learning (Sheikhi et al., 2016). The results showed that the proposed BRL 

method leads to faster learning and higher reward than the other methods. Kolen et al. 

(2017) also proposed a control scheme combining bi-level optimisation of the building 

and micro-grid. The building-level optimisation aims to minimise the total number of 

switch events. The operation functions (peak-to-valley distance) on the grid level are 

optimised with decentralised agent interactions by updating the local energy fluctuation 

function. The performance of the proposed bi-level scheme is a trade-off between 

building-level optimisation and grid-level optimisation due to the narrowed search 



20 
 

space. Hutty et al. (2020) investigated the feasibility of reversible solid oxide cells for 

micro-grid operation using multi-agent simulation in the UK and Texas. The authors 

suggested that, in future research, simulated battery and reversible solid oxide cells as 

a hybrid energy storage system could be considered, and how hybrid storage systems 

perform compared to traditional battery storage systems could be investigated. 

Moghaddas-Tafreshi et al. (2019) proposed a multi-energy micro-grid optimal 

operation scheme considering uncertainties in renewable energy generation and energy 

demand, as well as a demand response program. The uncertainties in renewable energy 

generation were modelled with a Weibull distribution of wind speed in wind turbine 

agents. The load agents simulated uncertainties of the electrical and thermal load with 

the normal distribution function. Both wind turbines and load agents generate 1000 

scenarios in a Monte Carlo simulation each hour to evaluate the micro-grid performance. 

The demand response program from (Nikmehr et al., 2017) is implemented in the load 

agent program. Li et al. (2020) established a three-layer control model for micro-grid 

management with the improved particle swarm optimisation algorithm. The authors 

combined adaptive weights and chaotic search into the PSO algorithm to avoid local 

optima. The results showed that the proposed algorithm had a much smaller 

computation standard deviation than the original PSO and chaotic search PSO. H. Liu 

et al. (2020) proposed a hierarchical control scheme for a multi-energy micro-grid 

considering the multi-agent game. In the first layer (decision layer), the generation 

agents participate in a static cooperative game with complete information to maximise 

their own profit. The Nash equilibrium point of the cooperative game is solved by the 

evolutionary game theory combined Q-learning method (J. Hu & Wellman, 2003). 

Khan et al. (2021) proposed a hierarchical multi-agent control architecture on the multi-

energy micro-grid with three layers. In formulating the optimisation problem, harmful 

gas emissions and multi-energy generation costs were considered in the objective 

function. Farinis et al (2021) proposed a micro-grid management system with a building 

system operator that considers plug-in EVs as energy storage components. 
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Two of the studies investigated the operation strategy of an energy hub. Lin et al. (2018) 

proposed a multi-agent energy hub operation control considering EV penetration rate 

and EV behaviour simulation. EV agents simulated the travel patterns and charging 

patterns, including the uncontrolled, rapid patterns. The behaviour simulation result was 

then passed to the energy hub control system as electricity demands. The vehicle-to-

grid (V2G) technology was considered in operation optimisation by adding the V2G 

cost function to the global optimisation function. The results showed that the demand 

brought by increased EV penetration could be met with gas turbines. Moreover, the 

electricity and cooling prices were lower because of the V2G technology in the 

reference case. Zeng et al. (2019) proposed an optimal dispatch scheme of an energy 

hub considering the integrated demand response program. The demand response 

program is achieved by designing the user agents’ objective function, which minimises 

the cost of electricity, thermal, cooling load, and EV cost. The EV charging and 

discharging behaviours are considered with a random variable to indicate the charging 

state of the EV. The optimal dispatch of the energy hub was formulated into a multi-

objective optimisation problem, which includes minimisation of user cost, 

maximisation of generator profit, and maximisation of operating income. Zeng et al. 

used the NSGA-III to find the Pareto frontier. The optimal solution of each agent in the 

Pareto frontier was obtained with the technology for order preference, similar to the 

ideal solution method (Han et al., 2013). 

 District energy management with district heating system and heating clusters 

Finally, specific coordination protocols have been developed to manage physical 

network constraints, particularly in district heating networks and clusters of 

Thermostatically Controlled Loads (TCLs). Haque et al. (2017) proposed a unified 

multi-agent control strategy to manage congestion and voltage limits in the district 

electricity distribution network with PVs and HPs. Bünning et al. (2018) proposed a 

distributed control method for bidirectional low-temperature networks (BLTN). BLTN 
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is a new district heating and cooling network concept that promises more network 

efficiency. The temperature set point is optimised using the Nelder-Mead simplex 

method in Python (Nelder & Mead, 1965). The consumer and producer agents are 

distributed in the network, tracking the local set point. Based on the difference between 

the optimised set point and the current set point, the agents calculate local cost functions 

and submit proposals to the markets. The centralised broker evaluates all the proposals 

and chooses the most cost-efficient combination to implement. The results showed that 

the BLTN with the proposed control method could reduce energy consumption by more 

than 50% in comparison to conventional district heating systems. 

Claessens et al. (2018) proposed an optimisation control approach for TCL-connected 

district heating systems. This approach combined reinforcement learning and a market-

based multi-agent system. After aggregating the TCL cluster state information, the 

TCLs select the optimal action under the action policy with the Fitted Q-Iteration batch 

reinforcement learning algorithm (Ruiz et al., 2009). Then, the optimised actions were 

dispatched to the cluster of TCLs with a market-based multi-agent system. Claessens et 

al. (2018) highlighted a future research direction to investigate autonomous feature 

extraction techniques. Behboodi (2018) introduced a transactive load control scheme 

for TCLs in real-time retail market energy prices. Each TCL is aggregated with an agent 

to bid in the retail market based on temperature and anticipated energy price state 

information. This scheme requires less accuracy in price forecasting than a demand 

profile scheme since the proposed scheme only requires the mean and volatility of 

energy price in a specific time window. Table 2-1 summarises the application MAS 

architecture at the district scale. These applications have successfully coordinated 

district-scale multi-energy systems, such as a micro-grid. When a collection of such 

district-scale energy systems is connected, the regional network's reliability and 

economic performance need to be considered, as discussed in the next section.  
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Table 2-1 Summary of agent-based applications at district scale 

Reference 

Energy Carrier 

Storage Type Focused Topic Approach Platform Elect
ricit

y 

Heat
ing 

Cool
ing 

Ga
s 

Hydr
ogen 

EV 

District level design  

(Kyriakarakos 
et al., 2013) ✓ ✓ ✓  ✓  

Electric storage 
and hydrogen 

storage 

Optimal design of multi-energy 
micro-grid with demand-side 

management 
PSO 

TRNSYS, MATLAB, 
and GenOpt 

(Karavas et 
al., 2015) ✓    ✓  

Electric storage 
and hydrogen 

storage 

Decentralised energy management 
and component sizing of multi-

energy micro-grid 
PSO 

TRNSYS, MATLAB 
and GenOpt 

(Karavas et 
al., 2017) ✓    ✓  

Electric storage 
and hydrogen 

storage 

Game theory-based multi-energy 
micro-grid optimal component 

sizing 
PSO 

TRNSYS, MATLAB 
and GenOpt 

(H. Wang et 
al., 2021) ✓ ✓     

Electric storage 
and thermal 

storage (CAES) 

Game theory-based capacity 
optimisation of multi-energy 
district system with CAES 

PSO Not mentioned 

(S. Jin et al., 
2021) ✓   ✓   None 

Game theory-based component 
optimisation method for multi-

energy micro-grid 
PSO Not mentioned 

Decentralised control  

(Blaauwbroek 
et al., 2015) ✓ ✓  ✓   

Electric storage 
and thermal 

storage 

Decentralised multi-energy micro-
grid control 

Mixed-integer 
quadratic 

programming 
JADE, MATLAB 

(Harb et al., 
2015) ✓ ✓     Thermal storage 

Decentralised control of multi-
energy micro-grid 

Gurobi optimizer JADE 

(Y.-S. Li et 
al., 2016) ✓ ✓     

Electric storage 
and thermal 

storage 

Decentralised control of electricity 
and heating coupled system 

Consensus theory Not mentioned 
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(Alishavandi 
& 
Moghaddas-
Tafreshi, 
2019) 

✓ ✓ ✓ ✓   
Electric storage 

and thermal 
storage 

Decentralised multi-energy micro-
grid management for cost and 

emission minimisation 

Gradient 
projection 

Anylogic 

(Shabani & 
Moghaddas-
Tafreshi, 
2020) 

✓ ✓   ✓  
Electric storage, 
thermal storage, 
and hydrogen 

storage 

Fully decentralised multi-energy 
micro-grid control with an 
interactive clearing price 

Gradient 
projection 
algorithm 

Anylogic 

(Samadi et 
al., 2020) ✓ ✓     

Electric storage 
and thermal 

storage 

The decentralised control of multi-
energy micro-grid with 
reinforcement learning 

Q-learning MATLAB 

(Nguyen & 
Ishihara, 
2021) 

✓ ✓  ✓ ✓  Hydrogen 
storage 

Distributed P2P trading with fuel 
cells 

ADMM MATLAB 

(Kumari & 
Tanwar, 
2021) 

✓ ✓ ✓ ✓   None 
Multi-energy micro-grid 

management with blockchain-
based communication 

Q-Learning Not mentioned 

(Yu et al., 
2021) ✓ ✓  ✓   

Electric storage, 
thermal storage, 
and gas storage 

Multi-energy micro-grid 
optimisation 

Asynchronous 
advantage actor-
critic algorithm 

Open AI 

Micro-grid management  
(Anvari-
Moghaddam 
et al., 2017) 

✓ ✓     
Electric storage 

and thermal 
storage 

Optimal management of building 
integrated micro-grid 

BRL JADE and MATLAB 

(Kolen et al., 
2017) ✓ ✓  ✓   Thermal storage 

Decentralised control for clusters 
of electro-thermal heating devices 

for switch event and peak-to-
valley distance optimisation 

CPLEX MESCOS 

(Yang et al., 
2018) ✓ ✓     Thermal storage Optimal dispatch of CHP units Newton-Raphson MATLAB 

(H. Lin et al., 
2018) ✓ ✓ ✓ ✓  ✓ Electric storage EV impact on EH management Taboo search Anylogic 
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(Moghaddas-
Tafreshi et al., 
2019) 

✓ ✓  ✓ ✓  
Electric storage, 
thermal storage, 
and hydrogen 

storage 

Multi-energy micro-grid 
optimisation 

PSO MATLAB 

(Zeng et al., 
2019) ✓ ✓ ✓    

Electric storage 
and thermal 

storage 

Optimal dispatch scheme of an 
energy hub with integrated 

demand response 
NSGA-III Not mentioned 

(C. Li et al., 
2020) ✓ ✓     

Electric storage 
and thermal 

storage 

Multi-energy micro-grid 
optimisation 

Chaotic search 
PSO 

JADE and MATLAB 

(H. Liu et al., 
2020) ✓ ✓ ✓ ✓  ✓ 

Electric storage 
and thermal 

storage 

Hierarchical control of multi-
energy micro-grid with RL 

Q-learning Not mentioned 

(Hutty et al., 
2020) ✓    ✓  Hydrogen 

storage 
Feasibility study with reversible 

solid oxide cells 
Greedy algorithm Anylogic 

(Khan et al., 
2021) ✓ ✓  ✓ ✓ ✓ Electric Storage 

Multi-energy micro-grid 
optimisation 

Generalized 
pattern search 

algorithm 
JADE and MATLAB 

(Farinis & 
Kanellos, 
2021) 

✓ ✓ ✓   ✓ 
Electric storage 

and EV 
Multi-energy micro-grid 

optimisation 
PSO Not mentioned 

With heating network and clusters  

(Haque et al., 
2017) ✓ ✓     None 

Network congestion and voltage 
control 

Active power 
curtailment 
mechanism 

JADE and MATLAB 

(Claessens et 
al., 2018) ✓ ✓     None 

Optimal control of TCL and 
district heating network with RL 

Batch 
reinforcement 

learning 
Not mentioned 

(Behboodi et 
al., 2018) 

✓ ✓ 
    

None 
Transactive control of TCL with 

DR 
Market bidding Not mentioned 

(Bünning et 
al., 2018) 

✓ ✓ ✓ 
   

None 
Distributed control of bidirectional 

low-temperature network 

Simplex Nelder-
Mead method and 

market bidding 
Python and Modelica 
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2.3.1.3 Enabling regional scale integration  

To manage the complexity of the integration of multiple district-scale energy systems, 

the literature has covered hierarchical MAS architecture and the Energy Hub (EH) 

concept. In contrast to the horizontal peer-to-peer communication in the district scale, 

the regional MAS usually adopts a hierarchical architecture to decompose the regional 

multi-energy system into nested layers. Gao and Ai (2018) proposed a three-layer 

control scheme for MESs with the integration of micro-grids. In the control scheme, 

agents include regional system layer agents (top), micro-grid cluster layer agents 

(middle), and component layer agents (bottom). Top-layer agents are responsible for 

regional energy network optimisation. Upon receiving top-layer optimisation results, 

middle-layer agents will check with network limits and coordinate micro-grid clusters. 

The bottom components agents are responsible for each unit’s voltage and frequency 

control.  

Zhang and Yu (2019) introduced a real-time control strategy for multi-area MESs. The 

control strategy is based on the Stackelberg game, where a global agent behaves as a 

leader, and the rest of the local MES are followers. The top-layer global MES is 

responsible for improving the response performance of the entire system, whereas the 

bottom-layer agent is responsible for cost optimisation. The Stackelberg game is solved 

with Q-learning. The results showed that the proposed learning methods computed 

faster than common heuristic algorithms, including genetic algorithms, particle swarm 

optimisation, and differential evolution. 

In 2007, the concept of the energy hub (EH) was introduced to model the multi-energy 

flow on the regional level energy network (Geidl & Andersson, 2007b, 2007a). The EH 

concept was soon welcomed by academics. The following selected articles adopted the 

MAS to manage EHs. Gonzalez De Durana et al. (2014) developed a multi-agent, multi-

energy flow calculation framework for the EH network. The other energy carriers’ flow, 

such as natural gas and water, mimics the electricity power flow calculation. The multi-
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energy flow problem was solved with the classic Gauss-Seidel algorithm (Bergen & 

Vittal, 2000). Loose et al. (2020) used a similar concept with unified agents for both 

district heating and electricity network simulation, while the calculation was done using 

the Newton-Raphson algorithm. Skarvelis-Kazakos et al. (2016) proposed a 

hierarchical management framework for networked EHs. Each EH agent is responsible 

for optimising internally, then participating in the energy market via a centralised 

commercial agent. The authors also conducted a lab experiment to evaluate the 

technical feasibility of agent-based control with a micro-CHP. The experiment showed 

that the agent-based control was technically feasible with cost-efficient equipment, such 

as a personal laptop. Zhang et al. (2021) proposed a consensus-based control on the EH 

network with adaptive dual control to ensure operational security and cost minimisation. 

Farshidian et al. (2021) formulated the multi-EH planning problem as a competitive 

game between the EHs. Mohamed et al. (2020) provide a distributed energy 

management scheme for smart islands, consisting of networked multi-energy micro-

grids, EHs, and plug-in EVs. The optimisation is achieved with the primal-dual method 

of multipliers, which showed a better accuracy and convergence time than the ADMM 

method (Sherson et al., 2017). 

Xi et al. (2020) proposed an automated generation control scheme combining a double 

deep Q network and an action discovery algorithm. The proposed scheme showed a 

faster convergence rate than the traditional Q-learning method. T. Wang & Zhang (2021) 

proposed a two-layer multi-EH coordination strategy with micro-grid clusters. Each 

layer was formulated with the cooperative game. The deep deterministic policy gradient 

algorithm solved the two-layer optimisation problem. Li et al. (2016) proposed a multi-

agent reliability evaluation method for the multi-energy network considering the 

uncertainties of wind generation. This method adopted the Smart Agent 

Communication algorithm to achieve system reconstruction automation (Petcu & 

Faltings, 2005). Kou, Bie et al. (2021) proposed a reliability evaluation model that 

considers data privacy for each energy subsystem. The reliability evaluation model was 
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designed in a distributed architecture with agent communication. Kou, Wang, et al. 

(2021) also proposed a multi-energy network coordination method with a distributed 

accelerated descent algorithm. One of the selected studies proposed a novel multi-agent 

simulation framework for the multi-energy economy system. Zhu et al. (2020) 

introduced a novel energy-economy system simulation approach based on the Java 

Agent Development Framework. This simulation framework enables the modeller to 

define the simulation time step based on the demand, considering the compatibility of 

different simulation time steps. The summary of regional-level energy system 

management is shown in Table 2-2.  
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Table 2-2 Summary of agent-based application at regional scale  

Source 
Energy Carrier  

Storage Type Focused Topic Approach Platform Electri
city 

Heati
ng 

Cooli
ng 

Gas 
Hydr
ogen 

EV 

(Gonzalez De Durana et al., 
2014) ✓ ✓  ✓   None Multi-energy flow calculation Gauss-Seidel algorithm Anylogic 

(G. Li et al., 2016) ✓ ✓ ✓ ✓   Electricity storage 
IES reliability evaluation with agent-

based modelling 
K-1 algorithm to evaluate 

fault occurrence 
Anylogic 

(Skarvelis-Kazakos et al., 2016) ✓ ✓  ✓ ✓  Electric storage Energy hub network optimisation 
Java optimisation 

modeler 
JADE and 

JOM 

(Gao & Ai, 2018) ✓ ✓  ✓   
Electricity storage 

and thermal 
storage 

Multi-level hierarchical control of IES 
with multiple micro-grids 

Multi-energy network 
control 

PSCAD and 
EMTDC 

(X. Zhang & Yu, 2019) ✓ ✓  ✓   Gas storage 
Real-time coordinated control of multi-

area IES 

Solve fast Stackelberg 
equilibrium with Q-

learning 
MATLAB 

(Zhu et al., 2020) ✓ ✓  ✓   None 
Novel simulation framework with 

multi-energy economy coupled system 
Linear programming JADE 

(Loose et al., 2020) ✓ ✓     None 
Unified multi-energy network 

simulation 
Newton-Raphson 

Agent 
Workbench 
and JADE 

(Mohamed et al., 2020) ✓ ✓  ✓  ✓ Electric storage Smart island management PDMM 
Not 

mentioned 

(Xi et al., 2020) ✓ ✓  ✓  ✓ Fly wheel storage 
Multi-energy network automatic 

generation control 
DDQN-AD 

Not 
mentioned 

(N. Zhang et al., 2021) ✓ ✓  ✓   None Multi-energy network control 
Adaptive dual and 

consensus algorithm 
Not 

mentioned 
(Farshidian et al., 2021) ✓ ✓  ✓   Electric storage Multi-EH planning GAMS GAMS 

(Kou, Bie, et al., 2021) ✓ ✓  ✓   Electric storage 
and gas storage 

Reliability evaluation of multi-energy 
network 

ADMM 
MATLAB 

and MOSEK 

(Kou, Wang, et al., 2021) ✓ ✓  ✓   None Multi-energy network coordination 
Distributed accelerated 

descent 
MATLAB 

(T. Wang & Zhang, 2021) ✓ ✓  ✓   Electric storage Multi-EH coordination DDPG Python 



 
 

2.3.2 Market interaction with game theory in aggregation  

As reviewed in Section 2.3.1, two shifts coincide in the multi-energy system. The first 

shift is the decentralisation of energy generation in the building to district scale, turning 

consumers into prosumers. The second shift is the decentralisation of decision-making, 

with local autonomy for agents. Thus, the decentralisation of both electricity generation 

and decision-making spawned novel approaches for prosumers to participate in 

electricity markets. There are two pathways for prosumers to trade surplus electricity: 

1) selling excess electricity to local consumers, in the form of peer-to-peer trading. 2) 

selling aggregated excess electricity to the upstream grid, with a centralised agent 

control architecture, which is also referred to as virtual power plants (VPP). VPP is a 

framework to coordinate and export excess local electricity from prosumers beyond 

local communities to a list of regional electricity markets, including futures and forward 

markets, day-ahead markets, ancillary markets, intraday markets, and real-time 

balancing markets (Jafari & Akbari Foroud, 2020; Rahimiyan & Baringo, 2016; 

Shabanzadeh et al., 2016).  

VPP frameworks are usually hierarchical aggregation management processes that 

coordinate clusters of DER units to profit from participating in the electricity market. 

As a result, DER owners need to grant aggregation operators access to their assets. The 

centralised decision-making architecture requires a central computing unit to collect 

operational statuses from DERs and provide operational instructions based on 

optimisation results (Kardakos et al., 2016; Zamani et al., 2016).  

Recent work, therefore, investigates decentralised electricity service aggregation 

through virtual intermediaries, namely aggregators. Obi et al. (2020) provided a 

detailed review of the viable grid services that aggregators can provide. The grid 

services include asset aggregation, dispatch, standby generation, and ancillary services 

(Obi et al., 2020).  Iria et al. (2020) proposed a privacy-preserving bidding strategy for 

an aggregator to bid in the day-ahead market. The bidding strategy is designed to ensure 

the security of the distribution network. The bidding strategy is obtained by ADMM 
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(Iria et al., 2022). A bi-level convex formulation approach was also explored for the 

optimal bidding of an aggregator in the day-ahead market (Shomalzadeh et al., 2022). 

Nevertheless, the formulations assume a single aggregator and do not explore the 

competition among the aggregators.  

In addition, the hierarchy of the market interaction leads to a bi-level market structure, 

which is often modelled as a Stackelberg game in the literature (X. Zhang & Yu, 2019). 

In the Stackelberg game formulation, the market is led by a single leader and 

participated in by many followers. However, the modern energy markets involve 

multiple competing leaders, such as multiple aggregators, to compete for electricity 

aggregation, which leads to significant interactional complexity. This requires a multi-

leader-multi-follower game (MLMFG), considering both the horizontal competition 

among leaders and vertical reaction by followers. The game theory formulation, 

particularly the MLMFG  models, is suited to capture the dynamic market interaction 

in energy markets (M. Hu & Fukushima, 2015). MLMFG is a game theory model to 

compromise among multiple interacting decision units and competition among 

decision-makers of multiple hierarchical systems. A collection of players at the upper 

level compete in a Nash game constrained by the equilibrium conditions of another 

Nash game at the lower level. The players in the upper- and lower-levels are called 

leaders and followers, respectively. The optimal strategies of the leaders are determined 

based on the conjectured reactions of the followers.  

Xiao et al. (2020) used the MLMFG model to propose a privacy-preserving aggregation 

framework to participate in the day-ahead market, where aggregated prosumers are the 

leaders and end-users are followers. The game model is solved by mixed integer linear 

programming (Xiao et al., 2020). Hong et al. (2023) adopted the MLMFG model to 

optimise aggregation across both the day-ahead market and the local electricity market. 

The diagonalisation algorithm is used to solve the MLMFG model (Hong et al., 2023).   

The literature reviewed in Section 2.3 reveals a disconnection between the agent-based 

computation infrastructure and IoT technologies, and the complex market interactions 
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in prosumer aggregation. The computation infrastructure, such as edge computing, is a 

viable technological pathway to solve the complex market model. However, there is no 

computational framework to address the interactional complexity from the integration 

of both horizontal and vertical market interactions. Consequently, this section identifies 

the disconnection as Research Gap 2. 

Research Gap 2: There is no computational framework that can accommodate 

the bi-level interactional complexity among aggregators and prosumers with an 

algorithm that can solve the MLMFG in a fully decentralised manner. 

Chapter 5 addresses this gap by proposing a novel computational framework for 

intelligent aggregation, in which competing aggregators (leaders) and prosumers 

(followers) iteratively reach equilibrium through a novel graph-based consensus 

algorithm with proven linear convergence.  
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2.4 Evaluative complexity in strategic decisions 

Unlike operational and transactional challenges, strategic decisions involve selecting 

long-term technology pathways from among alternatives with distinct attributes. Hence, 

the energy systems are no longer optimised solely for cost minimisation with a single 

technology pathway; economic viability, environmental sustainability, and energy 

efficiency are also vital inputs for decision-making. As a result, the evaluative 

complexity emerges.  

A prime example of this complexity is the development of international green hydrogen 

supply chains. As nations commit to net-zero targets, policymakers and practitioners 

face a critical strategic choice: selecting the right hydrogen carrier. This Section reviews 

how existing approaches address evaluative complexity through techno-economic and 

environmental models. Section 2.4.1 examines the policy contexts that drive the 

development of the green hydrogen economy. Section 2.4.2 assesses the existing 

evaluative frameworks and highlights a knowledge gap within them.  

2.4.1 Green hydrogen policy and evaluative complexity  

The shift to low-carbon energy supply with green hydrogen is supported by the green 

hydrogen policies at the state level. The shifts introduce a form of evaluative complexity, 

where selecting a GHC pathway that satisfies divergent requirements across the 

international green hydrogen supply chain.  

On the demand side, major industrial economies have established ambitious hydrogen 

targets that require the development of international green hydrogen supply chains.  The 

European Union’s hydrogen policy sets out a domestic production target of 10 million 

tons by 2030 (Erbach & Jensen, 2021). The hydrogen review by IRENA also highlights 

that the domestic production in the EU may not meet the growing demand, hence 

importing green hydrogen is an important strategy to fill the demand gap (IRENA, 

2019).  
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Japan has positioned itself as a pioneer of the green hydrogen industry, where Japan 

sets a target of 3-million-ton hydrogen supply chain by 2030 and 20 million tons by 

2050. In addition to hydrogen, Japan’s hydrogen policy highlights the critical role of 

hydrogen carriers, such as ammonia, in decarbonising the energy sector (Green 

Hydrogen Organisation, 2025). The United Kingdom’s hydrogen strategy supports both 

electrolytic and carbon capture-enabled hydrogen. More specifically, the UK Hydrogen 

Strategy sets out an ambitious plan to deliver 5 GW of green hydrogen by 2030, 

exploring the import of GHCs to close the supply gap (DESNZ, 2024).  

On the supply side, countries with rich renewable resources could seize this opportunity 

for economic development and industrialisation. South Africa has great potential to be 

a key player in green hydrogen export, due to its abundance of renewable energy 

resources (Rehman et al., 2022). Hence, South Africa has established a strategic plan to 

become a major green hydrogen exporter, to capture 4% of the global green hydrogen 

market by 2050 (CSIS, 2022). To meet hydrogen demand, evaluating and selecting 

appropriate GHCs is crucial. The choice of GHC will affect costs of supply, 

environmental footprint, and supply chain efficiency, ultimately determining whether 

national strategies can translate into real-world projects. Current literature often 

evaluates these metrics in isolation, as the following sub-sections review the existing 

evaluation framework for international green hydrogen trade.  

2.4.2 Limitations of existing evaluation frameworks  

The existing literature evaluates the performance of GHC pathways with techno-

economic, environmental, and combined assessment frameworks. For research 

adopting a techno-economic analysis framework, a key finding in the literature is the 

dominance of renewable energy costs. As shown in Table 2-3, studies by Kenny et al. 

(2024) and Heuser et al. (2019) both conclude that the availability and cost of renewable 

resources in the exporting country are the most significant drivers of the final Levelised 

Cost of Hydrogen (LCOH). In addition, the choice of carrier introduces substantial 

variations in the upfront investments. Specifically, Raab et al. (2021) analysed the large-
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scale hydrogen export system from Australia to Japan with a comparative cost analysis 

of three green hydrogen carriers: LH2, DBT and TOL. The significant capital 

expenditure (CAPEX) required for liquefaction plants and cryogenic infrastructure 

made LOHCs, such as DBT and TOL, more economical than LH2. This highlights a 

key difference between carriers that require high upfront investment and those that are 

compatible with existing energy infrastructure. The analysis by Niermann et al. (2021) 

provides additional insights into LHOC operations, where the cost competitiveness of 

LOHCs depends on the cost of dehydrogenation heat supply. Using hydrogen to supply 

heat will increase overall system costs and reduce system efficiency.  

The second stream of research focuses on the comparative international study of GHCs’ 

supply chains, particularly in terms of environmental aspects, using life cycle 

assessment (LCA). A consistent finding from the literature is the importance of the 

electricity used for electrolysis. Noh et al. (2023) conducted the LCA and energy 

efficiency analysis on hydrogen imports to Korea. The results show that the carbon 

intensity of the grid in the exporting country is a critical factor determining the final 

environmental footprint. Abeynaike and Barbenel (2024) conducted a cradle-to-grave 

LCA on exporting NH3 and LH2 from New Zealand to Japan, using the partially 

decarbonised grid of New Zealand. The results show that there is no net environmental 

benefit compared with Japan’s existing grid, even though New Zealand’s grid supply is 

more than 80% renewable. Beyond electricity supply, Cho et al. (2024) assessed the life 

cycle impact of different LOHC production methods. The results indicate that utilising 

biomass-derived TOL and DBT can result in a lower environmental impact compared 

to their fossil-based counterparts. 
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Table 2-3 Literature review on the international hydrogen carriers 

Reference  Carriers considered  Export Country  Import Country  Assessment Method  

Studies on techno-economic analysis of hydrogen carriers  

(Kenny et al., 2024) LH2 and NH3 Chile, Namibia, and 
Morocco 

Germany Levelised cost  

(Song et al., 2021) LH2, NH3, and TOL  China  Japan  Levelised cost  

(Niermann et al., 2021) LH2, DBT, MeOH, 
NEC, CGH2  

Algeria Germany System efficiency and levelised cost  

(Heuser et al., 2019) LH2  Patagonia  Japan  Levelised cost  

(Restelli et al., 2024) LH2 North Africa  North Italy  Levelised cost and process simulation  

(Raab et al., 2021) LH2, TOL, and DBT  Australia  Japan  levelised cost  

Studies on the environmental impact analysis of hydrogen carriers  

(Abeynaike & Barbenel, 2024)  LH2 and NH3 New Zealand Japan Global warming potential  

(Noh et al., 2023a) LH2, CGH2, TOL, NH3  Australia  South Korea Global warming, acidification and eutrophication 
potential  

(Cho et al., 2024) TOL and DBT  Australia Netherland, South 
Korea, and Japan 

ReCiPe Midpoint and Endpoint   

Studies combined techno-economic and environmental impact analysis  

(Lee et al., 2022) LH2, NH3, MeOH, TOL, 
and DBT  

Australia  South Korea  levelised costs and carbon intensity  

(Godinho et al., 2023) TOL, DBT  Portugal  Netherland levelised cost and global warming  

(Dickson et al., 2022) LH2, NH3, MeOH, 
synthetic natural gas, 
TOL, DBT 

Does not specify  Does not specify  Levelised cost and CML-IA life cycle impact 
assessment  
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Recent studies also combine the techno-economic and carbon footprint calculations, 

which consistently highlight the trade-off between economic and environmental 

performance. No single GHC optimises all criteria simultaneously. Dickson et al. (2022) 

analysed the levelised costs and environmental impact of liquid hydrogen, ammonia, 

methanol, synthetic natural gas, TOL, and DBT. The results show that ammonia and 

methanol are the most promising hydrogen carriers in terms of economic performance, 

while LH2 has the lowest overall environmental impact. Similar findings were reported 

by Lee et al. (2022), who investigated the techno-economic and carbon intensity 

performance of five hydrogen carriers, including LH2, NH3, MeOH, TOL, and DBT. 

For the target export from Australia to South Korea, TOL is the most cost-effective 

hydrogen carrier, while ammonia is recommended for the lowest carbon emissions in a 

fully renewable energy-supplied scenario.  

The literature review above highlights that the intrinsic trade-off creates evaluative 

complexity. One hydrogen carrier will excel in one policy-relevant criterion but not in 

another. For example, LH2 tends to have low environmental impacts (Dickson et al., 

2022), but high-levelised costs (Song et al., 2021). Such distinct performance makes 

carrier selection a source of evaluative complexity. This recurring conflict highlights 

the need for a framework to resolve these trade-offs. Although Multi-Criteria Decision-

Making (MCDM) has been applied to solve the conflict, two gaps remain within 

existing frameworks.  

First, the economic criterion is oversimplified. The MCDM framework by Oner & 

Khalilpur (2022) uses a simplified LCOH model that does not account for the time 

value of cash flows or inflation, both of which are essential for evaluating long-term, 

capital-intensive hydrogen projects. Second, environmental criteria often focus only on 

carbon emissions. The majority of existing LCA literature on the international trade of 

hydrogen carriers, as shown in Table 2-3, focuses almost exclusively on Global 

Warming Potential (GWP) or its variants as the sole environmental criterion. This 

narrow focus omits environmental impact from other damage pathways, such as fine 

particulate matter formation. Thus, this thesis has identified the Research Gap 3: 

Research Gap 3: There is currently no integrated MCDM framework that 

simultaneously evaluates hydrogen carriers based on discounted techno-

economic performance, comprehensive life-cycle environmental impacts, and 
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carrier-specific energy efficiency. Furthermore, the strategic potential of the 

South Africa–UK green hydrogen corridor has not been analysed in existing 

literature. 

Chapter 6 closes this gap with a novel MCDM framework that quantitatively evaluates 

GHCs with discounted technical-economic analysis and comprehensive environmental 

assessment.  The evaluation framework is applied to five leading carriers (LH₂, NH₃, 

methanol, TOL and DBT) for the South Africa-UK supply chain, thereby providing the 

first holistic ranking of GHC options for this corridor. 

2.5 Chapter summary  

This chapter has reviewed existing computational frameworks through the lens of 

nested complexity. The analysis of uncertainty complexity revealed a gap in a non-

probabilistic, risk-aware optimisation framework. The review of interactional 

complexity highlighted the need for a decentralised, competitive multi-party 

aggregation model. Finally, the assessment of evaluative complexity identified the lack 

of an integrated framework combining discounted economics with comprehensive 

environmental metrics. These identified gaps collectively provide a foundation for the 

overarching research question and methodological design presented in the subsequent 

chapter. 
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Chapter 3 

3. Research methodology  

 

3.1 Introduction  

Fundamental shifts in decision-making are driving the transition to a multi-energy 

system. The first shift is the nature of operational uncertainty, caused by the increasing 

adoption of intermittent renewable energy sources. The second shift involves a 

structural shift from centralised control to distributed coordination, transforming the 

conventional top-down architecture of the electricity grid into a bottom-up construction 

of autonomous agents. The third shift relates to the criteria used for strategic evaluation, 

moving away from a sole focus on cost with multi-criteria decision-making. As a result, 

traditional computational frameworks that are deterministic, centralised, and focused 

on a single objective cannot effectively address the complexities introduced by these 

three shifts.   

Section 3.2 explains how these three shifts create a nested complexity that motivates 

the overarching research question of this thesis. Section 3.3 outlines the selection of 

methods to address the research question and explains why they are appropriate. Section 

3.4 outlines the main data sources and assumptions used in the following chapters.  

3.2 Research question  

The three shifts outlined in Section 3.1 create a nested hierarchy of decision-making 

complexities that develop as the energy system expands from operational to strategic 

levels. At each level of this hierarchy, a dominant form of complexity makes the 

traditional computational frameworks inadequate. At the lowest operational scale, 

traditional computational frameworks are designed to solve deterministic scheduling 

problems, where demands are predictable, and electricity generation is dispatchable. 

However, the rising integration of intermittent wind and solar power introduces 

uncertainty into energy scheduling, making the deterministic computational framework 

unsuitable for systems with significant renewable resources. Furthermore, probabilistic 
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distributions based on historical data may not accurately predict market volatility, 

resulting in an information gap regarding future market prices. This operational 

uncertainty is a critical source of complexity, which can be regarded as uncertainty 

complexity. It presents a major challenge for micro-grid operators who face 

unpredictable electricity market price volatility (Nojavan et al., 2015). The ability of 

agents to manage this complexity and formulate operational strategies that align with 

the risk preferences of micro-grid operators underpins collective action within the 

broader energy system.  

Building on the operational scale, the shift from centralised control to distributed 

coordination gives rise to interactional complexity. This next layer of complexity arises 

because the system comprises many diverse agents, each with its own operational 

strategies. The adoption of distributed energy resources makes the system difficult to 

manage with a single controller, where each distributed energy asset aims to maximise 

its own utilities. At the transactional scale, the interactions among agents introduce a 

game-theoretic dynamic where an agent’s decision depends on others’. The existing 

centralised computational framework faces challenges in addressing such distributed 

dynamic interactions among agents. Therefore, interactional complexity remains at the 

transactional level.  

At the top of the hierarchy, shifts in strategic evaluation lead decision-makers to choose 

among different technology pathways with unique characteristics. Traditionally, the 

strategic decision-makers were guided by the conventional single objective of 

minimising the levelised cost of energy. However, strategic decisions, such as choosing 

the appropriate green hydrogen pathways for international trade, are multidimensional. 

Policymakers and investors must choose a hydrogen carrier based on multiple 

evaluation metrics, subject to lower-level complexities. For example, the economic 

criteria can represent the aggregated financial performance under market volatilities 

(uncertainty complexity) and market transactions (interactional complexity). The 

decision-making at the strategic scale, hence, should be based on multi-criteria 

evaluation, which can be regarded as evaluative complexity.  

The nested hierarchy of complexities reveals gaps between the future multi-energy 

systems and the traditional computational frameworks. New computational frameworks 
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are required to address the emerging complexities. This revelation motivates the 

overarching research question of this thesis: 

Overarching research question: What new computational frameworks are 

required to manage the nested hierarchy of uncertainty, interactional, and 

evaluative complexities that emerged at different scales of multi-energy system 

transition? 

To provide a comprehensive answer to this question, this thesis adopts a multi-scale 

research methodology. The literature review in Chapter 2 identified three research gaps 

in existing computational frameworks, which informed the research objectives of this 

thesis. Each objective aims to address a specific layer of the hierarchy of complexity 

where the identified gaps exist. From the operational to the transactional, and finally to 

the strategic scale, the three research objectives collectively address the overarching 

research question.  

The first research objective focuses on the foundational layer of the hierarchy, 

uncertainty complexity. This objective addresses research gap 1: the need for a risk-

adjusted computational framework for novel assessments under severe market 

uncertainty.  

Objective 1: To establish a computational framework that is able to guide 

decision-makers with different risk preferences for energy assets under severe 

uncertainty.  

This objective targets the operation of the energy systems. It requires developing a 

framework that does not rely on assumptions about the probabilistic distributions of 

key decision variables. The second objective builds on the operational scale to address 

the interactional complexity, responding to the research gap 2 in the lack of a 

decentralised multi-party competition market framework.  

Objective 2: To formulate a computational framework that is capable of 

coordinating the decentralised agents with game-theoretic interactions.  

This objective aims to address the limitations of existing single-aggregator or 

centralised aggregation frameworks. The final objective is at the strategic scale of 
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hierarchy to address the evaluative complexity, responding to the gap in a multi-criteria 

strategic assessment framework.  

Objective 3: To construct a computational framework that moves beyond 

single-metric decision-making to resolve the strategic trade-offs inherent in 

multi-criteria decision-making.  

Collectively, the three objectives form a coherent response to the overarching research 

question. By developing new computational frameworks, this thesis informs the future 

decision-making tools for the multi-scale energy system transition. The following 

section explains the justification and rationale for why the methods are suitable for 

fulfilling the research objectives.  

 

3.3 Methodological framework  

 The research objectives outlined in Section 3.2 reveal the need for new computational 

frameworks to manage the complexities in multi-energy transition. This section 

provides a justification and rationale for the research methods adopted to construct the 

new computational frameworks. As illustrated in Figure 3-1, each research objective is 

achieved with a specific methodological innovation, which collectively answers the 

overarching research question.  

 

 

Figure 3-1  Schematic of the methodological framework. 
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To achieve Objective 1, this thesis proposes a new computational framework by 

hybridising the risk management principles of IGDT with the structured optimisation 

from STA. The core challenge to achieving this objective is making decisions under 

deep, non-probabilistic distributions. Existing uncertainty-handling methods, such as 

stochastic programming, rely on known, stationary probability distributions. IGDT is a 

non-probabilistic framework explicitly designed for decision-making under severe 

uncertainty, especially the deep uncertainty of electricity market prices.  

As reviewed in Chapter 2, most of the existing literature on IGDT application in energy 

system scheduling uses convex optimisation. The novel energy assets, such as LAES, 

require optimisation using a non-convex method. Hence, the risk-based logic of IGDT 

was hybridised with the STA, which is a powerful heuristic search algorithm. Compared 

with traditional heuristic algorithms such as GA and PSO, STA has structure-learning 

capabilities and demonstrates better performance. This novel hybrid IGDT-STA 

framework can schedule microgrids based on decision-makers' risk preferences, 

thereby addressing Objective 1. 

To achieve Objective 2, both game-theoretical models and algorithmic innovations for 

optimisation were required. The key challenge is that the transactional scale is to model 

and solve a decentralised market with a hierarchical structure with competing agents. 

The existing literature often adopts Stackelberg game models with a single leader 

structure. This structure cannot capture horizontal competition among multiple 

aggregators, a key transition in future energy markets. Therefore, this thesis adopts the 

MLMFG formulation, as it can capture the horizontal competition among leaders 

(aggregators) and the hierarchical response of followers (prosumers).  

Existing methods for solving game-theoretic models are usually centralised and require 

global information from all market participants. The centralised algorithm could not 

fulfil the privacy requirements of the distributed energy asset owners. This gap 

motivates the development of a novel graph-based consensus algorithm. This algorithm 

provides a decentralised method for solving the MLMFG model via peer-to-peer 

information exchange via edge computing. As a result, the innovation in game theoretic 

models and optimisation algorithms fulfils Objective 2 by providing a computational 

framework for future multi-party aggregation. 
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Finally, this thesis achieves Objective 3 by methodological innovation in framework 

integration and enhancement. The strategic challenges of choosing technology 

pathways with distinct performance in key indicators, such as levelised costs and 

environmental footprint, make single-metric analysis insufficient. This leads to 

selecting MCDM as the appropriate class of methods. This thesis adopts the Analytic 

Hierarchy Process (AHP) with TOPSIS and VIKOR. The AHP provides a transparent 

method for capturing stakeholder priorities and weighting the decision criteria. The 

subsequent use of both TOPSIS and VIKOR provides a quantitative ranking of potential 

candidates. TOPSIS identifies the ideal solution that excels on key metrics, while 

VIKOR identifies the best compromised solution that minimises regret.  

The key methodological innovation in MCDM is the enhancement of the decision 

inputs. The literature review revealed that existing MCDM applications in green 

hydrogen trade often use simplified criteria inputs, such as an undiscounted levelised 

cost model or a focus solely on global warming potential. This thesis proposed an 

integrated framework that considers the time value of money and production, and a 

comprehensive life cycle assessment using the ReCiPe Endpoint method. This 

integration of enhanced criteria fulfils Objective 3 by providing a transparent 

computational framework to navigate strategic trade-offs.   

3.4 Data sources, assumptions, case study design 

To validate the proposed computational framework, each framework is applied to a 

specific case study that represents the complexities of operational, transactional, and 

strategic scales. This section details the data sources, modelling assumptions, and case 

study design employed to validate the research objectives.  

To validate the IGDT-STA framework for managing the uncertainty complexity at the 

operational scale, the case study design focuses on a grid-connected micro-grid in 

Northwest China.  Several critical assumptions were made during the operational 

optimisation. First, the thermodynamic processes in the LAES system, such as 

compression, liquefaction, and expansion, are modelled as a steady-state system. 

Second, the micro-grid is assumed to be a price taker in the day-ahead market, meaning 

its operations do not affect the market prices. This assumption allows the study to focus 

solely on the impact of price uncertainty on the micro-grid.  
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The case study design at the operational scale compares a standard GA representing 

heuristic optimisation, a stochastic programming approach representing probabilistic 

risk management, and a Monte Carlo simulation representing a baseline of random 

scenarios. The case study includes running numerical models under various risk 

preference levels to generate robustness and opportunity curves. This design allows for 

a direct quantitative comparison of methods.  

Moving to addressing the interactional complexity, the validation of the graph-based 

algorithm for MLMFG is conducted with the SimBench dataset (Meinecke et al., 2020). 

Specifically, an urban low-voltage distribution topology is combined with 57 synthetic 

prosumers to create the competitive environment. There are two critical assumptions in 

the case study design. First, all agents, including aggregators and prosumers, are 

assumed to follow the utility-maximising rationale, meaning the utility of the actions 

determines their actions. Second, the battery degradation for V2G participants is 

assumed to follow a power-law distribution, which is important for prosumers’ utility 

functions to remain convex.  

The case study design of transactional scale combines numerical and complexity 

analysis. The numerical results of market interactions show that the system converges 

to a market equilibrium. In addition, the proposed graph-based algorithm is also 

benchmarked with other decentralised optimisation methods, which are detailed in 

Chapter 5.  

Finally, to validate the new MCDM framework for managing evaluative complexity at 

the strategic scale, the case study is focused on the previously unexamined hydrogen 

corridor. The data sources of this case study include the techno-economic model and 

the environmental analysis model. The details of the data sources and assumptions are 

presented in Chapter 6 and Appendix A1 and A2.  

The key assumptions for the strategic scale case study are twofold. First, this case study 

assumes the project lifetime of 20 years, which is an input for the techno-economic 

model for calculating LCOH and internal rate of return. The choice of a 20-year project 

life is to align the project with the key technological component, the proton exchange 

membrane. Second, the supply chain is assumed to be a steady-state system delivering 

a fixed annual volume of hydrogen.  
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In addition to the base-case analysis, this case study includes a scenario-based 

sensitivity analysis. These sensitivity cases are constructed with systematic changes in 

critical parameters, such as the renewable capacity factor in South Africa. Furthermore, 

a criteria-weighting analysis is performed to determine the different stakeholder 

priorities.  

3.5 Chapter Summary  

This chapter builds the methodological foundation for the thesis. The shifts in 

operational uncertainty, decentralised coordination, and strategic evaluation create a 

nested hierarchy of decision-making complexities. How to address these complexities 

in computational frameworks is the overarching research question of this thesis.  

Accordingly, the research design is structured to address the research gap at a specific 

level of complexity. First, a new computational framework for risk-inclusive operations 

is required to manage the uncertainty complexity at the operational scale. Second, a 

new computational framework for decentralised coordination is needed for 

management interactional complexity at the transactional scale. Lastly, a new 

computational framework is required for multi-criteria decision-making for managing 

evaluative complexity at the strategic scale. This chapter also details the high-level data 

sources, assumptions, and case study designs. Chapters 4, 5, and 6 will demonstrate 

how these new computational frameworks can effectively facilitate the multi-scale 

transition towards a sustainable energy future.   
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Chapter 4 

4. Addressing complexity in LAES micro-

grids operation under severe market 

uncertainty2 

 

4.1 Chapter introduction  

The emergence of novel physical energy storage technologies, such as compressed air 

energy storage (CAES) and liquid air energy storage (LAES), introduces additional 

complexity to the conventional energy systems. Physical air-based storage technologies, 

such as CAES and LAES, combine high safety with low environmental impacts (Yan 

et al., 2021). CAES converts electrical energy into potential energy of compressed air 

molecules, which are stored in underground caverns or other suitable locations. CAES 

has a high safety level, but its deployment is constrained by suitable geological 

formations, e.g. caves or abandoned mines (Damak et al., 2020; Heo et al., 2022). On 

the other hand, LAES is a novel large-scale physical energy storage technology that 

compresses and condenses air into a liquid state in the cryogenic storage tank, as shown 

in Figure 4-1. It should be noted that the round-trip efficiency of LAES ranges from 50% 

to 60%, depending on the system design (She et al., 2017). Although LAES tends to 

have lower round-trip efficiency than other storage methods, it has the advantages of 

high energy storage density, accessible storage, and is less restricted by geographical 

conditions compared with CAES. 

 
2 This chapter is adapted from Yao, R., Xie, H., Wang, C., Xu, X., Du, D., Varga, L., & Hu, Y. 

(2024). A multi-agent-based micro-grid day-ahead optimal operation framework with liquid air 

energy storage by hybrid IGDT-STA. Journal of Energy Storage, 86, 111318. 

https://doi.org/10.1016/j.est.2024.111318  
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Figure 4-1 Schematic diagram of LAES system operation. 

 

In addition, the operation strategy should be able to suit the risk preferences of decision-

makers. Thus, this chapter addresses Objective 1 on the need to establish a 

computational framework that can consider different risk profiles of decision-makers 

with new energy assets. This chapter achieves this objective through three contributions:  

 The IGDT method is implemented on a micro-grid with LAES for the first time 

to solve the optimal operation problem with uncertainty in market electricity 

prices. 

 This chapter proposed a novel operational framework of the IGDT-STA hybrid 

method with a multi-agent system to optimise the robustness function and 

opportunity function to suit the risk preferences of decision-makers.  

 This chapter compared the proposed IGDT-STA method with genetic algorithm 

optimisation techniques, stochastic method, and Monte Carlo method in a case 

study. The results showed the effectiveness of IGDT-STA. 

The remainder of the chapter is organised as follows. Section 4.2 details the hybrid 

IGDT-STA method. Section 4.3 describes its implementation in a multi-agent LAES 

micro-grid. Section 4.4 presents the case study and comparative results. Section 4.5 

summarises key findings. 
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4.2 Uncertainty decision-making with IGDT-STA 

This section explains the mathematical formulation of the IGDT-STA method. Section 

4.2.1 describes the IGDT mathematical models, and Section 4.2.2 includes the 

mathematical formulation of STA.   

4.2.1 IGDT mathematical models  

The IGDT effectively manages system uncertainties by focusing on the information gap. 

Rather than relying on probability distributions, it specifically addresses the divergence 

between anticipated and actual values within an uncertainty parameter. As a result, 

IGDT is able to model uncertainties with a severe lack of information (Majidi et al., 

2019). The following section explains the details of the system model, the uncertainty 

model, and performance requirements in IGDT. 

4.2.1.1 IGDT system model  

The decision variables and uncertainty parameters in the decision space and uncertainty 

space are 𝑃 and 𝜆, respectively. The system model can be expressed as the optimisation 

problem (4.1) to minimise the system cost.  

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒   𝐶(𝑃, 𝜆) 

𝑠. 𝑡. 𝐺௜(𝑃, 𝜆) ≥ 0, 𝑖 = 1, … , 𝑚 

        𝐻௝(𝑃, 𝜆) = 0, 𝑗 = 1, … , 𝑛 

(4.1) 

where 𝐶(𝑃, 𝜆)  is the system cost function which takes decision variable 𝑃  and 

uncertainty parameter 𝜆  as function input. 𝐺௜(𝑃, 𝜆) ≥ 0  and 𝐻௝(𝑃, 𝜆) = 0  are 

inequality and equality constraints, respectively.    

4.2.1.2 Uncertainty model  

The uncertainty model of IGDT aims to describe the information gap between the 

predicted value of the uncertainty parameter and its true value (Ben-Haim, 2006). The 

uncertainty model can be expressed as Eq. (4.2): 

𝑈൫𝛼, 𝜆መ௧൯ = ቊ𝜆௧:
ห𝜆௧ − 𝜆መ௧ห

𝜆መ௧

≤ 𝛼ቋ , 𝛼 ≥ 0 (4.2) 
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where 𝜆௧ denotes the actual value of the uncertain parameter. 𝜆መ௧ denotes the predicted 

value of the uncertainty parameter. 𝛼  is the bound for system uncertainty levels. In 

essence, the uncertainty model ensures that the deviation of the uncertainty parameter 

𝜆௧ with respect to 𝜆መ௧ will not exceed 𝛼𝜆መ௧. 

4.2.1.3 Performance requirements 

The IGDT performance requirements are the quantitative evaluations of objective 

function performance with respect to system robustness and opportunity values. The 

performance requirements consist of the robustness function Eq. (4.3), and the 

opportunity function Eq. (4.4). 

𝛼ො(𝑃, 𝐶௔௩௘௥௦௘)  = max
ఈ

 ൛𝛼: max ൫𝐶(𝑃, 𝜆)൯ ≤ 𝐶௔௩௘௥௦௘ൟ (4.3) 

where 𝐶௔௩௘௥௦௘ is the target system cost that risk-averse decision-makers are willing to 

pay. The function value 𝛼ො(𝑃, 𝐶௔௩௘௥௦௘)  indicates the maximum possible system 

uncertainty with a given cost target 𝐶௔௩௘௥௦௘ . In other words, Eq. (4.3) returns the 

maximum fluctuation bound for uncertainty parameter 𝜆 . The greater value of 

𝛼ො(𝑃, 𝐶௔௩௘௥௦௘) means the system is more robust and less susceptible to uncertainties. 

Therefore, the risk-averse decision-makers are able to make robust decisions, ensuring 

the system is immune to uncertainties. 

𝛽መ൫𝑃, 𝐶௧௔௞௜௡௚൯  = min
ఈ

 ൛𝛼: min൫𝐶(𝑃, 𝜆)൯ ≤ 𝐶௧௔௞௜௡௚ൟ (4.4) 

where 𝐶௧௔௞௜௡௚ is the target system cost that risk-taking decision-makers are willing to 

pay. The opportunity function Eq. (4.4) returns the minimum fluctuation range of 

uncertain variables that risk-taking decision-makers usually allow. This function mainly 

evaluates the positive aspects of uncertainty and finds the minimum uncertainty level 

that the system can tolerate by reducing costs. 

4.2.2 STA implementation  

STA uses the state space representation in modern control theory as a framework to 

solve optimisation problems (X. Zhou et al., 2012).  

With state space representation, the unified form of STA is (X. Zhou et al., 2012): 
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൜
𝑥௞ାଵ = 𝐴௞𝑥௞ + 𝐵௞𝑢௞

𝑦௞ାଵ = 𝑓(𝑥௞ାଵ)
 (4.5) 

where 𝑓(·) denotes the objective function. 𝑥௞ is the current state which corresponds to 

a solution to the optimisation problem. 𝑥௞ାଵ is the next state and 𝑦௞ାଵ is the fitness 

value at next state. 𝐴௞ and 𝐵௞ denote the state transition matrices, which can also be 

regarded as state transformation operators. 𝑢௞  denotes the function of 𝑥௞  and the 

historical state. With state space representation, the STA method defines four state 

transformation operators to solve optimisation problems.  

 Rotation transformation: 

𝑥௞ାଵ = 𝑥௞ + 𝜔
1

𝑛∥∥𝑥௞∥∥ଶ

𝑅௥𝑥௞ (4.6) 

where 𝜔 ∈ ℝ > 0 denotes a rotation factor. 𝑅௥ ∈ ℝ௡×௡denotes a random matrix whose 

entries are uniformly distributed random variables between [−1,1] . ∥·∥ଶ  denotes 

Euclidean norm (or L2 norm) of a vector. 𝑛 is the dimension of the state 𝑥௞. The rotation 

operator has the functionality to search in a hypersphere with the maximum radius 𝜔, 

which has been proven in (X. Zhou et al., 2012). 

 Translation transformation: 

𝑥௞ାଵ = 𝑥௞ + 𝛽𝑅௧

𝑥௞ − 𝑥௞ିଵ

∥∥𝑥௞ − 𝑥௞ିଵ∥∥ଶ

 (4.7) 

where 𝛽 ∈ ℝ > 0 denotes a translation factor. 𝑅௧ ∈ ℝ denotes a uniformly distributed 

random variable on interval [0,1]. The translation transformation aims to line search for 

a possible better candidate solution, which can be regarded as a heuristic operator. 

 Expansion transformation: 

𝑥௞ାଵ = 𝑥௞ + 𝛾𝑅௘𝑥௞ (4.8) 

where 𝛾 ∈ ℝ > 0 denotes an expansion factor. 𝑅௘ ∈ ℝ௡×௡ denotes a random diagonal 

matrix under normal distribution. The expansion transformation is designed for global 

search with probabilities to search the whole space. 

 Axesion transformation: 
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𝑥௞ାଵ = 𝑥௞ + 𝛿𝑅௔𝑥௞ (4.9) 

where 𝛿 ∈ ℝ > 0  denotes an axesion operator. 𝑅௔ ∈ ℝ௡×௡  denotes a sparse random 

diagonal matrix under the normal distribution, with only one random entry being non-

zero. The axesion transformation has the functionality to strengthen single-dimensional 

search (X. Zhou et al., 2019). 

In addition to the state space representation and transformation operators, STA method 

also incorporated sampling in the optimisation process. A representative sampling 

technique is used to avoid enumerating all potential candidate states (X. Zhou et al., 

2019). The STA performs a transformation operation with multiple times, parameterised 

by a positive integer Ψௌா , representing search enforcement constant. After explaining 

the four transformation operations and sampling techniques, the STA can be described 

with the following pseudocode: 

1: State ← initialisation(Ψௌா) 
2: Best ← fitness(funfcn, State) 

3: Repeat 
4:   if 𝜔 <  𝜔௠௜௡ do  
5:     𝜔  ← 𝜔௠௔௫ 
6:   end if 
7:   Best ← expansion (funfcn, Best, Ψௌா , 𝛽, 𝛾) 
8:   Best ← rotation (funfcn, Best, Ψௌா , 𝛽, 𝜔) 
9:   Best ← axesion (funfcn, Best, Ψௌா , 𝛽, 𝛿) 
10:   𝜔 ← 

ఠ

௙௖
 

11: until the termination criterion is met 

The initialisation (∙)  in the above pseudocode initialise a candidate solution in the 

feasible set. The ϐitness (∙) selects the best solution with state vector after evaluation 

with the objective function. During the optimisation process, the rotation operator 

𝜔  decrease periodically from maximum value 𝜔௠௔௫  to minimum value 𝜔௠௜௡  with 

lessening coefficient 𝑓𝑐 . Noticeably, the translation operation is implemented in the 

other three operations once a better candidate solution is found. Thus, the translation 

operator 𝛽  is passed to the other three operations: expansion (∙) , rotation (∙) , and 

axesion (∙). 
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4.2.3 IGDT-STA hybrid optimisation algorithm  

The proposed IGDT-STA decision-making strategy integrates the STA algorithm into 

the IGDT's optimisation process. The IGDT-STA involves two distinct stages. During 

the first stage, STA is utilised to optimise a risk-neutral strategy using prediction data. 

In the second stage, STA optimises the performance requirement functions of the IGDT, 

which encompasses both the robustness function and the opportunity function, based 

on the risk-neutral strategy obtained in the first stage. The micro-grid's optimal 

operation strategy with LAES is developed, accounting for uncertain market electricity 

prices. Figure 4-2 depicts the IGDT-STA method flowchart, and the solution process is 

summarised as follows: 

(1) Input the necessary data of the micro-grid system, such as the parameters of wind 

power generation, photovoltaic power generation, micro gas turbine, LAES, and the 

predicted value of the market electricity price. 

(2) The base optimisation model of the micro-grid with LAES is formulated. This model 

aims to minimise the operation cost of micro-grids with LAES and considers various 

constraints from LAES, micro gas turbine, and tie-line transmission power. 

(3) The STA method is used to solve the basic optimisation model of the micro-grid 

with LAES and further obtain the risk-neutral strategy, which is the minimum operating 

cost strategy of the system based on the predicted market price. The minimum operating 

cost under this strategy is also called the risk-neutral cost. 

(4) Different cost targets are set according to the minimum operating cost corresponding 

to the obtained risk-neutral strategy. The cost targets can be divided into two categories: 

the cost target greater than the risk-neutral cost and the cost target less than the risk-

neutral cost. 

(5) Judge the category of the cost target. When the target cost is greater than the risk-

neutral cost corresponds to the robustness optimisation model, the model aims to 

maximise the robustness function in the IGDT method. When the target cost is less than 

the risk-neutral cost corresponds to the opportunity optimisation model, the model aims 

to minimise the opportunity function in the IGDT method. The above two models both 

consider the constraints of the system. 
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(6) The STA method is applied to solve the micro-grid's robust and opportunity 

optimisation models with LAES, respectively. As a result, it obtains the risk-averse 

strategy and the risk-taker strategy.  

 

Figure 4-2 The flow chart of IGDT-STA 
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4.3 MAS-Based micro-grid coordination model  

This section describes the details of the MAS-based micro-grid coordination model, 

where the agents solve for optimal operation strategy cooperatively. Section 4.3.1 

explains the structure of the coordination model, and Section 4.3.2 describes the details 

of agent tasks. 

4.3.1 Micro-grid environment  

The micro-grid environment, as shown in Figure 4-3, includes a power grid agent, load 

agent, photovoltaic agent, wind turbine agent, micro-turbine agent, LAES agent, and 

micro-grid coordination agent. The power grid agent is responsible for retrieving the 

day-ahead price information, and the load agent is accountable for forecasting the day-

ahead load curves. The details of the remaining agents will be explained in Section 

4.3.2. 

 

Figure 4-3 Schematic diagram of the micro-grid with multi-agent system. 
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4.3.2 Agent task description  

The section explains the task details of the wind turbine agent, the photovoltaic agent, 

the LAES agent, the micro-turbine agent, and the micro-grid coordination agent.  

4.3.2.1 Wind turbine (WT) agent  

The WT agent is responsible for supervising the active operation status of wind turbine 

generator, sending cost coefficient signal and WT output power 𝑃ௐ்
௧   to micro-grid 

coordination agent at each time period. The WT output power is formulated according 

to (Soroudi et al., 2012):  

𝑃ௐ்
௧ (𝜔௧) =

⎩
⎨

⎧
0, 𝑖𝑓 𝜔௧ ≤ 𝜔௜௡

௖௨௧ 𝑜𝑟 𝜔௧ ≥ 𝜔௢௨௧
௖௨௧

ഘ೟షഘ೔೙
೎ೠ೟

ഘೝೌ೟೐೏షഘ೔೙
೎ೠ೟ುೈ೅

ೝೌ೟೐೏,   ௜௙ ఠ೔೙
೎ೠ೟ஸఠ೟ஸனೝೌ೟೐೏

𝑃ௐ்
௥௔௧௘ௗ , 𝑖𝑓𝜔௥௔௧௘ௗ ≤ 𝜔௧ ≤ 𝜔௢௨௧

௖௨

 (4.10) 

where 𝜔௜௡
௖௨௧  and 𝜔௢௨௧

௖௨௧   are the cut-in and cut-out wind speed respectively. 𝜔௥௔௧௘ௗ  and 

𝑃ௐ்
௥௔௧௘ௗ are the rate speed and power of WT units respectively. 𝜔௧ is the wind speed at 

time 𝑡, whose probability distribution can be modelled with Weibull probability density 

function (Aghbalou et al., 2018): 

𝑃𝐷𝐹(𝜔௧) =
𝑘

𝑐
ቀ

𝜔௧

𝑐
ቁ

௞ିଵ

𝑒
ିቀ

ఠ೟
௖ ቁ

ೖ

 (4.11) 

where 𝑘 ∈ (0, ∞) and 𝑐 ∈ (0, ∞) are the shape and scale parameters respectively for 

Weibull distribution. 

4.3.2.2 Photovoltaic (PV) agent 

The PV agent directly supervises the active operation status of PV arrays and reports 

the operation cost coefficient and PV array output power 𝑃௉௏
௧   to the micro-grid 

coordinated agent. PV array output power is formulated with Eq. (4.12) (Homer Energy, 

2016): 

𝑃௉௏
௢௨௧ =  𝑃௉௏

௥௔௧௘ௗ𝑓௣௩ ቆ
𝐺்

𝐺்,ௌ்஼
ቇ ൣ1 + 𝛼௣൫𝑇௖ − 𝑇௖,ௌ்஼൯൧ (4.12) 

where 𝑃௉௏
௥௔௧௘ௗ  and 𝑓௣௩  are the rated power and derating factor of the PV array units 

respectively. 𝐺் is the solar radiation incident on the PV array units, and 𝐺்,ௌ்஼ is the 
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incident radiation at the standard test conditions. 𝛼௣ is the temperature coefficient of 

PV power. 𝑇௖,ௌ்஼ is the PV cell temperature at the standard test conditions. 𝑇௖ is the PV 

cell temperature, which can be calculated with Eq. (4.13) (Duffie & Beckman, 2013; 

Homer Energy, 2016): 

𝑇௖ = 𝑇௔(𝑡) + 𝐺் ቆ
𝑇௖,ேை஼் − 𝑇௔,ேை஼்

𝐺்,ேை஼்
ቇ ൬1 −

𝜂௖

𝜏𝛼௔௕௦௢௥௕
൰ (4.13) 

where 𝑇௔(𝑡)  is the ambient temperature. 𝑇௖,ேை஼்  is the nominal operating cell 

temperature (NOCT).  𝑇௔,ேை஼்  and 𝐺்,ேை஼்  are the ambient temperature and solar 

radiation under the NOCT respectively. 𝜂௖   is the conversion efficiency of PV array 

units. 𝜏 is the solar transmittance of the cover of PV array units. 𝛼௔௕௦௢௥௕ is the solar 

absorptance of the PV array. The final PV output at time 𝑡 is calculated with an efficient 

coefficient 𝜂௜௡௩ to 𝑃௉௏
௢௨௧: 

𝑃௉௏
௧ =  𝜂௜௡௩𝑃௉௏

௢௨௧ (4.14) 

The solar radiation incident is modelled with the Beta distribution (Monteiro et al., 

2018):  

𝑃𝐷𝐹(𝐺்) =
Γ(𝛼 + 𝛽)

Γ(𝛼) + Γ(𝛽)
(𝐺்)ఈିଵ(1 − 𝐺்)ఉିଵ (4.15) 

where Γ(∙)  is the Gamma function (Wahbah et al., 2022), 𝛼, 𝛽 ∈ [0, ∞]  are shape 

parameters for Beta distribution.  

4.3.2.3 LAES agent  

The LAES agent is responsible for supervising the active operation status of the LAES 

plant and reporting the operation information to the micro-grid coordination agent. The 

operation information includes charging phase, storage phase, and discharging phase 

information. During the charging phase, Kapitza cycle acts as a recuperative process to 

liquefy air and charge the cryogenic energy storage with compressors and cryo-turbines 

(Tafone et al., 2019). The efficiency of charging process is specified in Eq. (4.16). 

During the storage phase, the level of cryogenic energy storage is measured by state-

of-charge (SOC) balance Eq. (4.17), considering the energy loss in the storage phase 

with Eq. (4.18). During the discharge phase, the liquid air from the tank is pumped out 
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by a cryogenic pump and regasified to ambient temperature. The high-pressure air is 

further heated up by the thermal storage to drive power turbines (Morgan et al., 2015). 

The final discharge power is calculated by Eq. (4.19) and Eq. (4.20) with consideration 

of the efficiencies of cryogenic pumps and power turbines.   

𝑃௖௛ି௙௜௡௔௟ (𝑡) = 𝜂௄௔௣௜௧௭௔ · 𝑃௖௛(𝑡) (4.16) 

𝑆𝑂𝐶௅஺ாௌ(𝑡) = 𝑆𝑂𝐶௅஺ாௌ(𝑡 − 1) + 𝑃c௛ି௙௜௡௔௟ (𝑡) − 𝑃ௗ௜௦ି௙௜௡௔௟ (𝑡)

− 𝑆𝑂𝐶௅஺ாௌ
௟௢௦௦ (𝑡) 

(4.17) 

𝑆𝑂𝐶௅஺ாௌ
௟௢௦௦ (𝑡) = 𝛾௟௢௦௦ · 𝑆𝑂𝐶௅஺ாௌ(𝑡) (4.18) 

𝑃pump (𝑡) = 𝜂௖௥௬௢−௣௨௠௣ · 𝑃ௗ௜௦(𝑡) (4.19) 

𝑃ௗ௜௦ି௙௜௡௔௟ (𝑡) = 𝜂௧௨௥௕௜௡௘ · 𝑃௣௨௠௣(𝑡) (4.20) 

In addition to the charge, storage, and discharge information listed above, the LAES 

agent also sends the operational constraints to the micro-grid coordination agent. 

Constraint (4.C.1) and (4.C.2) specify the range of charging and discharging ranges of 

LAES unit, where 𝑥(𝑡), 𝑦(𝑡) ∈ {0,1} . Constraint (4.C.3) prevents the LAES plant 

charges and discharges at the same time at the cryogenic tank. Constraint (4.C.4) 

indicates the minimum and maximum range of SOC at each time step 𝑡.  

0 ≤ 𝑃௖௛(𝑡) ≤ 𝑃௖௛
௠௔௫ · 𝑥(𝑡) (4.C.1) 

0 ≤ 𝑃ௗ௜௦(𝑡) ≤ 𝑃ௗ௜௦
௠௔௫ · 𝑦(𝑡) (4.C.2) 

𝑥(𝑡) + 𝑦(𝑡) ≤ 1 (4.C.3) 

𝑆𝑂𝐶௅஺ாௌ
௠௜௡ ≤ 𝑆𝑂𝐶௅஺ாௌ(𝑡) ≤ 𝑆𝑂𝐶௅஺ாௌ

௠௔௫  (4.C.4) 

4.3.2.4 Micro-turbine (MT) agent  

The MT agent is responsible for sending the cost coefficient of MT generation unit and 

micro-turbine specifications, including Constraints (4.C.5) and (4.C.6), to the micro-

grid coordination agent. Constraint (4.C.5) and Constraint (4.C.6) indicate operational 

limits and ramping limits of micro-turbine units respectively.  
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𝑃ெ்
௠௜௡ ≤ 𝑃ெ்

௧ ≤ 𝑃ெ்
௠௔௫ (4.C.5) 

Δ𝑃ெ்
௠௜௡ ≤ 𝑃ெ்

௧ − 𝑃ெ்
௧ିଵ ≤ Δ𝑃ெ்

௠௔௫ (4.C.6) 

where 𝑃ெ்
௠௜௡ and 𝑃ெ்

௠௔௫ are the minimum and maximum generation output limits. ∆𝑃ெ்
௠௜௡ 

and ∆𝑃ெ்
௠௔௫ are the minimum and maximum ramping limits.  

4.3.2.5 Micro-grid coordination agent  

The micro-grid coordination agent is responsible for optimising objective function Eq. 

(4.21) with operational information from other agents.  

Γ = ෍  (

ଶସ

௧ୀଵ

𝜉ெ் · 𝑃ெ்
௧ + 𝜉ௐ் · 𝑃ௐ்

௧ + 𝜉௉௏ · 𝑃௉௏
௧ + 𝜉௅஺ாௌ · |𝑃௅஺ாௌ

௧ | + 𝜆௧

· 𝑃௚௥௜ௗ
௧ ) 

(4.21) 

where Γ denotes the system operation cost; 𝜉ெ் denotes the operating cost coefficient 

of micro-turbines; 𝑃ெ்
௧   denotes the output power of micro-turbine at time 𝑡 ; 𝜉ௐ் 

denotes the operating cost coefficient of wind power generation; 𝑃ௐ்
௧   denotes the 

output power of wind power generation at time 𝑡 ; 𝜉௉௏  denotes the operating cost 

coefficient of photovoltaic power generation; 𝑃௉௏
௧   denotes the output power of 

photovoltaic power generation at time 𝑡; 𝜉௅஺ாௌ denotes the operating cost coefficient of 

LAES; 𝑃௅஺ாௌ
௧  denotes the charge and discharge power of LAES at time 𝑡, when 𝑃௅஺ாௌ

௧ ≥

0, it is considered that the LAES is in the discharging mode, when 𝑃௅஺ாௌ
௧ < 0, the LAES 

is in a charging state; 𝜆௧ denotes the market price of electricity at time 𝑡; 𝑃௚௜௥ௗ
௧  denotes 

the tie line transition power at time 𝑡, when 𝑃௚௜௥ௗ
௧ ≥ 0 the micro-grid purchases power 

from the upper grid. 

Once the objective function Eq. (4.21) is established, the micro-grid coordination agent 

considers decision-makers' risk preferences, including risk-averse and risk-taking 

options. Risk-averse decision-makers are concerned with the system robustness that can 

be quantified with the robustness function of IGDT. The robustness function value 

𝛼ො(𝑃, 𝐶௔௩௘௥௦௘)  represents the maximum uncertainty level corresponding to the risk-

averse cost target 𝐶௔௩௘௥௦௘. On the other hand, risk-taking decision-makers aim to spend 

as little cost as possible to keep the system running smoothly. The decision is based on 
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opportunity function, where the opportunity function value 𝛽መ൫𝑃, 𝐶௧௔௞௜௡௚൯  represents 

the minimum level of uncertainty under the risk-taking cost target 𝐶௧௔௞௜௡௚.  

 Problem formulation with risk-averse decision-makers 

For risk-averse decision-makers, the micro-grid coordination agent considers the 

uncertainty of electricity prices to establish a robustness function for the micro-grid 

system. According to the uncertainty model Eq. (4.2), the high market electricity price 

can be expressed as： 

𝜆௧ = (1 + 𝛼)𝜆መ௧ (4.22) 

Substituting Eq. (4.22) into the operating cost function Eq. (4.21):  

Γ௔௩௘௥௦௘ = ෍൫𝜉ெ்(𝑃ெ்
௧ ) + 𝜉ௐ்(𝑃ௐ்

௧ ) + 𝜉௉௏(𝑃௉௏
௧ ) + 𝜉௅஺ாௌ(𝑃௅஺ாௌ

௧ ) + (1 + 𝛼)𝜆መ௧ · 𝑃௚௥௜ௗ
௧ ൯ 

ଶସ

௧ୀଵ

 (4.23) 

Substitute the given maximum cost target 𝐶௔௩௘௥௦௘ into Eq. (4.23): 

𝛼(𝑃, 𝐶௔௩௘௥௦௘)

=
∑  ଶସ

௧ୀଵ ൫𝜉ெ்(𝑃ெ்
௧ ) + 𝜉ௐ்(𝑃ௐ்

௧ ) + 𝜉௉௏(𝑃௉௏
௧ ) + 𝜉௅஺ாௌ(𝑃௅஺ாௌ

௧ ) + 𝜆መ௧𝑃௚௥௜ௗ
௧ ൯ − 𝐶௔௩௘௥௦௘

− ∑  ଶସ
௧ୀଵ 𝜆መ௧𝑃௚௥௜ௗ

௧
 

(4.24) 

𝐶௔௩௘௥௦௘ is the target system cost that risk-averse decision-makers are willing to pay. As 

explained in Section 4.2.1, the principle of risk-averse strategy is to obtain the 

maximum robustness function value 𝛼ො(𝑃, 𝐶௔௩௘௥௦௘)  under the cost target 𝐶௔௩௘௥௦௘ . the 

micro-grid coordination agent optimises the following optimisation problem (4.25):  

Maximise {
∑  మర

೟సభ ቀకಾ೅൫௉ಾ೅
೟ ൯ାకೈ೅൫௉ೈ೅

೟ ൯ାకುೇ൫௉ುೇ
೟ ൯ାకಽಲಶೄ൫௉ಽಲಶೄ

೟ ൯ାఒ෡೟௉೒ೝ೔೏
೟ ቁି஼ೌೡ೐ೝೞ೐

ି ∑  మర
೟సభ ఒ෡೟௉೒ೝ೔೏

೟ } (4.25) 

The optimisation is subject to Constraints (4.C.1) to (4.C.6), as well as (4.C.7) and 

(4.C.8):  

𝑃ெ்
௧ + 𝑃ௐ்

௧ + 𝑃௉௏
௧ + 𝑃௅஺ாௌ

௧ + 𝑃௚௥௜ௗ
௧ = 𝑃௟௢௔ௗ

௧  (4.C.7) 

𝑃௚௥௜ௗ
௠௜௡ ≤ 𝑃௚௥௜ௗ 

௧ ≤ 𝑃௚௥௜ௗ 
௠௔௫  (4.C.8) 

 Problem formulation with risk-taking decision-makers 



61 
 

For risk-taking decision-makers, the micro-gird coordination agent aims to minimise 

the opportunity function value 𝛽መ൫𝑃, 𝐶௧௔௞௜௡௚൯, which solves the minimum fluctuation 

range of electricity market price. According to uncertain model of IGDT, the expression 

of low market electricity price can be expressed as： 

𝜆௧ = (1 − 𝛼)𝜆መ௧ (4.26) 

Substituting Eq. (4.26) into operating cost function Eq. (4.21):  

Γ௧௔௞௜௡௚ = ෍൫𝜉ெ்(𝑃ெ்
௧ ) + 𝜉ௐ்(𝑃ௐ்

௧ ) + 𝜉௉௏(𝑃௉௏
௧ ) + 𝜉௅஺ாௌ(𝑃௅஺ாௌ

௧ )

ଶସ

௧ୀଵ

+ (1 − 𝛼)𝜆መ௧ · 𝑃௚௥௜ௗ
௧ ൯  

(4.27) 

Substitute the given minimum cost target 𝐶௧௔௞௜௡௚ into the Eq. (4.27): 

𝛼൫𝑃, 𝐶௧௔௞௜௡௚൯ =

∑  మర
೟సభ ቀకಾ೅൫௉ಾ೅

೟ ൯ାకೈ೅൫௉ೈ೅
೟ ൯ାకುೇ൫௉ುೇ

೟ ൯ାకಽಲಶೄ൫௉ಽಲಶೄ
೟ ൯ାఒ෡೟௉೒ೝ೔೏

೟ ቁି஼೟ೌೖ೔೙೒

∑  మర
೟సభ ఒ෡೟௉೒ೝ೔೏

೟   
(4.28) 

Then, the micro-grid coordination agent solves the optimisation problem (4.24):  

Minimise ቊ
∑  మర

೟సభ ቀకಾ೅൫௉ಾ೅
೟ ൯ାకೈ೅൫௉ೈ೅

೟ ൯ାకುೇ൫௉ುೇ
೟ ൯ାకಽಲಶೄ൫௉ಽಲಶೄ

೟ ൯ାఒ෡೟௉೒ೝ೔೏
೟ ቁି஼೟ೌೖ೔೙೒

∑  మర
೟సభ ఒ෡೟௉೒ೝ೔೏

೟ ቋ  (4.29) 

Subject to   Constraints (4.C.1) to (4.C.8) 

Subsequently, the micro-grid coordination agent uses STA to optimise the optimisation 

problem (4.25) or (4.29), based on the risk preference of decision-makers. 

4.4 Case study  

In this chapter, the optimisation of micro-grid operation strategy with LAES is 

formulated under different target costs while considering the uncertainty of market 

electricity prices. The micro-grid system analysed in this case study is a grid-connected 

one. It comprises a photovoltaic system, a wind power system, a micro gas turbine 

system and a LAES system. In the case of the LAES system, it is assumed that the 

pressure ratio of the compressor and expander in each stage remains constant.  
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4.4.1 Data preparation  

The predicted market price of electricity is shown in Figure 4-4. This chapter assumes 

that the electricity price sold to the grid is equal to the electricity price purchased from 

the grid. The system parameters are presented in Table 4-1.  

 

Figure 4-4 Forecast market electricity price for IGDT-STA case study 

Table 4-1 System specifications of the micro-gird system  

Parameter Value  Parameter Value 

WT system   LAES system  

𝑃ௐ்
௥௔௧௘ௗ 3000 kW  𝑃௅஺ாௌ

௠௔௫  5 MW 

𝜔௜௡
௖௨௧ 3 ms-1  𝑃௅஺ாௌ

௠௜௡  -5 MW 

𝜔௢௨௧
௖௨௧  25 ms-1  𝑆𝑂𝐶௅஺ாௌ

௠௔௫  20 MW 

𝜔௥௔௧௘ௗ 13 ms-1  𝑆𝑂𝐶௅஺ாௌ
௠௜௡  0.5 MW 

𝜉ௐ் 0.029 $/kWh  𝜂௄௔௣௜௧௭௔ 85 % 

PV system   𝜂௖௥௬௢ି௣௨௠௣ 80 % 

𝑃௉௏
௥௔௧௘ௗ 3000 kW  𝜂௧௨௥௕௜௡௘௦ 80 % 

𝑓௣௩ 80 %  𝛾௟௢௦௦ 2 % 

𝛼௣ -0.5  𝜉௅஺ாௌ 0.025 $/kWh 

𝑇௖,ேை஼் 47 ℃  MT system  

𝑇௖,ௌ்஼ 25 ℃  𝑃ெ்
௠௔௫ 3000 kW 

𝜂௖  13 %  𝑃ெ்
௠௜௡ 500 kW 
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𝜏 0.0148 MW m-2K-1  𝜉ெ் 0.044 $/kWh 

𝛼௔௕௦௢௥௕ 30 %  Other parameters  

𝜂௜௡௩ 90 %  𝑃௚௥௜ௗ
௠௔௫  3000 kW 

𝜉௉௏ 0.026 $/kWh  𝑃௚௥௜ௗ
௠௜௡  -3000 kW 

⋮ ⋮    

The efficiencies of LAES plant are obtained from LAES performance research (Borri 

et al., 2017; Tafone et al., 2019). The load power data comes from a micro-grid in 

Northwest China, as shown in Figure 4-5. The results of wind power and photovoltaic 

power generation are shown in Figure 4-6. 

 

Figure 4-5 Power load in IGDT-STA case study 



64 
 

 

Figure 4-6 The output power of PV and WT in IGDT-STA case study 

4.4.2 Risk-neutral results  

As illustrated in Section 4.2.3, the first stage of IGDT-STA method is to obtain the risk-

neutral strategy. In other words, the robustness and opportunity function values are 0 

(𝛼ො = 𝛽መ = 0). This risk-neutral strategy result is shown in Table 4-2, which is obtained 

by assuming the realised electricity prices are equal to the predicted electricity prices. 

To demonstrate the effectiveness of the proposed IGDT-STA method, this case study 

uses the Genetic Algorithm (GA) as a reference optimisation technique. In addition, 

this case study also compares the risk-neutral strategy with the stochastic method and 

Monte Carlo method, as demonstrated in (Mirzaei et al., 2021; Powell & Meisel, 2016; 

Yan et al., 2021) 

Table 4-2 Expected operation cost comparison under risk-neutral strategy 

 
IGDT-STA 

method 

IGDT-GA 

method 

Stochastic 

method 

Monte Carlo 

method 

Expected operation 

cost ($) 
7848.0 9386.6 8748.7 8740.3 
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The hourly expected operating costs based on the four methods are shown in Figure 4-

7. It can be seen from the figures that the expected operating costs of the IGDT-STA 

method are mainly reduced during the 13th and 15th hour of the day compared with the 

remaining three methods.  

 

Figure 4-7 Hourly cost of (a) IGDT-STA ; (b) IGDT-GA; (c) Stochastic method; (d) 

Monte Carlo method. 

The micro-grid operation strategies corresponding to the four methods are shown in 

Figure 4-8 (a) to (d) respectively. With respect to the utilisation of LAES plant, all four 

operation strategies actively use the storage facility throughout the day. It can be seen 

from Figure 4-8 (a) that IGDT-STA operation strategy changes LAES in the morning 

and discharge the stored power during the peak load noon and evening time. In addition, 

compared with the IGDT-GA method, the operation strategy based on the IGDT-STA 

method has more output of the micro gas turbine, thereby reducing the purchase of 

electricity from the main grid. 
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Figure 4-8 Micro-grid operation strategy based on (a) IGDT-STA; (b) IGDT-GA; (c) 

Stochastic method; (d) Monte Carlo Method. 

4.4.3 Risk-based results 

The robustness 𝛼ො(∙)  and opportunity 𝛽መ(∙)  function explained in Section 4.2.1 were 

employed to form the risk-averse strategy and risk-taking strategy. The results of risk-

averse strategy and risk-taking strategy with different target cost is shown in Figure 4-

9. A risk-taking decision maker aims to maximise the opportunity function with a 

smaller target cost than the risk-neutral cost. The trend of 𝛽መ൫𝐶௧௔௞௜௡௚൯ with respect to 

𝐶௧௔௞௜௡௚ is plotted in Figure 4-8 (a). In this case study, the cost step is set to 3% of the 

risk-neutral operating cost, i.e. $281.60 for the IGDT-GA method and $235.44 for the 

IGDT-STA method.  

It is evident that 𝛽መ൫𝐶௧௔௞௜௡௚൯ increases with risk-taking targe cost 𝐶௧௔௞௜௡௚ decreases for 

both IGDT-STA and IGDT-GA. Upon comparing the results of IGDT-STA and IGDT-

GA, the IGDT-STA method yields a lower 𝛽መ൫𝐶௧௔௞௜௡௚൯ than IGDT-STA. For instance, at 

an opportunity cost of $7612.0, the IGDT-STA method boasts an opportunity coefficient 
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of 0.1399, while the IGDT-GA method has an opportunity coefficient of 0.3744. These 

results show that IGDT-STA could obtain a risk-taking strategy with less uncertainty 

compared to the IGDT-GA method.  

 

Figure 4-9 Opportunity curve and robustness curve with IGDT-STA and IGDT-GA (a) 

Opportunity cost curve; (b) Robustness cost curve. 

Figure 4-8 (b) shows the relationship curve between the robustness cost and the 

robustness coefficient 𝛼ො(𝐶௔௩௘௥௦௘) , which can be obtained based on optimisation 

problem (3.20). In this case study, the cost step is set to 3% of the risk-neutral operating 

cost. It is evident that the robustness coefficient rises 𝛼ො(𝐶௔௩௘௥௦௘) as the robustness cost 

increases, regardless of the methodology employed. This suggests that the robustness 

of the system is enhanced with increased operation costs. Notably, the proposed IGDT-

STA approach displays greater robustness than IGDT-GA. For example, at a robustness 

cost of $10089.0, the IGDT-STA method has a robustness coefficient of 0.3741, while 

the IGDT-GA method only has a coefficient of 0.0567. Thus, if the decision-maker 

favours risk aversion, they can make resilient choices by accepting higher operating 

costs. 

4.5 Chapter summary  

LAES systems are promising energy storage solutions, as they are not limited by 

geographical conditions and have low environmental impacts. This chapter researches 

the optimal operation strategy of a micro-grid with LAES. When formulating the 

optimal operation strategy to reduce the operation cost of the system and considering 

the impact of the uncertainty of the market electricity price, a day-ahead optimal 

operation method of micro-grid with LAES based on IGDT-STA is proposed. The 
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method is mainly divided into two stages. Firstly, the STA method is used to optimise 

the risk-neutral strategy. Then, based on the obtained operation strategy, the STA 

method is used to optimise the robustness and opportunity function in the IGDT method.  

The case study results show that compared with the IGDT-GA method, the stochastic 

method, and Monte Carlo method, the IGDT-STA method obtains a lower system 

operation cost of $7848. In the second stage, the IGDT-STA method shows a higher 

robustness coefficient and lower opportunity coefficient than IGDT-GA, offering 

stronger robustness and better opportunity. Future research could further investigate the 

following two directions: 1) The information gap decision theory is only used for the 

uncertainties in the market electricity price in this study. Future studies could 

investigate the potential applications of IGDT on the coupled uncertainties from 

renewable energy generation and market electricity price. 2) This chapter treats liquid 

air energy storage as a steady system. Future research could treat the LAES system as 

a dynamic system to investigate the dynamic performance of compressors and 

expanders between different dispatch strategies.   
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Chapter 4 

5. Addressing interactional complexity in 

decentralised prosumer aggregation 

market3 

 

5.1 Chapter introduction  

The widespread adoption of distributed energy resources (DER) has led to increased 

applications of decentralised decision-making in MES. Major forms of DER include 

solar PV, wind turbines, and EVs when V2G technologies are considered (Jain et al., 

2017; Pan & McElhannon, 2018). Such DER technologies enable users to produce 

electricity for self-consumption and sell the excess electricity to peers or upstream 

electric companies, i.e., becoming so-called prosumers. As a result, the electricity flow 

is no longer unidirectional but bidirectional. As shown in Figure 5-1, the increasing 

penetration of DER units on low and medium-voltage networks transformed how 

electricity is generated, transmitted, and consumed (Guerrero et al., 2020).  

 

 
3 This chapter is adapted from Cheng, X.†, Yao, R.†, Postnikov, A., Hu, Y., & Varga, L. (2024). 

Decentralized intelligent multi-party competitive aggregation framework for electricity 

prosumers. Applied Energy, 373, 123860. https://doi.org/10.1016/j.apenergy.2024.123860 

†Authors have equal contributions  
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                                       (a)             (b) 

Figure 5-1 Power system transitions. (a) schematic drawing of the unidirectional 

power flow with consumers under the current power system structure; (b) schematic 

drawing of bidirectional power flow with prosumers for future power system 

structure. 

The physical decentralisation is paralleled by a digital one. The growing popularity of 

Internet-of-Things (IoT) technologies enables entities in the power system to 

communicate with each other through bidirectional information flow (J. Jin et al., 2014). 

For example, prosumers not only can communicate with electric companies, but also 

communicate with peers via the Internet. More importantly, IoT technologies provide 

computation resources to users, enabling local data processing and storage. The 

computational ability provided by IoT technologies makes edge computing an emerging 

computation technique in the energy system (Pan & McElhannon, 2018). Edge 

computing can provide low-latency communication, which is crucial for decentralised 

decision-making (Xiong et al., 2020). 

With these two fundamental transitions, multiple electricity aggregators can compete 

to maximise profit while prosumers form coalitions to maximise their utilities. The 

resulting interactions can be naturally modelled as a multi-leader-multi-follower game 

(MLMFG), where each aggregator is a leader and each prosumer is a follower. Chapter 

5 achieves Objective 2 by employing the MLMFG theory and demonstrating that its 

equilibrium can still be solved in a decentralised manner through a novel graph-based 
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consensus algorithm executed on edge devices. The contributions of Chapter 5 are 

summarised as follows: 

 Proposed an intelligent aggregation framework with a multi-aggregator 

MLMFG model, which can be solved by a novel graph-based consensus 

algorithm. The multi-aggregator MLMFG model has been proven with the 

existence and uniqueness of the solution to the model. The novel graph-based 

consensus algorithm has been proven to converge with a linear convergence rate.  

 Demonstrated the applicability of the proposed intelligent aggregation 

framework in a case study. The proposed algorithm is also compared with state-

of-the-art algorithms using benchmark analysis. The proposed algorithm has 

less communication complexity than the state-of-the-art algorithms. 

The rest of this chapter is organised as follows: Section 5.2 explains the mathematical 

formulation of the intelligent aggregation framework. Section 5.3 provides the 

simulation results of the proposed framework and algorithm. Section 5.4 concludes this 

chapter. 

5.2 Intelligent aggregation framework 

The proposed decentralised intelligent aggregation framework is shown in Figure 5-2. 

In the proposed framework, a prosumer is regarded as a household with ownership of 

the DER units. Each prosumer is assumed to have the computational ability in a 

standalone decision-making module, such as edge computing embedded smart meters 

(Sirojan et al., 2019).  The prosumers and aggregators are able to send bidding and 

asking signals to each other through internet protocols. The Distribution System 

Operator (DSO) also broadcasts the network constraints to the aggregators as well as 

prosumers.  

During market interactions, a prosumer cooperates with other prosumers to maximise 

the joint welfare of the prosumers. In the meantime, an aggregator competes with other 

aggregators to maximise the expected utility by changing to the asking price (also 

referred to as the offer price). Thus, such optimisation problems are a bi-level 

optimisation problem of an MLMFG. The MLMFG model can be subsequently solved 

by the proposed graph-based consensus algorithm. The optimised result implies the fact 

that both levels of the market reach equilibrium at the same time. Hence, the system 
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reaches a co-equilibrium state. It should be noted that aggregators are responsible for 

two stages of actions, where aggregators first accumulate electricity from prosumers 

and then sell it to the wholesale market.  

 

Figure 5-2 Intelligent aggregation architecture. 

5.2.1 Bi-level market equilibrium model 

This chapter proposes a unified bi-level market co-equilibrium model for decentralised 

intelligent multi-party aggregation with DER-enabled prosumers. The co-equilibrium 

model is proposed for a distribution network with 𝑀 aggregators and 𝑁 prosumers. The 

volume of electricity that 𝑝𝑟𝑜𝑠𝑢𝑚𝑒𝑟௝ decides to sell to 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟௜ is denoted as 𝑥௜,௝. 

The volume of electricity 𝑥௜,௝ can be expressed as a set {𝑥௜,௝|𝑥 ∈ ℝ, 𝑖 = 1,2, … , 𝑀;  𝑗 =

1,2. . . , 𝑁}. This trading volume of electricity in the distribution network forms a real-

valued matrix of 𝑿 ∈ ℝெ×ே. The volume of electricity that 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟௜ receives is 

denoted 𝑥௜,∗ =  [𝑥௜,ଵ, 𝑥௜,ଶ,  . . . 𝑥௜,ே], which is the 𝑖௧௛ row vector of matrix 𝑿. The volume 

of electricity that 𝑝𝑟𝑜𝑠𝑢𝑚𝑒𝑟௝ decides to sell is denoted as 𝑥∗,௝ = ൣ𝑥ଵ,௝, 𝑥ଶ,௝,  . . . 𝑥ெ,௝൧
்
, 

which is the 𝑗௧௛ column vector of 𝑿.  
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The business model of aggregators is important because it reflects the motivations 

behind aggregators' desire to facilitate electricity aggregation. In the proposed market 

model, aggregators’ revenue accrues when they sell aggregated electricity in the day-

ahead market at the current day-ahead price.  It is also important to consider the cost of 

aggregation. This chapter assumes that the aggregators are the price-takers of the day-

ahead market, which means that the aggregators’ decisions do not affect the day-ahead 

market price. More specifically, the day-ahead prices for input parameter for the 

aggregation framework. The aggregation cost should consider two components: 

variable cost and fixed cost (Burger et al., 2017). As a result, the utility function of 

aggregators is formulated as Eq. (5.1) and Eq. (5.1.a):  

where 𝜆௜
஽஺,௕௜ௗ  is the aggregators’ bidding price at the day-ahead market, making 

𝜆௜
஽஺,௕௜ௗ𝑥௜,௝ the revenue for aggregate 𝑥௜,௝ amount of electricity. As aggregators are price 

takers in the day-ahead market, the 𝜆௜
஽஺,௕௜ௗ is fixed in the bi-level market model. The 

decision variable 𝜆௜,௝
௣௥௢,௔௦௞  is the asking price of 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟௜  promise to pay 

𝑝𝑟𝑜𝑠𝑢𝑚𝑒𝑟௝, which makes 𝜆௜,௝
௣௥௢,௔௦௞

𝑥௜,௝ the variable cost of aggregators. The fixed cost 

component is parameterised by a fixed-cost coefficient 𝛾. In Eq. (5.1), 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟௜ 

aim to maximise the utility, which is the total profit 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟௜  can make for 

providing the aggregation services.  

Apart from the utility function, the optimisation problem of aggregators also includes 

the constraint (5.1.a). 𝜆௜,௝
௣௥௢,௔௦௞  and 𝜆௜,௝

௣௥௢,௔௦௞
  are the lower and upper bounds for the 

asking price at the prosumer-aggregator market. The lower bound 𝜆௜,௝
௣௥௢,௔௦௞  is set to 

ensure the profitability of aggregators and the upper bound 𝜆௜,௝

௣௥௢,௔௦௞
  is to prevent excess 

profits of aggregators. The price bounds are pre-determined by the regulatory body to 

ensure the competitiveness of the market.  

Eq. (5.2) indicates the utility function of the prosumer, which consists of three terms. 

The first term 𝜆௜,௝
௣௥௢

𝑥∗,௝ represents the payments received from aggregators, which is the 

arg max

𝜆௜,௝
௣௥௢

, ෍(𝜆௜
஽஺,௕௜ௗ − 𝜆௜,௝

௣௥௢,௔௦௞
− 𝛾)

ே

௝ୀଵ

𝑥௜,௝, 𝑖 = 1,2, … 𝑀 (5.1) 

𝑠. 𝑡.     𝜆௜,௝
௣௥௢,௔௦௞

≤ 𝜆௜,௝
௣௥௢,௔௦௞

 ≤ 𝜆௜,௝

௣௥௢,௔௦௞
 (5.1.a) 
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revenue for prosumers. On the other hand, this chapter treats battery degradation as 

utility loss for prosumers to participate the aggregations. The battery degradation model 

is based on the power law model in (C. Liu et al., 2019).   

arg max
𝑥∗,௝

෍ 𝜆௜,௝
௣௥௢

𝑥∗,௝

ெ

௜ୀଵ

−  𝕝்𝐴𝑒
ቆ

ఉ௫∗,ೕ

ோ் ቇ௖೥

+ 𝑥∗,௝
் ∂𝐴𝑒

ቆ
ఉ௫∗,ೕ

ோ் ቇ௖೥

∂x୧,୨
,

𝑗 = 1,2, … 𝑁 

(5.2) 

𝑠. 𝑡.     𝑥∗,௝  ≤  𝑥̅∗,௝ (5.2.a) 

𝑥௜,∗
஽஺ ≤ 𝑥௜,∗  ≤ 𝑥௜,∗

௡௘௧௪௢௥௞ (5.2.b) 

where 𝐴 is a constant. 𝑅 and 𝑇 are the gas constant and temperature, respectively. 𝛽 is 

the activation energy coefficient. 𝑐 is the number of battery cycles from the initial state 

of the battery. 𝑧 is the power law factor. The third term is a first-order utility derivative 

term to ensure the convergence of the bi-level game. The optimisation problem of 

prosumers also includes the constraint (5.2.a) and (5.2.b). Constraint (5.2.a) is 

constrained by battery discharge rate, and it indicates the upper bound of 𝑥∗,௝ . 

Constraint (5.2.a) can be treated as the column-wise constraint on the trading electricity 

matrix 𝑿. In addition, the trading electricity matrix 𝑿 is bounded column-wise by the 

𝑥௜,∗
஽஺, the minimum bidding size at the DA market, and 𝑥௜,∗

௡௘௧௪௢௥௞
, the network constraint 

is informed by the distribution system operator. The proof of the market co-equilibrium 

model is demonstrated in the rest of this sub-section.   

The existence and uniqueness of the optimal solution ensure that the aggregation 

process will reach a co-equilibrium state where the utility values of both aggregators 

and prosumers are optimal. 𝝌 and 𝚲 are defined as the closed convex feasible sets of 

the aggregate volume matrix 𝑿 ∈ ℝெ×ே and ask price matrix 𝚲 ∈ ℝெ×ே, respectively. 

A point (𝐗∗, 𝚲∗) ∈ (𝝌, 𝚲)  is the bi-level optimum solution if it can meet the two 

inequality requirements (5.3) and (5.4) simultaneously: 

෍(𝜆௜
஽஺,௕௜ௗ − 𝜆௜,௝

௣௥௢,௔௦௞∗

)𝑥௜,௝

ே

௝ୀଵ

> ෍(𝜆௜
஽஺,௕௜ௗ − 𝜆௜,௝

௣௥௢,௔௦௞
)𝑥௜,௝

ே

௝ୀଵ

 (5.3) 
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෍ 𝜆௜,௝
௣௥௢

𝑥∗,௝
∗

ெ

௜ୀଵ

−  𝕝்𝐴𝑒
ቆ

ఉ௫∗,ೕ
∗

ோ் ቇ௖೥

+ 𝕝்
∂𝐴𝑒

ቆ
ఉ௫∗,ೕ

∗

ோ் ቇ௖೥

∂x୧,୨
 

> ෍ 𝜆௜,௝
௣௥௢

𝑥∗,௝

ெ

௜ୀଵ

− 𝕝்𝐴𝑒
ቆ

ఉ௫∗,ೕ

ோ் ቇ௖೥

+ 𝕝்
∂𝐴𝑒

ቆ
ఉ௫∗,ೕ

ோ் ቇ௖೥

∂x୧,୨
 

(5.4) 

Before proving the optimal point exists in MLMFG, the following notation is 

introduced to enhance the readability of the proof. Eq. (5.5) and (5.6) represent the 

second and third term of the prosumers’ utility functions. 𝐿௝൫𝑥∗,௝൯ is close and convex 

with a minimum feasible solution. 𝜃௝൫𝑥∗,௝൯ can be regarded as the first-order derivative 

of Eq. (5.5): 𝜃௝൫𝑥∗,௝൯= 
ப௅ೕ൫௫∗,ೕ൯

ப୶౟,ౠ
. 

𝐿௝൫𝑥∗,௝൯ =  𝐴𝑒
ቆ

ఉ௫∗,ೕ

ோ் ቇ௖೥

 (5.5) 

𝜃௝൫𝑥∗,௝൯ =  
∂𝑥∗,௝𝐴𝑒

ቆ
ఉ௫∗,ೕ

ோ் ቇ௖೥

∂x୧,୨
 

(5.6) 

Assumption 1. The utility function of each prosumer should satisfy the Lipschitz 

gradient continuity. There exists an upper bound value 𝑘 satisfying that:  

∇௫∗,ೕ
൝෍ 𝜆௜,௝

௣௥௢

ெ

௜ୀଵ

𝑥∗,௝
௞ାଵ − 𝕝்𝐿௝൫𝑥∗,௝

௞ାଵ൯ൡ − ∇௫∗,ೕ
൝෍ 𝜆௜,௝

௣௥௢

ெ

௜ୀଵ

𝑥∗,௝
௞ − 𝕝்𝐿௝൫𝑥∗,௝

௞ ൯ൡ

≼ 𝑘൫𝑥∗,௝
௞ାଵ − 𝑥∗,௝

௞ ൯ 

(5.7) 

where ∇௫∗,ೕ
  is the first-order differential operator. 𝐴 ≼ 𝐵  means 𝐴 − 𝐵  is at least a 

positive semi-definite matrix.   

Proof 

Converting the concave function of the optimisation problem represented by (5.1) and 

(5.2) in MLMFG to a convex function can respectively obtain the upper-level 

optimisation problem represented by (5.8) and the lower-level optimisation problem 

represented by (5.9).  (5.8.a) is a general representation of the constraints of aggregators 

(5.1.a). Similarly, (5.9.a) represents the constraints of prosumers (5.2.a) and (5.2.b).  
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Aggregators’ optimisation problem:  

  
arg min

𝜆௜,∗
௣௥௢ − ෍(𝜆௜

஽஺,௕௜ௗ − 𝜆௜,௝
௣௥௢,௔௦௞

)

ே

௝ୀଵ

𝑥௜,௝,         𝑖 = 1,2, … 𝑀 (5.8) 

𝑠. 𝑡.     𝑐௔൫𝜆௜,∗
௣௥௢

൯ ∈ 𝐶௔,   𝑎 = 1,2, … 𝐴 (5.8.a) 

Prosumer’s optimisation problem: 

arg min
𝑥∗,௝

− ෍ 𝜆௜,௝
௣௥௢

𝑥௜,௝

ெ

௜ୀଵ

+ 𝕝்𝐿௝൫𝑥∗,௝൯ − 𝕝்𝜃௝൫𝑥∗,௝൯, 𝑗 = 1,2, … 𝑁 (5.9) 

𝑠. 𝑡.     𝑑௕൫𝑥∗,௝൯ ∈ 𝐷௕ ,   𝑏 = 1,2, … 𝐵 (5.9.a) 

The inner loop in MLMFG can be regarded as an optimisation problem with a Gauss-

Seidel ADMM. It should be noted that the 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟௜′ s payment to 𝑝𝑟𝑜𝑠𝑢𝑚𝑒𝑟௝ ,  

𝜆௜,௝
௣௥௢ are fixed during the inner loop.  

arg min
𝒙∗,௝

− ෍ 𝜆௜,௝
௣௥௢

𝑥௜,௝

ெ

௜ୀଵ

+ 𝕝்𝐿௝൫𝑥∗,௝൯ − 𝕝்𝜃௝൫𝑥∗,௝൯, 𝑗 = 1,2, … 𝑁 (5.10) 

𝑠. 𝑡.     𝕀஼ೌ
൫𝜆௜,∗

௣௥௢
൯,   𝑎 = 1,2, … 𝐴 (5.10.a) 

𝑠. 𝑡.     𝕀஽್
൫𝑥∗,௝൯,   𝑏 = 1,2, … 𝐵 (5.10.b) 

The lower-level optimisation problem (5.9) can then be transferred to the augmented 

Lagrangian function with 𝜇௫ = [𝜇ଵ
௫, 𝜇ଶ

௫, … , 𝜇௣
௫]  and 𝜇௭ = [𝜇ଵ

௬
, 𝜇ଶ

௬
, … , 𝜇௤

௬
]  as 

Lagrangian multipliers for inequality constraints:  

𝑥∗,௝
௞ାଵ =

arg min
𝑥∗,௝

 𝐿଴൫𝑥∗,௝, 𝜇௫
∗ , 𝜇௭

∗ , 𝜆∗൯  (5.11) 

Based on the Assumption 1, the utility function reaches the optimal value when 

డ௅೚൫௫∗,ೕ,ఓೣ
∗ ,ఓ೥

∗ ,ఒ∗൯

డ௫೔,ೕ
= 0. Thus, for any index pair 𝑖 and 𝑗 at the 𝑘 + 1 step, Equation (5.12) 

is obtained:  
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−
𝜕𝜆௜,௝

௣௥௢
𝑥∗,௝

௞ାଵ

𝜕𝑥௜,௝
+

𝜕𝐿௝൫𝑥∗,௝
௞ାଵ൯

𝜕𝑥௜,௝
−

𝜕𝐿௝൫𝑥∗,௝
௞ ൯

𝜕𝑥௜,௝
+

𝜕𝜇௫,௝
௞ାଵ ቀ𝕀஽್

൫𝑥∗,௝
௞ାଵ൯ቁ

𝜕𝑥௜,௝

+
𝜕

𝜌
2 ฮ𝕀஽್

൫𝑥∗,௝
௞ାଵ൯ฮ

𝜕𝑥௜,௝
= 0 

(5.12) 

It has been proved that the inequality-constrained ADMM can restrict the solution 

projected into the feasible domain of the indicator function. When 𝑘 is sufficiently large, 

the gradient of the indicator functions can be zero. When the gradients of the indicator 

function vanish, then we can obtain the Eq. (5.13):  

𝜕𝜆௜,௝
௣௥௢

𝑥∗,௝
௞ାଵ

𝜕𝑥௜,௝
=

𝜕𝐿௝൫𝑥∗,௝
௞ାଵ൯

𝜕𝑥௜,௝
−

𝜕𝐿௝൫𝑥∗,௝
௞ ൯

𝜕𝑥௜,௝
 (5.13) 

൫𝑥௜,௝
௞ାଵ − 𝑥௜,௝

௞ ൯  can be multiplied by both sides of Equation (5.13) to obtain the Equation 

(5.14):  

𝜕𝜆௜,௝
௣௥௢

𝑥∗,௝
௞ାଵ

𝜕𝑥௜,௝
൫𝑥௜,௝

௞ାଵ − 𝑥௜,௝
௞ ൯ = ቆ

𝜕𝐿௝൫𝑥௜,௝
௞ାଵ൯

𝜕𝑥௜,௝
−

𝜕𝐿௝൫𝑥௜,௝
௞ ൯

𝜕𝑥௜,௝
ቇ ൫𝑥௜,௝

௞ାଵ − 𝑥௜,௝
௞ ൯                 (5.14) 

Based on the variational inequality in (M. Hu & Fukushima, 2011), Eq. (5.15) can be 

inferred.  

ቆ
𝜕𝐿௝൫𝑥௜,௝

௞ାଵ൯

𝜕𝑥௜,௝
−

𝜕𝐿௝൫𝑥௜,௝
௞ ൯

𝜕𝑥௜,௝
ቇ ൫𝑥௜,௝

௞ାଵ − 𝑥௜,௝
௞ ൯ ≥ 0 (5.15) 

Then  

𝜕𝜆௜,௝
௣௥௢

𝑥௜,௝
௞ାଵ

𝜕𝑥௜,௝
൫𝑥௜,௝

௞ାଵ − 𝑥௜,௝
௞ ൯ ≥ 0 (5.16) 

Therefore 

෍ ෍
𝜕𝜆௜,௝

௣௥௢
𝑥௜,௝

௞ାଵ

𝜕𝑥௜,௝
൫𝑥௜,௝

௞ାଵ − 𝑥௜,௝
௞ ൯

ே

௝ୀଵ

≥ 0 

ெ

௜ୀଵ

 (5.17) 

Recall first-order Taylor series of convexity of functions with Assumption 1: 

𝑓(𝑥 + 𝑝) ≈ 𝑓(𝑥) + 𝜕𝑓(𝑥)𝑝 (5.18) 
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where 𝑝 → 0 , expand the function ∑ ∑ 𝑓൫𝑥௜,௝
௞ାଵ൯ே

௝ୀଵ
ெ
௜ୀଵ   into the optimisation problem 

when 𝑥௜,௝
௞ାଵ → 𝑥௜,௝

௞ : 

෍ ෍ 𝜆௜,௝
௣௥௢

𝑥௜,௝
௞ାଵ

ே

௝ୀଵ

ெ

௜ୀଵ

= ෍ ෍ 𝜆௜,௝
௣௥௢

𝑥௜,௝
௞

ே

௝ୀଵ

ெ

௜ୀଵ

+ ෍ ෍
𝜕𝜆௜,௝

௣௥௢
𝑥௜,௝

௞ାଵ

𝜕𝑥௜,௝
൫𝑥௜,௝

௞ାଵ − 𝑥௜,௝
௞ ൯

ே

௝ୀଵ

ெ

௜ୀଵ

 (5.19) 

It can be concluded that: 

෍ ෍ 𝜆௜,௝
௣௥௢

𝑥௜,௝
௞ାଵ

ே

௝ୀଵ

ெ

௜ୀଵ

≥ ෍ ෍ 𝜆௜,௝
௣௥௢

𝑥௜,௝
௞

ே

௝ୀଵ

ெ

௜ୀଵ

 (5.20) 

Eq. (5.20) means the revenue of prosumers increases along the vector field. Since the 

lower-level game is convex and bounded, the optimum of the lower-level game can be 

achieved. In addition, the upper-level game is linear and bounded, and it can also reach 

the optimum when the lower-level optimum is achieved. In other words, leader’s and 

follower’s game can reach the global optimum if taking sufficient iteration steps. More 

precisely, from the variational inequality Proposition 2.6 in (Hori et al., 2023), 

convergence will reach the equilibrium point with:  

ൾ

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

∇௫∗,ଵ ෍ 𝜆௜,௝
௣௥௢

𝑥௜,௝
௞

ே

௝ୀଵ

⋮

∇௫∗,ேିଵ ෍ 𝜆௜,௝
௣௥௢

𝑥௜,௝
௞

ே

௝ୀଵ

∇௫∗,ே ෍ 𝜆௜,௝
௣௥௢

𝑥௜,௝
௞

ே

௝ୀଵ ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

,

⎝

⎜
⎛

𝑥∗,ଵ
௞ାଵ − 𝑥∗,ଵ

௞

⋮
𝑥∗,ேିଵ

௞ାଵ − 𝑥∗,ேିଵ
௞

𝑥∗,ே
௞ାଵ − 𝑥∗,ே

௞

⎠

⎟
⎞

ං ≤ 0 (5.21) 

Eq. (5.21) can be set as a stopping criterion of bi-level market convergence. 

5.2.2 Solving the bi-level model with a graph-based consensus 

algorithm 

In this section, we propose a novel graph-based consensus algorithm to solve the 

intelligent aggregation problem with inequality constraints. Section 5.2.2.1 explains 

how the proposed algorithm considers inequality constraints. Section 5.2.2.2 describes 

how the proposed algorithm operates on a graph. 
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5.2.2.1 Considering inequality constraints 

Since the standard version of ADMM is only suitable for decomposable convex 

problems with equality constraints, in order to deal with optimisation problems with 

inequality constraints, the ADMM algorithm is modified so that it can solve distributed 

optimisation problems with both equality and inequality constraints.  

min 𝑓(𝑥) + 𝑔(𝑧) (5.22) 

𝑠. 𝑡.   𝐴𝑥 + 𝐵𝑧 = 𝑐  

         𝐹௜(𝑥) ≤ 0  𝑖 = 1, 2, … , 𝑝  

         𝐺௜(𝑧) ≤ 0  𝑖 = 1, 2, … , 𝑞  

Modified optimisation problem (5.22) has variables 𝑥 ∈ ℝ௡  and 𝑧 ∈ ℝ௠ , where 𝐴 ∈

ℝ௣×௡, 𝑥 ∈ ℝ௣×௠, and 𝑐 ∈ ℝ௣. Note that there are countable convex inequalities that 

constrain the feasible set of decision vectors 𝑥  and 𝑧 . The 𝐹௜(𝑥)  and 𝐺௜(𝑧)  are 

extended-value indicator functions, which are equivalent to: 

𝐹௜

′
(𝑥) = ቊ

0, 𝐹௜ ≤ 0

∞, 𝐹௜ > 0
, 𝑖 = 1, 2, … , 𝑝 (5.23) 

𝐺
௜

′
(𝑧) = ቊ

0, 𝐺௜ ≤ 0

∞, 𝐺௜ > 0
, 𝑖 = 1, 2, … , 𝑞 (5.24) 

where 𝐹௜
ᇱ: ℝ௡ → ℝ ∪ ∞  and 𝐺௜

ᇱ: ℝ௡ → ℝ ∪ ∞  are closed, proper and convex. The 

Lagrangian function of the reconstructed form is:  

𝐿଴(𝑥, 𝑧, 𝜇௫, 𝜇௭ , 𝜆)

= 𝑓(𝑥) + 𝑔(𝑧) + 𝜌/2(‖𝐹ଵ
ᇱ(𝑥)‖ଶ + ‖𝐹ଶ

ᇱ(𝑥)‖ଶ + ⋯

+ ฮ𝐹௣
ᇱ(𝑥)ฮ

ଶ
+ 〈𝜇௫, 𝐹ᇱ(𝑥)〉 + 𝜌/2(‖𝐺ଵ

ᇱ(𝑧)‖ଶ + ‖𝐺ଶ
ᇱ (𝑧)‖ଶ

+ ⋯ + ฮ𝐺௤
ᇱ (𝑧)ฮ

ଶ
) + 〈𝜇௭, 𝐺ᇱ(𝑧)〉 + 𝜌/2(‖𝐴𝑥 + 𝐵𝑧 − 𝑐‖ଶ

+ 〈𝜆, 𝐴𝑥 + 𝐵𝑧 − 𝑐〉 

(5.25) 

For Eq. (5.25), 𝐹ᇱ(∙) = [𝐹ଵ
ᇱ(∙), 𝐹ଶ

ᇱ(∙), … , 𝐹௣
ᇱ(∙)]  and 𝐺ᇱ(∙) = [𝐺ଵ

ᇱ(∙), 𝐺ଶ
ᇱ (∙), … , 𝐺௤

ᇱ (∙)]  are 

the gradient of extended-value indicator functions 𝐹௜(𝑥)  and 𝐺௜(𝑧) . 𝜇௫ =

[𝜇ଵ
௫, 𝜇ଶ

௫, … , 𝜇௣
௫]  and 𝜇௭ = [𝜇ଵ

௬
, 𝜇ଶ

௬
, … , 𝜇௤

௬
]  are Lagrangian multipliers for inequality 

constraints. 𝜆 is the Lagrangian multiplier for equality constraint. Then, the iterative 

body of ADMM is shown as below: 
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𝑥௞ାଵ = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑥, 𝑧௞, 𝜇௫
௞, 𝜇௭

௞, 𝜆௞) (5.26.a) 

𝑧௞ାଵ = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑥௞ାଵ, 𝑧, 𝜇௫
௞, 𝜇௭

௞, 𝜆௞) (5.26.b) 

𝜇௫
௞ାଵ = 𝜇௫

௞ + 𝜌𝐹ᇱ(𝑥௞ାଵ) (5.26.c) 

𝜇௭
௞ାଵ = 𝜇௭

௞ + 𝜌𝐺ᇱ(𝑧௞ାଵ) (5.26.d) 

𝜆௞ାଵ = 𝜆௞ + 𝜌(𝐴𝑥 + 𝐵𝑧 − 𝑐) (5.26.e) 

However, there is a problem about the gradient of indicator functions of ||𝐹௜
ᇱ(𝑥)||ଶ and 

||𝐺௜
ᇱ(𝑧)||ଶ . Due to the property of a normal cone, it is not possible to get sets of 

subdifferentials of the group of indicator functions. The extended-value indicator 

functions can be approximated to obtain gradients: 

𝐹
௜

′
(𝑥) = max(0, 𝐹௜(𝑥)௠) , 𝑖 = 1, 2, … , 𝑝 (5.27) 

𝐺௜

′
(𝑥) = max(0, 𝐺௜(𝑥)௠) , 𝑖 = 1, 2, … , 𝑞 (5.28) 

Then the difference of the function is solvable, the desired solution of the ADMM 

functions can be solved in the following sub-sections. 

5.2.2.2 Convergence analysis  

On the analysis that ADMM can be equivalent to the Lyapunov function in analytical 

optimisation (Boyd et al., 2010) with a similar approach as (Giesen & Laue, 2016):  

𝑉௞ =
ଵ

ఘ
‖𝜇௫

∗ − 𝜇௫
௞‖ଶ +

ଵ

ఘ
‖𝜇௭

∗ − 𝜇௭
௞‖ଶ +

ଵ

ఘ
‖𝜆∗ − 𝜆௞‖ଶ + 𝜌‖𝐵𝑧௞ାଵ − 𝐵𝑧‖ଶ, 

(5.29) 

where 𝑘  is the iteration time. When 𝑘 → ∞ , the parameter (𝜇௫
௞, 𝜇௭

௞, 𝜆௞, )  shows 

incrementally stable behaviour. 

Theorem 1. The duality theory claims that the relationship between primal solutions is 

the solution to dual problems: 

𝐿଴(𝑥, 𝑧, 𝜇௫
∗ , 𝜇௭

∗ , 𝜆∗) ≥ 𝐿଴(𝑥∗, 𝑧∗, 𝜇௫
∗ , 𝜇௭

∗ , 𝜆∗) (5.30) 

 where 𝐿଴ is the Lagrangian function and 𝑥∗, 𝑧∗ is the solution of primal.  

Theorem 2. The theorem 2 states primal feasibility and convergence of the primal 

objective function value:  
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limit
𝑘 → ∞

𝑟௚
௞ = 0, (5.31. a) 

limit
𝑘 → ∞

𝑟௛
௞ = 0, (5.31. b) 

limit
𝑘 → ∞

𝑓௞ = 𝑓∗, (5.31. c) 

limit
𝑘 → ∞

𝑔௞ = 𝑔∗, (5.31. d) 

where 𝑟௚ ≔ 𝐹௜
ᇱ(𝑥)  and 𝑟௛ ≔ 𝐴𝑥 + 𝐵𝑧 − 𝑐 . The convergence of ADMM needs to be 

identified when inequality constraints are involved, the proof can be obtained through 

some lemmas. The proof is sketched as below, while similar lemmas without inequality 

constrains can be found in the appendix of (Boyd et al., 2010).  

Lemma 1. The dual variables 𝜇௫
௞, 𝜇௭

௞ are non-negative for all iterations, i.e., it holds 

that 𝜇௫
௞ ≥ 0 𝑎𝑛𝑑 𝜇௭

௞ ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ∈ ℕ 

Lemma 2. The difference between the optimal objective function value and its value at 

the (𝑘 + 1)௧௛iterate can be bounded as: 

𝑓(𝑥∗) + 𝑔(𝑧∗) − 𝑓(𝑥௞ାଵ) + 𝑔(𝑧௞ାଵ)

≤ 〈𝜇௫
∗ , 𝑟௚

௞〉 + 〈𝜆∗, 𝐴𝑥௞ାଵ + 𝐵𝑧௞ାଵ − 𝑐〉 (5.32) 

Lemma 3. The difference between the value of the objective function at the (𝑘 + 1)௧௛ 

iterate and its optimal value can be bounded by linear form of 𝜇, 𝜆, 𝜌.   

Lemma 4. The absolute convergence of Lyapunov function Eq. (5.29):  

൝෍(‖𝜇௫
∗ − 𝜇௫

௞‖ଶ + ‖𝜇௭
∗ − 𝜇௫

௞‖ଶ + ‖𝜆∗ − 𝜆௞‖ଶ + 𝜌‖𝐵𝑧௞ାଵ − 𝐵𝑧‖ଶ)

ஶ

௞ୀ଴

ൡ

≤ ෍(𝑉௞ − 𝑉௞ାଵ)

ஶ

௞ୀ଴

≤ 𝑉଴ 

(5.33) 

 

The hold of Lemma 4 can be obtained from the first three lemmas. The convergence 

of value ensures the convergence of ADMM with inequalities.  
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5.2.2.3 The graph-based ADMM consensus algorithm  

The communication networks can be understood as an undirected graph 𝑔(𝑉, ℰ), where 

𝑉 = {1, 2, … , 𝑃} is the set of nodes and ℰ ∈ 𝑉 × 𝑉 is the set of edges. The cardinality 

of this set is represented by 𝑃 and 𝐸. An edge is defined as (𝑖, 𝑗) ∈ ℰ, indicating that 

nodes 𝑖 and 𝑗 can share information. The cardinality of P is denoted as |𝑃|. To construct 

the desired graph, each prosumer is assumed only to be connected with their 

neighbouring prosumers within a certain distance because long-distance 

communication can be energy-consuming. The system optimisation efficiency can be 

improved by following a Hamiltonian path, which is a path that visits each vertex 

exactly once (Rahman & Kaykobad, 2005). The existence of a Hamiltonian path in a 

graph can be checked with a polynomial time, which is also known as the Non-

deterministic Polynomial complete problem (Oltean, 2008). In a prosumer-aggregator 

network, the graph-based consensus algorithm searches this path on the constructed 

graph, and the shortest Hamiltonian is employed to update the agents' utility functions 

to minimise energy consumption. 

Once finding the shortest Hamiltonian path in the path, each node with its neighbours 

can be constructed as a subgraph, and then there will be |𝑃| subgraphs in the system. 

Two adjacent nodes in a subgraph can share information. When prosumers are equipped 

with a local computing unit, the solution of the matrix X will be stored locally. Previous 

researchers have proved that the optimisation in a subgraph can reach a global 

equilibrium (Mota et al., 2013; Ye et al., 2020). In the optimisation process, a node with 

updated information will share information with its neighbours, and then using the 

graph-based ADMM algorithm can completely decentralise the process. The starting 

point of the traversal can be any node in the Hamiltonian path. The co-equilibria point 

of the lower-level game in the graph-based method  can be defined as follows 

(Makhdoumi & Ozdaglar, 2017; Mao et al., 2018; Mota et al., 2013):  

min
𝑥௜,∗

 ∑ 𝑓௝൫𝑥∗,௝
௣

, 𝑥∗,ି௝
௣

൯௣∈[௡]  , 

𝑠. 𝑡.    𝕀 ⊗ 𝑋 = 𝑌, 

𝑠. 𝑡.    ൣ𝑥∗,௝
௝

, 𝑥∗,ି௝
௝

൧ = 𝑌௝, 

 

(5.34) 

where ⊗ is the Kronecker product. 𝕀 indicated the connection of subgraphs. In each 

iteration of the lower-level game, the optimisation step 𝑥∗,௝
(௣ାଵ)

=
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arg min
𝑥∗,௝

 𝐿଴ቀ𝑥∗,௝, 𝜇௫
(௣)

, 𝜇௭
(௣)

, 𝜆(௣)ቁ is conducted, and updated results will be shared with 

the connected nodes. After each cyclic iteration in the Hamiltonian path, the matrix 𝑋 

will be delivered to the aggregators. The aggregator will compete to maximise its own 

utility in Eq. (5.1). The optimisation iteration will continue until the game achieves an 

equilibrium point. The details of the graph-based ADMM algorithm are demonstrated 

with the pseudocode shown in Algorithm 5-1. 

Algorithm 5-1. Graph-based consensus ADMM 

Input: the amount of electricity of each prosumer 𝑗 = 1, … 𝑁 
Output: the matrix 𝑿 , and the prices 𝜆௣௥௢ offered by each aggregator  
Initialize: the randomised first-order utility derivative term,  𝑖 = 1, … 𝑀, 𝑗 = 1, … , 𝑁; 𝑝 ← 0  

While  ∑ 𝑑(𝐺௜(𝑥௜,∗
௣ାଵ

) − 𝐺௜(𝑥௜,∗
௣

)) < 𝜖௜ : 
{Update the lower-level game} 

For j from 1 to N:  
L1. Search the followers’ game solution by graph-based consensus ADMM, updating 
the primal and dual variables for the augmented Lagrangian function in 
∑ 𝑑(𝐺௜(𝑥௜,∗

௣ାଵ
) − 𝐺௜(𝑥௜,∗

௣
))௜  

L2. Sharing the local graph by connection matrix in the Hamiltonian path 
L3. Update the incentive rewards  

𝑝 ← 𝑝 + 1 
{Update the upper-level game} 

For i from 1 to M: 
 U1. Update the transaction prices 𝜆௜,∗

௣௥௢ for each aggregator  
End 

Figure 5-3 shows a schematic drawing of the proposed graph-based consensus 

algorithm. Once the Hamiltonian path is constructed, a node with two adjacent nodes 

can form a sub-graph to share the trading volume information through the private 

communication link (yellow dash line). For example, node 5, with neighbouring node 

4 and node 6, constructs a subgraph. Figure 5-4 shows prosumers sequentially updating 

the 𝑥∗,௝ along the Hamiltonian path (from left to right) with the progression of iteration 

steps (from top to bottom). 
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Figure 5-3 Schematic diagram of the graph-based consensus algorithm. 

 

Figure 5-4 Iteration details of the graph-based consensus algorithm. 

5.2.2.4 Convergence rate analysis  

This section proves that the convergence rate of the proposed algorithm is linear. 

Proof.  

When step 𝑘 is sufficiently large: 

1 2

3 4

5

67

A sub-graph

x5
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𝜕𝜇௫,௝
௞ ቀ𝕀஽್

൫𝑥∗,௝
௞ ൯ቁ

𝜕𝑥௜,௝
+

𝜕
𝜌
2 ቚห𝕀஽್

൫𝑥∗,௝
௞ ൯หቚ

𝜕𝑥௜,௝
+

𝜕𝜇௭,௜
௞ାଵ ቀ𝕀஼ೌ

൫𝑥௜,∗
௞ ൯ቁ

𝜕𝑥௜,௝
= 0 

𝕀஼ೌ
൫𝑥௜,∗

௞ ൯,   𝑎 = 1,2, … 𝐴 

𝕀஽್
൫𝑥∗,௝

௞ ൯,   𝑏 = 1,2, … 

(5.35) 

Eq. (5.35) indicates the constraints for both levels can be satisfied when the step 𝑘 is 

sufficiently large. By applying convexity of −𝑓൫𝒙௜,௝
∗ ൯ and Equation (5.19), it can be 

obtained that: 

෍ ෍ 𝑓൫𝑥௜,௝
∗ ൯

ே

௝ୀଵ

ெ

௜ୀଵ

≥ ቐ෍ ෍ 𝑓൫𝑥௜,௝
௞ ൯

ே

௝ୀଵ

ெ

௜ୀଵ

+ ෍ ෍
𝜕𝑓௜,௝൫𝑥௜,௝

௞ ൯

𝜕𝑥௜,௝
൫𝑥௜,௝

∗ − 𝑥௜,௝
௞ ൯

ே

௝ୀଵ

ெ

௜ୀଵ

+
1

2
෍ ෍ 𝛾൫𝑥௜,௝

∗ − 𝑥௜,௝
௞ ൯

ଶ
ே

௝ୀଵ

ெ

௜ୀଵ

ቑ 

(5.36) 

where 𝛾 is a positive constant. The corresponding feasible constraints of both sides can 

be added to both sides, which yields Augmented Lagrange functions. The Augmented 

Lagrange function is the sum of all prosumers. By applying the Augmented Lagrange 

function in Eq. (5.19), it can be obtained that: 

𝐿൫𝑥∗,௝
∗ , 𝜇௫

∗ , 𝜇௭
∗ , 𝜆∗൯

≥  𝐿൫𝑥∗,௝
௞ , 𝜇௫

௞, 𝜇௭
௞, 𝜆௞൯ +

1

2
𝛾‖𝑥∗ − 𝑥௞‖ଶ

+ 𝕝்∇௫𝐿൫𝑥∗,௝
௞ , 𝜇௫

௞, 𝜇௭
௞, 𝜆௞൯(𝑥௜,௝

∗ − 𝑥௜,௝
௞ )𝕝 

(5.37) 

With  

𝐿(𝑥, 𝑧, 𝜇௫
∗ , 𝜇௭

∗ , 𝜆∗) ≥ 𝐿(𝑥∗, 𝑧∗, 𝜇௫
∗ , 𝜇௭

∗ , 𝜆∗) (5.38) 

Then it can be derived to get: 

𝐿(𝑥∗, 𝜇௫
∗ , 𝜇௭

∗ , 𝜆∗)

≥ 𝑎𝑟𝑔𝑚𝑖𝑛௫ {𝐿(𝑥, 𝜇௫
௞, 𝜇௭

௞, 𝜆௞) +
1

2
𝛾‖𝑥 − 𝑥௞‖ଶ

+ 𝕝்∇௫𝐿(𝑥௞, 𝜇௫
௞, 𝜇௭

௞, 𝜆௞)(𝑥 − 𝑥௞)𝕝 

(5.39) 
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Then taking the derivative on the right gives: 

‖∇௫𝐿(𝑥௞, 𝜇௫
௞, 𝜇௭

௞, 𝜆௞)‖ଶ
ଶ ≥ 2𝛾(𝐿(𝑥௞ , 𝜇௫

௞, 𝜇௭
௞, 𝜆௞) − 𝐿(𝑥∗, 𝜇௫

∗ , 𝜇௭
∗ , 𝜆∗)) (5.40) 

According to the convexity of Lagrangian Eq. (5.40), after substituting the convexity 

of prosumers’ utility function, Eq. (5.41) can be derived: 

𝐿(𝑥௞, 𝜇௫
௞, 𝜇௭

௞, 𝜆௞)

≥ 𝐿(𝑥௞ାଵ, 𝜇௫
௞ାଵ, 𝜇௭

௞ାଵ, 𝜆௞ାଵ)

+ 𝕝்∇௫𝐿(𝑥௞ାଵ, 𝜇௫
௞ାଵ, 𝜇௭

௞ାଵ, 𝜆௞ାଵ)்(𝑥௞ − 𝑥௞ାଵ)𝕝

≥ 𝐿(𝑥௞ାଵ, 𝜇௫
௞ାଵ, 𝜇௭

௞ାଵ, 𝜆௞ାଵ)

+  ෍ ෍ ቌ
𝜕𝐿ቀ(𝑥௞ାଵ, 𝜇௫

௞ାଵ, 𝜇௭
௞ାଵ, 𝜆௞ାଵ)ቁ

𝜕௫೔ೕ

ቍ

ே

௝ୀଵ

ெ

௜ୀଵ

×
1

𝑘
(
𝜕𝐿௝൫𝑥௜,௝

௞ ൯

𝜕𝑥௜,௝

−
𝜕𝐿௝൫𝑥௜,௝

௞ାଵ൯

𝜕𝑥௜,௝
) 

(5.41) 

When k is sufficiently large, Eq. (5.35) and the Karush-Kuhn-Tucker conditions can be 

applied such that:  

𝜕𝐿(𝑥௞ାଵ, 𝜇௫
௞ାଵ, 𝜇௭

௞ାଵ, 𝜆௞ାଵ)

𝜕௫೔ೕ

+
𝜕𝐿௝൫𝑥௜,௝

௞ ൯

𝜕𝑥௜,௝
−

𝜕𝐿௝൫𝑥௜,௝
௞ାଵ൯

𝜕𝑥௜,௝
= 0 (5.42) 

Combining Eq. (5.41) and (5.42) into Eq. (5.40) yields: 

𝐿(𝑥௞ , 𝜇௫
௞, 𝜇௭

௞, 𝜆௞)

≥ 𝐿(𝑥௞ାଵ, 𝜇௫
௞ାଵ, 𝜇௭

௞ାଵ, 𝜆௞ାଵ) + 2
𝛾

𝑘
(𝐿(𝑥௞ , 𝜇௫

௞, 𝜇௭
௞, 𝜆௞)

− 𝐿(𝑥∗, 𝜇௫
∗ , 𝜇௭

∗ , 𝜆∗)) 

(5.43) 

Then reformulating Eq. (5.43) yields: 

𝐿(𝑥௞ାଵ, 𝜇௫
௞ାଵ, 𝜇௭

௞ାଵ, 𝜆௞ାଵ) − 𝐿(𝑥∗, 𝜇௫
∗ , 𝜇௭

∗ , 𝜆∗)

𝐿൫𝑥௞, 𝜇௫
௞, 𝜇௭

௞ , 𝜆௞൯ − 𝐿(𝑥∗, 𝜇௫
∗ , 𝜇௭

∗ , 𝜆∗)
=

1

1 + 2
𝛾
𝑘

< 1 
(5.44) 

This allows the assertion that the proposed algorithm has a linear convergence rate.  
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5.3 Intelligent aggregation application and discussion  

In this section, the intelligent aggregation architecture is applied with an example of a 

low voltage (LV) to medium voltage (MV) distribution network with synthetic 

prosumer data. 

5.3.1 Experiment setup 

This case study is based on the open-source electric network benchmark database 

named Simbench (Meinecke et al., 2020). The Simbench data is generated by clustering 

the publicly available electric network data in Germany. We chose an urban LV 

distribution network benchmark data from the Simbench database. The benchmark LV 

distribution network consists of 59 buses, and we modified the bus data to incorporate 

57 hypothetical prosumers with 5 PV units with a 5 kW power rating and 57 EVs. The 

modified distribution network is shown in Figure 5-5. All EVs are assumed to be able 

to have V2G capabilities. In this example, both PV and EV units are modelled as static 

generators.  

The day-ahead prices used in this case study are obtained from the Nord Pool UK day-

ahead price (Nord Pool, 2024), shown in Table 5-1. This chapter selects the 2nd, 8th, 

14th and 20th hour for the day-ahead market price. Table 5-2 shows the parameters used 

in the market co-equilibrium model, and Table 5-3 shows the detailed case study data 

for the 57 synthetic prosumers. 
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Figure 5-5 LV electric distribution network. 

Table 5-1 Day-ahead price in the intelligent aggregation case study  

Time 1 2 3 4 5 6 7 8 9 10 11 12 

Price 
(£/kWh) 

0.0
70 

0.06
4 

0.06
7 

0.07
0 

0.06
5 

0.06
0 

0.08
4 

0.10
0 

0.10
3 

0.08
0 

0.07
4 

0.07
2 

             
Time 13 14 15 16 17 18 19 20 21 22 23 24 

Price 
(£/kWh)  

0.0
71 

0.07
0 

0.06
4 

0.06
3 

0.06
0 

0.07
7 

0.08
4 

0.10
0 

0.09
5 

0.08
9 

0.07
7 

0.07 

 

Table 5-2 Parameter setup in the intelligent aggregation case study  

Parameter 𝜆௜,௝
௣௥௢,௔௦௞ 𝜆௜,௝

௣௥௢,௔௦௞
 𝑥௜,∗

஽஺ 𝑥௜,∗
௡௘௧௪௢௥௞

 𝑅 𝑇 𝛽 𝛾 

Value 0.04 
(£/kWh) 

0.06 
(£/kWh) 

10 
kW 

200 kW 
8.314 
(J/mol K) 

300.15K 
0.05 
(-) 

0.1 
(-) 

 

Table 5-3 Prosumers information in the intelligent aggregation case study  

Prosumer 
id 

𝐴 (-) 𝑧 (-) 𝑐 (-) 𝑥̅∗,௝ (kWh)  
Prosumer 

id 
𝐴 (-) 𝑧 (-) 𝑐 (-) 𝑥̅∗,௝ (kWh) 

1 0.305 0.705 110 7  30 0.193 0.593 590 3.6 

2 0.18 0.58 90 3.6  31 0.323 0.723 250 3.6 
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3 0.157 0.557 80 3.6  32 0.102 0.502 630 7 

4 0.311 0.711 330 3.6  33 0.28 0.68 90 3.6 

5 0.24 0.64 450 7  34 0.111 0.511 560 7 

6 0.182 0.582 240 3.6  35 0.108 0.508 640 7 

7 0.266 0.666 130 3.6  36 0.262 0.662 340 7 

8 0.221 0.621 440 7  37 0.203 0.603 530 3.6 

9 0.258 0.658 370 7  38 0.243 0.643 590 3.6 

10 0.137 0.537 380 3.6  39 0.117 0.517 260 3.6 

11 0.109 0.509 460 3.6  40 0.135 0.535 490 7 

12 0.333 0.733 540 7  41 0.253 0.653 540 3.6 

13 0.231 0.631 560 3.6  42 0.191 0.591 100 7 

14 0.334 0.734 150 7  43 0.234 0.634 570 7 

15 0.259 0.659 420 7  44 0.321 0.721 240 3.6 

16 0.167 0.567 70 7  45 0.13 0.53 490 7 

17 0.209 0.609 370 3.6  46 0.197 0.597 520 7 

18 0.259 0.659 630 7  47 0.201 0.601 60 7 

19 0.289 0.689 570 3.6  48 0.194 0.594 400 3.6 

20 0.207 0.607 360 7  49 0.15 0.55 320 7 

21 0.33 0.73 190 7  50 0.181 0.581 340 7 

22 0.139 0.539 190 3.6  51 0.193 0.593 500 3.6 

23 0.142 0.542 490 7  52 0.266 0.666 600 7 

24 0.259 0.659 290 7  53 0.188 0.588 600 3.6 

25 0.249 0.649 560 3.6  54 0.346 0.746 170 7 

26 0.31 0.71 590 3.6  55 0.237 0.637 460 3.6 

27 0.225 0.625 100 7  56 0.182 0.582 140 3.6 

28 0.273 0.673 560 7  57 0.335 0.735 630 7 

29 0.155 0.555 150 7       

 

5.3.2 Results and discussion  

The shortest Hamiltonian communication path was constructed for communicating 

between neighbouring prosumers. For demonstration, a front-end web4 was developed 

 
4 https://tinyurl.com/3vv8ptzh   



90 
 

to show the Hamiltonian communication path of 57 prosumers, which can be extended 

to monitor real-time optimisation and information flow sharing. Each prosumer can 

share their information with their neighbours in the network graph to reach a consensus 

state. Figure 5-6 demonstrates how the information is shared in the network graph. The 

network graph is plotted with the geo-tag data provided by Simbench. (a), information 

flow during the optimisation process is demonstrated, where the nodes in the network 

construct a Hamiltonian path. (b), subgraphs of node 21 and node 30 were highlighted 

to indicate the information flow. For subgraph 𝑥ଶଵ, the trading volume information is 

passed from node 28. Once node 21 optimises the local objective function, the trading 

volume information is passed to node 24. Similar information flow can also be observed 

in the subgraph 𝑥ଷ଴, where node 30 optimised the information provided by node 31. 

Then, node 30 sends the optimised results to node 27. 

 

                                          (a)                   (b) 

Figure 5-6 Visualisation of information flow in the network graph. 

The result of the aggregation volume of 57 prosumers is shown in Figure 5-7, which is 

the optimised result of the trading volume matrix 𝑿 for the lower-level game. There is 
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a considerable trading volume variance among prosumers due to the differences in their 

energy assets. The differences include the maximum discharge rating of batteries, as 

well as the health of the batteries. For example, prosumer 37 has an aged battery (𝑐 =

530) and a low battery discharge bound (𝑥̅∗,ଷ଻=3.6kWh). It is worth noting that the 

trading volume at night is less than that during the day, which reflects a reasonable 

game result, i.e., prosumers tend to sell their surplus electricity during the day and 

charge it at nighttime, because electricity prices are usually higher in the daytime.  

 

 

Figure 5-7 Trading volume visualisation (a) the trading volumes at 2 am; (b) the 

trading volumes at 8 am; (c) the trading volumes at 2 pm; (d) the trading volumes at 8 

pm. 

In addition to the trading volume, Figure 5-8 shows the game result for upper-level 

game, where each aggregator competes with each other by determining the aggregation 

offer price 𝜆௜,௝
௣௥௢,௔௦௞. It can be seen from the figure that the price offered to prosumers 

varied considerably among aggregators. For instance, aggregator 1, aggregator 2, and 
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aggregator 3 offer to pay 0.044, 0.055, 0.043 £/kWh, respectively, to prosumer 52 at 8 

am to aggregate the electricity. As a result, prosumer 52 receive £0.217 from three 

aggregators. Subsequently, aggregators make £0.092, £0.0914, and £0.0919, 

respectively, to facilitate the aggregation. Thus, aggregators are able to profit by 

providing aggregation facilitation services. In addition, the profits of aggregators will 

increase with more prosumers participating in the aggregation process. The following 

section will conduct a benchmark analysis to prove the effectiveness of our proposed 

algorithm. 

 

Figure 5-8 Aggregator offer price visualisation (a) the offer price at 2 am; (b) the offer 

price at 8 am; (c) the offer price at 2 pm; (d) the offer price at 8 pm. 

5.3.3 Benchmark analysis  

Table 5-4 shows the comparison of the proposed algorithm with the Classical ADMM 

(Boyd et al., 2010), Walkman ADMM (Mao et al., 2018), and RW-ADMM (Shah & 

Avrachenkov, 2018). Following the same notation in Section 5.2.2.3, P, E  are 

represented as the total nodes and edges in a graph, where E is an integer in the range 
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of [P, P(P − 1)]. Q is denoted as the edge connection matrix, and ρ୫ୟ୶(Q) is the largest 

eigenvalue of the connection matrix. According to the proof (Deng et al., 2017), the 

multi-block ADMM can achieve a linear convergence rate in convex problems. 

Therefore, basic ADMM and its variants can achieve a linear convergence rate. If the 

bounded error of an optimisation method with a linear convergence rate is expected to 

be within (0, ϵ) , the iteration time is to 𝑂(ln ቀ
ଵ

஫
ቁ)  (Nocedal & Wright, 2006). The 

convergence rate analysis of the proposed algorithm and benchmarks is shown in Figure 

5-9. The proposed algorithm demonstrates a linear convergence rate consistent with the 

benchmarks.  

Table 5-4 Benchmark comparison of proposed algorithm with other ADMM 

algorithms 

Name Communication 
Complexity 

Convergence 
Rate 

Privacy 
Preserving 

Graph 
Structure 

Classical ADMM 

(Boyd et al., 2010) 
𝑂(ln ൬

1

ϵ
൰ . Pଷ) Linear No Complete 

Walkman ADMM 

(Mao et al., 2018) 
𝑂(ln(

1

ϵ
) .

P lnଷ(P)

൫1 − ρ୫ୟ୶(Q)൯
ଶ) Linear Yes Random 

RW-ADMM 

ADMM (Shah & 

Avrachenkov, 2018) 

𝑂(ln(
1

ϵ
) .

Eଶ

Pඥ1 − ρ୫ୟ୶(Q)
) Linear Yes 

Fixed 

subgraph 

Proposed algorithm  𝑂(ln ൬
1

ϵ
൰ . Pଶ) Linear Yes Cycle 
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Figure 5-9 Convergence rate analysis of proposed algorithm and benchmarks. 

Since all convergence rates are linear, merely measuring the convergence rate is not 

enough. Another criterion for evaluating the performance of distributed algorithms is 

communication complexity because graph structures have different communication 

costs. The graph structure can be divided into four types, complete (Boyd et al., 2010), 

random (Mao et al., 2018), fixed subgraph (Shah & Avrachenkov, 2018), and cycle (West, 

2001). The complete cannot preserve the private information of prosumers since all data 

will be shared. Random, fixed subgraphs and cycles can preserve privacy when 

optimising. According to the graph theory (West, 2001) and computation method in 

(Mao et al., 2018), the classical ADMM in a complete graph has a communication 

complexity as 𝑂(ln ቀ
ଵ

஫
ቁ . Pଷ), with the communication complexity.  

Walkman ADMM and RW-ADMM  have a better performance, with 

𝑂(ln(
ଵ

஫
) .

୔ ୪୬య(୔)

൫ଵି஡ౣ౗౮(୕)൯
మ) and 𝑂(ln(

ଵ

஫
) .

୉మ

୔ඥଵି஡ౣ౗౮(୕)
). When Hamiltonian path P is cyclic, 

1 − ρ୫ୟ୶(Q) = 𝑂(1 − cos
ଶ஠

୔
) = 𝑂(

ଵ

୔మ
). In such a situation, our method can achieve a 

communication complexity as 𝑂 ൬ln ቀ
ଵ

஫
ቁ .

୔

ඥଵି஡ౣ౗౮(୕)
൰ =  𝑂 ቀln ቀ

ଵ

஫
ቁ . Pଶቁ, according to 

(Mao et al., 2018). When P is large but not limited to infinite, our method has lower 
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complexity than the Walkman and RW-ADMM. When P  is limited to infinite, the 

Walkman ADMM can be more communication efficient as lim
୔→ஶ

lnଷ(P) ≪ lim
୔→ஶ

P. For 

the aggregator trading problem in a community, the scale of optimisation is usually a 

limited number of prosumers, so our method can be considered more efficient.  

5.4 Chapter summary  

The penetration of DER and IoT technologies is transforming power systems' 

generation, transmission, consumption, and decision-making. The power flow has 

transitioned to bidirectional rather than unidirectional, but hierarchical control has not 

changed. Moreover, decentralised decision-making architecture is emerging to 

challenge the traditional centralised one in order to ensure data privacy and security and 

to allow prosumers to optimise their utility.  

Thus, this chapter proposes an intelligent aggregation architecture to facilitate a more 

sophisticated energy transition. The architecture adopts distributed computing 

technologies to compute a multi-leader multi-follower complete information game with 

the novel graph-based consensus algorithm. This chapter proved the existence and 

uniqueness of the MLMFG model and convergence analysis of the proposed algorithm 

with a systematic convex approach. In addition, this chapter examined the applicability 

of the proposed intelligent aggregation framework on a distribution network, where the 

results showed the competitive game relationship among the aggregators. With a 

benchmark analysis, the proposed algorithm is compared with the state-of-the-art 

algorithm in terms of communication complexity, privacy preservation, and 

convergence rate. It is shown that the proposed algorithm has a communication 

complexity of 𝑂(ln ቀ
ଵ

ఢ
ቁ . 𝑃ଶ), which means the proposed algorithm performs better than 

state-of-the-art algorithms in terms of communication complexity.  

Future work could focus on inter-temporal decision-making and contractual agreements 

in electricity aggregation. The optimal strategy of the aggregation process could 

consider prosumers’ decisions on electricity storage. The prosumers with storage units 

could store energy when the electricity price is low and sell stored electricity when the 

price is high. The optimal strategy requires inter-temporal decision-making. Moreover, 

the contractual agreement between prosumers and aggregators requires further research. 

In the conventional energy system, the contractual agreement of generation, 



96 
 

transmission, and distribution is centralised by the involved companies. In the 

decentralised energy system, the contractual agreements between agents are dynamic 

and hard to enforce. Blockchain technology could be a viable solution to establish 

contractual agreements among decentralised agents.   
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Chapter 6 

 

6. Addressing evaluative complexity in 

hydrogen carrier selection with an 

integrated MCDM framework5 

 

6.1 Introduction  

The transition to sustainable energy systems has underscored green hydrogen as a 

pivotal solution for reducing dependency on fossil fuels. Green hydrogen carriers 

(GHC), including liquid hydrogen (LH₂), ammonia (NH₃), liquid-organic hydrogen 

carriers (LOHCs) such as dibenzyltoluene (DBT) or toluene (TOL), and methanol 

(MeOH), have emerged as pivotal energy vectors for large-scale storage and maritime 

transport. However, each carrier has distinct techno-economic performance, 

environmental impacts, and carrier efficiencies. The literature review in Chapter 2 

shows that there is no GHC comparative study to systematically evaluate the GHCs, 

integrating key decision metrics, such as economic viability, environmental impact, and 

carrier efficiencies. Furthermore, the South Africa-UK hydrogen corridor is 

unexamined in the existing literature.  

This chapter achieves Objective 3 with a novel multi-criteria decision-making 

framework on an unexplored international hydrogen supply chain. The contributions of 

Chapter 6 are summarised as follows:  

 
5 This chapter is adapted from Yao, R., Li, Y., Varga, L., & Hu, Y. (2025). A multi‑criteria 

framework for evaluating hydrogen carriers for large‑scale intercontinental exports. Energy 

Policy, 210, 115040, https://doi.org/10.1016/j.enpol.2025.115040  
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 Proposed a transparent MCDM framework that combines discounted techno-

economic model, ISO-compliant life-cycle assessment and carrier-specific 

energy-efficiency metrics to produce a multi-criteria ranking of GHC options. 

 Applies the framework to the previously unexamined South Africa-UK corridor, 

quantifying carrier performance under realistic supply-chain configurations. 

 Conducts a structured sensitivity analysis (seven scenarios) to identify the 

dominant drivers of carrier ranking. 

The rest of this chapter is organised as follows: Section 6.2 defines functional 

boundaries of international hydrogen-carrier supply chains. Section 6.3 sets out the 

mathematical formulation of the MCDM framework. Section 6.4 describes the South 

Africa-UK case-study configuration. Section 6.5 presents and discusses the results. 

Section 6.6 concludes this chapter.  

6.2 System description  

This section outlines the system definition of the large-scale international hydrogen 

supply chain system, as well as the key components of each hydrogen carrier delivery 

pathway. Figure 6-1 illustrates the hydrogen supply chain, which includes the exporting 

country, the importing country, and the maritime transportation between them. Green 

hydrogen is produced in the exporting country through water electrolysis using 

renewable energy sources, such as solar photovoltaic systems or wind turbines. The 

green hydrogen is then transported to conversion plants to be converted to GHCs. The 

GHCs are stored in the buffer storage before being loaded onto ships. The GHCs are 

then unloaded in the importing country at the buffer storage and then converted back to 

hydrogen.   

 

Figure 6-1 Schematic drawing of the international hydrogen supply chain. 
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It should be noted that some GHCs, such as green ammonia and methanol, could be 

delivered to the importing country directly without reconversion back to hydrogen, as 

they are already traded commodities. This chapter considers the reconversion of all 

GHCs to hydrogen, ensuring that the functional units of all GHCs are consistent in the 

LCA analysis. This practice can also be found in the literature (Dickson et al., 2022; 

Lee et al., 2022; Noh et al., 2023a). The rest of this section will describe the key 

technological components of each GHC delivery pathway. 

The LH2 delivery chain begins at the liquefaction plant, where green hydrogen is 

liquefied under extreme conditions. Given that hydrogen is the lightest known element, 

it must be cooled to cryogenic temperatures, approximately -253°C (Restelli et al., 

2024). The liquefaction process requires multiple refrigeration cycles to achieve the 

desired state of liquefaction. After the production of LH2, the LH2 will be stored in the 

cryogenic tanks, where the boil-off rate can vary from 0.1% to 0.3% per day (Arrigoni 

et al., 2024). The maritime transportation of LH2 is carried out by dedicated LH2 tanker 

ships with refrigeration systems to reduce the LH2 loss (Dickson et al., 2022). The LH2 

will be regasified in the importing port, and the regasification process is less energy-

intensive than the liquefaction process (Dickson et al., 2022). 

Ammonia is currently produced on an industrial scale using the Haber-Bosch process, 

which combines hydrogen and nitrogen at high temperatures, ranging from 400 to 

600 °C, and high pressure, from 200 to 400 bar (IRENA, 2022). The conventional 

ammonia production method utilises natural gas or coal through gas reforming or coal 

gasification. Green ammonia production, on the other hand, does not rely on fossil fuels 

(natural gas and coal). Green ammonia is produced through an electrochemical nitrogen 

reduction reaction using nitrogen and hydrogen, and is supplied by electricity. The 

nitrogen required for ammonia production can be obtained directly from air with Air 

Separation Units (ASU). The produced liquid ammonia is also stored in refrigeration 

tanks, but the temperature requirement for liquid ammonia (-34 °C) (Lee et al., 2022) 

is less extreme than that of liquid hydrogen. Ammonia cracking is the reverse of 

ammonia synthesis. The ammonia cracking process requires energy input to break down 

ammonia into pure hydrogen and nitrogen (IPHE, 2023).  

In contrast to LH2 and NH3, LOHCs are liquid at ambient temperature and pressure. 

Thus, LOHCs can leverage existing petrochemical infrastructure, reducing upfront 
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capital investments for specialised infrastructure. The LOHCs considered in this study 

include dibenzyltoluene (DBT), toluene (TOL), and methanol (MeOH). During the 

conversion process, DBT and TOL will be hydrogenated with green hydrogen to 

perhydro-dibenzyltoluene (H18-DBT) and methylcyclohexane (MCH), respectively 

(Raab et al., 2021). The hydrogen-rich carrier H18-DBT and MCH will be transported 

to importing countries, where the hydrogen-rich LOHCs will be dehydrogenated to 

release hydrogen. The unloaded LOHCs are then transported back to the hydrogenation 

facility in the export country.  

Methanol is also a type of LOHC, which is a globally traded chemical commodity (Ortiz 

Cebolla et al., 2022). Green methanol differs from conventional fossil-based methanol 

because it uses a carbon source (CO₂) captured in exporting countries via direct air 

capture (DAC) (Ortiz Cebolla et al., 2022). Green methanol can also leverage existing 

transportation infrastructure, as it is liquid at ambient temperatures. The 

dehydrogenation of methanol differs from that of DBT and TOL, as the carrier CO₂ is 

re-emitted back into the atmosphere without a carbon capture facility. The GHCs 

covered in this section have various features that make the evaluation process complex. 

Section 6.3 will outline the methodology for developing a multi-criteria decision-

making framework to rank hydrogen carriers. 

6.3 Methodology  

Figure 6-2 shows the proposed evaluation framework for GHC emissions in the 

international hydrogen supply chain. This framework compares GHC performances in 

three aspects: economic performance, environmental impacts, and carrier efficiency. 

Thus, the proposed framework integrates techno-economic analysis, LCA, and 

efficiency analysis results as criteria input for MCDM evaluation. Figure 6-2 also 

demonstrates the parameters required for evaluation. The proposed evaluation 

framework ranks GHCs based on the international hydrogen supply chain defined in 

Section 6.2.  
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Figure 6-2 Proposed evaluation framework for green hydrogen carriers. 

The rest of this section explains the methodology behind the proposed framework. 

Section 6.3.1 explains the techno-economic modelling methods. Section 6.3.2 explains 

the LCA modelling methodology, and Section 6.3.3 explains the MCDM methods.  

6.3.1 Techno-economic analysis  

The economic performance of green hydrogen delivery pathways is evaluated with the 

following performance indicators: LCOH and internal rate of return (IRR). A seminal 

work on the levelised cost models highlighted the importance of considering the 

discount rate and the inflation effect (Aldersey-Williams & Rubert, 2019). The 

conventional undiscounted levelised cost models divide the total capital and operation 

costs by the quantity of produced hydrogen. As a result, the conventional method does 

not provide insight into the impact of the time value of cash flow and hydrogen delivery. 

Therefore, this chapter adopts the weighted average cost of capital (WACC) as the 

discount factor (Rezaei et al., 2024). WACC is a key financial metric representing the 
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average cost of project financing, which is calculated from the capital investment 

structure. WACC is defined as Eq. (6.1) in regular terms:  

𝑊𝐴𝐶𝐶௡௢௥௠ =  
𝐸

𝐸 + 𝐷
𝑅௘ +

𝐷

𝐸 + 𝐷
𝑅ௗ (6.1) 

where 𝐸 is the value of equity and 𝐷 is the value of debt. The first term 
ா

ாା஽
  indicates 

the proportion of equity financing and 
஽

ாା஽
 represents the proportion of debt financing. 

𝑅௘ is the cost of equity that is required by the equity investors to compensate for risks. 

𝑅ௗ is the cost of debt to pay out interest payments to debt financiers. To adjust for the 

inflation effect, the real term WACC can be calculated as:  

𝑊𝐴𝐶𝐶௥௘௔௟ = ൬
1 + 𝑊𝐴𝐶𝐶௡௢௥௠

1 + 𝑖𝑛𝑓𝑙
൰ − 1 (6.2) 

where 𝑖𝑛𝑓𝑙 is the inflation rate. By discounting with the real terms, the LCOH and IRR 

results can reflect the intrinsic performance of GHCs. Then, the real LCOH is calculated 

with the net present value of money by Eq. (6.3) (Aldersey-Williams & Rubert, 2019):  

𝐿𝐶𝑂𝐻 =  
𝐶𝐴𝑃𝐸𝑋 + ∑

𝑂𝑃𝐸𝑋௧
௙௜௫௘ௗ

+ 𝑂𝑃𝐸𝑋௧
௩௔௥௜௔௕௟௘

(1 + 𝑊𝐴𝐶𝐶௥௘௔௟)
௧ୀ்
௧ୀ ଵ

∑
𝑀ுమ

(1 + 𝑊𝐴𝐶𝐶௥௘௔௟)௧
௧ୀ்
௧ୀ ଵ

 (6.3) 

where 𝑡 ∈ [1, 𝑇]  is the period from year 1 to year 𝑇 . 𝐶𝐴𝑃𝐸𝑋  is the present value of 

capital expenditure on the project includes capital costs for plants, storage facilities, 

distribution pipeline, and carrier cost (for DBT and TOL). 𝑂𝑃𝐸𝑋௧
௙௜௫௘ௗ  is the fixed 

operation expense in period 𝑡, and 𝑂𝑃𝐸𝑋௧
௩௔௥௜௔௕௟௘ is the variable operation expense in 

period 𝑡, including energy and feedstock costs. 

The economies of scaling are considered in the techno-economic analysis to account 

for the impact of capacity scaling on CAPEX which can be calculated based on Eq. (6.4) 

(Rezaei et al., 2024):  

𝐶𝐴𝑃𝐸𝑋௦௖௔௟௘ = 𝐶𝐴𝑃𝐸𝑋௕௔௦௘ × ቀ
஼௔௣௔௖௜௧௬ೞ೎ೌ೗೐ 

஼௔௣௔௖௜௧௬್ೌೞ೐
ቁ

ఌ

  (6.4) 
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where 𝐶𝐴𝑃𝐸𝑋௦௖௔௟௘ is the capital expenditure for installed equipment after scaling to 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦௦௖௔௟௘  from 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦௕௔௦௘ . 𝜀  is the scaling exponent for considering the 

economics of scaling. 

In addition to the LCOH, this study also calculates the IRR for economic performance 

evaluation. IRR is the discount rate that makes the net present value (NPV) of a project's 

future cash flow equal to zero, which accounts for the time value of money. In addition, 

IRR provides a single and annualised rate to reflect a GHC’s profitability. The NPV for 

a green hydrogen project can be calculated by Eq. (6.5). In the context of a green 

hydrogen project, the cash flow at year 𝑡  is calculated from the revenue of selling 

hydrogen 𝑅𝑒𝑣௧ and operation expenses at year 𝑡 (Nicita et al., 2020).  

𝑁𝑃𝑉 = −𝐶𝐴𝑃𝐸𝑋 + ෍
𝑅𝑒𝑣௧ − (𝑂𝑃𝐸𝑋௧

௙௜௫௘ௗ
+ 𝑂𝑃𝐸𝑋௧

௩௔௥௜௔௕௟௘)

(1 + 𝑟)௧

௧ା்

௧ୀଵ

 (6.5) 

6.3.2 Life cycle assessment  

The environmental impacts of each GHC pathway are evaluated using the LCA model 

in accordance with ISO 14040 and 14044 standards (ISO, 2006a, 2006b). The ISO 

standards define core principles and a framework for conducting LCA modelling, which 

consists of four phases: 1) defining the goal and scope, 2) performing life cycle 

inventory analysis, 3) conducting life cycle impact assessment, and 4) interpreting the 

life cycle results. 

The goal of the LCA model is to provide quantitative environmental impact results for 

comparative evaluation with MCMD models. The system boundary of the LCA model 

is shown in Figure 6-1. The LCA model includes green hydrogen production with 

renewable energy, GHC conversion, the maritime transportation of GHCs, and 

reconversion of GHC to gaseous hydrogen. Hence, this system definition follows the 

cradle-to-gate structure (Dickson et al., 2022; IPHE, 2023). The functional unit of the 

LCA model is the delivery of 1 kg of gaseous hydrogen to the importing country.  

Life cycle inventory (LCI) analysis is a core phase in an LCA model to quantify the 

unit process inputs (raw materials, energy, water) and the unit process outputs (products, 

emissions, and wastes). The life cycle inventory collection and reporting include the 

key information from input data of Figure 6-2. The input data includes the key 
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emissions from the production, conversion, and transportation processes. It should be 

noted that the environmental impacts related to business travel and employee 

commuting are not considered in this life cycle inventory analysis, as guided in (IPHE, 

2023). 

The LCI data are translated into the environmental impact scores using two 

complementary assessment methods, IPCC Global Warming Potential over a 100-year 

horizon (IPCC GWP 100) and ReCiPe Endpoint. IPCC GWP100 is a life cycle impact 

assessment that quantifies the climate impact of greenhouse gases, providing a focused 

metric that is highly relevant for energy policy (IPCC, 2023). The ReCiPe Endpoint 

method is adopted to provide a broad and aggregated assessment of environmental 

damage. In addition to the global warming potential, the ReCiPe method also calculates 

the environmental impact scores in the other 11 midpoint impact categories, such as 

stratospheric ozone depletion and fine particulate matter formation (Huijbregts et al., 

2017). The midpoint impacts are subsequently translated to the endpoint impact of three 

areas of protection (human health, ecosystem, and resource availability). The endpoint 

results provide condensed information for decision-making, while being transparent 

about the environmental impact pathways and causes of damage (Hauschild et al., 

2018). Hence, the proposed evaluation framework utilises the IPCC GWP100 and 

ReCiPe endpoint as input for MCDM analysis.  

6.3.3 Carrier efficiency  

The carrier efficiency 𝜂  (%) for a GHC is defined in the Eq. (6.6). The numerator 

quantifies the output energy obtained from hydrogen, and the denominator aggregates 

all the energy input throughout the entire supply chain. A high value of 𝜂 indicates that 

a significant proportion of the total energy is in the hydrogen output. 

𝜂 =  
𝐸ுమ,௢௨௧௣௨௧

𝐸ுమ,௜௡௣௨௧ + 𝐸௖௢௡௩௘௥௦௜௢௡ + 𝐸௧௥௔௡௦௣௢௥௧ + 𝐸௥௘௖௢௡௩௘௥௦௜௢௡ 
 

(6.6) 

where 𝐸ுమ,௢௨௧௣௨௧  is the energy content of delivered hydrogen at import country 

measured by low heating value. 𝐸ுమ,௜௡௣௨௧  is the energy content of hydrogen to be 

transported in exporting country. 𝐸௖௢௡௩௘௥௦௜௢௡ , 𝐸௧௥௔௡௦௣௢௥௧ , and 𝐸௥௘௖௢௡௩௘௥௦௜௢௡  is the 

energy consumption in the conversion, transportation, and reconversion process of a 

GHC pathway respectively.  
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6.3.4 Multi-criteria decision-making framework   

Building on the methods presented in Sections 6.3.1 to 6.3.3, five key criteria are 

identified for evaluating hydrogen carriers: LCOH, IRR, GWP, ReCiPe endpoint, and 

carrier efficiency. These criteria represent economic feasibility/profitability, 

environmental impacts, and energy efficiency, respectively. They collectively capture 

the economic, environmental, and operational dimensions for a comprehensive 

assessment. 

In this section, MCDM methods are applied to evaluate and rank the hydrogen carriers 

based on these established criteria. The proposed framework integrates three decision-

making tools with distinct objectives, including Analytic Hierarchy Process (AHP), 

TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution), and 

VIKOR.  

First, AHP is adopted to determine the relative importance of each criterion. Its 

structured pairwise comparison methodology provides a transparent and 

mathematically consistent approach to deriving the criteria weights (Y. Chen et al., 

2013). Following the weight definition by AHP, both TOPSIS and VIKOR are applied 

to rank the GHCs based on the performance against the weighted criteria. It is important 

to note that TOPSIS and VIKOR have different methodological focuses. Specifically, 

TOPSIS aims to find the ideal solution by selecting the alternative that is geometrically 

closest to the best theoretical performance (Hwang & Yoon, 1981). This approach is 

valuable for decision-makers aiming to identify a carrier which excels on key metrics. 

In contrast, VIKOR is designed to find a compromise solution by focusing on 

minimising the regret in some criteria (San Cristóbal, 2011). This method is valuable 

for stakeholders seeking a balanced carrier that avoids significant underperformance in 

any single criterion. The combination of these methods ensures a comprehensive and 

clear rankings that reflect the carriers’ overall suitability for the project, based on 

stakeholders’ strategic priority. The details of MCDM implementation are explained in 

the following sections.  

6.3.4.1 Criteria weighting with AHP  

The AHP is a structured decision-making method that relies on pairwise comparisons 

to derive criteria weights, thereby reflecting the criteria's significance in the overall 
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decision (Y. Chen et al., 2013). It works by comparing criteria in pairs to establish 

priority rankings, assigning weightings based on their significance to the overall 

decision. Thereby, a hierarchical structure is first established, with the goal (i.e., 

evaluating GHCs) at the top level, the five criteria at the intermediate level, and the set 

of carrier options at the bottom. Each pairwise comparison quantifies how strongly one 

criterion is preferred over another, generating a comparison matrix whose elements 𝑎௜௝ 

capture the perceived importance of criterion 𝑖 relative to criterion 𝑗. The matrix is then 

normalised, and its principal eigenvector is extracted to yield the criteria weights. These 

weights are checked for logical consistency using the Consistency Index (CI) and 

Consistency Ratio (CR) (Y. Chen et al., 2013). When CR values fall below 0.1, the 

matrix is deemed consistent. If the matrix fails the test, pairwise judgments would be 

revisited or revised to minimise subjectivity and bias. By consolidating expert inputs, 

project objectives, and technical requirements, AHP ensures that each criterion’s weight 

corresponds to its true relevance in evaluating hydrogen carriers. The resulting weights 

will inform the evaluation stage with TOPSIS and VIKOR. 

6.3.4.2 TOPSIS evaluation 

TOPSIS is used to rank the GHCs by evaluating their proximity to both the ideal and 

worst solutions across multiple criteria (S.-J. Chen & Hwang, 1992; Hwang & Yoon, 

1981). First, the decision matrix is normalised to eliminate unit dependence between 

the criteria. The normalised value 𝑟௜௝ is calculated as Eq. (6.7): 

𝑟𝑖𝑗 =
𝑥𝑖𝑗

ට∑ 𝑥𝑖𝑗
2𝑚

𝑖=1

 (6.7) 

where 𝑥௜௝ is the performance value of the 𝑖-th alternative for the 𝑗-th criterion. Then, 

weighted normalisation can be calculated with the normalized values 𝑟௜௝  which are 

multiplied by their respective weights 𝑤௝ derived from AHP: 

𝑣𝑖𝑗 = 𝑤𝑗 ∙ 𝑟𝑖𝑗 (6.8) 

Distance calculation is based on the Euclidean distance of each alternative from the 

ideal solution (𝐴ା) and the worst solution (𝐴ି): 
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𝐷𝑖
+ = ඩ෍൫𝑣𝑖𝑗 − 𝑣𝑗

+൯
2

𝑛

𝑗=1

, 𝐷𝑖
− = ඩ෍൫𝑣𝑖𝑗 − 𝑣𝑗

−൯
2

𝑛

𝑗=1

 

(6.9) 

The distances, 𝐷௜
ା and 𝐷௜

ି, are calculated using the weighted normalized values 𝑣௜௝ for 

each criterion. The ideal solution (𝑣௝
ା) is composed of the highest scores for all criteria, 

while the worst solution ( 𝑣௝
ି ) is composed of the lowest scores. The distance 

calculations help measure how close each alternative iii is to the best or worst possible 

performance based on 𝑣௜௝. Relative closeness to the ideal solution is calculated to rank 

the alternatives: 

𝐶𝑖
∗ =

𝐷𝑖
−

𝐷𝑖
+ + 𝐷𝑖

−
 

(6.10) 

The higher the 𝐶௜
∗, the closer the hydrogen carrier is to the ideal solution. TOPSIS offers 

a balanced evaluation by considering both the ideal and worst scenarios, allowing for a 

robust ranking of alternatives. The method is suitable for complex decision-making 

problems, making it an ideal tool for evaluating GHCs based on diverse criteria. The 

application of TOPSIS in GHCs evaluation framework ensures that the ranking of 

carriers reflects their overall performance across all criteria, providing a clear path for 

selecting the most suitable carrier for hydrogen transport. 

6.3.4.3 VIKOR evaluation 

VIKOR is also an MCDM tool, but with a different focus than TOPSIS (San Cristóbal, 

2011). While TOPSIS evaluates alternatives based on their distance from ideal and 

worst solutions, VIKOR emphasizes finding a compromise solution by balancing 

overall performance (utility) and the worst performance in any criterion (regret). This 

method is particularly valuable when criteria are conflicting, allowing for a more 

nuanced ranking by balancing the maximum group utility and individual regrets. For 

the utility (S), VIKOR calculates the overall utility of each hydrogen carrier based on 

its performance across all criteria, as follows: 
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𝑆𝑖 = ෍ 𝑤𝑗 ∙
𝑓

𝑗

∗ − 𝑓
𝑖𝑗

𝑓
𝑗
∗ − 𝑓

𝑗
−

𝑛

𝑗=1

 
(6.11) 

where 𝑓௝
∗ and 𝑓௝

ି are the best and worst values for each criterion, respectively, and 𝑓௜௝ 

is the score of carrier 𝑖  for criterion 𝑗 . Regarding the regret (R), this captures the 

maximum regret for each alternative, calculated as: 

𝑅𝑖 = max
𝑗
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𝑓

𝑗

∗ − 𝑓
𝑖𝑗

𝑓
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(6.12) 

Then, the final VIKOR score Q௜ is calculated as: 

Q
𝑖

= 𝑣 ∙
Si

 − S 
∗

S 
− − S 

∗
+ (1 − 𝑣) ∙

𝑅i
 − 𝑅 

∗

𝑅 
− − 𝑅 

∗
 

(6.13) 

where 𝑣 is the weight assigned to utility, typically 0.5 in a balanced context. S 
∗ and 𝑅 

∗ 

are the best values for utility and regret. S 
ି  and 𝑅 

ି and worst values for utility and 

regret. 

VIKOR offers an advantage by accounting for compromises between conflicting 

criteria, such as balancing economic performance with environmental impacts. It 

evaluates not only the overall performance but also considers the carriers that might 

avoid extreme shortcomings in any single criterion (regret). 

6.4 Case study 

This section presents the assumptions and data input for an unexamined green hydrogen 

transportation case study from Port Elizabeth, South Africa, to the Thames Estuary, 

United Kingdom (UK). The green hydrogen project is assumed to commence in 2030 

to supply 1 million tons of green hydrogen annually to the UK. Section 6.4.1 

summarises the data input for techno-economic analysis, and Section 6.4.2 summarises 

the life cycle inventory for the LCA model, which also includes the data input for carrier 

efficiency analysis.  

6.4.1 Techno-economic analysis data input  

Table 6-1 shows the key economic parameters for all GHC supply pathways. The 

project is assumed to have a lifetime of 20 years. The annual operation is assumed to 
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be 330 days. The hydrogen sale price in the UK is assumed to be £8 kg⁻¹H2 (Burgess, 

2023). The chapter assumes that the project is entirely equity financed, and the techno-

economic calculations are converted to USD using the conversion rates listed in Table 

6-1. The following subsections summarise the techno-economic assumptions of green 

hydrogen production, GHC conversion/reconversion, and maritime transportation. In 

the base case assumption, the green hydrogen is generated by renewable wind 

electricity in South Africa. For the base case scenario, all electricity required for GHC 

conversion and reconversion processes is assumed to be sourced from the respective 

national grids at the prices listed in Table 6-1. 

Table 6-1 South Africa-UK case study economic assumptions 

Parameter Value Reference 

Project lifetime (years) 20 Own assumption 

Annual operation (days) 330 Own assumption 

Hydrogen sale price (USD/kg) 10 (Burgess, 2023) 

Inflation rate (%) 2.5% (Office for National Statistics, 2025) 

Cost of equity (%) 10% (Mann, 2024) 

ZAR/USD 0.053 (South Africa Reserve Bank, 2024) 

GBP/USD 1.25 (South Africa Reserve Bank, 2024) 

EUR/USD 1.04 (European Central Bank, 2024) 

South Africa wind electricity 
(USD/MWh) 

59.5 (IEA, 2022) 

South Africa grid electricity 
(Rand/MWh) 

3000 Own assumption 

UK wind electricity (£/MWh) 39 (DESNZ, 2023a) 

UK grid electricity (£/MWh) 90 Own assumption 

UK heat source (£/MWh) 40 Own assumption 

 

6.4.1.1 Green hydrogen production  

The case study models green hydrogen production using the Polymer Electrolyte 

Membrane (PEM) water electrolysis powered by onshore wind. The PEM technology 

is selected due to its high operational flexibility, which is crucial for coupling with 

intermittent renewable energy sources, such as wind farms (Giampieri et al., 2024; Patel 

et al., 2022). The choice of onshore wind is based on South Africa’s abundance of wind 

sources, particularly in Port Elizabeth (Rehman et al., 2022). Table 6-2 summarises the 

key assumptions for this production pathway. The CAPEX is obtained from the PEM 

cost prediction for 2030 (Reksten et al., 2022). The OPEX is expressed as a percentage 
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of initial CAPEX, where OPEX includes stack replacement, maintenance, and labour 

(Song et al., 2021).  

The efficiency of the PEM system is assumed to be 60% (Bareiß et al., 2019). This 

resulted in an electricity consumption of 55.5 kWh to produce 1 kg of green hydrogen 

at the lower heating value (LHV). The capacity factory is assumed to be 40% for the 

onshore wind farm near Port Elizabeth. To meet the annual delivery of 1 million tons 

of green hydrogen, the rated installed capacity of the PEM electrolyser is approximately 

17.5 GW. The cost of green electricity is modelled using the projected levelised cost of 

energy (LCOE) for South Africa's onshore wind in 2030, as shown in Table 6-1. It is 

also assumed that the distance between the green hydrogen plant and the hydrogen 

carrier production facility is 10 km. The hydrogen pipeline is assumed to be a 

distribution pipeline, as it is shorter and operates at a lower pressure than transmission 

pipelines (Wulf et al., 2018). The hydrogen distribution pipeline requires a CAPEX of 

2.6 million USD and a 3% annual OPEX (Ortiz Cebolla et al., 2022).  

Table 6-2 PEM production assumptions in South Africa  

Parameter Value Reference 

CAPEX $/kW 900 (Reksten et al., 2022) 

OPEX 4% (Ortiz Cebolla et al., 2022) 

PEM system efficiency 60% (Peterson et al., 2020) 

Capacity factor  40% Own assumption 

6.4.1.2 Carrier conversion and reconversion  

The techno-economic assumptions for the carrier conversion and reconversion stage 

are summarised in Table 6-3. The CAPEX includes the fixed plant and equipment for 

converting and reconverting GHCs, and in the case of NH3 and MeOH, the CAPEX 

data also include the capital costs for ASU and DAC facilities. The CAPEX data have 

been normalised to the unit capacity of plants. It should be noted that DBT and TOL 

can be re-hydrogenated in the exporting countries after the unloaded carrier is 

transported back to the exporting country. The initial purchase of carrier inventory is 

treated as an upfront cost, which includes 993,000 tons of DBT and 980,000 tons of 

TOL. The prices for the carriers are assumed to be 3.12 USD/kg for DBT and 0.88 

USD/kg for TOL.  
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The complete derivation, including reference plant data, scaling calculations, and 

detailed energy consumption sources, is provided in the Appendix A1: Detailed 

techno-economic data and assumptions.  

Table 6-3 GHC conversion and reconversion assumptions 

 
LH2 NH3 MeOH DBT TOL 

Conversion       

Normalised unit 
CAPEX [$/(kg 

carrier/h)] 

34,786.75 
[$/(kgH2/h)] 

2,566.19 
[$/(kgNH3/h)] 

2536.83 
[$/(kgMeOH/h)

] 

445.6 
[$/(kgH18-

DBT/h)] 

604.2 
[$/(kgMCH/h)] 

Electricity demand 
[kWh/kg GHC] 

7 1.49 1.11 0.068 0.071 

Heat demand  

[kWh/kg GHC] 
0 0 1.5 0 0 

OPEX (% of 
CAPEX) 

3% 3% 3% 4% 4% 

Reconversion       

Normalised unit 
CAPEX [$/(kg 

carrier/h)] 

119.79 
[$/(kgH2/h)] 

7,335.81 
[$/(kgH2/h)] 

4,661.85 
[$/(kgH2/h)] 

14,428.71 
[$/(kgH2/h)] 

15,029.90 
[$/(kgH2/h)] 

Electricity demand 
(kWh/kg H2) 

0.2 7 0.5 1.12 1.13 

Heat demand 
(kWh/kg H2) 

0 0 0 9.79 10.25 

OPEX (% of 
CAPEX) 

2% 3% 3% 4% 4% 

Reference 

(Connelly et 
al., 2019; 
Heuser et al., 
2019; IEA, 
2020; IRENA, 
2022; Restelli 
et al., 2024) 

(IRENA, 
2022; Nielsen 
& Topsoe, 
2021; Ortiz 
Cebolla et al., 
2022) 

(Bos et al., 
2020; Ortiz 
Cebolla et al., 
2022; Papadias 
et al., 2019; 
Terlouw et al., 
2021) 

(Cho et al., 
2024; 
IRENA, 
2022; 
Niermann et 
al., 2021; 
Raab et al., 
2021) 

(Cho et al., 
2024; IRENA, 
2022; 
Niermann et 
al., 2021; Raab 
et al., 2021) 

 

6.4.1.3 Maritime transportation  

Table 6-4 shows the storage and shipping assumptions for the five GHCs. The maritime 

transport distance is assumed to be 14149 km from Port Elizabeth, South Africa, to the 

Thames Estuary, UK. In terms of the storage capacity, the storage capacity is 

determined by the maximum of two values: 1) the size of a single ship and 2) one week 

of equivalent production (IRENA, 2022). Additionally, the number of ships required 

for the GHC supply chain is determined based on ship capacity, speed, and project 

volumes. It is worth noting that the port infrastructure requires upgrading due to the 

cryogenic temperature requirements of LH2. The CAPEX for the port upgrade is 52 

million USD for both export and import ports (Raab et al., 2021). Losses during 
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transportation are accounted for based on the physical properties of GHCs. For carriers 

requiring cryogenic or refrigerated storage (LH2 and NH3), daily boil-off losses are 

assumed (Kawasaki, 2020; J. Kim et al., 2022). For the ambient liquid carriers (MeOH, 

DBT, and TOL), which utilise existing petrochemical infrastructure with steel tanks, a 

fixed material handling loss of 0.2% per cycle is adopted (Niermann et al., 2021). 

Additionally, a 1.2% loss for loading and unloading is considered for the LH2 pathway, 

accounting for gasification caused by unavoidable temperature fluctuations during 

transfer (IRENA, 2022; Wijayanta et al., 2019). 

Table 6-4 Storage and shipping assumptions for South Africa-UK case study 

 
LH2 NH3 MeOH DBT TOL 

Storage      

Capacity (t) 25,200 130,000 149,000 340,400 340,400 

Storage cost ($/t) 26000 2600 1050 275 275 

Storage loss  
0.10% day-1 

(boil-off) 
0.04% day-1 

(boil-off) 
no loss no loss no loss 

OPEX (% of 
CAPEX) 

2% 2% 2% 2% 2% 

Reference  

(Dickson et 
al., 2022; 
Kawasaki, 
2020; Song 
et al., 2021) 

(J. Kim et 
al., 2022; 
Song et al., 
2021) 

(Ortiz 
Cebolla et 
al., 2022) 

(Ortiz 
Cebolla et 
al., 2022) 

(Ortiz Cebolla 
et al., 2022) 

Shipping 
     

Ship capacity (t)  11,000 52,000 52,560 110,000 110,000 

CAPEX per ship 
(M$) 

412 76 51 76 76 

Average Speed 
(km/h)  

30 30 30 30 30 

Shipping loss 
(mechanism)  

0.10% day-1 
(boil-off) 

0.04% day-1 

(boil-off) 

0.2% 
cycle-1 

(handling) 

0.2% cycle-1 
(handling) 

0.2% cycle-1 

(handling) 

Load/unload time 
(day) 

2 2 2 2 2 

OPEX (% of 
CAPEX) 

4% 4% 4% 4% 4% 

Reference  

(IEA, 2020; 
Kawasaki, 
2020; Lee et 
al., 2022) 

(IEA, 2020; 
J. Kim et al., 
2022) 

(Dickson 
et al., 
2022; 
Niermann 
et al., 
2021) 

(IEA, 2020; 
Niermann et 
al., 2021) 

(IEA, 2020; 
Niermann et 
al., 2021) 
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6.4.2 LCA modelling framework   

The system boundary of the LCA model follows the definition in Figure 6-1, where 

South Africa is the exporting country, and the UK is the importing country. The 

functional unit of the LCA model is the delivery of 1 kg of green hydrogen at the 

Thames Estuary, UK at 99.9% purity in 2030. The background LCA processes, which 

are the processes outside the system boundary, are obtained with the Ecoinvent 3.10 

database (Wernet et al., 2016). The foreground processes, which represent the core 

technological components of each GHC pathway, are modelled using life cycle 

inventory data from related literature and industry reports. In addition, it should be 

noted that the environmental impacts related to business travel and employee 

commuting are not considered in this life cycle inventory analysis, as guided by the 

IPHE guidelines (IPHE, 2023). The base case assumes that all electricity for carrier 

conversion and reconversion is supplied by the respective national grid. The 2030 

electricity grid mixes for South Africa and the UK are based on (DESNZ, 2023b; IEA, 

2024). A complete and detailed LCI for all unit processes is provided in Appendix A2: 

Life Cycle Inventories.  

6.4.3 Application of MCDM framework  

AHP is employed as the first step in the MCDM model. As mentioned in Section 6.3.4.1, 

its core strength lies in converting subjective comparisons into a structured pairwise 

matrix, thus yielding transparent and mathematically consistent weights. Table 6-5 

below presents the pairwise comparison matrix constructed for the five criteria: LCOH, 

IRR, GWP, ReCiPe endpoint, and Carrier efficiency. Saaty’s fundamental 1-9 scale  is 

adopted to capture the relative importance of each criterion in the context of exporting 

hydrogen from South Africa to the UK (Saaty, 1987). By using AHP, these subjective 

views are systematically converted into numerical values, thereby clarifying the 

influence of each criterion on the final decision. 

Table 6-5 AHP Pairwise comparison matrix for the five considered criteria 

Criteria LCOH IRR GWP ReCiPe 
endpoint 

Carrier 
Efficiency 

LCOH 1 3 1 3 2 

IRR 1/3 1 1/3 1/2 1/3 
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GWP100 1 3 1 3 1 

ReCiPe endpoint 1/3 2 1/3 1 ½ 

Carrier Efficiency 1/2 3 1 2 1 

Based on the established AHP procedure, the comparison matrix is normalised, and the 

principal eigenvector is extracted to yield the final weights for each criterion. Then, a 

consistency check is performed by calculating the Consistency Ratio (CR) to ensure 

logical coherence among pairwise comparisons. The CR of the proposed pairwise 

comparisons is 0.02, which satisfies the below 0.1 requirements, and the resulting 

weights are validated (Saaty, 1987).  

Figure 6-3 presents a radar chart illustrating the relative weights calculated by the AHP 

method for the LCOH, IRR, GWP, ReCiPe, and Carrier Efficiency. Each axis represents 

one criterion, and the numeric scale (0 to 0.40) indicates the weight assigned to the 

criterion. Larger values indicate a higher relative importance of that criterion.  

 

Figure 6-3 Radar chart illustrating the AHP weights of the five criteria. 

It is essential to note that these weights are scenario-specific and are influenced by 

expert assessments of South Africa's hydrogen supply chain conditions to the UK. 

Different stakeholders or geographical contexts could yield distinct weight distributions, 

as priorities vary based on policy objectives, resource availability, and market structures. 

For instance, a region with more stringent environmental regulations might assign 
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substantially greater weight to GWP and ReCiPe. In contrast, a financially constrained 

project might emphasise LCOH and IRR to a larger degree. 

Nevertheless, the AHP methodology provides a transparent mechanism for 

incorporating such subjectivity consistently and rigorously. By translating qualitative 

preferences into quantitative comparisons, the approach enables a clear justification for 

why certain criteria carry more weight than others in the final decision. The resulting 

weights serve as the input for the TOPSIS and VIKOR analyses in Section 6.5.4. This 

integrated and multi-criteria framework thus aligns with structured decision-making in 

energy and sustainability contexts. 

6.5 Results and discussion  

This section presents the criteria and MCDM results for the five GHCs. It includes 

techno-economic analysis results, life cycle impact assessments, and carrier efficiency. 

Section 6.5.5 presents the sensitivity analysis of the MCDM ranking based on the 

criteria results. 

6.5.1 Techno-economic analysis results  

Figure 6-4 compares the LCOH with the five GHCs. In all delivery pathways, the cost 

of hydrogen feedstock constitutes the most significant cost element. This reveals that 

hydrogen production remains a critical factor in determining overall carrier economics. 

Under the base case assumption, TOL demonstrates the most cost-effective route with 

an estimated total LCOH of $7.07ௗkg⁻¹H2, with MeOH and DBT ranking next. The NH3 

pathway shows a noticeably higher reconversion cost compared to the previous three 

pathways due to the energy-intensive ammonia cracking process. The LH2 pathway has 

the highest carrier conversion cost for liquefaction ($1.79ௗkg⁻¹H2) and partially in the 

elevated transport and storage costs required to maintain cryogenic conditions. While 

LH₂ benefits from the lowest reconversion costs, it has the highest LCOH of 

$8.16ௗkg⁻¹H2. 
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Figure 6-4 Breakdown of LCOH for the five GHC pathways: (a) LH2, (b) NH3, (c) 

MeOH, (d) DBT, and (e) TOL. The percentages represent the contribution of each stage 

to the total costs. 

To contextualise the LCOH results, the imported carrier is benchmarked against on-site 

green hydrogen production in the UK. With data from the UK’s National Energy System 

Operator (NESO), the LCOH of on-site production of a 2030 project using PEM 

electrolysers with a 10% discount factor can be estimated. Under the assumptions of a 

40% capacity factor and a wind electricity price of £39/MWh, the projected domestic 

LCOH price is approximately £5.7ௗkg⁻¹H2 (NESO, 2025). This is equivalent to 

$7.13ௗkg⁻¹H2 at the exchange rate assumption of £1=$1.25. 

This comparison reveals that the most economically viable pathway, TOL at 

$7.07ௗkg⁻¹H2, is cost-competitive with projected domestic UK production under the 

stated assumptions. In addition, other GHC pathways, such as MeOH ($7.22ௗkg⁻¹H2) 

and DBT ($7.25ௗkg⁻¹H2) could also be cost-competitive, providing further cost 

reductions of green hydrogen production in South Africa. This suggests that for the UK, 

importing green hydrogen from regions with superior renewable resources, like South 

Africa, could be an economically sound strategy to complement domestic production. 
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Table 6-6 shows the IRR results of the five GHCs under the base case assumptions. 

According to the table, MeOH exhibits the highest IRR (23.90%), followed by TOL 

(23.13%), DBT (21.18%), NH3 (18.24%), and LH₂ (15.59%). MeOH’s high IRR is due 

to the relatively low combined conversion/reconversion and transport costs. Although 

DBT and TOL have higher reconversion costs than MeOH, their lower conversion 

CAPEX and shipping benefits still yield healthy cash‑flow profiles.ௗNH3’s IRR of 18.2ௗ% 

is lowered by the energy‑intensive cracking step. LH2 has the lowest IRR due to high 

liquefaction, transport, and storage costs. 

Table 6-6 IRR of the five GHCs 

 LH2 NH3  MeOH DBT TOL 

IRR 15.59% 18.24% 23.90% 21.18% 23.13% 

6.5.2 Life cycle impact assessment 

The life cycle impacts were calculated using SimaPro 9.6, with results presented for 

both the IPCC GWP100 and ReCiPe endpoint method. Figure 6-5 breaks down the 

GWP results for the five carriers by supply chain stage: green H₂ production, carrier 

conversion, maritime transport, and carrier reconversion. The analysis reveals that the 

GWP of each carrier is directly linked to its fundamental chemistry and process energy 

requirements. 
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Figure 6-5 GWP100 results from green hydrogen supply from South Africa to the UK 

with liquid hydrogen, ammonia, methanol, DBT, and TOL. 

LH2 exhibits the lowest GWP (7.62ௗkgௗCO₂eq) among the five GHC pathways. The 

analysis shows that the electricity required for the cryogenic liquefaction process in 

South Africa is the primary contributor (5.42 kgௗCO₂eq), which accounts for over 71% 

of the total GWP. The hydrogen production contributes another 1.99ௗkgௗCO₂eq, while 

shipping and regasification have minimal impact. NH3 have the second lowest GWP of 

9.91 kgௗCO₂eq. The dominant GWP contributions are from the electricity used in South 

Africa for nitrogen production via the ASU (3.96 kg CO₂eq) and Haber-Bosch synthesis 

process (2.44 kg CO₂eq). The significant impact of electricity usage in South Africa 

reveals the critical role of the exporting country's grid decarbonisation in reducing the 

overall GWP of the green hydrogen supply chain. The effect of a greener grid and fully 

renewable energy supply is therefore investigated further in the sensitivity analysis in 

Section 6.5.5. 

MeOH exhibits a mid-range GWP, for which carbon capture by DAC provides a net 

credit of 4.84 kgௗCO₂eq, after accounting for the energy consumed during capture and 

synthesis. The captured CO2 is re‑emitted when the fuel is reformed back to hydrogen, 

resulting in a total GWP of 10.3ௗkgௗCO₂eqௗkg. TOL and DBT have the highest carbon 

footprint (12.4 and 15.2 kgௗCO₂eq, respectively), due to the following reasons. First, 
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the LOHCs’ impact needs to account for the life cycle impacts of producing the initial 

batch of the organic carrier itself and the markup for the dehydrogenation losses. 

Second, the dehydrogenation process of LOHCs is endothermic and requires heat 

supplies in the UK, adding 0.93 and 0.88 kg CO₂eq, respectively, at the destination port. 

Finally, as the unloaded LOHCs must be shipped back to South Africa, the round-trip 

maritime transportation contributes 3.57 and 3.56 kgௗCO₂eq, respectively, to the total 

GWP.  

To validate the LCA model results, the GWP results are compared with recent 

publications on international green hydrogen carrier supply chains. While specific 

assumptions regarding system definitions (such as shipping distance and energy supply) 

and impact assessment methods may vary slightly, the functional unit of 1 kg of 

delivered hydrogen is consistent, enabling a direct comparison. 

The result for the LH2 (7.62ௗkgௗCO₂eq) pathway is higher than the 3.8ௗkgௗCO₂eq 

reported by Lee et al, (2022). This difference is expected and can be attributed to their 

assumption of a fully renewable energy system in a 2050 scenario, whereas our base 

case models a partially decarbonised 2030 grid. The high GWP for TOL (12.4 kgௗCO₂eq) 

and DBT (15.2 kgௗCO₂eq) is consistent with broader literature, which identifies LOHCs 

as having the highest environmental impacts among common carriers (Dickson et al., 

2022; Noh et al., 2023a). However, it is important to note that using renewable and 

biomass-derived TOL and DBT can lower the GWP to 10.21 to 10.61 kgௗCO₂eq for 

11,000 km marine transport (Cho et al., 2024). Overall, the GWP results and relative 

performance of carriers are consistent with the findings of a recent publication.   

Beyond global warming, the ReCiPe endpoint method was used to assess a broader 

range of environmental impacts with a single score, which includes three areas of 

protection: human health, ecosystems, and resource availability (Huijbregts et al., 2017). 

Figure 6-6 compares the ReCiPe endpoint results of the five GHCS across the three 

areas of protection. Among the carriers, LH2 has the smallest aggregated impact at 0.77 

Pt kg-1H2, followed by TOL (0.97 Pt kg-1H2) and NH3 (0.99 Pt kg-1H2), MeOH (1.11 Pt 

kg-1H2) and DBT (1.20 Pt kg-1H2). The ReCiPe results show that the aggregated 

environmental damage score is primarily driven by impacts on human health for all 

GHCs. The human health endpoint score is calculated by summing the damages of all 

midpoint categories that can affect human health, as measured in Disability-Adjusted 
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Life Years (DALY). In particular, Fine Particulate Matter Formation (FPMF) and 

Human Carcinogenic Toxicity (HCT) are the two main contributors to human health 

damage, surpassing the global warming potential for all GHC pathways. The full details 

of ReCiPe results are provided in Appendix A3 ReCiPe impacts.  

 

Figure 6-6 ReCiPe endpoint on three areas of protection by the five GHCs. 

The FPMF are primarily linked to the energy consumption and maritime transportation. 

For the LH2 and NH3 pathways, the dominant contributor is the process electricity 

consumption in South Africa for carrier conversion. Specifically, the electricity 

consumption accounts for 74% of fine particulate matter impact for LH2 and 59% for 

NH3, as shown in Table 6-7. For the LOHC, the impact is driven by the maritime 

transport, responsible for 46% and 62% of the impact for DBT and TOL, respectively.   

Table 6-7 Top process contributions to key midpoint impacts 

Carrier Rank Contributing Process 

Impact 
Disability-
Adjusted 
Life Years 
(DALY) 

Contribution  

Impact category: Fine particulate matter formation   

LH2 1 Electricity, medium voltage {ZA} -2030 9.41E-06 74% 
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 2 Wind turbine, onshore {GLO} 2.31E-06 18% 

NH3 1 Electricity, medium voltage {ZA} - 2030 1.04E-05 59% 

 2 Wind turbine, onshore {GLO} 2.49E-06 14% 

MeOH 1 Electricity, medium voltage {ZA} - 2030 1.00E-05 55% 

 2 Wind turbine, onshore {GLO} 3.16E-06 17% 

DBT 1 
Transport, freight, sea, tanker for liquid 
goods other than petroleum and liquefied 
natural gas {GLO} 

1.23E-05 46% 

 2 Electricity, medium voltage {ZA} - 2030 7.21E-06 27% 

TOL 1 
Transport, freight, sea, tanker for liquid 
goods other than petroleum and liquefied 
natural gas {GLO} 

1.23E-05 62% 

 2 Toluene production, liquid - 2030 {ZA} 3.11E-06 16% 

Impact category: Human carcinogenic toxicity   

LH2 1 Wind turbine, onshore {GLO} 1.69E-05 79% 

 2 Electricity, high voltage {ZA} 4.28E-06 20% 

NH3 1 Wind turbine, onshore {GLO} 1.82E-05 71% 

 2 Electricity, medium voltage {ZA} - 2030 4.78E-06 19% 

MeOH 1 Wind turbine, onshore {GLO} 2.31E-05 73% 

 2 Electricity, medium voltage {ZA} - 2030 4.59E-06 14% 

DBT 1 Wind turbine, onshore {GLO} 1.59E-05 65% 

 2 Electricity, medium voltage {ZA} - 2030 3.28E-06 13% 

TOL 1 Wind turbine, onshore {GLO} 1.57E-05 72% 

 2 Toluene production, liquid 2.90E-06 13% 

 

In contrast, the HCT category is not driven by the operation, but by the upstream 

infrastructure processes. For each carrier, the most extensive contributing process is the 

wind turbine infrastructure, which accounts for 79% of the impact for LH₂, 71% for 

NH₃, 73% for MeOH, 65% for DBT, and 72% for TOL. This indicates that the materials 

required to build wind farms are the primary sources of carcinogenic impacts in this 

case study. Overall, the ReCiPe provides critical insights into the broader environmental 

impacts beyond global warming potential, identifying the key demanding processes 

including energy consumption, maritime transportation, and wind turbine infrastructure.  
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6.5.3 Carrier efficiency  

Table 6-8 shows that LH₂ achieves the highest efficiency at 77.62%, because this 

pathway does not require any chemical conversion steps after the liquefaction stage. 

NH3 has the second-highest carrier efficiency of 70.05%. MeOH, DBT, and TOL cluster 

near 63%, reflecting the high energy requirements for hydrogenation and 

dehydrogenation of carbon-based hydrogen carriers. Overall, these efficiencies capture 

the extent of energy penalties arising from liquefaction, synthesis, 

hydrogenation/dehydrogenation, and storage constraints, highlighting LH₂’s advantage 

in retaining a larger fraction of the initial energy content despite the high cost of 

cryogenic processes. 

Table 6-8 Carrier efficiency results of the five GHCs 

Carrier  LH2 NH3 MeOH DBT TOL 

Carrier efficiency 𝜂 77.62% 70.05% 63.57% 63.27% 63.45% 

6.5.4 MCDM ranking  

The results in Sections 6.5.1 to 6.5.3 show that no single hydrogen carrier achieves the 

best performance in terms of economic, environmental, and efficiency simultaneously. 

As a result, the application of MCDM offers insights and decision support for choosing 

the appropriate hydrogen carrier. Table 6-9 presents the final rankings of the five 

hydrogen carriers (LH2, NH3, MeOH, DBT, and TOL) based on the AHP-derived 

weights and the subsequent evaluations using TOPSIS and VIKOR. As discussed in 

Sections 6.3.4.2 and 6.3.4.3, the higher TOPSIS score and the lower VIKOR score 

demonstrate better performance, respectively. The utility weight 𝑣 is set to 0.5 for AHP-

VIKOR method. 

As shown in Table 6-9, the two MCDM methods yield different top rankings. The AHP-

TOPSIS method, which identifies the alternative closest to an ideal solution, ranks LH2 

first with a score of 0.78. This is because LH2 performs best in three of the five criteria 

(GWP, ReCiPe, and Efficiency), making it the technically ideal choice. It is followed 

by NH3 (0.61), MeOH (0.59), TOL (0.40), and DBT (0.17). 
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Table 6-9 AHP-TOPSIS and AHP-VIKOR results of the five GHCs 

 LH2 NH3 MeOH DBT TOL 

AHP-TOPSIS score  0.78 0.61 0.59 0.17 0.40 

AHP-TOPSIS ranking 1 2 3 5 4 

AHP-VIKOR score  0.50 0.84 0.09 0.79 0.12 

AHP-VIKOR ranking 3 5 1 4 2 

 

The AHP-VIKOR method focuses on finding a compromise candidate option that has 

a balanced overall performance and minimises the worst criterion regret. MeOH ranks 

first with the lowest Q value of 0.09. Its good economic performance (LCOH and IRR) 

combined with moderate environmental impacts makes it the most balanced choice. It 

is followed by TOL (0.11), which also demonstrates a strong compromise profile. LH2’s 

high LCOH increases the regret in this criterion and then makes LH2 rank third in the 

AHP-VIKOR method. NH3 drops from second place in AHP-TOPSIS to fifth place in 

the AHP-VIKOR method with a score of 0.84. It indicates that the high reconversion 

costs and low IRR create regret that outweighs good environmental and efficiency 

performance. It should be noted that the MCDM ranking results are based on the base 

case assumption of the economic and environmental parameters. The parameters may 

change due to project assumptions, which can alter the MCDM ranking results. The 

following section presents a sensitivity analysis on seven alternative cases for South 

Africa compared to the UK case study.  

6.5.5 Sensitivity analysis on the MCDM results  

An additional sensitivity analysis was conducted to understand how changes in the 

parameter inputs could affect the MCMD ranking of the GHCs, as shown in Table 6-

10. Case 0 serves as the base case in this chapter, utilising the economic assumptions 

outlined in Tables 6-1 and 6-2, and incorporating electricity for carrier 

conversion/reconversion based on electricity grid mix projections for 2030, as detailed 

in (DESNZ, 2023b; IEA, 2024). Cases 1 and 2 investigate the sensitivities of results by 

the capacity factor assumption in the green hydrogen production, compared with the 

base case capacity factor of 40%. Cases 3 and 4 investigate the changes in the utility 

prices, which include the grid electricity price in South Africa (3000 Rand/MWh) and 

the UK (£ 90/MWh), as well as the heat prices in the UK (£ 40/MWh). Cases 5 and 6 
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investigate how the electricity grid decarbonisation in 2035 and 2040 will affect the 

MCDM ranking, with country-specific projections of the electricity grid mix (DESNZ, 

2023b; IEA, 2024). Case 7 investigated the MCDM results with the process energy 

from renewable wind.  

Table 6-10 Sensitivity analysis cases for the five GHC pathways 

 
Parameter varied 

Changes 
applied 

  Parameter 
varied 

Changes 
applied 

Case 0 Base case -  Case 4 Utility prices -20% 

Case 1 
Capacity factor +20% 

 Case 5 Process 
energy 

Grid mix, 2035 

Case 2 
Capacity factor -20% 

 Case 6 Process 
energy 

Grid mix, 2040 

Case 3 
Utility prices +20% 

 Case 7 Process 
energy 

Wind 

The details of the criteria results and MCDM scores of sensitivity analysis are shown 

in the Appendix A4. Table 6-11 demonstrates carrier ranking results from the 

sensitivity analysis. The AHP-VIKOR method is responsive to the alternative case 

assumptions. Because it penalises carriers on the single worst criterion (regret). In the 

base case (Case 0), MeOH is ranked first, establishing it as the best initial compromise 

solution. This top ranking is reinforced in other scenarios where economic factors are 

the primary driver, such as variations in the capacity factor (Cases 1 and 2) and lower 

utility prices (Case 4). 

Table 6-11 Sensitivity analysis results of AHP-TOPSIS and AHP-VIKOR 

 

AHP-TOPSIS  AHP-VIKOR 

 LH2 NH3 MeOH DBT TOL  LH2 NH3 MeOH DBT TOL 

Case 0 1 2 3 5 4  3 5 1 4 2 

Case 1 1 2 3 5 4  3 5 1 4 2 

Case 2 1 2 3 5 4  3 5 1 4 2 

Case 3 1 2 3 5 4  3 5 2 4 1 

Case 4 1 2 3 5 4  4 3 1 5 2 

Case 5 1 2 3 5 4  4 1 2 5 3 
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Case 6 1 2 3 5 4  4 1 2 5 3 

Case 7 1 2 3 5 4  3 1 2 5 4 

 

In contrast, the AHP-TOPSIS rankings demonstrate robustness across all scenarios. 

LH₂ consistently ranks first, maintaining its position as the ideal solution regardless of 

variations in capacity factor, utility prices, or grid carbon intensity. The robustness 

stems from LH2’s good performance in three of the five criteria: GWP, ReCiPe, and 

Efficiency. Similarly, the rankings for the other carriers remain unchanged across all 

cases, with NH₃ at second, MeOH at third, TOL at fourth, and DBT at fifth under the 

case study assumptions. Therefore, AHP-TOPSIS provides a stable and consistent 

recommendation, which can be a suitable method for long-term decision-making, such 

as energy infrastructure decisions.  

The sensitivity analysis also reveals a critical change as the energy system decarbonises. 

NH₃’s position as the best compromise solution strengthens significantly as the 

electricity supply becomes cleaner. In Cases 5 and 6 (2035 and 2040 grid mix) and Case 

7 (wind), NH₃ ranks first. When all the process energy is from wind (Case 7), NH3’s 

GWP falls to 3.66ௗkgௗCO₂eqௗkg and its LCOH drops to $6.89ௗkg⁻¹H2, making NH3 the 

first and MeOH the second. The combination makes it the top compromised solution in 

a deeply decarbonised energy system. 

6.5.6 Criteria weight analysis  

To address the potential subjectivity of the criteria weighting, a criteria weight analysis 

was performed. In addition to the Balanced Priority scenario used as the base case, three 

alternative weighting scenarios were developed. The Economic Priority focuses on the 

financial metrics that determine a project’s bankability and profitability. The 

Environmental Priority scenario focuses on the environment-related performance. The 

Equal Weight scenario assumes no a priori preference and treats all five criteria as 

equally important. 

Table 6-12 shows the pairwise comparison matrix for calculating the criteria weights of 

each alternative scenario. For the Economic Priority, LCOH and IRR are set as very 

strongly more important (7) than GWP and ReCiPe, and strongly more important (5) 

than Efficiency. LCOH is moderately more important (3) than IRR. For the 
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Environmental Priority scenario, GWP and ReCiPe are set as very strongly more 

important (7) than LCOH and IRR. GWP is moderately more important (3) than ReCiPe 

and Efficiency. For the Equal Weight scenario, all pairwise comparisons are 1. Table 6-

13 shows the MCDM scores of weight analysis.  

Table 6-12 Pairwise comparison matrix for alternative scenarios 

Economic Priority  
  

Criteria LCOH IRR GWP ReCiPe  Efficiency 

LCOH 1     3     7     7     5     

IRR  1/3 1     5     5     3     

GWP  1/7  1/5 1     1      1/3 

ReCiPe   1/7  1/5 1     1      1/3 

Efficiency  1/5  1/3 3     3     1     

Environmental Priority  
  

Criteria LCOH IRR GWP ReCiPe  Efficiency 

LCOH 1     1      1/7  1/5  1/3 

IRR 1     1      1/7  1/5  1/3 

GWP 7     7     1     3     3     

ReCiPe  5     5      1/3 1     1     

Efficiency 3     3      1/3 1     1     

Equal Weight 
   

Criteria LCOH IRR GWP ReCiPe  Efficiency 

LCOH 1     1     1     1     1     

IRR 1     1     1     1     1     

GWP 1     1     1     1     1     

ReCiPe  1     1     1     1     1     

Efficiency 1     1     1     1     1     

 

Table 6-13 MCDM results of the weight analysis 

 AHP-TOPSIS  AHP-VIKOR 

 LH2 
NH

3 
MeOH 

DB
T 

TO
L 

 LH2 NH3 
MeO

H 
DB
T 

TO
L 

Balanced 
Priority 

(Based case) 
0.78 0.61 0.59 0.17 0.40  0.50 0.84 0.09 0.79 0.11 



127 
 

Economic 
Priority 0.32 0.23 0.73 0.54 0.72  0.99 0.98 0.04 0.17 0.00 

Environmenta
l Priority 

0.93 0.67 0.59 0.03 0.37  0.00 0.31 0.41 1.00 0.60 

Equal 
Weights 0.64 0.54 0.53 0.17 0.45  0.50 0.31 0.19 1.00 0.34 

Table 6-14 shows the ranking of the alternative weighting scenarios. The results provide 

key insights into the implementation of the proposed framework. The shift in ranking 

shows the proposed framework’s responsiveness to stakeholder priorities. When 

economic factors are dominant, the cost-effective MeOH and TOL rise to the top as the 

preferred carriers. The assigned decision weight to LCOH and IRR (over 76%) 

penalises the high-cost LH₂ and NH₃ pathways, resulting in them being ranked at the 

bottom. Conversely, when environmental performance is the priority, LH2 is the best 

carrier in both AHP-TOPSIS and AHP-VIKOR due to its good performance in GWP, 

ReCiPe and Efficiency criteria. The equal weights scenario reveals the results without 

any priority. Overall, the weighting analysis shows that the best hydrogen carrier is not 

absolute but subject to the strategic priorities of the decision-maker. The analysis 

demonstrates that the proposed framework is effective and transparent for evaluating 

the critical trade-offs between key criteria in the development of green hydrogen.  

Table 6-14 GHC ranking across different weighting scenarios 

 AHP-TOPSIS  AHP-VIKOR 
 LH2 NH3 MeOH DBT TOL  LH2 NH3 MeOH DBT TOL 

Balanced 
Priority (Based 

case) 
1 2 3 5 4  3 5 1 4 2 

Economic 
Priority 4 5 1 3 2  5 4 2 3 1 

Environmental 
Priority 

1 2 3 5 4  1 2 3 5 4 

Equal Weights 1 2 3 5 4  4 2 1 5 3 

 

 

6.6 Chapter summary  

This chapter proposed and applied a novel computational framework to address the gap 

in existing research on hydrogen carrier comparative studies, where carriers exhibit 

distinct performances across multiple criteria. The proposed framework compares 

green hydrogen carriers in terms of techno-economic performance (LCOH and IRR), 
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environmental impacts (IPCC GWP100 and ReCiPe endpoint), and carrier efficiency 

using AHP-TOPSIS and AHP-VIKOR methods. The proposed framework can provide 

detailed ranking results for GHCS, facilitating informed decision-making.  

The utility of the proposed framework is demonstrated with a South Africa–UK 

hydrogen supply chain. The LCOH results show that importing green hydrogen can be 

cost-competitive with domestic production. The levelised cost of the most economical 

carrier, TOL $7.07ௗkg⁻¹H2, is on par with the projections for domestic UK production 

($7.13ௗkg⁻¹H2). This validates international hydrogen trade as an economically rational 

strategy for an importing country to enhance energy security and achieve its 

decarbonisation goals. The case study results show that no individual GHC wins on 

economic, environmental impacts and carrier efficiency simultaneously. LH2 was 

consistently identified by the AHP-TOPSIS method as the ideal solution, ranking first 

in all scenarios due to its superior performance on environmental criteria and carrier 

efficiency. 

Policy decisions that lower the levelised cost of hydrogen production and carbon 

intensity of the electricity grid will impact the GHCs’ competitiveness significantly. 

Across five GHC pathways analysed, green hydrogen production accounts for 66.4% 

to 77.2% of the delivered costs. Therefore, policy measures that can lower the levelised 

costs of green hydrogen, such as production tax credits to renewable energy farms in 

the exporting countries, can increase IRR for all carriers and narrow the cost gaps. In 

addition, the life-cycle results show that the further decarbonisation of the grid could 

alter the ranking of GHCs. When the process energy originates from a 2035 grid mix 

or a more decarbonised grid, NH3 benefits greatly, as it becomes the best compromised 

carrier. Moreover, renewable utilisation and grid energy price matter. Variations in 

renewable capacity factors and grid energy prices move MeOH and NH₃ up or down 

by one place in the MCDM ranking. Therefore, a technology-neutral but performance-

based policy design that focuses on cheap, clean electricity and grid decarbonisation 

will allow the most cost-effective and climate-aligned carrier to scale first while 

keeping national decarbonisation goals firmly on track. 

In addition to the carbon footprint of carriers, the ReCiPe results show that a significant 

percentage of human health damage induced by the hydrogen supply chain is driven by 

the fine particulate matter formation and human carcinogenic toxicity, which originates 
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from the upstream manufacturing of the infrastructure, such as the materials for wind 

turbines. This finding demonstrates that a holistic green hydrogen policy needs to 

extend beyond ensuring a renewable energy supply to include sustainable procurement 

procedures for capital equipment.  

However, there are some limitations to the case study results. First, the case study 

results are limited to the system defined in Section 6.2. A change in system definition 

will result in different project factors for the green hydrogen supply chain. Factors such 

as shipping distance, available infrastructure, environmental regulations, and policy 

incentives can shift the relative importance of each criterion. Hence, the criteria 

configuration and weight will be different. Second, the economic and environmental 

results are sensitive to assumptions. The current proposed framework considers the 

steady state of commodity prices, energy prices, and energy consumption. Therefore, 

future studies can investigate a multi-criteria decision-making framework from a 

dynamic system perspective, where prices and energy consumption are dynamic. To 

sum up, this chapter provides an effective evaluation framework for stakeholders in the 

green hydrogen supply chain to gain more insights into the viable hydrogen carriers.  
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Chapter 7 

7. Conclusion  

 

7.1 Thesis summary  

This thesis was motivated by the revelation that the global energy transition is driving 

three fundamental shifts in decision-making, making traditional computational 

frameworks inadequate. The first is the shift in operational uncertainty, where the 

integration of intermittent renewables and novel storage assets creates deep uncertainty. 

The second is a structural shift from centralised control to decentralised coordination, 

in which the emergence of prosumers and aggregators requires privacy-preserving, 

competitive market interactions. The third is the shift in strategic evaluation, where 

decision-makers must move from a single objective on cost minimisation to a multi-

dimensional assessment. As outlined in Chapter 3, these shifts create a nested hierarchy 

of complexity, spanning uncertainty complexity at the operational scale, interactional 

complexity at the transactional scale, and evaluative complexity at the strategic scale. 

The overarching research question of this thesis asked how computational frameworks 

must be developed to manage these emergent complexities. By systematically 

addressing each layer of this hierarchy, this thesis advances this field by establishing 

new computational frameworks that collectively address the nest complexities.  

At the foundational layer of this hierarchy, this thesis addresses uncertainty complexity 

at the operational scale. Traditional stochastic programming assumes that probability 

distributions accurately describe market conditions. However, this assumption will not 

hold when the market is under severe volatility introduced by renewable penetration. 

To resolve this, Chapter 4 contributed a novel hybrid framework that integrates IGDT 

with STA. By applying the proposed framework to the scheduling of LAES-equipped 

micro-grids, this thesis demonstrates that the proposed framework allows operators to 

quantify the risks the systems can tolerate while meeting performance targets. This 

contribution fills the critical methodological gap by providing a non-probabilistic 
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computational framework for managing risks associated with novel storage assets in 

volatile markets.  

Building on the operational scale, this thesis addressed interactional complexity at the 

transactional scale as the energy system becomes more decentralised in energy 

generation. This shift creates challenges in managing the competitive interactions 

between autonomous agents. Existing centralised optimisation methods cannot 

preserve privacy, and single-leader game models fail to capture horizontal competition 

among multi-aggregators. Chapter 5 addresses this gap by formulating an MLMFG and 

solving it via a novel graph-based consensus algorithm. This contribution advances the 

field by moving beyond a single-leader architecture towards a multi-leader architecture. 

By proving that market equilibrium can be achieved through decentralised, privacy-

preserving edge computing, this framework provides the decision-making tool for 

future competitive energy markets.  

Finally, at the strategic scale, this thesis addressed evaluative complexity. The selection 

of long-term technology pathways, such as international green hydrogen carriers, 

involves trade-offs that cannot be resolved by a single metric alone. Existing studies 

often rely on simplified economic models or focus exclusively on global warming 

potential. Chapter 6 contributed a new MCDM framework that synthesises discounted 

techno-economic analysis, comprehensive ReCiPe endpoint environmental assessment, 

and carrier efficiency metrics. By applying the proposed framework to a previously 

unexamined South Africa-to-UK hydrogen corridor, this thesis provides the first 

detailed techno-economic and environmental assessment of the green hydrogen route, 

with sensitivity analysis of the GHC evaluation. 

Collectively, these three studies constitute a coherent research design that develops the 

decision-making in multi-energy systems. Therefore, the primary contribution of this 

work is the development of these computational frameworks, which together provide a 

foundation for future decision-support tools to navigate the complexities of a 

sustainable energy future. 

7.2 Socio-technical and ethical implications  

The computational framework developed in this thesis is primarily a set of 

mathematical tools designed to optimise the energy system. However, energy systems 
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are not just physical infrastructures. They are socio-technical systems within economic, 

political, and social contexts. Although the focus of this thesis has been the 

development of computational frameworks, it is necessary to reflect on their socio-

technical implications for the principles of fairness, equity, and sustainability. This 

reflection mirrors the nested hierarchy of complexity established in this thesis, 

examining the ethical dimensions at the operational, transactional, and strategic scales. 

At the operational scale, the development of the hybrid IGDT-STA framework in 

Chapter 4 highlights an ethical tension between system robustness and energy 

affordability. The framework enables micro-grid operators to adopt risk-averse 

strategies by accepting higher operational costs. It raises questions about distributive 

costs: who will pay the extra cost of resilience? In a community micro-grid setting, a 

highly risk-averse operating strategy will drive up energy costs. If these costs are passed 

down uniformly to end users, they may cause energy poverty, particularly for vulnerable 

households. Therefore, the deployment of such an optimisation framework is not just a 

mathematical exercise. It requires further definition on the acceptable level of risk a 

community should bear.  

Moving to the transactional scale, the intelligent aggregation framework proposed in 

Chapter 5 introduces socio-technical considerations regarding inclusivity. The proposed 

aggregation framework relies heavily on advanced digital infrastructure, including edge 

computing nodes and smart metering. The reliance creates a technological barrier to 

entry. In a decentralised market where participation requires both hardware and 

algorithmic competence, there is a risk of excluding prosumers who lack the financial 

means to upgrade their digital infrastructure to participate with automated agents.  

Furthermore, the aggregation framework assumes that every prosumer aims to 

maximise utility by maximising profits. However, in a real-world setting, the utility is 

not the same for all prosumers. A household with life-sustaining medical equipment has 

fundamentally different priorities than profit-maximising prosumers. Hence, the utility 

setting of the aggregation framework could incorporate fairness constraints into the 

optimisation model.  

Finally, at the strategic scale, the evaluation of the South Africa-UK green hydrogen 

corridor in Chapter 6 raises questions about global equity and the geopolitics of the 

energy transition. The techno-economic analysis reveals that carriers such as LH2, 
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LOHCs and Ammonia offer viable pathways for export. However, ownership of the 

intellectual property for these GHC pathways is concentrated in the Global North (e.g., 

Germany and Japan), while the Global South (South Africa) provides the primary land 

and renewable energy resources. If South Africa exports green hydrogen but imports 

the expensive liquefaction plants and specialised vessels required to transport it, the 

local economic benefit may be limited. 

7.3 Limitations and recommendations for future research  

In addition to the socio-technical discussion and future research recommendations in 

the previous section, Section 7.3 examines methodological and technical limits.  

7.3.1 Methodological and validation limits 

The key methodological limitation of this thesis is the reliance on computational 

simulation rather than empirical validation in operational environments. The proposed 

algorithms, such as the hybrid IGDT-STA and the graph-based consensus mechanism, 

have demonstrated numerical applicability against benchmarks. They have not yet 

undergone the physical experiment of hardware-in-the-loop testing or pilot deployment. 

Consequently, while the thesis provides frameworks that can support decision-making, 

the transition to deployed decision-support tools would require further validation to 

account for real-world communication latency, sensor noise, and hardware applicability.  

Furthermore, the computational frameworks developed in this thesis depend on the 

quality of the input data. The case studies utilised standard benchmark datasets (e.g., 

SimBench) and historical market data (e.g., Nord Pool). In a real operational context, 

data availability is often imperfect, characterised by missing values and measurement 

errors. Additionally, while the research aims to support stakeholders such as micro-grid 

operators and policymakers, the validation process did not include qualitative feedback 

or usability testing with these human stakeholders. Therefore, the practical adoption of 

these frameworks would require a socio-technical validation phase to ensure the outputs 

are interpretable and actionable for human decision-makers. 

7.3.2 Technical simplification in system modelling  

Some specific technical simplifications were adopted in this thesis. In Chapter 4, the 

LAES system was treated as a steady-state system. The charging and discharging phases 
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were modelled with linearised equations assuming time-invariance. This approach 

neglects the complex thermodynamic transients in the compressor and expander, 

particularly during start-up and shut-down.  

In Chapter 5, the intelligent aggregation framework solves a single-period decision-

making problem. While this effectively demonstrates the graph-based consensus 

algorithm's ability to reach a market equilibrium, it does not fully capture prosumers' 

inter-temporal strategic behaviour. In reality, prosumers with storage capacity would 

likely engage in intertemporal arbitrage, storing energy when prices are low to sell in 

future periods when prices are high. By limiting the game to a single period, the current 

model may not fully reveal the potential economic benefits of storage assets in a 

competitive market. 

Finally, the strategic evaluation of hydrogen carriers in Chapter 6 is centred on intrinsic 

techno-economic and environmental criteria. It does not explicitly model extrinsic 

factors such as geopolitical risks or evolving policy landscapes. Extrinsic geopolitical 

risks in the exporting country or along the maritime transportation route could lead to 

a higher risk premium when discounting the project's cash flows. In addition, the 

implementation of a carbon border adjustment mechanism (CBAM) by the importing 

country, such as the UK, would significantly change the economic performance of 

carbon-based carriers, especially methanol, by taxing the re-emission of captured CO2. 

The absence of these dynamic policy and risk factors means the current ranking reflects 

a technocratic ideal rather than a fully risk-adjusted geopolitical reality. 

7.3.3 Recommendations for Future Research 

Building on these limitations, several future research directions are recommended to 

further advance the field. Future work could move from pure simulation to emulation 

using digital twins or hardware-in-the-loop setups. This would allow testing of the 

proposed algorithms under physical constraints, such as communication delay, which 

are critical for decentralised systems. 

Regarding the specific models, future research should aim to relax the current 

simplifications. For the micro-grid scheduling framework, the IGDT formulation could 

be expanded to handle coupled uncertainties, investigating the simultaneous impact of 

renewable generation intermittency and price volatility, rather than treating them in 
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isolation. For the aggregation framework, extending the MLMFG to a multi-period 

horizon would entail analysing complex inter-temporal strategies, thereby providing a 

more accurate reflection of storage value in local markets. 

Finally, integrating extrinsic risk factors into the MCDM criteria is a vital next step for 

strategic hydrogen research. Future work could expand the proposed framework to 

include criteria such as supply chain resilience, policy alignment, and geopolitical 

stability. In addition, incorporating further consideration of carbon pricing and border 

adjustment mechanisms would enable the framework to produce time-dependent 

rankings that quantify carrier selection under plausible future policy scenarios. This 

would enhance the practical relevance of the framework for investors and policymakers 

navigating the uncertainties of the global energy transition. 

7.4 Concluding remarks  

By moving from deterministic to risk-included robust optimisation, from centralised to 

decentralised coordination, and from single-objective to multi-criteria evaluation, this 

thesis advances the field of decision-making strategies in multi-energy systems by 

introducing new computational frameworks. These frameworks demonstrate that the 

emergent complexities of uncertainty, interaction and evaluation can be addressed with 

quantitative methods. While acknowledging its limitations, this thesis provides a 

foundation for future research that aims at developing dynamic, robust, and equitable 

decision-support systems required for a net-zero future. 
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Appendix 

 

This appendix provides supplementary information to Chapter 5 on green hydrogen 

carrier evaluation, which includes life cycle inventories, life cycle impact assessment 

results, and sensitivity analysis results by case.  

A1 Detailed techno-economic data and assumptions   

This section presents the detailed techno-economic calculation and data sources of 

green hydrogen carriers (GHC) conversion and reconversion.  The GHCs considered 

include liquid hydrogen (LH2), ammonia (NH3), methanol (MeOH), dibenzyltoluene 

(DBT), and toluene (TOL). The currency is converted based on the exchange rate 

assumed in Table 6-1. It should be noted that in addition to the CAPEX for the 

hydrogenation and dehydrogenation plant, the DBT and TOL pathway also considers 

the upfront purchase of the carrier, due to the closed-loop nature of DBT and TOL. This 

study considers the initial purchase of 993,000 t and 980,000 t of DBT and TOL, 

respectively, based on the annual green hydrogen delivery. Table A2 illustrates the 

energy consumption data sources for the conversion and reconversion of GHC. It 

should be noted that the waste heat for CO2 capture with DAC is assumed to be supplied 

by industrial plants in the Coega Industrial Development Zone at Port Elizabeth.  

Table A1. Detailed techno-economic input calculation. C: Conversion, R: Reconversion. 

Carri
er 

Pro
ces
s 

Syste
m 

lifetim
e 

[year] 

Referenc
e 

CAPEX 
[original 
currency] 

Referen
ce 

capacity 

Scaling 
expone

nt 

Final 
scaled 
CAPE

X 
[Milli
on $] 

Normalised 
unit 

CAPEX1 
Reference 

LH2 C 20 See Note2 
See 

Note2 
See 

Note2 
5192.

64 
34,786.75 

[$/(kgH2/h)] 
(Connelly et 
al., 2019) 

 R 20 0.81 M€ 
42.7 
tH2/d 

0.67 15.12 
119.79 

[$/(kgH2/h)]  

Table 17 of 
(Restelli et 
al., 2024) 

NH3 C 20 
2373.3 

M€3 

24,627 
tNH3,prod

uct/d 
0.67 

1938.
0 

2,566.19 
[$/(kgNH3/h)

]  

(Ortiz 
Cebolla et 
al., 2022) 

 R 20 1,100 M€ 
24,627 

tNH3,feed

/d 
0.67 

926.2
4 

7,335.81 
[$/(kgH2/h)] 

(Ortiz 
Cebolla et 
al., 2022) 
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MeO
H 

C 20 106 M€4 
65,000 

tMeOH/
y 

0.67 
2,540.

23 

2864.52 
[$/(kgMeOH/

h)] 

(Bos et al., 
2020) 

 R 20 138.6 M$ 
115,500t

H2/y 
0.67 

588.6
2 

4,661.85 
[$/(kgH2/h)] 

(Papadias et 
al., 2019) 

DBT C 20 319.6 M€ 
3610931
.5 tH18-
DBT/y 

0.67 
902.7

7 

445.6 
[$/(kgH18-

DBT/h)] 

(Raab et al., 
2021) 

 R 20 640 M€ 
225,500 

tH2/y 
0.67 

1821.
81 

14,428.71 
[$/(kgH2/h)] 

(Raab et al., 
2021) 

TOL C 20 
439.41 

M€ 

3,662,12
0 

tMCH/y 
0.67 

1241.
30 

604.2 
[$/(kgMCH/h

)] 

(Raab et al., 
2021) 

 R 20 
666.67 

M€ 
225,500 

tH2/y 
0.67 

1897.
71 

15,029.90 
[$/(kgH2/h)] 

(Raab et al., 
2021) 

1 Normalised unit CAPEX is defined as the total installed CAPEX [$] divided by the 

hourly capacity of the plants (kg carrier/h), assuming 7,920 annual operating hours 

2 The CAPEX for the LH2 liquefaction plant was not scaled from reference but was 

calculated directly using the liquefier capital cost equation of (Connelly et al., 2019). 

For this study, the daily liquefied hydrogen production considers the 6.4% loss during 

the supply chain. A cost index adjustment of 1.33 was applied to adjust the liquefier 

cost estimation.  

3 The CAPEX of green ammonia conversion includes the Air Separation Unit (ASU) 

and the ammonia synthesis plant (Ortiz Cebolla et al., 2022). 

4 The CAPEX for Direct Air Capture (DAC) and methanol synthesis plant are 95 and 

11 million € respectively (Bos et al., 2020). 

 

Table A2. Energy consumption reference. C: Conversion, R: Reconversion.  

Carrie
r 

Process Energy consumption Reference 

LH2 C Hydrogen liquefaction 7 kWh/kgH2 
(Heuser et al., 

2019) 

 R Hydrogen regasification 0.2 kWh/kgH2 (IRENA, 2022) 

NH3 C 
Electricity consumption by 
ASU 

1.03 kWh/kgN2 
(Althaus et al., 

2007) 

  
Electricity consumption by the 
Haber-Bosch process 

0.464 kWh/kgNH3 
(D’Angelo et al., 

2021) 

 R Ammonia cracking 7 kWh/kgH2 
(Nielsen & 

Topsoe, 2021) 

MeOH C 
Electricity consumption by 
DAC 0.614 kWh/kgCO2 

(Terlouw et al., 
2021) 
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 C 
Waste heat consumption by 
DAC 

1.5 kWh/kgCO2 
(Terlouw et al., 

2021) 

 C Methanol synthesis 0.217 kWh/kgMeOH 
(Badger et al., 

2024) 

 R Methanol dehydrogenation 0.501 kWh/kgH2 (MAHLER, 2024) 

DBT C DBT hydrogenation 0.068 kWh/kgH18-DBT (Cho et al., 2024) 

 R 
H18-DBT dehydrogenation – 
electricity 

1.12 kWh/kgH2 (Cho et al., 2024) 

  
H18-DBT dehydrogenation – 
heat  

9.79 kWh/kgH2 (Cho et al., 2024) 

TOL C TOL hydrogenation 0.071 kWh/kgMCH (Cho et al., 2024) 

 R 
MCH dehydrogenation – 
electricity 

1.13 kWh/kgH2 (Cho et al., 2024) 

  MCH dehydrogenation – heat 10.25 kWh/kgH2 (Cho et al., 2024) 

 

A2 Life cycle inventories  

This section presents for the life cycle inventories in the LCA modelling. It should be 

noted that the employees’ travel and commuting are not considered in this LCA model.   

A2.1 Green hydrogen production  

Table A3 explains the life cycle inventories for green hydrogen production. The 

quantity of water and electricity consumption is obtained by assuming the PEM system 

efficiency of 60% (Bareiß et al., 2019). The inventory for the PEM gasket and cell stack 

construction is presented in Tables A4 and A5. It should be noted that the green 

hydrogen produced by PEM water electrolysis must be transported to a hydrogen carrier 

production facility, such as a hydrogen liquefaction plant. It is assumed that the distance 

between the green hydrogen production plant and the hydrogen carrier conversion 

facility is 10 km. The hydrogen pipeline is assumed to be a distribution pipeline, as it 

is shorter and operates at a lower pressure than transmission pipelines (Wulf et al., 

2018). Table A6 presents the life cycle inventories for hydrogen distribution pipeline 

construction at Port Elizabeth, which has a lifetime of 20 years, based on the data from 

(Wulf et al., 2018).  
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Table A3 Life cycle inventory for green hydrogen production 

Green hydrogen production (Bareiß et al., 2019) 
  

Input, material & energy     

Water, deionised, from tap water, at user 9.00E+00 kg 

Electricity, solar  5.55E+01 kWh 

Hydrogen pipeline  5.37E-07 km 

PEM cell stack construction  1 p* 

Output, product    

H2 - PEM water electrolysis operation 1 kg 

*p is a normalised unit in SimaPro with respect to the infrastructure process's 

production capacity. 

 

Table A4  Life cycle inventory of gasket construction 

Gasket construction, cell stack (D’Angelo et al., 2021) 
  

Input, materials      

Tetrafluoroethylene 7.63E-02 kg 

Acrylonitrile 
 

1.56E-01 kg 

Aniline 
 

4.79E-02 kg 

Acetic anhydride 
 

5.28E-02 kg 

Purifies terephthalic acid 
 

8.61E-02 kg 

Nitric acid, without water, in 50% solution state 3.23E-02 kg 

Hydrochloric acid, without water, in 30% solution state 1.27E-01 kg 

Graphite 4.21E-01 kg 

Lubricating oil 4.69E-01 kg 

Output, product    

Materials for gasket construction, cell stack 1 Kg 

 

Table A5 Life cycle inventory of PEM cell stack construction 

PEM cell stack construction (D’Angelo et al., 2021) 
  

Input, materials & energy     

Iridium 6.37E-07 kg 

Platinum  6.73E-08 kg 
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Copper 1.43E-06 kg 

Steel, unalloyed 3.14E-05 kg 

Titanium, primary 4.74E-04 kg 

Aluminium, primary, ingot 2.42E-05 kg 

Tetrafluoroethylene 1.43E-05 kg 

Activated carbon 8.07E-06 kg 

Precious metal from electronics scrap  7.40E-07 kg 

Gasket construction, cell stack 1.13E-04 kg 

Water, decarbonised, at user  1.21E-06 t 

Water, deionised, from tap water, at user 9.45E-06 t 

Electricity, grid 3.98E-06 GJ 

Heat, district or industrial, natural gas 9.72E-06 GJ 

Heat, from steam, in chemical industry 7.73E-05 MJ 

Industrial machine, heavy 1.77E-08 kg 

Plaster mixing 8.61E-05 kg 

Calendering, rigid sheets 8.61E-05 kg 

Output, product    

H2 - Cell stack construction, PEM water electrolysis  1 p/kgH2 

 

Table A6 Life cycle inventory of hydrogen distribution pipeline construction 

Hydrogen distribution pipeline (Wulf et al., 2018) 
  

Input, material      

Primary aluminium 1.94E+01 kg 

Silica sand 1.20E+02 t 

Steel, low-alloyed 5.34E+03 kg 

Silicon 5.70E+02 g 

Zinc 1.53E+01 kg 

Drawing of pipe steel 5.34E+03 kg 

Excavation, hydraulic digger 1.20E+03 m3 

Excavation, skid-steer loader 9.00E+03 m3 

Zinc coating 5.34E+03 kg 

Output, product  
 

hydrogen distribution pipeline 1 km 

Output, waste to treatment  
 

Pipeline decommissioning 2.70E+03 kg 
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A2.2 Liquid hydrogen pathway  

The life cycle inventory data for the LH2 pathway is presented in Tables A7 and A8, 

considering a hydrogen loss of 1.6% during the liquefaction process (Heuser et al., 2019) 

and a 0.2 kWh energy consumption for LH2 regasification (IRENA, 2022). The primary 

energy consumption in the liquid hydrogen supply chain occurs during the liquefaction 

process, which is energy-intensive due to the extremely low temperatures required and 

the need to maintain the hydrogen in its liquid state to prevent boil-off. Energy 

consumption for hydrogen liquefaction varies across different sources in the literature. 

An energy requirement of 7 kWh per kilogram of hydrogen is assumed in this chapter 

based on (IRENA, 2022). The life cycle inventories of the hydrogen liquefaction plant 

are scaled linearly based on the data from (IdealHY, 2013). 

The maritime transportation of liquid hydrogen is carried out by dedicated liquid 

hydrogen tanker ships with an average speed of 30 km/h (IEA, 2020) and a boil-off rate 

of 0.1% per day during transportation (Dickson et al., 2022). Since the liquid hydrogen 

ships are currently in the prototype stage, the background Ecoinvent data from the 

liquid natural gas tankers is used as a conservative proxy for liquid hydrogen ships. It 

should be noted that the environmental footprint from the ballast voyage is implicitly 

considered in the Ecoinvent database (Wernet et al., 2016). Additionally, the hydrogen 

could be lost during the transfer operation from the port storage tanks to the transporting 

ships due to unavoidable temperature fluctuations. As a result, a total of 1.3% hydrogen 

loss is assumed during the loading and unloading of LH2 (Wijayanta et al., 2019).  

Table A7 Hydrogen liquefaction inventories 

Hydrogen liquefaction (Heuser et al., 2019; IRENA, 2022)     

Input, materials & energy 
  

Hydrogen, gaseous  1.016 kg 

Electricity  7.00E+0 kWh 

Hydrogen liquefaction plant 5.34E-11 p 

Output, product 
  

Hydrogen, liquid 1 kg 

Output, emission 
  

Hydrogen, gaseous  1.60E-02 kg 
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Table A8 Life cycle inventory of liquefaction plant construction 

Liquefaction plant construction (IdealHY, 2013)     

Input, materials 
  

Carbon steel 2.17E+04 tons 

Stainless steel 3.39E+04 tons 

Copper 8.55E+03 tons 

Aluminium 7.98E+03 tons 

Concrete 2.66E+06 tons 

Output, product   
 

Liquefaction plant 1 p 

A2.3 Green ammonia pathway  

Table A9 presents the life cycle inventory of nitrogen production, indicating that 1.03 

kWh of electricity is required to produce 1 kg of nitrogen. The synthesis catalyst for the 

electrified Haber-Bosch process consists of magnetite, lime, and zeolite, as shown in 

Table A10. Another key data point for ammonia production is the electricity 

consumption of the Haber-Bosch process, which includes the electricity used by the 

refrigeration compressor, feed compressor, recycle compressor, and electric heater 

(IRENA, 2022). The electricity consumption of 0.464ௗkWh for ammonia production is 

obtained from (Chisalita et al., 2020). In addition, emission data is sourced from 

(D’Angelo et al., 2021). The infrastructure data of a chemical factory from the 

Ecoinvent database is used to approximate the infrastructure processes in green 

ammonia production (Althaus et al., 2007). Overall, the life cycle inventory of green 

ammonia production is shown in Table A11. After production at the ammonia synthesis 

plant, ammonia is stored in refrigerated tanks. This chapter assumes a daily loss rate of 

0.036% (Noh et al., 2023b).  

Ammonia cracking, which is the reverse of ammonia synthesis, involves breaking down 

ammonia into pure hydrogen and nitrogen. The life cycle inventory for ammonia 

cracking is detailed in Table A12, with the catalyst composed of nickel and magnesium 

oxide (Noh et al., 2023b). The life cycle inventory data for electrified ammonia crackers 

is based on (Nielsen & Topsoe, 2021). Producing 1 kg of gaseous hydrogen requires 

5.93 kg of ammonia and 8 kWh of electricity, assuming a cracker efficiency of 95%. It 

should be noted that the electrified ammonia cracker is currently in the pilot project 

stage, and its system and energy efficiency may evolve as the technology advances. The 
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infrastructure for ammonia cracking is modelled using generic chemical factory data 

from the Ecoinvent database. 

Table A9 Life cycle inventory of the nitrogen production 

Nitrogen production with ASU (Althaus et al., 2007)   

Input from nature    

Air 1.28E+00 kg 

Input from the techno space    

Air separation facility  6.30E-10 P 

Electricity 1.03E+00 kWh 

Water, cooling 2.70E-03 m3 

Output, product    

Nitrogen  1.00E+00 kg 

Output, emissions/wastes    

Waste heat to air 3.69E+00 MJ 

Waste water 1.15E+00 kg 

 

Table A10 Life cycle inventory of the ammonia synthesis catalyst 

Ammonia synthesis catalyst (D’Angelo et al., 2021)  
 

Input, material and energy    

Magnetite 9.17E-01 kg 

Lime 3.00E-02 kg 

Zeolite, powder 5.25E-02 kg 

Electricity 3.14E-05 kWh 

Output, product    

NH3 synthesis catalyst 1 kg 

 

Table A11 Life cycle inventory for green ammonia production 

Green ammonia by Haber-Bosch process (Chisalita et al., 2020; D’Angelo et al., 2021) 

Input, material and energy     

Hydrogen  1.89E-01 kg 

Nitrogen 8.74E-01 kg 

Electricity, for HB process 4.64E-01 kWh 

Ammonia synthesis catalyst 2.00E-04 kg 
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Water, cooling 8.31E-01 kg 

Chemical factory 4.00E-10 p 

Output, product    

Ammonia 1 kg 

Output, emissions/wastes    

Hydrogen (to air) 7.67E-04 kg 

Ammonia (to air) 1.63E-03 kg 

Nitrogen oxide (to air) 1.00E-03 kg 

water, cooling (to water) 8.31E-01 kg 

Spent catalyst (to treatment or inert material landfill) 2.00E-04 kg 

 

Table A12 Life cycle inventory for ammonia cracking 

Ammonia cracking (Nielsen & Topsoe, 2021)     

Input, material & energy    

Ammonia 5.93E+00 kg 

Electricity, UK 8.00E+00 kWh 

Nickel 1.20E-4 kg 

Magnesium oxide  1.88E-3 kg 

Ammonia cracker (chemical factory proxy) 4.00E-10 p 

Output, product    

Hydrogen, Gaseous  1 kg 

Output, waste  
 

Spent catalyst 2.00E-3 kg 

A2.4 Methanol pathway   

The life cycle inventory analysis of methanol as a hydrogen carrier encompasses three 

primary stages: carbon dioxide (CO₂) production via direct air capture (DAC), methanol 

synthesis, and methanol dehydrogenation to release hydrogen at the point of use. In the 

CO₂ production stage, as shown in Table A13, capturing 1 kg of CO₂ requires 1.50 kWh 

of waste heat, 0.614 kWh of electricity, and 3 grams of sorbent material. The Methanol 

synthesis data is obtained from Badger et al., 2024 (Badger et al., 2024), as shown in 

Table A14. The Ecoinvent data of a liquid goods tanker ship is used for modelling the 

transportation of methanol. No boil-off loss is considered for methanol transportation. 

In the methanol dehydrogenation stage, as shown in Table A15, 7.01 kg of methanol 

and 3.78 kg of demineralised water are consumed to produce 1 kg of hydrogen gas, 
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utilising 0.5 kWh of electricity and 222.52 L of cooling water (MAHLER, 2024). The 

CO2 is assumed to be released back into the atmosphere during the methanol 

dehydrogenation stage (Arrigoni et al., 2024; Dickson et al., 2022).  

Table A13 Life cycle inventories for CO2 production 

CO2 production (Badger et al., 2024; Terlouw et al., 2021)   

Input, material & energy    

Waste heat 1.50E+00 kWh 

Electricity 6.14E-01 kWh 

Sorbent 3.00E-03 kg 

Chemical factory  4.00E-10 p 

Output, product    

CO2, captured 1 kg 

Output, emissions    

CO2, emission to air  -1 kg 

 

Table A14 Life cycle inventories for green methanol synthesis 

Methanol synthesis (Badger et al., 2024) 
  

Input, material & energy     

Copper oxide 1.67E-05 kg 

CO2, captured 1.45E+00 kg 

Hydrogen 2.08E-01 kg 

Water, cooling  5.64E-01 kg 

Electricity 2.17E-01 kWh 

Methanol factory 3.71E-11 p 

Output, product    

Methanol 1 kg 

Output, Emissions/Waste    

CO2, to air  7.26E-02 kg 

Hydrogen, to air  1.93E-02 kg 

Waste water 5.64E-04 m3 

Spent catalyst (to treatment or inert material landfill) 1.67E-05 kg 

 



146 
 

Table A15 Life cycle inventories for methanol dehydrogenation 

Methanol dehydrogenation (Arrigoni et al., 2024; MAHLER, 2024) 

Input, material & energy      

Methanol 7.01E+00 kg 

Demineralised water 3.78E+00 kg 

Cooling water 2.23E+02 L 

Electricity 5.01E-01 kWh 

Copper oxide  3.02E-06 kg 

Zinc oxide 3.10E-06 kg 

Output, product    

Hydrogen, gaseous 1 kg 

Output, emissions/waste   
 

Carbon dioxide  9.7E+00 kg 

Water, cooling  2.23E+00 m3 

Spent catalyst 6.12E-06 kg 

 

A2.5 DBT and TOL pathway  

Table A16 shows the production data for DBT from toluene, where the electricity and 

heat consumption data are from (Cho et al., 2024). The environmental impacts of the 

DBT production process are attributed to DBT (Arrigoni et al., 2024). Table A17 shows 

the hydrogenation process where hydrogen molecules are chemically bonded to DBT, 

forming perhydro-dibenzyltoluene (H18-DBT). Since DBT carriers can be recycled 

more than 750 times, it is assumed that the DBT are returned to the hydrogenation 

facility (Arrigoni et al., 2024). Therefore, the environmental impacts of the initial batch 

of purchasing / producing DBT are credited based on the maritime transportation 

assumptions in Table 6-4. As a result, 9.39% of impacts should be credited to the South 

Africa case study in the UK.  

The transportation process of H18-DBT is modelled using Ecoinvent data of liquid 

goods other than petroleum, with consideration of transporting unloaded DBT back to 

South Africa. The ship transport of crude oil shows losses of around 0.2%, which is also 

assumed for DBT transport (Niermann et al., 2021). Table A18 shows the 

dehydrogenation process, where the H18-DBT is unloaded to supply green hydrogen 

with an efficiency of 97% (IRENA, 2022). The hydrogenation facility will purchase or 
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produce additional LOHCs to compensate for the loss. Similar processes apply to 

toluene as an LOHC, where toluene is hydrogenated to methylcyclohexane (MCH) and 

later dehydrogenated to release hydrogen, as shown in Table A19 and Table A20. The 

dehydrogenation efficiency of TOL is assumed to be 95% (IRENA, 2022).  

Table A16 Life cycle inventories for DBT production 

DBT Production (Cho et al., 2024; Wulf et al., 2018)   

Input, materials & energy 
  

Toluene  1.03E+00 Kg 

Decarbonised water  1.20E+00 kg  

Chlorine gas 2.60E-01 Kg 

Iron (III) chloride  2.00E-06 Kg 

Electricity  2.42E+00 kWh 

Heat 2.70E+00 MJ 

Chemical factory 4.00E-10 p 

Output, product  
 

DBT 1 Kg 

Hydrochloric acid 0.535 Kg 

 
 

Table A17 Life cycle inventory of DBT hydrogenation 

DBT Hydrogenation (Cho et al., 2024; Dickson et al., 2022; Niermann et al., 2021; 
Wulf et al., 2018) 

Input, materials & energy  
  

DBT 15.013 Kg 

Electricity 1.091 kWh 

Hydrogen  1 Kg 

Water, cooling  1.4 L 

Platinum 0.161 mg 

Aluminium oxide  32 mg 

Output, product & energy  
 

H18 DBT 16.013 kg 

Output, emissions & waste  
 

Heat 11 kWh 

Water, cooling 1.4 L 

Spent catalyst 32.161 mg 
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Table A18 Life cycle inventory of DBT dehydrogenation 

DBT dehydrogenation (Wulf et al., 2018)   

Input, material & energy  
  

H18-DBT 16.013 kg 

Electricity 1.119 kWh 

Heat 9.79 kWh 

Platinum  0.161 mg 

Aluminium oxide 32 mg 

Water, cooling  358 L 

Output, product   
 

Hydrogen  1 kg 

Output, emission, waste  
 

Water, cooling (to water) 358 l 

Spent catalyst 32.161 mg 

 

Table A19 Life cycle inventory of Toluene hydrogenation 

Toluene hydrogenation (Dickson et al., 2022; Niermann et al., 2021) 

Input, materials & energy 
  

Toluene 15.24 kg 

Electricity 1.16 kWh 

Hydrogen 1 kg 

Water, cooling  1.4 L 

Platinum 0.161 mg 

Aluminium oxide  32 mg 

Output, product   

Methylcyclohexane (MCH) 16.24 kg 

Output, emissions & wastes   

Heat 13.2 kWh 

Water, cooling (to water) 1.4 L 

Spent catalyst 32.161 mg 

 

Table A20 Life cycle inventory of Toluene dehydrogenation 

Toluene dehydrogenation(Dickson et al., 2022; Niermann et al., 2021) 

Input, material & energy    
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MCH 16.24 kg 

Electricity 1.13 kWh 

Water, cooling  1.4 L 

Platinum 0.161 mg 

Aluminium oxide  32 mg 

Heat 10.25 kWh 

Output, product  
 

Hydrogen 1 kg 

Output, emissions & waste  
 

Water, cooling (to water) 1.4 L 

Spent catalyst 32.161 mg 

 
 

A3 ReCiPe impacts  

Tables A21 and A22 present the ReCiPe midpoint and endpoint impact characterisation 
of the base case, respectively. The specific methods are ReCiPe 2016 Midpoint (H) 
V1.09 / World (2010) H and ReCiPe 2016 Endpoint (H) V1.09 / World (2010) H/A. 
Table A23 shows quantitative process contributions to the Fine particulate matter 
formation and Human carcinogenic toxicity.  

Table A21 ReCiPe midpoint impact characterisation of the five GHCs 

Impact category Unit LH2 NH3 MeOH DBT TOL 

Global warming kg CO2 eq 
7.70E+0

0 
1.00E+0

1 
1.04E+0

1 
1.55E+0

1 
1.29E+0

1 
Stratospheric ozone 

depletion 
kg CFC11 

eq 
5.92E-

06 
8.01E-

06 
7.46E-

06 
7.78E-

06 
4.58E-

06 

Ionizing radiation 
kBq Co-60 

eq 
3.69E-

01 
7.54E-

01 
5.15E-

01 
4.70E-

01 
4.37E-

01 
Ozone formation, 

Human health 
kg NOx eq 

3.20E-
02 

4.89E-
02 

4.90E-
02 

9.41E-
02 

8.11E-
02 

Fine particulate 
matter formation 

kg PM2.5 
eq 

2.02E-
02 

2.80E-
02 

2.90E-
02 

4.16E-
02 

3.16E-
02 

Ozone formation, 
Terrestrial 

ecosystems 
kg NOx eq 

3.24E-
02 

5.39E-
02 

4.97E-
02 

9.68E-
02 

8.43E-
02 

Terrestrial 
acidification 

kg SO2 eq 
6.17E-

02 
9.34E-

02 
8.60E-

02 
1.24E-

01 
9.20E-

02 
Freshwater 

eutrophication 
kg P eq 

7.51E-
03 

8.84E-
03 

9.28E-
03 

7.25E-
03 

3.28E-
03 

Marine 
eutrophication 

kg N eq 
3.73E-

04 
4.60E-

04 
4.92E-

04 
5.54E-

04 
3.52E-

04 
Terrestrial 

ecotoxicity 
kg 1,4-
DCB 

2.02E+0
2 

2.50E+0
2 

3.15E+0
2 

2.73E+0
2 

2.62E+0
2 
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Freshwater 
ecotoxicity 

kg 1,4-
DCB 

1.14E+0
0 

1.48E+0
0 

1.86E+0
0 

1.27E+0
0 

1.11E+0
0 

Marine ecotoxicity 
kg 1,4-
DCB 

1.67E+0
0 

2.14E+0
0 

2.68E+0
0 

1.90E+0
0 

1.68E+0
0 

Human carcinogenic 
toxicity 

kg 1,4-
DCB 

6.48E+0
0 

7.75E+0
0 

9.57E+0
0 

7.36E+0
0 

6.54E+0
0 

Human non-
carcinogenic toxicity 

kg 1,4-
DCB 

1.55E+0
1 

2.12E+0
1 

2.44E+0
1 

1.78E+0
1 

1.13E+0
1 

Land use 
m2a crop 

eq 
2.56E-

01 
8.41E-

01 
4.50E-

01 
4.58E-

01 
3.70E-

01 
Mineral resource 

scarcity 
kg Cu eq 

6.78E-
02 

9.38E-
02 

1.22E-
01 

9.08E-
02 

8.73E-
02 

Fossil resource 
scarcity 

kg oil eq 
2.19E+0

0 
2.86E+0

0 
2.93E+0

0 
6.32E+0

0 
6.32E+0

0 

Water consumption m3 
5.07E-

02 
7.07E-

02 
8.06E-

02 
8.06E-

02 
5.53E-

02 
 

Table A22 ReCiPe Endpoint impact characterisation of the five GHCs. 

Impact category Unit LH2 NH3 MeOH DBT TOL 
Global warming, 

Human health  
DALY 

7.14E-
06 

9.30E-06 
9.65E-

06 
1.44E-05 1.20E-05 

Global warming, 
Terrestrial ecosystems 

species.y
r 

2.16E-
08 

2.81E-08 
2.91E-

08 
4.35E-08 3.62E-08 

Global warming, 
Freshwater ecosystems 

species.y
r 

5.89E-
13 

7.67E-13 
7.95E-

13 
1.19E-12 9.89E-13 

Stratospheric ozone 
depletion 

DALY 
3.14E-

09 
4.25E-09 

3.96E-
09 

4.13E-09 2.43E-09 

Ionizing radiation DALY 
3.13E-

09 
6.40E-09 

4.37E-
09 

3.98E-09 3.70E-09 

Ozone formation, 
Human health 

DALY 
2.91E-

08 
4.54E-08 

4.45E-
08 

8.56E-08 7.38E-08 

Fine particulate matter 
formation 

DALY 
1.27E-

05 
1.76E-05 

1.82E-
05 

2.62E-05 1.99E-05 

Ozone formation, 
Terrestrial ecosystems 

species.y
r 

4.18E-
09 

7.08E-09 
6.42E-

09 
1.25E-08 1.09E-08 

Terrestrial 
acidification 

species.y
r 

1.31E-
08 

1.98E-08 
1.82E-

08 
2.63E-08 1.95E-08 

Freshwater 
eutrophication 

species.y
r 

5.03E-
09 

5.92E-09 
6.22E-

09 
4.86E-09 2.20E-09 

Marine eutrophication 
species.y

r 
6.34E-

13 
7.82E-13 

8.37E-
13 

9.41E-13 5.98E-13 

Terrestrial ecotoxicity 
species.y

r 
2.30E-

09 
2.85E-09 

3.59E-
09 

3.11E-09 2.99E-09 

Freshwater ecotoxicity 
species.y

r 
7.92E-

10 
1.02E-09 

1.29E-
09 

8.80E-10 7.69E-10 

Marine ecotoxicity 
species.y

r 
1.75E-

10 
2.25E-10 

2.82E-
10 

2.00E-10 1.77E-10 

Human carcinogenic 
toxicity 

DALY 
2.15E-

05 
2.57E-05 

3.18E-
05 

2.44E-05 2.17E-05 

Human non-
carcinogenic toxicity 

DALY 
3.53E-

06 
4.82E-06 

5.55E-
06 

4.06E-06 2.57E-06 
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Land use 
species.y

r 
2.27E-

09 
7.46E-09 

3.99E-
09 

4.06E-09 3.29E-09 

Mineral resource 
scarcity 

USD201
3 

1.57E-
02 

0.021678
1 

2.82E-
02 

2.10E-02 2.02E-02 

Fossil resource 
scarcity 

USD201
3 

3.36E-
01 

0.524014
6 

5.47E-
01 

2.14E+0
0 

2.42E+0
0 

Water consumption, 
Human health 

DALY 
5.66E-

08 
4.99E-08 

9.90E-
08 

1.05E-07 
-9.48E-

08 
Water consumption, 

Terrestrial ecosystem 
species.y

r 
6.93E-

10 
1.01E-09 

1.04E-
09 

1.01E-09 9.89E-10 

Water consumption, 
Aquatic ecosystems 

species.y
r 

7.75E-
14 

1.32E-13 
1.11E-

13 
1.06E-13 2.25E-13 

 

A4 Sensitivity analysis results  

This section presents the results of the sensitivity analysis of the 7 alternative cases. 

Table A24 shows the criteria results based on the case definition, and Table A25 

shows the VIKOR and TOPSIS results.  

Table A24 The criteria result of the sensitivity analysis 

  LH2 NH3 MeOH DBT TOL 

Case 0 
LCOH 

(USD/kg) 
8.17 8.14 7.22 7.25 7.07 

 IRR 15.59% 18.24% 23.90% 21.18% 23.13% 

 GWP (kg 
CO2eq) 

7.62 9.91 10.30 15.16 12.45 

 ReCiPe (Pt) 0.77 0.98 1.11 1.20 0.97 
 Efficiency 77.62% 70.05% 63.57% 63.27% 63.45% 

Case 1 
LCOH 

(USD/kg) 
7.81 7.78 6.86 6.89 6.71 

 IRR 18.00% 21.84% 28.47% 24.60% 27.10% 

 GWP (kg 
CO2eq) 

7.62 9.91 10.30 15.16 12.45 

 ReCiPe (Pt) 0.77 0.98 1.11 1.20 0.97 
 Efficiency 77.62% 70.05% 63.57% 63.27% 63.45% 

Case 2 
LCOH 

(USD/kg) 
8.71 8.68 7.76 7.79 7.61 

 IRR 12.62% 14.13% 18.84% 17.18% 18.59% 

 GWP (kg 
CO2eq) 

7.62 9.91 10.30 15.16 12.45 

 ReCiPe (Pt) 0.77 0.98 1.11 1.20 0.97 
 Efficiency 77.62% 70.05% 63.57% 63.27% 63.45% 

Case 3 
LCOH 

(USD/kg) 
9.07 9.22 8.14 8.07 7.89 

 IRR 11.77% 12.33% 18.85% 17.40% 19.05% 

 GWP (kg 
CO2eq) 

7.62 9.91 10.30 15.16 12.45 
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 ReCiPe (Pt) 0.77 0.98 1.11 1.20 0.97 
 Efficiency 77.62% 70.05% 63.57% 63.27% 63.45% 

Case 4 
LCOH 

(USD/kg) 
7.27 7.07 6.30 6.43 6.24 

 IRR 19.21% 23.81% 28.81% 24.86% 27.11% 

 GWP (kg 
CO2eq) 

7.62 9.91 10.30 15.16 12.45 

 ReCiPe (Pt) 0.77 0.98 1.11 1.20 0.97 
 Efficiency 77.62% 70.05% 63.57% 63.27% 63.45% 

Case 5 
LCOH 

(USD/kg) 
8.17 8.14 7.22 7.25 7.07 

 IRR 15.59% 18.24% 23.90% 21.18% 23.13% 

 GWP (kg 
CO2eq) 

6.89 9.10 9.49 14.56 12.31 

 ReCiPe (Pt) 0.72 0.93 1.06 1.16 0.96 
 Efficiency 77.62% 70.05% 63.57% 63.27% 63.45% 

Case 6 
LCOH 

(USD/kg) 
8.17 8.14 7.22 7.25 7.07 

 IRR 15.59% 18.24% 23.90% 21.18% 23.13% 

 GWP (kg 
CO2eq) 

5.60 7.68 8.12 13.62 11.99 

 ReCiPe (Pt) 1.24 0.83 0.96 1.09 0.95 
 Efficiency 77.62% 70.05% 63.57% 63.27% 63.45% 

Case 7 
LCOH 

(USD/kg) 
7.41 6.89 6.40 7.07 6.88 

 IRR 18.65% 24.71% 28.25% 22.00% 24.04% 

 GWP (kg 
CO2eq) 

2.43 3.66 4.72 11.20 11.44 

 ReCiPe (Pt) 0.45 0.62 0.78 0.96 0.91 
 Efficiency 77.62% 70.05% 63.57% 63.27% 63.45% 

 

Table A25 AHP-TOPSIS and AHP-VIKOR score of sensitivity analysis 

 
AHP-TOPSIS 

 
AHP-VIKOR 

 
LH2 NH

3 
MeO

H 
DB
T 

TOL 
 

LH2 NH3 MeO
H 

DBT TOL 

Case 0 0.78 0.61 0.59 0.17 0.40 
 0.50 0.84 0.09 0.79 0.11 

Case 1 0.77 0.61 0.59 0.18 0.41 

 

0.50 0.83 0.09 0.79 0.12 

Case 2 0.79 0.62 0.59 0.17 0.40 

 

0.50 0.86 0.09 0.79 0.11 

Case 3 0.77 0.60 0.59 0.20 0.42 

 

0.33 0.96 0.17 0.79 0.15 

Case 4 0.77 0.63 0.59 0.17 0.40 

 

0.50 0.44 0.04 0.79 0.12 

Case 5 0.79 0.67 0.61 0.07 0.31  0.50 0.04 0.20 0.87 0.48 

Case 6 0.76 0.72 0.66 0.09 0.25  0.68 0.03 0.20 0.87 0.53 

Case 7 0.85 0.82 0.70 0.05 0.07  0.54 0.01 0.20 0.85 0.79 
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