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Abstract

This thesis addresses the critical need to develop computational frameworks to manage
the nested hierarchy of decision-making complexities that emerge across the
operational, transactional, and strategic scales of multi-energy systems (MES), driven
by the global transition towards sustainable and resilient energy infrastructures. The
global transition towards the sustainable MES is driving fundamental shifts in

uncertainty, decentralisation, and strategic evaluation.

Three significant research gaps are identified. First, at the operational scale, existing
optimisation methods lack the capacity to manage deep uncertainty associated with
novel assets like Liquid Air Energy Storage (LAES) under volatile market conditions.
Second, at the transactional scale, current aggregation models lack consideration of
dynamic competitive interactions among multiple aggregators and prosumers,
particularly concerning computational efficiency and data privacy. Third, at the
strategic scale, there is a lack of integrated Multi-Criteria Decision-Making (MCDM)
frameworks for international hydrogen supply chains that simultaneously account for
discounted techno-economic performance, life-cycle environmental impacts, and

carrier efficiencies.

This thesis systematically addresses these gaps through novel methodological
contributions and case studies. First, a novel hybrid optimisation method combining
Information Gap Decision Theory (IGDT) and State Transition Algorithm (STA) within
a multi-agent framework is proposed to enable risk-aware scheduling of LAES-
equipped micro-grids. Second, a novel decentralised aggregation framework employing
multi-leader-multi-follower game theory is developed. The proposed aggregation
framework is solved by a computationally efficient and privacy-preserving graph-based
consensus algorithm using edge computing. Lastly, an integrated MCDM framework

that includes techno-economic, environmental, and efficiency criteria assessments is



developed and applied to an unexplored South Africa-UK green hydrogen supply

corridor.

The methodological advancements introduced in this thesis offer novel computational
frameworks that provide a theoretical basis for future decision-support tools. The
results offer quantitative insights relevant to micro-grid operators, aggregators,

policymakers, and investors.
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Impact Statement

The global energy transition is driving fundamental shifts in how energy systems are
operated, coordinated, and evaluated. The increasing penetration of intermittent
renewable resources, the decentralisation of market actors, and the emergence of
international green hydrogen trade create a nested hierarchy of decision-making
complexities. This thesis contributes to addressing these challenges through three
methodological advancements: (1) a hybrid optimisation framework for managing deep
operational uncertainty; (2) a decentralised intelligent aggregation architecture for
coordinating competitive market interactions; and (3) an integrated multi-criteria

evaluation framework for strategic hydrogen supply chain selection.

Within the academic and research fields, this thesis advances multi-energy systems
engineering by bridging the gap between computational frameworks and the emerging
complexities of the energy transition. This thesis introduces novel framework
hybridisation, specifically the coupling of IGDT with the STA, and a novel graph-based
consensus algorithm for Multi-Leader Multi-Follower Games (MLMFG). Furthermore,
it provides comprehensive quantitative datasets, particularly on the techno-economic
and environmental performance of the South Africa—UK green hydrogen corridor,

supporting future research on green hydrogen innovations.

Beyond academia, the computational frameworks developed in this thesis offer
potential to inform the development of future decision-support systems. At the
operational scale, the proposed IGDT-STA framework demonstrates how micro-grid
operators could quantify and manage risks associated with price volatility and novel
storage assets such as LAES, thereby offering a theoretical basis for resilient scheduling.
At the transactional scale, the decentralised aggregation framework illustrates the
feasibility of coordinating competitive markets while preserving prosumer privacy,
providing a computational blueprint for future smart grid architectures. At the strategic

scale, the integrated MCDM framework provides policymakers and investors with a
I



transparent mechanism for navigating the complex trade-offs among economic viability,
environmental impact, and energy efficiency in hydrogen infrastructure planning.
Collectively, these contributions developed the computational framework for MES,

from local micro-grids to international hydrogen supply chains.

v



UCL Research Paper Declaration Form:
referencing the doctoral candidate’s own
published work(s)

1. For a research manuscript that has already been published (if not yet published,
please skip to section 2):

(a) What is the title of the manuscript?

Applications of Agent-Based Methods in Multi-Energy Systems—A Systematic
Literature Review

(b) Please include a link to or doi for the work:

https://doi.org/10.3390/en16052456

(c) Where was the work published?
Energies

(d) Who published the work?
MDPI

(e¢) When was the work published?
2023

(f) List the manuscript’s authors in the order they appear on the
publication:

Ruiqiu Yao, Yukun Hu and Liz Varga
(g) Was the work peer reviewed?
Yes

(h) Have you retained the copyright

Yes

@) Was an earlier form of the manuscript uploaded to a preprint
server (e.g. medRxiv)? If ‘Yes’, please give a link or doi

No

v



If “No’, please seek permission from the relevant publisher and check the box
next to the below statement:

M I acknowledge permission of the publisher named under 1d to include in this
thesis portions of the publication named as included in 1c

2. For a research manuscript prepared for publication but that has not yet been
published (if already published, please skip to section 3):

(a) What is the current title of the manuscript?

(b) Has the manuscript been uploaded to a preprint server e.g. medRxiv’?
If ‘Yes’, please give a link or doi:

(c) Where is the work intended to be published?

(d) List the manuscript’s authors in the intended authorship order:

(e) Stage of publication:

3. For multi-authored work, please give a statement of contribution covering all
authors (if single-author, please skip to section 4):

Ruiqiu Yao: Conceptualization, Methodology, Investigation, Writing—Original Draft,
Visualization. Yukun Hu: Project administration, Investigation, Supervision,
Writing—Review and Editing. Liz Varga: Investigation, Supervision, Writing—
Review and Editing.

4. In which chapter(s) of your thesis can this material be found?
Chapter 2

5.e-Signatures confirming that the information above is accurate (this form should
be co-signed by the supervisor/ senior author unless this is not appropriate, e.g. if the
paper was a single-author work):

Candidate:
Date:
Supervisor/Senior Author signature (where appropriate):

Date:

VI



UCL Research Paper Declaration Form:
referencing the doctoral candidate’s own
published work(s)

1. For a research manuscript that has already been published (if not yet published,
please skip to section 2):

(a) What is the title of the manuscript?

A multi-agent-based micro-grid day-ahead optimal operation framework with
liquid air energy storage by hybrid IGDT-STA

(b) Please include a link to or doi for the work:

https://doi.org/10.1016/j.est.2024.111318

(c) Where was the work published?
Journal of Energy Storage

(d) Who published the work?
Elsevier

(e¢) When was the work published?
2024

(f) List the manuscript’s authors in the order they appear on the
publication:

Ruiqiu Yao, Hao Xie, Chunsheng Wang, Xiandong Xu, Dajun Du, Liz Varga,
Yukun Hu

(g) Was the work peer reviewed?
Yes

(h) Have you retained the copyright
Yes

(ii) Was an earlier form of the manuscript uploaded to a preprint
server (e.g. medRxiv)? If ‘Yes’, please give a link or doi

VII



No

If “No’, please seek permission from the relevant publisher and check the box
next to the below statement:

M T acknowledge permission of the publisher named under 1d to include in this
thesis portions of the publication named as included in 1c

2. For a research manuscript prepared for publication but that has not yet been
published (if already published, please skip to section 3):

(a) What is the current title of the manuscript?

(b) Has the manuscript been uploaded to a preprint server e.g. medRxiv’?
If ‘Yes’, please give a link or doi:

(c) Where is the work intended to be published?

(d) List the manuscript’s authors in the intended authorship order:

(e) Stage of publication:

3. For multi-authored work, please give a statement of contribution covering all
authors (if single-author, please skip to section 4):

Ruiqiu Yao: Conceptualization, Methodology, Writing — original draft. Hao Xie:
Conceptualization, Methodology, Writing — original draft. Chunsheng Wang:
Supervision, Writing — review & editing. Xiandong Xu: Data curation, Investigation.
Dajun Du: Data curation, Investigation. Liz Varga: Project administration,
Supervision. Yukun Hu: Funding acquisition, Project administration, Supervision,
Writing — review & editing.

4. In which chapter(s) of your thesis can this material be found?

Chapter 4

5.e-Signatures confirming that the information above is accurate (this form should
be co-signed by the supervisor/ senior author unless this is not appropriate, e.g. if the
paper was a single-author work):

Candidate:
Date:
Supervisor/Senior Author signature (where appropriate):

Date:
VIII



UCL Research Paper Declaration Form:

referencing the doctoral candidate’s own
published work(s)

1. For a research manuscript that has already been published (if not yet published,
please skip to section 2):

(a) What is the title of the manuscript?

Decentralized intelligent multi-party competitive aggregation framework for
electricity prosumers

(b) Please include a link to or doi for the work:

https://doi.org/10.1016/j.apenergy.2024.123860

(c) Where was the work published?
Applied Energy

(d) Who published the work?
Elsevier

(e¢) When was the work published?
2024

(f) List the manuscript’s authors in the order they appear on the
publication:

Xiaoyuan Cheng', Ruiqiu Yao', Andrey Postnikov, Yukun Hu, Liz Varga
" Authors have equal contributions

(g) Was the work peer reviewed?

Yes

(h) Have you retained the copyright

Yes

IX



(iii) Was an earlier form of the manuscript uploaded to a preprint
server (e.g. medRxiv)? If ‘Yes’, please give a link or doi
No

If “No’, please seek permission from the relevant publisher and check the box
next to the below statement:

M I acknowledge permission of the publisher named under 1d to include in this
thesis portions of the publication named as included in 1c

2. For a research manuscript prepared for publication but that has not yet been
published (if already published, please skip to section 3):

(a) What is the current title of the manuscript?

(b) Has the manuscript been uploaded to a preprint server e.g. medRxiv’?
If ‘Yes’, please give a link or doi:

(c) Where is the work intended to be published?

(d) List the manuscript’s authors in the intended authorship order:

(e) Stage of publication:

3. For multi-authored work, please give a statement of contribution covering all
authors (if single-author, please skip to section 4):

Xiaoyuan Cheng: Conceptualization, Methodology, Writing — Original Draft,
Software. Ruiqiu Yao: Conceptualization, Methodology, Writing — Original Draft,
Software. Andrey Postnikov: Resources, Investigation, Writing - Review & Editing.
Yukun Hu: Writing - Review & Editing, Project administration, Funding acquisition.
Liz Varga: Writing - Review & Editing, Project administration, Funding acquisition.

4. In which chapter(s) of your thesis can this material be found?
Chapter 5
5.e-Signatures confirming that the information above is accurate (this form should

be co-signed by the supervisor/ senior author unless this is not appropriate, e.g. if the
paper was a single-author work):

Candidate:
Date:
Supervisor/Senior Author signature (where appropriate):

Date:



UCL Research Paper Declaration Form:
referencing the doctoral candidate’s own
published work(s)

1. For a research manuscript that has already been published (if not yet published,
please skip to section 2):

(a) What is the title of the manuscript?

A multi-criteria analysis framework for hydrogen carrier evaluation in large-
scale intercontinental hydrogen exports

(b) Please include a link to or doi for the work:

https://doi.org/10.1016/i.enpol.2025.115040

(c) Where was the work published?
Energy Policy

(d) Who published the work?
Elsevier

(e¢) When was the work published?
2025

(f) List the manuscript’s authors in the order they appear on the
publication:

Ruigiu Yao, Yutao Li, Liz Varga, Yukun Hu®
(g) Was the work peer reviewed?

Yes

(h) Have you retained the copyright

Yes

(iv)  Was an earlier form of the manuscript uploaded to a preprint
server (e.g. medRxiv)? If ‘Yes’, please give a link or doi

XI



If “No’, please seek permission from the relevant publisher and check the box
next to the below statement:

M I acknowledge permission of the publisher named under 1d to include in this
thesis portions of the publication named as included in 1c

2. For a research manuscript prepared for publication but that has not yet been
published (if already published, please skip to section 3):

(a) What is the current title of the manuscript?

(b) Has the manuscript been uploaded to a preprint server e.g. medRxiv’?
If ‘Yes’, please give a link or doi:

(c) Where is the work intended to be published?

(d) List the manuscript’s authors in the intended authorship order:

(e) Stage of publication:

3. For multi-authored work, please give a statement of contribution covering all
authors (if single-author, please skip to section 4):

Ruiqiu Yao: Conceptualisation, Methodology, Writing — original draft. Yutao Li:
Conceptualisation, Methodology, Writing — original draft. Liz Varga: Project
administration, Supervision, Funding acquisition. Yukun Hu: Project administration,
Supervision, Writing — review & editing, Funding acquisition.

4. In which chapter(s) of your thesis can this material be found?
Chapter 6

5.e-Signatures confirming that the information above is accurate (this form should
be co-signed by the supervisor/ senior author unless this is not appropriate, e.g. if the
paper was a single-author work):

Candidate:
Date:
Supervisor/Senior Author signature (where appropriate):

Date:

XII



Acknowledgement

I am profoundly grateful to my principal supervisor, Dr. Yukun Hu, for the invaluable
opportunity to pursue my PhD at UCL. The platform, resources, and vibrant community
here exceeded anything I could have imagined before beginning this journey. Our work
together began during the uncertain times of COVID-19. Throughout those challenging
early days and the many challenges that followed, Dr. Hu’s guidance, patience, and
encouragement made a significant difference. I am especially appreciative of the
research opportunities he provided and the confidence he entrusted in me. My sincere
thanks also go to my second supervisor, Professor Liz Varga, whose mentorship has
been a model of professionalism and integrity. Her thoughtful feedback consistently

sharpened my thinking and improved my work.

I am thankful to my co-authors for their valuable contributions and collaboration, which
led to a series of publications and strengthened the research that underpins this thesis. I
also gratefully acknowledge the funders whose support made this work possible. |
would like to thank the examiners, Professor Hailong Li and Dr Melanie King, for their

critical comments that helped improve this thesis tremendously.

Finally, I owe my deepest thanks to my family for their unwavering love, patience, and
belief in me, which sustained me throughout the PhD. And to Lucy for your

unconditional love and support at every step of this journey.

Ruiqiu Yao

University College London
London UK

Dec 2025

XIII



Contents

ADSITACE ...ttt sttt I
IMPACE STALEIMENL ....eeiviieiiieeiee ettt ettt e et e e e e steeesaeesssaesnsaeesssaesnseeas I
ACKNOWIEAZEMENL ......eeeiiieiieiie ettt ettt e ens X1
CONLBILS ..ttt sttt ettt ettt st st et et esbe e beesaeesaeeeaneennees X1V
LSt OF FIGUTS ...ttt ettt ettt e et se e e XIX
LSt Of TaDIES.....eouieiiiieieeeee et XXI
LSt Of ACTOMYIMIS.....ceeiiiieeie ettt ettt ettt e e et e et e eaeeseesneeeneens XXII
LiSt Of SYMDOIS ..ecuvieiiiiiieie ettt ettt beebe e reesraeesseenseens XXV
L INErOAUCTION ...ttt sttt st st 1
1.1 Research background and energy system shifts...........ccccevvevierienciieciiecieceennen, 1
1.2 Emergent complexities and challenges............cccveveerveiiieiieneenieneecee e 2
1.3 Thesis SCOPE AN QIMIS........cccuveerieiieiieieeseeseesteereeseesseesseesseesssessseesseeseesseesseens 4
1.4 TRESIS SLIUCTUTE ...c..euvivitiienteiteit ettt ettt 4

2. LItETALUIE TEVIEW ...uiiiiiiitiitietertetetet ettt ettt ettt ettt ettt st et eaea 7
2.1 Chapter INOAUCION ......eeeieeieeieeieeie ettt ettt e ste et et seenneeeneas 7
2.2 Uncertainty compleXity in OPEratioNS..........ccceerververereerueesreesreeneeseeessessseesseesses 8
2.2.1 Challenges of deep UNCEItainty ......ccecverueerierieeie ettt 8
2.2.2 Challenges of novel Storage assetS........ccceereerierireiireieiesieeieeeee e eee e 10
2.2.3 The need for a hybrid framework ............cccccoeoiiiiiiiiiieeee e 11

2.3 Interactional complexity in decentralisation............ccccceveeeeeiierieseeneeneenen. 12
2.3.1 Multi-agent system for energy management............cccecceeeueereeereeeneennne 12
2.3.2 Market interaction with game theory in aggregation.............cccceeevereveennnnns 30

X1V



2.4 Evaluative complexity in strategic deciSIOnS...........ccvevveerieeriereerieeeieeeenne 33

2.4.1 Green hydrogen policy and evaluative compleXxity .........cceeveveeseeniennene 33
2.4.2 Limitations of existing evaluation frameworks ............cccceecerveerererrienennen. 34

2.5 Chapter SUIMIMATY ......ceecueeieeiiesieeeiieeieeteeteeteenteesetesseesstesneeenseeseeseenseesseesneennns 38

3. Research methodology .........cocviiiieiiiiieiieicceece ettt 39
3.1 INEOAUCTION ...ttt ettt 39
3.2 ReSCArCh (UESTION .....eeuveiiieiieeiieeeie et ettt e eere e ve e teestaesnaeesbeesseesseesaeees 39
33 Methodological framewWork............cccoevvieriierierieiiecie e 42
3.4 Data sources, assumptions, case study desSign .........ccceeeveeviereerieneeeieereeneenns 44
3.5 Chapter SUMIMATY ......cceeiieiieeieeieeieestestesteete et e st e eeesstesnaesseeseeseesseesneeenes 46

4. Addressing complexity in LAES micro-grids operation under severe market

UTICETEAITIEY . e euteettetteeiteeeie et e et et et estte st eeaeeeaeeeas e et e e seesseesneesnseenseenseanseeseanseesneesnseans 47
4.1 Chapter INtrOAUCTION ......ccvievieriieeiieeieeeteeteete et eteesteesteeseeeesaeesseeseesseesseesseensns 47
4.2 Uncertainty decision-making with IGDT-STA ..........cccooiiiiiiiiiieee 49

4.2.1 IGDT mathematical MOdelS........ccccoeriiriniiiiiniiiiineceecee 49
4.2.2 STA impPlemMeNntation .........cccecveeeieieecieeieereeseesee e reereereereeseeeseaeseneeens 50
4.2.3 IGDT-STA hybrid optimisation algorithm..............ccecceerieniininrnree 53
4.3 MAS-Based micro-grid coordination model .............ccocvriieniiniiiniiieee 55
4.3.1 Micro-grid enVITONMENT.........c.cecuieieeciieieeieeseesereereereeseeseesseeseeeseneseneenns 55
4.3.2 Agent task deSCTiPLiON......ccueeruierieeieeie ettt 56
4.4 CaSC STUAY ...uveevieiiieiie ettt ettt ettt et ettt e e e et e b e ebe e beereesreeeaeennes 61
4.4.1 Data Preparation........c..ccueecveerreereeseereieeereesseesseesseeseesseesseeseesseesseessessseensns 62
4.4.2 RisK-neutral TeSULLS .....c..ccoeviririiininiiiiicicc e 64
4.4.3 RisK-based TESULLS ........coecueiriririniirieniciceceeeeee e 66



4.5 Chapter SUIMIMATY .......eeoueeeeeiieriieeeieeieeeeeteeteesseesetesseesstesneeensesseeseenseesseesneennes 67

5. Addressing interactional complexity in decentralised prosumer aggregation market

...................................................................................................................................... 69
5.1 Chapter iNtrOAUCLION ......ccuveiieeeieeiieieeieeieeste e ete e reesreeseaeesaeesbeenseeseesseenees 69
5.2 Intelligent aggregation framework...........ccceecvveeiieiieiieiieeieeeeee e 71

5.2.1 Bi-level market equilibrium model............cocooeriiiiiiniiiiieeee, 72
5.2.2 Solving the bi-level model with a graph-based consensus algorithm......... 78
5.3 Intelligent aggregation application and diSCUSSION...........cceeeeveeereerreerieererenenenne, 87
5.3.1 EXPETIMENLt SELUP ...oouvieiieiieiieriieeiie ettt et et et eseeeseeeseteeneeeneeeseeseenneesneas 87
5.3.2 Results and diSCUSSION ......c..cceeuiririirinienieiiieicieeeeee et 89
5.3.3 Benchmark analysis ........cccuecierierieniieiieieeie e seee et ve e eve e sneas 92
5.4 Chapter SUIMIMATY ......ccceeieierieeieeeeeeeeseeesteseeeeeeseesseesseesseessseeseeseeseesseesseennes 95

6. Addressing evaluative complexity in hydrogen carrier selection with an integrated

MC DM framMEWOTK .....coeuiieiieiieiieieee ettt ettt et e et e e e enee e 97
0.1 INIrOAUCTION ...ttt ettt 97
6.2 SyStem deSCTIPLION ....eeuvieeieiieeie ettt e ettt ete et te e e e e eneeenes 98
6.3 MEthOdOLIOZY ....coeiiiieieeeee ettt st neens 100

6.3.1 Techno-econOMIC ANALYSIS ..c.veeviereieeiieeiieiiere et reeseeeeeeere e esreenreenns 101
6.3.2 Life cycle aSSESSIMENL.......c.ceiierieeiieiieiiesieesitesee ettt e snee e e 103
6.3.3 CarTier CffICIENCY ...icvieiieiieiieciie ettt 104
6.3.4 Multi-criteria decision-making framework............cccccceevvievieneenienceennnnns 105
6.4 CaSC SEUAY ..ottt ettt ettt et reeneeeneens 108
6.4.1 Techno-economic analysis data INPUL..........ccceeeevreereereereesieeie e eee e 108
6.4.2 LCA modelling framework ...........cccocveviiriieiiiiieieceeeecee e 113



6.5 ReSUlLS and diSCUSSION ... e eeeeeeeeenee 115

6.5.1 Techno-economic analysis TeSUILS........ccceerireirriiieiiesieiere e 115
6.5.2 Life cycle impact aSSESSMENL........cccccviereerieriieieereereerreesreeseeseeeeeneeseens 117
6.5.3 CarTier effICIENCY -..eeovieiieiieiierie ettt 122
6.5.4 MCDM TanKing.........c.cccuveeuieriieriiesieneeeeeeteereereesseesseesseesseesssesssesssesseenns 122
6.5.5 Sensitivity analysis on the MCDM results.........c.cccceeevieviienieneenieeieenenns 123
6.5.6 Criteria Weight analysSiS........c..ccverierieeienieeieeieeeesee st veeve e ene 125
6.6 Chapter SUMIMATY ......eccveeiuieiieiteeieeseesteesteessteesseeseesseesseesseesssessseesessseesseesseens 127
7. CONCIUSION ...ttt ettt sttt 130
7.1 THESIS SUMITIATY ...eeeuveetieiieieieeieeieeeeeieesteesetesneeeneeeseeseenseesneesnsesnseenseeseenseens 130
7.2 Socio-technical and ethical iMPlications ..........c.ccevereveeereecieeriesieseeeee e 131
7.3 Limitations and recommendations for future research ..........c..cccccoeeceeennnee. 133
7.3.1 Methodological and validation limits ...........cccoeeeeeiieiienieneeeeieeeeee 133
7.3.2 Technical simplification in system modelling ...........cccocceevverieninninnine 133
7.3.3 Recommendations for Future Research.........c..ccccooeeviiiiniinininicncnnnnn. 134
7.4 Concluding 1€mMarks ........c.eeoieiiiiieie e 135
APPENAIX ...ttt ettt e et e e te et e st e stte et e e b e e be e be e taesraeeraeerseenreenseentaeteanaas 136
A1 Detailed techno-economic data and assumptions ............ccceceeeeveeereerreenreenneenne 136
A2 Life CYCle INVENLOTIES .....ecuveeeieiieeiieeiieeteeie ettt ettt e aeeteeaeeseeseesneens 138
A2.1 Green hydrogen production ............cccecvevveerieneeeienie e 138
A2.2 Liquid hydrogen pathway .........ccccecveeviieriieniienieeieeie e seee e 141
A2.3 Green ammonia PAtWAY ........ceecveriiiiiiieieerieereeseeeee e ereereeseeeseeesene e 142
A2.4 Methanol pathway .........ccveeeeeieiiiiieeieeeeeeeee e 144

XVII



A2.5 DBT and TOL pathway .......cccceeoiieiiieiieiieeeeie et

A3 RECIPE IMPACES .....eeneieiieeeiieieeie ettt ettt ettt ee st e eeee et eneeneens

A4 Sensitivity analysis TESUILS .......ccviiieiieiiieiieieeie et sre e seee s

Bibliograph

XVIII



List of Figures

Figure 1-1 ThesSiS StIUCLUIE .....uievieiieiieeieeieeie et et e st e eeteseveenveesseebeeaeessaessnesssesnseensens 6
Figure 3-1 Schematic of the methodological framework. ...........cccoooveviiniiininnnenn. 42
Figure 4-1 Schematic diagram of LAES system operation. ..........cccccceeeeveeneeneennene 48
Figure 4-2 The flow chart of IGDT-STA .......cciiiiiee e 54
Figure 4-3 Schematic diagram of the micro-grid with multi-agent system. ................ 55
Figure 4-4 Forecast market electricity price for IGDT-STA case study ...........cc.c....... 62
Figure 4-5 Power load in IGDT-STA case StudY .......cccceerueerieerienieeieeieeeeee e 63
Figure 4-6 The output power of PV and WT in IGDT-STA case study ..........cccuennene 64

Figure 4-7 Hourly cost of (a) IGDT-STA ; (b) IGDT-GA; (c) Stochastic method; (d)
Monte Carlo Method. ........cccooiiiiiiiiiiiiiiiice e 65
Figure 4-8 Micro-grid operation strategy based on (a) IGDT-STA; (b) IGDT-GA; (c)
Stochastic method; (d) Monte Carlo Method...........cocveeeiiiiiiiiiiiciiecce e, 66
Figure 4-9 Opportunity curve and robustness curve with IGDT-STA and IGDT-GA (a)
Opportunity cost curve; (b) Robustness cost CUIVe. ........ccoeceerierieniinieeieeieeieeeene 67
Figure 5-1 Power system transitions. (a) schematic drawing of the unidirectional power

flow with consumers under the current power system structure; (b) schematic drawing

of bidirectional power flow with prosumers for future power system structure.......... 70
Figure 5-2 Intelligent aggregation architecture............ccoocueveeeeiiesiienieniese e 72
Figure 5-3 Schematic diagram of the graph-based consensus algorithm. ................... 84
Figure 5-4 Iteration details of the graph-based consensus algorithm. ......................... 84
Figure 5-5 LV electric distribution network.............ccoeeeeeiiireiiiiieiieeeeeeee e 88
Figure 5-6 Visualisation of information flow in the network graph. ............ccccec....... 90

Figure 5-7 Trading volume visualisation (a) the trading volumes at 2 am; (b) the trading
volumes at 8 am; (c) the trading volumes at 2 pm; (d) the trading volumes at 8 pm. .91
Figure 5-8 Aggregator offer price visualisation (a) the offer price at 2 am; (b) the offer
price at 8 am; (c) the offer price at 2 pm; (d) the offer price at 8 pm. ........cceeeueennenne 92

Figure 5-9 Convergence rate analysis of proposed algorithm and benchmarks. ......... 94
XIX



Figure 6-1 Schematic drawing of the international hydrogen supply chain. ............... 98
Figure 6-2 Proposed evaluation framework for green hydrogen carriers. ................. 101
Figure 6-3 Radar chart illustrating the AHP weights of the five criteria. .................. 114
Figure 6-4 Breakdown of LCOH for the five GHC pathways: (a) LH2, (b) NH3, (c)
MeOH, (d) DBT, and (e) TOL. The percentages represent the contribution of each stage
t0 the TOtAl COSES. Louviuiiiiiiiiiiiii e 116
Figure 6-5 GWP100 results from green hydrogen supply from South Africa to the UK
with liquid hydrogen, ammonia, methanol, DBT, and TOL. .........c.ccccceoevirieniennnnne. 118

Figure 6-6 ReCiPe endpoint on three areas of protection by the five GHCs............. 120

XX



List of Tables

Table 2-1 Summary of agent-based applications at district scale...........cccceeerereennene. 23
Table 2-2 Summary of agent-based application at regional scale.............c.ccvvereennenne. 29
Table 2-3 Literature review on the international hydrogen carriers............c.cccecueenenne. 36
Table 4-1 System specifications of the micro-gird system ..........ccecceeveerieriiercieeennne 62
Table 4-2 Expected operation cost comparison under risk-neutral strategy ................ 64
Table 5-1 Day-ahead price in the intelligent aggregation case study ...........c..ccvenue.ne. 88
Table 5-2 Parameter setup in the intelligent aggregation case study ..........c.cccecueenenne. 88
Table 5-3 Prosumers information in the intelligent aggregation case study ................ 88

Table 5-4 Benchmark comparison of proposed algorithm with other ADMM algorithms

...................................................................................................................................... 93
Table 6-1 South Africa-UK case study economic assumptions............ccceceeeveeeeennen. 109
Table 6-2 PEM production assumptions in South Africa..........ccecceeeievierieiceeieenen. 110
Table 6-3 GHC conversion and reconversion assumptions ...........c.ccceeceeeeeeeseeeneeennen. 111

Table 6-4 Storage and shipping assumptions for South Africa-UK case study ......... 112

Table 6-5 AHP Pairwise comparison matrix for the five considered criteria ............ 113
Table 6-6 IRR of the five GHCS ......cccoooiiiiiiiniiiiinceceece e 117
Table 6-7 Top process contributions to key midpoint impacts ..........c.eceeeeeceeneeenen. 120
Table 6-8 Carrier efficiency results of the five GHCs .......ccccoooiiiiiiiiiiieee, 122
Table 6-9 AHP-TOPSIS and AHP-VIKOR results of the five GHCs........................ 123
Table 6-10 Sensitivity analysis cases for the five GHC pathways............ccceeeeeneenee. 124
Table 6-11 Sensitivity analysis results of AHP-TOPSIS and AHP-VIKOR............... 124
Table 6-12 Pairwise comparison matrix for alternative scenarios .............ccceceeeueenee. 126
Table 6-13 MCDM results of the weight analysis ..........ccceeevevienienienieeieceereenenn 126
Table 6-14 GHC ranking across different weighting scenarios ............cccecceeeeeneeenen. 127
Table A1 Life cycle inventory for green hydrogen production..........c..cceeeevrevreernnen. 139
Table A2 Life cycle inventory of gasket construction ..........coccceveeeeciveciieseeceeneennen. 139
Table A3 Life cycle inventory of PEM cell stack construction .............cceceeverueruennee. 139

XXI



Table A4 Life cycle inventory of hydrogen distribution pipeline construction......... 140

Table AS Hydrogen liquefaction iNVENTOTIES ........ccvereeriereerienieeieniesieeienieeeeeneeseeenees 141
Table A6 Life cycle inventory of liquefaction plant construction ............ccccceeveruennee. 142
Table A7 Life cycle inventory of the nitrogen production.............cceceeveveerienernenne. 143
Table A8 Life cycle inventory of the ammonia synthesis catalyst..........c.cccccevernnenee. 143
Table A9 Life cycle inventory for green ammonia production............cccceceecvereereenne. 143
Table A10 Life cycle inventory for ammonia cracking ..........c.cecevevvevienenienennenne. 144
Table A1l Life cycle inventories for CO2 production...........ccceeceevveruereeneneereeniennnns 145
Table A12 Life cycle inventories for green methanol synthesis...........cccceeeveenennen. 145
Table A13 Life cycle inventories for methanol dehydrogenation...............cccueeuneeee.. 146
Table A14 Life cycle inventories for DBT production ..........c.ccoecveeiieiiieieenceneennen. 147
Table A15 Life cycle inventory of DBT hydrogenation ...........cceceveeieneneenieneenee. 147
Table A16 Life cycle inventory of DBT dehydrogenation ...........cccceeevveeveecieeneennen. 148
Table A17 Life cycle inventory of Toluene hydrogenation ...........ccccceevevverveenrennen. 148
Table A18 Life cycle inventory of Toluene dehydrogenation............cccceeeverieeeennnen. 148
Table A19 ReCiPe midpoint impact characterisation of the five GHCs.................... 149
Table A20 ReCiPe Endpoint impact characterisation of the five GHCs. .................. 150
Table A21 The criteria result of the sensitivity analysis .........cccceeceeevveeieecieecreenreennen. 151
Table A22 AHP-TOPSIS and AHP-VIKOR score of sensitivity analysis................. 152

XXII



List of Acronyms

ADMM
AHP
ASU
BLTN
CAES
CAPEX
CCHP
DBT
DER
DR
DSM
EV
FC
GA
GHC
GWP
HP
HVAC
IGDT
IoT
LAES
LCA
LCOH
LH>
LOHC
MAS
MCDM
MCH
MeOH
MES
MILP
MLMFG
NH;
NOCT

Alternating direction method of multipliers
Analytical hierarchy process

Air separation unit

Bidirectional low-temperature networks
Compressed air energy storage

Capital Expenditure

Combined cooling, heating, and power
Dibenzyltoluene

Distributed energy resources

Demand response

Demand side management

Electric vehicle

Fuel cells

Genetic algorithm

Green hydrogen carrier

Global warming potential

Heat Pump

Heating, ventilation, and air conditioning
Information gap decision theory
Internet of Things

Liquid air energy storage

Life cycle assessment
Levelised cost of hydrogen

Liquid hydrogen

Liquid organic hydrogen carriers
Multi-agent systems

Multi-criteria decision-making
Methylcyclohexane

Methanol

Multi-energy systems

Mixed integer linear programming
Multi-leader-multi-follower game
Ammonia

Nominal operating cell temperature

XXIII



NPV
OPEX
PEM
PSO
PV
RL
SOC
STA
TCL
TOL
V2G
VPP

Net Present Value

Operation Expense

Polymer electrolyte membrane
Particle swarm optimisation
Photovoltaics

Reinforcement learning

State of charge

State Transition Algorithm
Thermostatically controlled loads
Toluene

Vehicle-to-grid

Virtual power plant

XXIV



List of Symbols

Chapter 2
L() Lagrangian function [-]
g() Lagrangian dual function [-]
p* optimal value for primal problem [-]
d global optimizer [-]
p®, p® parents of genetic algorithm [-]
q®, ¢@ offspring of genetic algorithm [-]
Vi velocity of particle i and time ¢ [-]
X position of particle i and time ¢t [-]
rk primal residual [-]
sk dual residual [-]
Chapter 3
A actual value of the uncertain parameter [-]
A predicted value of the uncertainty parameter [-]
a bound for system uncertainty levels [-]
Caverse target system cost that for risk-averse decision-makers [$]
Ctaking target system cost that for risk-taking decision-makers [$]
PLr WT output power at time t [kW]
Gr solar radiation incident on the PV [Wm™]
T, PV cell temperature [°C]
PYr output power of micro-turbine at time t [KW]
Pl output power of wind power generation at time t [kW]
P, output power of photovoltaic power generation at time ¢t [kW]
Plags charge and discharge power of LAES at time ¢ [kW]
Pgird tie line transition power at time t [kW]
W rotation operator [-]
B translation operator [-]
y expansion operator [-]
1) axesion operator [-]

XXV



cut
Woyt

wrate

rated
P wT

rated
P PV

fov

GT,STC

Xp

TC,STC
Ta,NOCT
GT,NOCT

TNc

Nk apitza
Neryo—pump

Nturbines

r
&(P' Caverse)
B(P' Ctaking)

Xi’]'
DA,bid
Ai
pro,ask
Al

c

search enforcement constant [-]

cut-in wind speed [ms™']

cut-out wind speed [ms™]

rated speed WT [kW]

Rated power of WT [kW]

rated power of PV [kW]

derating factor of PV [kW]

incident radiation at the standard test conditions [Wm™]

temperature coefficient [-]

PV cell temperature at the standard test conditions [°C]
ambient temperature under the NOCT [°C]

solar radiation under the NOCT [Wm™]

electrical conversion efficiency of PV [%]

Kapitza cycle efficiency [%]

cryogenic pump efficiency [%]

turbine efficiency [%]

system operation cost function [$]

robustness function [%]

opportunity function [%]

Chapter 4

constant in battery degradation model [-]
gas constant [J/(mol*K)]
environment temperature [K]

aggregator;’s bidding price to prosumer; [£/kWh]

activation energy coefficient [-]
fixed-cost coefficient [£/kWh]
power law factor [-]

volume of electricity that prosumer; decides to sell to
aggregator; [kWh]

aggregator;’s bidding price at the day-ahead market
[£/kWh]

aggregator;’s bidding price to prosumer; [£/kWh]

number of battery cycles from the initial state of the battery

XXVI



M) Uz
Fi(x), Gi(2)

LO (x' Zy Uyxr Uz, /‘l)

Ve

WACcnorm
WA Ccreal

Lagrangian multipliers for inequality constraints [-]
indicator functions [-]

Lagrangian function [-]

Lyapunov function of the optimisation problem [-]
N-dimensional identity vector

closed convex feasible sets of trading electricity matrix
closed convex feasible sets of asking price matrix
convex feasibility sets

set of nodes on a graph

set of the edges on a graph
Chapter 5

weighted average cost of capital in normal terms [USD/kg]
weighted average cost of capital in real terms [USD/kg]
scaling exponent [-]

carrier efficiency [%]

normalised value in TOPSIS [-]

ideal and worst solution in TOPSIS [-]

distances in TOPSIS [-]

relative closeness in TOPSIS [-]

utility value in VIKOR [-]

regret value in VIKOR [-]

final VIKOR value [-]

XXVII



Chapter 1

1. Introduction

1.1 Research background and energy system shifts

The transition towards sustainable, resilient, and low-carbon energy systems has
become one of the most pressing global trends of the 21st century. Climate change
mitigation targets and increasing renewable energy integration require transformative
changes in how energy systems are planned, operated, and optimised (Cuéek et al.,
2021). Within this context, multi-energy systems (MES) have emerged as critical
infrastructures capable of harmoniously integrating diverse energy vectors, including
electricity, heat, liquid air, and hydrogen, thus enhancing energy system efficiency,
flexibility, and resilience (Mancarella, 2014; Qi et al., 2022). The transition to a future,
sustainable MES is driven by three shifts: in the source of operational complexity, in
the architecture of system control, and in the criteria for strategic evaluation. These
shifts collectively create the new class of complexities that are critical in the MES

transition.

The first shift is in the source of operational uncertainty, driven by the increasing
adoption of intermittent renewable energy sources. The computational frameworks of
traditional energy systems were built on dispatchable thermal power plants, which can
be precisely controlled to meet demand. However, the integration of intermittent
renewable energy sources introduces volatility in the energy generation, which is driven
by the weather (Bhandari, 2025). Therefore, deep uncertainty poses a challenge for
traditional scheduling models, as historical data-derived probabilistic distributions

cannot capture the actual state of energy systems.



The second shift is from centralised control to decentralised coordination. The
conventional energy system is controlled by a centralised architecture with utility
companies delivering energy to passive consumers. This architecture was changed by
the penetration of distributed energy resources, such as rooftop photovoltaic panels
(Ren et al., 2022). This penetration transformed consumers into prosumers. In addition,
decentralised decision-making technologies have matured, allowing autonomous local
decisions and dynamic interaction (Pan & McElhannon, 2018). These prosumers now
have the computational power to interact dynamically with each other and with a new
class of market mediators: aggregators (Burger et al., 2017). This transformation from
a centralised architecture to a network of interacting agents requires a different

computational framework than the traditional centralised framework.

Finally, the third shift is in the criteria for strategic evaluation. In traditional methods,
long-term decisions were primarily driven by frameworks based on single metrics,
usually the levelised cost of energy. The global shifts to address climate change indicate
that the traditional economic-centric framework no longer applies. An example of this
shift is the strategic decision to establish large-scale intercontinental green hydrogen
supply chains. Countries with rich renewable energy sources and established port
infrastructure have set an ambitious goal for green hydrogen export. (Scholvin et al.,
2025). In addition, nations also seek to import green hydrogen to meet net-zero goals;
however, choosing the appropriate green hydrogen carrier (GHC) remains a critical
challenge (IRENA, 2022). The decision of the GHC pathway extends beyond the
traditional single metric decision frameworks. Policymakers and investors face the
trade-off between GHC performance, economic performance, environmental footprint,

and carrier efficiency.

1.2 Emergent complexities and challenges

The shifts described in the previous section create a nested hierarchy of decision-

making complexities across multiple scales of energy systems. The first complexity is
2



in the operational scale. The challenges of making decisions when future states of key
decision variables, particularly market prices, are subject to deep uncertainty, leading
to uncertainty complexity. This complexity creates a practical problem for micro-grid
operators with new energy storage assets. In a volatile market with intermittent energy
sources, the electricity prices could be unpredictable. The operator faces challenges in
scheduling the micro-grid operation with appropriate risk levels. Thus, there is a lack

of a computational framework to manage the deep uncertainty.

Moving beyond the operational challenges, the shift towards decentralisation in energy
generation and decision-making creates the interactional complexity at the transactional
scale. This complexity brings challenges to managing a system of autonomous and
competing agents with private information and objectives. Especially when multiple
aggregators compete by setting attractive prices to incentivise prosumers, this creates a
game-theoretic dynamic where the competing agents must achieve market equilibrium
while preserving data privacy. This practical challenge for incorporating new market
participants (aggregators and prosumers) requires a new computational framework that

can coordinate with dynamic market interactions while preserving data privacy.

At the strategic scale, the shift in evaluation criteria creates evaluative complexity. This
is the challenge of choosing long-term technology pathways with distinct performance,
specifically the strategic decision of selecting a GHC pathway for international
hydrogen trade. Policymakers and investors are no longer choosing GHC based on a
single criterion, such as economic performance. Instead, their decisions become multi-
dimensional, where the trade-offs among different criteria performance should be
considered. This requires a computational framework that can handle the multi-criteria

evaluation problem.



1.3 Thesis scope and aims

The emergent complexities arising from uncertainty, interaction, and evaluation make
the traditional deterministic, centralised, and single-objective computational
framework inadequate for managing them. Therefore, this thesis aims to address the
framework gap by developing and validating new computational frameworks. Each of
the new frameworks is developed to manage a specific layer of complexity, providing
decision support for the multi-scale MES transition. Specifically, the new

computational frameworks are:

e At the operational scale, this thesis addresses uncertainty complexity by
developing a framework that moves beyond probabilistic forecasting to enable
risk-aware scheduling for novel energy assets under deep market uncertainty.

e At the transactional scale, this thesis then addresses interactional complexity by
formulating a decentralised and game-theoretic framework capable of
coordinating a market of multiple competing aggregators to achieve a stable
equilibrium, while preserving the prosumers’ privacy.

e At the strategic scale, the thesis addresses evaluative complexity by
constructing an integrated multi-criteria framework that provides a transparent
process for resolving the trade-offs inherent in long-term technology pathway

decisions.

By developing methodological innovations for each of these layers, this thesis
contributes a coherent set of computational tools designed to navigate the complexities

of the modern energy transition.

1.4 Thesis structure

The structure of this thesis is designed to address the overarching research question by
navigating the nested hierarchy of complexities outlined in this chapter. As illustrated

in Figure 1-1, the thesis is organised into seven chapters. Chapter 1 introduces the real-
4



world problem context and identifies the three shifts in the energy transition that give
rise to emergent complexities. Chapter 2 reviews the existing academic literature
through the lens of the complexity taxonomy. It examines current approaches to
managing uncertainty, interactional, and evaluative complexities, identifying the

specific research gaps that this thesis aims to address.

Chapter 3 formalises the research design. It presents the overarching research question,
the taxonomy of decision-making complexity, and the three subsidiary research

objectives that guide the three studies of this thesis.

Chapter 4 addresses the first layer of uncertainty complexity. It develops a novel hybrid
computational framework combining Information Gap Decision Theory (IGDT) and
the State Transition Algorithm (STA). This framework is then applied to the practical
challenge of scheduling an LAES-equipped micro-grid, demonstrating its ability to

manage deep market uncertainty and accommodate different risk preferences.

Chapter 5 addresses interactional complexity in the transactional scale. It formulates a
Multi-Leader Multi-Follower Game (MLMFG) to model the dynamic market
interaction between aggregators and prosumers. A decentralised graph-based consensus

algorithm is developed to solve this game.

Chapter 6 addresses evaluative complexity at the strategic scale. It contributes an
integrated Multi-Criteria Decision-Making (MCDM) framework that synthesises
discounted techno-economic analysis, comprehensive life-cycle assessment, and carrier
efficiency metrics. The proposed framework's utility is demonstrated by applying it to
the strategic evaluation of green hydrogen carriers for the previously unexamined South

Africa-UK supply chain.

Finally, Chapter 7 concludes the thesis. It provides a synthesis of the findings of the

thesis. In addition, this chapter reflects on the socio-technical and ethical implications



of the proposed frameworks,

recommendations for future work.
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Chapter 2

2. Literature review!

2.1 Chapter introduction

Through the lens of nested complexity, this review systematically examines state-of-
the-art computational frameworks for managing uncertainty, interactional, and
evaluative complexities in energy systems. By assessing the limitations of existing
methods in each of these three domains, this chapter identifies the specific research
gaps that motivate the overarching research question and subsidiary objectives in
Chapter 3. This process provides the academic literature background for the new

computational frameworks developed in this thesis.

! Part of this chapter is adapted from

Yao, R., Hu, Y., & Varga, L. (2023). Applications of Agent-Based Methods in Multi-Energy
Systems—A Systematic Literature Review. Energies, 16(5), 2456.
https://doi.org/10.3390/en16052456

Yao, R., Xie, H., Wang, C., Xu, X., Du, D., Varga, L., & Hu, Y. (2024). A multi-agent-based
micro-grid day-ahead optimal operation framework with liquid air energy storage by hybrid
IGDT-STA. Journal of Energy Storage, 86, 111318. https://doi.org/10.1016/j.est.2024.111318

Cheng, X., Yao, R.T, Postnikov, A., Hu, Y., & Varga, L. (2024). Decentralized intelligent multi-
party competitive aggregation framework for electricity prosumers. Applied Energy, 373,
123860. https://doi.org/10.1016/j.apenergy.2024.123860

fAuthors have equal contributions

Yao, R,, Li, Y., Varga, L., & Hu, Y. (2025). A multi-criteria framework for evaluating hydrogen
carriers for large-scale intercontinental exports. FEnergy Policy, 210, 115040,
https://doi.org/10.1016/j.enpol.2025.115040




2.2 Uncertainty complexity in operations

At the operational scale of multi-energy systems, such as microgrids, a key decision-
making challenge is the shift from deterministic scheduling to managing uncertainty
and complexity. This form of complexity is caused by the intermittency of renewable
generation and the increasing volatility of electricity markets. This section critically

reviews existing computational frameworks for addressing this complexity.

2.2.1 Challenges of deep uncertainty

The operation and planning of a micro-grid are affected by uncertainties in wind and
photovoltaic power generation, system load, and market electricity prices. To address
uncertainties, the existing literature on multi-energy scheduling mainly uses two
branches of programming methods: Stochastic Programming (SP) and Robust

Optimisation (RO).

SP is a probabilistic method for optimisation under uncertainty, which models
uncertainty through probabilistic distribution functions. SP formulates the decision-
making process as a two-stage process, where the first stage focuses on making
decisions before the uncertainty is realised, and the second stage generates actions after
the uncertainty is realised (R. Zhang et al., 2021). SP usually include using Monte Carlo
simulation to generate scenario sets representing future states, aiming to optimise

system costs across the weighted scenarios.

A study adopted SP with 100 Monte Carlo simulations to optimise a multi-energy
micro-grid with hydrogen vehicle fuelling (Mei et al., 2021). The results show that the
stochastic approach with forecast updating can save daily operational costs by 18%
compared with static baselines. Another study adopted two-stage stochastic
programming to size a hybrid energy storage system, including battery and thermal
storage (Shen et al., 2021). By generating 200 scenarios to represent wind, load, and
temperature uncertainty, the results show that leveraging thermal inertia within a

8



stochastic approach can reduce total investment cost by 6.7%. Furthermore, a study
integrates SP with global sensitivity analysis for the planning of distributed energy
sources in high-rise buildings (J. Zhang et al., 2023). The comparative analysis results
show that static models consistently underestimate the annual costs, with CO>

emissions varying by 10% across scenarios.

Despite the quantitative benefits, the three studies collectively mentioned the
limitations of adopting SP. First, the accuracy of SP solutions relies on the accuracy of
the underlying known and stationary probability distribution of random variables,
including solar irradiance (Mei et al., 2021), wind profile (Shen et al., 2021), or feed-
in tariff (J. Zhang et al., 2023), where the distributions are usually Gaussian or Normal
distributions. The reliance on assumed distributions highlights the limitations of SP in
the context of deep uncertainty, where historical data may not accurately predict market
volatility. Hence, some researchers use RO as an optimisation method in multi-energy

systems.

Instead of assuming specific distribution functions, RO addresses uncertainty by
modelling with uncertainty sets (He et al., 2017). Then the RO is used to optimise the
multi-energy system under the worst-case realisation of uncertain variables (Martinez-
Mares & Fuerte-Esquivel, 2013). However, the results of RO could be overly
conservative, sacrificing economic opportunities in multi-energy system scheduling.
The traditional RO framework lacks the ability to generate risk-seeking strategies that
align with decision-makers' risk profiles. The Information Gap Decision Theory (IGDT)
is a viable computational framework for handling deep uncertainty. Specifically, IGDT
does not require probabilistic distributions of key decision variables. In addition to
maximising the system robustness for risk-averse decision-makers, it can also pursue
opportunities for risk-seeking decision-makers to exploit favourable deviations (Nasr

et al., 2020).



Some researchers have recently used the IGDT method to model the micro-grid system.
The IGDT method can help decision-makers choose the most economical and feasible
solutions for the micro-grid system under uncertainty. A robust framework is proposed
using the IGDT method to realise the effective operation of island micro-grids,
considering the uncertainty of photovoltaic power generation and demand (Nasr et al.,
2019). In addition, a short-term power generation dispatch method for grid-connected
micro-grids is proposed to obtain the optimal bidding strategy, considering the demand
response program based on the IGDT method under uncertain upstream grid prices

(Mehdizadeh et al., 2018).

2.2.2 Challenges of novel storage assets

In addition to the uncertainty complexity from prices and renewable energy, the
emerging energy storage assets also introduce complexity from physical operation.
Liquid air energy storage (LAES) is an emerging energy storage technology that
involves complex thermodynamic processes, including compression, liquefaction, and
expansion. The complex thermodynamic process introduces additional complexities
into the multi-energy system scheduling. Current research on LAES mainly focuses on
thermodynamic and economic analysis (Borri et al., 2021; Cui et al., 2021; Su et al.,
2023; Y. Zhou et al., 2023). When LAES operation scheduling is considered, studies
use a simplified linear model for operation optimisation (B. Lin et al., 2019). To address
the combined complexity from uncertainty and physical operation, researchers
integrated the IGDT with heuristic algorithms, such as genetic algorithm (GA) and

particle swarm optimisation (PSO) (Kennedy & Eberhart, 1995; Tezer et al., 2017).

A study integrates IGDT with modified PSO to construct robust step-wise offer curves
for a price-taker generation station in a day-ahead market (Nojavan et al., 2015). Kim
and Kim (2021) present an energy management framework for grid-connected micro-
grids. The framework constructs staircase bidding strategies for micro-grid operators
with incentive demand programmes, which are optimised by a modified PSO algorithm

10



(H. J. Kim & Kim, 2021). These traditional intelligent optimisation algorithms, such as
GA and PSO, are mainly inspired by imitating social phenomena or natural laws. Unlike
conventional intelligent optimisation algorithms, the state transition algorithm (STA) is
an intelligent optimisation algorithm based on structural learning and shows better
performance than conventional algorithms (X. Zhou et al., 2012). The core concept of
STA is treating a solution to an optimisation problem as a state. The generation and
update process of the solution is treated as a state transition process. The algorithm's
solution process is based on the state-space expression in modern control theory, and

four state transformation operators are constructed during optimisation.

2.2.3 The need for a hybrid framework

The literature review reveals a gap in the computational frameworks used for
uncertainty handling and for complex asset optimisation. As detailed in Section 2.2.1,
IGDT is a viable computational framework for handling deep market uncertainty.
However, existing applications of IGDT in energy systems predominantly rely on
convex optimisation techniques or heuristic algorithms such as PSO (Majidi et al., 2019;

Nojavan et al., 2015). Hence, the Research Gap 1 is identified.

Research Gap 1: There is currently no optimisation framework that couples the
risk-averse/risk-seeking logic of IGDT with the structural learning capabilities
of STA. Such a hybrid computational framework is necessary to simultaneously
address the uncertainty complexity of volatile markets and the physical

complexity of assets like LAES.

This thesis addresses this specific gap in Chapter 4 by developing a novel multi-agent

IGDT-STA framework that can handle the different risk preferences of decision-makers.
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2.3 Interactional complexity in decentralisation

This section critically reviews the computational architectures and market mechanisms
proposed to manage the transition of decentralisation. This section begins by examining
the role of Multi-Agent Systems (MAS) as the enabling infrastructure for local
autonomy in Section 2.3.1. Then, Section 2.3.2 critiques the limitations of cooperative
coordination models. Section 2.3.3 analyses the emerging need for competitive, game-
theoretic frameworks to capture the strategic interactions between aggregators and

prosumers.

2.3.1 Multi-agent system for energy management

To address the interactional complexity of the energy system transition, the first
requirement is computational architectures that enable energy assets to make
autonomous decisions. Multi-agent systems (MAS) have emerged as a computational
framework to provide bottom-up autonomy. Section 2.3.1 reviews the application of

MAS architecture across scales in the MES.

2.3.1.1 Enabling local autonomy

The principal objective of the agent is to act as a digital representation of physical assets,
abstracting the operational information to make local decisions and communicate with
other agents. Studies reviewed in this section demonstrated how diverse local energy
assets could be represented as distinct agents to collectively manage the local multi-

energy system at the building scale.

The earliest published research on local energy system management was a framework
for the cognitive construction of agents in building energy management systems (Conte
et al., 2009). Zhao et al. (2013) designed a MAS control strategy with three distinct
agents: an electricity agent, a heating agent, and a cooling agent responsible for
optimising the three end-demands, respectively. The decision-making of the heating

agent and the cooling agent is based on energy cost minimisation with the responding

12



energy carrier. The decision-making of electricity agents includes two objectives:
minimising the peak load and communicating with grids (electricity grid and natural
gas grid) for price updating. The CPLEX solver achieves the agents’ optimisations
(Zhao et al., 2013). The control strategy demonstrates that the decomposition of the
central objective is important for scalability. A MAS-based building energy
management system was adopted to enhance distribution-grid resilience by leveraging

the multi-energy flexibility of smart home appliances (Ahrens et al., 2021).

Cai etal. (2016) proposed a general multi-agent control approach for the HVAC system.
This approach consists of an agent definition framework and a control optimisation
procedure. The agents are required to define a collection of objective functions and
constraints based on the framework guidelines (Cai et al., 2016). The framework then
formulates the optimisation problem based on the consensus algorithms, including the
sub-gradient method and ADMM. Cai et al. (2016) also pointed out a potential issue in
implementing the consensus-based algorithm, in which the algorithm could not reach a

consensus point when the decision time had been reached.

In addition, the integration of MAS with Internet of Things (IoT) technologies
established a connection between the physical and cyber layers. Gonzalez-Briones et al.
(2018) proposed a multi-agent building temperature management system to increase
energy usage efficiency. On the physical side, the authors deployed temperature-
monitoring and occupancy-sensing sensors within wireless sensor networks to gather
data for system optimisation. On the logic side, the multi-agent system processes
collected data and returns an optimised HVAC system’s control strategy (Gonzalez-
Briones et al., 2018). The case study demonstrated that this control strategy could
achieve an average energy savings of 41%. W. Li et al. (2021) developed a multi-agent
control scheme for the HVAC system on an IoT-based wireless sensor network. This
scheme balances the performance and power consumption of battery-powered sensors

through multi-objective optimisation using ADMM. The power consumption of the
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sensors is reduced by using the event-driven control approach rather than the time-

driven optimisation approach (W. Li et al., 2021).

Demand response (DR) or demand-side management (DSM) is a popular research field
in energy system management at the local scale. DR or DSM is a management strategy
to manage the demand load based on the availability of the electricity supply. The
selected articles show that an MAS is a valuable approach to implementing the DR or
DSM. Devia et al. (2021) adopted distributed co-evolutionary optimisation algorithms
with agent-based architectures to reduce consumption profiles. The control strategy is
divided into two phases. The first phase is to extract and store energy-use information
for every room, along with temperature variance. The second phase is to control every
heating device in the house with distributed optimisation. Other than cost reduction, the
results also show that the inclusion of thermal storage units could increase the overall
system’s efficiency (Devia et al., 2021). A MAS control architecture DSM is proposed
for thermostatically controlled loads (TCLs), enabling anonymous communication
among TCL agents via a network while preserving TCL internal temperature privacy
(Franceschelli et al., 2021). The MAS optimisation was based on a dynamic consensus

algorithm.

The literature reviewed in this section confirms that MAS provides a foundational
architecture for establishing local autonomy and preserving privacy at the local building
scale. The coordination of these agents introduces an emergent complexity. If local
agents focus solely on individual objectives, aggregate behaviour may affect network-
level performance. Therefore, it is essential to review the literature that focuses on the
coordination of agents in a connected network. The following section examines how

MAS architectures are scaled to manage the system performance at the district level.

2.3.1.2 Enabling district-scale management

Scaling up from the local autonomy at the building level, the next level of interactional

complexity occurs when coordinating agents within a shared physical system, such as
14



a multi-energy district system. The literature addresses the coordination challenge
through three research themes: optimal design of the multi-energy district energy
system, fully decentralised operational control, multi-energy micro-grid management,

and management with district heating system & heating clusters.

e District energy system design

Beyond the operation of a single building, a key challenge is the collective planning
and designing of interconnected assets. Kyriakarakos et al. (2013) developed an energy
management system for optimal component sizing of poly-generation micro-grids that
can meet the needs of consumers in remote areas for potable water, hydrogen, space
heating, space cooling, and electricity. A multi-agent-based DSM is embedded in the
management system for load shedding when generation capacities cannot meet demand.
The MAS is designed in a hierarchical manner. The components in a building, such as
lighting and refrigeration, are controlled by the intelligent agents, which are supervised
by an upper-level building control agent (Kyriakarakos et al., 2013). The component
control agents are responsible for disconnecting the virtual power lines when load
shedding is required. Karavas et al. (2015) further developed the agent-based poly-
generation micro-grid management system from a hierarchical architecture to a
decentralised architecture, which does not require a central agent for optimisation. The
component agents communicate with each other to update the system parameters, such
as surplus power, consumed power, or remaining capacity (battery agent). The energy
management system aims to minimise net present cost (optimal design) and optimise
fuzzy cognitive map weights (optimal control). The system optimisation results
compared with a centralised management system, showing that the decentralised
approach presented a 2% lower net present cost than the centralised approach. Karavas
et al. (2017) investigated the multi-agent decentralised management of the poly-
generation micro-grid with game theory. The previous decentralised management

system is a cooperative case where agents work cooperatively to minimise the global
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cost function (Karavas et al., 2017). However, the agents could have conflicting
interests, so agents interact with each other in a non-cooperative way. Thus, Karavas et
al. (2017) used a non-cooperative game model with a Nash equilibrium to simulate the
competitiveness between electrolysis agent and desalination agent as both compete to
consume more power. Another cooperative game is modelled with fuel cell and battery
agents since these two agents aim to meet the corporation’s load demand. Compared
with the previous purely cooperative management system, the game-theory-based

approach reduced costs by 1.62%.

H. Wang et al. (2021) proposed a game-theory-based optimal component-sizing method
for the multi-energy district energy system configuration. The authors used compressed
air energy storage (CAES) for electricity and thermal storage instead of using batteries
and thermal tanks. Each component agent’s utility function is defined by the net present
value function in both cooperative games and non-cooperative games (H. Wang et al.,
2021). The Shapley value and Nash equilibrium were used to solve the cooperative and
non-cooperative game models (Nash, 1950; Shapley, 1971). The results showed that
coalition formation results in better economic outcomes for individual agents and the
system. S. Jin et al. (2021) proposed a game theory-based component optimisation
method for a multi-energy micro-grid. The main contribution of the proposed method
is the incorporation of uncertainties in the renewable energy generation with a
probability density function (S. Jin et al., 2021). Moreover, the agents' utility function
was set to annualised economic profit throughout the life cycle. It has also been noted
that future research could focus on incomplete information games when information
asymmetry occurs. These studies demonstrate that decentralised agents can
successfully negotiate the complex capacity sizing problem (a form of interactional

complexity) without sending complete information to the central planner.

e Fully decentralised district energy system control
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In terms of control of the district energy system, the literature researches replacing the
central controller with a coordination mechanism by direct agent-to-agent
communication. Harb et al. (2015) introduced a decentralised day-ahead scheduling
strategy for a multi-energy micro-grid for cost minimisation with Mixed-Integer Linear
Programming (MILP). The global MILP problem is decomposed into a series of local
problems with Dantzig-Wolfe decomposition (Dantzig & Wolfe, 1961). The local
problem is the local objective function for each agent, which is solved by the iterative
column generation procedure (Nemhauser & Wolsey, 1988). After comparing the
decentralised control with a centralised scheduling approach, it has been shown that the
centralised approach offers a better solution than the decentralised approach.
Nonetheless, the centralised approach to computation time increases exponentially with
the increasing number of agents. Thus, the decentralised approach has advantages in
terms of system scalability as the decentralisation reduces the computation time
required (Harb et al., 2015). Blaauwbroek et al. (2015) proposed a multi-agent-based
decentralised algorithm with mixed-integer quadratic programming to balance the
distributed energy resources and flexible appliances, such as HP and CHP. Y.-S. Li et
al. (2016) proposed a decentralised control method for coupled heat and power systems.
This control method involves two first-order consensus protocols for heat supply
optimisation and electricity supply optimisation. The optimisation is carried out in an
alternating iterative way so that electricity supply and heat supply converge on an
optimal solution alternatingly. The decentralised method results in a better solution than

the centralised method with Lagrangian relaxation (Henwood, 1996).

Nguyen & Ishihara (2021) proposed decentralised management for household clusters
with fuel cells (FCs) and CHP with a peer-to-peer trading architecture. The non-
convexity problem in fuel cell operation is addressed by linearising the FC consumption
and production. As a result, the peer-to-peer trading problem could be solved with the
ADMM algorithm. Alishavandi & Moghaddas-Tafreshi (2019) presented a

decentralised operation strategy for multi-energy micro-grids with interactive clearing
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energy prices. The clearing price is determined through communication between
generation and consumption agents. In each time step, the clearing price is used in
calculating each agent’s profit function and the system’s social welfare. In addition, the
gradient projection method was used for profit function and social welfare optimisation
(Bertsekas, 1997). The results showed that this decentralised method had slightly better
performance in cost reduction than the centralised method, as photovoltaics (PV) agents
tended to maximise their own profit. However, social welfare decreased when an
individual agent’s profit increased. Shabani and Moghaddas-Tafreshi (2020) presented
a similar decentralised approach with interactive clearing prices to optimise a multi-
energy system micro-grid. The agents were programmed to optimise the social welfare
at the first stage, then to optimise their own profit. The results agreed with (Alishavandi
& Moghaddas-Tafreshi, 2019) in that the fully decentralised approach had lower social
welfare but higher individual profits than the centralised approach. Shabani &
Moghaddas-Tafreshi (2019) also observed that the demand response program was able
to increase both system social welfare and agent profit. Moreover, an investigation of
the peer-to-peer trading scheme in a decentralised model was suggested for future

research.

Samadi et al. (2020) proposed a decentralised management strategy with reinforcement
learning (RL). The optimal agent behaviour policy was evaluated with the action-value
Q function (Bowling & Veloso, 2002; Sutton & Barto, 2018). The agents can find an
optimal action policy by interacting competitively with one another. The trade-off
between exploration and exploitation is an important consideration for an agent to
determine the best action. Thus, Samadi et al. (2020) compared three action selection
methods, including soft-max, epsilon-greedy, and upper confidence bound methods.
They showed that the soft-max method had the best performance over the other methods.
Kumari & Tanwar (2021) extended the Q-leaning-based RL management on micro-
grids with blockchain communication. The communication and agreement among the

stakeholders are achieved based on blockchain-encrypted smart contracts to ensure
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privacy. Instead of using the discrete Q-learning method, Dong et al. (2021) proposed
multi-energy micro-grid management with the asynchronous advantage actor-critic
algorithm based on deep RL, which was first introduced by (Mnih et al., 2016). The
result shows that the asynchronous algorithm could shorten the training time by 30%
compared with the deep Q network. The decentralised computational methods reviewed
in this section demonstrate that agent architecture can provide privacy and scalability
to the multi-energy system. However, effective communication among agents remains
a key bottleneck in implementation. Therefore, Section 2.3.3 explores this topic in

greater detail.

e Multi-energy micro-grid management

Coupling of multiple energy carriers into agent interaction is another source of
interactional complexity. Literature investigated how agents can handle this complexity.
Anvari-Moghaddam et al. (2017) proposed an optimal control scheme for a building-
integrated micro-grid with distributed generation units and demand response. A mixed
objective function was formulated to optimise energy operation costs and convenience
levels by building agents. At the micro-grid level, a central grid battery is responsible
for compensating for the energy mismatch. The central battery agent was optimised
with the Bayesian reinforcement learning (BRL) algorithm (Firouzi et al., 2012). The
proposed BRL method was compared with Q learning (Wei et al., 2015) and time-based
reinforcement learning (Sheikhi et al., 2016). The results showed that the proposed BRL
method leads to faster learning and higher reward than the other methods. Kolen et al.
(2017) also proposed a control scheme combining bi-level optimisation of the building
and micro-grid. The building-level optimisation aims to minimise the total number of
switch events. The operation functions (peak-to-valley distance) on the grid level are
optimised with decentralised agent interactions by updating the local energy fluctuation
function. The performance of the proposed bi-level scheme is a trade-off between

building-level optimisation and grid-level optimisation due to the narrowed search
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space. Hutty et al. (2020) investigated the feasibility of reversible solid oxide cells for
micro-grid operation using multi-agent simulation in the UK and Texas. The authors
suggested that, in future research, simulated battery and reversible solid oxide cells as
a hybrid energy storage system could be considered, and how hybrid storage systems

perform compared to traditional battery storage systems could be investigated.

Moghaddas-Tafreshi et al. (2019) proposed a multi-energy micro-grid optimal
operation scheme considering uncertainties in renewable energy generation and energy
demand, as well as a demand response program. The uncertainties in renewable energy
generation were modelled with a Weibull distribution of wind speed in wind turbine
agents. The load agents simulated uncertainties of the electrical and thermal load with
the normal distribution function. Both wind turbines and load agents generate 1000
scenarios in a Monte Carlo simulation each hour to evaluate the micro-grid performance.
The demand response program from (Nikmehr et al., 2017) is implemented in the load
agent program. Li et al. (2020) established a three-layer control model for micro-grid
management with the improved particle swarm optimisation algorithm. The authors
combined adaptive weights and chaotic search into the PSO algorithm to avoid local
optima. The results showed that the proposed algorithm had a much smaller
computation standard deviation than the original PSO and chaotic search PSO. H. Liu
et al. (2020) proposed a hierarchical control scheme for a multi-energy micro-grid
considering the multi-agent game. In the first layer (decision layer), the generation
agents participate in a static cooperative game with complete information to maximise
their own profit. The Nash equilibrium point of the cooperative game is solved by the
evolutionary game theory combined Q-learning method (J. Hu & Wellman, 2003).
Khan et al. (2021) proposed a hierarchical multi-agent control architecture on the multi-
energy micro-grid with three layers. In formulating the optimisation problem, harmful
gas emissions and multi-energy generation costs were considered in the objective
function. Farinis et al (2021) proposed a micro-grid management system with a building

system operator that considers plug-in EVs as energy storage components.
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Two of the studies investigated the operation strategy of an energy hub. Lin et al. (2018)
proposed a multi-agent energy hub operation control considering EV penetration rate
and EV behaviour simulation. EV agents simulated the travel patterns and charging
patterns, including the uncontrolled, rapid patterns. The behaviour simulation result was
then passed to the energy hub control system as electricity demands. The vehicle-to-
grid (V2G) technology was considered in operation optimisation by adding the V2G
cost function to the global optimisation function. The results showed that the demand
brought by increased EV penetration could be met with gas turbines. Moreover, the
electricity and cooling prices were lower because of the V2G technology in the
reference case. Zeng et al. (2019) proposed an optimal dispatch scheme of an energy
hub considering the integrated demand response program. The demand response
program is achieved by designing the user agents’ objective function, which minimises
the cost of electricity, thermal, cooling load, and EV cost. The EV charging and
discharging behaviours are considered with a random variable to indicate the charging
state of the EV. The optimal dispatch of the energy hub was formulated into a multi-
objective optimisation problem, which includes minimisation of wuser cost,
maximisation of generator profit, and maximisation of operating income. Zeng et al.
used the NSGA-III to find the Pareto frontier. The optimal solution of each agent in the
Pareto frontier was obtained with the technology for order preference, similar to the

ideal solution method (Han et al., 2013).

e District energy management with district heating system and heating clusters

Finally, specific coordination protocols have been developed to manage physical
network constraints, particularly in district heating networks and clusters of
Thermostatically Controlled Loads (TCLs). Haque et al. (2017) proposed a unified
multi-agent control strategy to manage congestion and voltage limits in the district
electricity distribution network with PVs and HPs. Biinning et al. (2018) proposed a

distributed control method for bidirectional low-temperature networks (BLTN). BLTN
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is a new district heating and cooling network concept that promises more network
efficiency. The temperature set point is optimised using the Nelder-Mead simplex
method in Python (Nelder & Mead, 1965). The consumer and producer agents are
distributed in the network, tracking the local set point. Based on the difference between
the optimised set point and the current set point, the agents calculate local cost functions
and submit proposals to the markets. The centralised broker evaluates all the proposals
and chooses the most cost-efficient combination to implement. The results showed that
the BLTN with the proposed control method could reduce energy consumption by more

than 50% in comparison to conventional district heating systems.

Claessens et al. (2018) proposed an optimisation control approach for TCL-connected
district heating systems. This approach combined reinforcement learning and a market-
based multi-agent system. After aggregating the TCL cluster state information, the
TCLs select the optimal action under the action policy with the Fitted Q-Iteration batch
reinforcement learning algorithm (Ruiz et al., 2009). Then, the optimised actions were
dispatched to the cluster of TCLs with a market-based multi-agent system. Claessens et
al. (2018) highlighted a future research direction to investigate autonomous feature
extraction techniques. Behboodi (2018) introduced a transactive load control scheme
for TCLs in real-time retail market energy prices. Each TCL is aggregated with an agent
to bid in the retail market based on temperature and anticipated energy price state
information. This scheme requires less accuracy in price forecasting than a demand
profile scheme since the proposed scheme only requires the mean and volatility of
energy price in a specific time window. Table 2-1 summarises the application MAS
architecture at the district scale. These applications have successfully coordinated
district-scale multi-energy systems, such as a micro-grid. When a collection of such
district-scale energy systems is connected, the regional network's reliability and

economic performance need to be considered, as discussed in the next section.
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Table 2-1 Summary of agent-based applications at district scale

Energy Carrier

Reference Ellsﬁt Heat Cool Ga Hydr EV Storage Type Focused Topic Approach Platform
y ing  ing s ogen
District level design
. Electric storage Optimal design of multi-energy
(Kyriakarakos v v v v and hydrogen micro-grid with demand-side PSO TRNSYS, MATLAB,
etal., 2013) and GenOpt
storage management
(Karavas et Electric storage ~ Decentralised energy managem§nt TRNSYS, MATLAB
v v and hydrogen and component sizing of multi- PSO
al., 2015) . . and GenOpt
storage energy micro-grid
e S ket Coelheoybuedmivan L sy waras
al.,, 2017) yarog ~grid optn p and GenOpt
storage sizing
(H. Wang et Electric storage Game theory-based capacity
al ' 202 1% v v and thermal optimisation of multi-energy PSO Not mentioned
N storage (CAES) district system with CAES
(S. Jin et al Game theory-based component
20'21) ° v v None optimisation method for multi- PSO Not mentioned
energy micro-grid
Decentralised control
Electric storage . . . Mixed-integer
(Blaauwbroek Y v Y and thermal Decentrahsed. multi-energy micro- quadratic JADE, MATLAB
etal., 2015) grid control )
storage programming
(Harb et al., Y v Thermal storage Decentralised C(?ntrol (?f multi- Gurobi optimizer JADE
2015) energy micro-grid
. Electric storage . ..
(Y-S. Li et v v and thermal Decentrahsgd control of electricity Consensus theory Not mentioned
al., 2016) storage and heating coupled system
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(Alishavandi
& Electric storage ~ Decentralised multi-energy micro-

Moghaddas- v v v v and thermal grid management for cost and Grgd1§nt Anylogic
X - L projection
Tafreshi, storage emission minimisation
2019)
(Shabani & Electric storage, Fully decentralised multi-energy Gradient
Moghaddas- thermal storage, . . . . .
. v v v micro-grid control with an projection Anylogic
Tafreshi, and hydrogen . Ve cleari . loorith
2020) storage Interactive clearing price algorithm
(Samadi et Electric storage  The decentralised control of multi-
v v and thermal energy micro-grid with Q-learning MATLAB
al., 2020) . .
storage reinforcement learning
(Nguyen & o . .
Ishihara, v v v v Hydrogen Distributed P2P trading with fuel ADMM MATLAB
storage cells
2021)
(Kumari & Multi-energy micro-grid
Tanwar, v v v v None management with blockchain- Q-Learning Not mentioned
2021) based communication
(Yu etal Electric storage, Multi-enerey micro-erid Asynchronous
? v thermal storage, rey m g advantage actor- Open Al
2021) optimisation ., .
and gas storage critic algorithm
Micro-grid management
(Anvari- Electric storage Optimal management of buildin,
Moghaddam v v and thermal pum geme . & BRL JADE and MATLAB
integrated micro-grid
etal., 2017) storage
Decentralised control for clusters
(Kolen et al., of electro-thermal heating devices
2017) v v v Thermal storage for switch event and peak-to- CPLEX MESCOS
valley distance optimisation
S(;Té% etal, v v Thermal storage Optimal dispatch of CHP units Newton-Raphson MATLAB
g()ll EI;)I netal, v v v v v Electric storage EV impact on EH management Taboo search Anylogic
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Electric storage,

(Moghaddas- thermal storage Multi-energy micro-grid
Tafreshietal, « J Y £, ulli-energy micro-g PSO MATLAB
and hydrogen optimisation

2019)

storage
(Zeng et al Electric storage Optimal dispatch scheme of an
2019‘(§ ? v v v and thermal energy hub with integrated NSGA-III Not mentioned

storage demand response

. Electric storage . . . .

(C.Lietal, Y v and thermal Multl—engrgy rmcro—gnd Chaotic search JADE and MATLAB
2020) optimisation PSO

storage

. Electric storage . . .
(H. Liuetal., v v v v v and thermal Hlerarchlcgl con@ol of multi- Q-learning Not mentioned
2020) storage energy micro-grid with RL
(Hutty et al., Hydrogen Feasibility study with reversible . .
2020) v v storage solid oxide cells Greedy algorithm Anylogic
. . . Generalized
(Khan etal, v v v v v Electric Storage Multi-energy micro-grid pattern search JADE and MATLAB
2021) optimisation .
algorithm
(Farinis & Electric storage Multi-energy micro-grid
Kanellos, v v v v g T8y MICTo-g PSO Not mentioned
2021) and EV optimisation
With heating network and clusters
. Active power
(Haque et al., Y v None Network congestion and voltage curtailment JADE and MATLAB
2017) control .
mechanism
(Claessens et Optimal control of TCL and Batch
al., 2018) v v None district heating network with RL remforc?ment Not mentioned
learning
(Behboodiet v Transactive control of TCL with g .
al., 2018) None DR Market bidding Not mentioned
. V4 V4 V4 .. e Simplex Nelder-
(Biinning et None Distributed control of bidirectional Mead methodand ~ Python and Modelica
al., 2018) low-temperature network Lo
market bidding
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2.3.1.3 Enabling regional scale integration

To manage the complexity of the integration of multiple district-scale energy systems,
the literature has covered hierarchical MAS architecture and the Energy Hub (EH)
concept. In contrast to the horizontal peer-to-peer communication in the district scale,
the regional MAS usually adopts a hierarchical architecture to decompose the regional
multi-energy system into nested layers. Gao and Ai (2018) proposed a three-layer
control scheme for MESs with the integration of micro-grids. In the control scheme,
agents include regional system layer agents (top), micro-grid cluster layer agents
(middle), and component layer agents (bottom). Top-layer agents are responsible for
regional energy network optimisation. Upon receiving top-layer optimisation results,
middle-layer agents will check with network limits and coordinate micro-grid clusters.
The bottom components agents are responsible for each unit’s voltage and frequency

control.

Zhang and Yu (2019) introduced a real-time control strategy for multi-area MESs. The
control strategy is based on the Stackelberg game, where a global agent behaves as a
leader, and the rest of the local MES are followers. The top-layer global MES is
responsible for improving the response performance of the entire system, whereas the
bottom-layer agent is responsible for cost optimisation. The Stackelberg game is solved
with Q-learning. The results showed that the proposed learning methods computed
faster than common heuristic algorithms, including genetic algorithms, particle swarm

optimisation, and differential evolution.

In 2007, the concept of the energy hub (EH) was introduced to model the multi-energy
flow on the regional level energy network (Geidl & Andersson, 2007b, 2007a). The EH
concept was soon welcomed by academics. The following selected articles adopted the
MAS to manage EHs. Gonzalez De Durana et al. (2014) developed a multi-agent, multi-
energy flow calculation framework for the EH network. The other energy carriers’ flow,

such as natural gas and water, mimics the electricity power flow calculation. The multi-
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energy flow problem was solved with the classic Gauss-Seidel algorithm (Bergen &
Vittal, 2000). Loose et al. (2020) used a similar concept with unified agents for both
district heating and electricity network simulation, while the calculation was done using
the Newton-Raphson algorithm. Skarvelis-Kazakos et al. (2016) proposed a
hierarchical management framework for networked EHs. Each EH agent is responsible
for optimising internally, then participating in the energy market via a centralised
commercial agent. The authors also conducted a lab experiment to evaluate the
technical feasibility of agent-based control with a micro-CHP. The experiment showed
that the agent-based control was technically feasible with cost-efficient equipment, such
as a personal laptop. Zhang et al. (2021) proposed a consensus-based control on the EH
network with adaptive dual control to ensure operational security and cost minimisation.
Farshidian et al. (2021) formulated the multi-EH planning problem as a competitive
game between the EHs. Mohamed et al. (2020) provide a distributed energy
management scheme for smart islands, consisting of networked multi-energy micro-
grids, EHs, and plug-in EVs. The optimisation is achieved with the primal-dual method
of multipliers, which showed a better accuracy and convergence time than the ADMM

method (Sherson et al., 2017).

Xi et al. (2020) proposed an automated generation control scheme combining a double
deep Q network and an action discovery algorithm. The proposed scheme showed a
faster convergence rate than the traditional Q-learning method. T. Wang & Zhang (2021)
proposed a two-layer multi-EH coordination strategy with micro-grid clusters. Each
layer was formulated with the cooperative game. The deep deterministic policy gradient
algorithm solved the two-layer optimisation problem. Li et al. (2016) proposed a multi-
agent reliability evaluation method for the multi-energy network considering the
uncertainties of wind generation. This method adopted the Smart Agent
Communication algorithm to achieve system reconstruction automation (Petcu &
Faltings, 2005). Kou, Bie et al. (2021) proposed a reliability evaluation model that

considers data privacy for each energy subsystem. The reliability evaluation model was
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designed in a distributed architecture with agent communication. Kou, Wang, et al.
(2021) also proposed a multi-energy network coordination method with a distributed
accelerated descent algorithm. One of the selected studies proposed a novel multi-agent
simulation framework for the multi-energy economy system. Zhu et al. (2020)
introduced a novel energy-economy system simulation approach based on the Java
Agent Development Framework. This simulation framework enables the modeller to
define the simulation time step based on the demand, considering the compatibility of
different simulation time steps. The summary of regional-level energy system

management is shown in Table 2-2.
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Table 2-2 Summary of agent-based application at regional scale

Energy Carrier

Source Electri Heati Cooli Gas Hydr Storage Type Focused Topic Approach Platform
city ng ng ogen
(Gonzalez De Durana et al., . . . . .
2014) v v v None Multi-energy flow calculation Gauss-Seidel algorithm  Anylogic
. .. IES reliability evaluation with agent- K-1 algorithm to evaluate .
(G.Lietal., 2016) v v v v Electricity storage based modelling fault occurrence Anylogic
. . S Java optimisation JADE and
(Skarvelis-Kazakos et al., 2016) v v v v Electric storage Energy hub network optimisation modeler JOM
. Electricity storage Multi-level hierarchical control of [IES ~ Multi-energy network PSCAD and
(Gao & Ai, 2018) v N N4 and thermal . . . .
with multiple micro-grids control EMTDC
storage
. . . Solve fast Stackelberg
(X. Zhang & Yu, 2019) v v v Gas storage Real-time coor(;lrlle:eltdEgontrol of multi- equilibrium with Q-  MATLAB
learning
(Zhu et al., 2020) v v v None quel simulation framework with Linear programming JADE
multi-energy economy coupled system
Unified multi-energy network Agent
(Loose et al., 2020) N4 N4 None . i Newton-Raphson Workbench
simulation
and JADE
(Mohamed et al., 2020) N v v v Electric storage Smart island management PDMM N.O ¢
mentioned
(Xi et al., 2020) v v v v Fly wheel storage Multi-energy nptwork automatic DDQN-AD N.O ¢
generation control mentioned
(N. Zhang et al., 2021) v v v None Multi-energy network control Adaptive dual e}nd N.o ¢
consensus algorithm mentioned
(Farshidian et al., 2021) v v v Electric storage Multi-EH planning GAMS GAMS
. Electric storage  Reliability evaluation of multi-energy MATLAB
(Kou, Bie, et al., 2021) v v v and gas storage network ADMM and MOSEK
(Kou, Wang, et al., 2021) N4 N4 N4 None Multi-energy network coordination Dlstrlbu(tiz(sica;ctelerated MATLAB
(T. Wang & Zhang, 2021) N N4 N4 Electric storage Multi-EH coordination DDPG Python

29



2.3.2 Market interaction with game theory in aggregation

As reviewed in Section 2.3.1, two shifts coincide in the multi-energy system. The first
shift is the decentralisation of energy generation in the building to district scale, turning
consumers into prosumers. The second shift is the decentralisation of decision-making,
with local autonomy for agents. Thus, the decentralisation of both electricity generation
and decision-making spawned novel approaches for prosumers to participate in
electricity markets. There are two pathways for prosumers to trade surplus electricity:
1) selling excess electricity to local consumers, in the form of peer-to-peer trading. 2)
selling aggregated excess electricity to the upstream grid, with a centralised agent
control architecture, which is also referred to as virtual power plants (VPP). VPP is a
framework to coordinate and export excess local electricity from prosumers beyond
local communities to a list of regional electricity markets, including futures and forward
markets, day-ahead markets, ancillary markets, intraday markets, and real-time
balancing markets (Jafari & Akbari Foroud, 2020; Rahimiyan & Baringo, 2016;
Shabanzadeh et al., 2016).

VPP frameworks are usually hierarchical aggregation management processes that
coordinate clusters of DER units to profit from participating in the electricity market.
As aresult, DER owners need to grant aggregation operators access to their assets. The
centralised decision-making architecture requires a central computing unit to collect
operational statuses from DERs and provide operational instructions based on

optimisation results (Kardakos et al., 2016; Zamani et al., 2016).

Recent work, therefore, investigates decentralised electricity service aggregation
through virtual intermediaries, namely aggregators. Obi et al. (2020) provided a
detailed review of the viable grid services that aggregators can provide. The grid
services include asset aggregation, dispatch, standby generation, and ancillary services
(Obi et al., 2020). Iria et al. (2020) proposed a privacy-preserving bidding strategy for
an aggregator to bid in the day-ahead market. The bidding strategy is designed to ensure

the security of the distribution network. The bidding strategy is obtained by ADMM



(Iria et al., 2022). A bi-level convex formulation approach was also explored for the
optimal bidding of an aggregator in the day-ahead market (Shomalzadeh et al., 2022).
Nevertheless, the formulations assume a single aggregator and do not explore the

competition among the aggregators.

In addition, the hierarchy of the market interaction leads to a bi-level market structure,
which is often modelled as a Stackelberg game in the literature (X. Zhang & Yu, 2019).
In the Stackelberg game formulation, the market is led by a single leader and
participated in by many followers. However, the modern energy markets involve
multiple competing leaders, such as multiple aggregators, to compete for electricity
aggregation, which leads to significant interactional complexity. This requires a multi-
leader-multi-follower game (MLMFG), considering both the horizontal competition
among leaders and vertical reaction by followers. The game theory formulation,
particularly the MLMFG models, is suited to capture the dynamic market interaction
in energy markets (M. Hu & Fukushima, 2015). MLMFG is a game theory model to
compromise among multiple interacting decision units and competition among
decision-makers of multiple hierarchical systems. A collection of players at the upper
level compete in a Nash game constrained by the equilibrium conditions of another
Nash game at the lower level. The players in the upper- and lower-levels are called
leaders and followers, respectively. The optimal strategies of the leaders are determined

based on the conjectured reactions of the followers.

Xiao et al. (2020) used the MLMFG model to propose a privacy-preserving aggregation
framework to participate in the day-ahead market, where aggregated prosumers are the
leaders and end-users are followers. The game model is solved by mixed integer linear
programming (Xiao et al., 2020). Hong et al. (2023) adopted the MLMFG model to
optimise aggregation across both the day-ahead market and the local electricity market.

The diagonalisation algorithm is used to solve the MLMFG model (Hong et al., 2023).

The literature reviewed in Section 2.3 reveals a disconnection between the agent-based

computation infrastructure and loT technologies, and the complex market interactions

31



in prosumer aggregation. The computation infrastructure, such as edge computing, is a
viable technological pathway to solve the complex market model. However, there is no
computational framework to address the interactional complexity from the integration
of both horizontal and vertical market interactions. Consequently, this section identifies

the disconnection as Research Gap 2.

Research Gap 2: There is no computational framework that can accommodate
the bi-level interactional complexity among aggregators and prosumers with an

algorithm that can solve the MLMFG in a fully decentralised manner.

Chapter 5 addresses this gap by proposing a novel computational framework for
intelligent aggregation, in which competing aggregators (leaders) and prosumers
(followers) iteratively reach equilibrium through a novel graph-based consensus

algorithm with proven linear convergence.
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2.4 Evaluative complexity in strategic decisions

Unlike operational and transactional challenges, strategic decisions involve selecting
long-term technology pathways from among alternatives with distinct attributes. Hence,
the energy systems are no longer optimised solely for cost minimisation with a single
technology pathway; economic viability, environmental sustainability, and energy
efficiency are also vital inputs for decision-making. As a result, the evaluative

complexity emerges.

A prime example of this complexity is the development of international green hydrogen
supply chains. As nations commit to net-zero targets, policymakers and practitioners
face a critical strategic choice: selecting the right hydrogen carrier. This Section reviews
how existing approaches address evaluative complexity through techno-economic and
environmental models. Section 2.4.1 examines the policy contexts that drive the
development of the green hydrogen economy. Section 2.4.2 assesses the existing

evaluative frameworks and highlights a knowledge gap within them.

2.4.1 Green hydrogen policy and evaluative complexity

The shift to low-carbon energy supply with green hydrogen is supported by the green
hydrogen policies at the state level. The shifts introduce a form of evaluative complexity,
where selecting a GHC pathway that satisfies divergent requirements across the

international green hydrogen supply chain.

On the demand side, major industrial economies have established ambitious hydrogen
targets that require the development of international green hydrogen supply chains. The
European Union’s hydrogen policy sets out a domestic production target of 10 million
tons by 2030 (Erbach & Jensen, 2021). The hydrogen review by IRENA also highlights
that the domestic production in the EU may not meet the growing demand, hence
importing green hydrogen is an important strategy to fill the demand gap (IRENA,
2019).
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Japan has positioned itself as a pioneer of the green hydrogen industry, where Japan
sets a target of 3-million-ton hydrogen supply chain by 2030 and 20 million tons by
2050. In addition to hydrogen, Japan’s hydrogen policy highlights the critical role of
hydrogen carriers, such as ammonia, in decarbonising the energy sector (Green
Hydrogen Organisation, 2025). The United Kingdom’s hydrogen strategy supports both
electrolytic and carbon capture-enabled hydrogen. More specifically, the UK Hydrogen
Strategy sets out an ambitious plan to deliver 5 GW of green hydrogen by 2030,
exploring the import of GHCs to close the supply gap (DESNZ, 2024).

On the supply side, countries with rich renewable resources could seize this opportunity
for economic development and industrialisation. South Africa has great potential to be
a key player in green hydrogen export, due to its abundance of renewable energy
resources (Rehman et al., 2022). Hence, South Africa has established a strategic plan to
become a major green hydrogen exporter, to capture 4% of the global green hydrogen
market by 2050 (CSIS, 2022). To meet hydrogen demand, evaluating and selecting
appropriate GHCs is crucial. The choice of GHC will affect costs of supply,
environmental footprint, and supply chain efficiency, ultimately determining whether
national strategies can translate into real-world projects. Current literature often
evaluates these metrics in isolation, as the following sub-sections review the existing

evaluation framework for international green hydrogen trade.

2.4.2 Limitations of existing evaluation frameworks

The existing literature evaluates the performance of GHC pathways with techno-
economic, environmental, and combined assessment frameworks. For research
adopting a techno-economic analysis framework, a key finding in the literature is the
dominance of renewable energy costs. As shown in Table 2-3, studies by Kenny et al.
(2024) and Heuser et al. (2019) both conclude that the availability and cost of renewable
resources in the exporting country are the most significant drivers of the final Levelised
Cost of Hydrogen (LCOH). In addition, the choice of carrier introduces substantial

variations in the upfront investments. Specifically, Raab et al. (2021) analysed the large-
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scale hydrogen export system from Australia to Japan with a comparative cost analysis
of three green hydrogen carriers: LH>, DBT and TOL. The significant capital
expenditure (CAPEX) required for liquefaction plants and cryogenic infrastructure
made LOHCs, such as DBT and TOL, more economical than LH». This highlights a
key difference between carriers that require high upfront investment and those that are
compatible with existing energy infrastructure. The analysis by Niermann et al. (2021)
provides additional insights into LHOC operations, where the cost competitiveness of
LOHC:s depends on the cost of dehydrogenation heat supply. Using hydrogen to supply

heat will increase overall system costs and reduce system efficiency.

The second stream of research focuses on the comparative international study of GHCs’
supply chains, particularly in terms of environmental aspects, using life cycle
assessment (LCA). A consistent finding from the literature is the importance of the
electricity used for electrolysis. Noh et al. (2023) conducted the LCA and energy
efficiency analysis on hydrogen imports to Korea. The results show that the carbon
intensity of the grid in the exporting country is a critical factor determining the final
environmental footprint. Abeynaike and Barbenel (2024) conducted a cradle-to-grave
LCA on exporting NH; and LH> from New Zealand to Japan, using the partially
decarbonised grid of New Zealand. The results show that there is no net environmental
benefit compared with Japan’s existing grid, even though New Zealand’s grid supply is
more than 80% renewable. Beyond electricity supply, Cho et al. (2024) assessed the life
cycle impact of different LOHC production methods. The results indicate that utilising
biomass-derived TOL and DBT can result in a lower environmental impact compared

to their fossil-based counterparts.
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Table 2-3 Literature review on the international hydrogen carriers

Reference Carriers considered Export Country Import Country Assessment Method
Studies on techno-economic analysis of hydrogen carriers
(Kenny et al., 2024) LH; and NH3 Chile, Namibia, and Germany Levelised cost
Morocco
(Song et al., 2021) LH», NH3, and TOL China Japan Levelised cost
(Niermann et al., 2021) LH,, DBT, MeOH, Algeria Germany System efficiency and levelised cost
NEC, CGH,
(Heuser et al., 2019) LH, Patagonia Japan Levelised cost
(Restelli et al., 2024) LH» North Africa North Italy Levelised cost and process simulation
(Raab et al., 2021) LH», TOL, and DBT Australia Japan levelised cost
Studies on the environmental impact analysis of hydrogen carriers
(Abeynaike & Barbenel, 2024) LH; and NH;3; New Zealand Japan Global warming potential
(Noh et al., 2023a) LH,, CGH,, TOL, NHj; Australia South Korea Global warming, acidification and eutrophication
potential
(Cho et al., 2024) TOL and DBT Australia Netherland, South ReCiPe Midpoint and Endpoint

Korea, and Japan

Studies combined techno-economic and environmental impact analysis

(Lee et al., 2022) LH,, NH3, MeOH, TOL, Australia
and DBT
(Godinho et al., 2023) TOL, DBT Portugal

(Dickson et al., 2022) LH», NH3, MeOH,
synthetic natural gas,

TOL, DBT

Does not specify

South Korea

Netherland

Does not specify

levelised costs and carbon intensity

levelised cost and global warming

Levelised cost and CML-IA life cycle impact
assessment
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Recent studies also combine the techno-economic and carbon footprint calculations,
which consistently highlight the trade-off between economic and environmental
performance. No single GHC optimises all criteria simultaneously. Dickson et al. (2022)
analysed the levelised costs and environmental impact of liquid hydrogen, ammonia,
methanol, synthetic natural gas, TOL, and DBT. The results show that ammonia and
methanol are the most promising hydrogen carriers in terms of economic performance,
while LH; has the lowest overall environmental impact. Similar findings were reported
by Lee et al. (2022), who investigated the techno-economic and carbon intensity
performance of five hydrogen carriers, including LH2, NH3, MeOH, TOL, and DBT.
For the target export from Australia to South Korea, TOL is the most cost-effective
hydrogen carrier, while ammonia is recommended for the lowest carbon emissions in a

fully renewable energy-supplied scenario.

The literature review above highlights that the intrinsic trade-off creates evaluative
complexity. One hydrogen carrier will excel in one policy-relevant criterion but not in
another. For example, LH> tends to have low environmental impacts (Dickson et al.,
2022), but high-levelised costs (Song et al., 2021). Such distinct performance makes
carrier selection a source of evaluative complexity. This recurring conflict highlights
the need for a framework to resolve these trade-offs. Although Multi-Criteria Decision-
Making (MCDM) has been applied to solve the conflict, two gaps remain within

existing frameworks.

First, the economic criterion is oversimplified. The MCDM framework by Oner &
Khalilpur (2022) uses a simplified LCOH model that does not account for the time
value of cash flows or inflation, both of which are essential for evaluating long-term,
capital-intensive hydrogen projects. Second, environmental criteria often focus only on
carbon emissions. The majority of existing LCA literature on the international trade of
hydrogen carriers, as shown in Table 2-3, focuses almost exclusively on Global
Warming Potential (GWP) or its variants as the sole environmental criterion. This
narrow focus omits environmental impact from other damage pathways, such as fine

particulate matter formation. Thus, this thesis has identified the Research Gap 3:

Research Gap 3: There is currently no integrated MCDM framework that
simultaneously evaluates hydrogen carriers based on discounted techno-

economic performance, comprehensive life-cycle environmental impacts, and
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carrier-specific energy efficiency. Furthermore, the strategic potential of the
South Africa—UK green hydrogen corridor has not been analysed in existing

literature.

Chapter 6 closes this gap with a novel MCDM framework that quantitatively evaluates
GHCs with discounted technical-economic analysis and comprehensive environmental
assessment. The evaluation framework is applied to five leading carriers (LH2, NHs,
methanol, TOL and DBT) for the South Africa-UK supply chain, thereby providing the
first holistic ranking of GHC options for this corridor.

2.5 Chapter summary

This chapter has reviewed existing computational frameworks through the lens of
nested complexity. The analysis of uncertainty complexity revealed a gap in a non-
probabilistic, risk-aware optimisation framework. The review of interactional
complexity highlighted the need for a decentralised, competitive multi-party
aggregation model. Finally, the assessment of evaluative complexity identified the lack
of an integrated framework combining discounted economics with comprehensive
environmental metrics. These identified gaps collectively provide a foundation for the
overarching research question and methodological design presented in the subsequent

chapter.
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Chapter 3

3. Research methodology

3.1 Introduction

Fundamental shifts in decision-making are driving the transition to a multi-energy
system. The first shift is the nature of operational uncertainty, caused by the increasing
adoption of intermittent renewable energy sources. The second shift involves a
structural shift from centralised control to distributed coordination, transforming the
conventional top-down architecture of the electricity grid into a bottom-up construction
of autonomous agents. The third shift relates to the criteria used for strategic evaluation,
moving away from a sole focus on cost with multi-criteria decision-making. As a result,
traditional computational frameworks that are deterministic, centralised, and focused
on a single objective cannot effectively address the complexities introduced by these

three shifts.

Section 3.2 explains how these three shifts create a nested complexity that motivates
the overarching research question of this thesis. Section 3.3 outlines the selection of
methods to address the research question and explains why they are appropriate. Section

3.4 outlines the main data sources and assumptions used in the following chapters.

3.2 Research question

The three shifts outlined in Section 3.1 create a nested hierarchy of decision-making
complexities that develop as the energy system expands from operational to strategic
levels. At each level of this hierarchy, a dominant form of complexity makes the
traditional computational frameworks inadequate. At the lowest operational scale,
traditional computational frameworks are designed to solve deterministic scheduling
problems, where demands are predictable, and electricity generation is dispatchable.
However, the rising integration of intermittent wind and solar power introduces
uncertainty into energy scheduling, making the deterministic computational framework

unsuitable for systems with significant renewable resources. Furthermore, probabilistic
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distributions based on historical data may not accurately predict market volatility,
resulting in an information gap regarding future market prices. This operational
uncertainty is a critical source of complexity, which can be regarded as uncertainty
complexity. It presents a major challenge for micro-grid operators who face
unpredictable electricity market price volatility (Nojavan et al., 2015). The ability of
agents to manage this complexity and formulate operational strategies that align with
the risk preferences of micro-grid operators underpins collective action within the

broader energy system.

Building on the operational scale, the shift from centralised control to distributed
coordination gives rise to interactional complexity. This next layer of complexity arises
because the system comprises many diverse agents, each with its own operational
strategies. The adoption of distributed energy resources makes the system difficult to
manage with a single controller, where each distributed energy asset aims to maximise
its own utilities. At the transactional scale, the interactions among agents introduce a
game-theoretic dynamic where an agent’s decision depends on others’. The existing
centralised computational framework faces challenges in addressing such distributed
dynamic interactions among agents. Therefore, interactional complexity remains at the

transactional level.

At the top of the hierarchy, shifts in strategic evaluation lead decision-makers to choose
among different technology pathways with unique characteristics. Traditionally, the
strategic decision-makers were guided by the conventional single objective of
minimising the levelised cost of energy. However, strategic decisions, such as choosing
the appropriate green hydrogen pathways for international trade, are multidimensional.
Policymakers and investors must choose a hydrogen carrier based on multiple
evaluation metrics, subject to lower-level complexities. For example, the economic
criteria can represent the aggregated financial performance under market volatilities
(uncertainty complexity) and market transactions (interactional complexity). The
decision-making at the strategic scale, hence, should be based on multi-criteria

evaluation, which can be regarded as evaluative complexity.

The nested hierarchy of complexities reveals gaps between the future multi-energy

systems and the traditional computational frameworks. New computational frameworks
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are required to address the emerging complexities. This revelation motivates the

overarching research question of this thesis:

Overarching research question: What new computational frameworks are
required to manage the nested hierarchy of uncertainty, interactional, and
evaluative complexities that emerged at different scales of multi-energy system

transition?

To provide a comprehensive answer to this question, this thesis adopts a multi-scale
research methodology. The literature review in Chapter 2 identified three research gaps
in existing computational frameworks, which informed the research objectives of this
thesis. Each objective aims to address a specific layer of the hierarchy of complexity
where the identified gaps exist. From the operational to the transactional, and finally to
the strategic scale, the three research objectives collectively address the overarching

research question.

The first research objective focuses on the foundational layer of the hierarchy,
uncertainty complexity. This objective addresses research gap 1: the need for a risk-
adjusted computational framework for novel assessments under severe market

uncertainty.

Objective 1: To establish a computational framework that is able to guide
decision-makers with different risk preferences for energy assets under severe

uncertainty.

This objective targets the operation of the energy systems. It requires developing a
framework that does not rely on assumptions about the probabilistic distributions of
key decision variables. The second objective builds on the operational scale to address
the interactional complexity, responding to the research gap 2 in the lack of a

decentralised multi-party competition market framework.

Objective 2: To formulate a computational framework that is capable of

coordinating the decentralised agents with game-theoretic interactions.

This objective aims to address the limitations of existing single-aggregator or

centralised aggregation frameworks. The final objective is at the strategic scale of
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hierarchy to address the evaluative complexity, responding to the gap in a multi-criteria

strategic assessment framework.

Objective 3: To construct a computational framework that moves beyond
single-metric decision-making to resolve the strategic trade-offs inherent in

multi-criteria decision-making.

Collectively, the three objectives form a coherent response to the overarching research
question. By developing new computational frameworks, this thesis informs the future
decision-making tools for the multi-scale energy system transition. The following
section explains the justification and rationale for why the methods are suitable for

fulfilling the research objectives.

3.3 Methodological framework

The research objectives outlined in Section 3.2 reveal the need for new computational
frameworks to manage the complexities in multi-energy transition. This section
provides a justification and rationale for the research methods adopted to construct the
new computational frameworks. As illustrated in Figure 3-1, each research objective is
achieved with a specific methodological innovation, which collectively answers the

overarching research question.

Applied
Strategic ; Hybridisation i Micro-grid with
» | Evaluative in grid wi
—p IGDT+STA ———»
Ievel "="! complexity 4 4 LAES
Objective 1
Model and
: algorithm Applied
Transactional - . Overarching b - Graph-based ¥ Prosumers
level ‘.:. Interacltm:al +> research ——» ) M consensus for — aggregation in a
S ECHIBESLY, question Objective 2 MLMFG local market
Framework . Applied i
) : : b MCDM with ~ ~PP! South Africa-UK
Operational .-. Uncertan'wty |9, \ integration improved in green hydrogen
level ="} complexity 7/ ictrics ’ A
Objective 3

Figure 3-1 Schematic of the methodological framework.
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To achieve Objective 1, this thesis proposes a new computational framework by
hybridising the risk management principles of IGDT with the structured optimisation
from STA. The core challenge to achieving this objective is making decisions under
deep, non-probabilistic distributions. Existing uncertainty-handling methods, such as
stochastic programming, rely on known, stationary probability distributions. IGDT is a
non-probabilistic framework explicitly designed for decision-making under severe

uncertainty, especially the deep uncertainty of electricity market prices.

As reviewed in Chapter 2, most of the existing literature on IGDT application in energy
system scheduling uses convex optimisation. The novel energy assets, such as LAES,
require optimisation using a non-convex method. Hence, the risk-based logic of IGDT
was hybridised with the STA, which is a powerful heuristic search algorithm. Compared
with traditional heuristic algorithms such as GA and PSO, STA has structure-learning
capabilities and demonstrates better performance. This novel hybrid IGDT-STA
framework can schedule microgrids based on decision-makers' risk preferences,

thereby addressing Objective 1.

To achieve Objective 2, both game-theoretical models and algorithmic innovations for
optimisation were required. The key challenge is that the transactional scale is to model
and solve a decentralised market with a hierarchical structure with competing agents.
The existing literature often adopts Stackelberg game models with a single leader
structure. This structure cannot capture horizontal competition among multiple
aggregators, a key transition in future energy markets. Therefore, this thesis adopts the
MLMFG formulation, as it can capture the horizontal competition among leaders

(aggregators) and the hierarchical response of followers (prosumers).

Existing methods for solving game-theoretic models are usually centralised and require
global information from all market participants. The centralised algorithm could not
fulfil the privacy requirements of the distributed energy asset owners. This gap
motivates the development of a novel graph-based consensus algorithm. This algorithm
provides a decentralised method for solving the MLMFG model via peer-to-peer
information exchange via edge computing. As a result, the innovation in game theoretic
models and optimisation algorithms fulfils Objective 2 by providing a computational

framework for future multi-party aggregation.
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Finally, this thesis achieves Objective 3 by methodological innovation in framework
integration and enhancement. The strategic challenges of choosing technology
pathways with distinct performance in key indicators, such as levelised costs and
environmental footprint, make single-metric analysis insufficient. This leads to
selecting MCDM as the appropriate class of methods. This thesis adopts the Analytic
Hierarchy Process (AHP) with TOPSIS and VIKOR. The AHP provides a transparent
method for capturing stakeholder priorities and weighting the decision criteria. The
subsequent use of both TOPSIS and VIKOR provides a quantitative ranking of potential
candidates. TOPSIS identifies the ideal solution that excels on key metrics, while

VIKOR identifies the best compromised solution that minimises regret.

The key methodological innovation in MCDM is the enhancement of the decision
inputs. The literature review revealed that existing MCDM applications in green
hydrogen trade often use simplified criteria inputs, such as an undiscounted levelised
cost model or a focus solely on global warming potential. This thesis proposed an
integrated framework that considers the time value of money and production, and a
comprehensive life cycle assessment using the ReCiPe Endpoint method. This
integration of enhanced criteria fulfils Objective 3 by providing a transparent

computational framework to navigate strategic trade-offs.

3.4 Data sources, assumptions, case study design

To validate the proposed computational framework, each framework is applied to a
specific case study that represents the complexities of operational, transactional, and
strategic scales. This section details the data sources, modelling assumptions, and case

study design employed to validate the research objectives.

To validate the IGDT-STA framework for managing the uncertainty complexity at the
operational scale, the case study design focuses on a grid-connected micro-grid in
Northwest China. Several critical assumptions were made during the operational
optimisation. First, the thermodynamic processes in the LAES system, such as
compression, liquefaction, and expansion, are modelled as a steady-state system.
Second, the micro-grid is assumed to be a price taker in the day-ahead market, meaning
its operations do not affect the market prices. This assumption allows the study to focus

solely on the impact of price uncertainty on the micro-grid.
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The case study design at the operational scale compares a standard GA representing
heuristic optimisation, a stochastic programming approach representing probabilistic
risk management, and a Monte Carlo simulation representing a baseline of random
scenarios. The case study includes running numerical models under various risk
preference levels to generate robustness and opportunity curves. This design allows for

a direct quantitative comparison of methods.

Moving to addressing the interactional complexity, the validation of the graph-based
algorithm for MLMFG is conducted with the SimBench dataset (Meinecke et al., 2020).
Specifically, an urban low-voltage distribution topology is combined with 57 synthetic
prosumers to create the competitive environment. There are two critical assumptions in
the case study design. First, all agents, including aggregators and prosumers, are
assumed to follow the utility-maximising rationale, meaning the utility of the actions
determines their actions. Second, the battery degradation for V2G participants is
assumed to follow a power-law distribution, which is important for prosumers’ utility

functions to remain convex.

The case study design of transactional scale combines numerical and complexity
analysis. The numerical results of market interactions show that the system converges
to a market equilibrium. In addition, the proposed graph-based algorithm is also
benchmarked with other decentralised optimisation methods, which are detailed in

Chapter 5.

Finally, to validate the new MCDM framework for managing evaluative complexity at
the strategic scale, the case study is focused on the previously unexamined hydrogen
corridor. The data sources of this case study include the techno-economic model and
the environmental analysis model. The details of the data sources and assumptions are

presented in Chapter 6 and Appendix Al and A2.

The key assumptions for the strategic scale case study are twofold. First, this case study
assumes the project lifetime of 20 years, which is an input for the techno-economic
model for calculating LCOH and internal rate of return. The choice of a 20-year project
life is to align the project with the key technological component, the proton exchange
membrane. Second, the supply chain is assumed to be a steady-state system delivering

a fixed annual volume of hydrogen.
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In addition to the base-case analysis, this case study includes a scenario-based
sensitivity analysis. These sensitivity cases are constructed with systematic changes in
critical parameters, such as the renewable capacity factor in South Africa. Furthermore,
a criteria-weighting analysis is performed to determine the different stakeholder

priorities.

3.5 Chapter Summary

This chapter builds the methodological foundation for the thesis. The shifts in
operational uncertainty, decentralised coordination, and strategic evaluation create a
nested hierarchy of decision-making complexities. How to address these complexities

in computational frameworks is the overarching research question of this thesis.

Accordingly, the research design is structured to address the research gap at a specific
level of complexity. First, a new computational framework for risk-inclusive operations
is required to manage the uncertainty complexity at the operational scale. Second, a
new computational framework for decentralised coordination is needed for
management interactional complexity at the transactional scale. Lastly, a new
computational framework is required for multi-criteria decision-making for managing
evaluative complexity at the strategic scale. This chapter also details the high-level data
sources, assumptions, and case study designs. Chapters 4, 5, and 6 will demonstrate
how these new computational frameworks can effectively facilitate the multi-scale

transition towards a sustainable energy future.
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Chapter 4

4. Addressing complexity in LAES micro-
grids operation under severe market

uncertainty?

4.1 Chapter introduction

The emergence of novel physical energy storage technologies, such as compressed air
energy storage (CAES) and liquid air energy storage (LAES), introduces additional
complexity to the conventional energy systems. Physical air-based storage technologies,
such as CAES and LAES, combine high safety with low environmental impacts (Yan
et al., 2021). CAES converts electrical energy into potential energy of compressed air
molecules, which are stored in underground caverns or other suitable locations. CAES
has a high safety level, but its deployment is constrained by suitable geological
formations, e.g. caves or abandoned mines (Damak et al., 2020; Heo et al., 2022). On
the other hand, LAES is a novel large-scale physical energy storage technology that
compresses and condenses air into a liquid state in the cryogenic storage tank, as shown
in Figure 4-1. It should be noted that the round-trip efficiency of LAES ranges from 50%
to 60%, depending on the system design (She et al., 2017). Although LAES tends to
have lower round-trip efficiency than other storage methods, it has the advantages of
high energy storage density, accessible storage, and is less restricted by geographical

conditions compared with CAES.

2 This chapter is adapted from Yao, R., Xie, H., Wang, C., Xu, X., Du, D., Varga, L., & Hu, Y.
(2024). A multi-agent-based micro-grid day-ahead optimal operation framework with liquid air
energy storage by hybrid IGDT-STA. Journal of Energy Storage, 86, 111318.
https://doi.org/10.1016/j.est.2024.111318
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Figure 4-1 Schematic diagram of LAES system operation.

In addition, the operation strategy should be able to suit the risk preferences of decision-
makers. Thus, this chapter addresses Objective 1 on the need to establish a
computational framework that can consider different risk profiles of decision-makers

with new energy assets. This chapter achieves this objective through three contributions:

e The IGDT method is implemented on a micro-grid with LAES for the first time
to solve the optimal operation problem with uncertainty in market electricity
prices.

e This chapter proposed a novel operational framework of the IGDT-STA hybrid
method with a multi-agent system to optimise the robustness function and
opportunity function to suit the risk preferences of decision-makers.

e This chapter compared the proposed IGDT-STA method with genetic algorithm
optimisation techniques, stochastic method, and Monte Carlo method in a case
study. The results showed the effectiveness of IGDT-STA.

The remainder of the chapter is organised as follows. Section 4.2 details the hybrid
IGDT-STA method. Section 4.3 describes its implementation in a multi-agent LAES
micro-grid. Section 4.4 presents the case study and comparative results. Section 4.5

summarises key findings.
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4.2 Uncertainty decision-making with IGDT-STA

This section explains the mathematical formulation of the IGDT-STA method. Section
4.2.1 describes the IGDT mathematical models, and Section 4.2.2 includes the

mathematical formulation of STA.

4.2.1 IGDT mathematical models

The IGDT effectively manages system uncertainties by focusing on the information gap.
Rather than relying on probability distributions, it specifically addresses the divergence
between anticipated and actual values within an uncertainty parameter. As a result,
IGDT is able to model uncertainties with a severe lack of information (Majidi et al.,
2019). The following section explains the details of the system model, the uncertainty

model, and performance requirements in IGDT.

4.2.1.1 IGDT system model

The decision variables and uncertainty parameters in the decision space and uncertainty
space are P and A, respectively. The system model can be expressed as the optimisation

problem (4.1) to minimise the system cost.
Minimise C(P,A)
s.t.G;(P,1) =0, i=1,..,m 4.1)
H;j(P,A) =0, j=1..,n

where C(P,A) is the system cost function which takes decision variable P and
uncertainty parameter A as function input. G;(P,A) =0 and H;(P,A) =0 are

inequality and equality constraints, respectively.

4.2.1.2 Uncertainty model

The uncertainty model of IGDT aims to describe the information gap between the
predicted value of the uncertainty parameter and its true value (Ben-Haim, 2006). The

uncertainty model can be expressed as Eq. (4.2):

. A — A
U(a i) = {at;“j—J < a},a > 0 (42)

t
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where 4; denotes the actual value of the uncertain parameter. /Tt denotes the predicted
value of the uncertainty parameter.  is the bound for system uncertainty levels. In
essence, the uncertainty model ensures that the deviation of the uncertainty parameter

A¢ with respect to A will not exceed al,.

4.2.1.3 Performance requirements

The IGDT performance requirements are the quantitative evaluations of objective
function performance with respect to system robustness and opportunity values. The
performance requirements consist of the robustness function Eq. (4.3), and the

opportunity function Eq. (4.4).
a(P, Caverse) = mo?x{a: maX(C(P' /1)) < Caverse} (4.3)

where Cgperse 18 the target system cost that risk-averse decision-makers are willing to
pay. The function value @(P,C,perse) indicates the maximum possible system
uncertainty with a given cost target C,perse- In other words, Eq. (4.3) returns the
maximum fluctuation bound for uncertainty parameter 4. The greater value of
a(P, Caperse) means the system is more robust and less susceptible to uncertainties.
Therefore, the risk-averse decision-makers are able to make robust decisions, ensuring

the system is immune to uncertainties.
ﬁ(P' Ctaking) = mozn{a: min(C(P; A)) < Ctaking} (4.4)

where Ciqring 18 the target system cost that risk-taking decision-makers are willing to
pay. The opportunity function Eq. (4.4) returns the minimum fluctuation range of
uncertain variables that risk-taking decision-makers usually allow. This function mainly
evaluates the positive aspects of uncertainty and finds the minimum uncertainty level

that the system can tolerate by reducing costs.

4.2.2 STA implementation

STA uses the state space representation in modern control theory as a framework to

solve optimisation problems (X. Zhou et al., 2012).

With state space representation, the unified form of STA is (X. Zhou et al., 2012):
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{xk+1 = Agxy + Bruy

Vi+1 = [ (Xk41) 4-5)

where f(+) denotes the objective function. xj, is the current state which corresponds to
a solution to the optimisation problem. x;,, is the next state and yj,; is the fitness
value at next state. A; and B, denote the state transition matrices, which can also be
regarded as state transformation operators. u; denotes the function of x, and the
historical state. With state space representation, the STA method defines four state

transformation operators to solve optimisation problems.

e Rotation transformation:

Xks1 = X + —R,x;, 4.6
" nllxell, " (4.6)
where w € R > 0 denotes a rotation factor. R, € R™"denotes a random matrix whose
entries are uniformly distributed random variables between [—1,1]. ||-ll, denotes
Euclidean norm (or L2 norm) of a vector. n is the dimension of the state x;,. The rotation

operator has the functionality to search in a hypersphere with the maximum radius w,

which has been proven in (X. Zhou et al., 2012).

e Translation transformation:

Xk — Xg—1
Xk+1 = Xk + BR;

1, — Xi—1 “.7)

where 8 € R > 0 denotes a translation factor. R, € R denotes a uniformly distributed
random variable on interval [0,1]. The translation transformation aims to line search for

a possible better candidate solution, which can be regarded as a heuristic operator.
e Expansion transformation:
Xg+1 = X + VReXy (4.8)

where y € R > 0 denotes an expansion factor. R, € R™" denotes a random diagonal
matrix under normal distribution. The expansion transformation is designed for global

search with probabilities to search the whole space.

e Axesion transformation:
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Xk+1 = Xk + 6Raxk (49)

where § € R > 0 denotes an axesion operator. R, € R™" denotes a sparse random
diagonal matrix under the normal distribution, with only one random entry being non-
zero. The axesion transformation has the functionality to strengthen single-dimensional

search (X. Zhou et al., 2019).

In addition to the state space representation and transformation operators, STA method
also incorporated sampling in the optimisation process. A representative sampling
technique is used to avoid enumerating all potential candidate states (X. Zhou et al.,
2019). The STA performs a transformation operation with multiple times, parameterised
by a positive integer W, representing search enforcement constant. After explaining
the four transformation operations and sampling techniques, the STA can be described

with the following pseudocode:

1 State « initialisation(Wsg)
2:  Best « fitness(funfcn, State)
3 Repeat
4 ifw < wpyi, do
5: W < Wpay
6: end if
7 Best < expansion (funfcn, Best, Ysg, 8, ¥)
8 Best < rotation (funfcn, Best, Wi, 5, w)
9: Best < axesion (funfcn, Best, ¥sg, 8, §)

. w
10 @« e
1:

1 until the termination criterion is met

The initialisation (-) in the above pseudocode initialise a candidate solution in the
feasible set. The fitness () selects the best solution with state vector after evaluation
with the objective function. During the optimisation process, the rotation operator
w decrease periodically from maximum value w4, to minimum value w,,;, with
lessening coefficient fc. Noticeably, the translation operation is implemented in the
other three operations once a better candidate solution is found. Thus, the translation
operator f is passed to the other three operations: expansion (), rotation (-), and

axesion (-).
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4.2.3 IGDT-STA hybrid optimisation algorithm

The proposed IGDT-STA decision-making strategy integrates the STA algorithm into
the IGDT's optimisation process. The IGDT-STA involves two distinct stages. During
the first stage, STA is utilised to optimise a risk-neutral strategy using prediction data.
In the second stage, STA optimises the performance requirement functions of the IGDT,
which encompasses both the robustness function and the opportunity function, based
on the risk-neutral strategy obtained in the first stage. The micro-grid's optimal
operation strategy with LAES is developed, accounting for uncertain market electricity
prices. Figure 4-2 depicts the IGDT-STA method flowchart, and the solution process is

summarised as follows:

(1) Input the necessary data of the micro-grid system, such as the parameters of wind
power generation, photovoltaic power generation, micro gas turbine, LAES, and the

predicted value of the market electricity price.

(2) The base optimisation model of the micro-grid with LAES is formulated. This model
aims to minimise the operation cost of micro-grids with LAES and considers various

constraints from LAES, micro gas turbine, and tie-line transmission power.

(3) The STA method is used to solve the basic optimisation model of the micro-grid
with LAES and further obtain the risk-neutral strategy, which is the minimum operating
cost strategy of the system based on the predicted market price. The minimum operating

cost under this strategy is also called the risk-neutral cost.

(4) Different cost targets are set according to the minimum operating cost corresponding
to the obtained risk-neutral strategy. The cost targets can be divided into two categories:
the cost target greater than the risk-neutral cost and the cost target less than the risk-

neutral cost.

(5) Judge the category of the cost target. When the target cost is greater than the risk-
neutral cost corresponds to the robustness optimisation model, the model aims to
maximise the robustness function in the IGDT method. When the target cost is less than
the risk-neutral cost corresponds to the opportunity optimisation model, the model aims
to minimise the opportunity function in the IGDT method. The above two models both

consider the constraints of the system.
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(6) The STA method is applied to solve the micro-grid's robust and opportunity
optimisation models with LAES, respectively. As a result, it obtains the risk-averse

strategy and the risk-taker strategy.

Start

|

Inttialize the input data

}

Build the basic optimization
model of micro-grid with LAES

l

Obtain optimal risk-neutral
strategy vis STA

Set different cost targets

l

n=1

J
el

Cost target (n) >
rnisk-neutral cost? _

v v
Apply IGDT robustness function Apply IGDT opportunity function
Build the robustness optimization Build the opportunity optimization
model model
Obtain the optimal risk-avers Obtain the optimal risk-taking
strategy via STA strategy via STA

[ |

.

Save the output data

,

n<N

Yes, n=n+1

End

Figure 4-2 The flow chart of IGDT-STA
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4.3 MAS-Based micro-grid coordination model

This section describes the details of the M AS-based micro-grid coordination model,
where the agents solve for optimal operation strategy cooperatively. Section 4.3.1
explains the structure of the coordination model, and Section 4.3.2 describes the details

of agent tasks.

4.3.1 Micro-grid environment

The micro-grid environment, as shown in Figure 4-3, includes a power grid agent, load
agent, photovoltaic agent, wind turbine agent, micro-turbine agent, LAES agent, and
micro-grid coordination agent. The power grid agent is responsible for retrieving the
day-ahead price information, and the load agent is accountable for forecasting the day-
ahead load curves. The details of the remaining agents will be explained in Section

4.3.2.
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Figure 4-3 Schematic diagram of the micro-grid with multi-agent system.
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4.3.2 Agent task description

The section explains the task details of the wind turbine agent, the photovoltaic agent,

the LAES agent, the micro-turbine agent, and the micro-grid coordination agent.

4.3.2.1 Wind turbine (WT) agent
The WT agent is responsible for supervising the active operation status of wind turbine
generator, sending cost coefficient signal and WT output power Pl to micro-grid

coordination agent at each time period. The WT output power is formulated according

to (Soroudi et al., 2012):

. cut cut
(0, if we < Wi Or W = Woyt

cut
Wt—w; . t
Pyr(w) = { ——— P if 0t swiswratea (4.10)
WDrated~Pin

rated : cu
PWT i lfwrated < We < Woyut

where w{t and wS are the cut-in and cut-out wind speed respectively. wyg¢eq and

PjAted are the rate speed and power of WT units respectively. w, is the wind speed at
time t, whose probability distribution can be modelled with Weibull probability density
function (Aghbalou et al., 2018):

k jw, we\k

PDF (w,) = Z(T)H e~ (%) @.11)

where k € (0,0) and ¢ € (0, ) are the shape and scale parameters respectively for

Weibull distribution.

4.3.2.2 Photovoltaic (PV) agent
The PV agent directly supervises the active operation status of PV arrays and reports
the operation cost coefficient and PV array output power PS, to the micro-grid

coordinated agent. PV array output power is formulated with Eq. (4.12) (Homer Energy,
2016):

Gr

Pgltllt = P;“}tedfpv (G > [1 +a, (Tc - TC,STC)] 4.12)

T,STC
rated

where Py ““ and f,,, are the rated power and derating factor of the PV array units

respectively. Gr is the solar radiation incident on the PV array units, and G sr¢ is the
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incident radiation at the standard test conditions. @,, is the temperature coefficient of
PV power. T, s is the PV cell temperature at the standard test conditions. T, is the PV
cell temperature, which can be calculated with Eq. (4.13) (Duffie & Beckman, 2013;
Homer Energy, 2016):

T —T,
¢,NOCT a.NOCT> (1 N ) (4.13)

TC :Ta(t)+GT( Ta , ;
apsor

Grnocr
where T,(t) is the ambient temperature. T yocr is the nominal operating cell
temperature (NOCT). T, nocr and Gr yocr are the ambient temperature and solar
radiation under the NOCT respectively. 7. is the conversion efficiency of PV array
units. T is the solar transmittance of the cover of PV array units. @gp0.p 1S the solar
absorptance of the PV array. The final PV output at time t is calculated with an efficient

coefficient 7, to PSYt:

Py = NinyPpy* (4.14)

The solar radiation incident is modelled with the Beta distribution (Monteiro et al.,

2018):

I'a+p)

ORI

(Gr)* (1= Gp)P? (4.15)
where I'(*) is the Gamma function (Wahbah et al., 2022), a,§ € [0, =] are shape

parameters for Beta distribution.

4.3.2.3 LAES agent

The LAES agent is responsible for supervising the active operation status of the LAES
plant and reporting the operation information to the micro-grid coordination agent. The
operation information includes charging phase, storage phase, and discharging phase
information. During the charging phase, Kapitza cycle acts as a recuperative process to
liquefy air and charge the cryogenic energy storage with compressors and cryo-turbines
(Tafone et al., 2019). The efficiency of charging process is specified in Eq. (4.16).
During the storage phase, the level of cryogenic energy storage is measured by state-
of-charge (SOC) balance Eq. (4.17), considering the energy loss in the storage phase
with Eq. (4.18). During the discharge phase, the liquid air from the tank is pumped out
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by a cryogenic pump and regasified to ambient temperature. The high-pressure air is
further heated up by the thermal storage to drive power turbines (Morgan et al., 2015).
The final discharge power is calculated by Eq. (4.19) and Eq. (4.20) with consideration

of the efficiencies of cryogenic pumps and power turbines.
Pen-final ) = Nkapitza * Pen ®) (4.16)

SOCpLags(t) = SOCL4ps(t — 1) + Pep—finai (t) — Pais—finar (1)

4.17)

— S0C{5%s(1)
SOCI5%35(t) = Vioss - SOCLaps(t) (4.18)
Poimp (8) = Neryo—pump * Pais (£) (4.19)
Puis—finar (£) = Neurbine * Poump (£) (4.20)

In addition to the charge, storage, and discharge information listed above, the LAES
agent also sends the operational constraints to the micro-grid coordination agent.
Constraint (4.C.1) and (4.C.2) specify the range of charging and discharging ranges of
LAES unit, where x(t),y(t) € {0,1}. Constraint (4.C.3) prevents the LAES plant
charges and discharges at the same time at the cryogenic tank. Constraint (4.C.4)

indicates the minimum and maximum range of SOC at each time step .

0 < Pp(t) < PR -x(t) 4.C.1
0 < Pys(t) < PTO% . y(t) (4.C.2)
x()+y@) <1 (4.C.3)
SOCMHI < SOC, 455(t) < SOCTEX (4.C.4)

4.3.2.4 Micro-turbine (MT) agent

The MT agent is responsible for sending the cost coefficient of MT generation unit and
micro-turbine specifications, including Constraints (4.C.5) and (4.C.6), to the micro-
grid coordination agent. Constraint (4.C.5) and Constraint (4.C.6) indicate operational

limits and ramping limits of micro-turbine units respectively.

58



P < Plyr < Pif™ (4.C.5)

AP < P — Phzt < AP (4.C.6)

where Py and Py#* are the minimum and maximum generation output limits. APy

and AP are the minimum and maximum ramping limits.

4.3.2.5 Micro-grid coordination agent

The micro-grid coordination agent is responsible for optimising objective function Eq.

(4.21) with operational information from other agents.

24

I'= (Emr * Poyr + &wr - Piyr + &pv - Phy + &pags * |Plags| + A
t=1

4.21)

’ P;rid)

where I' denotes the system operation cost; &y denotes the operating cost coefficient
of micro-turbines; Pf;; denotes the output power of micro-turbine at time t; &y
denotes the operating cost coefficient of wind power generation; P, denotes the
output power of wind power generation at time t; &py denotes the operating cost
coefficient of photovoltaic power generation; Pj, denotes the output power of
photovoltaic power generation at time t; ;455 denotes the operating cost coefficient of
LAES; P} ¢ denotes the charge and discharge power of LAES at time t, when Pf,z¢ >
0, it is considered that the LAES is in the discharging mode, when Pf s < 0, the LAES
is in a charging state; A, denotes the market price of electricity at time ¢; P;ird denotes
the tie line transition power at time ¢, when P;ird > 0 the micro-grid purchases power

from the upper grid.

Once the objective function Eq. (4.21) is established, the micro-grid coordination agent
considers decision-makers' risk preferences, including risk-averse and risk-taking
options. Risk-averse decision-makers are concerned with the system robustness that can
be quantified with the robustness function of IGDT. The robustness function value
a(P, Caperse) represents the maximum uncertainty level corresponding to the risk-
averse cost target Cyperse. On the other hand, risk-taking decision-makers aim to spend

as little cost as possible to keep the system running smoothly. The decision is based on
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opportunity function, where the opportunity function value [?(P, Ctaking) represents

the minimum level of uncertainty under the risk-taking cost target Ciaxing-

e Problem formulation with risk-averse decision-makers
For risk-averse decision-makers, the micro-grid coordination agent considers the
uncertainty of electricity prices to establish a robustness function for the micro-grid
system. According to the uncertainty model Eq. (4.2), the high market electricity price

can be expressed as:

=0+ a)l, (4.22)

Substituting Eq. (4.22) into the operating cost function Eq. (4.21):

24

Taverse = Z(fMT(Pf/IT) + Ewr (Piyr) + Epy (PEY) + ELaps (Plags) + (1 + a)A, - P;rid) (4.23)
t=1

Substitute the given maximum cost target C,perse into Eq. (4.23):

a(P, Caperse)

_ Z?il (gMT (PAEIT) + 'EWT(PIZ/T) + gPV (Pit’V) + gLAES(PIfAES) + /itp_;rid) B Caverse (424)

- 24 3 pt
_thl AtPgrid

Caverse 18 the target system cost that risk-averse decision-makers are willing to pay. As
explained in Section 4.2.1, the principle of risk-averse strategy is to obtain the
maximum robustness function value @(P, Cyperse) under the cost target Cyperse. the

micro-grid coordination agent optimises the following optimisation problem (4.25):

A (fMT(PI\t/lT)"'fWT (Plyr)+épv(Phy)+§LaEs(PLags) +itpérid>_caverse
~ X221 AtPgriq

Maximise { b (4.25)

The optimisation is subject to Constraints (4.C.1) to (4.C.6), as well as (4.C.7) and
(4.C.8):

Piir + Plyr + Ppy + Plaps + Pgria = Ploga (4.C.7)
Pori < Phria < Poey (4.C.8)

e Problem formulation with risk-taking decision-makers
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For risk-taking decision-makers, the micro-gird coordination agent aims to minimise
the opportunity function value ,[?(P, kaing), which solves the minimum fluctuation
range of electricity market price. According to uncertain model of IGDT, the expression

of low market electricity price can be expressed as:

le=(1—a)l, (4.26)

Substituting Eq. (4.26) into operating cost function Eq. (4.21):

24

Laking = E(fMT(Pz\t/zr) + Ewr(Pryr) + Epy (Phy) + ELaps(Plags)
t=1

(4.27)
+(1- a)/it ) Pgtrid)

Substitute the given minimum cost target Cyqxing into the Eq. (4.27):

a(P: Ctaking) =

pyras) (fMT(PAt/lT)+5WT(Pxﬁ/T)+5PV(P5V)+5LAES(P5AES) +itpgtrid>_ctaking
Y321 APy

(4.28)

Then, the micro-grid coordination agent solves the optimisation problem (4.24):

Y3 APt

Minimise {2%‘;1 (fMT(PﬁiT)"'fWT(Pxﬁ/T)+fPV(P1gV)+fLAEs (Pfags) +ztpgtrid>_ctaking
grid

} (4.29)

Subject to Constraints (4.C.1) to (4.C.8)

Subsequently, the micro-grid coordination agent uses STA to optimise the optimisation

problem (4.25) or (4.29), based on the risk preference of decision-makers.

4.4 Case study

In this chapter, the optimisation of micro-grid operation strategy with LAES is
formulated under different target costs while considering the uncertainty of market
electricity prices. The micro-grid system analysed in this case study is a grid-connected
one. It comprises a photovoltaic system, a wind power system, a micro gas turbine
system and a LAES system. In the case of the LAES system, it is assumed that the

pressure ratio of the compressor and expander in each stage remains constant.
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4.4.1 Data preparation

The predicted market price of electricity is shown in Figure 4-4. This chapter assumes

that the electricity price sold to the grid is equal to the electricity price purchased from

the grid. The system parameters are presented in Table 4-1.

Forecasted market electricity price ($/MWh)
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Figure 4-4 Forecast market electricity price for IGDT-STA case study

Table 4-1 System specifications of the micro-gird system

Parameter Value Parameter Value
WT system LAES system
pated 3000 kW pax 5 MW
widt 3ms! pmin -5 MW
wSHL 25 ms! socn%s 20 MW
Wrated 13 ms1 socmin 0.5 MW
Swr 0.029 $/kWh NKapitza 85 %
PV system Neryo—pump 80 %
P;gted 3000 kw Nturbines 80 %
fov 80 % Vioss 2%
ap -0.5 ¢LAES 0.025 $/kWh
Tenocr 47 °C MT system
T, src 25°C Py 3000 kW
Ne 13 % Py 500 kW
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T 0.0148 MW m-2K-1 Enir 0.044 $/kWh

Aabsorb 30 % Other parameters
Ninv 90 % arid 3000 kW
Epy 0.026 $/kWh ;;gg -3000 kW

The efficiencies of LAES plant are obtained from LAES performance research (Borri
et al., 2017; Tafone et al., 2019). The load power data comes from a micro-grid in
Northwest China, as shown in Figure 4-5. The results of wind power and photovoltaic

power generation are shown in Figure 4-6.
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Figure 4-5 Power load in IGDT-STA case study
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Figure 4-6 The output power of PV and WT in IGDT-STA case study

4.4.2 Risk-neutral results

As illustrated in Section 4.2.3, the first stage of IGDT-STA method is to obtain the risk-
neutral strategy. In other words, the robustness and opportunity function values are 0
(@ = B = 0). This risk-neutral strategy result is shown in Table 4-2, which is obtained
by assuming the realised electricity prices are equal to the predicted electricity prices.
To demonstrate the effectiveness of the proposed IGDT-STA method, this case study
uses the Genetic Algorithm (GA) as a reference optimisation technique. In addition,
this case study also compares the risk-neutral strategy with the stochastic method and
Monte Carlo method, as demonstrated in (Mirzaei et al., 2021; Powell & Meisel, 2016;
Yan et al., 2021)

Table 4-2 Expected operation cost comparison under risk-neutral strategy

IGDT-STA IGDT-GA Stochastic Monte Carlo
method method method method
Expected operation
7848.0 9386.6 8748.7 8740.3

cost ($)
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The hourly expected operating costs based on the four methods are shown in Figure 4-
7. It can be seen from the figures that the expected operating costs of the IGDT-STA
method are mainly reduced during the 13™ and 15™ hour of the day compared with the

remaining three methods.
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Figure 4-7 Hourly cost of (a) IGDT-STA ; (b) IGDT-GA; (¢) Stochastic method; (d)
Monte Carlo method.

The micro-grid operation strategies corresponding to the four methods are shown in
Figure 4-8 (a) to (d) respectively. With respect to the utilisation of LAES plant, all four
operation strategies actively use the storage facility throughout the day. It can be seen
from Figure 4-8 (a) that IGDT-STA operation strategy changes LAES in the morning
and discharge the stored power during the peak load noon and evening time. In addition,
compared with the IGDT-GA method, the operation strategy based on the IGDT-STA

method has more output of the micro gas turbine, thereby reducing the purchase of

electricity from the main grid.
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Figure 4-8 Micro-grid operation strategy based on (a) IGDT-STA; (b) IGDT-GA; (¢)
Stochastic method; (d) Monte Carlo Method.

4.4.3 Risk-based results

The robustness @(-) and opportunity 8(-) function explained in Section 4.2.1 were
employed to form the risk-averse strategy and risk-taking strategy. The results of risk-
averse strategy and risk-taking strategy with different target cost is shown in Figure 4-
9. A risk-taking decision maker aims to maximise the opportunity function with a
smaller target cost than the risk-neutral cost. The trend of S (Ctakmg) with respect to
Ctaking 18 plotted in Figure 4-8 (a). In this case study, the cost step is set to 3% of the

risk-neutral operating cost, i.e. $281.60 for the IGDT-GA method and $235.44 for the
IGDT-STA method.

It is evident that E(Ctaking) increases with risk-taking targe cost Cyqping decreases for
both IGDT-STA and IGDT-GA. Upon comparing the results of IGDT-STA and IGDT-
GA, the IGDT-STA method yields a lower E(Ctaking) than IGDT-STA. For instance, at

an opportunity cost of $7612.0, the IGDT-STA method boasts an opportunity coefficient
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0f 0.1399, while the IGDT-GA method has an opportunity coefficient of 0.3744. These
results show that IGDT-STA could obtain a risk-taking strategy with less uncertainty
compared to the IGDT-GA method.
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Figure 4-9 Opportunity curve and robustness curve with IGDT-STA and IGDT-GA (a)

Opportunity cost curve; (b) Robustness cost curve.

Figure 4-8 (b) shows the relationship curve between the robustness cost and the
robustness coefficient &(Cyperse), Which can be obtained based on optimisation
problem (3.20). In this case study, the cost step is set to 3% of the risk-neutral operating
cost. It is evident that the robustness coefficient rises &(Cgyerse) as the robustness cost
increases, regardless of the methodology employed. This suggests that the robustness
of the system is enhanced with increased operation costs. Notably, the proposed IGDT-
STA approach displays greater robustness than IGDT-GA. For example, at a robustness
cost of $10089.0, the IGDT-STA method has a robustness coefficient of 0.3741, while
the IGDT-GA method only has a coefficient of 0.0567. Thus, if the decision-maker
favours risk aversion, they can make resilient choices by accepting higher operating

costs.

4.5 Chapter summary

LAES systems are promising energy storage solutions, as they are not limited by
geographical conditions and have low environmental impacts. This chapter researches
the optimal operation strategy of a micro-grid with LAES. When formulating the
optimal operation strategy to reduce the operation cost of the system and considering
the impact of the uncertainty of the market electricity price, a day-ahead optimal

operation method of micro-grid with LAES based on IGDT-STA is proposed. The

67



method is mainly divided into two stages. Firstly, the STA method is used to optimise
the risk-neutral strategy. Then, based on the obtained operation strategy, the STA

method is used to optimise the robustness and opportunity function in the IGDT method.

The case study results show that compared with the IGDT-GA method, the stochastic
method, and Monte Carlo method, the IGDT-STA method obtains a lower system
operation cost of $7848. In the second stage, the IGDT-STA method shows a higher
robustness coefficient and lower opportunity coefficient than IGDT-GA, offering
stronger robustness and better opportunity. Future research could further investigate the
following two directions: 1) The information gap decision theory is only used for the
uncertainties in the market electricity price in this study. Future studies could
investigate the potential applications of IGDT on the coupled uncertainties from
renewable energy generation and market electricity price. 2) This chapter treats liquid
air energy storage as a steady system. Future research could treat the LAES system as
a dynamic system to investigate the dynamic performance of compressors and

expanders between different dispatch strategies.
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Chapter 4

5. Addressing interactional complexity in
decentralised prosumer aggregation

market?

5.1 Chapter introduction

The widespread adoption of distributed energy resources (DER) has led to increased
applications of decentralised decision-making in MES. Major forms of DER include
solar PV, wind turbines, and EVs when V2G technologies are considered (Jain et al.,
2017; Pan & McElhannon, 2018). Such DER technologies enable users to produce
electricity for self-consumption and sell the excess electricity to peers or upstream
electric companies, i.e., becoming so-called prosumers. As a result, the electricity flow
is no longer unidirectional but bidirectional. As shown in Figure 5-1, the increasing
penetration of DER units on low and medium-voltage networks transformed how

electricity is generated, transmitted, and consumed (Guerrero et al., 2020).

3 This chapter is adapted from Cheng, X.7, Yao, R., Postnikov, A., Hu, Y., & Varga, L. (2024).
Decentralized intelligent multi-party competitive aggregation framework for electricity

prosumers. Applied Energy, 373, 123860. https://doi.org/10.1016/j.apenergy.2024.123860

fAuthors have equal contributions
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Figure 5-1 Power system transitions. (a) schematic drawing of the unidirectional
power flow with consumers under the current power system structure; (b) schematic
drawing of bidirectional power flow with prosumers for future power system

structure.

The physical decentralisation is paralleled by a digital one. The growing popularity of
Internet-of-Things (IoT) technologies enables entities in the power system to
communicate with each other through bidirectional information flow (J. Jin et al., 2014).
For example, prosumers not only can communicate with electric companies, but also
communicate with peers via the Internet. More importantly, IoT technologies provide
computation resources to users, enabling local data processing and storage. The
computational ability provided by [oT technologies makes edge computing an emerging
computation technique in the energy system (Pan & McElhannon, 2018). Edge
computing can provide low-latency communication, which is crucial for decentralised

decision-making (Xiong et al., 2020).

With these two fundamental transitions, multiple electricity aggregators can compete
to maximise profit while prosumers form coalitions to maximise their utilities. The
resulting interactions can be naturally modelled as a multi-leader-multi-follower game
(MLMFG), where each aggregator is a leader and each prosumer is a follower. Chapter
5 achieves Objective 2 by employing the MLMFG theory and demonstrating that its

equilibrium can still be solved in a decentralised manner through a novel graph-based
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consensus algorithm executed on edge devices. The contributions of Chapter 5 are

summarised as follows:

e Proposed an intelligent aggregation framework with a multi-aggregator
MLMFG model, which can be solved by a novel graph-based consensus
algorithm. The multi-aggregator MLMFG model has been proven with the
existence and uniqueness of the solution to the model. The novel graph-based
consensus algorithm has been proven to converge with a linear convergence rate.

o Demonstrated the applicability of the proposed intelligent aggregation
framework in a case study. The proposed algorithm is also compared with state-
of-the-art algorithms using benchmark analysis. The proposed algorithm has

less communication complexity than the state-of-the-art algorithms.

The rest of this chapter is organised as follows: Section 5.2 explains the mathematical
formulation of the intelligent aggregation framework. Section 5.3 provides the
simulation results of the proposed framework and algorithm. Section 5.4 concludes this

chapter.

5.2 Intelligent aggregation framework

The proposed decentralised intelligent aggregation framework is shown in Figure 5-2.
In the proposed framework, a prosumer is regarded as a household with ownership of
the DER units. Each prosumer is assumed to have the computational ability in a
standalone decision-making module, such as edge computing embedded smart meters
(Sirojan et al., 2019). The prosumers and aggregators are able to send bidding and
asking signals to each other through internet protocols. The Distribution System
Operator (DSO) also broadcasts the network constraints to the aggregators as well as

prosumers.

During market interactions, a prosumer cooperates with other prosumers to maximise
the joint welfare of the prosumers. In the meantime, an aggregator competes with other
aggregators to maximise the expected utility by changing to the asking price (also
referred to as the offer price). Thus, such optimisation problems are a bi-level
optimisation problem of an MLMFG. The MLMFG model can be subsequently solved
by the proposed graph-based consensus algorithm. The optimised result implies the fact

that both levels of the market reach equilibrium at the same time. Hence, the system
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reaches a co-equilibrium state. It should be noted that aggregators are responsible for

two stages of actions, where aggregators first accumulate electricity from prosumers

and then sell it to the wholesale market.

Day ahead market

Day-ahead Aggregated electricity
market price volume
Upper-level game A P Competitive game “
< < . o o > of aggregators
Aggregator 1 Aggregator 2 Aggregator M
Asking prices from Trading electricity volume
each aggregator from each prosumer Reach co
Lower-level game
Prosumer 2 Prosumer 3 Cooperative game
8- A of prosumers
[ | st
Prosumer 1 iL N g u o Solved by
_:.:_ Edge: <
I
L Edge @
computing @ @
unit Graph-based consensus
Node: Noden ProsumerN algorithm

Figure 5-2 Intelligent aggregation architecture.

5.2.1 Bi-level market equilibrium model

-equilibrium

This chapter proposes a unified bi-level market co-equilibrium model for decentralised

intelligent multi-party aggregation with DER-enabled prosumers. The co-equilibrium

model is proposed for a distribution network with M aggregators and N prosumers. The

volume of electricity that prosumer; decides to sell to aggregator; is denoted as x; ;.

The volume of electricity x; j can be expressed as a set {x; j Ix eR,i =1,2,..,M; j =

1,2...,N}. This trading volume of electricity in the distribution network forms a real-

valued matrix of X € RM*N_ The volume of electricity that aggregator; receives is

denoted x;, = [x;1,X;2, ... X; y], Which is the it" row vector of matrix X. The volume

.. . . T
of electricity that prosumer; decides to sell is denoted as x, ; = [xl‘ 2 X2 jy e Xn, j] ,

which is the j* column vector of X.
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The business model of aggregators is important because it reflects the motivations
behind aggregators' desire to facilitate electricity aggregation. In the proposed market
model, aggregators’ revenue accrues when they sell aggregated electricity in the day-
ahead market at the current day-ahead price. It is also important to consider the cost of
aggregation. This chapter assumes that the aggregators are the price-takers of the day-
ahead market, which means that the aggregators’ decisions do not affect the day-ahead
market price. More specifically, the day-ahead prices for input parameter for the
aggregation framework. The aggregation cost should consider two components:
variable cost and fixed cost (Burger et al., 2017). As a result, the utility function of

aggregators is formulated as Eq. (5.1) and Eq. (5.1.a):

arg max C DA,bid pro,ask .
,1‘1.’;", Z(Ai U=y V) X i=12,..M (5.1)
. =

— k
proask _ jproask _ Pfo,as
s.t. A < A = Ay (5.1.a)

where A?A‘bid is the aggregators’ bidding price at the day-ahead market, making

DA,bid . .
A x; j the revenue for aggregate x; ; amount of electricity. As aggregators are price

takers in the day-ahead market, the /1? Abid is fixed in the bi-level market model. The

decision variable Af;o'aSk is the asking price of aggregator; promise to pay

prosumer;, which makes Af]r.o‘as"xi, ; the variable cost of aggregators. The fixed cost

component is parameterised by a fixed-cost coefficient y. In Eq. (5.1), aggregator;
aim to maximise the utility, which is the total profit aggregator; can make for

providing the aggregation services.

Apart from the utility function, the optimisation problem of aggregators also includes

. —pro,ask
the constraint (5.1.a). &?’;o"”k and A; are the lower and upper bounds for the

asking price at the prosumer-aggregator market. The lower bound &f;o’aﬂc is set to

.1: —pro,ask
ensure the profitability of aggregators and the upper bound 4; ; is to prevent excess

profits of aggregators. The price bounds are pre-determined by the regulatory body to

ensure the competitiveness of the market.

Eq. (5.2) indicates the utility function of the prosumer, which consists of three terms.

The first term Af']r.ox*, j represents the payments received from aggregators, which is the
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revenue for prosumers. On the other hand, this chapter treats battery degradation as
utility loss for prosumers to participate the aggregations. The battery degradation model

is based on the power law model in (C. Liu et al., 2019).

: e ol

Xej\ 2 RT

arg max o, ]]TAe<R_T]>C T d0Ae

X, j Lj *j *J oxy; (5.2)

i=1 ’

j=12,..N

S.t. Xy j < f*’j (523)
xPA <x, <" (5.2.b)

where A is a constant. R and T are the gas constant and temperature, respectively. § is
the activation energy coefficient. ¢ is the number of battery cycles from the initial state
of the battery. z is the power law factor. The third term is a first-order utility derivative
term to ensure the convergence of the bi-level game. The optimisation problem of
prosumers also includes the constraint (5.2.a) and (5.2.b). Constraint (5.2.a) is
constrained by battery discharge rate, and it indicates the upper bound of x, ;.
Constraint (5.2.a) can be treated as the column-wise constraint on the trading electricity

matrix X. In addition, the trading electricity matrix X is bounded column-wise by the

xP4, the minimum bidding size at the DA market, and f:lf twork, the network constraint

a2
is informed by the distribution system operator. The proof of the market co-equilibrium

model is demonstrated in the rest of this sub-section.

The existence and uniqueness of the optimal solution ensure that the aggregation
process will reach a co-equilibrium state where the utility values of both aggregators
and prosumers are optimal. y and A are defined as the closed convex feasible sets of
the aggregate volume matrix X € RM*N and ask price matrix A € RM*VN  respectively.
A point (X*,A") € (x,A) is the bi-level optimum solution if it can meet the two

inequality requirements (5.3) and (5.4) simultaneously:

N N
DA,bid pro,ask* DA,bid pro,ask
Z(Ai —Aij x> z(ﬂi —Ai; )i (5.3)
j=1 j=1
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B ('Bx:J)Cz
Xy j z RT
Z/l"’,m : HTAe< ) crdde L

., Bx. ,.>Cz (5.4)

|. C
S, - el

i=1

Before proving the optimal point exists in MLMFG, the following notation is
introduced to enhance the readability of the proof. Eq. (5.5) and (5.6) represent the

second and third term of the prosumers’ utility functions. L; (x*, ]-) is close and convex

with a minimum feasible solution. 9]- (x*, j) can be regarded as the first-order derivative

OL(x, ;
of Eq. (5.5): 6; (x*,j)= %}’)
(e
Lj(x*,j) — Ae\ KT (5.5)
(5
ox, jAe (5.6)

Hj (x*,j) = aXi]_

Assumption 1. The utility function of each prosumer should satisfy the Lipschitz

gradient continuity. There exists an upper bound value k satisfying that:

M M
pro _k+1 T k+1 pro _k T k
Vx*']_ {z /11.’]. Xej — I Lj(x*,j } — Vx*'j {2 /11.’]. Xej— I Lj(x*'j)}

i=1 i=1

(5.7)

< k(G —xf))

where Vx*j is the first-order differential operator. A < B means A — B is at least a

positive semi-definite matrix.
Proof

Converting the concave function of the optimisation problem represented by (5.1) and
(5.2) in MLMFG to a convex function can respectively obtain the upper-level
optimisation problem represented by (5.8) and the lower-level optimisation problem
represented by (5.9). (5.8.a) is a general representation of the constraints of aggregators

(5.1.2). Similarly, (5.9.a) represents the constraints of prosumers (5.2.a) and (5.2.b).
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Aggregators’ optimisation problem:

. N
arg min .
fpm - Z(A{?A"’ld — Agj"'“sk)xi_j, i=12 ..M (5.8)
1,* j=1
sit. co(A°)€EC, a=12,..A (5.8.2)

Prosumer’s optimisation problem:

M
arg min .
O A 4 UL (x,) ~ TG (xey), = L2, N (59)
' i=1
S.t. db(x*J) (S Db! b= 1,2, ..B (593)

The inner loop in MLMFG can be regarded as an optimisation problem with a Gauss-

Seidel ADMM. It should be noted that the aggregator;’s payment to prosumer;,

A7 are fixed during the inner loop.

M
arg min ]
o Ay L ()~ 0 (), =12, (5.10)
i=1
st I, (A7°), a=12,..4 (5.10.2)

s.t. Ip,(x.;), b=12,..B (5.10.b)

The lower-level optimisation problem (5.9) can then be transferred to the augmented
Lagrangian function with u, = [uf,u3,..,uy] and p, = [, w1, ...,u?{] as

Lagrangian multipliers for inequality constraints:

k+1_argmin % s
x*’j = x*,j LO(x*,jIHleZ'/l) (511)

Based on the Assumption 1, the utility function reaches the optimal value when

OLo(x. j b5l A")
6xl-_j

= 0. Thus, for any index pair i and j at the k + 1 step, Equation (5.12)

1S obtained:
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6/117”’ fj’l AL (xk+1) oL (x*]) aukH (HDb(ka )
ox;j + 0x;j 0x; + 0x; j

051, I 612

0x; j j

It has been proved that the inequality-constrained ADMM can restrict the solution
projected into the feasible domain of the indicator function. When k is sufficiently large,
the gradient of the indicator functions can be zero. When the gradients of the indicator

function vanish, then we can obtain the Eq. (5.13):

O xiyt oL (xkfY)  oLy(xk))

ox;;  0xj 0x; (5.13)

(x{fjrl - xlk]) can be multiplied by both sides of Equation (5.13) to obtain the Equation

(5.14);

Pty -ty = (- 2 e
l] v

0x; & 0x; Xij (5.14)

Based on the variational inequality in (M. Hu & Fukushima, 2011), Eq. (5.15) can be

inferred.

L, (xk+1) aL;(xi;) k1 —xk) > 0
ox; j 0x; j b7 (5.15)
Then
aAPTO 1k+1
J k+1 k
T”(xi,j —x(j) 20 (5.16)
Therefore
M N
aAfTO k+1
J Xij k+1 k.
ZZ dx;, (i) —x1;) 2 0 (5.17)
i=1 j=1
Recall first-order Taylor series of convexity of functions with Assumption 1:
flx+p)=f(x)+of(x)p (5.18)
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where p — 0, expand the function ¥ 12 -1f (xk“) into the optimisation problem

when xk]+1 - xk]
M N M N M N alpro k+1
Xij k+1 k
z z 4 Lj Ll - . axl-j ( b l']) (519)
i=1j=1 i=1j=1 i=1j=1 5

ME

N M N
pTO k+1 PTO k
ZA 221 Xij (5.20)
i=1

j=1

Il
N

i

Eq. (5.20) means the revenue of prosumers increases along the vector field. Since the
lower-level game is convex and bounded, the optimum of the lower-level game can be
achieved. In addition, the upper-level game is linear and bounded, and it can also reach
the optimum when the lower-level optimum is achieved. In other words, leader’s and
follower’s game can reach the global optimum if taking sufficient iteration steps. More
precisely, from the variational inequality Proposition 2.6 in (Hori et al., 2023),

convergence will reach the equilibrium point with:

pro .k
Vx*. ZA l]

Vi, - 1211”0 k] 'l\xfl-'\;11_xflv—1/ - (5.21)

N
|
j=1

Eq. (5.21) can be set as a stopping criterion of bi-level market convergence.

5.2.2 Solving the bi-level model with a graph-based consensus
algorithm

In this section, we propose a novel graph-based consensus algorithm to solve the
intelligent aggregation problem with inequality constraints. Section 5.2.2.1 explains

how the proposed algorithm considers inequality constraints. Section 5.2.2.2 describes

how the proposed algorithm operates on a graph.
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5.2.2.1 Considering inequality constraints

Since the standard version of ADMM is only suitable for decomposable convex
problems with equality constraints, in order to deal with optimisation problems with
inequality constraints, the ADMM algorithm is modified so that it can solve distributed

optimisation problems with both equality and inequality constraints.

min f(x) + g(2) (5.22)
s.t. Ax+Bz=c

Fix)<0i=12,..,p

Gi(z2)<0i=1,2,..,q

Modified optimisation problem (5.22) has variables x € R™ and z € R™, where A €
RP*™ x € RP*™, and c € RP. Note that there are countable convex inequalities that
constrain the feasible set of decision vectors x and z. The F;(x) and G;(z) are

extended-value indicator functions, which are equivalent to:

Fw={ =0, 523
(D=1 F >0 i=12..,p (5.23)
Con = 0, Gi<0 12

i(z)_ CD’ Gi>0’ L= ) I"'lq (524)

where F/: R"™ > RU o0 and G;: R™ - RU oo are closed, proper and convex. The

Lagrangian function of the reconstructed form is:

LO(x' Z, Mxl MZI/‘{)
= £ + 9(2) + p/2(IF, @I + IF5 I + -
+HIBI + (e F' @) + 020G @I + 16D (525)
4 |G @) + (i 6 (@) + p/2(l|Ax + Bz — c|?
+ {1, Ax + Bz — c)

For Eq. (5.25), F'() = [F1(), F2(), ..., ;)] and G'(1) = [G1 (), G2(), ..., Gg ()] are
the gradient of extended-value indicator functions F;(x) and G;(z) . u, =
(Ui, 1z, .., uz] and p, = [,ui’ ,,u;’ , ...,,uzl] are Lagrangian multipliers for inequality

constraints. A4 is the Lagrangian multiplier for equality constraint. Then, the iterative

body of ADMM is shown as below:
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x**1 = argmin(x, 2%, uk, uk, 2%) (5.26.a)

zF1 = argmin(x**1, z, uk, uk, 2%) (5.26.b)
it = pf + pF' (x) (5.26.c)
pEtt = pf + pG' (2" (5.26.d)
AL =2k + p(Ax + Bz — ¢) (5.26.e)

However, there is a problem about the gradient of indicator functions of ||F; (x)||? and
||G{(2)]]%. Due to the property of a normal cone, it is not possible to get sets of
subdifferentials of the group of indicator functions. The extended-value indicator

functions can be approximated to obtain gradients:

F;' (x) = max(0,F;(x)™),i=1,2,...,p (5.27)
Gl.' (x) = max(0,G;(x)™),i=1,2,..,q (5.28)

Then the difference of the function is solvable, the desired solution of the ADMM

functions can be solved in the following sub-sections.

5.2.2.2 Convergence analysis

On the analysis that ADMM can be equivalent to the Lyapunov function in analytical
optimisation (Boyd et al., 2010) with a similar approach as (Giesen & Laue, 2016):

E_—Ypy,x — okn2 Xy, — o knz o Lygx — k2 k+1 _ 2
L T e e R ) L L

where k is the iteration time. When k — oo, the parameter (uX,uk,2%,) shows

incrementally stable behaviour.

Theorem 1. The duality theory claims that the relationship between primal solutions is

the solution to dual problems:

Lo(x, Z, ,Ll;, ﬂ;vﬂ*) 2 LO(X*,Z*, ,Ll;, ,Ll;, A*) (530)
where L is the Lagrangian function and x*, z* is the solution of primal.

Theorem 2. The theorem 2 states primal feasibility and convergence of the primal

objective function value:
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kliinict;orgk =0, (5.31.a)
kliinict;or’f =0, (5.31.b)
kliili;fk - (5.31.¢)
klii‘li;gk =g (5.31. d)

where 7, :== F/(x) and r, := Ax + Bz — c. The convergence of ADMM needs to be
identified when inequality constraints are involved, the proof can be obtained through
some lemmas. The proof is sketched as below, while similar lemmas without inequality

constrains can be found in the appendix of (Boyd et al., 2010).

Lemma 1. The dual variables X, u¥ are non-negative for all iterations, i.e., it holds

that u% > 0 and u¥ > 0 forallk e N

Lemma 2. The difference between the optimal objective function value and its value at

the (k + 1)%"iterate can be bounded as:

f(x") + g(z*) — f(x**Y) + g(zF)
< (g 1) + (A7, AxK L 4 BZR* — ¢) (5.32)

Lemma 3. The difference between the value of the objective function at the (k + 1)*
iterate and its optimal value can be bounded by linear form of i, 4, p.

Lemma 4. The absolute convergence of Lyapunov function Eq. (5.29):

gZ(IIu; — Wi 1? + g — pEl1? 4+ 12* = 2412 + pl|Bz**! — Bz||*)
k=0 o (5.33)

< Z(Vk _ Vk+1) < VO

k=0

The hold of Lemma 4 can be obtained from the first three lemmas. The convergence

of value ensures the convergence of ADMM with inequalities.
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5.2.2.3 The graph-based ADMM consensus algorithm

The communication networks can be understood as an undirected graph g(V, £), where
V ={1,2,..,P}is the set of nodes and £ € V X V/ is the set of edges. The cardinality
of this set is represented by P and E. An edge is defined as (i,j) € &, indicating that
nodes i and j can share information. The cardinality of P is denoted as |P|. To construct
the desired graph, each prosumer is assumed only to be connected with their
neighbouring prosumers within a certain distance because long-distance
communication can be energy-consuming. The system optimisation efficiency can be
improved by following a Hamiltonian path, which is a path that visits each vertex
exactly once (Rahman & Kaykobad, 2005). The existence of a Hamiltonian path in a
graph can be checked with a polynomial time, which is also known as the Non-
deterministic Polynomial complete problem (Oltean, 2008). In a prosumer-aggregator
network, the graph-based consensus algorithm searches this path on the constructed
graph, and the shortest Hamiltonian is employed to update the agents' utility functions

to minimise energy consumption.

Once finding the shortest Hamiltonian path in the path, each node with its neighbours
can be constructed as a subgraph, and then there will be | P| subgraphs in the system.
Two adjacent nodes in a subgraph can share information. When prosumers are equipped
with a local computing unit, the solution of the matrix X will be stored locally. Previous
researchers have proved that the optimisation in a subgraph can reach a global
equilibrium (Mota et al., 2013; Ye et al., 2020). In the optimisation process, a node with
updated information will share information with its neighbours, and then using the
graph-based ADMM algorithm can completely decentralise the process. The starting
point of the traversal can be any node in the Hamiltonian path. The co-equilibria point
of the lower-level game in the graph-based method can be defined as follows

(Makhdoumi & Ozdaglar, 2017; Mao et al., 2018; Mota et al., 2013):

min P p

X Spem fi (X205 %05)

s.t. 1 ® X = Y, (5.34)
IR | _

s.t. [x*‘j,x*'_j] = YJ

where ) is the Kronecker product. I indicated the connection of subgraphs. In each

(+1) _

iteration of the lower-level game, the optimisation step x, i
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arg min
ch*j Lo(x*, i u,(cp), MS’), A(p)) is conducted, and updated results will be shared with

the connected nodes. After each cyclic iteration in the Hamiltonian path, the matrix X
will be delivered to the aggregators. The aggregator will compete to maximise its own
utility in Eq. (5.1). The optimisation iteration will continue until the game achieves an
equilibrium point. The details of the graph-based ADMM algorithm are demonstrated

with the pseudocode shown in Algorithm 5-1.

Algorithm 5-1. Graph-based consensus ADMM

Input: the amount of electricity of each prosumer j = 1, ...N
Output: the matrix X , and the prices AP"° offered by each aggregator
Initialize: the randomised first-order utility derivative term, i = 1,..M,j =1,...,N;p « 0
While ¥, d(G;(xP) - G,(xP) < e
{Update the lower-level game}
For j from I to N:
L1. Search the followers’ game solution by graph-based consensus ADMM, updating
the primal and dual variables for the augmented Lagrangian function in
i d(Gi(x ™) = Gi(xf.)
L2. Sharing the local graph by connection matrix in the Hamiltonian path
L3. Update the incentive rewards
pep+1
{Update the upper-level game}
For i from 1 to M:
Ul. Update the transaction prices /175:0 for each aggregator
End

Figure 5-3 shows a schematic drawing of the proposed graph-based consensus
algorithm. Once the Hamiltonian path is constructed, a node with two adjacent nodes
can form a sub-graph to share the trading volume information through the private
communication link (yellow dash line). For example, node 5, with neighbouring node
4 and node 6, constructs a subgraph. Figure 5-4 shows prosumers sequentially updating

the x, ; along the Hamiltonian path (from left to right) with the progression of iteration

steps (from top to bottom).
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A sub-graph

Figure 5-3 Schematic diagram of the graph-based consensus algorithm.
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Figure 5-4 Iteration details of the graph-based consensus algorithm.

5.2.2.4 Convergence rate analysis

This section proves that the convergence rate of the proposed algorithm is linear.
Proof.

When step k is sufficiently large:
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Eq. (5.35) indicates the constraints for both levels can be satisfied when the step k is

sufficiently large. By applying convexity of —f (xf j) and Equation (5.19), it can be

obtained that:
M N M N
PINICOERPIPNICH
i=1j=1 i=1j=1
M N
+Zz f”(x”) xtj — xK) (5.36)
i=1j=1
1 M N
. 2
+ EZ Z v(xi; = xi)
i=1j=1

where y is a positive constant. The corresponding feasible constraints of both sides can
be added to both sides, which yields Augmented Lagrange functions. The Augmented
Lagrange function is the sum of all prosumers. By applying the Augmented Lagrange

function in Eq. (5.19), it can be obtained that:
L(x: 15 15 A7)
> L(xEj, uf, uf, 2%) + 1V||X — x*||? (5.37)
+ 1TV L(xE ), ik, uf, A9) (] — x5
With
L(x,z,puy, 1z A") = L(x", Z°, py, gz, A7) (5.38)
Then it can be derived to get:
L(xX", s piz, A7)
> argmin, {L(x, p, uf, 1) + 5 ! SVllx— xK||? (5.39)

+ ]]TVXL(xkl ﬂlyg:ﬂlzcvlk)(x - X )]1
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Then taking the derivative on the right gives:

IV L(x, pf, 1, A5 2 2y (L(x¥, pf, g, A¥) — L(x™, w15, 1) (5.40)

According to the convexity of Lagrangian Eq. (5.40), after substituting the convexity

of prosumers’ utility function, Eq. (5.41) can be derived:

L(x*, uf, uf, 2)
> L(xk+1 Hk+1 Hk+1 Ak+1)
= Mt x Y1z )
+ ]]TVXL(Xk+1,H§+1,H§+1,Ak+1)T(xk _ xk+1)]1
> L(Xk+1 #k+1 #k+1 /1k+1)
= Mt x Ytz ]

M N

z aL((Xk+1,ﬂ§+1,ﬂ§+1,lk+1)) y l aLj(xl!fj) (541)

+
axi]. k axi_j

i=1j=1
k+1
0Ly (xi;

axi_]‘

When £ is sufficiently large, Eq. (5.35) and the Karush-Kuhn-Tucker conditions can be
applied such that:

OLGe!, pie™t, w24+ ol (xiy) 9Ly (xif”
ax” axij axij (542)
ij , 5

Combining Eq. (5.41) and (5.42) into Eq. (5.40) yields:

L(x*, uk, uk, 2%)

%
> L(xkHL, plett ket akt1y 4 % (L(x™, k29

(5.43)
- L(x*, .u;' ,u;, /‘{*))
Then reformulating Eq. (5.43) yields:
LOc, @, w4 — L(x™, s, 15, 47) 1
k k k k * * * * = y < 1
L(X ,,le,,uz,/l )—L(X,ﬂx,ﬂz,/l) 1+2+ (544)

k

This allows the assertion that the proposed algorithm has a linear convergence rate.
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5.3 Intelligent aggregation application and discussion

In this section, the intelligent aggregation architecture is applied with an example of a
low voltage (LV) to medium voltage (MV) distribution network with synthetic

prosumer data.

5.3.1 Experiment setup

This case study is based on the open-source electric network benchmark database
named Simbench (Meinecke et al., 2020). The Simbench data is generated by clustering
the publicly available electric network data in Germany. We chose an urban LV
distribution network benchmark data from the Simbench database. The benchmark LV
distribution network consists of 59 buses, and we modified the bus data to incorporate
57 hypothetical prosumers with 5 PV units with a 5 kW power rating and 57 EVs. The
modified distribution network is shown in Figure 5-5. All EVs are assumed to be able
to have V2G capabilities. In this example, both PV and EV units are modelled as static

generators.

The day-ahead prices used in this case study are obtained from the Nord Pool UK day-
ahead price (Nord Pool, 2024), shown in Table 5-1. This chapter selects the 2nd, 8th,
14th and 20th hour for the day-ahead market price. Table 5-2 shows the parameters used
in the market co-equilibrium model, and Table 5-3 shows the detailed case study data

for the 57 synthetic prosumers.
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Figure 5-5 LV electric distribution network.

Table 5-1 Day-ahead price in the intelligent aggregation case study

Time 1 2 3 4 5 6 7 8 9 10 11 12
Price 0.0 006 0.06 007 006 006 008 010 0.10 0.08 0.07 0.07
(£/kWh) 70 4 7 0 5 0 4 0 3 0 4 2
Time 13 14 15 16 17 18 19 20 21 22 23 24
Price 0.0 0.07 0.06 006 006 007 008 0.10 0.09 008 0.07 0.07
(£/kWh)y 71 0 4 3 0 7 4 0 5 9 7
Table 5-2 Parameter setup in the intelligent aggregation case study
pro,ask —pro,ask DA —network

Parameter A7 ' Xis ik R T B 14
Value 0.04 0.06 10 8.314 0.05 0.1

€kWh) (gkwh) kw 200KV ok 300K O )

Table 5-3 Prosumers information in the intelligent aggregation case study

Prosumer _ Prosumer _
A 2 () T (Wh) A 2 c() Ty (kWh)
1 0305 0705 110 7 30 0.193 0.593 590 3.6
2 0.18 0.58 90 3.6 31 0.323 0.723 250 3.6
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3 0.157 0.557 80 3.6 32 0.102 0.502 630 7
4 0311 0.711 330 3.6 33 028 0.68 90 3.6
5 024 064 450 7 34 0.111 0.511 560 7
6 0.182 0.582 240 3.6 35 0.108 0.508 640 7
7 0266 0.666 130 3.6 36 0.262 0.662 340 7
8 0.221 0.621 440 7 37 0.203 0.603 530 3.6
9 0258 0.658 370 7 38 0.243 0.643 590 3.6
10 0.137 0.537 380 3.6 39 0.117 0.517 260 3.6
11 0.109 0.509 460 3.6 40 0.135 0.535 490 7
12 0333 0.733 540 7 41 0.253 0.653 540 3.6
13 0.231 0.631 560 3.6 42 0.191 0.591 100 7
14 0.334 0.734 150 7 43 0.234 0.634 570 7
15 0.259 0.659 420 7 44 0321 0.721 240 3.6
16 0.167 0.567 70 7 45 0.13 053 490 7
17 0.209 0.609 370 3.6 46 0.197 0.597 520 7
18 0.259 0.659 630 7 47 0.201 0.601 60 7
19 0.289 0.689 570 3.6 48 0.194 0.594 400 3.6
20 0.207 0.607 360 7 49 0.15 055 320 7
21 033 073 190 7 50 0.181 0.581 340 7
22 0.139 0.539 190 3.6 51 0.193 0.593 500 3.6
23 0.142 0.542 490 7 52 0.266 0.666 600 7
24 0.259 0.659 290 7 53 0.188 0.588 600 3.6
25 0.249 0.649 560 3.6 54 0346 0.746 170 7
26 031 071 590 3.6 55 0.237 0.637 460 3.6
27 0.225 0.625 100 7 56 0.182 0.582 140 3.6
28 0.273 0.673 560 7 57 0335 0.735 630 7
29 0.155 0.555 150 7

5.3.2 Results and discussion

The shortest Hamiltonian communication path was constructed for communicating

between neighbouring prosumers. For demonstration, a front-end web* was developed

4 https://tinyurl.com/3vv8ptzh
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to show the Hamiltonian communication path of 57 prosumers, which can be extended
to monitor real-time optimisation and information flow sharing. Each prosumer can
share their information with their neighbours in the network graph to reach a consensus
state. Figure 5-6 demonstrates how the information is shared in the network graph. The
network graph is plotted with the geo-tag data provided by Simbench. (a), information
flow during the optimisation process is demonstrated, where the nodes in the network
construct a Hamiltonian path. (b), subgraphs of node 21 and node 30 were highlighted
to indicate the information flow. For subgraph x,,, the trading volume information is
passed from node 28. Once node 21 optimises the local objective function, the trading
volume information is passed to node 24. Similar information flow can also be observed
in the subgraph x3(, where node 30 optimised the information provided by node 31.

Then, node 30 sends the optimised results to node 27.

(a) (b)

Figure 5-6 Visualisation of information flow in the network graph.

The result of the aggregation volume of 57 prosumers is shown in Figure 5-7, which is

the optimised result of the trading volume matrix X for the lower-level game. There is
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a considerable trading volume variance among prosumers due to the differences in their
energy assets. The differences include the maximum discharge rating of batteries, as
well as the health of the batteries. For example, prosumer 37 has an aged battery (¢ =
530) and a low battery discharge bound (X, 3,=3.6kWh). It is worth noting that the
trading volume at night is less than that during the day, which reflects a reasonable
game result, i.e., prosumers tend to sell their surplus electricity during the day and

charge it at nighttime, because electricity prices are usually higher in the daytime.
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Figure 5-7 Trading volume visualisation (a) the trading volumes at 2 am; (b) the
trading volumes at 8 am; (c) the trading volumes at 2 pm; (d) the trading volumes at 8

pm.

In addition to the trading volume, Figure 5-8 shows the game result for upper-level

game, where each aggregator competes with each other by determining the aggregation

pro,ask

offer price A; i . It can be seen from the figure that the price offered to prosumers

varied considerably among aggregators. For instance, aggregator 1, aggregator 2, and
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aggregator 3 offer to pay 0.044, 0.055, 0.043 £/kWh, respectively, to prosumer 52 at 8
am to aggregate the electricity. As a result, prosumer 52 receive £0.217 from three
aggregators. Subsequently, aggregators make £0.092, £0.0914, and £0.0919,
respectively, to facilitate the aggregation. Thus, aggregators are able to profit by
providing aggregation facilitation services. In addition, the profits of aggregators will
increase with more prosumers participating in the aggregation process. The following
section will conduct a benchmark analysis to prove the effectiveness of our proposed

algorithm.
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Figure 5-8 Aggregator offer price visualisation (a) the offer price at 2 am; (b) the offer
price at 8 am; (c) the offer price at 2 pm; (d) the offer price at 8 pm.

5.3.3 Benchmark analysis

Table 5-4 shows the comparison of the proposed algorithm with the Classical ADMM
(Boyd et al., 2010), Walkman ADMM (Mao et al., 2018), and RW-ADMM (Shah &
Avrachenkov, 2018). Following the same notation in Section 5.2.2.3, P,E are

represented as the total nodes and edges in a graph, where E is an integer in the range

92



of [P, P(P — 1)]. Q is denoted as the edge connection matrix, and py,ax(Q) is the largest
eigenvalue of the connection matrix. According to the proof (Deng et al., 2017), the
multi-block ADMM can achieve a linear convergence rate in convex problems.
Therefore, basic ADMM and its variants can achieve a linear convergence rate. If the

bounded error of an optimisation method with a linear convergence rate is expected to
be within (0,€), the iteration time is to O(In (%)) (Nocedal & Wright, 2006). The

convergence rate analysis of the proposed algorithm and benchmarks is shown in Figure
5-9. The proposed algorithm demonstrates a linear convergence rate consistent with the

benchmarks.

Table 5-4 Benchmark comparison of proposed algorithm with other ADMM

algorithms
Name Communication Convergence Privacy Graph
Complexity Rate Preserving  Structure
Classical ADMM 1 _
O(In (—) .P3) Linear No Complete
(Boyd et al., 2010) €
Walkman ADMM 1 PIn3(P) .
O(n(=).—— ) Linear Yes Random
(Mao et al., 2018) € (1-pmax(Q)
RW-ADMM
1 E? Fixed
ADMM (Shah & O(In(=).—————) Linear Yes
€ Py1 - pmax(Q) subgraph
Avrachenkov, 2018)
. 1 .
Proposed algorithm  Q(In (—) .P?) Linear Yes Cycle
€
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Figure 5-9 Convergence rate analysis of proposed algorithm and benchmarks.

Since all convergence rates are linear, merely measuring the convergence rate is not
enough. Another criterion for evaluating the performance of distributed algorithms is
communication complexity because graph structures have different communication
costs. The graph structure can be divided into four types, complete (Boyd et al., 2010),
random (Mao et al., 2018), fixed subgraph (Shah & Avrachenkov, 2018), and cycle (West,
2001). The complete cannot preserve the private information of prosumers since all data
will be shared. Random, fixed subgraphs and cycles can preserve privacy when
optimising. According to the graph theory (West, 2001) and computation method in
(Mao et al., 2018), the classical ADMM in a complete graph has a communication

complexity as O(In (é) .P3), with the communication complexity.

Walkman ADMM and RW-ADMM have a better performance, with

PIn3(P) 1 E? . . . .
——————) and O(ln(z) 'P—ﬁ)' When Hamiltonian path P is cyclic,

1
O(IH(Z) l (1_pmax(Q)) 1—pmax(Q

1 — pmax(Q) = 0(1 — cos 2?“) = O(Piz). In such a situation, our method can achieve a

communication complexity as O (ln (%) .ﬁ) =0 (ln (%) . PZ), according to

(Mao et al., 2018). When P is large but not limited to infinite, our method has lower
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complexity than the Walkman and RW-ADMM. When P is limited to infinite, the

Walkman ADMM can be more communication efficient as llim In3(P) « }lim P. For

the aggregator trading problem in a community, the scale of optimisation is usually a

limited number of prosumers, so our method can be considered more efficient.

5.4 Chapter summary

The penetration of DER and IoT technologies is transforming power systems'
generation, transmission, consumption, and decision-making. The power flow has
transitioned to bidirectional rather than unidirectional, but hierarchical control has not
changed. Moreover, decentralised decision-making architecture is emerging to
challenge the traditional centralised one in order to ensure data privacy and security and

to allow prosumers to optimise their utility.

Thus, this chapter proposes an intelligent aggregation architecture to facilitate a more
sophisticated energy transition. The architecture adopts distributed computing
technologies to compute a multi-leader multi-follower complete information game with
the novel graph-based consensus algorithm. This chapter proved the existence and
uniqueness of the MLMFG model and convergence analysis of the proposed algorithm
with a systematic convex approach. In addition, this chapter examined the applicability
of the proposed intelligent aggregation framework on a distribution network, where the
results showed the competitive game relationship among the aggregators. With a
benchmark analysis, the proposed algorithm is compared with the state-of-the-art
algorithm in terms of communication complexity, privacy preservation, and

convergence rate. It is shown that the proposed algorithm has a communication
complexity of O(In (é) . P?), which means the proposed algorithm performs better than

state-of-the-art algorithms in terms of communication complexity.

Future work could focus on inter-temporal decision-making and contractual agreements
in electricity aggregation. The optimal strategy of the aggregation process could
consider prosumers’ decisions on electricity storage. The prosumers with storage units
could store energy when the electricity price is low and sell stored electricity when the
price is high. The optimal strategy requires inter-temporal decision-making. Moreover,
the contractual agreement between prosumers and aggregators requires further research.

In the conventional energy system, the contractual agreement of generation,
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transmission, and distribution is centralised by the involved companies. In the
decentralised energy system, the contractual agreements between agents are dynamic
and hard to enforce. Blockchain technology could be a viable solution to establish

contractual agreements among decentralised agents.
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Chapter 6

6. Addressing evaluative complexity in
hydrogen carrier selection with an

integrated MCDM framework®

6.1 Introduction

The transition to sustainable energy systems has underscored green hydrogen as a
pivotal solution for reducing dependency on fossil fuels. Green hydrogen carriers
(GHC), including liquid hydrogen (LH:), ammonia (NHs), liquid-organic hydrogen
carriers (LOHCs) such as dibenzyltoluene (DBT) or toluene (TOL), and methanol
(MeOH), have emerged as pivotal energy vectors for large-scale storage and maritime
transport. However, each carrier has distinct techno-economic performance,
environmental impacts, and carrier efficiencies. The literature review in Chapter 2
shows that there is no GHC comparative study to systematically evaluate the GHCs,
integrating key decision metrics, such as economic viability, environmental impact, and
carrier efficiencies. Furthermore, the South Africa-UK hydrogen corridor is

unexamined in the existing literature.

This chapter achieves Objective 3 with a novel multi-criteria decision-making
framework on an unexplored international hydrogen supply chain. The contributions of

Chapter 6 are summarised as follows:

> This chapter is adapted from Yao, R., Li, Y., Varga, L., & Hu, Y. (2025). A multi-criteria
framework for evaluating hydrogen carriers for large-scale intercontinental exports. Energy

Policy, 210, 115040, https://doi.org/10.1016/j.enpol.2025.115040
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e Proposed a transparent MCDM framework that combines discounted techno-
economic model, ISO-compliant life-cycle assessment and carrier-specific
energy-efficiency metrics to produce a multi-criteria ranking of GHC options.

e Applies the framework to the previously unexamined South Africa-UK corridor,
quantifying carrier performance under realistic supply-chain configurations.

e Conducts a structured sensitivity analysis (seven scenarios) to identify the
dominant drivers of carrier ranking.

The rest of this chapter is organised as follows: Section 6.2 defines functional
boundaries of international hydrogen-carrier supply chains. Section 6.3 sets out the
mathematical formulation of the MCDM framework. Section 6.4 describes the South
Africa-UK case-study configuration. Section 6.5 presents and discusses the results.

Section 6.6 concludes this chapter.

6.2 System description

This section outlines the system definition of the large-scale international hydrogen
supply chain system, as well as the key components of each hydrogen carrier delivery
pathway. Figure 6-1 illustrates the hydrogen supply chain, which includes the exporting
country, the importing country, and the maritime transportation between them. Green
hydrogen is produced in the exporting country through water electrolysis using
renewable energy sources, such as solar photovoltaic systems or wind turbines. The
green hydrogen is then transported to conversion plants to be converted to GHCs. The
GHC:s are stored in the buffer storage before being loaded onto ships. The GHCs are

then unloaded in the importing country at the buffer storage and then converted back to

hydrogen.
Hydrog'en Carrier conversion Maritime Carner.
production transportation reconversion
” . - LH,
L fact LH; sh
et deully regasification
Ammonia L Storage Storage ——» Ammqnia
Water synthesis - LH, - LH, cracking Hydrogen
electrolysis - “NH; > Ammoniaship > -NH; NG supply
MStHancin ——, S MecH =40l " reconversion Mz
synthesis -TOL/DBT - TOL/DBT
{ - A
TOL/DBT ) oL /DBT l T ‘—» LOHC ship — T l—» [OL/DET,
conditioning reconditioning
TOL/DBT return

I B I

Exporting country Importing country

Figure 6-1 Schematic drawing of the international hydrogen supply chain.
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It should be noted that some GHCs, such as green ammonia and methanol, could be
delivered to the importing country directly without reconversion back to hydrogen, as
they are already traded commodities. This chapter considers the reconversion of all
GHC:s to hydrogen, ensuring that the functional units of all GHCs are consistent in the
LCA analysis. This practice can also be found in the literature (Dickson et al., 2022;
Lee et al., 2022; Noh et al., 2023a). The rest of this section will describe the key
technological components of each GHC delivery pathway.

The LH; delivery chain begins at the liquefaction plant, where green hydrogen is
liquefied under extreme conditions. Given that hydrogen is the lightest known element,
it must be cooled to cryogenic temperatures, approximately -253°C (Restelli et al.,
2024). The liquefaction process requires multiple refrigeration cycles to achieve the
desired state of liquefaction. After the production of LH», the LH> will be stored in the
cryogenic tanks, where the boil-off rate can vary from 0.1% to 0.3% per day (Arrigoni
et al., 2024). The maritime transportation of LH2> is carried out by dedicated LH> tanker
ships with refrigeration systems to reduce the LH> loss (Dickson et al., 2022). The LH>
will be regasified in the importing port, and the regasification process is less energy-

intensive than the liquefaction process (Dickson et al., 2022).

Ammonia is currently produced on an industrial scale using the Haber-Bosch process,
which combines hydrogen and nitrogen at high temperatures, ranging from 400 to
600 °C, and high pressure, from 200 to 400 bar (IRENA, 2022). The conventional
ammonia production method utilises natural gas or coal through gas reforming or coal
gasification. Green ammonia production, on the other hand, does not rely on fossil fuels
(natural gas and coal). Green ammonia is produced through an electrochemical nitrogen
reduction reaction using nitrogen and hydrogen, and is supplied by electricity. The
nitrogen required for ammonia production can be obtained directly from air with Air
Separation Units (ASU). The produced liquid ammonia is also stored in refrigeration
tanks, but the temperature requirement for liquid ammonia (-34 °C) (Lee et al., 2022)
is less extreme than that of liquid hydrogen. Ammonia cracking is the reverse of
ammonia synthesis. The ammonia cracking process requires energy input to break down

ammonia into pure hydrogen and nitrogen (IPHE, 2023).

In contrast to LH> and NH3, LOHCs are liquid at ambient temperature and pressure.

Thus, LOHCs can leverage existing petrochemical infrastructure, reducing upfront
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capital investments for specialised infrastructure. The LOHCs considered in this study
include dibenzyltoluene (DBT), toluene (TOL), and methanol (MeOH). During the
conversion process, DBT and TOL will be hydrogenated with green hydrogen to
perhydro-dibenzyltoluene (H18-DBT) and methylcyclohexane (MCH), respectively
(Raab et al., 2021). The hydrogen-rich carrier H18-DBT and MCH will be transported
to importing countries, where the hydrogen-rich LOHCs will be dehydrogenated to
release hydrogen. The unloaded LOHCs are then transported back to the hydrogenation
facility in the export country.

Methanol is also a type of LOHC, which is a globally traded chemical commodity (Ortiz
Cebolla et al., 2022). Green methanol differs from conventional fossil-based methanol
because it uses a carbon source (CO2) captured in exporting countries via direct air
capture (DAC) (Ortiz Cebolla et al., 2022). Green methanol can also leverage existing
transportation infrastructure, as it is liquid at ambient temperatures. The
dehydrogenation of methanol differs from that of DBT and TOL, as the carrier COs is
re-emitted back into the atmosphere without a carbon capture facility. The GHCs
covered in this section have various features that make the evaluation process complex.
Section 6.3 will outline the methodology for developing a multi-criteria decision-

making framework to rank hydrogen carriers.

6.3 Methodology

Figure 6-2 shows the proposed evaluation framework for GHC emissions in the
international hydrogen supply chain. This framework compares GHC performances in
three aspects: economic performance, environmental impacts, and carrier efficiency.
Thus, the proposed framework integrates techno-economic analysis, LCA, and
efficiency analysis results as criteria input for MCDM evaluation. Figure 6-2 also
demonstrates the parameters required for evaluation. The proposed evaluation
framework ranks GHCs based on the international hydrogen supply chain defined in

Section 6.2.
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Figure 6-2 Proposed evaluation framework for green hydrogen carriers.

The rest of this section explains the methodology behind the proposed framework.
Section 6.3.1 explains the techno-economic modelling methods. Section 6.3.2 explains

the LCA modelling methodology, and Section 6.3.3 explains the MCDM methods.

6.3.1 Techno-economic analysis

The economic performance of green hydrogen delivery pathways is evaluated with the
following performance indicators: LCOH and internal rate of return (IRR). A seminal
work on the levelised cost models highlighted the importance of considering the
discount rate and the inflation effect (Aldersey-Williams & Rubert, 2019). The
conventional undiscounted levelised cost models divide the total capital and operation
costs by the quantity of produced hydrogen. As a result, the conventional method does
not provide insight into the impact of the time value of cash flow and hydrogen delivery.
Therefore, this chapter adopts the weighted average cost of capital (WACC) as the
discount factor (Rezaei et al., 2024). WACC is a key financial metric representing the
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average cost of project financing, which is calculated from the capital investment

structure. WACC is defined as Eq. (6.1) in regular terms:

E D

norm _—_
WACC =gxpRetgiphe (6.1

where E is the value of equity and D is the value of debt. The first term % indicates

the proportion of equity financing and % represents the proportion of debt financing.

R, is the cost of equity that is required by the equity investors to compensate for risks.
R, is the cost of debt to pay out interest payments to debt financiers. To adjust for the

inflation effect, the real term WACC can be calculated as:

1+ WACC""”")

WACCTe™ = (
1+ infl

(6.2)
where infl is the inflation rate. By discounting with the real terms, the LCOH and IRR
results can reflect the intrinsic performance of GHCs. Then, the real LCOH is calculated

with the net present value of money by Eq. (6.3) (Aldersey-Williams & Rubert, 2019):

_r OPEX/™*? + opPExyeriable
t=T t t
CAPEX + izt =G raccreany

T My, (6.3)
t=1 (1 + WACCTeal)t

LCOH =

where t € [1,T] is the period from year 1 to year T. CAPEX is the present value of

capital expenditure on the project includes capital costs for plants, storage facilities,

distribution pipeline, and carrier cost (for DBT and TOL). OPEXL{r txed is the fixed
operation expense in period t, and OPEX}%" 4P i5 the variable operation expense in

period t, including energy and feedstock costs.

The economies of scaling are considered in the techno-economic analysis to account
for the impact of capacity scaling on CAPEX which can be calculated based on Eq. (6.4)
(Rezaei et al., 2024):

. 4
CAPEX oo = CAPEX) g5 ¥ (w) (6.4)

Capacitypgse
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where CAPE X4 18 the capital expenditure for installed equipment after scaling to
Capacityg.qe from Capacityy,s.. € is the scaling exponent for considering the

economics of scaling.

In addition to the LCOH, this study also calculates the IRR for economic performance
evaluation. IRR is the discount rate that makes the net present value (NPV) of a project's
future cash flow equal to zero, which accounts for the time value of money. In addition,
IRR provides a single and annualised rate to reflect a GHC’s profitability. The NPV for
a green hydrogen project can be calculated by Eq. (6.5). In the context of a green
hydrogen project, the cash flow at year t is calculated from the revenue of selling

hydrogen Rev, and operation expenses at year t (Nicita et al., 2020).

Rev, — (OPEX[™®® 4+ opEXyariable)
A+t

t+T
NPV = —CAPEX + Z (6.5)
t=1

6.3.2 Life cycle assessment

The environmental impacts of each GHC pathway are evaluated using the LCA model
in accordance with ISO 14040 and 14044 standards (ISO, 2006a, 2006b). The ISO
standards define core principles and a framework for conducting LCA modelling, which
consists of four phases: 1) defining the goal and scope, 2) performing life cycle
inventory analysis, 3) conducting life cycle impact assessment, and 4) interpreting the

life cycle results.

The goal of the LCA model is to provide quantitative environmental impact results for
comparative evaluation with MCMD models. The system boundary of the LCA model
is shown in Figure 6-1. The LCA model includes green hydrogen production with
renewable energy, GHC conversion, the maritime transportation of GHCs, and
reconversion of GHC to gaseous hydrogen. Hence, this system definition follows the
cradle-to-gate structure (Dickson et al., 2022; IPHE, 2023). The functional unit of the

LCA model is the delivery of 1 kg of gaseous hydrogen to the importing country.

Life cycle inventory (LCI) analysis is a core phase in an LCA model to quantify the
unit process inputs (raw materials, energy, water) and the unit process outputs (products,
emissions, and wastes). The life cycle inventory collection and reporting include the

key information from input data of Figure 6-2. The input data includes the key
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emissions from the production, conversion, and transportation processes. It should be
noted that the environmental impacts related to business travel and employee
commuting are not considered in this life cycle inventory analysis, as guided in (IPHE,
2023).

The LCI data are translated into the environmental impact scores using two
complementary assessment methods, IPCC Global Warming Potential over a 100-year
horizon (IPCC GWP 100) and ReCiPe Endpoint. IPCC GWP100 is a life cycle impact
assessment that quantifies the climate impact of greenhouse gases, providing a focused
metric that is highly relevant for energy policy (IPCC, 2023). The ReCiPe Endpoint
method is adopted to provide a broad and aggregated assessment of environmental
damage. In addition to the global warming potential, the ReCiPe method also calculates
the environmental impact scores in the other 11 midpoint impact categories, such as
stratospheric ozone depletion and fine particulate matter formation (Huijbregts et al.,
2017). The midpoint impacts are subsequently translated to the endpoint impact of three
areas of protection (human health, ecosystem, and resource availability). The endpoint
results provide condensed information for decision-making, while being transparent
about the environmental impact pathways and causes of damage (Hauschild et al.,
2018). Hence, the proposed evaluation framework utilises the IPCC GWP100 and
ReCiPe endpoint as input for MCDM analysis.

6.3.3 Carrier efficiency

The carrier efficiency 1 (%) for a GHC is defined in the Eq. (6.6). The numerator
quantifies the output energy obtained from hydrogen, and the denominator aggregates
all the energy input throughout the entire supply chain. A high value of 7 indicates that

a significant proportion of the total energy is in the hydrogen output.

EHZ,output

n =

EHZ,input + Econversion + Etransport + Ereconversion

(6.6)

where Ey, ourput 18 the energy content of delivered hydrogen at import country
measured by low heating value. Ey, inpye 15 the energy content of hydrogen to be
transported in exporting country. Econyersion > Etransport» @d Ereconversion 18 the

energy consumption in the conversion, transportation, and reconversion process of a

GHC pathway respectively.

104



6.3.4 Multi-criteria decision-making framework

Building on the methods presented in Sections 6.3.1 to 6.3.3, five key criteria are
identified for evaluating hydrogen carriers: LCOH, IRR, GWP, ReCiPe endpoint, and
carrier efficiency. These criteria represent economic feasibility/profitability,
environmental impacts, and energy efficiency, respectively. They collectively capture
the economic, environmental, and operational dimensions for a comprehensive

assessment.

In this section, MCDM methods are applied to evaluate and rank the hydrogen carriers
based on these established criteria. The proposed framework integrates three decision-
making tools with distinct objectives, including Analytic Hierarchy Process (AHP),
TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution), and
VIKOR.

First, AHP is adopted to determine the relative importance of each criterion. Its
structured pairwise comparison methodology provides a transparent and
mathematically consistent approach to deriving the criteria weights (Y. Chen et al.,
2013). Following the weight definition by AHP, both TOPSIS and VIKOR are applied
to rank the GHCs based on the performance against the weighted criteria. It is important
to note that TOPSIS and VIKOR have different methodological focuses. Specifically,
TOPSIS aims to find the ideal solution by selecting the alternative that is geometrically
closest to the best theoretical performance (Hwang & Yoon, 1981). This approach is
valuable for decision-makers aiming to identify a carrier which excels on key metrics.
In contrast, VIKOR is designed to find a compromise solution by focusing on
minimising the regret in some criteria (San Cristobal, 2011). This method is valuable
for stakeholders seeking a balanced carrier that avoids significant underperformance in
any single criterion. The combination of these methods ensures a comprehensive and
clear rankings that reflect the carriers’ overall suitability for the project, based on
stakeholders’ strategic priority. The details of MCDM implementation are explained in

the following sections.

6.3.4.1 Criteria weighting with AHP

The AHP is a structured decision-making method that relies on pairwise comparisons

to derive criteria weights, thereby reflecting the criteria's significance in the overall
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decision (Y. Chen et al., 2013). It works by comparing criteria in pairs to establish
priority rankings, assigning weightings based on their significance to the overall
decision. Thereby, a hierarchical structure is first established, with the goal (i.e.,
evaluating GHCs) at the top level, the five criteria at the intermediate level, and the set
of carrier options at the bottom. Each pairwise comparison quantifies how strongly one
criterion is preferred over another, generating a comparison matrix whose elements a;;
capture the perceived importance of criterion i relative to criterion j. The matrix is then
normalised, and its principal eigenvector is extracted to yield the criteria weights. These
weights are checked for logical consistency using the Consistency Index (CI) and
Consistency Ratio (CR) (Y. Chen et al., 2013). When CR values fall below 0.1, the
matrix is deemed consistent. If the matrix fails the test, pairwise judgments would be
revisited or revised to minimise subjectivity and bias. By consolidating expert inputs,
project objectives, and technical requirements, AHP ensures that each criterion’s weight
corresponds to its true relevance in evaluating hydrogen carriers. The resulting weights

will inform the evaluation stage with TOPSIS and VIKOR.

6.3.4.2 TOPSIS evaluation
TOPSIS is used to rank the GHCs by evaluating their proximity to both the ideal and

worst solutions across multiple criteria (S.-J. Chen & Hwang, 1992; Hwang & Yoon,
1981). First, the decision matrix is normalised to eliminate unit dependence between

the criteria. The normalised value r;; is calculated as Eq. (6.7):

(6.7)

N
Ty =
m 2
\/Zi—l Xij

where x;; is the performance value of the i-th alternative for the j-th criterion. Then,
weighted normalisation can be calculated with the normalized values 7;; which are

multiplied by their respective weights w; derived from AHP:
V=W, T (6.8)

Distance calculation is based on the Euclidean distance of each alternative from the

ideal solution (A*) and the worst solution (47):
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(6.9)

n

n
= Sy S0
j=1

j=1

The distances, D;" and D;, are calculated using the weighted normalized values v;; for
each criterion. The ideal solution (v]-+) is composed of the highest scores for all criteria,
while the worst solution (v; ) is composed of the lowest scores. The distance

calculations help measure how close each alternative iii is to the best or worst possible
performance based on v;;. Relative closeness to the ideal solution is calculated to rank
the alternatives:

Dy (6.10)
 Df +D;

*
i

The higher the /', the closer the hydrogen carrier is to the ideal solution. TOPSIS offers
a balanced evaluation by considering both the ideal and worst scenarios, allowing for a
robust ranking of alternatives. The method is suitable for complex decision-making
problems, making it an ideal tool for evaluating GHCs based on diverse criteria. The
application of TOPSIS in GHCs evaluation framework ensures that the ranking of
carriers reflects their overall performance across all criteria, providing a clear path for

selecting the most suitable carrier for hydrogen transport.

6.3.4.3 VIKOR evaluation

VIKOR is also an MCDM tool, but with a different focus than TOPSIS (San Cristobal,
2011). While TOPSIS evaluates alternatives based on their distance from ideal and
worst solutions, VIKOR emphasizes finding a compromise solution by balancing
overall performance (utility) and the worst performance in any criterion (regret). This
method is particularly valuable when criteria are conflicting, allowing for a more
nuanced ranking by balancing the maximum group utility and individual regrets. For
the utility (S), VIKOR calculates the overall utility of each hydrogen carrier based on

its performance across all criteria, as follows:
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ff=f (6.11)

where f;" and f;~ are the best and worst values for each criterion, respectively, and f;;

is the score of carrier i for criterion j. Regarding the regret (R), this captures the

maximum regret for each alternative, calculated as:

J

. ;=1 (6.12)
P = m]ax w;

J
" _
J fj

Then, the final VIKOR score Q; is calculated as:

S, —S* R, —R' (6.13)
——+(1-v) ——
ST —-S§ R™ —R

Qi=v'

where v is the weight assigned to utility, typically 0.5 in a balanced context. S* and R*
are the best values for utility and regret. S~ and R~ and worst values for utility and

regret.

VIKOR offers an advantage by accounting for compromises between conflicting
criteria, such as balancing economic performance with environmental impacts. It
evaluates not only the overall performance but also considers the carriers that might

avoid extreme shortcomings in any single criterion (regret).

6.4 Case study

This section presents the assumptions and data input for an unexamined green hydrogen
transportation case study from Port Elizabeth, South Africa, to the Thames Estuary,
United Kingdom (UK). The green hydrogen project is assumed to commence in 2030
to supply 1 million tons of green hydrogen annually to the UK. Section 6.4.1
summarises the data input for techno-economic analysis, and Section 6.4.2 summarises
the life cycle inventory for the LCA model, which also includes the data input for carrier

efficiency analysis.

6.4.1 Techno-economic analysis data input

Table 6-1 shows the key economic parameters for all GHC supply pathways. The

project is assumed to have a lifetime of 20 years. The annual operation is assumed to
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be 330 days. The hydrogen sale price in the UK is assumed to be £8 kg 'H» (Burgess,
2023). The chapter assumes that the project is entirely equity financed, and the techno-
economic calculations are converted to USD using the conversion rates listed in Table
6-1. The following subsections summarise the techno-economic assumptions of green
hydrogen production, GHC conversion/reconversion, and maritime transportation. In
the base case assumption, the green hydrogen is generated by renewable wind
electricity in South Africa. For the base case scenario, all electricity required for GHC
conversion and reconversion processes is assumed to be sourced from the respective

national grids at the prices listed in Table 6-1.

Table 6-1 South Africa-UK case study economic assumptions

Parameter Value Reference
Project lifetime (years) 20 Own assumption
Annual operation (days) 330 Own assumption
Hydrogen sale price (USD/kg) 10 (Burgess, 2023)
Inflation rate (%) 2.5% (Office for National Statistics, 2025)
Cost of equity (%) 10% (Mann, 2024)
ZAR/USD 0.053 (South Africa Reserve Bank, 2024)
GBP/USD 1.25 (South Africa Reserve Bank, 2024)
EUR/USD 1.04 (European Central Bank, 2024)
South Africa wind electricity 59.5 (IEA, 2022)
(USD/MWh)
South Africa grid electricity 3000 Own assumption
(Rand/MWh)
UK wind electricity (£/MWh) 39 (DESNZ, 2023a)
UK grid electricity (£/MWh) 90 Own assumption
UK heat source (£/MWh) 40 Own assumption

6.4.1.1 Green hydrogen production

The case study models green hydrogen production using the Polymer Electrolyte
Membrane (PEM) water electrolysis powered by onshore wind. The PEM technology
is selected due to its high operational flexibility, which is crucial for coupling with
intermittent renewable energy sources, such as wind farms (Giampieri et al., 2024; Patel
et al., 2022). The choice of onshore wind is based on South Africa’s abundance of wind
sources, particularly in Port Elizabeth (Rehman et al., 2022). Table 6-2 summarises the
key assumptions for this production pathway. The CAPEX is obtained from the PEM
cost prediction for 2030 (Reksten et al., 2022). The OPEX is expressed as a percentage
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of initial CAPEX, where OPEX includes stack replacement, maintenance, and labour

(Song et al., 2021).

The efficiency of the PEM system is assumed to be 60% (Bareil3 et al., 2019). This
resulted in an electricity consumption of 55.5 kWh to produce 1 kg of green hydrogen
at the lower heating value (LHV). The capacity factory is assumed to be 40% for the
onshore wind farm near Port Elizabeth. To meet the annual delivery of 1 million tons
of green hydrogen, the rated installed capacity of the PEM electrolyser is approximately
17.5 GW. The cost of green electricity is modelled using the projected levelised cost of
energy (LCOE) for South Africa's onshore wind in 2030, as shown in Table 6-1. It is
also assumed that the distance between the green hydrogen plant and the hydrogen
carrier production facility is 10 km. The hydrogen pipeline is assumed to be a
distribution pipeline, as it is shorter and operates at a lower pressure than transmission
pipelines (Wulf et al., 2018). The hydrogen distribution pipeline requires a CAPEX of
2.6 million USD and a 3% annual OPEX (Ortiz Cebolla et al., 2022).

Table 6-2 PEM production assumptions in South Africa

Parameter Value Reference
CAPEX $/kW 900 (Reksten et al., 2022)
OPEX 4% (Ortiz Cebolla et al., 2022)
PEM system efficiency 60% (Peterson et al., 2020)
Capacity factor 40% Own assumption

6.4.1.2 Carrier conversion and reconversion

The techno-economic assumptions for the carrier conversion and reconversion stage
are summarised in Table 6-3. The CAPEX includes the fixed plant and equipment for
converting and reconverting GHCs, and in the case of NH3 and MeOH, the CAPEX
data also include the capital costs for ASU and DAC facilities. The CAPEX data have
been normalised to the unit capacity of plants. It should be noted that DBT and TOL
can be re-hydrogenated in the exporting countries after the unloaded carrier is
transported back to the exporting country. The initial purchase of carrier inventory is
treated as an upfront cost, which includes 993,000 tons of DBT and 980,000 tons of
TOL. The prices for the carriers are assumed to be 3.12 USD/kg for DBT and 0.88
USD/kg for TOL.
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The complete derivation, including reference plant data, scaling calculations, and

detailed energy consumption sources, is provided in the Appendix Al: Detailed

techno-economic data and assumptions.

Table 6-3 GHC conversion and reconversion assumptions

LH» NH3 MeOH DBT TOL
Conversion
Normalised unit 2536.83 445.6
34,786.75 2,566.19 604.2
CAPEX [$/(kg ’ ’ [$/(kgMeOH/h) [$/(kgH18-
carrier/h)] [$/(kgH2/h)] [$/(kgNH3/h)] 1 DBT/h)] [$/(kgMCH/h)]
Electricity demand
[kWhke GHC] 7 1.49 1.11 0.068 0.071
Heat demand
0 0 1.5 0 0
[kWh/kg GHC]
OPEX (% of . . . . .
CAPEX) 3% 3% 3% 4% 4%
Reconversion
Normalised unit
CAPEX [$/(ke 119.79 7,335.81 4,661.85 14,428.71 15,029.90
h [$/(kgH2/h)] [$/(kgH2/h)] [$/(kgH2/h)] [$/(kgH2/h)] [$/(kgH2/h)]
carrier/h)]
Electricity demand
(kWh/kg H>) 0.2 7 0.5 1.12 1.13
Heat demand
(kWh/kg Ha) 0 0 0 9.79 10.25
OPEX (% of . . . . .
CAPEX) 2% 3% 3% 4% 4%
(Cho et al.,,
(lcoggflgl_y ® (IRENA, %gz_egiz’ 2024; (Cho etal.,
e 2015 2022; Nielsen s D2 IRENA, 2024; IRENA,
Heuser et al., & T Cebolla et al., 2022 2022
Reference 2019; IEA, opsoc, 2022; Papadias I "
2021; Ortiz Niermann et Niermann et
2020; IRENA, etal., 2019;
’ . Cebolla et al., al., 2021; al., 2021; Raab
2022; Restelli 2022) Terlouw et al., Raab et al tal, 2021)
etal., 2024) 2021) 25‘31)6 ks ctab,

6.4.1.3 Maritime transportation

Table 6-4 shows the storage and shipping assumptions for the five GHCs. The maritime
transport distance is assumed to be 14149 km from Port Elizabeth, South Africa, to the
Thames Estuary, UK. In terms of the storage capacity, the storage capacity is
determined by the maximum of two values: 1) the size of a single ship and 2) one week
of equivalent production (IRENA, 2022). Additionally, the number of ships required
for the GHC supply chain is determined based on ship capacity, speed, and project
volumes. It is worth noting that the port infrastructure requires upgrading due to the
cryogenic temperature requirements of LH>. The CAPEX for the port upgrade is 52
million USD for both export and import ports (Raab et al., 2021). Losses during
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transportation are accounted for based on the physical properties of GHCs. For carriers
requiring cryogenic or refrigerated storage (LH2 and NH3), daily boil-off losses are
assumed (Kawasaki, 2020; J. Kim et al., 2022). For the ambient liquid carriers (MeOH,
DBT, and TOL), which utilise existing petrochemical infrastructure with steel tanks, a
fixed material handling loss of 0.2% per cycle is adopted (Niermann et al., 2021).
Additionally, a 1.2% loss for loading and unloading is considered for the LH> pathway,

accounting for gasification caused by unavoidable temperature fluctuations during

transfer (IRENA, 2022; Wijayanta et al., 2019).

Table 6-4 Storage and shipping assumptions for South Africa-UK case study

LH, NH; MeOH DBT TOL
Storage
Capacity (t) 25,200 130,000 149,000 340,400 340,400
Storage cost ($/t) 26000 2600 1050 275 275
0.10% day!  0.04% day!
Storage loss (boil-off) (boil-off) no loss no loss no loss
OPEX (% of o N o o o
CAPEX) 2% 2% 2% 2% 2%
(Dickson et .
. (J. Kim et . .
al., 2022, al,2022; Otz (Ortiz (Ortiz Cebolla
Reference Kawasaki, S tal Cebollaet  Cebolla et tal., 2022)
2020; Song 28‘21%)6 a0 al,2022)  al., 2022) ctaks
etal., 2021)
Shipping
Ship capacity (t) 11,000 52,000 52,560 110,000 110,000
CAPEX per ship
412 6 51 6 6
MS) 7 7 7
Average Speed
(k/h) 30 30 30 30 30
Shippi 0 -1 0, -1 0.2% 0, -1 0, -1
ipping loss  0.10% day 0.04% day cycle! 0.2% cycle 0.2% cycle
(mechanism) (boil-off) (boil-off) (handling) (handling) (handling)
Load/unload time 5 5 5 2 )
(day)
OPEX (% of o N o o o
CAPEX) 4% 4% 4% 4% 4%
(Dickson
(IEA, 2020, 1A 209, Stal (IEA, 2020;  (IEA, 2020;
Kawasaki, . 2022; . .
Reference J. Kim et al., . Niermann et  Niermann et
2020; Lee et 2022) Niermann al, 2021) al, 2021)
al., 2022) etal., " "
2021)
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6.4.2 LCA modelling framework

The system boundary of the LCA model follows the definition in Figure 6-1, where
South Africa is the exporting country, and the UK is the importing country. The
functional unit of the LCA model is the delivery of 1 kg of green hydrogen at the
Thames Estuary, UK at 99.9% purity in 2030. The background LCA processes, which
are the processes outside the system boundary, are obtained with the Ecoinvent 3.10
database (Wernet et al., 2016). The foreground processes, which represent the core
technological components of each GHC pathway, are modelled using life cycle
inventory data from related literature and industry reports. In addition, it should be
noted that the environmental impacts related to business travel and employee
commuting are not considered in this life cycle inventory analysis, as guided by the
IPHE guidelines (IPHE, 2023). The base case assumes that all electricity for carrier
conversion and reconversion is supplied by the respective national grid. The 2030
electricity grid mixes for South Africa and the UK are based on (DESNZ, 2023b; [EA,
2024). A complete and detailed LCI for all unit processes is provided in Appendix A2:

Life Cycle Inventories.
6.4.3 Application of MCDM framework

AHP is employed as the first step in the MCDM model. As mentioned in Section 6.3.4.1,
its core strength lies in converting subjective comparisons into a structured pairwise
matrix, thus yielding transparent and mathematically consistent weights. Table 6-5
below presents the pairwise comparison matrix constructed for the five criteria: LCOH,
IRR, GWP, ReCiPe endpoint, and Carrier efficiency. Saaty’s fundamental 1-9 scale is
adopted to capture the relative importance of each criterion in the context of exporting
hydrogen from South Africa to the UK (Saaty, 1987). By using AHP, these subjective
views are systematically converted into numerical values, thereby clarifying the

influence of each criterion on the final decision.

Table 6-5 AHP Pairwise comparison matrix for the five considered criteria

Criteria LCOH IRR GWP ReCiPe Carrier
endpoint Efficiency

LCOH 1 3 1 3 2

IRR 1/3 1 1/3 1/2 1/3
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GWP100 1 3 1 3 1
ReCiPe endpoint 1/3 2 1/3 1 Y2

Carrier Efficiency 1/2 3 1 2 1

Based on the established AHP procedure, the comparison matrix is normalised, and the
principal eigenvector is extracted to yield the final weights for each criterion. Then, a
consistency check is performed by calculating the Consistency Ratio (CR) to ensure
logical coherence among pairwise comparisons. The CR of the proposed pairwise
comparisons is 0.02, which satisfies the below 0.1 requirements, and the resulting

weights are validated (Saaty, 1987).

Figure 6-3 presents a radar chart illustrating the relative weights calculated by the AHP
method for the LCOH, IRR, GWP, ReCiPe, and Carrier Efficiency. Each axis represents
one criterion, and the numeric scale (0 to 0.40) indicates the weight assigned to the

criterion. Larger values indicate a higher relative importance of that criterion.

LCOH [ | Criteria weights

Efficiency IRR

ReCiPe GWP

Figure 6-3 Radar chart illustrating the AHP weights of the five criteria.

It is essential to note that these weights are scenario-specific and are influenced by
expert assessments of South Africa's hydrogen supply chain conditions to the UK.
Different stakeholders or geographical contexts could yield distinct weight distributions,
as priorities vary based on policy objectives, resource availability, and market structures.

For instance, a region with more stringent environmental regulations might assign
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substantially greater weight to GWP and ReCiPe. In contrast, a financially constrained

project might emphasise LCOH and IRR to a larger degree.

Nevertheless, the AHP methodology provides a transparent mechanism for
incorporating such subjectivity consistently and rigorously. By translating qualitative
preferences into quantitative comparisons, the approach enables a clear justification for
why certain criteria carry more weight than others in the final decision. The resulting
weights serve as the input for the TOPSIS and VIKOR analyses in Section 6.5.4. This
integrated and multi-criteria framework thus aligns with structured decision-making in

energy and sustainability contexts.

6.5 Results and discussion

This section presents the criteria and MCDM results for the five GHCs. It includes
techno-economic analysis results, life cycle impact assessments, and carrier efficiency.
Section 6.5.5 presents the sensitivity analysis of the MCDM ranking based on the

criteria results.

6.5.1 Techno-economic analysis results

Figure 6-4 compares the LCOH with the five GHCs. In all delivery pathways, the cost
of hydrogen feedstock constitutes the most significant cost element. This reveals that
hydrogen production remains a critical factor in determining overall carrier economics.
Under the base case assumption, TOL demonstrates the most cost-effective route with
an estimated total LCOH of $7.07 kg 'Ha, with MeOH and DBT ranking next. The NH3
pathway shows a noticeably higher reconversion cost compared to the previous three
pathways due to the energy-intensive ammonia cracking process. The LH> pathway has
the highest carrier conversion cost for liquefaction ($1.79 kg 'Hz) and partially in the
elevated transport and storage costs required to maintain cryogenic conditions. While
LH: benefits from the lowest reconversion costs, it has the highest LCOH of
$8.16 kg 'Ha.
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Figure 6-4 Breakdown of LCOH for the five GHC pathways: (a) LH2, (b) NH3, (c)
MeOH, (d) DBT, and (e) TOL. The percentages represent the contribution of each stage

to the total costs.

To contextualise the LCOH results, the imported carrier is benchmarked against on-site
green hydrogen production in the UK. With data from the UK’s National Energy System
Operator (NESO), the LCOH of on-site production of a 2030 project using PEM
electrolysers with a 10% discount factor can be estimated. Under the assumptions of a
40% capacity factor and a wind electricity price of £39/MWh, the projected domestic
LCOH price is approximately £5.7 kg'H> (NESO, 2025). This is equivalent to
$7.13 kg 'H; at the exchange rate assumption of £1=$1.25.

This comparison reveals that the most economically viable pathway, TOL at
$7.07 kg 'Ha, is cost-competitive with projected domestic UK production under the
stated assumptions. In addition, other GHC pathways, such as MeOH ($7.22 kg 'H>)
and DBT ($7.25kg 'Hz) could also be cost-competitive, providing further cost
reductions of green hydrogen production in South Africa. This suggests that for the UK,
importing green hydrogen from regions with superior renewable resources, like South

Africa, could be an economically sound strategy to complement domestic production.
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Table 6-6 shows the IRR results of the five GHCs under the base case assumptions.
According to the table, MeOH exhibits the highest IRR (23.90%), followed by TOL
(23.13%), DBT (21.18%), NH3 (18.24%), and LH> (15.59%). MeOH’s high IRR is due
to the relatively low combined conversion/reconversion and transport costs. Although
DBT and TOL have higher reconversion costs than MeOH, their lower conversion
CAPEX and shipping benefits still yield healthy cash-flow profiles. NH3’s IRR of 18.2 %
is lowered by the energy-intensive cracking step. LH> has the lowest IRR due to high

liquefaction, transport, and storage costs.

Table 6-6 IRR of the five GHCs

LH> NH; MeOH DBT TOL
IRR 15.59% 18.24% 23.90% 21.18% 23.13%

6.5.2 Life cycle impact assessment

The life cycle impacts were calculated using SimaPro 9.6, with results presented for
both the IPCC GWP100 and ReCiPe endpoint method. Figure 6-5 breaks down the
GWP results for the five carriers by supply chain stage: green H. production, carrier
conversion, maritime transport, and carrier reconversion. The analysis reveals that the
GWP of each carrier is directly linked to its fundamental chemistry and process energy

requirements.
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Figure 6-5 GWP100 results from green hydrogen supply from South Africa to the UK
with liquid hydrogen, ammonia, methanol, DBT, and TOL.

LH; exhibits the lowest GWP (7.62 kg CO2eq) among the five GHC pathways. The
analysis shows that the electricity required for the cryogenic liquefaction process in
South Africa is the primary contributor (5.42 kg CO2eq), which accounts for over 71%
of the total GWP. The hydrogen production contributes another 1.99 kg CO.eq, while
shipping and regasification have minimal impact. NH3 have the second lowest GWP of
9.91 kg COzeq. The dominant GWP contributions are from the electricity used in South
Africa for nitrogen production via the ASU (3.96 kg COz¢eq) and Haber-Bosch synthesis
process (2.44 kg COz2eq). The significant impact of electricity usage in South Africa
reveals the critical role of the exporting country's grid decarbonisation in reducing the
overall GWP of the green hydrogen supply chain. The effect of a greener grid and fully
renewable energy supply is therefore investigated further in the sensitivity analysis in

Section 6.5.5.

MeOH exhibits a mid-range GWP, for which carbon capture by DAC provides a net
credit of 4.84 kg COzeq, after accounting for the energy consumed during capture and
synthesis. The captured CO; is re-emitted when the fuel is reformed back to hydrogen,
resulting in a total GWP of 10.3 kg COzeq kg. TOL and DBT have the highest carbon
footprint (12.4 and 15.2 kg CO2eq, respectively), due to the following reasons. First,
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the LOHCs’ impact needs to account for the life cycle impacts of producing the initial
batch of the organic carrier itself and the markup for the dehydrogenation losses.
Second, the dehydrogenation process of LOHCs is endothermic and requires heat
supplies in the UK, adding 0.93 and 0.88 kg COzeq, respectively, at the destination port.
Finally, as the unloaded LOHCs must be shipped back to South Africa, the round-trip
maritime transportation contributes 3.57 and 3.56 kg CO:eq, respectively, to the total
GWP.

To validate the LCA model results, the GWP results are compared with recent
publications on international green hydrogen carrier supply chains. While specific
assumptions regarding system definitions (such as shipping distance and energy supply)
and impact assessment methods may vary slightly, the functional unit of 1 kg of

delivered hydrogen is consistent, enabling a direct comparison.

The result for the LH> (7.62 kg COzeq) pathway is higher than the 3.8 kg CO2eq
reported by Lee et al, (2022). This difference is expected and can be attributed to their
assumption of a fully renewable energy system in a 2050 scenario, whereas our base
case models a partially decarbonised 2030 grid. The high GWP for TOL (12.4 kg CO.2eq)
and DBT (15.2 kg CO2eq) is consistent with broader literature, which identifies LOHCs
as having the highest environmental impacts among common carriers (Dickson et al.,
2022; Noh et al., 2023a). However, it is important to note that using renewable and
biomass-derived TOL and DBT can lower the GWP to 10.21 to 10.61 kg CO2zeq for
11,000 km marine transport (Cho et al., 2024). Overall, the GWP results and relative

performance of carriers are consistent with the findings of a recent publication.

Beyond global warming, the ReCiPe endpoint method was used to assess a broader
range of environmental impacts with a single score, which includes three areas of
protection: human health, ecosystems, and resource availability (Huijbregts et al., 2017).
Figure 6-6 compares the ReCiPe endpoint results of the five GHCS across the three
areas of protection. Among the carriers, LH> has the smallest aggregated impact at 0.77
Pt kg'Ha, followed by TOL (0.97 Pt kg"'H,) and NH3 (0.99 Pt kg"'Hz), MeOH (1.11 Pt
kg'H>) and DBT (1.20 Pt kg''H,). The ReCiPe results show that the aggregated
environmental damage score is primarily driven by impacts on human health for all
GHCs. The human health endpoint score is calculated by summing the damages of all

midpoint categories that can affect human health, as measured in Disability-Adjusted
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Life Years (DALY). In particular, Fine Particulate Matter Formation (FPMF) and
Human Carcinogenic Toxicity (HCT) are the two main contributors to human health
damage, surpassing the global warming potential for all GHC pathways. The full details
of ReCiPe results are provided in Appendix A3 ReCiPe impacts.
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Figure 6-6 ReCiPe endpoint on three areas of protection by the five GHCs.

The FPMF are primarily linked to the energy consumption and maritime transportation.
For the LH> and NH;3 pathways, the dominant contributor is the process electricity
consumption in South Africa for carrier conversion. Specifically, the electricity
consumption accounts for 74% of fine particulate matter impact for LH> and 59% for
NHs, as shown in Table 6-7. For the LOHC, the impact is driven by the maritime
transport, responsible for 46% and 62% of the impact for DBT and TOL, respectively.

Table 6-7 Top process contributions to key midpoint impacts

Impact
Disability-
Carrier  Rank Contributing Process Adjusted Contribution
Life Years
(DALY)
Impact category: Fine particulate matter formation
LH> 1 Electricity, medium voltage {ZA} -2030 9.41E-06 74%
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2 Wind turbine, onshore {GLO} 2.31E-06 18%
NH3 1 Electricity, medium voltage {ZA} - 2030 1.04E-05 59%
2 Wind turbine, onshore {GLO} 2.49E-06 14%
MeOH 1 Electricity, medium voltage {ZA} - 2030 1.00E-05 55%
2 Wind turbine, onshore {GLO} 3.16E-06 17%
Transport, freight, sea, tanker for liquid
DBT 1 goods other than petroleum and liquefied 1.23E-05 46%
natural gas {GLO}
2 Electricity, medium voltage {ZA} - 2030 7.21E-06 27%
Transport, freight, sea, tanker for liquid
TOL 1 goods other than petroleum and liquefied 1.23E-05 62%
natural gas {GLO}
2 Toluene production, liquid - 2030 {ZA} 3.11E-06 16%
Impact category: Human carcinogenic toxicity
LH, 1 Wind turbine, onshore {GLO} 1.69E-05 79%
2 Electricity, high voltage {ZA} 4.28E-06 20%
NH; 1 Wind turbine, onshore {GLO} 1.82E-05 71%
2 Electricity, medium voltage {ZA} - 2030 4.78E-06 19%
MeOH 1 Wind turbine, onshore {GLO} 2.31E-05 73%
2 Electricity, medium voltage {ZA} - 2030 4.59E-06 14%
DBT 1 Wind turbine, onshore {GLO} 1.59E-05 65%
2 Electricity, medium voltage {ZA} - 2030 3.28E-06 13%
TOL 1 Wind turbine, onshore {GLO} 1.57E-05 72%
2 Toluene production, liquid 2.90E-06 13%

In contrast, the HCT category is not driven by the operation, but by the upstream
infrastructure processes. For each carrier, the most extensive contributing process is the
wind turbine infrastructure, which accounts for 79% of the impact for LH2, 71% for
NH3s, 73% for MeOH, 65% for DBT, and 72% for TOL. This indicates that the materials
required to build wind farms are the primary sources of carcinogenic impacts in this
case study. Overall, the ReCiPe provides critical insights into the broader environmental
impacts beyond global warming potential, identifying the key demanding processes

including energy consumption, maritime transportation, and wind turbine infrastructure.
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6.5.3 Carrier efficiency

Table 6-8 shows that LH: achieves the highest efficiency at 77.62%, because this
pathway does not require any chemical conversion steps after the liquefaction stage.
NHj3 has the second-highest carrier efficiency of 70.05%. MeOH, DBT, and TOL cluster
near 63%, reflecting the high energy requirements for hydrogenation and
dehydrogenation of carbon-based hydrogen carriers. Overall, these efficiencies capture
the extent of energy penalties arising from liquefaction, synthesis,
hydrogenation/dehydrogenation, and storage constraints, highlighting LH>’s advantage
in retaining a larger fraction of the initial energy content despite the high cost of

cryogenic processes.

Table 6-8 Carrier efficiency results of the five GHCs

Carrier LH, NH; MeOH DBT TOL
Carrier efficiency n 77.62% 70.05% 63.57% 63.27% 63.45%
6.5.4 MCDM ranking

The results in Sections 6.5.1 to 6.5.3 show that no single hydrogen carrier achieves the
best performance in terms of economic, environmental, and efficiency simultaneously.
As a result, the application of MCDM ofters insights and decision support for choosing
the appropriate hydrogen carrier. Table 6-9 presents the final rankings of the five
hydrogen carriers (LH2, NH3, MeOH, DBT, and TOL) based on the AHP-derived
weights and the subsequent evaluations using TOPSIS and VIKOR. As discussed in
Sections 6.3.4.2 and 6.3.4.3, the higher TOPSIS score and the lower VIKOR score
demonstrate better performance, respectively. The utility weight v is set to 0.5 for AHP-

VIKOR method.

As shown in Table 6-9, the two MCDM methods yield different top rankings. The AHP-
TOPSIS method, which identifies the alternative closest to an ideal solution, ranks LH>
first with a score of 0.78. This is because LH> performs best in three of the five criteria
(GWP, ReCiPe, and Efficiency), making it the technically ideal choice. It is followed
by NH3 (0.61), MeOH (0.59), TOL (0.40), and DBT (0.17).
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Table 6-9 AHP-TOPSIS and AHP-VIKOR results of the five GHCs

LH; NH; MeOH DBT TOL
AHP-TOPSIS score 0.78 0.61 0.59 0.17 0.40
AHP-TOPSIS ranking 1 2 3 5 4
AHP-VIKOR score 0.50 0.84 0.09 0.79 0.12
AHP-VIKOR ranking 3 5 1 4 2

The AHP-VIKOR method focuses on finding a compromise candidate option that has
a balanced overall performance and minimises the worst criterion regret. MeOH ranks
first with the lowest Q value of 0.09. Its good economic performance (LCOH and IRR)
combined with moderate environmental impacts makes it the most balanced choice. It
is followed by TOL (0.11), which also demonstrates a strong compromise profile. LH>’s
high LCOH increases the regret in this criterion and then makes LH> rank third in the
AHP-VIKOR method. NH3 drops from second place in AHP-TOPSIS to fifth place in
the AHP-VIKOR method with a score of 0.84. It indicates that the high reconversion
costs and low IRR create regret that outweighs good environmental and efficiency
performance. It should be noted that the MCDM ranking results are based on the base
case assumption of the economic and environmental parameters. The parameters may
change due to project assumptions, which can alter the MCDM ranking results. The
following section presents a sensitivity analysis on seven alternative cases for South

Africa compared to the UK case study.

6.5.5 Sensitivity analysis on the MCDM results

An additional sensitivity analysis was conducted to understand how changes in the
parameter inputs could affect the MCMD ranking of the GHCs, as shown in Table 6-
10. Case 0 serves as the base case in this chapter, utilising the economic assumptions
outlined in Tables 6-1 and 6-2, and incorporating electricity for carrier
conversion/reconversion based on electricity grid mix projections for 2030, as detailed
in (DESNZ, 2023b; IEA, 2024). Cases 1 and 2 investigate the sensitivities of results by
the capacity factor assumption in the green hydrogen production, compared with the
base case capacity factor of 40%. Cases 3 and 4 investigate the changes in the utility
prices, which include the grid electricity price in South Africa (3000 Rand/MWh) and
the UK (£ 90/MWh), as well as the heat prices in the UK (£ 40/MWwh). Cases 5 and 6
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investigate how the electricity grid decarbonisation in 2035 and 2040 will affect the
MCDM ranking, with country-specific projections of the electricity grid mix (DESNZ,
2023b; IEA, 2024). Case 7 investigated the MCDM results with the process energy

from renewable wind.

Table 6-10 Sensitivity analysis cases for the five GHC pathways

Parameter varied Changes Parameter Changes
v applied varied applied
Case 0 Base case - Case4  Utility prices -20%
Case 1 Capacity factor +20% Case 5 Process Grid mix, 2035
energy
Case2 Capacity factor -20% Case 6 Process Grid mix, 2040
energy
Case3 gility prices 120% Case7  Process Wind
energy

The details of the criteria results and MCDM scores of sensitivity analysis are shown
in the Appendix A4. Table 6-11 demonstrates carrier ranking results from the
sensitivity analysis. The AHP-VIKOR method is responsive to the alternative case
assumptions. Because it penalises carriers on the single worst criterion (regret). In the
base case (Case 0), MeOH is ranked first, establishing it as the best initial compromise
solution. This top ranking is reinforced in other scenarios where economic factors are
the primary driver, such as variations in the capacity factor (Cases 1 and 2) and lower

utility prices (Case 4).

Table 6-11 Sensitivity analysis results of AHP-TOPSIS and AHP-VIKOR

AHP-TOPSIS AHP-VIKOR
LH, NH; MeOH DBT TOL LH, NH; MeOH DBT TOL
Case 0 1 2 3 5 4 3 5 1 4 2
Case 1 1 2 3 5 4 3 5 1 4 2
Case 2 1 2 3 5 4 3 5 1 4 2
Case 3 1 2 3 5 4 3 5 2 4 1
Case 4 1 2 3 5 4 4 3 1 5 2
Case 5 1 2 3 5 4 4 1 2 5 3
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Case 6 1 2 3 5 4 4 1 2 5 3

Case 7 1 2 3 5 4 3 1 2 5 4

In contrast, the AHP-TOPSIS rankings demonstrate robustness across all scenarios.
LH: consistently ranks first, maintaining its position as the ideal solution regardless of
variations in capacity factor, utility prices, or grid carbon intensity. The robustness
stems from LH>’s good performance in three of the five criteria: GWP, ReCiPe, and
Efficiency. Similarly, the rankings for the other carriers remain unchanged across all
cases, with NHs at second, MeOH at third, TOL at fourth, and DBT at fifth under the
case study assumptions. Therefore, AHP-TOPSIS provides a stable and consistent
recommendation, which can be a suitable method for long-term decision-making, such

as energy infrastructure decisions.

The sensitivity analysis also reveals a critical change as the energy system decarbonises.
NHs’s position as the best compromise solution strengthens significantly as the
electricity supply becomes cleaner. In Cases 5 and 6 (2035 and 2040 grid mix) and Case
7 (wind), NHs ranks first. When all the process energy is from wind (Case 7), NH3’s
GWP falls to 3.66 kg CO2eq kg and its LCOH drops to $6.89 kg 'H», making NH3 the
first and MeOH the second. The combination makes it the top compromised solution in

a deeply decarbonised energy system.
6.5.6 Criteria weight analysis

To address the potential subjectivity of the criteria weighting, a criteria weight analysis
was performed. In addition to the Balanced Priority scenario used as the base case, three
alternative weighting scenarios were developed. The Economic Priority focuses on the
financial metrics that determine a project’s bankability and profitability. The
Environmental Priority scenario focuses on the environment-related performance. The
Equal Weight scenario assumes no a priori preference and treats all five criteria as

equally important.

Table 6-12 shows the pairwise comparison matrix for calculating the criteria weights of
each alternative scenario. For the Economic Priority, LCOH and IRR are set as very
strongly more important (7) than GWP and ReCiPe, and strongly more important (5)
than Efficiency. LCOH is moderately more important (3) than IRR. For the
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Environmental Priority scenario, GWP and ReCiPe are set as very strongly more

important (7) than LCOH and IRR. GWP is moderately more important (3) than ReCiPe

and Efficiency. For the Equal Weight scenario, all pairwise comparisons are 1. Table 6-

13 shows the MCDM scores of weight analysis.

Table 6-12 Pairwise comparison matrix for alternative scenarios

Economic Priority

Criteria LCOH IRR GWP ReCiPe Efficiency
LCOH 1 3 7 7 5
IRR 1/3 1 5 5 3
GWP 1/7 1/5 1 1 1/3
ReCiPe 1/7 1/5 1 1 1/3
Efficiency 1/5 1/3 3 3 1
Environmental Priority
Criteria LCOH IRR GWP ReCiPe Efficiency
LCOH 1 1 1/7 1/5 1/3
IRR 1 1 1/7 1/5 1/3
GWP 7 7 1 3 3
ReCiPe 5 5 173 1 1
Efficiency 3 3 1/3 1 1
Equal Weight
Criteria LCOH IRR GWP ReCiPe Efficiency
LCOH 1 1 1 1 1
IRR 1 1 1 1 1
GWP 1 1 1 1 1
ReCiPe 1 1 1 1 1
Efficiency 1 1 1 1 1
Table 6-13 MCDM results of the weight analysis
AHP-TOPSIS AHP-VIKOR
LH, N3H MeOH DTB TLO LH, NH; DTB TI?
Balanced
Priority 0.78  0.61 059 0.17 0.40 0.50 0.84 0.79 0.11

(Based case)
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Economic

032 023 073 054 0.72 099 098 0.04 0.17 0.00

Priority

Environmenta o g3 067 059 0.03 037 000 031 041 1.00 0.60
1 Priority
Baval o640 054 053 017 045 050 031 019 100 034
Weights

Table 6-14 shows the ranking of the alternative weighting scenarios. The results provide
key insights into the implementation of the proposed framework. The shift in ranking
shows the proposed framework’s responsiveness to stakeholder priorities. When
economic factors are dominant, the cost-effective MeOH and TOL rise to the top as the
preferred carriers. The assigned decision weight to LCOH and IRR (over 76%)
penalises the high-cost LH> and NHs pathways, resulting in them being ranked at the
bottom. Conversely, when environmental performance is the priority, LH> is the best
carrier in both AHP-TOPSIS and AHP-VIKOR due to its good performance in GWP,
ReCiPe and Efficiency criteria. The equal weights scenario reveals the results without
any priority. Overall, the weighting analysis shows that the best hydrogen carrier is not
absolute but subject to the strategic priorities of the decision-maker. The analysis
demonstrates that the proposed framework is effective and transparent for evaluating

the critical trade-offs between key criteria in the development of green hydrogen.

Table 6-14 GHC ranking across different weighting scenarios

AHP-TOPSIS AHP-VIKOR
LH, NH; MeOH DBT TOL LH, NHs; MeOH DBT TOL
Balanced
Priority (Based 1 2 3 5 4 3 5 1 4 2
case)
Eeonomic——p 5 3 2 5 4 2 31
Priority
Environmental =, =5 4 5 4 12 3 s 4
Priority
Equal Weights 1 2 3 5 4 4 2 1 5 3

6.6 Chapter summary

This chapter proposed and applied a novel computational framework to address the gap
in existing research on hydrogen carrier comparative studies, where carriers exhibit
distinct performances across multiple criteria. The proposed framework compares

green hydrogen carriers in terms of techno-economic performance (LCOH and IRR),
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environmental impacts (IPCC GWP100 and ReCiPe endpoint), and carrier efficiency
using AHP-TOPSIS and AHP-VIKOR methods. The proposed framework can provide

detailed ranking results for GHCS, facilitating informed decision-making.

The utility of the proposed framework is demonstrated with a South Africa—UK
hydrogen supply chain. The LCOH results show that importing green hydrogen can be
cost-competitive with domestic production. The levelised cost of the most economical
carrier, TOL $7.07 kg 'H>, is on par with the projections for domestic UK production
($7.13 kg 'H»). This validates international hydrogen trade as an economically rational
strategy for an importing country to enhance energy security and achieve its
decarbonisation goals. The case study results show that no individual GHC wins on
economic, environmental impacts and carrier efficiency simultaneously. LH> was
consistently identified by the AHP-TOPSIS method as the ideal solution, ranking first
in all scenarios due to its superior performance on environmental criteria and carrier

efficiency.

Policy decisions that lower the levelised cost of hydrogen production and carbon
intensity of the electricity grid will impact the GHCs’ competitiveness significantly.
Across five GHC pathways analysed, green hydrogen production accounts for 66.4%
to 77.2% of the delivered costs. Therefore, policy measures that can lower the levelised
costs of green hydrogen, such as production tax credits to renewable energy farms in
the exporting countries, can increase IRR for all carriers and narrow the cost gaps. In
addition, the life-cycle results show that the further decarbonisation of the grid could
alter the ranking of GHCs. When the process energy originates from a 2035 grid mix
or a more decarbonised grid, NH3 benefits greatly, as it becomes the best compromised
carrier. Moreover, renewable utilisation and grid energy price matter. Variations in
renewable capacity factors and grid energy prices move MeOH and NHs up or down
by one place in the MCDM ranking. Therefore, a technology-neutral but performance-
based policy design that focuses on cheap, clean electricity and grid decarbonisation
will allow the most cost-effective and climate-aligned carrier to scale first while

keeping national decarbonisation goals firmly on track.

In addition to the carbon footprint of carriers, the ReCiPe results show that a significant
percentage of human health damage induced by the hydrogen supply chain is driven by

the fine particulate matter formation and human carcinogenic toxicity, which originates
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from the upstream manufacturing of the infrastructure, such as the materials for wind
turbines. This finding demonstrates that a holistic green hydrogen policy needs to
extend beyond ensuring a renewable energy supply to include sustainable procurement

procedures for capital equipment.

However, there are some limitations to the case study results. First, the case study
results are limited to the system defined in Section 6.2. A change in system definition
will result in different project factors for the green hydrogen supply chain. Factors such
as shipping distance, available infrastructure, environmental regulations, and policy
incentives can shift the relative importance of each criterion. Hence, the criteria
configuration and weight will be different. Second, the economic and environmental
results are sensitive to assumptions. The current proposed framework considers the
steady state of commodity prices, energy prices, and energy consumption. Therefore,
future studies can investigate a multi-criteria decision-making framework from a
dynamic system perspective, where prices and energy consumption are dynamic. To
sum up, this chapter provides an effective evaluation framework for stakeholders in the

green hydrogen supply chain to gain more insights into the viable hydrogen carriers.
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Chapter 7

7. Conclusion

7.1 Thesis summary

This thesis was motivated by the revelation that the global energy transition is driving
three fundamental shifts in decision-making, making traditional computational
frameworks inadequate. The first is the shift in operational uncertainty, where the
integration of intermittent renewables and novel storage assets creates deep uncertainty.
The second is a structural shift from centralised control to decentralised coordination,
in which the emergence of prosumers and aggregators requires privacy-preserving,
competitive market interactions. The third is the shift in strategic evaluation, where
decision-makers must move from a single objective on cost minimisation to a multi-
dimensional assessment. As outlined in Chapter 3, these shifts create a nested hierarchy
of complexity, spanning uncertainty complexity at the operational scale, interactional
complexity at the transactional scale, and evaluative complexity at the strategic scale.
The overarching research question of this thesis asked how computational frameworks
must be developed to manage these emergent complexities. By systematically
addressing each layer of this hierarchy, this thesis advances this field by establishing

new computational frameworks that collectively address the nest complexities.

At the foundational layer of this hierarchy, this thesis addresses uncertainty complexity
at the operational scale. Traditional stochastic programming assumes that probability
distributions accurately describe market conditions. However, this assumption will not
hold when the market is under severe volatility introduced by renewable penetration.
To resolve this, Chapter 4 contributed a novel hybrid framework that integrates IGDT
with STA. By applying the proposed framework to the scheduling of LAES-equipped
micro-grids, this thesis demonstrates that the proposed framework allows operators to
quantify the risks the systems can tolerate while meeting performance targets. This

contribution fills the critical methodological gap by providing a non-probabilistic
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computational framework for managing risks associated with novel storage assets in

volatile markets.

Building on the operational scale, this thesis addressed interactional complexity at the
transactional scale as the energy system becomes more decentralised in energy
generation. This shift creates challenges in managing the competitive interactions
between autonomous agents. Existing centralised optimisation methods cannot
preserve privacy, and single-leader game models fail to capture horizontal competition
among multi-aggregators. Chapter 5 addresses this gap by formulating an MLMFG and
solving it via a novel graph-based consensus algorithm. This contribution advances the
field by moving beyond a single-leader architecture towards a multi-leader architecture.
By proving that market equilibrium can be achieved through decentralised, privacy-
preserving edge computing, this framework provides the decision-making tool for

future competitive energy markets.

Finally, at the strategic scale, this thesis addressed evaluative complexity. The selection
of long-term technology pathways, such as international green hydrogen carriers,
involves trade-offs that cannot be resolved by a single metric alone. Existing studies
often rely on simplified economic models or focus exclusively on global warming
potential. Chapter 6 contributed a new MCDM framework that synthesises discounted
techno-economic analysis, comprehensive ReCiPe endpoint environmental assessment,
and carrier efficiency metrics. By applying the proposed framework to a previously
unexamined South Africa-to-UK hydrogen corridor, this thesis provides the first
detailed techno-economic and environmental assessment of the green hydrogen route,

with sensitivity analysis of the GHC evaluation.

Collectively, these three studies constitute a coherent research design that develops the
decision-making in multi-energy systems. Therefore, the primary contribution of this
work is the development of these computational frameworks, which together provide a
foundation for future decision-support tools to navigate the complexities of a

sustainable energy future.

7.2 Socio-technical and ethical implications

The computational framework developed in this thesis is primarily a set of

mathematical tools designed to optimise the energy system. However, energy systems
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are not just physical infrastructures. They are socio-technical systems within economic,
political, and social contexts. Although the focus of this thesis has been the
development of computational frameworks, it is necessary to reflect on their socio-
technical implications for the principles of fairness, equity, and sustainability. This
reflection mirrors the nested hierarchy of complexity established in this thesis,

examining the ethical dimensions at the operational, transactional, and strategic scales.

At the operational scale, the development of the hybrid IGDT-STA framework in
Chapter 4 highlights an ethical tension between system robustness and energy
affordability. The framework enables micro-grid operators to adopt risk-averse
strategies by accepting higher operational costs. It raises questions about distributive
costs: who will pay the extra cost of resilience? In a community micro-grid setting, a
highly risk-averse operating strategy will drive up energy costs. If these costs are passed
down uniformly to end users, they may cause energy poverty, particularly for vulnerable
households. Therefore, the deployment of such an optimisation framework is not just a
mathematical exercise. It requires further definition on the acceptable level of risk a

community should bear.

Moving to the transactional scale, the intelligent aggregation framework proposed in
Chapter 5 introduces socio-technical considerations regarding inclusivity. The proposed
aggregation framework relies heavily on advanced digital infrastructure, including edge
computing nodes and smart metering. The reliance creates a technological barrier to
entry. In a decentralised market where participation requires both hardware and
algorithmic competence, there is a risk of excluding prosumers who lack the financial
means to upgrade their digital infrastructure to participate with automated agents.
Furthermore, the aggregation framework assumes that every prosumer aims to
maximise utility by maximising profits. However, in a real-world setting, the utility is
not the same for all prosumers. A household with life-sustaining medical equipment has
fundamentally different priorities than profit-maximising prosumers. Hence, the utility
setting of the aggregation framework could incorporate fairness constraints into the

optimisation model.

Finally, at the strategic scale, the evaluation of the South Africa-UK green hydrogen
corridor in Chapter 6 raises questions about global equity and the geopolitics of the

energy transition. The techno-economic analysis reveals that carriers such as LH»,
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LOHCs and Ammonia offer viable pathways for export. However, ownership of the
intellectual property for these GHC pathways is concentrated in the Global North (e.g.,
Germany and Japan), while the Global South (South Africa) provides the primary land
and renewable energy resources. If South Africa exports green hydrogen but imports
the expensive liquefaction plants and specialised vessels required to transport it, the

local economic benefit may be limited.

7.3 Limitations and recommendations for future research

In addition to the socio-technical discussion and future research recommendations in

the previous section, Section 7.3 examines methodological and technical limits.

7.3.1 Methodological and validation limits

The key methodological limitation of this thesis is the reliance on computational
simulation rather than empirical validation in operational environments. The proposed
algorithms, such as the hybrid IGDT-STA and the graph-based consensus mechanism,
have demonstrated numerical applicability against benchmarks. They have not yet
undergone the physical experiment of hardware-in-the-loop testing or pilot deployment.
Consequently, while the thesis provides frameworks that can support decision-making,
the transition to deployed decision-support tools would require further validation to

account for real-world communication latency, sensor noise, and hardware applicability.

Furthermore, the computational frameworks developed in this thesis depend on the
quality of the input data. The case studies utilised standard benchmark datasets (e.g.,
SimBench) and historical market data (e.g., Nord Pool). In a real operational context,
data availability is often imperfect, characterised by missing values and measurement
errors. Additionally, while the research aims to support stakeholders such as micro-grid
operators and policymakers, the validation process did not include qualitative feedback
or usability testing with these human stakeholders. Therefore, the practical adoption of
these frameworks would require a socio-technical validation phase to ensure the outputs

are interpretable and actionable for human decision-makers.

7.3.2 Technical simplification in system modelling

Some specific technical simplifications were adopted in this thesis. In Chapter 4, the

LAES system was treated as a steady-state system. The charging and discharging phases
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were modelled with linearised equations assuming time-invariance. This approach
neglects the complex thermodynamic transients in the compressor and expander,

particularly during start-up and shut-down.

In Chapter 5, the intelligent aggregation framework solves a single-period decision-
making problem. While this effectively demonstrates the graph-based consensus
algorithm's ability to reach a market equilibrium, it does not fully capture prosumers'
inter-temporal strategic behaviour. In reality, prosumers with storage capacity would
likely engage in intertemporal arbitrage, storing energy when prices are low to sell in
future periods when prices are high. By limiting the game to a single period, the current
model may not fully reveal the potential economic benefits of storage assets in a

competitive market.

Finally, the strategic evaluation of hydrogen carriers in Chapter 6 is centred on intrinsic
techno-economic and environmental criteria. It does not explicitly model extrinsic
factors such as geopolitical risks or evolving policy landscapes. Extrinsic geopolitical
risks in the exporting country or along the maritime transportation route could lead to
a higher risk premium when discounting the project's cash flows. In addition, the
implementation of a carbon border adjustment mechanism (CBAM) by the importing
country, such as the UK, would significantly change the economic performance of
carbon-based carriers, especially methanol, by taxing the re-emission of captured COo.
The absence of these dynamic policy and risk factors means the current ranking reflects

a technocratic ideal rather than a fully risk-adjusted geopolitical reality.

7.3.3 Recommendations for Future Research

Building on these limitations, several future research directions are recommended to
further advance the field. Future work could move from pure simulation to emulation
using digital twins or hardware-in-the-loop setups. This would allow testing of the
proposed algorithms under physical constraints, such as communication delay, which

are critical for decentralised systems.

Regarding the specific models, future research should aim to relax the current
simplifications. For the micro-grid scheduling framework, the IGDT formulation could
be expanded to handle coupled uncertainties, investigating the simultaneous impact of

renewable generation intermittency and price volatility, rather than treating them in
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isolation. For the aggregation framework, extending the MLMFG to a multi-period
horizon would entail analysing complex inter-temporal strategies, thereby providing a

more accurate reflection of storage value in local markets.

Finally, integrating extrinsic risk factors into the MCDM criteria is a vital next step for
strategic hydrogen research. Future work could expand the proposed framework to
include criteria such as supply chain resilience, policy alignment, and geopolitical
stability. In addition, incorporating further consideration of carbon pricing and border
adjustment mechanisms would enable the framework to produce time-dependent
rankings that quantify carrier selection under plausible future policy scenarios. This
would enhance the practical relevance of the framework for investors and policymakers

navigating the uncertainties of the global energy transition.

7.4 Concluding remarks

By moving from deterministic to risk-included robust optimisation, from centralised to
decentralised coordination, and from single-objective to multi-criteria evaluation, this
thesis advances the field of decision-making strategies in multi-energy systems by
introducing new computational frameworks. These frameworks demonstrate that the
emergent complexities of uncertainty, interaction and evaluation can be addressed with
quantitative methods. While acknowledging its limitations, this thesis provides a
foundation for future research that aims at developing dynamic, robust, and equitable

decision-support systems required for a net-zero future.
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Appendix

This appendix provides supplementary information to Chapter 5 on green hydrogen
carrier evaluation, which includes life cycle inventories, life cycle impact assessment

results, and sensitivity analysis results by case.

Al Detailed techno-economic data and assumptions

This section presents the detailed techno-economic calculation and data sources of
green hydrogen carriers (GHC) conversion and reconversion. The GHCs considered
include liquid hydrogen (LH2), ammonia (NH3), methanol (MeOH), dibenzyltoluene
(DBT), and toluene (TOL). The currency is converted based on the exchange rate
assumed in Table 6-1. It should be noted that in addition to the CAPEX for the
hydrogenation and dehydrogenation plant, the DBT and TOL pathway also considers
the upfront purchase of the carrier, due to the closed-loop nature of DBT and TOL. This
study considers the initial purchase of 993,000 t and 980,000 t of DBT and TOL,
respectively, based on the annual green hydrogen delivery. Table A2 illustrates the
energy consumption data sources for the conversion and reconversion of GHC. It
should be noted that the waste heat for CO2 capture with DAC is assumed to be supplied
by industrial plants in the Coega Industrial Development Zone at Port Elizabeth.

Table A1. Detailed techno-economic input calculation. C: Conversion, R: Reconversion.

Syste  Referenc SFC;I}ZL
Carri Pro m e Referen  Scaling CAPE Normalised
or  CS8 lifetim  CAPEX ce expone X unit Reference
s e [original  capacity nt [Milli CAPEX!
[year] currency] on §]
See See 5192. 34,786.75 (Connelly et
2 s
LH, €20 SeeNote™  \5er  Note? 64 [$/(kgHoh)]  al., 2019)
Table 17 of
42.7 119.79 .
R 20 0.81 M€ 0.67 15.12 (Restelli et
tHo/d [$/(kgH2/h)] al., 2024)
24,627 2,566.19 (Ortiz
NH; C 20 213\2 é’f tNHsproa  0.67 1938' [$/(kgNHs/h) Cebolla et
we/d ] al., 2022)
24,627 (Ortiz
R 20 LIOME NHyew 067 07 [$Z(’1§315+I'8/i1)] Cebolla et
/d g2 al., 2022)
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65,000

2864.52

MeO 59 joeMet  MeOH/ 067 220 [sikemeony (BOSetal,
H 23 2020)
y h)]
115,500t 588.6  4,661.85  (Papadias et
Ro200 1B86MS b ™ 067 70" gikeHyh)]  al., 2019)
3610931 445.6
DBT C 20 319.6M€ .5tHIS- 0.7 9072'7 [$/(kgH18- (2%33;‘)’6”1"
DBT/y DBT/h)]
225,500 1821. 1442871  (Raabetal,
Ro200 640ME - Ty 0.67 81  [$/kgHyh)] 2021)
3,662,12 604.2
TOL C 20 4313['; ! 0 0.67 12;(‘)1' [$/(keMCH/h gRogall; ctal,
tMCH/y )]
R 2 666.67 225500 o 1897. 1502990  (Raabetal,
M€ tHL/y : 71 [$/kgHyh)] 2021)

!'Normalised unit CAPEX is defined as the total installed CAPEX [$] divided by the

hourly capacity of the plants (kg carrier/h), assuming 7,920 annual operating hours

2 The CAPEX for the LH2 liquefaction plant was not scaled from reference but was

calculated directly using the liquefier capital cost equation of (Connelly et al., 2019).

For this study, the daily liquefied hydrogen production considers the 6.4% loss during

the supply chain. A cost index adjustment of 1.33 was applied to adjust the liquefier

cost estimation.

3 The CAPEX of green ammonia conversion includes the Air Separation Unit (ASU)

and the ammonia synthesis plant (Ortiz Cebolla et al., 2022).
4 The CAPEX for Direct Air Capture (DAC) and methanol synthesis plant are 95 and

11 million € respectively (Bos et al., 2020).

Table A2. Energy consumption reference. C: Conversion, R: Reconversion.

Cai‘rie Process Energy consumption Reference
LH, C Hydrogen liquefaction 7 kWh/kgH> (Hezs(;:lr 96; al,
R Hydrogen regasification 0.2 kWh/kgH> (IRENA, 2022)
NH; C ilgfjtricity consumption by 1.03 kWh/kgN, (Alt};%%s;):t al.,
Feiy o by g, O Aol
R Ammonia cracking 7 kWh/kgH» T(()I:Siztegoiél)
McOH C Electricity consumption by 0.614 kWh/kgCO, (Terlouw et al.,

DAC
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Waste heat consumption by (Terlouw et al.,

C DAC 1.5 kWh/kgCO, 2021)
C Methanol synthesis 0.217 kWh/kgMeOH (Ba%%e; 4e)t al,
R Methanol dehydrogenation 0.501 kWh/kgH, (MAHLER, 2024)
DBT C DBT hydrogenation 0.068 kWh/kgH18-DBT (Cho et al., 2024)
R HI8-DBT dehydrogenation = 1,y popy, (Cho et al., 2024)
electricity
Eelagt'D BT dehydrogenation =g 7 4w nopy, (Cho et al., 2024)
TOL C TOL hydrogenation 0.071 kWh/kgMCH (Cho et al., 2024)
R MCH dehydrogenation - 1.13 kWhikgH, (Cho et al., 2024)
electricity
MCH dehydrogenation — heat 10.25 kWh/kgH, (Cho et al., 2024)

A2 Life cycle inventories

This section presents for the life cycle inventories in the LCA modelling. It should be

noted that the employees’ travel and commuting are not considered in this LCA model.

A2.1 Green hydrogen production

Table A3 explains the life cycle inventories for green hydrogen production. The
quantity of water and electricity consumption is obtained by assuming the PEM system
efficiency of 60% (BareiB3 et al., 2019). The inventory for the PEM gasket and cell stack
construction is presented in Tables A4 and AS. It should be noted that the green
hydrogen produced by PEM water electrolysis must be transported to a hydrogen carrier
production facility, such as a hydrogen liquefaction plant. It is assumed that the distance
between the green hydrogen production plant and the hydrogen carrier conversion
facility is 10 km. The hydrogen pipeline is assumed to be a distribution pipeline, as it
is shorter and operates at a lower pressure than transmission pipelines (Wulf et al.,
2018). Table A6 presents the life cycle inventories for hydrogen distribution pipeline
construction at Port Elizabeth, which has a lifetime of 20 years, based on the data from
(Wulfet al., 2018).
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Table A3 Life cycle inventory for green hydrogen production

Green hydrogen production (Bareif3 et al., 2019)

Input, material & energy

Water, deionised, from tap water, at user 9.00E+00 kg
Electricity, solar 5.55E+01 kWh
Hydrogen pipeline 5.37E-07 km
PEM cell stack construction 1 p*
Output, product

H2 - PEM water electrolysis operation 1 kg

*p is a normalised unit in SimaPro with respect to the infrastructure process's

production capacity.

Table A4 Life cycle inventory of gasket construction

Gasket construction, cell stack (D’Angelo et al., 2021)

Input, materials

Tetrafluoroethylene 7.63E-02 kg
Acrylonitrile 1.56E-01 kg
Aniline 4.79E-02 kg
Acetic anhydride 5.28E-02 kg
Purifies terephthalic acid 8.61E-02 kg
Nitric acid, without water, in 50% solution state 3.23E-02 kg
Hydrochloric acid, without water, in 30% solution state 1.27E-01 kg
Graphite 4.21E-01 kg
Lubricating oil 4.69E-01 kg
Output, product

Materials for gasket construction, cell stack 1 Kg

Table A5 Life cycle inventory of PEM cell stack construction

PEM cell stack construction (D’Angelo et al., 2021)

Input, materials & energy
Iridium 6.37E-07 kg
Platinum 6.73E-08 kg
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Copper

Steel, unalloyed

Titanium, primary

Aluminium, primary, ingot
Tetrafluoroethylene

Activated carbon

Precious metal from electronics scrap
Gasket construction, cell stack

Water, decarbonised, at user

Water, deionised, from tap water, at user
Electricity, grid

Heat, district or industrial, natural gas
Heat, from steam, in chemical industry
Industrial machine, heavy

Plaster mixing

Calendering, rigid sheets

Output, product

H2 - Cell stack construction, PEM water electrolysis

1.43E-06
3.14E-05
4.74E-04
2.42E-05
1.43E-05
8.07E-06
7.40E-07
1.13E-04
1.21E-06
9.45E-06
3.98E-06
9.72E-06
7.73E-05
1.77E-08
8.61E-05
8.61E-05

p/kgH2

Table A6 Life cycle inventory of hydrogen distribution pipeline construction

Hydrogen distribution pipeline (Wulf et al., 2018)

Input, material

Primary aluminium

Silica sand

Steel, low-alloyed

Silicon

Zinc

Drawing of pipe steel
Excavation, hydraulic digger
Excavation, skid-steer loader
Zinc coating

Output, product

hydrogen distribution pipeline
Output, waste to treatment

Pipeline decommissioning

1.94E+01
1.20E+02
5.34E+03
5.70E+02
1.53E+01
5.34E+03
1.20E+03
9.00E+03
5.34E+03

2.70E+03
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A2.2 Liquid hydrogen pathway

The life cycle inventory data for the LH> pathway is presented in Tables A7 and AS,

considering a hydrogen loss of 1.6% during the liquefaction process (Heuser et al., 2019)
and a 0.2 kWh energy consumption for LH> regasification (IRENA, 2022). The primary

energy consumption in the liquid hydrogen supply chain occurs during the liquefaction

process, which is energy-intensive due to the extremely low temperatures required and

the need to maintain the hydrogen in its liquid state to prevent boil-off. Energy

consumption for hydrogen liquefaction varies across different sources in the literature.

An energy requirement of 7 kWh per kilogram of hydrogen is assumed in this chapter

based on (IRENA, 2022). The life cycle inventories of the hydrogen liquefaction plant

are scaled linearly based on the data from (IdealHY, 2013).

The maritime transportation of liquid hydrogen is carried out by dedicated liquid
hydrogen tanker ships with an average speed of 30 km/h (IEA, 2020) and a boil-off rate
of 0.1% per day during transportation (Dickson et al., 2022). Since the liquid hydrogen
ships are currently in the prototype stage, the background Ecoinvent data from the
liquid natural gas tankers is used as a conservative proxy for liquid hydrogen ships. It
should be noted that the environmental footprint from the ballast voyage is implicitly
considered in the Ecoinvent database (Wernet et al., 2016). Additionally, the hydrogen
could be lost during the transfer operation from the port storage tanks to the transporting
ships due to unavoidable temperature fluctuations. As a result, a total of 1.3% hydrogen

loss is assumed during the loading and unloading of LH> (Wijayanta et al., 2019).

Table A7 Hydrogen liquefaction inventories

Hydrogen liquefaction (Heuser et al., 2019; IRENA, 2022)

Input, materials & energy

Hydrogen, gaseous 1.016 kg
Electricity 7.00E+0 kWh
Hydrogen liquefaction plant 5.34E-11 p
Output, product

Hydrogen, liquid 1 kg

Output, emission

Hydrogen, gaseous 1.60E-02 kg
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Table A8 Life cycle inventory of liquefaction plant construction

Liquefaction plant construction (IdealHY, 2013)

Input, materials

Carbon steel 2.17E+04 tons
Stainless steel 3.39E+04 tons
Copper 8.55E+03 tons
Aluminium 7.98E+03 tons
Concrete 2.66E+06 tons
Output, product

Liquefaction plant 1 p

A2.3 Green ammonia pathway

Table A9 presents the life cycle inventory of nitrogen production, indicating that 1.03
kWh of electricity is required to produce 1 kg of nitrogen. The synthesis catalyst for the
electrified Haber-Bosch process consists of magnetite, lime, and zeolite, as shown in
Table A10. Another key data point for ammonia production is the electricity
consumption of the Haber-Bosch process, which includes the electricity used by the
refrigeration compressor, feed compressor, recycle compressor, and electric heater
(IRENA, 2022). The electricity consumption of 0.464 kWh for ammonia production is
obtained from (Chisalita et al., 2020). In addition, emission data is sourced from
(D’Angelo et al., 2021). The infrastructure data of a chemical factory from the
Ecoinvent database is used to approximate the infrastructure processes in green
ammonia production (Althaus et al., 2007). Overall, the life cycle inventory of green
ammonia production is shown in Table A11. After production at the ammonia synthesis
plant, ammonia is stored in refrigerated tanks. This chapter assumes a daily loss rate of

0.036% (Noh et al., 2023b).

Ammonia cracking, which is the reverse of ammonia synthesis, involves breaking down
ammonia into pure hydrogen and nitrogen. The life cycle inventory for ammonia
cracking is detailed in Table A12, with the catalyst composed of nickel and magnesium
oxide (Noh et al., 2023b). The life cycle inventory data for electrified ammonia crackers
is based on (Nielsen & Topsoe, 2021). Producing 1 kg of gaseous hydrogen requires
5.93 kg of ammonia and 8 kWh of electricity, assuming a cracker efficiency of 95%. It
should be noted that the electrified ammonia cracker is currently in the pilot project

stage, and its system and energy efficiency may evolve as the technology advances. The
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infrastructure for ammonia cracking is modelled using generic chemical factory data

from the Ecoinvent database.

Table A9 Life cycle inventory of the nitrogen production

Nitrogen production with ASU (Althaus et al., 2007)

Input from nature

Air 1.28E+00 kg
Input from the techno space

Air separation facility 6.30E-10 P
Electricity 1.03E+00 kWh
Water, cooling 2.70E-03 m’
Output, product

Nitrogen 1.00E+00 kg
Output, emissions/wastes

Waste heat to air 3.69E+00 MJ
Waste water 1.15E+00 kg

Table A10 Life cycle inventory of the ammonia synthesis catalyst

Ammonia synthesis catalyst (D’Angelo et al., 2021)

Input, material and energy

Magnetite 9.17E-01 kg
Lime 3.00E-02 kg
Zeolite, powder 5.25E-02 kg
Electricity 3.14E-05 kWh
Output, product

NH3 synthesis catalyst 1 kg

Table A1l Life cycle inventory for green ammonia production

Green ammonia by Haber-Bosch process (Chisalita et al., 2020; D’ Angelo et al., 2021)

Input, material and energy

Hydrogen 1.89E-01 kg
Nitrogen 8.74E-01 kg
Electricity, for HB process 4.64E-01 kWh
Ammonia synthesis catalyst 2.00E-04 kg
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Water, cooling 8.31E-01 kg

Chemical factory 4.00E-10 p

Output, product

Ammonia 1 kg

Output, emissions/wastes

Hydrogen (to air) 7.67E-04 kg

Ammonia (to air) 1.63E-03 kg

Nitrogen oxide (to air) 1.00E-03 kg

water, cooling (to water) 8.31E-01 kg

Spent catalyst (to treatment or inert material landfill) 2.00E-04 kg
Table A12 Life cycle inventory for ammonia cracking

Ammonia cracking (Nielsen & Topsoe, 2021)

Input, material & energy

Ammonia 5.93E+00 kg

Electricity, UK 8.00E+00 kWh

Nickel 1.20E-4 kg

Magnesium oxide 1.88E-3 kg

Ammonia cracker (chemical factory proxy) 4.00E-10 p

Output, product

Hydrogen, Gaseous 1 kg

Output, waste

Spent catalyst 2.00E-3 kg
A2.4 Methanol pathway

The life cycle inventory analysis of methanol as a hydrogen carrier encompasses three
primary stages: carbon dioxide (CO:) production via direct air capture (DAC), methanol
synthesis, and methanol dehydrogenation to release hydrogen at the point of use. In the
CO: production stage, as shown in Table A13, capturing 1 kg of CO: requires 1.50 kWh
of waste heat, 0.614 kWh of electricity, and 3 grams of sorbent material. The Methanol
synthesis data is obtained from Badger et al., 2024 (Badger et al., 2024), as shown in
Table A14. The Ecoinvent data of a liquid goods tanker ship is used for modelling the
transportation of methanol. No boil-off loss is considered for methanol transportation.
In the methanol dehydrogenation stage, as shown in Table A15, 7.01 kg of methanol

and 3.78 kg of demineralised water are consumed to produce 1 kg of hydrogen gas,
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utilising 0.5 kWh of electricity and 222.52 L of cooling water (MAHLER, 2024). The
CO; is assumed to be released back into the atmosphere during the methanol

dehydrogenation stage (Arrigoni et al., 2024; Dickson et al., 2022).

Table A13 Life cycle inventories for CO2 production

CO:; production (Badger et al., 2024; Terlouw et al., 2021)

Input, material & energy

Waste heat 1.50E+00 kWh
Electricity 6.14E-01 kWh
Sorbent 3.00E-03 kg
Chemical factory 4.00E-10 p
Output, product

CO,, captured 1 kg

Output, emissions

CO,, emission to air -1 kg

Table A14 Life cycle inventories for green methanol synthesis

Methanol synthesis (Badger et al., 2024)

Input, material & energy

Copper oxide 1.67E-05 kg
CO2, captured 1.45E+00 kg
Hydrogen 2.08E-01 kg
Water, cooling 5.64E-01 kg
Electricity 2.17E-01 kWh
Methanol factory 3.71E-11 »p
Output, product

Methanol 1 kg
Output, Emissions/Waste

COy, to air 7.26E-02 kg
Hydrogen, to air 1.93E-02 kg
Waste water 5.64E-04 m’
Spent catalyst (to treatment or inert material landfill) 1.67E-05 kg
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Table A15 Life cycle inventories for methanol dehydrogenation

Methanol dehydrogenation (Arrigoni et al., 2024; MAHLER, 2024)

Input, material & energy

Methanol 7.01E+00 kg
Demineralised water 3.78E+00 kg
Cooling water 2.23E+02 L
Electricity 5.01E-01 kWh
Copper oxide 3.02E-06 kg
Zinc oxide 3.10E-06 kg
Output, product
Hydrogen, gaseous 1 kg
Output, emissions/waste
Carbon dioxide 9.7E+00 kg
Water, cooling 2.23E+00 m?
Spent catalyst 6.12E-06 kg
A2.5 DBT and TOL pathway

Table A16 shows the production data for DBT from toluene, where the electricity and
heat consumption data are from (Cho et al., 2024). The environmental impacts of the
DBT production process are attributed to DBT (Arrigoni et al., 2024). Table A17 shows
the hydrogenation process where hydrogen molecules are chemically bonded to DBT,
forming perhydro-dibenzyltoluene (H18-DBT). Since DBT carriers can be recycled
more than 750 times, it is assumed that the DBT are returned to the hydrogenation
facility (Arrigoni et al., 2024). Therefore, the environmental impacts of the initial batch
of purchasing / producing DBT are credited based on the maritime transportation
assumptions in Table 6-4. As a result, 9.39% of impacts should be credited to the South
Africa case study in the UK.

The transportation process of H18-DBT is modelled using Ecoinvent data of liquid
goods other than petroleum, with consideration of transporting unloaded DBT back to
South Africa. The ship transport of crude oil shows losses of around 0.2%, which is also
assumed for DBT transport (Niermann et al., 2021). Table A18 shows the
dehydrogenation process, where the H18-DBT is unloaded to supply green hydrogen
with an efficiency of 97% (IRENA, 2022). The hydrogenation facility will purchase or
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produce additional LOHCs to compensate for the loss. Similar processes apply to

toluene as an LOHC, where toluene is hydrogenated to methylcyclohexane (MCH) and

later dehydrogenated to release hydrogen, as shown in Table A19 and Table A20. The

dehydrogenation efficiency of TOL is assumed to be 95% (IRENA, 2022).

Table A16 Life cycle inventories for DBT production

DBT Production (Cho et al., 2024; Wulf et al., 2018)

Input, materials & energy

Toluene

Decarbonised water

Chlorine gas

Iron (IIT) chloride

Electricity
Heat

Chemical factory
Output, product

DBT

Hydrochloric acid

1.03E+00
1.20E+00
2.60E-01
2.00E-06
2.42E+00
2.70E+00
4.00E-10

0.535

Kg
kg
Kg
Kg
kWh
MJ

p

Kg
Kg

Table A17 Life cycle inventory of DBT hydrogenation

DBT Hydrogenation (Cho et al., 2024; Dickson et al., 2022; Niermann et al., 2021;

Wulf et al., 2018)

Input, materials & energy

DBT
Electricity
Hydrogen

Water, cooling

Platinum

Aluminium oxide

Output, product & energy

H18 DBT

Output, emissions & waste

Heat

Water, cooling

Spent catalyst

15.013
1.091

1.4
0.161
32

16.013

11

1.4
32.161

Kg
kWh
Kg

mg

mg

kg

kWh

mg
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Table A18 Life cycle inventory of DBT dehydrogenation

DBT dehydrogenation (Wulf et al., 2018)

Input, material & energy

H18-DBT 16.013 kg

Electricity 1.119 kWh

Heat 9.79 kWh

Platinum 0.161 mg

Aluminium oxide 32 mg

Water, cooling 358 L

Output, product

Hydrogen 1 kg

Output, emission, waste

Water, cooling (to water) 358 1

Spent catalyst 32.161 mg
Table A19 Life cycle inventory of Toluene hydrogenation

Toluene hydrogenation (Dickson et al., 2022; Niermann et al., 2021)

Input, materials & energy

Toluene 15.24 kg

Electricity 1.16 kWh

Hydrogen 1 kg

Water, cooling 14 L

Platinum 0.161 mg

Aluminium oxide 32 mg

Output, product

Methylcyclohexane (MCH) 16.24 kg

Output, emissions & wastes

Heat 132 kWh

Water, cooling (to water) 14 L

Spent catalyst 32.161 mg

Table A20 Life cycle inventory of Toluene dehydrogenation

Toluene dehydrogenation(Dickson et al., 2022; Niermann et al., 2021)

Input, material & energy
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MCH 16.24 kg
Electricity 1.13 kWh
Water, cooling 14 L
Platinum 0.161 mg
Aluminium oxide 32 mg
Heat 10.25 kWh
Output, product
Hydrogen 1 kg
Output, emissions & waste
Water, cooling (to water) 14 L
Spent catalyst 32.161 mg
A3 ReCiPe impacts

Tables A21 and A22 present the ReCiPe midpoint and endpoint impact characterisation
of the base case, respectively. The specific methods are ReCiPe 2016 Midpoint (H)
V1.09 / World (2010) H and ReCiPe 2016 Endpoint (H) V1.09 / World (2010) H/A.
Table A23 shows quantitative process contributions to the Fine particulate matter
formation and Human carcinogenic toxicity.

Table A21 ReCiPe midpoint impact characterisation of the five GHCs

Impact category Unit LH; NH; MeOH DBT TOL
Global warming kg CO2 eq 7.7%E+0 1.001E+0 1.041E+0 1.551E+0 1.291E+0
Stratospheric ozone kg CFC11  5.92E- 8.01E- 7.46E- 7.78E- 4.58E-
depletion eq 06 06 06 06 06
Jonizing radiation kBq Co-60 3.69E-  7.54E-  5.15E- 4.70E-  4.37E-
eq 01 01 01 01 01
Ozone formation, ke NO 3.20E- 4.89E- 4.90E- 9.41E- 8.11E-
Human health ~&°-7 4 02 02 02 02 02
Fine particulate kg PM2.5  2.02E- 2.80E- 2.90E- 4.16E- 3.16E-
matter formation eq 02 02 02 02 02
Ozone flf);r?:sttlr(izl kgNOxeq 24B-  S39E-  497E- 9.68E-  $.43E-
02 02 02 02 02
ecosystems
Terrestrial ke SO2 6.17E-  9.34E-  8.60E- 1.24E-  9.20E-
acidification 2 T n 02 02 01 02
Freshwater ke P 7.51E- 8.84E- 9.28E- 7.25E- 3.28E-
eutrophication &= 4 03 03 03 03 03
Marine ke N e 3.73E-  4.60E- 492E-  5.54E-  3.52E-
eutrophication & 4 04 04 04 04 04
Terrestrial kg 1,4-  2.02E+0 2.50E+0 3.15E+0 2.73E+0 2.62E+0
ecotoxicity DCB 2 2 2 2 2
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Freshwater kg 1,4- 1.14E+0 148E+0 1.86E+0 1.27E+0 1.11E+0
ecotoxicity DCB 0 0 0 0 0
Mari toxicit kg 1,4- 1.67E+0 2.14E+0 2.68E+0 1.90E+0 1.68E+0
arine ecotoxicity DCB 0 0 0 0 0
Human carcinogenic kg 1,4- 6.48E+0 7.75E+0 9.57E+0 7.36E+0 6.54E+0
toxicity DCB 0 0 0 0 0
Human non- kg 1,4- 1.5SE+0 2.12E+0 2.44E+0 1.78E+0 1.13E+0
carcinogenic toxicity DCB 1 1 1 1 1
Land use m2acrop  2.56E- 841E-  450E- 4.58E-  3.70E-
eq 01 01 01 01 01
Mineral resource ko C 6.78E- 9.38E- 1.22E- 9.08E- 8.73E-
scarcity & -4¢d 02 02 01 02 02
Fossil resource ke oil @ 2.19E+0 2.86E+0 2.93E+0 6.32E+0 6.32E+0
scarcity & q 0 0 0 0 0
Water consumption m 5.07E-  7.07E-  8.06E-  8.06E-  5.53E-
P 02 02 02 02 02
Table A22 ReCiPe Endpoint impact characterisation of the five GHCs.
Impact category Unit LH, NH; MeOH DBT TOL
Global warming, 7.14E- 9.65E-
Human health DALY 06 9.30E-06 06 1.44E-05 1.20E-05
Glf)bal warming, species.y 2.16E- 5 31E-08 2.91E- 435E-08 3.62E-08
Terrestrial ecosystems T 08 08
Global warming, species.y 5.89E- 7 67E-13 7.95E- 119E-12 9 .89E-13
Freshwater ecosystems r 13 13
Stratospheric ozone ;v 314B-  Hsp 09 3B 4 13E00  2.43E-00
depletion 09 09
lonizing radiation DALY >0 640809 *3F" 398E-00 3.70E-09
Ozone formation, 2.91E- 4.45E-
Human health DALY 08 4.54E-08 08 8.56E-08 7.38E-08
Fine particulate ma‘Fter DALY 1.27E- 1. 76E-05 1.82E- 2.62E-05 1.99E-05
formation 05 05
OZQne formation, species.y 4.18E- 7 08E-09 6.42E- 125E-08 1.09E-08
Terrestrial ecosystems T 09 09
Terrestrial ~species.,y 1.31E- 1.82E-
acidification . 08 1.98E-08 08 2.63E-08 1.95E-08
Freshwgter species.y  5.03E- 5 92E-09 6.22E- 4.86E-09 220E-09
eutrophication r 09 09
Marine eutrophication  P¢1Y 034 7.0 13 $3TF 941513 598E-13
Terrestrial ecotoxicity  *PEIY 2305 agsp09 20ET 311800 2.99E-09
Freshwater ecotoxicity  P°9%Y 7986~y oop.g9 1296 g g0E-10 7.69E-10
Marine ecotoxicity PeY 1T9E 9a5p 10 28 5 00810 177E-10
Human carcinogenic v 21585 57505 3185 5 44p05 2.17E-05
toxicity 05 05
_ Humannon-—p, y 333E- 4 o6 > 406606 2.57E-06
carcinogenic toxicity 06 06
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Land use

Mineral resource

scarcity
Fossil resource
scarcity

Water consumption,

Human health

Water consumption,
Terrestrial ecosystem
Water consumption,
Aquatic ecosystems

species.y
r

USD201
3

USD201
3

DALY

species.y
r

species.y
r

2.27E-

3.99E-

7.46E-09
1.57E- 0.021678  2.82E-

09

09

02 02
3.36E- 0.524014 5.47E-
01 01
5.66E- 9.90E-
08 4.99E-08 08
6.93E- 1.04E-
10 1.01E-09 09
7.75E- 1.11E-
14 1.32E-13 13

4.06E-09

2.10E-02

2.14E+0
0

1.05E-07

1.01E-09

1.06E-13

3.29E-09

2.02E-02

2.42E+0
0

-9.48E-
08

9.89E-10

2.25E-13

A4 Sensitivity analysis results

This section presents the results of the sensitivity analysis of the 7 alternative cases.

Table A24 shows the criteria results based on the case definition, and Table A25
shows the VIKOR and TOPSIS results.

Table A24 The criteria result of the sensitivity analysis

LH, NH; MeOH DBT TOL
LCOH
Case 0 (USD/kg) 8.17 8.14 7.22 7.25 7.07
IRR  15.59% 18.24% 23.90% 21.18% 23.13%
GWP (kg
020 7.62 9.91 10.30 15.16 12.45
ReCiPe (Pt) 0.77 0.98 1.11 1.20 0.97
Efficiency  77.62% 70.05% 63.57% 63.27% 63.45%
LCOH
Case 1 (USDkg) 7.81 7.78 6.86 6.89 6.71
IRR  18.00% 21.84% 28.47% 24.60% 27.10%
GWP (kg
C02e0) 7.62 9.91 10.30 15.16 12.45
ReCiPe (PY) 0.77 0.98 111 1.20 0.97
Efficiency  77.62% 70.05% 63.57% 63.27% 63.45%
LCOH
Case 2 (USD/kg) 8.71 8.68 7.76 7.79 7.61
IRR  12.62% 14.13% 18.84% 17.18% 18.59%
GWP (kg
020 7.62 9.91 10.30 15.16 12.45
ReCiPe (PY) 0.77 0.98 111 1.20 0.97
Efficiency  77.62% 70.05% 63.57% 63.27% 63.45%
LCOH
Case 3 (USDkg) 9.07 9.22 8.14 8.07 7.89
IRR  11.77% 12.33% 18.85% 17.40% 19.05%
GWP (kg
020 7.62 9.91 10.30 15.16 12.45
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ReCiPe (Pt) 0.77 0.98 111 1.20 0.97
Efficiency  77.62% 70.05% 63.57% 63.27% 63.45%
LCOH
Case 4 (USDkg) 7.27 7.07 6.30 6.43 6.24
IRR  19.21% 23.81% 28.81% 24.86% 27.11%
GWP (kg
020 7.62 9.91 10.30 15.16 12.45
ReCiPe (Pt) 0.77 0.98 111 1.20 0.97
Efficiency  77.62% 70.05% 63.57% 63.27% 63.45%
LCOH
Case 5 (USD/kg) 8.17 8.14 7.22 7.25 7.07
IRR  15.59% 18.24% 23.90% 21.18% 23.13%
GWP (kg
C02e0) 6.89 9.10 9.49 14.56 12.31
ReCiPe (PY) 0.72 0.93 1.06 1.16 0.96
Efficiency  77.62% 70.05% 63.57% 63.27% 63.45%
LCOH
Case 6 (USD/kg) 8.17 8.14 7.22 7.25 7.07
IRR  15.59% 18.24% 23.90% 21.18% 23.13%
GWP (kg
0200, 5.60 7.68 8.12 13.62 11.99
ReCiPe (PY) 1.24 0.83 0.96 1.09 0.95
Efficiency  77.62% 70.05% 63.57% 63.27% 63.45%
LCOH
Case 7 (USDkg) 7.41 6.89 6.40 7.07 6.88
IRR  18.65% 24.71% 28.25% 22.00% 24.04%
GWP (kg
020 2.43 3.66 4.72 11.20 11.44
ReCiPe (Pt) 0.45 0.62 0.78 0.96 0.91
Efficiency  77.62% 70.05% 63.57% 63.27% 63.45%

Table A25 AHP-TOPSIS and AHP-VIKOR score of sensitivity analysis

Case 0
Case 1
Case 2
Case 3
Case 4
Case 5
Case 6
Case 7

AHP-TOPSIS AHP-VIKOR
LH, NH MeO DB TOL LH» NH3 MeO DBT TOL
3 H T H
078 0.61 059 0.17 040 0.50 084 009 079 0.11
0.77 0.61 059 0.18 041 0.50 0.83 0.09 0.79 0.12
0.79 0.62 059 0.17 040 0.50 0.86 0.09 0.79 0.11
077 0.60 0.59 020 042 0.33 096 017 079 0.15
0.77 0.63 0.59 0.17 040 0.50 044 004 079 0.12
0.79 0.67 0.61 0.07 0.31 0.50 0.04 020 087 048
076 0.72 0.66 0.09 025 0.68 0.03 020 087 053
0.85 0.82 0.70 0.05 0.07 0.54 0.01 0.20 0.85 0.79
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