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Abstract
Cities are social reactors: they turn proximity into interactions, and interactions into recombinant
ideas, yet who meets whom is uneven—and now threatened by remote work and climate stress.
This thesis measures human interaction and urban structure from GPS traces, maps the mesoscale
structure that shapes encounters, and tests how technological and climatological shocks distort ur-
ban mobility and mixing. First, I quantify “experienced” segregation from activity and identify
broad mesoscale patterns across American cities: rings of isolation around cores and pockets of
segregation, which export and import diversity asymmetrically. Race, class, and centrality are
the key predictors, and these patterns endure over time. Second, I separate mixing from bridg-
ing—differentiating locations that host diversity because they are situated between communities
and those that draw diversity in excess of spatial location. We then explore the ways that the
pandemic and transition to remote work have durably altered mobility; constructing and moni-
toring a panel of data that extends for six years, we see that larger cities show greater deviations
while smaller cities have snapped back to the patterns that defined them before the pandemic.
Decomposing mobility into three components according to the length of the journey shows that
longer trips and central places disproportionately account for the longest trips; when work recen-
tres on the home, distances will fall but mixing could fall as well. Third, I couple mobility with
weather to model behavioural adaptation to heat across multiple countries. Hot days reduce and
retime activity—especially midday—while evening substitution occurs in some contexts and the
effects on the poor also vary across developing and developed countries. Changes during extreme
heat flatten social mixing when density would typically amplify encounters. Projections suggest
smaller cities face larger relative losses, while larger cities bear greater absolute impacts without
adaptation. Together, these results show how mesoscale structure, centrality, and daily rhythms
govern realised contact—and how remote work and rising temperature rewire those mechanisms.
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Impact statement

Within academia. The thesis advances measurement and mechanism in urban science.
Methodologically, it formalises experienced segregation from activity-space exposures
and mixing matrices, and distinguishes mixing from bridging to locate venues that create
intergroup contact. This sharpens inference beyond aggregate indices and helps recon-
cile micro-preferences with meso-scale structure. The finding of “rings” and “pockets”
generalises segregation from a neighbourhood property to a mesosystem property, offer-
ing a reusable template for classifying sources and sinks of diversity across cities. This
thesis proposes multiple tools to quantify changes to urban dynamics if the draw of cen-
tral places weakens due to remote work and extreme heat, including a mixture-of-scales
approach to mobility and a null model that allows for the comparison of expected and ob-
served social mixing–with particular relevance to central business districts. The generic
operator we create to track mobility data over long time series will allow researchers to
monitor changes as cities continue to evolve. These tools are portable to urban studies,
network science, economic geography, and social science.

For policy and practice. The evidence supplies levers for inclusive growth. “Rings”
and “pockets” provide a map for targeting bridging amenities—placing services and third
places between socially distinct zones—and for protecting central places as mixing en-
gines. This work shows that changing incentives are changing behaviours: remote work
lowers the cost of staying at home and extreme heat raises the cost of going out. Remote
work has enabled the suburbanisation of day-to-day activity. Further, heat acts like a tax
on mobility: activity compresses away from hot hours and short, walkable trips contract
first, with stronger effects in disadvantaged areas. These deformations of daily rhythms
reduce mixing, redistributes spending, and curbs activity where density normally gen-
erates spillovers. For remote work, programming could generate “buzz” and draw vis-
itors. For heat, practical responses include shade and cooling in access paths, schedule
shifts for public services, and targeting cooling and transport reliability in vulnerable
districts—actions that protect both human health and urban vibrancy.

Future applications. The measurement techniques in this thesis can be embedded in
municipal data observatories to monitor mixing, identify candidate bridging sites, and
evaluate interventions. In particular, the use of free and open data to study heat will allow
for both continued research and policy evaluation. It can also inform government policies
around remote work or hybrid scheduling where cross-team exposure is a production
input.
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1 The puzzle

The world economy is “spiky” [188]: a fraction of all metropolitan areas now capture the
lion’s share of economic growth, innovation and even infrastructure. Half of the world’s
economic production occurs on just 1% of its land area [264], just 1% of cities on earth
contain 21% of impervious surface area, 23% of built height, 25% of the built volume,
and 27% of the population [309]. The 10 largest airports—constituting just 0.03% of
all airports globally—handle 10% of all passenger traffic [10]; the 20 busiest seaports
handle 50% of shipped containers annually [254]. The 20 largest cities in the world
now have a combined population of 500 million, more than the European Union or the
United States [309]. The spikiness of the world is on full display in the world of digital
bits, rather than physical goods: 85% of technology “unicorns”, companies valued at
over $1 billion, huddle together in just 50 cities (see Fig. 1.1) [141]; 85% of awarded
patents come from 100 cities [154]. Further, the world economy is becoming spikier as
inequalities both within and between cities have risen since the turn of this century [349].
Human mobility is the mechanism driving these spikes: by compressing time and space,
cities are efficient media for production, trade, and innovative recombination.

Figure 1.1. Locations of technology “unicorns”. Although all wealth is concentrated in cities, only a few
of these cities contribute to the “startup” ecosystem that has become a driver of the modern economy; all
technology unicorns—companies valued more than $1 billion—reside in 100 cities, and many of the most
valuable concentrate in New York City, San Francisco, London, Paris, Shenzhen, and Shanghai. Data are
from Crunchbase [141].

Yet while the world is spiky and growing spikier, the spikes’ locations keep shift-
ing: the rise of San Francisco coincides with the fall of Detroit, and although absolute
numbers still favour Britain’s largest cities, Milton Keynes—founded in just 1967—now
contributes more value per worker than Manchester or Birmingham [105]. Urban dy-

12



namics are at once “fast, slow, and still”: firms and workers change cities quickly, cities
slide up and down the rankings for population and production slowly, but the distribu-
tions that define urban systems—often close to Zipf’s Law [135]—are stable [170]. Eco-
nomic transformations in the past have brought about the rise and fall of cities like De-
troit and Manchester, as the “perennial gale of creative destruction” [448] has wired and
rewired the global economy. Megacities like Shenzhen and Shanghai are ascendant to-
day, but Delhi and Lagos—which could each have populations of 40 million by 2050
[496, 495]—might be the future hubs of the global economy. Generally, projections in-
dicate that the largest cities today will not be the largest cities in 2100 [233].

Having established where spikes concentrate, we now ask how they form: through
everyday movement patterns that assemble (or separate) people, goods and ideas in space
and time. In what follows we treat mobility as the hinge by which urban form becomes
social interaction and exchange: changing how, when, and where people move changes
who meets whom, who learns what.

Research identifies innovation as the engine of economic growth [459, 422, 7], and
cities play a vital role in the innovation ecosystem [319]. Further, the returns to innova-
tion accrue not just to the firms which innovate, but to other firms [76]—more so locally
[293] but globally [252] as well. This in turn fosters economic dynamism and growth
in distant countries [125] as innovative firms expand, sending advanced technologies
around the world. In other words, productive cities create productive firms, and produc-
tive firms generate benefits for all of us. With the possibility that ideas are getting harder
to find [74], ensuring that the networks that generate innovations hold together is criti-
cally important to continued economic growth and prosperity. These innovative payoffs
are mediated in practice by mobility—learning, searching, and matching across space.

Herein lies the importance of understanding urban systems, dynamics, processes:
they are where our prosperity will be created, more so than any deposit of precious met-
als or reservoir of fossil fuels [417, 425]. This means that the evolution of cities over the
coming years will determine the “haves” and “have nots”, as well as important technolo-
gies that benefit all of us.

Because cities’ payoffs flow through encounters, mobility is the proximate phenomenon
we can observe and model; it is how policy and shocks register in daily life. We saw this
during the pandemic when indicators derived from various sources of mobility data pro-
liferated—including foot traffic [207], traffic congestion [489], dinner reservations [344],
office keycard swipes [250], and even a “sandwich index” of purchases at Pret a Manger
stores [212].

Urban structure, the configuration and distribution of different aspects of urban life—offices,
homes, amenities—in space, and human behaviour are linked. For systems of cities, we
know that centres of demand coalesce into a hierarchy, wherein certain goods are pro-
vided in large urban centres—those which require large markets to remain viable—and
others are distributed throughout small settlements [198, 282]. This allows for, and is the
product of, the human need to access different goods at different frequencies—things we
need more often must be close by, things we need less often can be far away. Although
this theory models systems of cities, preliminary evidence suggests that it manifests in
cities as well [444, 17]: we need localised consumption in the form of cafes and restau-
rants, and centralised consumption in the form of agglomerated shopping malls, high
streets, and retail parks.

Cities are also the results of emergent processes that facilitate some kinds of interac-
tions and inhibit others. Ghettos emerged to modulate how different ethnic groups access
the broader city; the eponymous ghetto nuovo allowed Jewish residents of Venice to work
in the city and provide critical services—but otherwise confined them to a single island
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[168]. Ghettos have since become an emergent arrangement in many cities, but they al-
ways situate residents in a manner that is close but not among, allowing access without
integration. Today, across the world, cities display patterns of “experienced segregation”
[278], a regularity in which people from one group are less likely to interact with peo-
ple from other groups in daily routine, often as a result of some of the same forces that
produced ghettos. Because cities are conceived in the literature as “social reactors” [71],
where gains to innovation and productivity are the results of serendipitous collisions that
integrate and recombine ideas, this presents something of a puzzle: why not integrate all
members of society?

The answer may lie in human biases—discomfort with different “others” [20, 360,
361]—or in cognitive limitations—our brains cannot sustain infinite relationships [167],
which ramify in space. Yet literature also suggests that we may benefit when we adjust
our preferences to invite discomfort and messiness into our lives [362], which in turn
implies that people do not behave rationally [246, 493, 492, 248]—and that cities might
not function optimally as a result. In fact, as vast and complex systems, cities present
many of the challenges that force any given person to resort to “fast and frugal heuristics”
[201] rather than reasoned optimisations. After strikes disrupted service on the London
Underground, forcing millions of Londoners to adjust their commute, 5% of all riders
never returned to their original route [266].

The possibility that our habits are metastable and can durably change with pertur-
bations is important because technological and climatological shocks facing many cities
promise to alter many aspects of urban life going forward, inviting changes to behaviour
and routine. Hotter days will make it less attractive to walk or bike, possibly to leave
the home at all; easier communication will make it less compelling to commute. This,
in turn, will test the function of cities as social reactors, which bring people together to
engineer serendipity. The “introvert economy” [447], wherein people prefer a night in
with streaming television to a night out with friends, will curb the rate of collisions.

If face-to-face interaction is the engine that drives urban economies, what happens
when interaction is spatially segregated, technologically attenuated, or climatically taxed?
What happens when the incentives to meet in physical space fall and the returns to en-
tertainment in digital space rise? We seek to answer each of these questions in the thesis
that follows, exploring the consequences on urban systems of variations in and changes
to mobility as the world equilibrates to new geographies of remote work and extreme
weather. We look at the state and evolution of cities amidst a confluence of transfor-
mative pressures, some that began long before the COVID-19 pandemic and others that
could persist long after.

The proliferation of large and detailed GPS mobility data—capturing daily structures
of human interactions across cities and countries—now allow us to observe patterns that
were previously invisible [49]. Recent advances allow us to compare interaction biases
and spatial structures across diverse urban contexts at scale, track how they evolve over
time, and test their persistence under major shocks such as the COVID-19 pandemic and
accelerating climate extremes. This makes the core questions of this thesis, which we
present below, both tractable and urgent: if we misdiagnose these dynamics, we risk
pursuing policies that entrench segregation, squander the innovative potential of diverse
urban populations, and exacerbate inequalities within and between cities. If we diagnose
them well, we can design interventions that preserve the generative social reactor function
of cities even as technologies and climatic conditions change.

Given the aforementioned technological and climatological shocks, our study is one
of mobility in equilibration and transition. The goal of this thesis is to better understand
the future of cities under new regimes. We ask three questions that organise the empirical
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work.

• What are the broad patterns of experienced segregation across cities and regions,
and to what extent are they explained by urban structure rather than human prefer-
ence?

• How has the shift to remote and hybrid work reweighted mobility away from city
centres, and how do city size and the strength of secondary centres moderate that
reweighting?

• What are the consequences of extreme heat for the timing and geography of mo-
bility, and for intergroup mixing?

Our empirical analysis is grouped into three parts, each mapping onto these ques-
tions: Segregation and Mixing, Remote Work and Urban Structure, and Changing
Climates, Changing Cities. The first part explores how urban structure influences mo-
bility and moving into a series of shocks and dynamics. A simple rule that we explore
in chapters 3 and 4 is that centres mix, peripheries sort. In the second part, because cen-
tral places are so important to the social mixing that happens in cities, Chapters 5 and 6
explore the consequences for cities as we redistribute greater shares of work to remote
and hybrid arrangements that do not occur in central places at all but in peripheral resi-
dences—tracing a phenomenon called the “doughnut effect”. In the final part, Chapters
7 and 8, we then look further into the future by exploring how climate change influences
our mobility and, by extension, the nature of the “social reactor” that cities create.

Styling notes

On “we”. As when presenting this research to an audience, I use the inclusive “we” to invite the
reader into the argument. Each step is laid out—visually, numerically, and graphically—so it can
be followed and questioned. If the “we” ever breaks—if you do not reach the same conclusions—I
have not done my job.

On format. The thesis comprises six empirical chapters that have been adapted from six papers. To
match journal conventions, each chapter presents results first, followed by discussion and methods.
Some light repetition is intentional to keep each chapter readable on its own.

Box 1

Many early studies in human mobility were limited in spatial context and temporal
coverage. While not a methodological choice, we make an important epistemological
move by aggregating data from as many sources over as many periods as possible. The
insights we gain from this rest on two key assumptions, which we motivate now.

“The past is a foreign country, they do things differently there.” [223] The COVID-
19 pandemic and the shift to remote work put in sharper relief the fact that cities are
always latent and evolving—they are never removed from the past, a phenomenon known
as path dependence, nor are they finished products [62]. By looking across time, we learn
about the origins of urban problems and gain confidence that the patterns we identify are
robust to shocks—or, if they are not, we learn about the fragility and transience of such
patterns.

Since the turn of the new millennium, the defining feature of what makes a city pros-
perous has been turned on its head, from advantages for production to its comparative
strengths for consumption—from restaurants, cafes and bars to warmth and sun—which
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is in turn driving both demographic and geographic transformation [203]. The data we
exploit here begin at the height of the “superstar” city, a period of growing populations
of knowledge workers and rising costs of living in cities (see Fig. 1.2). In 2018, Google
acquired a site for a new headquarters in New York City and began construction on new
headquarters in London. In the same year, Amazon announced its decision to build a
headquarters in Washington, DC, alongside another complex in New York City. The
“creative class” [190] was beginning to drive up real estate prices in trendy neighbour-
hoods in global cities [479]. This was a period of transition from urban revival to “urban
crisis” [189], with rising inequality and falling affordability alongside segregation and
gentrification in many booming cities; it was also a period defined by a rich-get-richer,
“the best and the rest” dynamic.

Figure 1.2. House prices since 1990. Beginning around the turn of the new century, cities began to grow
in size, with housing becoming more expensive in many global cities; shown here, house prices are indexed
to 100 in the year 2000. Rising costs of living were beginning to show in a “new urban crisis” prior to the
pandemic. Data are from The Economist [478], indexed such that 2000 = 100.

The transition to hybrid or fully remote work invites new questions about what a city
is for, questions that have roots in the transition from producer to consumer cities, but are
accentuated by new freedoms surrounding where to live and work—if you can work from
home, you might sort more on consumption and leisure amenities than if you cannot do
so. As firms have moved more work to telecommunication networks, economically, cities
have moved from being “space of places” to “spaces of flows” [103]: goods and services
are important, but information is key and much of this information now flows through
virtual links. However, this information comes in the form of both know-how and know-
who, and much of it still depends on spillovers that occur in space [41]. The evidence
so far is that people cannot totally divest from the city: although many have moved to
suburbs or exurbs, they often remain within the same metropolitan region, because they
still need to visit the city occasionally [379]—which in turn suggests that either employers
or employees still consider proximity, or face-to-face interaction, important.

All of this presents a mixed narrative about how cities are different now than they were
in January 2020. In light of this uncertainty, our work attempts to use long time series or
comparisons from pre- and postpandemic cities to gain clarity about which patterns we
see are durable, which are transient, and which appear to be the product of an interaction
between local and global forces. These interactions will feature in the pages that follow
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because the cities that represented the height of “superstar” urbanism—rising costs of
living, growing inequalities—give critical lessons for the metastability of urban systems.

Time series allow us to calibrate our theories with the appropriate epistemic confi-
dence. Longitudinal data reveal whether observed regularities are structural or transient,
robust or fragile [149, 386]—a distinction that is critical for robust theory and for policy
design. They allow us to see how shocks propagate through urban systems, how patterns
persist or decay, and how feedbacks reshape trajectories [56].

“The future is already here—it’s just not evenly distributed.” [200] We also gain
important epistemic leverage by spreading out across space. This allows us to look into
possible futures, plausible counterfactuals, as well as edge and corner cases in different
contexts—especially different climate zones. In the following work, we see “leading indi-
cators” for many phenomena that we study: San Francisco has the most severe “doughnut
effect” in our data, for example, and (hotter) India shows the signs of climate adapta-
tion—displacing activity into the evening on hot days—while (cooler) Mexico does not.

This claim—that we can learn about the future by studying diverse contexts in the
present—is formally called “space-for-time” substitution, and has its origins in climatol-
ogy and ecology. Spatial differences can predict 75% of the temporal variation in some
contexts, so long as there is strong variation across space and strong change over time
[72]. While space-for-time substitutions have come under scrutiny in recent years [28],
they may still add value [183]. Comparative statics do not predict a single future; rather,
they identify plausible futures and allow us to identify leading indicators and emergent
patterns that would be invisible from a single-city or single-country study.

One caveat: unlike ecosystems, urban systems are interlinked—and that interdepen-
dence is important to learning, the spread of ideas related to adapting to shocks. This is
a feature, not a bug, of our study: that Mexico City can learn from New Delhi adds to the
importance of this work. In other words, space-for-time substitutions reveal “actionable
risks” in ecology [78], even when the exact predictions err, but for cities they also suggest
“actionable mechanisms” by which we can mitigate those risks.

“In the science of city planning the whole city is our laboratory.” [192] Here we
use a variety of cities and regions to understand what drives the patterns we see in human
mobility and enable better decisions for the planning and design of cities as we continue
through this period of transition.

With these questions and premises in place, we begin with a review of the literature,
both to situate our work and to motivate the model of cities we use. This will survey work
on mobility so that we can situate our analysis within the field, but will also motivate the
research and build a coherent model for how cities function. In the chapters that follow,
we will consider three distinct urban transitions. Chapters 3 and 4 consider American
cities before and during the pandemic—cities like New York City and San Francisco that
were expensive, unequal, and divided. In these chapters, we empirically test the claim
that centres mix while peripheries sort, mapping the structure of experienced segrega-
tion in Chapter 3 and probing the role of central places in Chapter 4. We then introduce
methodologies for measuring urban mobility in Chapters 5 and 6, focusing on polycen-
tricity and core-periphery dynamics, with the goal of understanding how cities change
under remote work. Chapter 5 looks at the city level, employing dimensionality reduc-
tion to track mobility in 382 cities across six years. Chapter 6 looks at the neighbourhood
level, using mixture models to understand the relationship between where a neighbour-
hood is located and how its residents distribute trips throughout the city. Finally, we test
the effect of extreme heat on urban mobility in Chapters 7 and 8, with particular focus on
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how this could impact cities as social reactors. Because climate stress alters incentives
around work and leisure, acting as a comfort tax, Chapter 7 measures collapses in activ-
ity on hot days in Spain, and Chapter 8 extends our understanding of these behavioural
responses across hotter and poorer contexts in India, Mexico and Indonesia.

Accurate measurement of mobility and intergroup contact is the difference between
policy that amplifies divisions and policy that preserves the innovative potential of cities
as technologies and climates shift [430, 468]. This thesis contributes in three ways.

• Empirical. We identify mesoscopic patterns of experienced segregation across
American cities and develop models that explain these patterns. In doing so, we
revise how urban structure drives experienced segregation and show that city cen-
tres play a pivotal role in social mixing. Using data with rare spatial and temporal
coverage, we also show that remote work alters core-periphery dynamics, and that
extreme heat suppresses mobility—both of which have consequences for social
mixing.

• Methodological. We develop tools for monitoring cities during this period of tran-
sition so that future work can track changes under rising temperatures and remote
work. We develop a technique for dimensionality reduction that allows for com-
parisons between cities and across time; we advance mixture models as a way to
decompose mobility patterns within cities.

• Conceptual. We advance heat as a primary force in urban dynamics by exam-
ining its effect on mobility across both richer and poorer countries. Prior work
documents consequences of extreme heat for health, productivity, time use, and
travel mode; what is missing is a comprehensive account of how heat changes who
moves where. We show that heat can reduce, retime, and reshape mobility, with
implications for how urban economies function.

In what follows, we will measure encounters, separate structure from preference, and
see what shocks do to both. If we succeed, the reader will leave with a clearer view of
how to preserve mixing—and the prosperity it supports—as cities adapt to new work and
a hotter world.
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2 Literature

The following thesis is divided into three analytical sections. The first focuses on docu-
menting and modelling experienced segregation—the degree to which individuals of one
group are exposed to individuals of another in day-to-day activity. The second develops
methods to monitor urban systems in light of changing mobility patterns that continue to
evolve in present day, with particular attention given to remote work as a driver of this
change. The third and final section looks at how extreme heat threatens urban mobil-
ity so that we can understand how city life might change with rising temperatures. The
following review begins by motivating why we should study cities and interactions be-
fore reviewing the literature on experienced segregation, remote work, and extreme heat,
mirroring the structure to come.

We espouse an organising principle: observed mixing is shaped by urban struc-
ture—the locations of homes, jobs and amenities, and the generalised cost of reach-
ing them—and human behaviour, manifest in systematic differences in where groups
go, conditioning on access. We map a set of caninical urban models to mobility in the
review that follows, which we lay out in 2. Our empirical chapters operationalise this as
a structure-preference decomposition of experienced segregation, and then treat remote
work and extreme heat as shocks that shift incentives or raise travel costs, letting us see
which patterns are mutable and which persist.

2.1 Why cities, why interactions?

A recurrent idea motivating all of our chapters is the idea that a city is a “social reactor”,
generating trade, innovation, even friendship by putting residents in close proximity to
one another, letting goods pass and ideas spillover between them. A city represents a
space of possible connections that grows exponentially with its population, and these
connections give rise to certain advantages and efficiencies in production and innovation
[70]. Urban scaling theory describes the relationship between a city’s population and its
various economic and social indicators. A variable Y relates to population, P , as

Y ∼ P β

where β represents the scaling exponent. The value of β conveys the degree to which
a phenomenon grows with size, with β < 1 indicating economies of scale and β > 1
economies of agglomeration.

Research on scaling relationships in urban economies identifies three distinct cate-
gories, each with its own scaling rules [68, 31]: social aspects (wages, patents) follow
superlinear scaling, infrastructure demands (roads, buildings) follow sublinear scaling,
and human needs (jobs, housing units) follow linear scaling. We demonstrate this with
gross metropolitan product, the total value of goods and services produced in a city, in
Fig. 2.1. Simply, many of the inputs—the roads and electric cables that facilitate ac-
tivity—to urban economies exhibit a sublinear relationship with city size while many
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Linking theory to empirics

Understanding mobility. In what follows, we treat mobility, exposure and mixing as the product of
many forces. Urban structure determines the feasible choice set and its generalised costs; incentives
and constraints, as well as individual preferences, further shape realised behaviour, such that

Mixing ∼ form & function︸ ︷︷ ︸
structural factors

+ preferences, incentives & constraints︸ ︷︷ ︸
behavioural factors

+ transient conditions︸ ︷︷ ︸
environmental factors

+ ϵ,

with ϵ representing noisy decision-making. Environmental conditions, in particular heat, act pri-
marily by raising generalised costs and tightening feasible time windows, shifting when, where, and
how people move.

Urban form and function.
• Central place theory. Role: explains why and where shared destinations form (centres, sub-

centres) and how they create arenas for encounter. Empirical entry: motivates core–periphery
dynamics for experienced segregation (Ch. 3–4); provides a structural lens for decentralisation
under remote work (Ch. 5–6); clarifies why shocks can reweight activity toward nearer centres
or local hubs (Ch. 7–8).

• Bid-rent theory. Role: explains why activities sort with distance from centres: in equilibrium,
centrality is valuable because it is access to opportunity. Empirical entry: interprets ring/pocket
gradients in exposure (Ch. 3–4); frames reallocation of daytime presence and consumption when
commuting weakens (Ch. 5–6); clarifies how travel costs shift the effective city different groups
can experience (Ch. 7–8).

Preferences, incentives and constraints.
• Schelling dynamics. Role: illustrates how small, local preferences for like neighbours can am-

plify into large, global patterns without coordinated intent. Empirical entry: motivates inter-
preting deviations from structure-implied exposure as “excess” segregation (Ch. 3–4); mobility-
coupled extensions connect sorting to destination choice [321].

Historic patterns of segregation.
• Hypersegregation. Role: describes historically produced regimes in which separation mani-

fests across multiple dimensions (e.g., isolation, concentration, centralisation), often through
durable institutional and infrastructural legacies. Empirical entry: disciplines interpretation of
ring/pocket patterns and explains why some neighbourhoods exhibit systematically higher ex-
perienced isolation than structural factors alone would predict (Ch. 3–4), consistent with path-
dependent constraints on access and opportunity.

Causal loops and scaling. A recurring theme in urban theory is that mobility both shapes and is
shaped by cities: flows create agglomeration benefits and congestion costs, which feed back into
land values and land use, reshaping the opportunity field. We summarise this co-evolution as

Formt → Choice set → Mobility → Agglomeration → Price → Formt+1.

Within this loop, urban scaling theory illuminates the consequences: interaction intensity rises with
population, making shifts in mobility and exposure plausibly consequential for aggregate outcomes.

Why think about this? This mechanism map anchors the thesis: we begin with stable imprints of
urban form and function on experienced segregation (Ch. 3–4), then study a large economic shock
that reweights activity in space (Ch. 5–6), and finally an environmental shock that compresses and
retimes mobility (Ch. 7–8). The distinction matters for policy: if exposure is primarily structural,
responsibility sits with the design of access and opportunities; if residual segregation persists be-
yond structure, levers shift toward incentives, institutions, and sorting frictions.

Box 2
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Figure 2.1. Scaling relationships. As US metropolitan areas grow in size, they produce more goods and
services (gross metropolitan product, or GMP), but they do so at a greater rate—scaling with an exponent of
β ≈ 1.15, meaning that a doubling of city size corresponds to 115% rise in production, which we show in a.
We see in b that this relationship is stable over time: the intercept has changed, as the economy has grown,
but the slope has not. We extract the residuals in c to see that cities show more or less of a deviation from the
scaling expectation—including San Francisco and San Jose, in Silicon Valley—which produce much more
than we might expect given their populations. Important to this work, we can track these residuals across
time in d to see that many of these residuals have changed since the pandemic, suggesting that the shock to
mobility and thus connectivity is affecting the economies of these cities. Data from the US BLS [497].

outputs—the wages, patents, and goods that the city generates—show a superlinear rela-
tionship. Yet many of these regularities allow for different mechanisms. We get returns
to scale in the form of more activity with less infrastructure—save for basic human needs,
like residential units, which mechanically needs to scale at a 1:1 ratio with population.
Agglomeration emerges from learning, matching, and sharing [171]. Sharing maps on to
the sublinear growth of infrastructure, as we share infrastructure to more efficient effect
as population grows. Matching and learning map on to superlinear growth in production,
as ideas spread and workers move between jobs faster to create a dynamic economy.

The social reactor is predicated on the efficient transfer of goods, ideas, or people
across space. Neighbourhoods with denser street networks show greater patenting rates,
suggesting the pool of serendipitous interactions or the efficiency of planned interactions
help generate patentable ideas [418]. Neighbourhoods where Starbucks opens a coffee
shop see more new businesses than neighbourhoods where Starbucks planned to open but
did not [121]. Starbucks is an example of a “third place”, between home and work [343],
and 24% of startup founders reported meeting to develop the ideas for their new business
in one of these locations; although the germ for the idea typically comes at work, in the
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same survey most founders report that shared meeting places like these are important
when starting a business [140]. When employees at technology companies in the Bay
Area share third places, those companies cite each other in patents [41]. A key aspect
of learning is the collision of disparate ideas, and population density is associated with
patents that score low on “conventionality” [65].

Recent work has shown that the nature and structure of human interaction enable ur-
ban scaling. Models calibrated with both interactions within and between cities obtain
the observed β coefficients [23, 415] and infrastructure may play a role in containing
and thus incubating these interactions [317]. While these are important contributions to
our understanding of cities and systems of cities in the economy, they estimate the prob-
ability of interaction theoretically without grounding it empirically. They test whether
the derived exponent fits the observed outcomes, but mobility data allows us to test the
inputs to that exponent; in other words, this is an inverse problem where we have the
data to test directly. Research explores the importance of inter-city mobility with data
[255, 269], finding a strong relationship between those connections and productivity, but
comparable work on intra-urban connections is lacking. Many have used variations in
urban structure to proxy for intra-urban mobility [222, 145, 9, 490], finding that these
proxies often correspond to other urban indicators like segregation, productivity, unem-
ployment, and various measures of social connection. The logic is simple: barriers and
distortions that increase the real or perceived distance between parts of a city act as a tax
on mobility, reducing it.

From models to data, the number of contacts and calls in someone’s telephone records
scales according to city size, with β = 1.15, but that triadic closure—friends who are
themselves friends—is invariant [443]. Increasing connectivity but constant clustering
suggests that an important component of urban scaling is maintaining a collection of
villages as the metropolis grows. Rates of mental illness and COVID-19, phenomena
that are derived from human contact, show a noisy but positive relationship between city
size and disease burden [467, 466]. Also pointing to interactions, scaling patterns are
different in India, compared to the United States, and this may be due to divisions in
the structure of Indian society—by caste and gender [428]. Yet evidence from France
indicates that segregation does not scale with population [136]. We will see in Chapters
3 and 4 that the relationship between city size and integration is complicated by urban
structure.

Because cities scale predictably, “distance to the scaling law” is a measure of ur-
ban performance when comparing cities across a range of metrics [24]. Twinning this
technique with more advanced modelling—treating the residuals as the variable of in-
terest in a second stage of regression or machine learning—could allow us to better ex-
plain variations. Many studies (see [69] for a review) check the residuals—constructing
a “scale-adjusted metropolitan indicator”, demonstrated in Fig. 2.1—to see which cities
fall off the trend, but few attempt to model them. Implied in the scaling literature is
the importance of interaction for economies of agglomeration, because we need to make
and establish connections across and between cities to achieve economies of agglomera-
tion. These models have expectations about contact, and variations in contact—manifest
in mobility—should, in principle, explain deviations from the modelled expectation of
production.

Models of agglomeration assume strong connectivity. Alfred Marshall argued that
everyday contact in dense cities, or even industrial zones within cities, mean that “the
mysteries of the trade become no mystery; but are, as it were, in the air” [297]. Silicon
Valley in particular developed around a culture of intense social and spatial connectivity.
These interactions were both formal and informal, planned and unplanned—university
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clubs, social events, board meetings, phone calls and lunch meetings. Perhaps the most
famous example of incubation through “energised crowding” [458] is the Wagon Wheel,
a Mountain View bar where engineers would draw out semiconductor designs on napkins.
The result was an innovation ecosystem that thrived on combination and recombination,
both of ideas—as people shared knowledge—and minds—as people moved from firm to
firm, often holding many jobs in a few years [434]. Today, there is evidence that these
same interactions matter at the firm level [41], when employees of firms in the Bay Area
share visits to cafes and restaurants, those firms cite each other in more patents relative
to firms with less contact between employees.

Cities then thrive because they allow “what you know” to be enhanced by “who you
know”—matching skills to needs, workers to jobs, and ideas to other ideas. If social in-
teraction is an essential feature of cities, what determines who mingles with whom? Data
from online social networks show that the probability of being friends with another mem-
ber of that network decays with distance [45], suggesting that space plays a role. Cities,
then, foster relationships by a combination of size N , speed V , and sprawl D—ample
residents, reachable in short times, either because density reduces the distance between
residents or because transportation infrastructure shrinks the effective distance between
them. We show this diagrammatically in Fig. 2.2. People who are linked via transit
are much more likely to be friends online, and new transit schedules that decrease travel
time between contacts increase the number of calls between them—counterintuitive if
we are to believe that we no longer need to physically meet our friends to maintain those
relationships [89]. Instead, bursts of calls precede meetings in space [99]. Recent litera-
ture also indicates that geographic divides between neighbourhoods—like motorways or
railways—reduce the likelihood that people become friends [9, 490]. Although barriers
will naturally distort travel times, there also appears to be more at play, because the effect
of barriers is exacerbated by differences in race and class [9].

In summary, social connections in cities, according to our best evidence, rely on
proximity, accessibility, and barriers. First, the probability of a friendship between two
residents decays with distance but less so when there is a transit connection [46, 89]. Sec-
ond, while barriers enable sorting [294, 25], they also appear to disrupt either our ability
to form or maintain relationships [9, 490]. Third, residents in larger cities have more
reciprocated “friendships”—defined as those with phone calls in both directions–than
those in smaller cities, with a scaling exponent of β ≈ 1.12 [443]. Finally, these digital
links are manifest in other actions, as data show that calls beget meetings, and more calls
beget more meetings [99]—that is, telecommunication and face-to-face interaction are
complements, not substitutes [89].

Furthermore, social networks often display “homophily” [307], as people with de-
mographic commonalities—race, gender, age, class—have a greater likelihood of being
friends than people without those shared attributes. Even if a person has racially di-
verse friends, that person is more likely to discuss “important” matters—undefined in the
survey in question—with those racially similar [296]. Further, contact with other groups
appears to produce anxiety and discomfort [20]. People in more ethnically diverse neigh-
bourhoods have fewer friends, suggesting that discomfort with others might discourage
tie formation [374]. Indeed, classic studies of intergroup contact show that many people
have “intergroup anxiety”—discomfort with having ethnoracially different others as col-
leagues or friends—and prefer to avoid contact with people who are not like them along
ethnoracial lines [361].

An urban economy thrives when “anyone can in principle be reached by anyone else”
[68]—but what if people move around less in some cities than others? What if groups
are separated or segregated within a single putative city? While current theories fail to
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Figure 2.2. Mechanisms linking urban structure to social ties. “Size, speed, and sprawl” (city population
N , effective network speed V , and spatial dispersion D) [373] capture how urban form and transit moderate
travel times Tij ; tie probability decays with time as pij ∝ T−α

ij . Modifiers act multiplicatively: barriers
inflate time by ρij ≥ 1; socio-demographic similarity tilts weights via exp(β⊤∆Zij) (or a local odds
multiplier H to incorporate how similar people typically sort into neighbourhoods). A separate scaling
relation k(N) ≈ k0N

β−1 with β ≈ 1.12 governs how average degree grows with city size; it calibrates
network density, not pairwise pij .

make a distinction between inter- and intra-group interaction, mixing could be important
to agglomeration—notably as a means of improving learning and matching, as well as
allowing infrastructure to be shared with greater efficiency. Our research will attempt
to shed light on these questions by distinguishing between mobility and integration. We
will see that many aspects of mobility, including measures of who interacts with whom
and how well mobility has recovered after the pandemic, scale with city size, with impli-
cations for how urban economies produce the scaling regularities that we see here.

2.2 Mobility in the city

This thesis examines how patterns of interaction emerge in cities, how these patterns
are constrained by urban structure and human behaviour, and how contemporary disrup-
tions threaten this fundamental urban function. When we discuss structure, we mean the
configuration and distribution of different aspects of urban life—offices, homes, ameni-
ties—in space. Because the focus of this thesis is human mobility, and many of the
decisions on where and when to travel are the product of urban structure, we begin with
an understanding of how urban structure emerges.

A classic coordination game from Thomas Schelling [437] asks us to imagine a chal-
lenge: you need to meet someone whom you have never met in New York City at some
time and some place, and you cannot decide where and when in advance. Where and
when do you go? You might not be able to guarantee success, but you may go to the
atrium at Grand Central Terminal at noon and you will likely find your partner. The sta-
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tion is an example of a “focal point”, a mutually-recognised, self-reinforcing belief about
what others expect you to do. It is fitting that the focal point in the experiment is in a
city because cities solve this coordination problem across many variants and for many
actors. Of particular relevance for this work, cities provide a location—the central busi-
ness district—that brings together workers and employers. As in the “pure” coordination
described here, firms benefit when locating near other firms, and workers benefit when
they locate where they can access those firms—ideally most or all of them. By locating
all firms in the same location, at the focal point, a monocentric agglomeration reduces
the mean free path length for all participants in the economy, which enables dynamism
[147].

A focal point is valuable because it economises on movement, but the value of those
movement economies causes land uses to segregate. Different land uses command dif-
ferent prices, which causes businesses and residents to sort according to “willingness to
pay”, producing what is called the bid-rent curve in the classic monocentric city [22, 325].
This curve answers the question, who is willing to occupy which locations, and at what
price? The group that benefits most from locating in the centre will bid up prices there
and those prices will deter others; annuli form as different groups sort into different lo-
cations according to how much they value proximity to the nucleus. We illustrate this in
Fig. 2.3a and b. We will revisit this concentric stratification in Chapters 3 and 4 because
it has consequences for travel patterns: if a suburban ring forms around an urban core,
residents are at once close jobs but far from each other.

Yet cities are not monolithic entities—they are multifarious systems where different
activities may thrive under different spatial configurations and scales. The locations of
work and leisure activities determine much about urban life. Central place theory [122],
diagrammed in Fig. 2.3c, posits a nested hierarchy of centres—clusters or agglomera-
tions—with different industry mixes; some goods and services must be accessible at short
distance, accessed frequently, while other markets can be farther from people because
they are required only infrequently. Spatial and temporal constraints create fundamental
limits on how many places we can visit in a given period. The amount of space we can
traverse is limited by transport mode, and humans allocate a given “travel budget”—time
spent in transit—each day; this budget is constant over time [528, 295, 435]. As a con-
sequence, the number of unique locations a person can visit in a moving window of time
is limited, and when that person adds a new location to their repertoire an old location
typically falls out [18]—a new favourite restaurant crowds out an old one.

This creates an emergent spatial arrangement as businesses, populations, and possi-
bly to a lesser extent infrastructure, adjust to meet these needs. For example, recent work
suggests that the rules of central place theory hold not just between cities in larger systems
of cities, but within cities, as the human need to operate across scales in characteristic
ways—close and frequent, far and infrequent—extends across orders of magnitude: peo-
ple will move at characteristic scales with characteristic frequencies, for example, in ac-
cordance with the same frequency–distance trade-off that central place theory formalizes
[17, 444]. Daily activities draw from the immediate neighbourhood while rarer activ-
ities draw from the broader city or region. In response, restaurants cluster together to
produce dining hubs throughout a city—a phenomenon that naturally occurs when regu-
lations governing the distance between restaurants are lifted [270]. The result is a lumpy
distribution of amenities, which we show for London in Fig. 2.3d.

This, in turn, drives changes to the population, as the suite of amenities in differ-
ent neighbourhoods, in turn, influences the population distribution as people will sort
between cities according to economic opportunities [138] but within cities according to
amenities [195].
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Figure 2.3. Forces shaping cities. In the classic bid-rent model of urban structure, shown in a, the benefits
of a given location are a function of its proximity to the nucleus—the focal point—where the activities in
a city concentrate, but these benefits will decay at different rates for different groups. We compare that to
the real bid-rent curve for London. This means that the “winning” land use in a given area will be the group
willing to pay most to locate in that area, creating the rings that we see in b. In c we show the predicted
organisation of urban systems into a central metropole (M), peripheral cities (C), and smaller towns (T). We
then map the true distribution of private businesses in Greater London in d, and in its centre; both global
and local scales comport with the hierarchical structures of central place theory. Data are from Foursquare
[193].

Because travel budgets are fixed, faster transit encourages moving away from the
centre. As a result, the configuration and distribution of urban resources are never in
equilibrium: over the past century, new technologies have changed the structure of cities.
Steam railways separated home from work [226], electrified tramlines consolidated many
businesses as faster speeds reduced the need for smaller corner stores in favour of larger
grocery stores [527], and ridesharing created demand for neighbourhoods without good
transit links [208]. The common theme in all of these studies is that shocks to speed
and thus “reach” change the hedonic calculus for residents, and the resulting change in
behaviour alters the structure of cities. Changes to the hedonic calculus—where can a
person live while satisfying his or her needs—are important for understanding the shifts
we see under remote work in Chapter 5. The sorting of land uses by cost has a direct
consequence for mobility: the geometry of opportunities—not just metric distance—tilts
flows. Classic “intervening opportunities” logic holds that flows between locations de-
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pend on the count of acceptable alternatives encountered en route rather than the target’s
distance [469]. Modern opportunity specifications formalise this at multiple scales: the
radiation family reproduces intra-urban commuting and inter-urban migration from ori-
gin and destination populations plus the intervening population [454, 455]; using pop-
ulation to stand in for opportunity density also predicts intra-urban trips without fitted
distance kernels [524]. At the venue level, differences in trip-length distributions largely
reflect how places are distributed: when distance is rescaled according to ranked interven-
ing opportunities, place-to-place transitions follow a universal law [336]. Network speed
and geometry modulate these opportunities—isochrones, not radii, determine which op-
tions are “intervening”—so embedding opportunity search on real transport networks im-
proves predictions and recovers observed traffic patterns [387]. Street networks influence
and concentrate pedestrian flows, generating “natural movement” even before attraction
is added [230].

Because economising on time is a primary goal for urban residents, the locations
of clusters of amenities govern how often we visit them. Recurrent visitation follows
an inverse-square law in the product of travel distance and visiting frequency, linking
near-daily needs to nearby options and rarer needs to farther ones—an empirical, spatio-temporal
counterpart to regularities predicted via central place theory [444]. Recent work shows
that the spatial “containers” shaping day-to-day movement (neighbourhood, city, region)
have characteristic sizes; evidence for the sublinear expansion of activity modules with
distance from home across countries further cements this nested hierarchy [17, 535]. At
the individual scale, aggregate mobility patterns are a mix of distributions—in partic-
ular, the exploration of new places and the strong preferential return to a small set of
familiar places. The result is a combined distribution of trip lengths with a heavy tail yet
high routine; this means that in mobility high variance is coupled with high predictability
[462, 463].

Finally, geometry can be separated from choice. Normalising flows by the pair dis-
tribution of locations—a continuous analogue of intervening opportunities—yields an
intrinsic distance-attractiveness π(r) ∝ 1/r spanning roughly 10m to 500 km across
residential moves and day-to-day mobility; within cities, the residual kernel is piece-wise
with exponents that are consistent across many centres [85]. Once flows are normalised
for the number of available pairs at each separation, a simple power law collapses data
across geographies, reconciling opportunity- and distance-based views [85].

Because cities are situated on a continuum between monocentric and polycentric, the
structure of intervening opportunities varies across cities. This continuum spans mono-
centric (one core), polycentric (multiple cores), composite (one primary core, multiple
subordinate cores), and an “urban villages” arrangement with distributed activities [66].
Because the distribution of opportunities matters, city structure drives mobility. The im-
plications from this are illustrated in Fig. 2.4: with dispersed amenities, people travel
less, because opportunities are close by; centralisation forces people to travel farther, but
to the same place. Thus, these structures also change the probability that someone from
one part of the city will interact with someone from another part. We will revisit this in
Chapters 3 and 4, when we model the interactions between different groups according to
the structure of the cities they inhabit. We now move from mobility mechanics to social
consequences: experienced segregation—the distribution of intergroup exposure within
day-to-day activities—and how it varies with structure versus preference.

27



On the uses, limits and biases of mobility data

What these data capture. Digital traces—be they calls and texts obtained from mobile carri-
ers, GPS pings aggregated from mobile applications, or checkins and reviews from social me-
dia—record people at a given point in space and time [49]. Researchers represent them as tra-
jectories, origin-destination “flow” matrices, or person-place bipartite graphs [49]; from these, we
can then derive exposures—contacts between distinct groups—and visitations used throughout this
thesis.

Scope and limits.
• Behaviour. Many studies explore regularities in mobility data—including jump lengths between

discrete locations [205], daily routines manifesting across space [18], navigation choices [83].
Regularities show mobility data to be a window into human behaviour under spatial and temporal
constraints. Regularities offer support for classic rules of human mobility and spatial interaction,
like the importance of distance and intervening opportunities [85]. We explore this in Chapter 4.

• Urban structure. Scaling up and abstracting the individual in favour of the city, aggregated
visits and flows reveal polycentricity and daily “dilatation” rhythms [283, 286], recover functional
regions from interactions [382], and even delineate city boundaries from flows [165]. These
mobility data can augment more limited studies that leverage tap-in/tap-out data from transit
systems [95] by accessing a richer array of activities than those that require transit. We turn to
the use of mobility data in inferring functional urban structure—as it is experienced rather than
instantiated in buildings and streets—in Chapters 5 and 6.

• Epidemic and economic signals. During COVID-19, because viral spread is contingent on face-
to-face contact, early uses of mobility data—from global flights to local trips [120]—built epi-
demic forecasts. Mobility data also provide a window into the social and economic consequences
of the pandemic, including retail activity [114], restaurant patronage [315], experienced segre-
gation [522], and the vulnerability of one business to the closure of another [523]. We consider
shocks from the pandemic in Chapters 3, 4 and 5.

• Inequality and exposure. Activity-space exposure measures shift focus from where people sleep
to whom they meet and where [38]. Studies leveraging these data show that spatial proximity
shapes social connectivity [89] and that classic results on network advantage apply [211]. Re-
cent work shows exposure segregation can be higher in larger cities [335]; social mixing varies
systematically across amenities and streets [185]. We build on this growing body of literature to
quantify what is called “experienced segregation” throughout this thesis, but notably in Chapters
3 and 4.

Data and design. Research distinguishes between flows and trajectories. Origin-destination flows
quantify the spatial interaction between one location and another, often a home and some leisure,
consumption or work location. From trajectories, researchers can derive “stops” or “visits” [35]
and, by looking at who was in the same location at the same time, construct a list of “exposures”
that capture interpersonal interaction. Research also often chooses a given scale, looking at human
behaviours or urban patterns, the citizen or the city. In order to understand experienced segregation,
we also choose aggregation variables—socio-economic strata or ethnicities, venues or neighbour-
hoods, hours or days or months—to produce mixing matrices, where each cell counts, for example,
the number of contacts between groups in a given month.

Bias and best practice. Mobility data come with a variety of concerns regarding bias [197], which
we mitigate with a variety of strategies in the following thesis. (i) Representativeness depends on
who owns mobile phones and who opts into tracking from mobile applications [509]. We address
this by ensuring that the number of devices across neighbourhoods corresponds to administrative
data on population and does not systematically vary according to the racial and socio-economic
composition of the neighbourhood. (ii) Samples also suffer from panel drift: which users are in-
cluded in the sample change. When looking across long time horizons, an integral part of this
study, we look for discontinuities that signal compositional changes. (iii) Measurement and seman-
tics are not infallible: for example, buildings can distort GPS signals and put a device in a spurious
location [504]. Our results do not depend on granular location, and we prefer coarser areal estima-
tions when possible. (iv) Finally, privacy is an issue: location traces contain sensitive information
that can identify an individual [111]; this makes aggregations that consider populations rather than
devices important.

Box 3
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a b

c d

Figure 2.4. Intervening opportunity and mobility. Illustrative demonstration of how urban structure
shapes movement patterns under the intervening opportunities model, where D̄ represents a stylised av-
erage distance travelled. a In the monocentric city, central amenities draw visits from peripheral residents
(D̄ = 4.28). b The polycentric arrangement distributes trips across 5 activity centers (D̄ = 2.45). c The
composite city combines features of both: a central district attracts longer trips while peripheral clusters
serve shorter needs (D̄ = 2.74). d Urban villages achieve the shortest distances (D̄ = 1.13) through local
trip patterns.

2.3 Experienced segregation and urban mixing

In a classic simulation from Thomas Schelling, subtle differences in how much people
prefer to be surrounded by others like them can drive large changes in sorting [438]. As
tolerance for others falls, the population of a city sorts into homogeneous and contiguous
zones with demographically similar residents. In this model, “there is no single person
who intends that there be segregation” [439]: instead, individual preferences give rise
to emergent patterns, which we demonstrate in Fig. 2.5a. Agents are endowed with a
tolerance τ that governs how many “different” neighbours they are comfortable with, as
well as a group assignment, yellow or blue; they are then allowed to move over turns
until they satisfy τ . Even at moderate levels of tolerance, sorting emerges. The built
environment can enable this: in the US, highways have enabled sorting by allowing large
quantities of white residents to move to the suburbs while keeping access to jobs in the city
centre via these conduits [59, 294], and policies that prevented minorities from moving
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to certain neighbourhoods reinforced this sorting [424].

a

b

Figure 2.5. Emergent segregation. Illustrative model of segregation adapted from Schelling [438]. Agents
of one of two groups are endowed with a tolerance τ , which determines the number of “others” with whom
they are comfortable living near. At each turn they are allowed to move if the observed neighbours do not
meet this tolerance. The model shows that even at moderate or high tolerances, there is still observable
sorting, in a, in this gridded city. The time series of mixing as residents move, in b, shows that very low
tolerance is unstable but moderate/high will result in stable configurations given a long enough time horizon.

A large body of research parses segregation into five dimensions—unevenness, iso-
lation, clustering, concentration, and centralisation—arguing that some cities exhibit hy-
persegregation along multiple dimensions simultaneously [301]. In this conception, seg-
regation concentrates minorities in contiguous spaces, isolating them from the city as
a whole—often near the centre of the city. Hypersegregation concentrates poverty and
severs opportunities for social and spatial mobility, producing durable inequality and
“disadvantage” [512]. This canonical view frames why “exposure” matters: segregated
communities depress contact with other groups and, in doing so, with new opportunities.
The durable impacts of both hypersegregation and the related phenomenon of “white
flight” reappear in Chapter 3.

Much of the literature on segregation treats segregation and inequality as mechan-
ically connected, because rising inequality increases the clumping of incomes in space
[508, 384]. Further research suggests that inequality enables segregation by allowing
wealthier groups to bid for properties in expensive neighbourhoods to the exclusion of
others [348]. Yet the degree to which segregation is good or bad is contested: many stud-
ies find inequality drives segregation (not vice versa), whereas others show segregation
reduces wealth creation [274, 235, 25] and economic mobility [117, 113].

A recent turn in the literature on segregation is toward “activity space” segregation
[431, 88, 96]. There are many different approaches to quantifying segregation in mobility
data, which we show in Box 4, but the unifying theme in monitoring not just where
people live but to which locations people go over the course of the day and looking at
the diversity of people who share those locations with them. These data support much
of the literature on hypersegregation, finding that communities with high crime and high
poverty often have limited permeability: relative to other parts of the city, there are fewer
trips out of these areas by residents, and fewer trips into them by visitors [271]. Cities
with more connections between neighbourhoods have less crime [430].

Yet people who live in the same neighbourhood can have very different routines,
sharing just ∼ 15% of visited locations in a given month in one estimate [87]. This
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means that living nearby does not guarantee shared daily experiences, and residents with
higher levels of income or education will often move to different parts of the city during
the day, and white and nonwhite residents often do not share the same hubs, converging
on different parts of the city [102]. With opportunities to sort in local neighbourhoods,
focal points—central location, downtowns—facilitate social mixing, a phenomenon that
we explore in Chapter 5: in one study of how migrants interact with locals, ∼ 60% of all
intergroup interactions occurred downtown [420].

At large scales, mobility data reveal “experienced” isolation, a dynamic measure of
interactions in daily experience between different groups compared with the static mea-
sure of segregation using residence; these measures are strongly correlated, but we are
exposed to more diversity in daily life than administrative data capture [38]. Yet our
activity spaces—the ground we cover through the day—reveal our race and class [96].
Segregation in online interaction networks and offline transaction networks is correlated
as well, and both online and offline segregation is highest amongst the highest and lowest
socio-economic strata [166]. Isolation correlates with social status but varies by time
and day [38, 519], and tends to map onto neighbourhood and amenity structure [3]. As
above, with growing evidence that cities are arranged to meet our mobility needs, these
findings suggest that mixing by race or class is in part governed by the structure of the
city.

Residential segregation is a key driver of its experiential counterpart: across many
countries and contexts, the two measures are correlated [278, 38, 352]. Generally, more
residentially segregated cities have more experientially isolated neighbourhoods [505].
Because many people move away from home during the day, many studies document
reductions in experienced segregation during the day [38, 324, 453, 2]. Yet this appears
to be driven by commutes in some contexts, as many sort into homogeneous groups for
leisure activities [475].

Across multiple contexts, the middle class appear to be a bridge between lower and
upper classes, both in social networks [166] and in spatial networks [166, 330]. For
example, in Brazil, rich and poor are unlikely to share a common route to work, but the
middle class will often make journeys and contact both [330].

Experienced segregation is typically lowest during the day [40], and a plausible mech-
anism is simply “population dilation” [283]—central cities absorbing residents from pe-
ripheral satellites during peak business hours. For example, the most central arrondisse-
ments in Paris grow by 150% during the day, and during the day experienced segregation
is at its lowest [268]. Yet population dilation is governed by the structure of the city: the
central business districts of larger, polycentric cities receive fewer visitors, as a share of
the total population, than smaller, monocentric cities [283]. Mechanically, as cities grow,
congestion leads to fragmentation [287], so polycentricity is the norm in large cities. By
extension, larger cities should have higher rates of experienced segregation as fewer res-
idents travel to a single focal point each day, and indeed data in the US show this [335].

Yet the structure of cities cannot explain all the patterns we see in the data. Both
spatial and social frictions combine to determine the clientele of restaurants or other
businesses: not only do transit times matter when measuring an individual’s propensity
to visit a restaurant, the clientele of that restaurant matters too [150]. Mixing patterns at
points of interest in 11 cities reveal that economically integrated and segregated places
coexist metres away, so preferences beyond transit must be at play [321]. Simulations
that use the gravity equation to model interactions between areas do not predict observed
data, suggesting that people are not simply interacting with others nearby [321, 166]. We
will revisit the role of structure in Chapters 4 and 5, what it can and cannot predict.

People are more likely to visit venues popular within their own socio-economic class
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Measuring segregation and experienced segregation

Approach. Empirically, “segregation” asks how far realised contacts deviate from the opportu-
nities implied by composition. Four traditions recur: (i) spatial-analytic measures of evenness
across areal units [385], (ii) information-theoretic measures of relative predictability [450, 363],
(iii) network-scientific measures based on assortativity and spectral measures [332, 173], and, the
focus of this thesis, (iv) activity-space exposure from mobility traces [39, 321].

Notation. Imagine we have groups g, h ∈ G, which represent socio-economic strata, ordered
low→high. We have individuals i and amenities α. City composition πg (share of people/activity
in g). Each individual is exposed to different groups throughout the day, creating exposure shares
e
(h)
i representing the fraction of i’s co-presence with group h; exposure to one’s own group will be
e
(g)
i . People will mingle at amenities, or venues, which will have shares τgα—the fraction of time

at α contributed by g. These produce a “mixing matrix” M with entries Mgh, where each row and
column represents a class and each cell gives the share of g’s contacts with h, such that row g sums
to 1.

Formulas.
(1) Experienced isolation. Define group means Eg = 1

|g|
∑

i∈g e
(g)
i . The contrast between two

groups g, h at the city level is
Iexp(g, h) = Eg − Eh,

a time-and-place weighted analogue of residential isolation computed over actually visited micro-
places and times [39]. At the individual level we use e

(g)
i for i ∈ g; if a contrast is needed, Ii =

e
(g)
i − ē

(g)
h∗ for a chosen comparison group h∗, where ē

(g)
h∗ is the mean exposure of comparison

group h∗ to group g.

(2) Amenity and individual segregation. With income quartiles q ∈ {1, 2, 3, 4} and venue shares
τqα,

Sα =
2

3

4∑
q=1

∣∣∣τqα − 1
4

∣∣∣,
which rescales theL1 distance from uniform to [0, 1] for four groups; analogously for an individual’s
exposure profile ρiq ,

Si =
2

3

4∑
q=1

∣∣∣ρiq − 1
4

∣∣∣.
These capture uneven time allocation across socio-economic classes at venues and for people [321].

(3) Evenness and richness. For a composition π = (πg)g∈G,

H(π) = −
∑
g∈G

πg log πg, J(π) =
H(π)

log |G| ,

where H is Shannon entropy [450] and J is evenness [375], normalising by log |G| so that J ∈
[0, 1]. Richness is simply |G|, the number of groups.

Reading mixing matrices. We employ mixing matrices in what follows; these aggregate be-
haviours to patterns of interaction between socio-economic strata, with Mgh ordered by class (rows
g low→high). Row g shows whom individuals from class g meet. A row identical to the city com-
position π indicates no sorting by g. The upper and lower triangles convey important information:
mass in the upper triangle (g < h) signals upward bias (lower-income meeting higher-income
more than π), mass in the lower triangle (g > h) signals downward bias; diagonal mass Mgg is
own-group exposure. Deviations can be read row-wise as ∆gh = Mgh − πh.

Related measures. We also briefly touch on measures of correlation: a summary of exposure
segregation that compares one’s socio-economic status to the mean status of those encountered
[335]; this is connected to assortativity computed on the exposure network [332].

Box 4
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[231], but there tends to be a bias: when individuals do deviate from assortative mixing,
they prefer points of interest with higher status patronage—relative to their own—than
lower. This preference for mixing upward rather than downward is present in other works
[166, 81]. In many countries, online social networks are more assortative than spatial
interactions [166] and in these networks users can control who they follow, this hints
at the role of preference. Because these networks show higher assortativity than offline
networks for the wealthiest and poorest groups [166], an important integrative force in
cities might be the ability of the poorest to visit at least some places that the wealthiest
visit, but experienced segregation persists.

Socio-demographic communities in a city will often form a “city-within-a-city”. In
the purist display of these preferences, the wealthiest residents of London produce “cloud
spaces” or “flowing enclaves”—travelling between private clubs in private cars, for ex-
ample—to avoid contact with the broader public [42]; the elite in London can spend as
much as 80% of the day in exclusive zones. Yet the phenomenon is not just practiced by
the elite: in Northern Ireland, Protestants and Catholics use different—ostensibly “neu-
tral”—streets and parks [148, 4]; in Israel, even Muslim workers who commute to Jewish
neighbourhoods spend ∼ 80% of time away from work in their home neighbourhoods
[446]. When a new rail line opened in Jerusalem, mixing between Jews and Muslims
rose at stations but not throughout the city [419].

Short trips drive segregation: longer commutes are linked with more diverse friends
[81] and longer trips are still assortative but are associated with more diverse interactions
[166]. Because shorter trips are frequent and longer trips are infrequent—as central place
theory would predict—these homophilious interactions with those nearby, supported by
residentially homophilious neighbourhoods, drive more of the assortativity in spatial in-
teraction networks than do interactions with those farther away [166].

Yet, as discussed, there is also evidence that visits are a function of intervening op-
portunities and that the configuration of amenities can drive our choices [336]. The
distribution of amenities, clustering and defining neighbourhoods, may mean mixing
is the product of both spatial structure and social bias. Indeed, research from the US
shows that cities with clusters of amenities situated between rich and poor communities
show greater socio-economic mixing than cities with amenities that are nested within
socio-economically homogeneous areas [335]. Further, cities that offer more ameni-
ties closer to residential populations, approaching what is called the “15-minute city”,
see higher experienced segregation [3]. In Chapter 4 and 5, we will revisit this while
considering a trade-off: dispersion decreases distance but increases isolation—a direct
structure–mixing trade-off.

The largest studies explaining isolation in the US primarily use regressions [38], by
extending existing mobility paradigms [322], but findings hint that the structure of the city
plays a role [335]. Travel distance is inversely proportional to experienced isolation [321];
assortativity is lower for individuals with longer commutes, relative to those with shorter
ones—although clustering coefficient, friends who are friends with each other is also
lower [81]. Given other evidence that clustering coefficient is invariant to city size [443],
this both suggests underlying heterogeneity and the possibility that some people with
less triadic closure link communities in larger cities that is otherwise collections of tighter
villages. Beyond these associations, the first two analytical chapters of this thesis attempt
to understand what about the structure of cities drives experienced isolation, drawing on
central place theory.

With greater knowledge of these drivers, we might be able to adjust small aspects of
the mobility calculus to big effect. Minor changes to the spatial interaction network—rerouting
just 5% of trips—can create an egalitarian regime where all neighbourhoods receive an
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equal proportion of commercial spending without increasing travel distance, and this in-
tervention also improves mixing between neighbourhoods [284]. This would correspond
to socio-economic or ethnic mixing in a segregated city, but evidence for how this could
work is mixed: some studies find that out-of-neighbourhood activities provide most of
the observed intergroup contact [513], but others show that many people remain in areas
dominated by like groups even when they leave home [452, 446].

Further, cities present a complex mix of what are called “affordances”—the set of
possible actions an environment offers an individual [199]. In the presence of such a
vast array of possibilities—in the case of urban environments, places to eat, sleep, work,
recreate—people will resort to simple rules of thumb, called heuristics [201]. In accor-
dance with this literature, Stanley Milgram postulated a theory of “urban overload” [312],
from which we seek reprieve with cognitive economy—selective attention—and social
norms, such as limited courtesies: a person in a town, for example, is much more likely
to let you use his or her phone than a person in a city; the resident of a big city is much
more likely to walk past someone sleeping on the street than a resident from a small town
[312]. Norms around how and when to help others are part of a suite of adaptations that
help urbanites manage the cognitive and social demands of life in a city.

Given our innate preferences for connecting with others like us, it is plausible that
norms, heuristics and biases interact and combine to produce the patterns we see in mobil-
ity data. The data indeed suggest as much, given that the distribution of amenities cannot
explain all of the variation in visitation between points of interest [321, 150]: restaurants
on the same street can have very different patrons.

In summary, cities are generative systems that match skills, jobs, and ideas. People
who live in cities are subject to an array of cognitive biases, psychosocial limits as well
as spatial and temporal constraints; further, the innovative communities in cities might
require modularity and exclusivity. This indicates that the segregated, homophilous pat-
terns we see in urban social life are—at least to some extent—the result of an optimisa-
tion. Yet the evidence that perturbations can so often encourage individuals to durably
change routines, habits and behaviours suggests that there are still shifts to be made that
allow more groups to flourish. Chapters 3 and 4 quantify how much of experienced seg-
regation is recoverable from the structure of opportunities and networks compared to
preferences.

2.4 Urban structure and remote work

Before 2020, tight housing markets in “superstar cities” [218] reflected a long shift from
producer to consumer urbanism [203]: amenity-rich cores commanded rising premiums
and drew high-income households, reinforcing spatial sorting even within metros, sort-
ing that we will see in Chapter 4 manifests in both housing and activity spaces. Clas-
sic evidence on “consumer cities” documents faster growth in high-amenity places and
downtown amenity clustering; complementary work explains how price dynamics in “su-
perstar” metros amplified inequality in access to those amenities [138]. Data from this
period show that larger cities, naturally fragmented due to sprawl and congestion, were
and still are often collections of differentiated venues that sort visitors by socio-economic
status [335]. The pandemic was an exogenous shock to that equilibrium, not only depress-
ing footfall but reshaping who meets whom. The income diversity of urban encounters
fell by 15–30% and remained depressed through 2021 [522] even after aggregate mobility
recovered, indicating the pandemic durably changed preferences—either for the kinds of
venues that promote intergroup interaction, or for mixing itself. These findings motivate
our empirical strategy later in the thesis: we will track place diversity and venue choice
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across cities and neighbourhoods, testing whether the pandemic’s mixing deficit persists
in amenity spaces that previously served as bridges between classes.

Remote and hybrid work have durably altered urban economies. Across surveys,
rates of working from home (WFH) have stabilised: the average employee in the US took
28% of working days from home in 2023, four times the number of days worked from
home in 2019 [53]. Results are comparable across much of Europe and other high-income
countries, where WFH receded from pandemic highs but settled into a new plateau higher
than prepandemic levels [15]. Feasibility studies conducted prepandemic show that about
37% of US jobs can be performed entirely at home, helping explain the persistence of
hybrid arrangements [162].

In land and housing markets, the “doughnut effect”—the reallocation of people, firms,
and demand from dense urban centres to lower-density suburbs and exurbs—has been
documented first in US metros and then globally, with magnitude tied to local WFH rates
[379]. A parallel adaptation is the rise of supercommuting—longer trips taken fewer days
per week, in a nod to central place theory—which was flagged a decade ago and has been
enabled by hybrid schedules [323, 381]. The share of commutes longer than 120km in
the US has risen 32% since 2020 [73].

The evidence for whether or not remote work trades productivity for comfort is mixed:
early experimental evidence shows that call-center agents became about 13% more pro-
ductive and quit at lower rates when assigned to WFH [75]; more recent syntheses across
industries suggest that fully remote arrangements are, on average, roughly 10% less pro-
ductive than fully in-person work—primarily due to communication and coordination
frictions—while hybrid arrangements show little to no penalty [53]. When Microsoft
went fully remote during the pandemic, internal communications showed fewer bridging
ties across groups and a shift from synchronous to asynchronous communication; the rise
in virtual meetings did not compensate for the loss of in-person interactions [525]. Work-
ing from home saves time that would typically be spent commuting: across 27 countries,
workers save 72 minutes per WFH day, reallocating ∼ 40% of that to the job but also
∼ 11% to caregiving—one reason why WFH is more important to women than men [14].
Yet early work suggests that because of lower visibility, remote workers are promoted at
lower rates [75]. These countervailing forces mean that cities are still equilibrating as the
largest employers calibrate WFH policies. In Fig. 2.6 we show trends in both prevalence
and preference: shares of remote work across large cities have fallen from pandemic highs
and stabilised below the peak, while employees systematically desire more days remote
than employers plan [15].

The result of this push and pull will determine urban structure in consumer cities in
particular. With fewer daily commuters, activity and spending anchor around homes, not
offices, with measurable spatial reallocation in people and spending [379, 19].

Telecommunications tend to complement rather than substitute for face-to-face con-
tact: mobile communication intensity rises superlinearly with city size, link formation
decays with distance, and dyads that call frequently also meet more frequently—evidence
that digital tools often scaffold, rather than replace, co-located networks [443, 89, 99].
Recent evidence from Silicon Valley indicates that a 1% drop in face-to-face contact be-
tween firms reduces patent citations between them by 0.25% [41]. In light of these facts,
this thesis Chapter 5 will quantify how hybrid work restructures encounters in business
districts, and whether the shift toward irregular, long-distance and low-frequency com-
muting further polarises the geography of everyday life—including in how both retail
business and spending are distributed in the new “cloud” city. Although lacking an ex-
plicit temporal dimension, Chapter 6 will build on this by introducing a method to mon-
itor urban structure—structure that will change if remote work becomes entrenched in
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professional life.

a b

Figure 2.6. Trends in remote work. Practices surrounding working from home are still evolving as employ-
ers and employees negotiate policies. In a we see that since the pandemic, the share of days worked from
home has fallen—even in technology hubs like the Bay Area. In b we show the preferences of employers and
employees, respectively, for remote days; there is a substantive difference, bosses wanting workers back in
the office and workers preferring work-from-home. The result of this negotiation will influence the structure
of cities going forward. Data are from WFH Research [52].

2.5 Climate stress and city life

The next structural pressure on urban mobility is climatic. In coming years and decades,
modelling suggests risk from floods [221], hurricanes [259], and fires [1] will rise. Al-
though climate poses a number of threats to urban life, extreme heat is the most ubiquitous
channel. Cities suffer from what is called the urban heat island effect, wherein temper-
ature in cities is higher than in surrounding rural areas because of anthropogenic waste
heat and absorptive surfaces such as asphalt and concrete [432]. This effect means that
cities could see temperatures rise by ∼2◦C more than surrounding areas in the coming
decades [181].

Micro- and macro-evidence show that higher temperatures reduce hours worked in
exposed industries [210], depress on-the-job productivity [460], and reallocate time from
outdoor to indoor activities [210], with cognitive performance losses [267], which, for
children, accumulate into reductions in human capital [351]. In both developed and devel-
oping countries, heatwaves are associated with measurable drags on productivity, with
productivity falling by as much as 2–4% per ◦C on hot days [460] and with aggregate
losses evident at the national level [92, 157].

At the system edge, transport infrastructure itself degrades under heat (asphalt rutting,
rail buckling), increasing generalised travel costs and disruptions [164, 376, 126]. For
residents, heat measurably suppresses active travel—including bikeshare usage across
diverse cities [225, 61, 257]—and shifts time use toward the home [210, 292], while
transit riders face disproportionate heat exposure during access and waiting [172, 311].

The net effect of heat on transport is mixed, because warm weather encourages active
travel while hot weather suppresses it—for example, in New York City bikeshare usage
increases up to ∼ 28◦C and decreases beyond that mark [225]. Other evidence suggests
that transit trips substitute for cycling on hot days [507], which could put pressure on
public transit systems if heat begins to generally raise demand for them.

36



These direct and indirect frictions constitute a de facto tax on mobility. Combined
with macroeconomic implications already visible in productivity losses during hot spells,
the results could be profound for cities. Nevertheless, evidence suggests that access to air
conditioning attenuates many of the effects of extreme heat [51, 351]. Remote work fea-
tures here as well: authoritative assessments list teleworking and schedule shifts among
feasible urban adaptation options that reduce exposure during heat extremes [44]. Al-
though these mitigation strategies are individualistic, collectivistic approaches are also
important and effective: cities can reduce ambient temperatures by ∼1◦C via urban trees
and by up to ∼2◦C via reflective “cool” surfaces [181, 536].

The final empirical chapters of this thesis leverage these insights: we treat heat waves
as a shock to urban mobility, estimating how rising heat shifts mode choices and des-
tination portfolios, and run simulations to project how this trend may worsen without
adequate adaptation. We also revisit social mixing. Climate shocks can reorganise en-
counters: for example, wildfire evacuations produce transient dispersion followed by
re-concentration along socioeconomic lines, highlighting how different shocks (leave-home
rather than stay-home during COVID) have opposite effects on experienced segregation
[327]. Yet if heat represents a tax on mobility, its effects will hew closer to stay-home
than leave-home. By raising generalised travel costs and compressing activity into cooler
times/places, we test whether heat lowers mixing in Chapters 7 and 8.

2.6 Synthesis

Framing this review, we treat cities as social reactors—places where payoffs turn on who
meets whom, considering both planned and spontaneous encounters—and ask: as re-
mote work and climate stress shift routines, can we still engineer durable connections
and serendipitous interactions? The availability of large-scale GPS mobility data now
makes these questions tractable across cities and over time, and the stakes are clear:
misdiagnosis risks entrenching segregation, while sound measurement creates levers for
inclusive growth. We organise what follows around three strands that motivate the the-
sis: (i) how experienced segregation and mixing arise through daily mobility; and how
contemporary disruptions—(ii) hybrid work, the “introvert economy”, and (iii) climate
extremes—reconfigure incentives and change routines. To move from patterns to mecha-
nisms, we distinguish mixing from bridging—deviations from a distance-and opportunity-based
counterfactual—so we can see where diversity is produced rather than merely observed.
This sets up the empirical programme: measure intergroup interaction from digital traces,
map structure across scales, and test a simple rule—centres mix; peripheries sort—before
tracing the consequences of decentralised work (the “doughnut effect”) and rising heat.
Our findings show that distant trips contribute a disproportionate share of intergroup ex-
posure; weakening the centre reduces mixing; and hot days reduce, reshape and retime
activity—often into the evening—altering the city’s social reactor itself.
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3 Rings and pockets of experienced
segregation

Abstract As discussed, cities generate wealth from interactions, but citizens often experience
segregation in their daily urban movements. Using GPS location data in this chapter, we identify
patterns of this experienced segregation across US cities, differentiating between neighborhoods
that are sources and sinks—exporters and importers—of diversity. By clustering areas with simi-
lar mobility signatures, capturing both the diversity of visitors and the exposure of neighborhoods
to diversity, we uncover a generic mesoscopic structure: rings of isolation around cities and in-
ternal pockets of segregation. Using a decision tree, we identify the key predictors of isolation
and segregation: race, wealth and geographic centrality. We show that these patterns are persis-
tent across time and prevalent across all US cities, with a trend toward larger rings and stronger
pockets after the pandemic. These findings offer insights into the dynamics that contribute to in-
equality between neighborhoods, so that targeted interventions promoting economic opportunity
can be developed.

Introduction

The free flow of people, goods and ideas drives urban agglomeration. Cities enable “shar-
ing, learning and matching” to generate efficient and innovative economies [171]: shared
infrastructure, shared ideas, and pooled workers drive the dominance of urban systems
in the economy today. By extension, cities that fail to integrate communities or struggle
to connect residents may sacrifice growth [222] or exacerbate poverty [25, 144]. A large
body of literature documents housing segregation by race and class, and recent devel-
opments, including mobile phone location data, enable us to investigate segregation in
daily life as people move around the city [38, 321], revealing bias in who interacts with
whom. Since urban innovation and prosperity hinge on diverse interactions [416, 68],
understanding the nature, extent, and limitations of how groups interact is essential to
understanding and building inclusive economies.

Cities in the United States exhibit “hypersegregation”, the separation and concentra-
tion of nonwhite populations in contiguous zones, typically near the urban core [301]—often
a result of discriminatory institutions [424]. While implicit in hypersegregation is iso-
lation across multiple dimensions, GPS mobility data reveals that “experienced segrega-
tion”—wherein people are more likely to share spaces with others of the same race [38]
and class [321]—is a key component, affecting crime rates and economic opportunities
[271]. Yet recent work emphasizes that nearby venues can have distinct visitor profiles
[321, 150], suggesting that sorting occurs beyond residential confines. Studies also indi-
cate that amenity location can mediate interactions between groups [335, 336]. Mixing
across strata often involves lower-class individuals visiting higher-class areas [231]—a
pattern consistent with hypersegregation and “compelled mobility” [88], which involves
disinvestment and consequent travel for basic services.
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This matters because generating connections between groups and across communities
may create wealth and reduce inequality. Early work on segregation implicates the lack
of “exposure” between different groups in creating economic inequalities [302]. While
work on experienced segregation measures exposure, not necessarily interaction, mobil-
ity links to social ties and their social and economic consequences. Activity spaces—the
bounds of our routines in space—influence social connections [261, 81], with particular
consequences for “weak ties” [211] that generate social and economic mobility. Em-
ployment opportunities within an individual’s activity space predict job attainment [97].
Housing segregation correlates with low social capital and social mobility [118, 119], but
recent work finds that areas with venues that encourage mixing also tend to have greater
social capital and social mobility [299]. Neighborhood connectivity, including who visits
and where residents go, predicts homicide rates—with the most disadvantaged commu-
nities those defined by both residential and experiential segregation [271].

Although the literature on experienced segregation is growing [277], recent research
tends to focus on human behaviors [321, 522, 81, 231, 299, 132] or urban comparisons
[38, 490, 3, 335]. These microscopic and macroscopic views often neglect the meso-
scopic clusters of neighborhoods within and around cities that drive mixing or isolation,
and the forces that generate these zones. Yet the mesoscopic level is where phenomena
like hypersegregation [301] operate—creating not just isolated neighborhoods but inter-
connected systems of disadvantage. Limited connections to the broader economy create
“truly disadvantaged” communities [512], but new connections ameliorate some of these
problems [116, 115, 123]. The location and concentration of experienced segregation
reveals not just who is isolated but also who is surrounded by isolation, hindering new
connections.

Here we seek to identify the broader zones of mixing and isolation that define cities.
How residents interact with the broader city reveals inequalities between groups, as cer-
tain groups or places may make uneven contributions to aggregate urban mixing. This
work investigates the mesoscale of mixing in US cities with a spatially and temporally
expansive sample of cell phone GPS records covering the continental United States over
4 years. We focus on visits to amenities as they represent both primary attractions where
populations purposefully interact [335, 299] and structured environments where social
connection occurs [456]. We present two key measures: amenity segregation, represent-
ing the degree to which visitors to an amenity are diverse, and neighborhood isolation,
indicating the degree to which travelers from a neighborhood experience diversity in their
day-to-day activities. Combined, these related measures reveal distinct patterns, includ-
ing neighborhoods—and clusters of neighborhoods—that export diversity to the broader
city without importing it. Our approach allows us to empirically identify clustering as a
dimension of experienced segregation, revealing spatial structures that would be obscure
at the scale of either the city or neighborhood.

Cities operate as social reactors that turn proximity into interaction, both planned
and unplanned, and productivity; the rings and pockets we uncover show the nuances
and variations within that social reactor, concentrating the meetings and exposures that
sustain urban learning, sharing, and matching [68, 171].

Results

Data and methods

To assess experienced segregation across multiple dimensions, we construct measures
for diversity and exposure in terms of socio-economic class. We process data from a lo-
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Figure 3.1. Illustration of how we measure segregation and isolation. Residents from neighborhoods
with different median incomes visit amenities. Amenities are segregated if they attract visitors from a similar
income bracket; neighborhoods are isolated if their residents visit segregated amenities during their daily
activities throughout the city.

cation data provider [426] to create origin-destination flows from neighborhoods (census
block groups) to points of interest (like restaurants, shops, museums, and hospitals) over
a period from January 2019 through December 2022. We combine these data with Cen-
sus estimates of median income [498] to infer the socio-economic strata of visitors from
each area by attributing to each visitor the median income of the block group where they
live. We compute the “diversity" of visitors to amenities and the “exposure" of neigh-
borhood residents to diversity. Borrowing from prior work [321], our measures represent
distance from a counterfactual scenario where interactions draw equally from each socio-
economic stratum in a given city. We examine amenity segregation (low level of diversity
of visitors to an amenity) and neighborhood isolation (low level of exposure of residents
to diversity in the amenities they visit), considering an amenity highly segregated if it
attracts visitors from just one income bracket, and residents highly isolated if they only
visit such amenities. Both measures range from [0, 1], where 0 is perfect diversity or
exposure and 1 is perfect segregation or isolation. Detailed in the Methods section, we
illustrate our process in Fig. 3.1.

Segregation and isolation

We can think of a neighborhood as isolated (I) and an amenity, or point of interest (POI),
as segregated (S). These are illustrated in Fig. 3.2 for a sample of 10 large cities. While
previous work [321] emphasizes variability between nearby amenities, showing that a
pair of adjacent amenities may have opposite diversity signatures, Fig. 3.2A shows that
these form distinct clusters of both segregation and diversity. Our sample includes cities
with different spatial structures, from sprawling “sunbelt” cities like Houston and Dallas
to dense “rustbelt” cities like Chicago and Philadelphia. The latter tend to have pockets of
segregation, like North and West Philadelphia, the south side of Chicago, and the South
Bronx in New York. In contrast, Houston and Dallas are more integrated. Cutting against
this distinction, Los Angeles has a large pocket of segregation in South Los Angeles—a
historically disadvantaged neighborhood. Prior work has shown that hypersegregated
populations have historically been located near downtowns, confined to contiguous areas
[301, 302], much as we observe here.
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Figure 3.2. Illustration of amenity segregation (S) and neighborhood isolation (I). Each city map is
centered on downtown. A Amenity segregation, where each point represents an amenity, shows that down-
town businesses tend to see a diverse collection of visitors (and thus have low amenity segregation) but that
businesses in surrounding neighborhoods often do not (and have high amenity segregation). Many of the
wealthiest parts of the city, shown in black, also have fewer points of interest, which limits visitation and
thus the diversity. B Neighborhood isolation is strong in those same wealthy areas with fewer amenities and
also in areas with segregated amenities.

One channel by which segregation is determined is in the mix and number of ameni-
ties in a cluster: fewer reasons to visit will limit visitors. Many wealthy areas—shown in
black—simply have fewer amenities, and less variety of them. Showing this correlation
in Appendix Table A.3, we see examples of this in Dallas, Phoenix, Washington, and Los
Angeles—corresponding with Bel-Air and other wealthy enclaves in Fig. 3.2A.

To understand the relationship between segregation and isolation, we bin each by
quantile and construct a 3x3 matrix that classifies each neighborhood by its performance
on both measures. A neighborhood that is completely integrated, with diverse amenities
and with residents visiting diverse amenities, will be in the first quantile along both di-
mensions, segregation and isolation. Vice versa, homogeneous amenities and residents
visiting homogeneous amenities will be in the third quantile for both. Residents may
also find exposure to diversity away from home, and neighborhoods with them will be
in a low quantile for isolation and a high quantile for segregation. Further, because we
capture segregation at the level of the amenity, we capture sorting into amenities with
a given demographic profile even as the neighborhood around them receives a different
selection of visitors.

In Fig. 3.3A we find that many cities are surrounded by rings with high segregation
and high isolation. In the Boston-Washington megalopolis, many of these rings merge
into large intercity zones. Looking within cities, we see that there are areas where visi-
tors are diverse but exposure is low (aqua colored areas in Fig. 3.3B): residents sort into
amenities that allow them to avoid ambient diversity. These neighborhoods are hetero-
phobic, and they are typically central and affluent. The opposite also occurs, often in the
same cities (pink colored areas in Fig. 3.3B): heterophilic neighborhoods in Chicago and
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New York have residents that experience diversity despite living in a neighborhood that
sees little of it. We again see that historically deprived neighborhoods, like the South
Bronx or South Los Angeles, are often both segregated and isolated. To understand
these neighborhoods, we plot distributions of selected variables by class in Fig. 3.3C
(expanded to include amenity distributions in Fig. A.3): neighborhoods which export
diversity without importing it tend to exist at a certain distance from downtown, with
characteristic socio-economic attributes—high nonwhite populations and low incomes.
They also tend to have fewer amenities, while areas with residents who appear to avoid
diversity have more—possibly enabling sorting.

Many of the urban pockets we see have been victims of federal, state or local poli-
cies to produce segregation—or at the very least a policy failure to remedy segregation
[424]. In Appendix Fig. A.4, we show that areas that were given poor grades—usually
due to prejudice against nonwhite residents—by the Home Owners Loan Corporation
in the 1930s still exhibit higher levels of segregation today, and areas that were not
graded at all—because cities had not sprawled out into the suburbs until later in the cen-
tury—exhibit higher levels of isolation. These ungraded areas are likely to be the very
places that excluded nonwhite families. This suggests that some of what we see in the data
is the result of policy. We document structural developments that may have influenced
certain pockets in Appendix A.5.

We include sensitivity analyses and robustness checks in Appendix A.6 and A.9. We
also show that neither home nor work location are likely to be the cause of these patterns,
suggesting at least some degree of sorting on preference or on price, in Appendix Fig.
A.11.

Zones of segregation and isolation

To understand how these measures of interaction manifest in the structure of cities, we
use tests for spatial autocorrelation to identify contiguous zones of amenity segregation
or neighborhood isolation. These tests show that at both local and regional scales there
are large areas where high values cluster. Segregation and isolation exist at characteristic
scales, with the latter clustering in suburban rings, Fig. 3.4A, and the former clustering in
certain urban pockets, 3.4C. We take the top 100 cities and subtract the central business
district (CBD) coordinates from each so they stack on top of each other (see Methods).
In Fig. 3.4B we show the composite pattern by counting the number of isolated clus-
ters from all cities at each location relative to their centers. This reveals the relationship
between centrality and isolation, showing that these rings form at similar relative dis-
tances across different cities regardless of geography. Compared to clusters of isolation,
which tend to be suburban, segregation tends to be urban and the clusters tend to exist
at a smaller, more fragmented scale. Fig. 3.4C shows that large cities—New York, Los
Angeles, or Chicago—also tend to have larger concentrations of segregation, compared
to small cities like Atlanta and Boston.

Isolated populations in these zones scale predictably with city size, shown in Fig.
3.4D. For isolated clusters, the relationship is superlinear (β = 1.27); larger cities present
larger concentrations of isolation. The population in segregated clusters scales superlin-
early (β = 1.37) with the population of the city. As cities become larger, separated areas
with limited visitation become larger at a faster rate. Large areas visible in big cities
(New York, Chicago) and less so in smaller cities (Atlanta, Boston) in Fig. 3.4C.
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Figure 3.3. The relationship between segregation and isolation. A Mapping diversity and exposure na-
tionally we see that integrated urban areas are often surrounded by rings of isolated suburban areas. B
Locally, we see urban pockets of segregation with a range of low to high isolation, often near or surrounded
by integrated urban areas. C Distributions of selected variables by class show that segregated areas are often
close to the center, poorer than average, and nonwhite.

Trends and drivers

We use a decision tree, shown in Fig. 3.5A, to understand what defines each class of our
3x3 scheme. We append attributes to each neighborhood using data from the Census to
serve as predictors. We also measure the distance to the CBD, identified earlier. These
become predictors in our model, which provides us with an intuitive, step-by-step way
to see which variables predict which class in order of importance. Points of decision
include richer or poorer, densely or sparsely populated, predominantly white or nonwhite,
centrally or peripherally located. For example, we can ask what is the most common class
of a neighborhood that is near the center, predominantly nonwhite, relatively dense and
relatively poor.

Our complete tree, shown in Appendix Fig. A.12, achieves an accuracy of 30%, a
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Figure 3.4. Defining rings of isolation and pockets of segregation. A Isolation autocorrelation manifests
at the national scale, delineating rings around cities. Centering and layering the cities, in B we count the
number of times isolated zones occur in the same relative area: there is a clear prevalence of these zones in a
ring surrounding each urban core. C Segregation autocorrelation manifests locally, with pockets appearing in
large cities—less so in smaller cities like Atlanta or Boston. We also see tight scaling relationships between
city size and isolation/segregated population in D, with a linear relationship between city population and
the population in isolated zones, along with a superlinear relationship for city population and its segregated
zones.

threefold improvement across what would be expected if assigning classifications from
the 3x3 matrix to neighborhoods at random. Appendix Table A.5 shows the importance
of each feature in the tree, using a permutation technique that shuffles each column and
computes the resulting reduction in predictive ability. Income, along with measures of
urban structure like density and distance from center, are the most important predictors.
This ranking suggests that, along with income, urban form and function, including the
distribution of amenities, may be important determinants of segregation and isolation.
Proximate branches a pruned tree in Fig. 3.5A indicate that both the wealthiest neigh-
borhoods and dense, nonwhite neighborhoods are the most segregated. The most likely
populations to have high segregation and low isolation are nonwhite. In less affluent and
less white communities, the presence of amenities is associated with a greater diversity
of visitors.

The data suggest employment is not important. Insofar as a job represents a connec-
tion to the broader urban economy, we might expect the size of the working population
to predict isolation above and beyond income. Instead, the best model uses income and
race, along with spatial structure, to estimate isolation and segregation. This fits with the
weak correlation between commutes and mixing: where you work does not do much to
help exposure if you sort into venues with an audience similar to you.

The decision tree allows us to explore the relationship between key variables condi-
tioning on all other predictors [204], modeling the interactions in the data. Fig. 3.5B and
C show the model’s estimated values for segregation and isolation, respectively, given
certain conditions; it asks, given these values for demographic, economic or geographic
features, what do we expect the segregation and isolation to be?
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Figure 3.5. Factors associated with segregation and isolation. A Decision tree showing the defining char-
acteristics of different classes, pruned for ease of viewing. Note that top segregated and isolated classes are
the wealthiest cut, but also urban nonwhite—as indicated by density. The areas that have high segregation
but low isolation tend to be urban, nonwhite and moderately dense. Partial dependence plots for B segrega-
tion and C isolation showing the joint relationship between key variables, with rings of isolation conditional
on white/wealthy and pockets of segregation conditional on nonwhite/poor.

The patterns are clear: if a neighborhood is close to its downtown, its amenities are
more integrated, unless it is majority nonwhite; if a neighborhood is far from its down-
town, it is more isolated, unless it is majority nonwhite. The relationship between location
and demographic composition creates quadrants that correspond to higher or lower seg-
regation. The tree indicates that race is the most important driver of amenity segregation:
the highest modeled estimates for amenity segregation come in neighborhoods with large
nonwhite populations—regardless of how central they are. Wealthy neighborhoods also
have more segregated amenities, but only if they are majority white. The rings around
each city are also evident in these distributions, with segregated suburbs becoming com-
parably less segregated exurbs—which are also less expensive–at the farthest extents of
the city.

Given the potential consequences for segregation and isolation, we link these mea-
sures of spatial mobility to social mobility—the likelihood that a child will earn more
than her parents—in Appendix Figs. A.13 and A.14. In brief, higher segregation and
isolation correspond with better outcomes, suggesting strong selection effects—except
for areas with more than 75% nonwhite residents, where the effects go negative. This in-
dicates that connections to the broader city are important for some groups but not others.

Temporal variations

Across time, the bivariate class comprised of the most segregated and isolated areas,
flowing across the top of Fig. 3.6A, became larger during the pandemic but has since
returned to its 2019 fraction of the total. The class comprised of the least segregated
amenities, flowing across the bottom, has not recovered—an indication that downtowns
are less places of mixing than before. Despite this churn, transition probabilities are
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Figure 3.6. Changes in factors over time. A Trends for classes of segregation showing that segregation
peaked in April of 2020, but shows little change today. We compute city averages for I and S in B and see
that levels changed in many cities during the pandemic but have returned to normal in most—notably not
San Francisco. C Changes to dependencies over years, following the same logic as above with distance to
the CBD on the vertical axis and variables of interest on the horizontal axes (nonwhite population and in-
come): relative to the 2019, lower values for nonwhite population and median income generate high expected
segregation near the center; more distance bands generate high expected isolated even at higher values for
nonwhite population and lower values for median income.

low at the extremes, which we show in Appendix Fig. A.15: most and least integrated
areas typically remain so. Confirming previous work [522], experienced segregation
peaked during the pandemic; we extend this work through 2022, showing that levels of
segregation and isolation have returned to 2019 in many cities. Computing the average
values for I and S per city in Fig. 3.6B shows that, aside from San Francisco and Boston,
the distribution has largely returned to its index value.

In order to understand how this change manifests in the structure of cities, we track
how the partial dependencies have shifted over time in Fig. 3.6C. Most predictions,
either for segregation or isolation, shift to higher values throughout the study period. A
notable change occurs in the band representing wealthy neighborhoods close to the urban
core, which become more segregated in 2021 and 2022 despite proximity to downtown
amenities that facilitated mixing in 2019. Our 2019 model expects urban areas with
90% nonwhite populations showed high amenity segregation prepandemic. In the 2022
model, this dropped to 80%. Urban areas 5-10km from city centers with $200,000 median
incomes saw segregation indices rise from S = 0.4 in 2019 to S = 0.5 in 2022—a
20% increase. The rings that we see around cities above also extend out: predictions for
isolation become higher beyond 75km, where the highest predictions ended in our 2019
baseline. In these exurban areas or satellite cities greater than 75km from the city center,
the average estimated isolation rises from I = 0.25 to I = 0.35 where neighborhoods
are majority white.

We also see little change in the rank importance of features over the period analyzed
here (see Appendix Fig. A.17). Although it maintains its rank importance, the level of
importance of distance to the CBD does drop in 2021 and 2022, suggesting that we may
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be seeing changes to the spatial structure of segregation and isolation.

Discussion

While prior work highlights subtle variations between adjacent venues [321, 150], here
we show that cities often have a structure that minimizes mixing in some areas while
maximizing it in others. Our analysis reveals that cities are comprised of spatially con-
tiguous zones of isolation and segregation, where residents primarily interact with socio-
economically similar others. External rings can often stretch for great distances, encom-
passing large populations. Internal pockets, those exhibiting high segregation and either
high or moderate isolation, resonate with concepts of the “ghetto” [168], a spatial ar-
rangement that allows economic participation while maintaining social separation. The
mesoscopic view then advances our understanding of experienced segregation by doc-
umenting the twin experienced concentration of affluence and poverty, opportunity and
disadvantage, building on earlier work on socio-economic extremes in cities [300].

Studies documenting experienced segregation often fail to distinguish areas where
diverse encounters happen from areas where residents must travel to encounter diversity
[38, 321, 335]. Recent work highlights the“compelled mobility” of nonwhite residents
who often travel outside segregated home neighborhoods to access resources [88]. Our
findings align with this, showing some segregated areas (like South Chicago) whose resi-
dents experience diversity elsewhere, yet also identifying isolated pockets (like South Los
Angeles) where both residential and experiential segregation coincide indicating disad-
vantage [271]. The other side of this are isolated areas (like most suburbs) where resi-
dents avoid diversity. While exposure offers social benefits [116, 299, 123, 118], travel
for amenities may disadvantage businesses in isolated and segregated communities.

A key limitation of our study is its focus on the United States, but our findings have
broad implications for policy in American cities. Research shows that “disadvantaged”
communities [512] often have limited connections to the surrounding labor market [113].
Long ties in particular allow individuals to reach beyond their immediate communities,
and these ties are grounded in activity spaces [243, 457, 261]. We identify disconnected
neighborhoods that are in turn clustered with disconnected neighborhoods; individuals
living in these areas are less likely to interact with the surrounding city and less likely
to interact with someone who is connected to that broader economy, because the en-
tire community in which they exist is disconnected. Constructing long ties will require
connections between rich and poor communities—both the rings and the pockets in our
study. Interventions should leverage zoning and land use to develop amenity clusters in
accessible locations between zones [335], while investing in downtowns to restore them
as places of mixing.

Although our topic intersects with racial segregation in the United States, our mo-
bility data do not include information on race/ethnicity. To avoid ecological misclas-
sification, we do not impute race/ethnicity from neighborhood composition and restrict
our primary segregation metrics to income. Future work that links mobility to validated
individual demographics is needed to assess racial/ethnic patterns and inform policy.

COVID-19 and remote work are rewiring urban interaction networks [380, 53]. Re-
search documents pandemic changes in mobility generally [433] and experienced segre-
gation specifically [522], finding that COVID-19 resulted in considerable changes to daily
routine and to socio-economic mixing. The office [523] and the commute [316] are key
determinants of “third places” [342]—shops, restaurants and cafes—we visit throughout
the day. Further, a postpandemic “introvert economy” [447], with fewer nights out, has
developed. Our results indicate that urban interaction patterns continue to evolve.
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Changing work and leisure dynamics may have important consequences for social
mobility, social capital and the relative economic advantage and disadvantage of neighour-
hoods. These dynamics may reinforce both concentrated advantage (“rings”) and con-
centrated disadvantage (“pockets”), making connections between these extremes even
harder to establish—potentially exacerbating the “age of extremes”, marked by concen-
trated poverty and affluence [300]. Understanding these shifts is critical for creating
opportunity, as interventions need to adapt to new mobility and interaction realities.

In the following chapter, we extend this analysis by looking and the points of inter-
est that modulate interactions between groups. We introduce the concept of “bridging”:
locations that are situated between communities with different racial or socio-economic
compositions, encouraging members of both to meet in the middle. The intuition for
why meeting places matter has its roots in the intervening opportunities models that we
discussed earlier, but the stacked “bullseye” of isolation and segregation—a centre for
mixing, adjacent zones of segregation followed by rings of isolation—prefigures why
bridging amenities are not the most important mechanism for driving mixing: when cen-
tral locations dominate travel budgets, intervening opportunities are leapfrogged. Put
simply, this chapter maps where the social reactor runs cool; our next chapter explains
where and why it runs hot even when the geometry of bridging predicts otherwise.

Methods

With the goal of assessing experienced segregation along multiple dimensions, we con-
struct measures for diversity and exposure for both socio-economic class and race. To
achieve this, we use data from SafeGraph [426], a location services provider, to construct
origin-destination flows from neighborhoods (Census block groups) to points of interest.
SafeGraph gathers GPS locations from mobile phones by aggregating data from appli-
cations who have obtained user consent to passively monitor location, creating a sample
of users comprising ∼ 10% of the population. Their process assigns visits to points of
interest by clustering GPS pings and joining these clusters to adjacent building polygons,
using relative distances and time-of-day to manage conflicts [426]. The data have been
used in a variety of academic contexts [109, 106], and we validate the data in Appendix
Section A.1 to show that the number of devices in a block group shows a strong corre-
lation with population and no detectable correlation with income or race, which would
indicate systematic bias. The result is a rectangular matrix consisting of 220,000 origin
home block groups (a Census aggregation with a population ∼ 1000) and 7 million des-
tination points of interest like restaurants, museums, cafes, car dealers, or grocery stores.
To each origin we append Census estimates from the American Community Survey [498]
of median income and nonwhite population in order to infer socio-economic strata and
demography of the visitors from that area. With these we can compute the “diversity"
of (visitors to) points of interest and the “exposure" of (residents in) neighborhoods to
diversity.

Measuring intergroup interaction. We look at amenity segregation and neighbor-
hood isolation. The first asks, how diverse are visitors to this place? The second asks,
how much diversity are residents from this neighborhood exposed to in daily routine?
Segregation captures the patrons at a given amenity, or point of interest (POI), which we
can then use to compute isolation at the level of the neighborhood by taking the weighted
average of segregation at points of interest visited by the residents of a given neighbor-
hood. The measures we construct represent deviations from a counterfactual scenario
where visitors to an amenity draw equally from each socio-economic stratum in a given
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city. If a restaurant attracts visitors from just one income bracket, calibrated within that
metropolitan area, we consider that amenity to be highly segregated; if residents from
a neighborhood only go to restaurants like that one, we consider them to be highly iso-
lated. Diversity and exposure are the inverse of segregation and isolation. We illustrate
this process in Fig. 3.1.

Conceptually, segregation is inversely related to the diversity of visitors at an amenity
(low segregation S means high visitor diversity), while isolation is inversely related to
residents’ exposure to diversity during their activities (low isolation I means high ex-
posure to diverse amenities). While mathematically related through the calculation of
isolation from segregation, they capture distinct aspects of urban mixing: the nature of
individual places versus the aggregated experience of neighborhood residents.

Following earlier work [321], we consider the segregation S of an amenity α to be
a distance from an ideal scenario where people from all socio-economic classes visit in
equal proportions. This is defined as follows

Sα =
5

8

∑
q

∣∣∣∣νqα − 1

5

∣∣∣∣ , (3.1)

where q represents an income quintile and ν represents the portion of visitors from that
quintile. We scale that by 5

8 so that each value spans 0 to 1, with 0 being perfect integra-
tion (equal proportions from all classes) and 1 being perfect segregation (visitors from a
single class). Each quintile is calibrated to the metropolitan area, rather than the nation
as a whole. As a robustness check, we also compute quintiles based on the nonwhite
population, differentiating between neighborhoods based on the proportion of nonwhite
residents.

An inherent limitation of this study is that we are assigning these classes according
to area, rather than individual attributes. This leaves the possibility for misclassification,
which we address through sensitivity analyses in Appendix A.6, where we consider how
our results would change if devices were drawn from different parts of the income distri-
bution of each block group, but we cannot be certain about the quality of our imputation.
Because income is ordinal and equally partitioned while race/ethnicity is nominal with
unequal base rates, our mixing measure fits income better; for race/ethnicity, ecologi-
cal assignment and category collapse make the measure both noisier and more fragile in
interpretation, so we treat those results as complementary rather than primary.

Neighborhood isolation I is obtained by aggregating S as follows. We compute the
average diversity S for all amenities α visited by residents of a given neighborhood γ,
weighted by the number of trips T between neighborhood γ and amenity α, leading to
the following definition

Iγ =

∑
α(Sα × Tγα)∑

α Tγα
. (3.2)

We then use Local Indicators of Spatial Autocorrelation (LISA) [29] to show the
existence of larger zones of segregation and isolation, which allows us to understand
how cities are structured. Spatial autocorrelation refers to the degree to which similar
values cluster together in space, and this test lets us identify the clusters of contiguous
zones where residents have limited exposure to diversity. LISA measures the correlation
between an areal unit and its neighbors along some dimension; if values of segregation
or isolation co-occur in space, we will see clustering. We use permutations, shuffling the
values of our variables of interest and recomputing autocorrelation, to test the significance
of each local I value, keeping only the values for which p < 0.05. The results can be used
to not only to detect clusters of similar values, which we define as “high-high" when the
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index cell and its neighbors are in the top third of segregation or isolation; we use “low-
low" for the opposite, as well as the remaining combinations of high and low mixes.

To understand how regular and predictable these clusters are across cities, we then
perform a transformation to align cities. We identify the “downtown” by finding the
largest cluster of amenities within 250m of each other using DBSCAN [219], which
groups points based on spatial density. We calculate the centroid of this downtown clus-
ter by averaging all amenity coordinates, weighted by visit frequency. With this urban
centroid identified, we subtract this X,Y value from all geometries of all block groups in
a city. This has the effect of moving all cities to a common centroid around 0,0—stacking
them on top of each other. From there, we simply count the number of high-high clusters
of isolation in each part of the city using a gridded mesh to standardize the block groups.
The resulting heatmap reveals the spatial distribution of isolated zones relative to city
centers across our entire sample.

Dimensionality reduction. Our data span four years, from 2019 through 2022, which
gives us the ability to assess the stability of these measures over time. To understand
this, we both follow the raw trends and track relationships for a series of variables that
predict diversity and exposure. We first build a time series of segregation and isolation for
each neighborhood in our data, 48 observations (months) across 220,0000 neighborhoods
(all Census block groups). Monitoring every time series presents a challenge, so we
divide our data into 9 classes—combining 3 quantiles of segregation with 3 quantiles of
isolation—at 2019 January t0, and then assign classes according to the original breaks
for each month ti thereafter, tracking the size of each class throughout our sample. We
also compute average segregation and isolation for each metropolitan area and track those
levels as well. Because our data represent a space-time cube, where each location in space
has 48 values, we explore other forms of dimensionality reduction in Appendix A.14.

To understand the factors associated with these trends, we construct decision trees
to predict segregation and isolation at each interval. We choose this modeling strategy
because the patterns in our data involve symmetries and nonlinearities, with high and
low extremes of a given variable giving similar predictions, and because variables ap-
pear to interact. A decision tree manages these challenges in a manner that preserves
interpretability, as we can explore the tree to see how variables are stacked to generate
predictions [86]. The key tools that we use to interpret our data are the tree itself but
also partial dependence plots, which show the best prediction given the values of two
variables controlling for all others [204].

Our decision tree uses the following predictors, all at the level of the block group,
from the Census Bureau (see Table 3.1): median income, nonwhite population share,
college educated share of adults, household size (Census Bureau), rental vacancy rate,
share of rent burdened households, share under 16 years old, share unemployed, and
population density. We then use data from SafeGraph to construct the following metrics,
also at the level of the block group: amenity count, which is the number of POIs in
the block group, amenity entropy (H), which is the diversity of those POIs according to
the 6-digit NAICS industry classification (E.g. Restaurants and Other Eating Places).
We compute it as Shannon entropy [451] H = −Σp(x)logp(x) for all x where p(x)
is the proportion of firms in each industry classification. We also use DBSCAN [219]
to identify each city’s centroid in the following way: we sort clusters of POIs within
50 meters of each other by the number of POIs in them, and assume that the largest
cluster is the central business district; we then take the visit-weighted average latitude
and longitude over those points of interest and assume that point is the city center. We
then measure the distance of each block group in each city to that point and call that
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distance to the CBD, which we use as a predictor.

Variable Definition

Dist. to CBD Distance in kilometers from the block group to the central business district;
CBD identified as the largest cluster of POIs within 50 meters of each other
using DBSCAN algorithm

Amenity (H) Shannon entropy of POI types, calculated as H = −Σp(x) log p(x) where
p(x) is the proportion of POIs in each 6-digit NAICS industry classification

Density Population density (population per square kilometer)

Amenity (#) Count of POIs

Median income Median household income in US dollars

Nonwhite (%) Percentage of population not identifying as non-Hispanic white

College (%) Percentage of adults (age 25+) with at least a bachelor’s degree

Household size Average number of people per household

Vacancy rate Percentage of rental units that are vacant

Rent burden Percentage of households spending more than 30% of income on rent

Under 16 (%) Percentage of population under 16 years of age

Unemployed
(%)

Percentage of labor force that is unemployed

Table 3.1. Definition of variables used in the decision tree model. The model uses a combination of
demographic, economic, and urban structure variables to predict neighborhood segregation and isolation.
Data come from the US Census Bureau’s American Community Survey and SafeGraph location data. All
variables are measured at the Census block group level.
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4 The role of bridging in mixing

Abstract Having discovered important patterns related to how different parts of cities integrate
with the broader whole, in this chapter we show that “exposure segregation"—the degree to which
individuals of one group are exposed to individuals of another in day-to-day mobility—is depen-
dent on the structure of cities, and the importance of downtowns in particular. Recent work uses
aggregated data to claim that the location of amenities can inhibit or facilitate interactions be-
tween groups: if a city is residentially segregated, as many American cities are, then amenities
between segregated communities should encourage them to mix. We show that the relationship
between “bridging" amenities and socio-economic mixing breaks down when we examine the
amenities themselves, rather than the urban aggregates. For example, restaurants with locations
that suggest low expected mixing do not, much of the time, have low mixing: there is only a weak
correlation between bridging and mixing at the level of the restaurant, despite a strong correlation
at the level of the supermarket. This is because downtowns—and the bundle of amenities that de-
fine them–tend not to be situated in bridge areas but play an important role in drawing diverse
groups together.

Introduction

New research finds that the distribution of amenities in a city relates to socio-economic
mixing: cities with “hubs" situated between communities of different socio-economic
strata tend to have more exposure across those strata; cities with hubs located comfort-
ably within homogeneous zones have less [335]. Using data from the same provider that
we used in the previous chapter, the following analysis shows that although hubs are as-
sociated with mixing across metropolitan areas, when we sharpen the spatial resolution
of the analysis, the association attenuates considerably, raising concerns about causal-
ity. Further, this relationship ignores the importance of hierarchy in urban structure first
articulated in Central Place Theory, an idea which began in economic geography and
has found support in recent studies of mobility. In brief, this theory posits a hierarchy
of locations wherein some goods or services are provided frequently through dispersed
vendors and others—central goods—are accessed infrequently through centralized ag-
glomerations of amenities [122]. We can improve our understanding of mixing—and
with it our policy recommendations—by first incorporating and then validating ideas on
central places and central goods. In the following chapter, we show that the places doing
the heaviest mixing work are not necessarily peripheral “bridges”, but central agglomer-
ations—downtown clusters that mix despite low bridging potential.

Without explicit consideration for the role of central places and central goods in driv-
ing mobility, a growing body of literature indicates that the location and co-location of
amenities in space is the product of related forces. Consistent with the idea that certain
goods are traded centrally and others are served in a dispersed manner, with consequences
for how often transactions take place, data on mobility show that visits to an area are a
function of frequency and distance: some places are visited often by those nearby, and
other places are visited sparingly by people from far afield [444]. Other work has re-

53



vealed distinct hierarchies in travel, with trips bounded by local or regional limits [17],
and constraints on the number of places any given person can visit [18]. Together, much
of the work on human mobility in the urban context suggests that individuals must al-
locate finite resources—time, money and even cognitive bandwidth [83, 47]—to satisfy
needs. “Trip chaining"—whereby people visit multiple services on the same journey—is
a common strategy for coping with these limitations [316]. Taken together, this research
suggests that urban structure constrains human behavior, and vice versa—with amenities
agglomerating to meet certain needs. Here we examine the implications of this interplay
between structure and mobility on socio-economic mixing.

Results

We use a measure of mixing borrowed from earlier work [321] that captures the degree
to which the distribution of visitors to a place deviates from an ideal wherein visitors
from each quintile of the income distribution visit that place in equal proportions. These
quintiles are calibrated using the metropolitan area, rather than the nation as a whole, to
compensate for the concentration of wealth in some cities. The result is a value from 0 to
1 where 0 represents perfect mixing and 1 represents perfect segregation. With that as our
proxy for mixing computed for ∼ 5 million points of interest nationally, we construct our
bridging index—which represents mixing under counterfactual mobility scenario—using
a modified version of an established model [454] that assigns trips between origins and
destinations considering the distance between them and the intervening opportunities;
in this model, the probability that you visit a restaurant is a function of how far away
that restaurant is and how many other restaurants are closer. We can think of this as an
“expected” mixing to which we can compare observed data. We resample the observed
data according to these probabilities for many business types. The above mixing mea-
sure, computed on these assigned trips, constitute our bridging index; this counterfactual
mixing indicates the potential for amenities to attract diverse patrons.

Replicating earlier bridging-mixing findings [335], we find that our measures are
well calibrated: bridging at the level of the city is correlated with mixing at the city as a
whole (ρ = 0.63) and each of our measures for bridging and mixing are correlated with
those of the earlier study (ρ = 0.55 and ρ = 0.57, respectively). Yet this relationship
varies when we disaggregate to level of the point of interest: some amenities encourage
mixing and others do not. Looking at restaurants, the Pearson correlation coefficient
for mixing and bridging falls to 0.40 when we consider restaurants in Fig. 4.1A. At
supermarkets, however, which are fewer in number and perhaps less separable according
to taste and preference, the correlation coefficient between bridging and mixing is 0.70
(see Fig. 4.1C). Convenience stores are between these 2 extremes, with a correlation
of 0.53 (see Fig. 4.1B). There is a notable surplus of restaurants in particular off the
diagonal, where we would expect less mixing than occurs.

This presents a puzzle that calls into question the causal effect of bridging on mixing
in American cities: cities with bridging amenities experience less exposure segregation
than those without, but many amenities with low bridging also have high mixing. Our
data focuses on venues, so it is plausible that much of the mixing in cities occurs on the
street in front of restaurants and grocers as the patrons themselves sort into amenities
along socio-economic characteristics. This sorting would align with work showing sort-
ing among nearby venues across cities [321], and would indicate that exposure is super-
ficial—shared paths rather than amenities. It is also plausible that unobserved variables
produce both bridging and mixing, and that the two are not causally linked. We check
our hypothesis that macro-mixing occurs alongside micro-sorting by aggregating venues
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A Restaurants B Convenience stores C Supermarkets

Figure 4.1. Mixing and bridging. Plots showing the correlation between bridging and mixing at the level
of amenity for different venue classes, with weaker correlation for A restaurants and stronger correlation for
C supermarkets, and B convenience stores in the middle. A large portion of restaurants are high expected
segregation and low observed segregation.

into clusters and comparing cluster-level mixing to amenity-level mixing; we also check
for systematic biases in the relationship between bridging and mixing. Fig. 4.2 presents
these results.

When we subtract expected segregation from observed segregation, we see that the
lowest values—segregated well below expectation, given location—are concentrated down-
town (see: Fig. 4.2A). Further, the relationship between bridging and mixing breaks down
when considering these business districts: these hubs typically have high predicted seg-
regation—because they are situated far away from much of the broader suburban and
exurban population—and low observed segregation. In Fig. 4.2B, we compute hub mix-
ing across all clusters of amenities and then extract downtowns, which we define as the
largest cluster in each city, to demonstrate. This also explains the weak relationship be-
tween mixing and bridging for restaurants: many restaurants are co-located in larger busi-
ness clusters; these restaurants tend to be the low-bridging, high-mixing venues we see
above. Considering the 2 large clusters in New York City and Chicago in particular,
this relationship is partially driven by sorting within the cluster at the level of the venue.
In Fig. 4.2C, We use the variance in median income across establishments to illustrate:
CBDs tend to have lower segregation on aggregate but higher variance between venues,
indicating sorting within them. Many of the most segregated CBDs are in cities with
even more segregation, and are thus still doing comparably better: as shown in Fig. 4.2D,
downtowns are typically far to the integrated side of their parent city’s distribution.

The consequence of this is that the scaling relationship found in prior work [335],
which says that larger cities have greater exposure segregation, does not hold when we
isolate central business districts. Fig. 4.3 shows that scaling holds for each type of busi-
ness we explore here, but not for CBDs. This suggests that much of changes to exposure
segregation across cities of different sizes is due to changes at the periphery.

Expected and observed mixing are converging

The pandemic changed decisions around both remote work [53] and social exploration
[321]. Given the importance of downtowns to aggregate mixing in cities, the next logical
line of inquiry addresses whether cities will become more segregated business districts
become less important economically and socially.

To assess changes in segregation patterns, we compared observed segregation values
to those predicted by our NULL model. Rather than relying solely on correlation coef-
ficients, which capture only linear relationships, we calculated the mean absolute devia-
tion from the NULL prediction line (where observed equals expected segregation). For
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Figure 4.2. Hubs and mixing. A Maps illustrating the difference between bridging potential and place
segregation, showing distinct zones of mixing—usually downtown—and segregation. B Plots showing the
correlation between bridging and mixing at the level of the hub, with downtown clusters extracted. C Height-
ened mixing in these clusters does not come with greater variance, generally, which would suggest that people
are not sorting within clusters. D Distributions for all hubs across the top 50 cities by population, with the
downtown cluster extracted, shows that these clusters tend to be at the integrated tail of the distribution.

each location-year observation, we computed the absolute difference between observed
and NULL-predicted segregation values. We then averaged these deviations within each
year and calculated 95% confidence intervals using standard errors. This metric directly
quantifies how much actual venue visits deviated from distance-based expectations, with
higher values indicating more unexpected mixing patterns. The extremely narrow con-
fidence intervals (±0.0005) reflect the large sample size and statistical precision of our
estimates.

In examining the pandemic’s impact on urban segregation patterns, our analysis re-
veals both the magnitude and pervasiveness of behavioral changes in restaurant patron-
age. Prior to the pandemic, restaurants exhibited substantial deviation from NULL-
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Figure 4.3. City size and mixing. On an aggregate level as well as for certain kinds of amenities, exposure
segregation scales with city size, but this relationship breaks down when we isolate central business districts.

A Restaurants B Convenience stores C Supermarkets

Figure 4.4. Changes over time. We plot changes to distribution of mixing and bridging by binning points of
interesting according to observed and expected values and examining how the quantities in each bin changes;
we also show the linear fit, as above, for mixing and bridging in each year of the data. We can see that
for A restaurants, the greatest change during the pandemic came from restaurants that were high expected
segregation but low observed segregation, indicating that travel past intervening opportunities, which we see
in 2019, declined through the pandemic. We do not see this same dynamic for B convenience stores and C
grocery stores, which did typically had better fit between expected and observed in 2019.

predicted segregation patterns (0.280±0.0005), indicating significant cross-neighborhood
mixing. The onset of COVID-19 triggered a widespread shift toward more predictable,
proximity-based patronage: in 2020, 57% of restaurants (349,480 locations) displayed
patterns more closely aligned with NULL model predictions, reducing the average de-
viation to 0.271 ± 0.0005. This trend intensified in 2021, with 58% of establishments
(328,102 locations) moving even closer to NULL-predicted values, pushing the aver-
age deviation to its lowest point of 0.258 ± 0.0005 – representing an 8% shift toward
more predictable patronage patterns. The year 2022 marked a partial return to prepan-
demic behaviors, though notably incomplete: while the average deviation increased to
0.270±0.0005, only 42% of restaurants (234,097 locations) maintained their pandemic-
era patterns, suggesting a gradual restoration of cross-neighborhood mixing. These find-
ings quantify not just the scale of behavioral adaptation during the pandemic, but also
the persistent nature of these changes even as formal restrictions eased, highlighting the
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potential long-term implications for urban social mixing patterns.

Discussion

In this brief communication we find that the intrinsic mixing potential of an amenity is de-
pendent on its type and its position in the urban hierarchy. Prior work has shown that cities
with amenities distributed to “bridge" demographic divides in the population experience
more mixing. Yet these results ignore the importance of hierarchy in determining both
human mobility and urban structure. Hierarchy is evident in the importance of down-
towns, which tend to have low “bridging" but high mixing—for the simple reason that
they tend be located in the centre of concentric zones sorted by race, class and age, rather
than between them. Downtown offices draw commuters past intervening amenities, gen-
erating mixing in a unified central location. This has the strongest effect on restaurants,
which are dispersed rather than central amenities—those for which patrons would prefer
not to travel long distances, but end up doing so when that visit is attached to a commute
to the office—a central place. Supermarkets are not typically part of downtown amenity
clusters and for them bridging does indeed predict mixing. Comparing supermarkets
stores with convenience stores, we see that the comparably more central supermarkets
show a tighter bridging-mixing link than dispersed convenience stores, which suggests
that location is more important to the mixing profile of anchor businesses that are attrac-
tions in and of themselves than businesses that attach to larger clusters. These results
will have particular relevance as many jobs switch to hybrid or remote work, curbing the
importance of urban downtowns in the urban hierarchy [380] and placing greater demand
on suburban attractions.

Much of this stands in contrast to what we saw earlier: rings of isolation and pock-
ets pockets of segregation limit exposure at the neighbourhood scale, yet central hubs
supersede that constraint by attracting diverse visitors past nearer alternatives. These re-
sults, focusing on venues instead of broader zones, refine the mesoscopic patterns we saw
earlier: geometry predicts aggregate exposure, but hierarchy—who goes downtown, and
why—governs mixing within clusters. Many restaurants sit far off the bridging–mixing
diagonal because they draft off of agglomerative effects and trip chains; supermarkets
hew closer to the diagonal as classic “dispersed goods” [122]: when they are dispersed
between communities, they bridge, but when they are dispersed within communities, they
isolate–and the fit between expected and observed is tight.

The “central place effect” we identify clarifies an ambiguity in the previous chapter:
affluent central neighborhoods may avoid ambient diversity, yet these downtown anchors
remain engines of mixing for the city as a whole. In light of rings and pockets that ex-
panded during and after the pandemic, this chapter shows that observed mixing converged
toward distance-based expectations during that same extended period, consistent with the
retreat from downtowns, a decline central places, and a reduction in trip chains [53].

Thus, meso-scale geometry explains where isolation aggregates; micro-to-macro hi-
erarchy explains when and how mixing persists despite that geometry. Policy levers shift
accordingly: pockets need connections; rings need anchors; and central clusters need to
remain thick enough to justify skipping intervening opportunities.

The intervening-opportunities NULL model treats all destinations within an industry
category as equivalent intervening opportunities—e.g., within “restaurants”, a highway
McDonald’s, a mid-range neighborhood bistro, and a Michelin-star venue enter the model
with equal weight when counting closer alternatives. This abstraction is useful for iso-
lating the effect of structure, but it can misstate the effective choice set when venues are
vertically differentiated (price, quality, cuisine), capacity limited, or serve distinct pop-
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ulations. In those settings, the model may misclassify “true substitutes”, inflating the
intervening-opportunity field and therefore shifting expected segregation. A natural ex-
tension would weight opportunities by similarity (price tier, ratings, cuisine embeddings)
or estimate category-specific/nested choice sets so that intervening opportunities reflect
characteristic differences rather than industry classifications. In the absence of data on
this, we note however that this model accounts for a large share of the variation we see
in mobility without any additional information on quality, suggesting that intervening
opportunities are an important determinant of visitation.

Methods

We construct our measure for socio-economic mixing with data from SafeGraph [426],
a location services provider, which comes in the form of origin-destination flows from
neighborhoods (Census block groups) to points of interest. SafeGraph gathers location
data from smart phones by aggregating GPS logs from applications that have obtained
user consent to collect such data; the sample constitutes ∼ 10% of the population. They
assign visits to points of interest by clustering GPS pings and joining these clusters to
adjacent building polygons, using relative distances and time-of-day to manage conflicts
[426]. Previous work has shown that SafeGraph data are demographically calibrated
[465], and this data underlies the study on mixing and bridging referenced here [335].
We use this rectangular matrix consisting of 220,000 origin home block groups (a Census
aggregation with a population ∼ 1000) and 7 million destination points of interest like
restaurants, grocers, and other businesses. We infer the socio-economic strata of the
visitors from each origin with Census estimates from the American Community Survey
[498] of median income in that area.

Measuring mixing. We measure mixing by looking at a measure of balance proposed
in [321] that asks, in what proportions do visitors from different socio-economic strata
visit an amenity? If a restaurant attracts visitors from just one income bracket, we con-
sider that amenity to be segregated; if it attracts visitors from different brackets in equal
proportion, then we consider it to be mixed. Following the convention of earlier work,
we consider the segregation S of an amenity α to be a distance from an ideal scenario
where people from all socio-economic classes visit in equal proportions. This is defined
as follows

Sα =
5

8

∑
q

∣∣∣∣νqα − 1

5

∣∣∣∣ , (4.1)

where q represents an income quintile and ν represents the portion of visitors from that
quintile. We scale by 5

8 so that each value spans 0 to 1, with 0 being perfect integration
(equal proportions from all classes) and 1 being perfect segregation (visitors from a single
class). Each quintile is calibrated to the metropolitan area, rather than the nation as a
whole.

Computing bridging. We are interested in generating an expected segregation estimate
to compare to the observed. To do this, we model flows to amenities using an interven-
ing opportunities framework, which generates flows from origins to destinations based
on both distance and the number of intervening opportunities [469], and then compute
the same segregation measure on the simulated data. Classic intervening opportunities
models typically use areal units like counties or tracts as origins and destinations; here we
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have origin neighborhoods represented by census block groups and destination amenities,
stratified by business type (defined by 6-digit NAICS code) so that we are not apportion-
ing visits between, for example, restaurants and grocers. Following the core insight of
intervening opportunities theory that the probability of interaction depends on both dis-
tance and intervening alternatives, we model how far origin i is from destination j and
count the number of comparable (same NAICS) destinations within a circle of radius dij
centered at origin i, rather than attempting to count only destinations that lie precisely
between i and j. We define the probability of interaction between origin i and destination
j as

Pij =
e−βdij (1 + rij)

−1∑
k e
−βdik (1 + rik)−1

, (4.2)

where Pij is the probability of interaction between origin i and destination j, β is the
distance-decay parameter, dij is the great-circle distance between i and j (meters), and rij
is the intervening-opportunities rank: the number of same-NAICS destinations strictly
closer to i than j (we use 1+ rij to avoid division by zero at the nearest destination). All
quantities are computed within NAICS classes: for each origin i and class c, let J (c)

i be
the set of destinations with NAICS c; both rij and the denominator are computed over k ∈
J
(c)
i . We obtain β̂ = 0.00005 by maximum likelihood on observed trips (conditioning

on each origin–NAICS total). In particular, we estimate this distance–decay parameter β
in a destination–choice (conditional logit) formulation: letting nij denote observed trips,
we maximize

L(β) =
∑
i

∑
c

∑
j∈J(c)

i

nij logPij(β), (4.3)

conditioning on each origin–NAICS totalN (c)
i =

∑
j∈J(c)

i

nij . We set β̂ to the value
that maximizes this objective and use it throughout. We then resample the observed trips
from each origin–NAICS cell according to P (c)

i· (β̂) and compute the null segregation
using Eq. 4.1. Our NULL model ignores differences in quality within broad industry
classifications, but it nevertheless serves as informative.
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5 Remote work and urban structure

Abstract In the following chapter, we explore the “doughnut effect"—the idea that COVID-
19 and a subsequent rise in telecommuting will create durable gains for suburbs at the expense
of downtowns—with a focus on day-to-day activity. Real estate markets are equilibrating in re-
sponse to changing preferences around living and working, with movers often choosing suburbs
and exurbs over urban cores, as recent work documents; less clear is how these changes affect
mobility and spending patterns. We address this by documenting 6 years of mobility, from Jan-
uary of 2019 to June of 2024, across 382 metropolitan areas in the United States. We use a set
of two-by-two matrices to classify flows and then observe changes to these flows over time. We
show a persistent shift in urban activities to the suburban “doughnut": trips from peripheral to
central neighborhoods have declined, as have trips from population centers to job centers; in-
stead residents are traveling more within and around the suburbs. This has also curbed flows
between predominantly white and predominantly nonwhite communities, potentially reducing
intergroup interaction. The strongest drift relative to 2019 has occurred in “superstar” cities like
New York and San Francisco. We verify our findings using point-of-sale transaction data to show
that many of these superstars are seeing reduced sales downtown—reducing possible sales tax
revenue. These findings have important implications for discussions of the urban “doom loop",
but they are also relevant to our earlier findings: if activity shifts away from downtown, it will
not only reduce integration—as those areas are critical zones of mixing—but it will also redis-
tribute spending from nearby pockets of segregation and into rings of isolation—some of the most
affluent parts of American cities.

Introduction

Remote work has altered the demand for different kinds of amenities in cities: larger
homes—with room for an office—are now more important; longer, fewer-days-per-week
commutes are now more tractable [152]. The consequences of remote or hybrid work
arrangements on residential and commercial real estate are becoming clear: a shift from
city to suburb in the demand for housing alongside a reduction in demand for downtown
offices [500]. Yet the consequences for the economy are deeper than real estate: work-
ers in industries amenable to work-from-home are now present during business hours in
neighborhoods that may have emptied out daily before the pandemic. To understand this,
we construct a panel of data on spatial interaction spanning 6 years and the contiguous
United States, with the goal of describing the changing nature of travel in cities, sub-
urbs and exurbs since 2019—a period which begins with the height of “superstar” cities
[218], includes the pandemic and corresponding shocks to mobility, and ends with years
of adaptation as preferences around remote work become integrated into the economy.
Our focus is on generating a large collection of descriptive statistics to shed light on ur-
ban life and its evolution over the past five years. We relate these data to information on
remote and hybrid work offerings across the country to show that many of the areas with
the strongest adoption of work-from-home have seen the largest changes.

Evidence from repeated, nationally representative surveys shows that work-from-
home stabilized at roughly 20–30% of paid days by 2023–2024, indicating a structural
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break rather than a transitory shock [52, 53, 162]. A growing body of economic litera-
ture addresses the considerable effects of the shift to remote work on real estate [500],
including commercial vacancy [217] and residential redistribution [380]. Although the
pandemic has abated, both work-from-home [53] and social distancing [54] continue,
albeit in evolved forms relative to 2020. Time use data show the emergence of the “in-
trovert economy", with earlier dinner reservations, fewer hours with friends and more on
screens [447].

Less clear is how these changes redound to trip patterns. In 2020 and 2021, many
studies explored shocks to human mobility and its possible consequences for both vi-
ral spread [518] and the economy [82], but these occurred while those shocks were still
present. Human mobility has been a focus of urban science for many years, with studies
for two decades [98, 205, 101]. Many studies of human mobility to date consider inter-
esting questions about innovation [41], the nature of intergroup interaction [38, 321] and
corresponding socio-economic opportunity [299, 132]. Yet most work focuses on nar-
row time windows. This is because data on human mobility are proprietary, limited, and
new: in other words, it is difficult to acquire and collect from private sources, difficult to
construct robust samples because of sparsity, and difficult to observe changes over time
because the data have only been available for a short period of time. This creates valid-
ity concerns, which are compounded by the changing nature of human mobility across
the period for which most researchers have access to data; for example, how relevant is
2017 to 2024 given considerable changes to our economic geography over that period?
Yet the time window available for researchers to study is growing, and here we address
these limitations by building a time series that spans 6 years, from 2019 January to June
2024. We corroborate these shifts with point-of-sale data, which show parallel declines
in downtown spend and gains in suburban/exurban areas.

Our focus on trip patterns is motivated by their relevance to infrastructure policy,
municipal budgets, and socio-economic mixing. Although few studies explore the per-
sistence of changes induced by COVID-19, the pandemic appears to have had durable
effects on consumer behavior in the US; notably, drive-through restaurants had seen ac-
tivity rebound to prepandemic levels by the end of 2022 while restaurants without drive-
through infrastructure had not [315]. Changes like these indicate greater reliance on the
automobile, fewer opportunities for spontaneous interactions, and lagging recoveries in
business districts. Given the importance of monitoring these aspects of urban life as
cities equilibrate to new technologies that enable remote working and reduce commuting
pressures, we modify an existing method that collapses complex mobility patterns into a
simple matrix to track trends over time.

Our goal is to expand our understanding of these changing preferences by developing
a series of mobility signatures, reducing the web of flows between origins and destina-
tions to a series of matrices. Earlier work shows that we can compare cities by reducing
the full origin-destination matrix to a 2 × 2 matrix that measures flows within and be-
tween “hotspot” and “non-hotspot” areas [286]. This method classifies trips according
where they begin and end: those going from busy or “hot” areas to other hot areas are
called integrated I; those starting in quiet or “cold” areas and terminating in other cold
areas are called random R; and cold to hot and hot to cold are called convergent C and
divergent D, respectively. Our methodological contribution is twofold: we reframe this
specific method as a generic operator that can be applied to a richer array of attributes than
just activity, like tracking social mixing by partitioning on demography; we then show
that its value is greatest as a tool for monitoring long time series. Formally, we treat the
classifier as an operator on flow matrices that is parameterised by an ordering variable
(e.g., centrality, demography) and fixed 2019 thresholds, so each city–month maps to a
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3-simplex (I, C,D,R), or probability vector that sums to 1; we call the resulting trajec-
tories ICDR-TS, for time series. Fixing partitions makes the signatures comparable over
time and across cities. This generalises the method into a family of signatures with a
common geometry and comparable time series, and provides a clear justification for the
dimensionality reduction, which necessarily obscures and abstracts away information: it
enables us to monitor just four interpretable variables over time.

This yields comparable trajectories that visibly encode regime shifts: 2020 displace-
ment, partial reversion, then a plateau. A growing literature compresses evolving mobil-
ity networks into latent factors or clusters—via dynamic stochastic block models [303,
355], matrix/tensor factorisation [258, 169], and manifold/embedding methods [127,
214]—offering strong predictive performance but limited interpretability for policy. Rel-
ative to factor or embedding methods, the value in our approach is interpretability and
stability: the axes are defined ex ante (activity, centrality) and the shares can be validated
against other datasets like point-of-sale transactions.

We contribute to the existing literature on mobility in five ways. (i) Data: we as-
semble, to our knowledge, the longest multi-city panel of aggregate mobility in the U.S.
(2019–2024). (ii) Method: we generalise ICDR into a monitoring operator (ICDR-TS)
that yields comparable time series across spatial, economic, and demographic partitions
[286]. (iii) Measures: we introduce a doughnut index for core–periphery reweighting and
a mixing index for between-group interaction. This mixing index is simpler than what
we considered prior—enabling us to monitor long time series—and subtly different be-
cause it considers how neighbourhoods interact rather than residents. (iv) Validation: we
benchmark changes in activity against point-of-sale spending at 1.1M points of interest
to confirm behavioral shifts. (v) Comparative patterns: we document size gradients in
reweighting, connecting to established urban scaling regularities [70, 68].

The pandemic catalyzed a durable reallocation of where people live and work, with
remote and hybrid arrangements reducing the daily value of proximity to downtown of-
fices [52, 217, 379]. What we still lack is a long-horizon, comparable view of how
day-to-day mobility and spending subsequently reorganized within metropolitan areas.
In the following, we assemble a panel of mobility activity for 382 cities, which we man-
age by compressing each month’s origin–destination matrix into a set of signatures that
are interpretable and comparable across time and space. This lets us quantify the “dough-
nut effect” in activity, building on existing work in housing and office values. In doing
this, we create a lens through which to understand remote work, commuting and super-
commuting, the “doughnut effect”, downtown vibrancy and the urban “doom loop”—all
important issues that will frame policy debates about cities for the foreseeable future.

Results

We gather origin–destination (OD) data for all 382 metropolitan areas in the US from
2019 through 2024. These take the form of spatial interaction networks, which we show
in Fig. 5.1A. Looking across the US for such a period requires dimensionality reduction.
To do this, we borrow and modify an approach that reduces mobility to a two-by-two ma-
trix of high and low values, looking at flows between those quadrants [286]. In its original
conception, this involves measuring flows between areal units with different levels of ac-
tivity: integrated flows are those from high-activity origins to high-activity destinations,
convergent flows are those from low-activity origins to high-activity destinations, diver-
gent flows are the opposite, and random flows connect low-activity origins to low-activity
destinations. While this process can occur with only information contained within the OD
matrix, here we assess several other dimensions on which we can divide and classify parts
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Figure 5.1. The process. A The origin-destination network for flows in New York City over 4 years of our
data, showing a marked drop in mobility as well as an attenuation of activity in the core. B A diagrammatic
explanation of our method: we sort the flow matrix, then partition it so it becomes 4 aggregates; we can do
this for spatial or aspatial attributes, for example sorting by workers at the origin and jobs the destination,
or sorting by distance to the central business district for both rows and columns. C When we do this for
2019, we can plot all cities according to their ICDR values to compare them; generally, as cities get larger,
random flows away from the core become a larger share of all flows—an indication that larger cities are more
polycentric.

of a city, including demography and geography. We do this by ranking rows and columns
not according to the marginals but according to other characteristics. We call this gen-
eralised matrix the ICDR matrix, and we demonstrate it in Fig. 5.1B. For demography,
we use race and education: we divide areas into high-minority and low-minority classes,
as well as an alternative specification that uses the fraction of residents with a college
degree. For geography, we use distance to the central business district (CBD), which we
identify as the largest cluster of businesses obtained via DBSCAN [180] (see Methods for
more detail), splitting into central and peripheral. Along with high-population and low-
population classes, these give us insight into the changing nature of American economic
geography since 2019. We partition origins and destinations into high and low using a
fixed 2019 tercile split per city, considering the tracts in the top tercile along the relevant
dimension—distance, density, race, and so forth—to be hotspots and those in the bottom
two terciles to be non-hotspots. A median split blurs this head–tail structure; terciles
isolate important locations while retaining sufficient mass for stable inference. Results
are robust, however, to top-half and top-quartile partitions, which we show in Appendix
Figs. B.1 and B.2.

This normalization makes magnitudes directly comparable across cities and years.
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Note that quantiles keep partitions rank-invariant and cross-city comparable over time.
This makes movement in I , C, D, and R represent a real shift in where trips go, rather
than an artefact of changing thresholds in a new month. We choose this because cities—especially
principal municipalities with taxes and services to consider—care about whether people
are reallocating away from places that were central in 2019, not whether an area is “rel-
atively” central in a given month. Also note that ICDR is unitless and normalized to the
interval [0,1]; we therefore report changes in ‘ICDR units.’ A difference of 0.05 corre-
sponds to five percentage points of the full possible range on this scale.

We show the static view for different variables in 2019 in Fig. 5.1C, noting that pe-
ripheral flows—“random” according to distance—grow with city size, indicating poly-
centricity and agreeing with previous literature [288]; other kinds of flows show no clear
pattern—in contrast to the original work on Spanish metropolitan areas [286].

Suburb-city commutes

A

C

B

Figure 5.2. Economic trends. Quarterly ICDR paths are demeaned to the first quarter of 2019. A Activity
shows small change, although this approach partitioned on marginals from each month, so the hotspots move
with the data. B Density reveals the doughnut: integrated flows, dense → dense, fall and remain depressed
while random flows, sparse → sparse, rise and remain elevated; convergent falls and divergent stays near
flat. C Employment, workers → jobs, moves less than density, pointing to larger changes in consumption
and leisure demand than job relocation.

A doughnut effect in mobility

In all cases, we see a flat trend before April 2020 in Fig. 5.2, suggesting that mobility
patterns stable in the absence of shocks; since 2020, however, the data have been more
volatile, indicating that many cities are still adapting to pandemic shocks. In 5.2A, we use
the original approach to partitioning the OD matrix, by computing the marginals—row
sums and column sums—on the mobility data, rather than incorporating any adminis-
trative data, and sorting on these data to produce hotspots and non-hotspots, indicating
limited change. Yet because this approach recomputes hotspots from the OD matrix each
month, they can move. To avoid this we consider flows from population-dense to amenity-
dense areas in Fig. 5.2B: integrated flows, those from density to density, fell during the
pandemic and have not recovered in most cities; these are flows within cities, and suggest
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that COVID restrictions had the most pronounced effects in urban areas—in line with
heightened risk from close proximity—but also that these behaviours have not recovered
in many cities. Random flows, from sparsity to sparsity, rose and are still above prepan-
demic levels. Further, trends for convergent and divergent flows indicate that people are
traveling less from population-sparse suburban areas to amenity-dense urban areas, while
people are traveling more in the other direction—the change is smaller. The increase in
random flows and corresponding decrease in convergent flows indicate a clear doughnut
effect. Flows from areas with many workers, in Fig. 5.2C, to areas with many jobs was
comparably less affected.

We test if our results are products of our partitioning by using the median and top
quartile rather than the top tercile in Appendix B.1 and B.2; the moves are stronger at the
more balanced partition, but limited relative to other measures. Generally, although mag-
nitudes vary, after April 2020, integrated flows fell, random flows rose, while divergent
and convergent flows were more mixed over time.

Avoiding downtown

Activity (spending) in principal city

A

C

B

Figure 5.3. Spatial trends. A Distance to CBD shows the clearest doughnut: random periphery→ periphery
jumps and stays high, integrated core → core, declines, and Convergent (periphery→core) rises modestly.
B Considering a downtown obtained by clustering points of interest yields the same signature, reflecting a
persistent avoidance of downtown that only partly reverts. C Inside the principal city, activity recovers less
than in suburbs in many metros, with many municipal governments dependent on sales and business taxes
that come from commuters spending downtown.

We explore this further with flows between and within central and peripheral tracts
in Fig. 5.3A. In April 2020, flows between central neighborhoods decreased and flows
between peripheral neighborhoods increased. That is, more trips now begin and end
in suburban tracts; fewer trips begin and end in urban tracts—evidence for a doughnut
effect. Further, after an initial fall in flows from peripheral to central tracts in the first
months of the pandemic, these suburban-urban flows rose above prepandemic levels in
late 2020 and have exceeded those levels in most cities for the 3 years since. This suggests
a change in the relationship between core and periphery, and is robust to alternative spec-
ifications for urban/central and suburban/peripheral categories. For example, in 5.3B we
partition according to which tracts are contained in the central business district, defined
as the largest cluster of amenities identified with DBSCAN, setting a 500m threshold.
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In 5.3C we identify the principal city in each metro, which has implications for munic-
ipal finance since these cities often depend on sales tax revenues to fund services. The
trend is strongest in expensive superstar cities [218] like San Francisco and New York.
The stability across Dallas and Phoenix is a function of the distributed nature of those
two cites: from 2019 to present day, they have the highest rates of random flows and the
lowest rates of integrated flows when we consider measures of centrality.

Across these spatial measures, convergent flows drift up and Divergent stay flat—consistent
with a “doughnut” pattern rather than a suburbanization of jobs. Using distance ordering,
by 2024, nine in ten metros have lower integrated flows than in 2019. Yet at this point in
our data, convergent flows are also up on average, indicating that commuting is still im-
portant. Because the ICDR matrix sums to 1, this suggests that demand for consumption
and leisure activity is shifting to the suburbs.

These are generalities: there are exceptions to each rule and these exceptions tend to
occur in smaller cities; larger cities—especially superstar cities that had problems with
affordability and housing access prior to 2020—tend to see exaggerated effects. We also
see that there is significant divide between “Rustbelt” and “Sunbelt”—colder, older cities
in the Northeast and Midwest are experiencing greater change than warmer, newer ones.
As we see across Fig. 5.3B, convergent flows to downtown Phoenix, a sprawling sunbelt
city, and random flows within its suburbs changed during the pandemic, it has now stabi-
lized at or near prepandemic levels. In denser rustbelt cities like New York, large shocks
have not yet stabilised.

Less mixing

A

C

B

Figure 5.4. Social trends. Partitioning by Income, Education, and Nonwhite share shows smaller magni-
tudes than geography. A Income and B Education show an initial drop in convergent and divergent flows
indicating less socio-economic mixing, but the trend is flat by the end of the study period. C Partitioning
on nonwhite share, however, random low →low strengthened relative to 2019 while cities appear to diverge
considerably over time: some cities, like Phoenix, are mixing more, while others, like New York City, are
mixing less.

We explore socio-economic mixing in 5.4A and B, with an initial change during
the pandemic and many cities recovery thereafter. Cities appear to be dispersing in
random—low-education or low-income—flows over time, while convergent and diver-
gent flows are monotonically growing. Yet changes we see in the structure of mobility
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do have consequences for racial mixing in cities: relative to 2019, Fig. 5.4C shows fewer
trips crossing from predominantly white to predominantly nonwhite neighborhoods, while
the opposite—trips from nonwhite to white neighborhoods—changed little through the
pandemic in most cities, possibly because jobs held by members of nonwhite communi-
ties were less amenable to remote work [21]. Trips originating and terminating in neigh-
borhoods with similar racial compositions, be they white-white or nonwhite-nonwhite,
increased during the pandemic. Although changes in nonwhite ICDR are smaller and
noisier than other variables of interest, the increased dispersion in 2024 relative to 2019
indicates that some cities are experiencing less mixing between groups today.

Putting precise numbers to it, on aggregate, mixing is up, however. Sorting by non-
white share, intergroup mixing rises on net, using our mixing index (see methods): we
consider the change in mixing to be ∆M ≡ (C+D)−(I+R), and it shifts by +0.038 in
2024 compared to 2019. Income and education show the same qualitative tilt but smaller
magnitudes: 2024 against 2019, ∆I = −0.016 and −0.023 alongside ∆C = +0.017
and +0.019, respectively.

Cities are equilibrating at ICDR signatures that represent a hybridisation of prepan-
demic 2019 and pandemic 2020. Plotting the vector of changes for each city from 2019
to 2020 in 5.5A and for 2019 to 2024 in 5.5B, we can see that flows became more random
in early on but they have not yet returned to normal. Further, the shock of the pandemic is
still reverberating most in the largest cities by population. From 2019 to 2024, the largest
25 metros more than double the shift in ∆(R − I) relative to the smallest 25, +0.05
against +0.018.

Because these results are noisy, we construct a doughnut index, representing change
in random flows relative to integrated flows, ∆(R − I). In other words, ∆(R − I) tells
us how much cities have shifted away from core–core travel towards within-periphery
travel since 2019. We then regress each city’s change in ∆(R− I) since 2019 on its log
population. Across the density ordering, the average change in our doughnut index, is
∆(R− I)2024−2019 = +0.020; 72% of metros raiseR and 80% lower I . The doughnut
index in particular has a positive size gradient βlogN = 0.007 (p < 0.001). Using the
distance ordered, the shift is larger: ∆(R− I)2024−2019 = +0.031; 77% of metros
increase R and 90% decrease I , and the effect steepens with size βlogN = 0.014 (p <
0.001). We report scatter plots of the scaling relationship between change and city size,
ordering on distance, in Appendix Fig. B.3.

Largest positive∆(R−I)2024−2019 using distance are rustbelt cities, like Philadelphia
+0.195, Washington +0.156, Burlington, +0.149; negative ∆(R − I)2024−2019 val-
ues concentrate in smaller sunbelt metros like Safford and −0.315, Flagstaff −0.122),
both in Arizona. Generally, larger cities show a stronger shift toward the periphery, a
positive size gradient for the doughnut index ∆(R − I)); in particular, ∆I falls more in
larger metros. Further, smaller cities drive a rise in periphery core flows, a negative size
gradient for ∆C).

Two regularities anchor our results: first, distance and density orderings show a per-
sistent reweighting from core ↔ core and periphery ↔ core to periphery ↔ periphery
flows; second, the magnitude of that shift scales with city size. We show this in time
series in Fig. 5.6A and B. The clearest stratification occurs for convergent flows, which
points to fewer commutes in larger cities but more in smaller cities.

On the distance ordering, convergent flows rise in most places, with a mean∆C2024−2019 =
+0.016. Although, 88% of all cities gain, the gains are concentrated amongst smaller
cities: the size gradient is negative (βlogN = −0.007, R2 = 0.284) and Spearman’s
rank correlation between population rank and ∆C is ρ = 0.497. Moving from the
smallest to largest population quartile, the average change steps down from +0.023 to
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Figure 5.5. Change vectors. A Change from 2019 to 2020, with a large shift from integrated flows to
random flows, especially amongst the largest cities—superstar cities that were becoming expensive prior to
the pandemic. B From 2020 to 2024, these same large cities are the ones most likely to be far off 2019
values.

+0.020 to +0.015, to +0.005, and the share with ∆C > 0 falls from 98% to 66%.
On the density ordering the story repeats, but with a lower magnitude: mean change
is ∆C2024−2019 = +0.005 and 61% of cities gain; the size gradient is again negative
(βlogN = −0.008, R2 = 0.238), and Spearman’s ρ = 0.518. By smallest to largest
quartiles, the averages run +0.015, +0.010, +0.002, −0.007, and the ∆C > 0 share
drops from 83% to 30%.

Returning to social mixing, we see again that change is contingent on size: since 2019,
trips between areas with different demographic compositions—be it race, education or
income—rise in most places, and the rise is dominated by smaller cities. The gradient
with size is negative (βlogN = −0.009, R2 = 0.262); Spearman’s rank correlation be-
tween population rank and ∆(C+D) is ρ = 0.502, both pointing to stronger re-mixing
in smaller metros and a muted response in the largest. That split is stark in levels: across
the 25 biggest metros the mean change is essentially flat (+0.001, 44% positive), while
the rest average +0.022 with 91% positive. Leaders include sunbelt cities like Santa Fe,
New Mexico (+0.089), El Centro, California (+0.056), but also smaller cities like Salis-
bury, Maryland (+0.064), and Parkersburg, West Virginia (+0.062). Declines are con-
centrated in rustbelt cities like Cleveland, Ohio (−0.024), Detroit, Michigan (−0.021),
and Baltimore, Maryland (−0.020).

Computing the change in intergroup mixing with I and R flows as well, such that
∆M ≡ ∆[(C + D) − (I+R)] tells the same story in one number: the mean shift is
+0.040 with a negative size gradient (βlogN = −0.018, R2 = 0.249; Spearman’s
ρ = 0.506), again indicating that smaller metros drove most of the recovery in mixing.

Redistributing spending

The fiscal and economic consequences of the shift are borne out in point-of-sale data,
which we use as a validation. We ask whether dollars are spreading across more places
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New York City
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Figure 5.6. Size and change in mobility composition. We plot the same ICDR trends as before, colouring
metros by population rank to show how size corresponds to change over time. A Looking at distance to the
CBD, we see there is clear stratification of large and small cities for convergent and divergent flows, with
steeper declines in the larger metros, indicating a weaker core-periphery dynamic; though the relationship
is noisier, we see that random flows gained more in larger metros, indicating a relative shift to towards
polycentricity. B Looking at density, we see the same pattern holds—persistent elevation of convergent and
random flows. C Thinking about social mixing by partitioning on nonwhite population, the results are more
mixed but many large metros, including New York City, still have greater shares of random, high white
population → high white population, flows.

or concentrating into fewer. Rather than diffusing, spending has become more unequal
since 2019. This indicates that, as we saw in the previous chapter, downtowns actually
help redistribute activity—and without them, it concentrates.

At the tract level, concentration rises on both transactions and spend. The pooled
Gini for transactions increases from 0.724 in 2019 to 0.773 in 2024; for spend it rises
from 0.770 to 0.803. The share for spending in the top decile of tracts moves in parallel:
transactions held by the top 10% of tracts climb from 0.569 to 0.641, and spend from
0.638 to 0.693. Dynamics are not monotone: concentration dips early in the pandemic
and then reconcentrates, with troughs at 0.708 and 0.764 in April of 2020 for transactions
and spending, respectively, and peaks at 0.780 and 0.814 in late 2022. The number of
active tracts remains large throughout, at 65,800, so these shifts reflect redistribution
rather than a changing coverage.

Taken together, the spend results align with the ICDR–TS patterns: the reweighting
away from core ↔ core trips does not imply a broad flattening across many neighbor-
hoods. Instead, activity and dollars reconcentrate into fewer tracts—often peripheral
hubs and surviving anchors—consistent with a thicker ring of periphery ↔ periphery
travel and thinner core-bound chains. A pooled Lorenz curves and Gini time series ap-
pear in Appendix Fig. B.4, where we show that this is more a rustbelt than a sunbelt
phenomenon, as with the above data: New York City became more unequal while Hous-
ton became more equal. We must note, however, that there is not relationship between
city size and these changes to the distribution of spending.

This is manifest in a shift towards suburbs and way from downtowns. We aggregate
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Figure 5.7. A Changes in spending according to binned population density, with spending in downtown
and urban areas contracting since the pandemic and suburban and exurban areas expanding. B A synthetic
metropolitan area comprised of the average of all cities in our data shows a clear doughnut, with activity
expanding on the periphery and contracting in the center. C Disaggregated by city, we see that the results
are heterogeneous: in superstar cities that experienced rising costs of living before the pandemic, like Los
Angeles, San Francisco and New York, spending has fallen in all categories; less dense, less expensive cities,
spending is flat in urban and downtown areas but rising in suburban and exurban areas.

data on spending to the level of the tract and classify those tracts according to population
density: following earlier work [380], 99th percentile is downtown, 90th to 99th is urban,
50th to 90th is suburban and the bottom half is exurban. Spending at restaurants downtown
has fallen 75% since 2019; at suburban and exurban restaurants, it has risen by 15% and
45%, respectively. Urban restaurants excluding downtowns have seen spending decline
by 25%. These data mirror changes to home values [380], suggesting, as we would expect,
that people moving to the periphery dine out at the periphery as well, at the expense of
the center.

In order to observe an aggregate doughnut effect, we also produce a synthetic metropoli-
tan area by setting downtown of every city in our data to the coordinates 0,0 and, with
every city now stacked in the same artificial space, compute the mean change in spend-
ing for each 1km2 grid cell. We see in Fig. 5.7B a noisy but prevalent ring over growing
expenditure in the periphery while the center experiences a contraction.

When we split the data by city in Fig. 5.7C, however, we see that the changes to
spending have been heterogeneous. In cities that are defined as superstar [218], those with
growing property values and policies limiting new construction, spending has declined
across all densities. In San Francisco for instance, as of the end of our study period,
spending in cities and suburbs is down by 75%; in New York, spending is down in both
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city, suburb and exurb—though the exurbs have only seen a drop of 50%. Spending across
Los Angeles and its periphery has also fallen. In cities that were not facing housing crises
going into the pandemic, notably Houston, Dallas and Denver, spending is up in suburban
and exurban areas and is near prepandemic levels in urban and downtown areas.

Across all cities in 2019, 14% of all tax revenue comes from sales tax and a further
2% comes from business licensing, which could also decline if fewer restaurants and bars
locate downtown when fewer patrons commute in each day [279]. Recent data suggest
that changes are occurring: in 2021, sales tax revenue fell to 13% of the total. Looking
across the past 2 decades in Fig. 5.8A and B shows that these sources of money for cities
have been stable for many years and the changes brought about by the pandemic threaten
to upend this stability. We saw above that spending is down in Los Angeles, for example,
and that city depends on sales tax for 20% of its revenue. San Francisco depends on
business licensing, with more than 20% of revenue coming from these fees in recent
year; we might see a lag as businesses decided to shut down, but the decline could be
similar since both spending and mobility data show that San Francisco is experiencing a
strong doughnut effect.

A B

Figure 5.8. A Many cities are dependent on sales tax for revenue, especially Denver, which has seen flat
spending trends in the city since the pandemic. B Although San Francisco is comparably less dependent on
sales tax, it does receive much of its revenue from business licensing.

Discussion

In this study we have also introduced a simple yet effective way to monitor changes to
mobility across a large sample of cities over a long period of time, extending ideas from
previous work [286]. Our method prioritises description over prediction to enable policy
evaluation. We see that the adaptations set in motion by the pandemic—most notably re-
mote work—are still present in cities, which, while intuitive, have consequences for both
policy and how we interpret early work on urban mobility. Cities have settled into a hybrid
of 2019 and 2020: integrated, central movement remains depressed, random, peripheral
movement remains elevated, and the cities that most resemble themselves prepandemic
are those that are smaller, sparser, and cheaper.

On the distance ordering, the average doughnut index ∆(R−I) increased by +0.031
and intensifies with city size βlogN ≈ 0.014, consistent with a stronger shift toward
polycentric travel in bigger metros. Results are similar for density ordering, but more
mixed for measure that sort on education, income and race—although even here we see
a clear distinction between large and small cities.
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Spending follows foot traffic. Point-of-sale data show persistent contraction down-
town with compensating gains in suburbs and exurbs—especially in superstar metros—implying
pressure on tax bases, municipal services, downtown businesses. A particular risk is feed-
back: fewer commuters, fewer amenities, and a less vibrant downtown thus drawing even
fewer commuters. Although real estate constitutes the lion’s share of municipal budgets,
sales taxes are also important—and foot traffic has subtler effects on urban living, from
“eyes on the street" deterring crime to spontaneous interactions generating innovation.
Because production often drives consumption in cities, with commuters eating breakfast,
lunch or dinner within the confines of business district, a large redistribution of journeys
from core to periphery will also redistribute expenditures, possibly more equitably [285],
but with adverse effects on municipal budgets. With productive workers isolated from
each other, research suggests that rates of innovation may fall [517, 320].

Yet the same feedback can, in principle, run in reverse: a periphery that becomes
thick with third places, street life, and reliable connections can become a mixing surface
rather than a set of parallel lives. These locations will not minimise the mean free path
length as a focal point would, so we might still expect mixing to decline; however, there
is an opportunity to create more sustainable urbanism that still generates planned and
unplanned encounters through places that exist between the lowest and highest layers of
central-place hierarchies: the proximal neighbourhood and the central business district.

How the new direction of travel moves with or against the existing urban infrastruc-
ture may constrain changes. Infrastructure will encourage or discourage certain kinds
mobility: dominant radial highways facilitate travel in and out of the urban core; abun-
dant orbital highways allow for point-to-point journeys around the suburban periphery.
We can think of the change we see in the data as a transition from the radial to the orbital
city, and its implications are manifold.

Our findings agree with models predicting residential decentralization and altered
commuting when work-from-home rises, while employment need not decentralize at the
same rate [159]. Using the ICDR-TS operator we propose here, future work can embed in
difference-in-differences or event-study designs that leverage work-from-home exposure
by industry mix or firm policy to move from description to inference. It also offers a
tractable target for structural calibration (matching ∆(R−I) and ∆(C+D) by city size)
to discipline counterfactuals around transit investments, office conversions, and zoning
changes.

A strength of our study is the fixed quantiles, which allow for comparison over time
and space, but this is also a limitation. An important trend, documented in the literature, is
migration away from urban cores during the pandemic [380]. Our partitions do not relabel
areas that truly do shift rank—emerging suburban and exurban satellites. Capturing such
structural reranking would require periodic rebasing to population, which falls outside
the scope of this paper given the cadence of official releases.1

Our work also has implications for research on human mobility, especially regular-
ities and patterns: at least in the US, travel preferences are equilibrating: data from the
last year show that ICDR signatures are stabilising, even in cities that have not returned to
prepandemic norms. Prior to 2020, mobility research was beginning to reveal important
insights about urban life [321, 40] and human behavior [18, 444]; for example, research
using data from 2017 suggests that amenities situated between rich and poor areas fos-
ter socio-economic mixing [335], and in the previous chapter we showed that downtown
is a critical area for the aggregate amount of mixing because it defies this “bridging”
model—attracting diverse groups at higher rates than the model predicts. Whether or not

1Although, we partially mitigate this by reporting robustness with alternative centre definitions (CBD
clusters and distance) and with median/quartile splits.

74



similar work using data from 2022, 2023 or 2024 would reliably convey the same ideas
about cities is an open question. Our work suggests that we are entering a period of stabil-
ity and thus that new research, leverage recent or current data, would provide information
about the new regime that we are in postpandemic. We provide an initial compendium
of results and ideas here: commuting patterns have changed, integration—according to
both race and class—have changed, and spending choices have changed. Superstar cities
in particular have entered a new regime.

Data and methods

We use mobility data from Advan, a location intelligence company that derives foot traffic
by aggregating GPS pings that occur within building polygons. Our data take the form of
an origin-destination matrix where the origin is always home, rather than an intermediate
stop, and the destination is a point of interest. Advan sources GPS data from∼ 35million
devices, isolating clusters of multiple GPS traces over multiple minutes that fall within
a given building [6]. Advan data capture a representative sample of the US population
with small biases (±0.05) by race, age and gender [276]. To reduce bias, we aggregate
these data from the Census block group to the tract, and use months rather than weeks
as our periods. We consider only leisure trips—which we class as those to grocery and
retail stores, restaurants and bars, cafes and bakeries, along with museums, arenas and
stadiums. This reduces—though by no means eliminates—double counting, if a person,
for example, goes to the office and then to lunch. With these data, we construct matrices
for each city for each month from January 2019 to June 2024, which to our knowledge is
the longest panel of mobility data assembled for academic research to date.

This comes with limitations: although we are able to see the evolution in aggregate
mobility over the long run, the devices that constitute the panel will change as users
opt in and out of location tracking on certain mobile applications. This leaves open the
possibility that biases appear in the data at different times, causing fluctuations that are
not the product of changing mobility but of a changing sample. To ameliorate this risk,
in another specification we compute our measures with normalised flows, such that the
trips emanating from each origin sum to 1—so that we consider the shares rather than
the absolute values.

Flow classification. To monitor and describe many cities over a long period, we extend
a method for reducing a flow matrix to 4 dimensions [286]. This method considers a
matrix F with rows corresponding to origins i and columns to destinations j. It then
marginalizes the total out-flows and in-flows for origins and destinations, respectively,
and then reorders those rows and columns according to these totals so that in one corner
we have the cell with both the most trips emanating from it and the most trips terminating
in it, and in the opposite corner we have the cell with the fewest of both totals. Dividing
the ordered rows and columns in 2 segments each with a quantile break [414] creates 4
quadrants that represent integrated (high-high), convergent (low-high), divergent (high-
low), and random (low-low) flows. This matrix is normalized so that I+C+D+R = 1.

Methodologically, we extend this ICDR matrix (integrated, convergent, divergent,
random flows) from a static classifier into a time series monitoring operator. For each
city-month pair c, t, we map the OD matrix Fc,t to (Ic,t, Cc,t, Dc,t, Rc,t), yielding ICDR
trajectories in a fixed 3-simplex (I+C+D+R=1). We generalise the partition beyond
activity hotspots to geographic, demographic, economic attributes, preserving the same
four quadrants in each case. This design keeps the geometry constant, making signatures
comparable over time and across cities, and it foregrounds interpretability for policy by
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allowing us to monitor core–periphery dynamics and intergroup connections. We illus-
trate this in Fig. 5.1B and explain in detail below.

ICDR

Let Fc,t ∈ Rnc×mc
+ be an origin-destination (OD) matrix for city c in month t, with rows

i as origin tracts and columns j as destination tracts.

1. Choose an ordering variable X for rows and Y for columns:

• Examples: at origins, choose X ∈ {density, employees} so that Xi is pop-
ulation density or employed workers in tract i; at destinations, choose Y ∈
{amenities, jobs} so that Yj is amenity density or jobs in tract j; distance to
CBDX = Y = distance; demographyX = Y ∈ {nonwhite, income, graduates}.

2. Fix partitions to a 2019 baseline. For each city c and variable X , compute the
top-tercile threshold τXc,67 on 2019 levels (similarly τYc,67 for columns). Define the
“hot” set and its complement

HX
c = {i : Xi ≥ τXc,67}, LX

c = {i : Xi < τXc,67},

and analogously for columns (HY
c , L

Y
c ), where Fc,t(i, j) is the count of trips from

origin tract i ∈ {1, . . . , nc} to destination tract j ∈ {1, . . . ,mc} in city c during
month t; Xi and Yj are row/column attributes (e.g., population density at i, or
amenity density at j) evaluated on a fixed 2019 baseline;2 τXc,67 and τYc,67 denote
the city-specific 67th-percentile (top tercile) cutoffs in 2019.

3. Compute shares. Let Tc,t =
∑

i,j Fc,t(i, j).

Ic,t =

∑
i∈HX

c

∑
j∈HY

c
Fc,t(i, j)

Tc,t
, Cc,t =

∑
i∈LX

c

∑
j∈HY

c
Fc,t(i, j)

Tc,t
,

Dc,t =

∑
i∈HX

c

∑
j∈LY

c
Fc,t(i, j)

Tc,t
, Rc,t = 1− Ic,t − Cc,t −Dc,t.

By construction Ic,t, Cc,t, Dc,t, Rc,t ∈ [0, 1] and Ic,t + Cc,t + Dc,t + Rc,t =
1. Further, sc,t ≡ (Ic,t, Cc,t, Dc,t, Rc,t) ∈ ∆3 (a 3–simplex). The mapping
is scale–invariant in Fc,t (multiplying all entries by a constant leaves shares un-
changed) and rank–invariant over time because thresholds are fixed to 2019. For
the distance specification, I corresponds to core ↔ core, C to periphery → core,
D to core → periphery, and R to periphery ↔ periphery. For demographic spec-
ifications (X=Y=Z), C+D summarizes between-group travel while I+R sum-
marizes within–group travel.

We report results for density and distance orderings as standard “doughnut” mea-
sures, and for nonwhite, income, education for social mixing. By way of example, in the
distance ordering, integrated flows are central ↔ central and random flows are periph-
eral ↔ peripheral, convergent flows are peripheral → central (commutes), and divergent
flows are central → peripheral. We include alternative specifications with downtown set
as the largest amenity cluster (DBSCAN [180] with ε=500m) and the principal munici-
pality, defined as the largest city in the metro area. Finally, we partition on the marginals
of the OD matrix itself (original ICDR approach) as well as another with workersi and

2Fixing thresholds to 2019 keeps partitions invariant through time.
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jobsj . Robustness checks use median and quartile splits. Further, to reduce sensitivity to
device sampling, we compute

F̃c,t(i, j) =
Fc,t(i, j)∑
j Fc,t(i, j)

,

shares per origin. We then reweight these shares by origin population,

F̂c,t(i, j) ≡ F̃c,t(i, j) · popi,

so that each tract’s contribution is proportional to residents rather than total visitation;
ICDR is recomputed on F̂c,t.

ICDR-TS

1. Temporal aggregation. Convert monthly shares to quarterly with simple averag-
ing to smooth high–frequency noise.

2. Baseline demeaning. Define ∆Ic,t = Ic,t− Ic,t0 etc., with t0 = 2019Q1. We plot
(∆I,∆C,∆D,∆R) per city and summarize by population–rank bins (Fig. 22–
26).

In particular, we partition using row and column terciles, such that the “hotspot” is the
top tercile along each dimension. We choose a tercile rather than a median because many
aspects of city life—including the activities we measure—produce skewed distributions:
a small share of tracts concentrates population, jobs, amenities, and trips. A median split
flattens this. Terciles keep enough mass in each cell of the 2× 2 to give stable estimates
across hundreds of cities and months; quantiles keep partitions rank-invariant and cross-
city comparable.

Modelling

We define the doughnut index for city c and time t as

∆(R− I)c,t ≡ (Rc,t − Ic,t)− (Rc,t0 − Ic,t0),

where positive values indicate reweighting from core ↔ core to periphery ↔ periphery
relative to 2019. We report distributions and size gradients.

When ordering by a demographic attribute Z (e.g., nonwhite share), we define a
mixing index as

Mc,t ≡ (Cc,t +Dc,t)− (Ic,t +Rc,t).

and calculating ∆Mc,t ≡ Mc,t −Mc,t0 so that positive values indicate more intergroup
interaction (relative to 2019) and negative values indicate less, in a single number.

Size gradients

We read the “size gradient” by regressing changes within each city on logNc: for each
metro c,

Pc = α+ βlogN logNc + εc,

where Pc is the change in the index (e.g., ∆(R−I) or ∆C) and Nc is population. The
coefficient βlogN is the size gradient: a one–log-point increase in population (an e-fold)
is associated with βlogN more reweighting; per doubling, the implied effect is βlogN ·ln 2.
We also report Spearman rank correlations to capture monotone size patterns.
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Spend data. We confirm our results and quantify their consequences using point-of-
sale transactions from SafeGraph, which monitor ∼1.1 million POIs and ∼200 million
transactions per month [427]. The panel spans 2019-2024. We aggregate transactions
to tract, classify tracts into density bins (downtown, urban, suburban, exurban) using
the same 2019 thresholds as in ICDR, and compute spend indices normalised to 2019
averages. Specifically, for bin b and city c,

Sc,b,t ≡
∑

i∈b Spendi,t
1
|T0|

∑
t∈T0

∑
i∈b Spendi,t

, T0 = {2019 months}.

We focus on consumer-facing categories (e.g., eating and drinking, retail) and smooth
monthly volatility with 4-month rolling average, then compare ∆Sc,b,t to ICDR-TS dis-
tance/density shifts at the same aggregation. Prior validations show that aggregate spend
tracks public company earnings and that unique customers scale with state populations
[163, 232].
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6 Polycentricity and structure

Abstract Our last chapter showed evidence that cities—and big cities in particular—are enter-
ing a new regime, with activity shifting from the core to the periphery. A central debate in urban
theory compares the relative advantages of monocentric agglomerations and polycentric conurba-
tions. In monocentric models, business districts concentrate jobs and the matching of employees
to employers, but these hubs bring congestion and other costs, forcing jobs and amenities to dis-
tribute throughout the city. Modern cities are characterised by tension between centralising and
decentralising forces, yet our understanding of how residents actually navigate behavioural de-
mands to produce hybrid structures remains limited. Human mobility patterns offer a powerful
lens to understand cities’ dynamic structures, revealing complexities hidden in static population
maps. Here we analyse the mobility of 15 million residents across 226 cities in France, Germany,
and the United Kingdom. We develop a method using mixture models to decompose trips into
distinctive scales–proximal, medial, and distal. We find that the lengths of proximal trips—the
shortest ones—are stable across the city and between cities while medial and distal distances vary
systematically by location and city. Larger cities fragment into ancillary hubs while smaller cities
are more dependent on a single core. The primary contribution of this chapter is to introduce
a method for modelling and monitoring polycentricity in light of evolving mobility; the results
presented are preliminary and illustrative, but the method itself can be applied to work on urban
structure going forward.

Introduction

With most of the world’s economic production and innovation concentrated in its urban
areas [202], understanding and addressing the factors that contribute to the relative func-
tion or dysfunction of cities is of vital importance to continued progress and prosperity.
Although the structure of cities emerges from spatial and temporal constraints [122, 295],
evidence suggests that these emergent forms and functions have economic consequences
for life in cities: dense and compact cities are more productive than sprawling and mis-
shapen ones [222], and the residents of connected cities are better off economically [25].
Because the putative mechanisms behind these differences in performance involve re-
ductions to the cost of both communication and transportation [171], it follows that the
spatial signatures that define productive and innovative cities manifest behaviourally and
socially. The following paper develops a method for capturing the structure of cities at
scale with GPS mobility data and shows that variations in structure correspond with im-
portant differences in lived experiences. Recent advances in the collection of passive GPS
data now allow us to observe signatures for entire systems of cities, at spatial and tem-
poral resolutions that were not possible a decade ago [49]. Our contribution is to bridge
theoretical models of urban structure with empirical data on human mobility, using a
sample of cities an order of magnitude larger than any previous studies, while providing
evidence for the drivers and consequences of this structure.

Cities are not monolithic entities—they are multifarious systems where different ac-
tivities may thrive under different spatial structures. Central place theory [122] posits a
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nested hierarchy of centres—clusters or agglomerations—with different industry mixes;
some goods and services must be accessible at short distance, accessed frequently, while
other markets can be farther from people because they are required only infrequently.
Spatial [528, 295, 435] and social [18] constraints create fundamental limits on how
many places we can visit in a given period, which creates an emergent spatial arrange-
ment as businesses, populations, and possibly to a lesser extent infrastructure, adjust to
meet these needs. Recent work suggests that these rule hold not just between cities in
larger systems of cities, but within cities, as the human need to operate across scales
in characteristic ways—close and frequent, far and infrequent—extends across orders of
magnitude [17, 444]. For example, restaurants naturally cluster together to produce din-
ing hubs throughout a city [270]. This, in turn, influences the population distribution
as people will sort between cities according to economic opportunities [138] but within
cities according to amenities [195].

Urban theory debates the relative advantages of concentrated, monocentric agglom-
eration and diffuse, polycentric conurbation [373, 67]. In the monocentric model, a cen-
tral business district concentrates jobs, a thick and liquid labour market where workers
and firms and match and rematch without burdensome changes to residential or com-
mercial location [27, 129]. This unified market also enables returns to scale by reducing
the need for infrastructure while improving the ease of communication [194]. However,
a centralised city also incurs congestion costs [8]: as cities grow, transport networks
slow [137] and land rents grow [130] near the core; decentralisation becomes a neces-
sity beyond a certain metropolitan size, leading to the emergence of specialised hubs and
clusters throughout the metropolitan area [26]. This transition from monocentric to poly-
centric is enabled by new forms of transportation [59], and constrained by geographic and
demographic factors [429]. The modern city is thus characterised by a tension between
centralising forces and decentralising forces [287]. That tension has sharpened evolving
as hybrid and fully remote work norms decouple employment from the obligation to be
physically close to a single core [162]; understanding its repercussions is therefore urgent.

In contrast to many office jobs, which benefit from close proximity [32], consumption
and leisure activities tend to distribute across multiple hubs rather than one singular core
[442]. Recent empirical studies of human mobility reinforce this idea: individuals struc-
ture their movement within a city at multiple scales, maintaining distinct “activity spaces”
for home, work, and other purposes [205, 17, 443]. For example, high-resolution mobil-
ity data reveal natural divisions between neighbourhood-centric routines and city-wide
trips, implying that the optimal urban form might depend on function. Work trips might
still gravitate toward a primary centre to maximise job matching, whereas shopping, so-
cialising, and recreation often manifest in a polycentric pattern of secondary centres in
residential areas. Because a nucleus solves the matching problem for jobs, a city may be
industrially monocentric yet polycentric for errands and social life, reflecting the varied
demands of its distributed functions [17, 444].

The structure of cities has typically been learned from static data—either from remote
sensing [112] or from administrative data [306]. Detailed GPS data are transforming our
ability to analyse these patterns. Early work on polycentricity has been limited to data
on transit trips in a narrow set of cities [423, 95], and studies exploring a broader range
of mobility are often contextually limited—one country or a few cities [286, 283, 520].
Bridging stylised urban models with empirical evidence across different contexts and
scales requires methods that learn spatial structure without imposing it a priori [57].
Here we propose such a method.

Human mobility data offer a powerful lens to understand urban structure, revealing
complexities beyond what we can see in population or land use. Tracking where and
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when people travel—their daily activities across the city—yields a map of functional ur-
ban connectivity, and the “revealed preference” of residents using and experiencing the
city. A growing literature uses human mobility data to model and understand behaviour
[350], yet these same data can shed light on the external boundaries [165] and inter-
nal structures of cities [283, 286]. Mobility patterns allow us to measure the degree to
which a city operates as a whole or as a collection of parts; because social connections
are important determinants of economic opportunity [211] and these relationships are in
turn facilitated by spatial accessibility [46], integration functions as a valuable proxy for
economic opportunity. By and large, spatial proximity begets social connectivity [45].

Here we exploit GPS mobility data for urban residents in cities across Germany,
France and the United Kingdom to develop a method for understanding how cities bal-
ance the forces of centralisation and decentralisation. Our primary goal is to model how
residents in different parts of a city allocate time and travel budgets to meet demands for
work and leisure. A secondary goal is to then use our model to understand the possible
social and economic consequences of different urban structures. We extend existing work
inferring polycentric structure from transit trips [95] by applying it to mobility data cover-
ing more than 200 European cities. These data capture a rich set of behaviours, allowing
us to decompose urban mobility across the spectrum of activities in order to measure how
spatial structure varies across functions. Are cities monocentric for the core industries
that benefit most from agglomeration, yet polycentric for shopping, leisure, and other id-
iosyncratic needs? The following analysis tests this proposition with mixture models that
decompose the distribution of trips from any given part of a city, which represent a variety
of distinct purposes, into a set of component distributions. This mixture-of-scales view
makes polycentricity legible as a budget allocation—proximal routines, medial errands,
distal commutes—rather than a binary label that a city either earns or fails. In doing
so, we find regularities in how people distribute activities in space with implications for
social mixing, productivity, and sustainability.

Data and methods

Data

In this chapter, we will begin with data and methods we are demonstrating a method
more so than results. We use anonymised GPS mobility traces from ∼ 20 million mobile
devices across all 226 functional urban areas in France, Germany, and the United King-
dom. Unlike transit smart card data that captures only public transport usage, mobile
device data provide insights into a rich variety of trips, including those closer to home
that do not require transit and those farther from home that require a car, revealing the
complete spectrum of urban mobility. For each device, we identified the home location
as the modal H3 level 10 cell occupied between midnight and 6:00 AM. We applied the
infostop algorithm [35] to detect stationary periods and extract discrete visits from con-
tinuous GPS trajectories, where a visit constitutes a spatially clustered set of GPS points
persisting for at least 5 minutes within a H3 level 10 cell. Each detected visit generates
a trip of length dij , defined as the haversine distance between the home origin i and the
visited destination j. Note that this means that each trip is anchored to home, and that
trip chains are not considered as such. This gives us a set of ∼ 200 million trips across
all cities; London has the most trips in our data at ∼ 50 million, and it is the largest city,
with a population of ∼ 12 million in the entire functional urban area. These trips con-
stitute a spatial interaction network, which we illustrate for London, Paris and Berlin in
Fig. 6.1a-c.
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We then use these trips to measure polycentricity with the following approach. We
group each device according to its home location, using H3 level 7 cells to aggregate de-
vices so that each model has sufficient data, which we will call a neighbourhood. For
each neighbourhood, we construct a vector distances, or lengths L, representing the
length of the trip, discarding all other information. The empirical distribution Li =
{li1, li2, . . . , liNi} is multifaceted: it aggregates errands near home together with longer
commutes and shorter outings. Following earlier work [95], we capture this heterogene-
ity with finite mixture models of interpretable scales. If a city were truly monocen-
tric, meaning that all goods and services agglomerate in a single hub, every trip would
approximate the length of the distance between the origin neighbourhood and the nu-
cleus of the city—approximate because even in a monocentric city, amenities will still
distribute throughout the area of the nucleus. Under this null, the expected trip length
would equal the radial separation between the origin neighbourhood and the nucleus, so
that E[Li] = ri for all i.

Models

The empirical lengths exhibit pronounced multimodality, suggesting the superposition
of distinct mobility processes operating at different spatial scales. To decompose these
patterns, we model the distribution of trip lengths from each home hexagon using a finite
mixture of Gamma distributions

fi(l) =
∑

c∈{p,m,d}

πic Γ
(
l
∣∣αic, βic

)
, (1)

where the mixing weights satisfy
∑

c πic = 1 and

Γ(l |α, β) = βα

Γ(α)
lα−1 e−βl.

is the Gamma probability-density function with shape α and rate β. The three compo-
nents c ∈ {p,m, d} correspond to proximal, medial and distal mobility scales. Because
trip lengths are positive and usually skewed, we need a kernel whose support is [0,∞) and
whose shape can flex from bell to exponential. The Gamma kernel nests the exponential
(α = 1) and approximates log-normal for larger α, making it flexible yet tractable.

Our mixture has three components (c ∈ {p,m, d}) representing proximal, medial,
and distal mobility scales. The result is a reduced description of human mobility, turning
spatial interaction networks into six numbers per neighbourhood (πic, µic). The choice
of three components balances model complexity with interpretability: three components
minimise Bayesian information criterion [329] in 90% of origins, striking a balance be-
tween fit and parsimony.

To decompose our data we use the Expectation-Maximisation (EM) algorithm, that
begins by examining each neighbourhood’s trip length distribution, searching for evi-
dence of multiple processes operating at different scales. Shown in Appendix Fig. B.5, a
neighbourhood’s trip distribution often appears lumpy or multimodal—perhaps showing
a concentration of short trips (to local parks and restaurants), another cluster at medium
distances (to nearby shopping districts), and a concentration of repeated commutes to
the urban nucleus. Rather than forcing this complex pattern into a single distribution, the
mixture model asks: might this be multiple distinct distributions superimposed? The EM
algorithm discovers these latent components by gradually refining its guess about which
trips belong to which mobility process. Starting from an initial partition, the algorithm
recognises that some trips are ambiguous but attempts to cluster. Through iteration, it
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learns the characteristic distance and spread of each latent mobility type for that specific
neighbourhood, decomposing the lumpy distribution into a set of constituent distributions
that better explain the observed pattern.

The expectation is initialised with k-means on logLi. Logging stabilises the wide
span of distances, while k-means gives plausible starting groups for “near”, “mid”, and
“far” trips. The resulting partitions yield the initial parameter set θ(0)

i . From here, the
approach is iterative, alternating between E and M steps.

The E-step: Given current parameters we compute the responsibility—the probability
that trip j from cell i with length lij is from component c, specified as

γijc =
πic Γ

(
lij |αic, βic

)∑
c′ πic′ Γ

(
lij |αic′ , βic′

) . (2)

where the numerator measures “how well component c explains this trip”; the denomi-
nator normalises across the three components so the probabilities sum to one.

The M-step: Treating γijc as fractional counts, we maximise the expected complete-data
log-likelihood

πnew
ic =

1

Ni

∑
j

γijc,

l̄ic =

∑
j γijc lij∑
j γijc

, ln lic =

∑
j γijc ln lij∑

j γijc
,

sic = ln l̄ic − ln lic,

αnew
ic solves h(αnew

ic ) = − sic, with h(α) = ψ(α)− lnα,

βnew
ic =

αnew
ic

l̄ic
. (3)

where Ni is the number of trips from neighbourhood i and ψ−1 is the inverse digamma
function. Intuitively, the first line re-weights each component by its fractional member-
ship; the second and third lines update the Gamma shape (α) and rate (β) so that the new
mean and log-moment match the responsibility-weighted sample. The E–M loop repeats
until the log-likelihood gain falls below 10−6.

After convergence, we order components by increasing mean µ̂ic = αic/βic, assign-
ing labels proximal (p), medial (m), and distal (d) accordingly. This ordering ensures
consistent interpretation across neighbourhoods: proximal trips represent local move-
ment within immediate surroundings, medial trips capture intermediate movement to
nearby activity centres, and distal trips encompass global movement across the urban
system.

Note that this process requires three components, and orders those components with-
out any other information. This means that central locations in particular will have a
distal component, by necessity, and that the flows comprising this component will rep-
resent trips away from the centre—because trips within the centre will necessarily be
shorter than trips away from it for these locations. This is a limitation of the approach,
but we address it in our analysis by examining the weights (travel away from the centre
will likely have lower weights if it is occasional leisure) and other characteristics of the
component, like the points of interest represented within its flows.
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We then link our µ̂ values to a structural variable, ri, so that the entire spatial organ-
isation of a metropolis can be visualised and analysed more easily. Mixture means allow
us to test the assumption that neighbourhood are dependent on the nucleus component-
by-component. For each city we identify an effective centre as the centroid of the hexagon
with the most visits in the city; the radial distance from this centre to hexagon i is ri. We
then estimate

µ̂ic = ac + bc ri + εic, (4)

with weighted least squares (Ni as weights). Slopes bc measure how sharply each com-
ponent or scale responds to urban density gradients. In a polycentric configuration we
expect bp≈0, as neighbourhood activities remain as such, at all scales, but bm>0 as res-
idents seek out central places to meet different needs for goods and services, and bd>bm,
as residents commute into the nucleus for work and related activities, like meals near the
office.

Extensions

A valuable feature of this approach is that we can classify trips according to these pos-
terior probabilities, and from there we can infer the characteristics of those classes. We
leave this for future work, but demonstrate the method here. In order to understand both
the drivers and consequences of polycentricity, we are able to append characteristics of
trips from each component in each city. For each neighbourhood, we collect the posterior
probability distributions for each component (c ∈ {p,m, d}), which allow us to assign
each trip to its most likely component according to its length. Posterior responsibilities

γijc =
πic Γ

(
lij |αic, βic

)∑
c′ πic′ Γ

(
lij |αic′ , βic′

) . (5)

classify every observed trip into the scale most compatible with its length. These assign-
ments enable a suite of downstream analyses—from origin and destination classification
to analysis of experienced segregation, as we can now label the origins and destinations
according to neighbourhood attributes. A possible focus is social mixing. We are able to
extract a rich set of attributes for all cities in our data using remote sensing, available from
open sources. For each journey, these include the population of the originated cell, along
with building heights and volumes, an index of vegetation, and the venues or amenities
available in the terminated cell.

Results

We show the relationship between location and travel in London, Paris and Berlin in Fig.
6.2a, showing the distribution of journey lengths as the origin neighbourhood moves away
from the nucleus,H1. We can see that most trips are short, and in Paris and Berlin there is
also a concentration of trips that follow the line of identity, indicating that they are to the
nucleus; this is not present in London, likely the result of London’s various nuclei. We
set the nucleus in London to Piccadilly Circus; however the city also has Knightsbridge,
Westminster, Canary Wharf, and the Square Mile. It is still interesting that Paris does
not have the same dispersion as London, given that it also has a new financial centre in
La Défense. We can model these distributions with a single component k = 1 before
moving into our preferred specification in Fig. 6.2b, which shows the best fit line over
component means µ̂i for each city. This represents an expected length E[Li] given a
location relative to the centre; these means do not follow the identity line because these
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Figure 6.1. Describing the data. In the central map, we mark all 226 urban areas in our study, spanning
towns of ∼ 105 inhabitants to cities exceeding 107. Example spatial interaction networks for (a) London,
(b) Paris and (c) Berlin; there is strong core-periphery structure in all networks, but in London in particular
smaller hubs are also visible. d Aggregate distance–decay in the data for London, showing distance dij and
the corresponding journey count Nij ; the curve is a smoothed average of the binned data, highlighting the
gradual decrease in trip intensity with increasing distance.

means group short, intermediate and long trips in a single distribution. The inadequacy of
these simple models is why we attempt to decompose each neighbourhood’s distribution
using a mixture of distributions.

We demonstrate our mixture approach with k = 3 components on London, Paris
and Berlin in Fig. 6.3a, where we can see that as a neighbourhood gets farther away
from the centre—which in London is near Piccadilly Circus—the distal mean µ̂d grows,
suggesting that these communities need to travel farther to access important services or
jobs. The proximal µ̂p distances do not systematically vary by distance to the centre,
suggesting that local activity operates at a similar scale no matter the neighbourhood,
and medial µ̂m distances scale but less so than µ̂d. Paris and Berlin have similar medial
weights, as indicated by mix of points from both cities in Fig. 6.3b. London is often
called a collection of villages and we see here that its neighbourhoods typically have
higher medial weights, standing out from Paris and Berlin, which is indicative of a city
where more needs are satisfied without the nucleus.

We document an interesting fact in 6.3c: because our modeling approach is agnos-
tic to what kinds of trips it decomposes into constituent distributions, it detects a distal
component with high µ̂d in central locations. This occurs because our process finds three
distributions of trip lengths and orders them to characterise them as proximal, medial
and distal; it is agnostic to where those trips terminate. In London, residents inside the
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Figure 6.2. Mobility as a function of relative centrality. a The relationship between where a trip originates,
relative to busiest point in the city, and its length, for London, Paris and Berlin: most trips are short, but we
also see longer trips and in Paris and Berlin these long trips concentrate along the identity line, suggesting
that they terminate to the nucleus. London is more diffuse, which suggests that it is comparatively less
monocentric. b For a given home, we compute the expected length of a trip: because most trips are short,
this value is less than the distance between the nucleus. Our strategy is to decompose the distribution that
gives rise to this mean value for each home.

core travel outside of it and our approach classifies this as distal. These trips constitute
smaller proportions for their neighbourhoods relative to suburban ones, but it suggests
urban residents might gain flexibility through centrality.

London is the only city of the three where distal trips are longer for residents of the
core. In Appendix Fig. B.6 we show that in these central neighbourhoods, distal trips
also have lower weights, despite higher distances—indicating that trips venturing away
from the nucleus are still rare. We also see in Appendix Fig. B.6 that both inner London
and inner Paris stand out as places with high medial weights π̂mi and low distal weights
π̂di —with clear boundaries along the Inner Ring Road in London, which demarcates the
original congestion charge zone (now expanded) and the périphérique in Paris. This indi-
cates that neighbourhoods within the confines of the city have better access to amenities
and work and have efficient travel distances as a consequence of this accessibility. The
same pattern exists in Berlin but it is less pronounced. We also note that proximal com-
ponents show no relationship between distance di and weight π̂pi .

We plot the residuals for the models in Appendix Fig. B.7, which captures model fit.
While the area in inner London has poor distal fit to go along with low weight, there is
also poor fit in an area just beyond the M25 in Slough, which suggests that areas beyond
the city limits behave in ways that are not well described by these mixture models. We
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do not see comparable areas with poor model fit in Paris and Berlin, however. Variation
in model fit comports with London’s structure as a collection of villages, wherein these
villages have both local services and offices but some dependence on the nucleus: in
distant neighbourhoods, many residents will have long trips in the nucleus, which will
raise µ̂di , but others will stay local—and this dispersion will degrade model fit. In other
words, poor model fit can also signal polycentricity.

a b

c

a

Figure 6.3. Components of mobility. a Scatter for London, Paris and Berlin, showing proximal, medial
and distal component means against distance to the city centre; the proximal component is flat, indicating
that people typically stay close to home for many trips, and the medial component grows, indicating that in
sprawling suburbs, even local trips become extended. Indicating the importance of an urban core, we see that
the distal component grows with distance to the nucleus. b Relationship between proximal, medial, and distal
weights, or shares of all trips from a given neighbourhood; the proximal component is typically smallest,
suggesting that even in urban areas, many still travel to amenities beyond the immediate neighbourhood.
c Maps of the same three component means across our three sample cities, showing that the most central
locations have low means across components while peripheral locations have high distal means. We also see
that in London, the distal component represents trips away from the core. In these areas, the distal weights
are low, even if the distances are high, suggesting that most trips are still local and these trips are different
in nature than distal trips in other parts of the city.

Next, we fit mixture models to ∼ 20, 000 neighbourhoods across ∼ 200 cities in
Europe. When we normalise each city so that the maximum journey length is 1, and
the maximum distance from the nucleus is 1, we can compare all cities to each other.
In Fig. 6.4a we show the same scatters of µ̂ci per component as above, with all cities in
our data normalised to produce µ̃ci , and then aggregated. We see a number of important
regularities, shown in Fig. 6.4a: across all cities, as in London, Paris and Berlin, µ̃p is
typically location invariant (σµp ≈ 0) while µ̃m and µ̃d vary more (σµd > σµm > 0).
The insets in Fig. 6.4a show the various best fit lines for each city, with brighter colors
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corresponding to larger cities; these become steeper from proximal to medial to distal.
A steeper line indicates that a city is dependent on the nucleus for those trips. We also
see a clear stratification where larger cities have mixed higher and lower slopes but lower
intercepts. We see that µ̃d shows a strong positive association with location, but smaller
cities, with darker lines, also show a positive relationship for µ̃m. This indicates that
smaller cities are more dependent on their urban centres while larger cities fragment into
subcentres, but the relationship is noisy so we revisit below.

We compute total distance budgets Di in Fig. 6.4b by using the weighted sum of
components such that Di = π̂pi µ̃

p
i + π̂mi µ̃

m
i + π̂di µ̃

d
i . We show the simple fact that the

cumulative sum of µ̂c grows with distance: the peripheries are less efficient than the
centres. In c we show that the distal component µ̃d scales with distance at a faster rate
than the medial component µ̃m, which indicates that many forms of travel can remain
local even as commuting distance grows; because µ̃m still grows with distance, however,
all but the most local trips still demand longer rides farther from the nucleus.

In accordance with research on fixed travel budgets, this implies that speed changes
in the periphery as people use automobiles. Yet it also implies a trade-off: if cities are to
leverage the nucleus as a place of mixing, as we discuss in the previous chapter, journey
lengths will necessarily rise. There will be some ways to economise, since medial trips
do not grow in length as fast as distal ones, but distances will rise on aggregate.

The weights of each component are stable across city size and country, which we
show in Fig. 6.5a and b. The proximal component is typically the smallest share of trips,
while medial and distal components are larger: most needs are met away from home. We
also note that most variation occurs along the medial axis of the ternion plot. We can
also look systemically at the relationship between city size and the model parameters. In
accordance with the monocentric hypothesis, if trips from the distal component focus on
the nucleus, b1 of µ̃di approaches 1.

Estimating models as µ̃ic = ac + bc r̃i + εic, where r̃ is the normalised radius, or
distance from the centre, we see large variations in slope of the regression line with city
size in Fig. 6.5c, indicating a mix of mono- and polycentricity. Within cities, slopes
order as bp ≈ 0 < bm < bd. Across cities, distal slopes bd are heterogeneous but show
no robust monotonic relationship with population, whereas intercepts ac decline with
population across components.

While for slopes, we observe wide dispersion across cities, the dominant size signal
sits in the intercepts. In Fig. 6.5d, the intercept declines with population across compo-
nents. A higher intercept, ac, means that even central residents in smaller cities traverse
a larger fraction of the urban extent with medial and distal trips than central residents in
larger cities. When a high distal intercept coincides with a flatter distal slope, bd, distal
trips are more diffuse and less targeted toward the nucleus: there is a heightened level
of distal movement to dispersed destinations within the city even at r̃ = 0. This implies
that in smaller cities, central residents cover more of the urban extent than counterparts
in larger cities. In other words, smaller cities exhibit generalisation while larger cities
exhibit specialisation: residents in big cities concentrate activity on a smaller set of des-
tinations, whereas residents in small cities visit a larger share of the city.

These values ad and bd give us two ways to think about a city: nucleus pull (slope),
and nucleus diffusivity (intercept) that represent how specialised and targeted mobility,
relative to the extent of the city. It appears that nucleus diffusivity scales with the inverse
of city size, but nucleus pull does not. Given research that indicates fragmentation city
size—cities becoming more polycentric as they grow [26]—these lack of clear relation-
ship here is a puzzle worthy of future work.
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Figure 6.4. Expanding our analysis. a Normalised relationships pooling 226 European cities; density
gradients steepen from proximal to distal and show variation with city size, shown in the insets with linear
fits per city, colored by rank size. In these insets, slope declines with city size, indicating that smaller cities
have a steeper gradient—and suggesting that smaller cities are more dependent on the urban core. b The
combined weighted length of proximal, medial and distal components grows with distance to the nucleus:
people in the periphery need to move farther than those in the centre. c We show the difference between
weighted medial and weighted distal means as neighbourhoods get further from the centre, which grows
noisily with distance: the distal is growing faster than the medial, which suggests that as commutes lengthen
residents find relative efficiency elsewhere.

Discussion

In this brief chapter we introduced a method for modelling human mobility as a mix-
ture of activities according to the distance from home. We decompose each neighbour-
hood’s trip lengths into three Gamma components—proximal, medial, distal—estimated
with expectation–maximisation after k-means initialisation on log-distances; the result
is a “mobility signature” per neighbourhood: six numbers (means and weights for each
scale). We can think of this as dividing activity into that which is anchored around home,
work, and an intermediate distance that includes amenity clusters like shopping districts.
To quantify core–periphery dependence, we regress component means on distance to
the effective centre identified from the busiest hexagon; slopes capture how each scale
responds to centrality, while intercepts capture baseline outwardness for central neigh-
bourhoods.

Operationally, with µ̃ci ≈ ac + bc r̃i, the intercept ac is a baseline reach at the centre,
while the slope bc is a “nucleus pull” as origins move away from the centre along radius
r̃. This separation lets us see where cities rely on the nucleus, a large bd, against where
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Figure 6.5. Regularities across cities. a The weights, or shares, of each component are stable with size: the
distal component is typically the largest by weight, comprising ∼ 35% of trips, and the proximal component
is the smallest. b Ternary composition plot shows no significant differences between countries. Positions
encode mixtures where π̄p+ π̄m+ π̄d = 1. Guides are absolute isopleths where for each component. Cities
cluster in the interior with an elongation toward the medial axis: distal varies least, while most between—city
variation reflects a trade—off between medial and proximal shares. c Across cities, the slope of the line
regression distal mean against distance is largest but there is no relationship between city size and slope. d
We do see a negative relationship between the intercept of this regression line and city size, however; this
implies that residents of smaller cities traverse a larger fraction of the urban extent relative to residents of
large cities.

dispersed opportunities lift activity even at r̃ = 0, or a large ad. Three preliminary find-
ings stand out. First, proximal means display striking invariance with size and location.
Second, distal means rise steeply with distance whereas medial means rise more gently,
creating a structural distance premium in the periphery. Third, across cities the distal
intercept declines with population, while distal slopes are heterogeneous with no robust
monotonic relationship to size. The invariance of proximal trips suggests a robust local
activity space—an empirical analogue of the 15-minute neighbourhood—whose scale is
stable across cities.

Weights and means combine to offer further insights into the structure of a city.
Because the mixture always contains a distal tail, peripheral neighbourhoods show in-
bound distal trips while central neighbourhoods can exhibit outbound ones; incorporating
weights into the analysis shows how important each component is to a neighbourhood’s
budget. Outbound distal components are small by weight but long by length—consistent
with occasional long forays to dispersed distal targets within the city. These component-wise
gradients are evident in the city maps: central zones show low means across components
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and low distal weights, whereas peripheral zones show high distal means. In the pooled
view, normalisation exposes the same ordering bp ≈ 0 < bm < bd, a rising “distance
premium” with origin radius, and distal growing faster than medial.

We find that peripheral households pay a systematic distance premium. Let a home
cell’s distance budget be Di = π̂p,iµ̃p,i + π̂m,iµ̃m,i + π̂d,iµ̃d,i. Because µ̃m and espe-
cially µ̃d increase with distance r̃; Di therefore rises with radius. Cities thus face an
efficiency–mixing trade-off: leveraging the nucleus promotes mixing and matching but
increases π̂dµ̂d; strengthening secondary hubs raises π̂m and flattens µ̂m(r), reducing
peripheral burdens while preserving access to the core. An “efficient polycentric” con-
figuration therefore retains a strong, accessible nucleus for high-value matching while
distributing everyday amenities to the medial scale.

Another regularity concerns how intercepts and slopes covary with city size. In our
pooled results, distal slopes are generally steepest while proximal slopes are flat, isolat-
ing the scales at which cities rely on the nucleus over proximate opportunity. Smaller
cities tend to exhibit higher distal intercepts and flatter distal slopes: even central res-
idents undertake distal trips to dispersed targets. Larger cities invert this pattern, with
lower intercepts and a wide dispersion of slopes; this implies that in larger cities, resi-
dents do not cover as much of the urban extent with distal travel, and contrasts big-city
specialisation with small-city generalisation, as residents from all over a small city visit
a higher fraction of it.

Across cities, mean distal and proximal shares, π̄d and π̄p, vary little, whereas the
medial share π̄m does. This motivates a simple “medialisation” index, π̄m, that can be
tracked over time, compared across cities, or evaluated pre/post interventions—including
new rail links, shifts to amenity distributions under remote work. If we are to continue
to leverage the urban nucleus for learning, sharing and matching, this medial axis is the
primary means by which we can improve urban efficiency.

In previous chapters, we showed that the shift to proximity over centrality might
limit socio-economic mixing. Medial locations that bridge between 15-minute neigh-
bourhoods may enable this change, respecting time budgets while encouraging face-
to-face encounters. Tracking medialisation over time provides a concrete way to ask
whether remote work is producing connected urban villages—or hardening the city into
an archipelago of enclaves. With a stable proximal component, changes in the medial
component index the strength of the linking nodes between local worlds. With an in-
variant proximal component, the medial component becomes an important signature of
nodes linking otherwise separate 15-minute cities.

This method, expanded from work on transit networks [95] to GPS mobility data,
allows for a richer understanding of how people distribute travel budgets throughout a
city, conditioning on where they live. Beyond descriptive value, the signature is diag-
nostic. It yields interpretable indices—e.g., a nucleus pull bd and an inside–out diffu-
sivity ad—and an aggregate distance-premium gradient dD/dr̃. The method is well
suited to equity analyses that identify where Di or dD/dr̃ is highest, and to evaluation
of projects that aim to raise π̄m without eroding access to the nucleus. Taken together,
the six-number signature repositions monocentricity and polycentricity as points on a
compositional spectrum, revealing which levers—nucleus pull (bd), nucleus diffusivity
(ad), medialisation (π̄m), or proximal stability (σµp)—actually move realised distance
budgets.
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7 Extreme heat and urban structure

Abstract In this chapter we turn to the threat to mobility from a warming climate, and its
possible implications. Extreme heat is a problem globally, with rising temperatures affecting
aging populations, but it is of particular relevance in Europe, with lower rates of air conditioning
and older populations. Research on mobility during extreme heat remains limited to small samples
and isolated contexts, leaving significant gaps in our understanding how entire populations adjust
their day-to-day activities and how these adaptations vary across social and economic groups.
Here we use open mobility data from passive and active mobile network connections covering 13
million individuals in Spain (27% of the population) to examine extreme heat’s impact on mobility
at scale. We stratify by age, gender, social and economic status, and activity. Our findings show
activity falls by as much as 10% on hot days generally and 20% on hot afternoons specifically,
when temperatures peak. Individuals cut infrequent activities most, frequent ones less, and rarely
skip work. Further differences emerge on hot days. Older adults are more likely to avoid travel to
work and cut back on other activities, while those earning less are less able to avoid work. Our
results show that extreme heat disrupts mobility and exacerbates vulnerabilities, affecting older
and poorer groups in different ways. These disruptions have significant implications for urban
economies, as curbed activity and interaction—both planned and unplanned—may threaten the
capacities of cities as hubs of social and economic exchange.

Introduction

Extreme heat poses a serious threat to lives, livelihoods, and the economy [534, 298]. Ris-
ing temperatures have been linked to higher numbers of hospital admissions [531, 436]
and increased mortality rates [503, 249], with an 85% increase in heat-related mortality
for people over 65 between 2000–2004 and 2017–2021 [265]. Extreme heat reduces pro-
ductivity in both manufacturing [460] and agriculture [445], and slows economic growth
[158, 128]. These challenges have been compounded by the increasing intensity and du-
ration of heat waves over the past century [357, 359]; in Europe, summers that were once
1 in 100 year events by temperature may become 1 in 20 year events [290]. Here we de-
velop our understanding of how daily travel responds to extreme heat by linking mobility
data, stratified by a rich set of socioeconomic attributes, with climatic conditions. Our
findings provide the first estimates of how different populations adapt to heat, revealing
constraints and trade-offs while documenting broad disruptions in urban life.

The effects of extreme heat are not distributed evenly across population groups, as
some are more vulnerable or exposed than others [534, 253]. For example, the elderly
are disproportionately affected by extreme temperatures [521, 347] due to increased vul-
nerability, often associated with chronic conditions such as diabetes [346, 345], which
heighten their risk during heat events [530]. Similarly, while not inherently vulnerable,
some workers face significant risks due to prolonged exposure to extreme temperatures,
particularly those that engage in sectors of the economy that rely on physical labor [421],
such as construction and agriculture [142]. Socioeconomic status is also known to play a
key role in determining the impacts of extreme heat, as wealthier households turn on air
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conditioning at lower temperatures than poorer households [131]. In relatively affluent
regions such as the US, the widespread adoption of air conditioning has significantly re-
duced heat-related mortality, highlighting the importance of wealth in adapting to climate
stress [50, 229].

Individuals respond to hot weather based on their level of vulnerability and expo-
sure to high temperatures, adjusting their behaviour and adapting to the risks posed by
extreme heat. For example, time-use studies suggest that individuals reduce outdoor ac-
tivities and shift towards indoor spaces during heat waves [58, 210], yet such shifts may
be constrained by income, occupation, or urban design [210]. Mobility decisions, which
we study here, represent a key dimension of behaviour that most people can modify in
response to extreme heat [273, 216, 79, 55]. Cities in many contexts see more cyclists
and pedestrians on warm days [80], but fewer on hot and humid days [79], demonstrat-
ing a parabolic relationship between temperature and active travel. On hot days, more
employees report missing work and employees who do work report being less productive
[529]. Social and economic incentives may moderate behavioural adaptations, as there
is evidence that the risk of heat stroke is heightened in the military and during athletic
competitions [356]. Further, shocks to infrastructure may either encourage or discourage
adaptation, with railways, roadways, and energy grids experiencing greater strain dur-
ing heat waves [186]. Such disruptions could, in turn, indirectly influence behaviour,
compounding the challenges posed by extreme heat.

While research identifies connections between extreme heat and its impacts on health,
behaviour, and economic activity, critical questions remain about the complex ways in
which heat shapes human mobility at scale and across different populations [79]. Mo-
bility data derived from digital traces offers a powerful lens to study these behavioural
dynamics [224]. Digital traces allow us to monitor how populations respond to extreme
weather events, from heat waves to floods [206]. Recent advances in GPS mobility track-
ing have revealed stark differences in how socioeconomic groups respond to extreme
heat [291]. For example, wealthier groups can reduce outdoor activity for longer dura-
tions, while disadvantaged groups are often compelled to return to work or other activities
sooner, despite continued risks [275].

The European context provides a valuable setting for examining these behavioural dy-
namics. Unlike many developing regions, much of Europe has historically experienced
temperate climates, yet the frequency of extreme heat events has risen sharply in recent
decades [526]. This combination of historically moderate temperatures and increasing
heat exposure creates a natural laboratory for studying behavioural adaptation. Notably,
compared to many other regions, Europeans show vulnerability to heat at lower tempera-
tures [487], making even moderate heat waves consequential for public health and human
behaviour. Research shows that around the world, the point at which both cold and hot
temperatures cause mortality and morbidity varies with the average temperature [228],
suggesting that populations learn to live in different climatic conditions, but it is not clear
that adaptation along the necessary cultural and technological dimensions will occur at
the speed of climate change in Europe, as recent heat waves have been equally fatal as
those in prior decades [48, 196].

Several additional factors make Europe particularly suitable for studying heat-related
behavioural changes. First, the continent faces distinct vulnerabilities due to its ageing
population, as the elderly are disproportionately affected by extreme temperatures [521,
347]. This demographic challenge is compounded by rising rates of chronic conditions
like diabetes [346, 345] that heighten risks from extreme heat [530]. Second, Europe’s
relatively low adoption of air conditioning compared to regions like the United States
[239] means that populations must rely more heavily on behavioural adaptations to cope
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with rising temperatures [216]. Third, European cities differ markedly from their global
counterparts in their cultural norms around mobility and leisure during periods of extreme
heat [16], offering insights into how social factors shape adaptation strategies.

Spain, where we focus our study, exemplifies these European dynamics while facing
intensifying challenges. Projections for the next 50 years suggest that Southern Europe,
including Spain, will experience a combination of rising temperatures, increased drought
frequency, and ageing infrastructure [516]. Heat waves in this region are expected to
become not only more intense but also more spatially expansive [281], affecting larger
portions of the peninsula during any given event. These challenges highlight the urgent
need for behavioural studies that can inform adaptation strategies tailored to European
cities and populations.

Here we examine the effect of extreme heat on daily mobility patterns in Spain,
thereby shedding light on the behavioural foundations that shape the economic and health
impacts of high temperatures. We combine large-scale mobility data collected in 2021
and 2022 with high-resolution estimates of thermal comfort. By focusing on Spain, we
explore how extreme heat alters activity patterns in a European context, considering fac-
tors such as the type of activity as well as demographic and socioeconomic disparities.
We find a clear distinction between routine and non-routine activities: for a given person,
work and study patterns change least, visits to places infrequently visited by that person
change most, and those to places frequently visited change some but not as much. Activ-
ity falls most in the afternoon, when the temperature is hottest, and least in mornings and
evenings. Commensurate with greater risk from extreme heat, the oldest populations ad-
just behaviours more than the youngest, and even travel to work less; further, we identify
possible economic constraints, as the less affluent groups change behaviours less than the
wealthy. This research offers new insights into how populations manage the challenges
of extreme heat, trading off relative risks and needs, and informs adaptation strategies for
European cities.

Results

To understand the effect of heat on activity we start by linking data on thermal comfort
with data on daily mobility. We then apply several modeling techniques to detect statis-
tically significant changes in mobility behaviour across various population groups.

To analyze mobility patterns, we use data provided by the Spanish Ministry for Trans-
port [314], which contains records for the movements of ∼ 13 million individuals, or
∼ 27% of the population. The data represent flows within and between 3,999 districts,
including mainland Spain and the Balearic Islands, and are stratified according a variety
of important characteristics, including a broad classification of the activity and the trip
distance, as well as the age, gender and economic class of the person making the trip.
Trips are logged from both active events like texts and calls as well as passive events in
the form of probes from the network operator, allowing high temporal and spatial reso-
lution. Because they come from network operators rather than applications, these data
have comparably less bias than data from aggregators of GPS location data and they
are validated and balanced with surveys and administrative statistics to ensure quality
and reliability (see Methods for more detail). Fig. 7.1A shows the networks for each
month, demonstrating its strong coverage in both urban and rural areas, and we show
time series and validation in Figs. C.1 and C.2. While many studies using GPS loca-
tion data are only able to impute demographic attributes using administrative statistics
[321, 153], often aggregated to large areal units that make the estimates crude, the data
that we leverage here allow us to decompose travel according to demographic attributes
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without resorting to imputation. Because the data are aggregated into districts, we can-
not see the precise activity, but each activity is given a category: home, work/study, and
frequently- or infrequently-visited places. According to the Ministry for Transport, an
activity is “frequent” if a given person visits that place more than once in two weeks, and
it is “infrequent” if not.

We measure daily variations in experienced heat using ERA5-HEAT data from the
Copernicus program [161], which provides the Universal Thermal Climate Index (UTCI).
This metric reflects perceived ambient conditions by incorporating temperature, humid-
ity, solar radiation, and wind into a standardised formula. Focusing specifically on the
impact of extreme heat, our analysis is restricted to the summer months, defined as May
through September, for the years 2021 and 2022. Fig. 7.1B shows the mean UTCI across
months, with the strongest temperatures in July and August. In both periods of study,
Spain experienced significant heat waves: heat waves occurred in June, July and August
of 2022, and while 2021 was milder relative to 2022, and temperatures hit record highs
in August.

Heat drives a sharp decline in travel for discretionary activities, with minimal im-
pact on work or study mobility

We use a two-way fixed effects model (TWFE) to estimate the causal effect of temperature
on activity by exploiting variation in temperature while controlling for both time-invariant
attributes and spatially-uniform shocks through district and date fixed effects. The district
controls are necessary to strip out spatial confounds and the date controls are important
to adjust for temporal patterns, as Spain sees activity change considerably in August as
many people make holidays during this month. Shown in Fig. 7.1C (and reported in
Table C.1 in the Appendix), infrequent trips fall around 10% and trips to work or school
see little change, with frequent trips falling almost 3%. We see no differences comparing
trips within districts and trips between districts. Note that Poisson TWFE coefficients are
log-semi-elasticities so a coefficient of 0.1 ≈ 10%, or 100(e0.1 − 1).

To identify the form of the relationship between temperature and activity, which will
allow us to make predictions across the full spectrum of temperatures, we turn to a gener-
alised additive model (GAM), which fits smooth functions to capture nonlinear relation-
ships in data and in doing so extract effects across different temperatures. In this model,
we use province rather than district fixed effects because of the computing demands of
fitting a GAM. We fit a cyclic cubic spline by day-of-year to model the seasonality, and
include day-of-week and holiday terms to account for variations across days. Combined,
these model any variance that is attributable to timing. When we attempt to isolate this
continuous relationship between heat and activity in Fig. 7.1D, we see that higher tem-
peratures result in lower activity. Although this model disagrees with the TWFE in which
activities—frequent or infrequent—are most responsive to heat, which likely comes from
using fixed effects at the level of the province rather than the district, the GAM shows that
there is a temperature at which activity in both categories peaks—something which will
we see further evidence of below. (In Fig. C.3, we show these patterns are consistent
when we limit our sample to large cities or small cities, and when we hold out 2022 or
2023.) This suggests that as climate patterns shift over time, some seasons and places
will see visits and trips increase as warmer weather generates activity while others will
see them decrease as hotter weather destroys activity.

A placebo test looks for confounding variables by shuffling temperature and exam-
ining whether our model detects an effect that should not exist. Our data allow us to test
both spatial and temporal confounding, and we do so by permuting the temperature ei-
ther within a district, so that each district on each day is treated with temperatures from
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Figure 7.1. The effect of extreme heat on activity. A Mobility networks in Spain across months in 2022
and 2023; because the data represent 30% of the population, the networks have good coverage, including
rural and urban areas, although the network is dominated by cities like Madrid in the middle of the country.
B Mean temperatures in the same period, with heat peaking in July and August. C Estimates from a two-
way fixed effects model, controlling for district and date, on the effect of a UTCI above 40◦C, showing
that frequent and infrequent activities fall while trips to work or school hold steady. D When we examine
effect of temperature along the continuum rather than in binary, we see that for both frequent and infrequent
activities, and there are warm temperatures that increase activity and hot temperatures that decrease them.

another day of the year, or within a date, so that each district on each day is treated with
temperatures from a another district in a different part of Spain. We show these results
in Fig. C.4 but we report here that all specifications show no effect of permuted UTCI
on activity.

In both models, work and study are not responsive to heat. Further, infrequent trips
within a district—those that are more likely to be traversed on foot—fall more than those
between districts. Next we leverage the rich demographic and geographic attributes in
our data to examine how these effects vary across different populations and contexts.

Extreme heat affects mobility most for the elderly and poor, with no significant
gender differences

In addition to activities, we can also disaggregate our data according to various demo-
graphic attributes, including age, gender and income. Our preferred specification is the
TWFE which, under certain assumptions (see Methods section), allows us to estimate a
causal effect of extreme heat on mobility. In the following investigation, we use tempera-
ture bins to assess the effects of different temperatures on activity, from mild to hot, rather
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Figure 7.2. The effect of extreme heat on different groups. A Disaggregating by age, we see that as
temperatures increases and the regularity of the activity decreases, trips decline, but more for the oldest than
the youngest people. We also note that warm-not-hot temperatures generate infrequent activities, people
may expand their repertoire of activities during clement weather. B Change in effect size as UTCI increases
for different income brackets, showing that the poor less sensitive to high temperatures than the wealthy,
which may be tied to work-from-home, although all groups reduce infrequent activities. This suggests that
discretionary mobility changes but obligations like work do not. C We see no differences by gender, with
activity falling identically as UTCI rises for both males and females despite aggregate differences in mobility
between the genders.

than a binary indicator of extreme heat. Our estimates are both statistically and practi-
cally significant, showing reductions across all classes of activity at various temperatures.
Although treatments—different temperatures—are not always statistically distinct, the
patterns we see in this section vary systematically between activities and monotonically
across temperatures, lending confidence to the relationship we see across point estimates:
higher temperatures mean lower mobility.

In Fig. 7.2A we see a gradient, with higher temperatures corresponding to stronger
declines in activity across all age groups. Looking at how different ages respond to ex-
treme heat, our results are clear: mobility for the young is the least affected by high
temperatures and the impact becomes larger as age increases. For the oldest group in
our data, a given day with heat index above 45◦C corresponds to an 8% decline in in-
frequent activity, a 4% decline in frequent activity, and even a 3% change in work or
study. Because we are using data from 2022 and 2023, we must note that these effects do
not necessarily mean a reduction in work, because much if not all of the foregone travel
could be to work from home. Yet this change in behaviour would still have implications
for cities as Spain warms over time: if the elderly are missing work, there is a direct eco-
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nomic cost to the workers, but if they are simply working from home, then the economic
burden falls on the shops and restaurants that rely on business from commuters.

This is consistent with the fact that heat poses a greater risk to older populations than
it does to younger ones [347]. In relative terms, the oldest are most affected by extreme
heat but because they constitute a larger and more active population, the greatest decline
in absolute terms comes from the middle-aged population, while younger populations are
least impacted in both absolute and relative terms.

There are many plausible channels by which income and heat could interact but here
we propose two that we then compare to the data: on the one hand, the wealthy might
be more capable of coping with extreme heat, via air conditioned homes and cars, and
thus remain unaffected; on the other hand, the poor might be less able to afford missing
work. There is also a disparity in who can work from home, with many white collar
jobs allowing at least some remote work and many blue collar jobs not allowing it at all.
Shown in Fig. 7.2B, our results accord with the conjecture that the poor cannot afford to,
or are not able to, miss work. Another relevant consideration is that work trips here will
include leaving and returning after Lunch, so this need not indicate fewer trips to work per
se, but fewer excursions from the office. Particularly, individuals from households in the
lowest income bracket are unaffected by high temperatures while those from households
in the highest income bracket reduce travel across all classes of activity.

Supporting the hypothesis that work compels the least affluent group to stay active, we
see that this group still curbs infrequent activities while holding steady trips for work or
study as well as for frequent activities even when the heat index surpasses 45◦C. These
frequent activities could be attached to daily or weekly routines like lunch breaks, or
taking children to school and therefore co-occur with work. For the wealthiest group, all
three classes of activity fall at that level of discomfort—by as much as 10% and 15% for
frequent and infrequent activities respectively.

With large differences in labor force participation between men and women [340], and
differences in both unpaid work and care work between men and women [339], we might
expect routines to vary enough to see variation in responses to heat. Instead, once we
stratify on the type of activity, we observe no gender differences in mobility. The lack of
any difference here is consistent with research that shows relative progress toward gender
equality in Spain [84], but because we cannot identify parents in our data, we cannot
make any more specific claims. (We also note in Fig. C.5 that there are no statistically
significant differences between the trip counts in the network when we stratify on gender.)

Larger drops in the afternoon and on short trips that may involve active travel

Because heat is variable throughout the day, starting off cooler in the morning, heating
up in the afternoon and cooling later in the evening, we test whether or not the patterns
we see demonstrate that people respond to changes in temperature as the day progresses.
Fig. 7.3A shows that visits to all classes of activity fall more in the afternoon on hot days
than they do in the morning, by as much as 20% for infrequent activities on the hottest
days of the year. Yet even frequent activities, which may be coupled with work or study,
fall by more than 10%. Taken together, this also lends credibility to our earlier estimates
because it shows that mobility responds not just to hot days but the hottest part of the day,
which would be less likely if we were observing a spurious effect.

In Fig. 7.3B, we explore effects across different journey lengths. Our data do not
allow us to interrogate why people might be avoiding certain kinds of travel, but in our
models we see that the largest reduction in activity that comes from trips that span less
than 2 km, which are less likely to involve a car. This agrees with literature showing that
cycling and walking are most impacted by hot days [79]. Again we see tight coupling
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Figure 7.3. Time and distance. A We see patterns consistent with our earlier findings, wherein trips to
frequently-visited locations fall more than trips to work or school, and trips to infrequently-visited locations
fall most, but we also see that this effect is pronounced in the afternoon when temperatures are crest. We do
not see evidence of substitution to the morning or evening before or after temperatures peak, as those trips
still decline on hot days. B Generally, longer trips are most resilient to extreme heat and shorter trips, and
cars may play a role in this difference as shorter trips are more likely to taken on foot, but infrequent trips
see strong changes at both long and short extremes.

between mobility for work or study and for frequent activities, suggesting that certain ac-
tivities might go hand-in-hand with a routine that includes both professional obligations
and personal needs. Although long trips are generally the least affected by high tem-
peratures, they experience the largest declines when they involve infrequent activities,
specifically when UTCI exceeds 40◦C.

While we again see evidence that long trips for infrequent activities increase when
temperatures are mild and decrease when they are hot, we find no evidence that people are
moving from hot to cool with long trips. In Appendix Table C.5, we modify a standard
“gravity model”, which estimates flows between districts based on distance and popu-
lation, to include the temperature gradient between origin and destination; this gradient
shows no effect on flows.

Reduced social mixing as temperature rises

We also document significant changes to the structure of the mobility network as tem-
perature changes, which may have implications for how urban areas function and how
social groups mix. Fig. 7.4A and 7.4B show how trips flow to and from districts with
different populations and different incomes (in deciles), respectively. Generally, trips
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Figure 7.4. Mobility patterns and heat. A Changes in flows between districts ordered by population decile,
showing that at normal temperatures most flows go from low population to high population areas, or stay
within high population districts, but this relationship breaks down during the hottest temperatures and more
trips flow between what are suburban densities. B Changes in flows between districts ordered by median
income decile, showing that there is a subtle but consistent bias wherein people from middle income districts
tend to visit upper income districts, and this relationship also fades at higher temperatures—although trips
continue to flow between lower income districts. C The results of a more controlled test, using a TWFE to
predict the change in richness and evenness of visitors to a destination according to origin population, and
D according to origin income; we see a stronger decline income diversity and the same gradient we see with
total activity, with stronger temperatures generating stronger effects.

flow from less populous to more populous areas (urban bias), and from lower income to
higher income (wealth bias). These patterns are marked by the higher values in the upper
triangles of the matrices in Fig. 7.4A and 7.4B. We stratify on UTCI to show how these
mixing profiles vary under different climatic conditions, and plot results by row accord-
ing to different UTCI bands. When it becomes hotter, these twin biases attenuate. More
trips occur within middle quantiles, and in particular few trips flow from middle income
to high income. Agreeing with our earlier results showing limited change amongst the
poorest, flows within and between low income districts holds constant. (Note that al-
though districts are large units, with ∼ 8 thousand residents, the ratio of between-district
to within-district flows is 3:1, so while many needs are met within each district here is
substantial potential for mixing.)

Building on these descriptive results, we introduce another TWFE design to relate
mixing with temperature, again controlling for district and date. To do this, we com-
pute two metrics, borrowing from ecology [375]: richness, defined as the raw number
of income or population groups who visit, and evenness, measured using the Shannon
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Figure 7.5. Urban impacts. A We build a network of trips between districts and show the relationship
between the loss of trips between districts and the distance between them, according to a gravity model with
temperature, finding a clear negative slope. B In order to model how different parts the rural-urban gradient
respond to heat, we add population quantiles to that gravity model, and see that more populous areas see
larger reductions in trips. C Building out the networks from this gravity model, we can see that edges in the
core see the largest declines in flows, while edges in the periphery are preserved.

entropy of visitor distribution across population or income groups. Note that we are test-
ing for something subtly different, because in the mixing matrices we look at correlation
between origin and destination and here we are looking at the diversity of origins present
for a given destination. The new metrics, richness and evenness, are used as the depen-
dent variables in our TWFE model. Looking at mixing between low and high population
districts in Fig. 7.4C, we see less of a change than what is visible in the matrices, al-
though there may be a slight reduction in mixing between rural, exurban, suburban, and
urban classes at the highest extremes. Looking at mixing by economic class in Fig. 7.4D,
however, richness falls by ∼ 2% and evenness falls by ∼ 1.2% on very hot days in this
more controlled setting. Taken together, this suggests that much of the change in mobil-
ity that we see in the matrices is attributable to seasonal variations, yet it also shows a
direct effect from heat on mixing. As we move from lower to higher temperatures, we see
a consistent progression; we also see evidence from more mixing on mild days, fitting
with earlier indications that some temperatures are conducive to new activities.

Because we see changes to urban structure under this model, we model those changes
formally using a gravity model that considers population at origin and destination, along
with distance between districts and the temperature on the day. The gravity model, shown
in Table C.2 confirms the earlier models but gives us the ability to observe changes on the
network. In Fig. 7.5A and B, we show the components of that model: shorter edges see
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flows decline more on hot days that longer edges, and flows between populous areas fall
most. Rural areas see mobility taper off from the optimum—at ∼ 35◦C but the net effect
relative to cold weather is still positive. We see the consequences of this in Fig. 7.5C,
where we see that losses on hot days tend to be concentrated in the urban core rather than
the periphery.

Heat steepens effective distance: near links shrink more than far links and populous
nodes shed the most flows, hollowing the network’s core. Generally, in this network
analysis we see that social life in cities will be disrupted if extreme heat worsens without
adaptation, with less mixing and less activity in city centres—a development which could
threaten the economic and social advantages of cities.

To make sense of our findings, in Box 5 we turn to anecdotes from around the world,
but developed and European economies in particular, to see if our work agrees with re-
ports in the media. We see clear evidence that people both reduce and retime activities.
Many countries, including Spain, have adopted workers protections to limit work during
the hottest times of day and on the hottest days. This fits our data showing that activ-
ity during the middle of the day is most affected. There are also subtler ways that heat
could influence activity patterns: cities have started to recommend visits to cooling cen-
tres, which could reshape activity and reallocate budgeted time away from retail and
leisure on hot days; further, changes to transportation schedules could make travel less
convenient, adding a time cost on top of the health risk. Reports discuss “intertemporal
substitution”—moving activities to different times of day. This is not wholly inconsistent
with our data, which shows declines day-on-day as well as during hot afternoons, because
those shifted activities could still come at the expense of others—and days with shifted
activities could still have net fewer trips than those without the need to adjust any plans.

Projecting into the future

We use modeled estimates of Earth’s future climate, derived from CMIP6 [480], which
represents the state-of-the-art in climate projections (see Methods for further detail). The
strategy that we employ here is simple: we switch out the UTCI for a given district and day
in 2023 for the UTCI on that day in 2073, 50 years later. Holding all else constant allows
us to predict activity using our fitted models. The simplicity of this approach introduces
limitations, which we discuss now, but it does allow us to understand the implications of
our findings in possible future with little adaptation.

Our estimates assume that temperature and nothing else changes going forward. Al-
though the “Lucas Critique” [289] tells us to be wary of making projections when humans
can adapt to changing circumstances [245], Spain is ageing and thus the demographic
issues that we highlight above could be exacerbated. The exercise is also informative
because activity is fundamentally different to mortality and morbidity, where we do see
evidence for adaptation in recent years [229, 50]: travel within and between cities will
likely require, for the foreseeable future, contact with the ambient air. Coping with heat
may reduce mobility more, not less, as we attempt to reduce its worst effects on health.
For example, it may become more common for employees to work from home on hot
days, as telework has changed the demand for face-to-face interaction [53]. For this rea-
son, we believe our estimates to have important implications for the future economy of
cities and towns, including, for example, urban business that depend on office workers or
rural areas that depend on tourists [523].

Our model predicts a 3.5% reduction in frequent activities during summer months,
May to September, and a 4.7% reduction in infrequent activities. Travel to work or school
is projected to fall by 2.2% during that same period. Yet over the full year, all activities
will decline by just 1%, as warmer weather during what were once cold periods increases
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“Anecdata” on heat and behaviour in advanced economies

Developed economies. Cities and agencies systematically adjust schedules and
expand cooling: a bellwether for extreme heat, Phoenix now operates extended-
hour and 24/7 cooling sites through summer and is consolidating a permanent
overnight hub; libraries and pools extend hours during alerts [124, 333]. Gen-
erally, railways and airports reduce operations in heat, which could discourage
activity [326, 331, 60]. Employers and regulators adjust work, and new con-
tracts between unions and employers require air conditioning in new delivery
trucks [395, 396, 397]; Protections for workers during extreme heat are expand-
ing, and now include both indoor and outdoor working conditions in some re-
gions [338, 100, 36]. Sports and events shift timing/format: for example, ten-
nis matches now activate enhanced heat rules like roof closure, extended breaks
[405, 389]; Globally, sports federations formalise cooling breaks and later kick-
offs [413]. Utilities and transport agencies issue guidance to slow down during
heat spikes as national and local lines post delays [37]. Reporting also documents
how delivery/logistics workers alter hours, seek shade, and improvise cooling in
vehicles while pressing firms toward greater air conditioning and shift changes
[377].

Europe. Governments often suspend mid-day exposure and adjust timing under
heat alerts: Greece has closed the Acropolis and shortened outdoor work hours
during peak heat [400, 398]; France has shuttered schools and adjusted public
services [408]; Italy has periodically limited outdoor work and issued sectoral
adaptation measures [410, 391]. British railways have introduced speed restric-
tions and warn of track damage, with operators publishing dedicated timetables
for hot days alongside mitigation protocols [326, 331]. European supply chains
reroute, for example, as low Rhine water forces barges to sail at reduced loads
and triggers surcharges [392, 412, 411]. Retail footfall can thin in the mid-day
heat, with listed chains flagging sales slowdowns attributable to fewer people on
the street [337]. A broad synthesis describes the recurring operational pattern:
runways and railways buckle, metros close, kitchens shut when staff cannot safely
work; firms adopt shift changes, such as shading and cooling from fans or mists
[318].

Spain. Spain has moved toward codified work adjustments in heat: national rules
enshrine bans on some outdoor work during severe heat alerts; guidance affirms
worker rights, including to interrupt activity in the face of heat risk [394, 177].
The health ministry has published a Plan Nacional which emphasises preven-
tion/anticipation and targeted communication during alerts [313]. Municipalities
use climate shelters and timing shifts: Barcelona has expanded to ∼ 400 refu-
gios climáticos with coverage targets by barrio [176, 11, 174]; Madrid publicises
discounted private venues and identifies hundreds of public spaces as shelters,
while sometimes restricting park access under extreme conditions [175, 178].
Transport operators activate, which include providing access to drinking water
on trains, during heat waves [388]. Behavioural reporting shows mid-day sup-
pression and evening substitution: Iberian households shift errands to later hours;
beaches, malls, and shaded public spaces absorb demand when temperatures run
10◦C above seasonal norms [401]. Jobs in construction and manual labour adopt
summer schedules or mid-day pauses [215, 104].

Box 5
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Figure 7.6. Projecting in the future. A Prevalence of temperature exceeding a given value. Maps show
that Spain’s South will see 75 days between 40◦C and 45◦C as well as dozens of days above 45◦C; days
between 35◦C and 40◦C will also be more common in the North. B Consequences of those temperatures
in both relative and absolute terms per district, showing that according to our model the largest effects at
lower temperatures will be in areas that do not experience high temperatures now. Cities in the South like
Sevilla and Malaga will experienced the highest temperatures, however, they do not see the strongest drop
in relative terms; big cities like Madrid and Barcelona will see the largest change in absolute terms.

mobility while hotter weather during already hot seasons decreases it.
Next we explore how this could vary across cities and regions. Fig. 7.6A shows the

number of days spent in a given UTCI range, from 35−40◦C to 40−45◦C to 45−50◦C.
All of these temperatures correspond to reductions in activity according to our models,
and they will be common in the South of the country. In particular, parts of Andalusia
will see temperatures exceed 40◦C for more than 75 days each year. The North of Spain
will experience more days that exceed 35◦C, but will only have a few days a year at the
extremes that the South will endure.

Fig. 7.6B shows that the effects of these changes may change mobility if adaptations
do not address rising temperatures. Our estimates here show the change on a given day
at a given temperature, compared to the baseline. Effect sizes are larger at lower temper-
atures in the North, where society is not as well acclimated to heat. Because extremes
that will occur in the South will not be prevalent there, we concentrate on temperatures
between 35◦C and 40◦C; days in this range would still reduce activity by as much as 6%
on days when they occur. While the South is largely unaffected by these temperatures, it
see strong changes to activity when temperatures exceed 40◦C; when this occurs, activity
in the South will fall by 6-12% while activity in the remainder of the country could fall
be 15%.
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Discussion

Extreme heat deforms the urban social reactor: mixing profiles flatten and core–core
edges lose the most volume, implying fewer cross-class and cross-district encounters pre-
cisely where density normally amplifies interaction. The diversity of visits falls, both with
core-periphery dynamics and with socio-economic mixing, indicating less heterophily.
Short trips—most likely walked—contract first in the afternoon. This could combine
to erode the incidental exchanges and spontaneous encounters that underpin both retail
activity and weak-tie formation.

Because older and wealthier groups curb discretionary mobility most on hot days,
lunch-time demand in job-dense cores thins even when work/study trips remain com-
paratively stable. In short, these patterns have implications with the mechanism that we
have discussed in this thesis so far, for cities as social reactors and places of exuberant
diversity: the conditions that generate superlinear spillovers—dense, diverse, repeated
contact—are precisely those most sensitive to mid-day heat [242, 70, 68].

We find that mobility behaviours respond to heat in ways that are consistent with
expectations rooted in the literature on extreme heat and health. First, daily movement
patterns for the elderly are most affected by extreme heat; second, afternoons see the
greatest decline in mobility levels across population groups, as temperature—and thus
risk—crests. Commensurate with heightened risk, we find that those older than 65 are
more likely to reduce activity in response to high temperatures, and that their reductions
are greater at higher temperatures. Compatible with the daily temperature dynamics, we
see that on hot days activity falls most during the early and late afternoon, and least in the
mornings and evenings. Again, our results show that as temperature increases, so does
the effect size in our model estimations.

Yet we document opposing effects from extreme heat amongst another vulnerable
group. While the oldest dramatically reduce discretionary activities and skip travel to
work, possibly to either work from home or miss work, the poorest do not miss work
and reduce activities less. This means that the group most at risk, because age magnifies
the threat of heat, is responding according to that risk, but it also suggests that the poor
are least able to compensate for extreme heat by foregoing work and travel. This reveals
important economic constraints that may influence mortality and morbidity.

Lending confidence to our estimates and findings here is the consistency with which
our models behave: higher temperatures correspond with larger effects in all of our spec-
ifications. Although these findings appear intuitive, our study is the first to document
these changes accounting for trip and individual attributes; in doing so, it demonstrates
the adaptive nature of human mobility in the presence of extreme heat: populations re-
spond to high temperatures by changing routines and avoiding certain activities. Without
more granular data, we cannot shed light on what all of these activities are specifically,
but we do see patterns in the analysis we are able to make.

With an ageing population and a warming world, our results suggest that policies to
adapt to extreme heat will be important for keeping Spain and possibly other European
countries active and productive in the coming decades. Yet many existing strategies to
mitigate the worst health effects of extreme heat involve air conditioning [50], which is
difficult to apply to activity. For example, cooling shelters can relieve much of the threat
of heat for vulnerable populations [502]. To be clear, there are still strategies to mitigate
extreme heat between buildings, like greening [244], and certain modes of travel can
also be air conditioned, but a broad drive to move between air conditioned spaces could
change the social fabric in cities, and we find preliminary evidence of how this might
occur here. The short trips that are more likely to be walked are also more likely to
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Figure 7.7. Working from home. Data from Wave 2 of the Global Survey of Working Arrangements [12]
indicate that remote work is in line with the European average in Spain. A Among full-time, prime-age,
college-educated workers—the group most likely to be able to adopt work from home—Spanish respon-
dents reported an average of 1.61 days worked from home per week. B Employer guidance points to a
contraction over time, with expected work-from-home days falling to 0.84. In contrast, employers in the
United Kingdom report both higher observed levels and less severe expected reductions, suggesting that
Spanish institutions are comparably less accommodating of remote arrangements. The level of remote work
matters for adaptation to climate stress: if Spanish workers must commute even during heat, the burden of
adjustment shifts from individual behavior to collective and infrastructural responses, reinforcing the need
for institutional adaptation.

be avoided in extreme heat. On the hottest days, many also avoid travel to work, so
businesses that depend on commuters for foot traffic might suffer. In particular, remote
work may become an alternative to commuting on hot days. This suggests that the very
adaptations that make heat survivable might erode the subtle interactions that make cities
engines of innovation [32, 41] and culture [202]. Policy, therefore, is not only about
cooling individuals but about preserving contact in cores (hours, shade, cooled access)
to maintain the agglomeration benefits that heat otherwise erodes.

Data collected in 2023 [12] suggest that remote work is similar in Spain relative
to other European countries. Using a sample of full-time, prime-age, college-educated
workers to survey those jobs most likely to adopt work from home, these data [13], shown
in Fig. 7.7a, indicate that workers spend 1.61 days per week worked from home. Guid-
ance from employers, however, suggest that this number will fall over time: Fig. 7.7b
shows that expected days worked from home in future will fall to 0.84. This could put an
institutional constraint on the rational choice to avoid hot commutes, and while it will cre-
ate discomfort it will also preserve the social reactor. Further, if workers must go to work,
it puts pressure on cities to adopt further adaptions—instituting collective approaches in-
stead of relying on individual responses. Although our results are consistent, intuitive
and suggestive, the mechanisms underlying the behavioural changes we see in the data
during extreme heat are not clear. For example, we cannot prove a link between short trips
and active travel, and although we know that frequent trips appear linked to work/study,
which agrees with research on trip chaining [316], we cannot determine which classes
of amenities are most affected when people avoid travel to work. Our study thus limited,
providing strong evidence for adaptation while much of the details are left to speculation.

Finally, our work demonstrates the value of open mobility data: the Spanish govern-
ment makes the mobility patterns used in this study freely available and further software
development has made it easily manipulable [260]. Despite aggregation and suppression
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to preserve anonymity, our results are clear and robust. More governments should make
data of this nature available in order to allow researchers to advance our understanding
of human mobility in a changing world. While the data here reveals important insights
into who adapts to heat, as well as how and when, it is still limited by how activities are
classified and locations are aggregated. With access to data on human mobility expand-
ing over time, future work should replicate this work in other contexts and decompose
mobility patterns according to more specific activities, occupations and locations, which
will allow governments and philanthropies to target cooling efforts at those most exposed
and least able to compensate for extreme heat.

In the following chapter, we will see similar mid-day suppression but different inci-
dence: poorer areas in India and Mexico contract most, while Indonesia shows smaller
elasticities—different deformations of the same underlying mechanism, as heat raises the
generalised cost of moving around a city.

Methods

Data

We use daily origin-destination data provided by the Spanish Ministry for Transport
[314], which integrates anonymised mobile phone records with demographic, land use,
and transport network information to produce a mobility data product. This dataset cap-
tures trips over 500 meters within Spain and infers key travel characteristics, including
origin and destination points, travel modes, and trip purposes—either work/study, fre-
quent or infrequent locations for that device. The Ministry leverages state-of-the-art al-
gorithms to transform raw mobile network data into structured and scalable matrices, of-
fering high-resolution insights into mobility patterns across spatial and temporal scales.

The data are stratified to allow for interrogation variations across demographic groups
and trip purposes [449]. Activities are classified based on the Ministry of Transport’s
recurrent mobility analysis, which tracks origin-destination pairs over 2-week periods.
Destinations visited more than once in this window are classified as frequent activities,
while those visited only once are considered sporadic activities. Balance is achieved us-
ing official statistics from the national statistics agency to account for differences in age,
income, and regional population distributions. This ensures that the dataset is representa-
tive of the broader population, minimizing biases associated with the uneven distribution
of mobile phone users. The integration of demographic and geographic information also
allows for the segmentation of mobility patterns by municipality, province, and other
spatial units, providing a flexible foundation for granular analysis.

The Ministry for Transport employs rigorous quality controls to ensure the reliability
of these data [472]. Anomalies in travel patterns are monitored through automated sys-
tems, which compare data against historical trends and predefined thresholds. Possible
errors, such as geolocation inaccuracies or missing records, are flagged and investigated
to ensure data integrity. The data are also validated with independent sources, such as
FAMILITUR survey data, to confirm the consistency of observed trends with govern-
ment statistics. Additionally, logical consistency checks, such as evaluating the symme-
try of origin-destination flows, are conducted to ensure that the data align with expected
behaviours. These efforts, combined with transparent methodological documentation,
make this dataset an important resource for understanding mobility in Spain.

We link these data on mobility with an index of thermal comfort from ERA5-HEAT
climate reanalysis data [161], provided by the Copernicus program. Universal Thermal
Climate Index (UTCI) combines temperature, wind, radiation and humidity to measure
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not just how hot it is but how it feels—for example, if humidity limits evaporative cooling
through perspiration. We use zonal statistics to compute the mean UTCI at 16:00 for each
district on each day.

Models

We employ twin modeling strategies to understand the relationship between heat and
mobility, the first to measure the causal effect and the second to estimate the functional
form. Both assume the number of trips T terminating in district i at time t follow a
Poisson distribution such that Tit ∼ Poisson(µit). Our first approach uses a two-way
fixed effects model (TWFE):

log(µit) = β(UTCIit × activity) + αi + γt

where µit represents the expected number of trips, αi represents district fixed effects con-
trolling for characteristics of the place, while γt captures date fixed effects accounting for
patterns common across districts at a given time. The interaction with activity type al-
lows us to estimate differential temperature responses across activities. This specification
leverages within-district variation in temperature after accounting for common temporal
shocks, providing causal estimates under the assumption that temperature variation is as-
good-as-random after controlling for location and time fixed effects. We cluster standard
errors at the province level to account for spatial correlation in the error terms.

Our TWFE model enables us to make causal inferences if certain conditions are met,
but there are threats to the model. A key assumption is that mobility patterns would have
evolved similarly across districts in the absence of temperature shocks (parallel trends).
This is plausible in our setting because temperature variation is as-good-as-random af-
ter conditioning on location and time fixed effects, and districts cannot select into heat
“treatment”. A more serious threat to identification would be if extreme heat causes peo-
ple to substitute between districts, violating the stable unit treatment value assumption
(SUTVA). We test for such spillovers using a gravity model of bilateral flows between
districts, explained and shown in Table C.2 in the Appendix. After controlling for origin
and destination populations and distance, we find no evidence that temperature gradients
between districts drive mobility patterns, suggesting SUTVA violations are unlikely to
bias our estimates.

To explore and model the potential curvilinear relationship between heat and activity,
we complement the TWFE analysis with a Generalised Additive Model (GAM):

log(µit) = f(UTCIit)× activityi + β1popularityi + β2provincei + f(DoYt) + DoWt + holidayt

where f(·) represents a cubic regression spline with 4 knots, f(·) is a cyclic cubic smooth
for the day-of-year, capturing seasonality and drifts in the data, and we control for mean
visitation (popularity) and geographic variation (province). We also add day-of-week and
holiday fixed effects because, for example, weekends and holidays might have different
levels of activity and this allows the intercept to vary on those days. While the TWFE
isolates the causal effect, the GAM reveals the functional form of behavioural responses
to temperature variation through its flexible smooth functions. The GAM’s strength lies
in its ability to detect and convey nonlinear relationships without imposing a priori as-
sumptions about the functional form, allowing us to identify potential threshold effects
and complex response patterns in human mobility.
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Projections

In order to understand possible futures according to our models, we use climate scenar-
ios derived from state-of-the-art “general circulation" models [480], which are used by
the Intergovernmental Panel on Climate Change to make projections about Earth’s fu-
ture climate. (For context, Fig. C.6 shows projections for major cities.) We extract data
on temperature, humidity, radiation, and wind to compute UTCI manually for the year
2050 under the 2 − 4.5◦C of warming, using the simulation from the Centre National
de Recherches Météorologiques in France, because it shows high accuracy against ob-
served data [139] and of comparably accurate models it performed best in Spain when
we checked it against our data for 2022 and 2023.

Our strategy for estimating mobility in the future is simple yet crude: we replace the
UTCI for a given day-of-year in 2023 with the UTCI for that same day 50 years later in
2073, predicting with the new temperatures and all else equal. We compare predicted
values using 2023 temperatures to predicted values using 2073 data to ensure that we are
comparing like with like, modeled estimates in both cases, rather than using observed
values in one and predicted values in another. Because the GAM allows us to produce
estimates across the full range of temperatures, we make our predictions using this model
rather than the TWFE.
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8 Climate, heat and adaptation

Abstract In this chapter, we look at the effects of heat on populations around the globe to its
broader consequences. As discussed, extreme heat is a growing threat to both individual liveli-
hoods and broader economies, killing a growing number of people each year as temperatures rise
in many parts of the world and limiting productivity. Many studies document the link between
heat waves and mortality or morbidity, and others explore the economic consequences of them,
but few are able to determine how populations respond to the shock of extreme heat in day-to-day
activity. Toward this end, we investigate the link between human mobility and ambient temper-
ature. Examining Indonesia, India and Mexico, we show that extreme heat reduces mobility by
up to 10% in urban settings, with losses concentrated mid-day. We examine the shape of the re-
lationship, finding that while heat reduces activity, very hot days and very long heat waves may
induce more of it, indicating different adaptation. Effects are stronger in poorer areas. Twinning
these models with climate projections, we show that without adaptation mobility may fall 1-2%
per year on aggregate, with certain seasons and places seeing activity fall by as much as 10%.
According to our estimates, small cities will face the highest relative losses and large cities will
experience the greatest absolute impacts.

Introduction

As we noted earlier, extreme heat threatens lives globally [534, 298], with rising tem-
peratures linked to greater mortality [249] and morbidity [531]. Here we take a global
focus on behavioural change, with an emphasis on time allocation across hours and short
trips—because these are the channels through which heat enters the urban production
function and attenuates realised agglomeration [210, 93]. Beyond human health, heat
waves induce economic damage in developing contexts by lowering productivity [460]
and slowing growth [158]. The severity of this challenge continues to mount: heat waves
are intensifying in both magnitude and frequency [357], with their duration growing since
1950 and that rate of growth accelerating since 1980 [359], and much of this change will
be felt in the countries we turn to now—India, Indonesia, and Mexico. Yet, the behav-
ioral dimensions of heat impacts are not clear in these and other developing countries,
and research is often limited by context, often focusing on advanced economies [350].
By pairing weather and socio-economic data with GPS mobility, we show that extreme
heat fundamentally disrupts activity urban areas. In doing so, we demonstrate a scalable
approach for modeling human adaptation to extreme heat across diverse contexts.

The consequences of extreme heat differ based on who people are and where they live.
Age, gender, and surrounding conditions shape vulnerability [521, 347], while geograph-
ical features like water bodies [90], urban design [236], and broader geographic character-
istics [537] alter heat resilience. Socioeconomic status also matters: in areas with abun-
dant air conditioning or car ownership, heat waves pose fewer disruptions [216], whereas
disadvantaged communities experience sharper mobility shifts due to hot weather [216].
In the US, wealth reduces heat-related mortality via air conditioning [50], as people pay
more to avoid heat than cold [16], cut working hours, and redirect outdoor leisure indoors
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[210]. Moreover, although wealthier populations can better delay activities, poorer ones
resume hazardous routines sooner, facing heightened exposure [275].

Populations do adapt over time: mortality decreases with more frequent high tem-
peratures, implying compensatory mechanisms [516], and the least deadly temperatures
often match local climate norms [526]. Governments now classify extreme heat along-
side hurricanes and cyclones, going so far as to name heat waves [310] and devise “heat
action plans” [228]. Yet adverse outcomes persist: extreme heat lowers productivity in
manufacturing [460] and agriculture [445], dampens growth in poorer regions [158],
and a single anomalously hot day can curb output [532]. Heat also contributes to conflict
[91], erodes learning in non–air-conditioned classrooms [351], and strains infrastructural
[186] as well as natural systems [476]. Consequently, understanding how people adjust
their daily activities is crucial.

Heat exerts its effects via physiological stress—causing dehydration, fatigue, and
organ damage, especially among older individuals [305, 228]—and by compromising
cognitive performance [146]. This leads to fewer working hours [529], constrained pro-
ductivity in physically demanding sectors such as construction [421], and altered urban
behavior. Rising temperatures reshape activity patterns in cities worldwide [273, 291],
driving individuals to forgo short trips [216], shift destination choices [234], and re-
duce both public transport use [334] and walking [263]. These behavioral modifications,
rooted in discomfort or safety concerns, underlie broader economic and social impacts.
As climate change intensifies, deeper knowledge of how heat influences collective move-
ment has become a research priority [501].

In this chapter, we investigate how extreme heat modifies urban mobility in three
developing countries—India, Indonesia, and Mexico—home to 1.8 billion people and
spanning eight climate zones [63]. We combine mass GPS-based mobility data with ther-
mal comfort measures to quantify the form and magnitude of heat’s influence in 2019. By
modeling changes in trips, distances, and destinations, we illuminate the behavioral foun-
dations of adverse health and economic outcomes. Given that hotter regions suffer the
greatest productivity losses under climate change [142], understanding these responses
is essential. We find that extreme temperatures significantly alter mobility patterns, with
activity levels dropping by up to 10% during heat waves. We further disaggregate our
analysis by population density and socio-economic status, yielding comparative insights
into how different groups manage and recover from extreme heat across diverse climates
and cultures, showing that economically disadvantaged areas show stronger reductions
in mobility. While populations attempt to compensate by shifting activities to cooler
hours, this adaptation is less effective in poorer areas, likely due to limited access to
cooling infrastructure and inflexible work schedules. Our findings reveal how climate
change could exacerbate existing inequalities in developing countries, where the most
vulnerable populations face the greatest disruption to their daily activities. Since urban
economies depend on the mobility and interaction [171], our results suggest that without
interventions to help populations adapt to extreme heat, rising temperatures will impose
a cost that falls most on those who can least afford it.

Results

Impact of hot days on mobility

We use daily flows between origin and destination geohash5 aggregations, comprising
∼ 236 million trips and ∼ 1.4 billion unique GPS signals, gathered from mobile devices
in the course of daily usage (for descriptive statistics and illustrations of the network,
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see Fig. C.7 and C.8 in the Appendix). As these data best represent urban populations,
we remove rural areas—clipping each network to “functional urban areas” [441]; Be-
cause the network is sparse and our concern is “activity”, we define it as the number of
journeys ending in each geohash5. For each geohash5, we acquire Universal Thermal
Climate Index (UTCI) [161] from ERA5-HEAT [133], which takes wind, sun, moisture,
and temperature into account to produce a measure of how hot or cold it feels. Joining
the datasets, we are able to make inferences about the effect of temperature on moves
terminating in a given geohash5. (See Methods for greater detail.)

We show temperature fluctuations across India, Mexico and Indonesia throughout the
year in 8.1A, finding that each country gives us insights into different climates: located
on the equator, Indonesia has a stable climate; Mexico and India have more pronounced
curves with distinct profiles. Mexico City suffered heat wave in July 2019 (3+ days in
the highest temperature decile [358]), and we show in Fig. 8.1B mean activity per grid
cell during the heat wave compared to the weeks before and average, for comparison.
Although noisy, activity falls in the center, with mixed effects in the periphery. With
preliminary evidence that heat changes behavior, we use a TWFE approach to understand
the effects across all countries systematically. Because frequent temperatures are less
lethal [516, 526], we examine deviation from the mean temperature in a geohash5. The
results are shown in 8.1C, which plots the change relative to the strength of temperature
anomaly. The results are clear in Mexico: higher temperatures mean fewer trips in a cell.
In India, heat reduces afternoon activity—when temperatures peak—but activity shifts
to the evening. Sensibly, the effect is inverted for cold, where waiting for the air to warm
is better than during extreme heat. In Indonesia, there is limited variation and the effects
we can observe are de minimis, save for the possibility—given large standard errors—that
cold appears to decrease activity throughout the day while heat appears to increase it.

Insights into the shape of the temperature-mobility relationship

To capture incremental temperature changes, we model the temperature–activity relation-
ship using a generalized additive model (GAM), which offers non-parametric flexibility
and parametric interpretability. Our GAM uses smooth functions that accommodate vary-
ing coefficients and suits the documented nonlinear temperature effects on productivity
[92]. (See Methods.) We use a directed acyclic graph (DAG) to identify the minimally
sufficient adjustment set—the controls that allow us to infer causal links between our in-
dependent variable of interest (temperature) with our dependent variable (activity). For
controls, we identify temporal and spatial factors as determinants of activity and use
geohash5 fixed effects along with splines to capture trends over time. In alternative spec-
ifications, we interact temperature with population and deprivation to explore how these
moderate its effects. While the GAM captures the shape of relationship, we use another
TWFE specification with various temperature bins to provide more rigorous identifica-
tion by accounting for both location-specific characteristics and time-varying factors.

We compare both models in Fig. 8.2, finding consistent results. In Fig. 8.2A we
see that in India, activity declines during the afternoon but recovers in the evenings.
Notably, afternoon temperature peaks have inverse effects: most active on cold days,
when warmth is beneficial, but least active on hot days. In Mexico, shown in 8.2B, higher
temperatures are associated with fewer trips during all periods of the day. We see limited
effects in Indonesia in Fig. 8.2C, with warmer temperatures increasing activity and cooler
temperatures decreasing activity. The highest temperatures have point estimates below
zero, but we cannot reject the null hypothesis here.

Mobility displays a concave response around a local thermal optimum, with mid-day
and short trips most elastic, consistent with movement penalties and exposure avoidance.
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Figure 8.1. Extreme heat and mobility. A Temperatures in India, Mexico and Indonesia throughout 2019,
showing that we have three different climate profiles: equatorial—and thus stable—in Indonesia, and tropical
but varied and seasonal in India and Mexico. B Change in mean daily visitation in Mexico City between
a heat wave in July and the weeks preceding and following it; activity levels fell 10% on aggregate, and
although some peripheral areas gained foot traffic, losses are concentrated in the central city. C Results from
a TWFE regression showing that, with controls for location and date, activity falls most in the afternoon on
hot days—when the temperature is hottest—in Mexico and India. In Mexico activity falls throughout the
day, while in India activity rises in the evening, after it has cooled off, on hotter days. Activity rises in the
afternoon on cold days, suggesting that on cold days, the warmest hours of the day are conducive to activity,
while on hot days, the hottest hours are destructive.

Generally, deviation from a location’s mean temperature—hot or cold—reduces activity.
Showing that relative changes in temperature are better predictors than absolute changes,
our results are consistent with the literature that suggests climate preferences are set lo-
cally [16]. This also agrees with research that finds that the most frequent temperature in
an area is often the least fatal for that area’s population [526].

The public health literature has identified a “minimum mortality temperature” [526],
which is the temperature at which all-cause mortality is at its lowest in a given place.
In an indication that populations adapt to local conditions, this temperature is typically
the “most common” or modal temperature in a place. To explore the possibility of a
“maximum activity temperature”, the point at which temperature as most conducive to
activity, scale and centre (z-score) the temperature in each GeoHash5 so that we consider
deviations from the average. Fig. C.9B and C show the relationship between changes
in temperature and trip counts and durations (measured in minutes) for full days. Our
results agree with this existing literature from public health: as temperature increases
relative to the local average, the number of trips falls. (Although, because the maxima
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Figure 8.2. Modeling temperature and activity. A We decompose the effect, using both a GAM and a
more robust TWFE, by time of day, and see that activity actually recovers in the evening in India. B In
Mexico, a comparably cooler place that might have fewer adaptation strategies, activity does not recover in
the evening. C The effect is mixed in Indonesia, as an equatorial country with little variation in temperature
and possibly strong adaptation strategies; although we cannot reject the null hypothesis, the effect of heat on
activity does turn negative at high temperatures. Note also that in all countries, mild temperatures appear to
be conducive to activity.

are not at 0 precisely may be due to the fact that we only use the average for one year of
weather data.) We also conduct placebo tests in C.10 and sensitivity analysis in C.11 to
show that our results are unlikely to be spurious.

We then look at absolute temperatures to understand if levels are also a factor in
driving activity. To see if prolonged heat waves differ, we test rolling averages of dif-
ferent lengths, where higher averages indicate stronger or longer fluctuations. Fig. 8.4A
shows that in India, when the temperature exceeds 35◦UTCI, the effect of temperature
on activity becomes negative; Fig. 8.4B shows that in Mexico, this change from pos-
itive to negative occurs at 30◦UTCI. In India, persistent heat waves (rolling averages
above 45◦UTCI) show relative adaptation, with effect sizes rising above zero. While not
conclusive, this suggests that extended periods of high temperatures necessitate a return-
to-activity, or that policy and behavior adapt only after multiple days of extreme heat.
Replicating what we saw in the TWFE analysis, When we partition the data by time of
day in Fig. C.9, we see that the effect converging toward 0 at 42◦UTCI in India at high
temperatures is the product of countervailing forces: extreme heat increases activity in
the evenings while decreasing it in afternoons, when the temperature is highest. This
difference is only present in India, where temperature is more variable, but it indicates
that compensatory changes are at play at the extremes. In Mexico, all times of day see
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Figure 8.3. Modeling temperature and activity. A We set up a directed acyclic graph (DAG) to ensure that
we close all necessary causal paths to activity; we control for day-of-year, day-of-week, holidays, solar radi-
ation, precipitation, and use geographic fixed effects that necessarily stratify by population and deprivation.
B Model results for different countries, showing that the highest activity levels occur at average tempera-
tures for an area, and that high extremes correspond with fewer trips. C Model results using trip duration
rather than trip count reveal that the longest trips tend to occur at average temperatures, with extreme high
temperatures leading to shorter trips.

reductions at high temperatures.

Heterogeneities in the impact of heat on mobility

We next examine how demographic and geographic factors shape activity. In this speci-
fication, we use geohash5 fixed effects but add interaction terms for deprivation [191] or
population [440]. Building a model that interacts temperature and deprivation, we find
that in both India and Mexico, hotter days suppress activity more in high-deprivation ar-
eas. In particular, we explore the space of model predictions across all combinations of
temperature and deprivation. These predictions are shown in Fig. 8.4C and D, for India
and Mexico, respectively. We use the same strategy for population in C.12.

In India, we recover the same arc as above, where activity partially recovers at the
highest extremes. The contours in 8.4C are flatter for low deprivation and steeper for
high deprivation, indicating that much of the worst effects of heat in India are felt by
the poorest. Looking at Mexico in 8.4D, higher temperatures bring lower activity for
all levels of deprivation, but the contours at higher levels of deprivation indicate that
the effect is stronger for poor areas than for wealthy ones. We see recovery at extreme
heat in India but not in Mexico, where contours steepen at higher temperatures. This has
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Figure 8.4. The effect of extreme heat on activity. A Focusing on India, given that country’s propensity
for heat waves, we measure the duration and intensity of extreme heat by calculating a rolling average,
finding that higher temperatures for longer are associated with stronger effects between 40− 45◦UTCI but
not above that, which may indicate compensatory behavior at a certain point. B We fit the same model
for Mexico and find similar results, with an ideal temperature and declining activity when heat surpasses it
(noting that Mexico does not have the same extremes). Lasting heat waves, measured in rolling averages,
show a stronger impact in Mexico and the rebound we see in India never becomes positive. C and D Looking
at the interaction between deprivation and temperature in India and Mexico, respectively, we see a curve that
follows above modeling for all socio-economic strata but it is steepest, indicating the strongest effects, for
the poorest strata.

important implications for vulnerable populations, as we might expect competing forces
to be at play: the poor are also less able to afford taking time off from work, but they may
be less able to access cooling, which could suppress activity. We see evidence that the
latter pressure dominates the former, and activity is suppressed at extremes.

The sparsity of the data preclude us from making stronger inferences about what is
happening to the structure of the mobility network, as we did in the previous chapter.
Yet we can use these models to gain important information that feed into structure. For
example, because we can see in Fig. 8.4 that the poorest areas see the steepest declines at
the highest temperatures, we can infer that the topology is not stable—some groups, and
thus some flows, are more sensitive. Likewise in Fig. C.12, because the most populous
areas have the most to gain on mild days and the most to lose on hot days in absolute
terms, again we see that the core-periphery structure of cities is threatened by extreme
heat.

As a robustness check and to explore spatial variation, we use an ARIMAX model
at the geohash3 level (to ensure full time series data for each). This model predicts ac-
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Figure 8.5. Mobility by time of day and population. A When we decompose the effect of temperature on
activity by time of day, we see that the reduction in activity comes during the afternoons, suggesting that
people are avoiding the hottest part of the day. B In Mexico, all periods of the day see reductions in activity.
We see that in India C and Mexico D, larger populations see stronger temperature effects in absolute terms,
with higher predicted values and moderate temperatures and lower predicted values at the extremes, while
these curves are flattened for smaller populations.

tivity by considering activity at time t using activity at t− 1 and t− 7 along with linear
and nonlinear terms for temperature, which allows the relationship to curve as tempera-
ture increases. This method implicitly controls for seasonality and day-of-week effects
by using the previous day and the same day of the previous week to make a predic-
tion, and achieves a good fit, shown for India in Fig. 8.6A. Important to this study, the
quadratic term is negative across most regions, indicating that at a certain point the ef-
fect of temperature on activity turns negative. Fig. 8.6B shows, again for India, the sign
and magnitude for each geohash3, which shows mixed results but less of temperature
effect in the South, where temperatures are more consistent, and more of an effect in
the North and Northwest. Some coefficients are positive with high magnitude, but these
tend to be in the mountainous North, which does not have as many hot days, and the
tropical South, which has less variability in temperature. We take the average coefficient
for Temperature2 across all countries in Fig. 8.6C. Note that we need to rescale the trip
distribution in each country for the effect sizes to be comparable, so the value of each
coefficient is difficult to interpret (in Fig. C.13, we plot the curves from each ARIMAX
formula to show how Temperature2 influences the prediction). We filter out geohashes
according to the length of the time series, because very short series could bias the results;
generally, as this threshold of minimum observations rises, so too does the effect size.

Finally, we identify the optimal temperature by making predictions across the spec-
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Figure 8.6. Alternative estimations across all countries. A We fit an ARIMAX model to the time series
of each geohash3, achieving good fit with a mean absolute percent error of 20%. This model uses both
autoregression—recent experience—and exogenous variation, temperature in our case, to predict activity,
allowing us to interpret the effect of temperature; B shows the effect of Temperature2 across India, with
most areas showing a negative effect. C As a sensitivity analysis, we vary the required length of the time
series, because some areas do not have complete data, and find that the effects only become stronger as we
increase the minimum number of days in the series. Although a weak correlation of ρ = 0.25, in D we see a
relationship between average temperature and the optimal temperature for activity according to our model,
supporting our earlier results.

trum for each geohash3 and observing where the predictions begin to fall. According to
these predictions, the mean and median optimal temperatures for India are 31.1◦UTCI
and 31.8◦UTCI—in line with our estimates from the GAM. (These mirror what we see
in C.13, which plots the prediction curves for each geohash3 ARIMAX.) Although not a
perfect match with the above findings, these results strengthen our assertion that extreme
heat can limit activity. We document a noisy relationship between temperature optima
across geohashes and the mean temperature of those geohashes (ρ = 0.25 across all
countries, p < 0.05) in Fig. 8.6D: as mean temperature increases, the optimal tempera-
ture for activity also increases. This provides further evidence that populations adapt to
climatic conditions.

To make sense of these results, we gather anecdotes and reports from around the
world, 40 news articles in total, in Box 6. The picture is clear: government polices often
discourage activity during hot days and individual choices respond to changing incen-
tives. The combination appears to be autocatalytic: reduced work and errands—either
by choice or by mandate—both causes a direct shift in activity, but it also reduces the
incentives around opening stalls and participating in the dampened economy; further,
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both costs and risks rise, as workers must move to cooler modes of transit, adding a fee
to a journey would be free if walked, and as heat raises the prospect of health complica-
tions—especially for vulnerable populations.

Projecting into the future

As in the previous chapter, we next turn to models of Earth’s climate [480] to make
estimates of how activity will be impacted in future. In particular we use the same data
from CMIP6 simulations, extracting the estimates from the Max Planck Institute because
these estimates show the best fit to past trends in the regions we study here [139]. We
substitute each 2019 temperature-day value with its 2050 counterpart from these climate
models. We make these projections knowing that our own study suggests that optimal
temperatures are often related to the climate of the area, and thus that the population of
a given area may be able to adapt to local temperatures. Nevertheless rapid deviation
from these temperatures as global warming accelerates [359] might still be a shock to
communities who have acclimated to past temperatures. Furthermore, our data suggest
that poor areas suffer the worst effects, and these areas might be the least able to cope
with changes to the local climate going forward. As a modeling exercise, this provides
us with a worst case, but a plausible one at that.

CMIP6 projections (8.7A) indicate 100–150 annual days above 40◦UTCI in Northern
states (e.g., Rajasthan), and (8.7B) suggests 25 days above 45◦UTCI. We distinguish be-
tween large urban areas (top 10 FUAs by population) and small cities (remaining FUAs).
On any given day in June when such temperatures are most likely, not a weekend nor a
holiday, our model estimates that a single day at 40◦UTCI temperatures to reduce activity
in large cities areas by 2% and in small ones by 6%, shown in Fig. 8.7C. Because megac-
ities generate more activity, they experience a small relative change but a large absolute
loss. As we see in Fig. 8.7D, these losses grow to 4% and 8% for large and small urban
areas, respectively, during a single day of temperatures at 45◦UTCI.

We explore the same projections in Mexico, which show the same strong effects from
extreme heat and mild effects from temperatures that will occur often. An important dif-
ference to note is that while the Southern, tropical areas in Mexico will have the high-
est average temperature, with Fig.8.8A showing most days over 35◦UTCI by 2050, but
the desert near the Northern border—where much of the country’s manufacturing hap-
pens—will experience more heat waves, highlighted in Fig. 8.8B. Because the literature
indicates some adaptation to heat, these heat waves in the North could disrupt activity
more than persistent high temperatures in the South; although heat waves will be less
common in temperate regions, these areas are most at risk of disruption when heat waves
do occur.

In Appendix Fig. C.14, we show similar results for Indonesia, with many days over
35◦UTCI in Sumatra and Borneo in A. While temperatures of 40◦UTCI will be rarer,
shown in B they are forecast to happen despite never appearing in our 2019 data. Be-
cause Indonesia is in the tropics and does not experience much temperature variability,
our model projects strong effects for heat that exists beyond the current distribution. In-
donesia is planning to move its capital to the island of Borneo, from Java, by 2045. While
this megaproject intends to curb the effects of subsidence, temperatures in this new re-
gion, according to CMIP6 data, will experience more hot days than in the existing capital
region. Shown in Fig. C.14C and D, the consequences of these temperatures, according
to our modeling, are similar to the effects we see in India: small cities areas with larger
relative effects and larger urban areas with larger aggregate disruptions.

A key caveat in year-round modeling: warming formerly cold periods can boost ac-
tivity, so in India substituting 2050 weather yields only a 1% drop overall. Because

120



“Anecdata” on extreme heat and behavior

Global. Across regions, authorities and firms shift activity away from the hottest
hours and into cooler windows: tourist sites shorten or suspend mid-day opening;
governments in chronically hot countries impose or strengthen mid-day outdoor-
work restrictions; and employers formalize breaks or remote work during heat
alerts [399, 367, 409, 394, 406, 494, 393, 371]. Major events and transport op-
erators retime or reduce operations, from cooling breaks at the sporting events to
speed restrictions and delays on rail lines [407, 390, 326]. Many cities expand ac-
cess to cooled spaces, while gig applications and delivery firms adjust operations
or incentives—all consistent with mid-day labor supply falling and trips shifting
to mornings/evenings [369, 370, 484]. Wealthy countries show a wider range of
adaptive strategies than poorer countries, for example providing cooled buses to
gig delivery workers [483].

India. People substitute into cooled, grade-separated transit and scale back mid-
day foot travel: in 2024, the Delhi Metro recorded all-time-high passenger jour-
neys as operators emphasised ∼ 24◦C carriages/stations, relative to ambient tem-
peratures of ∼ 50◦C, and public advisories urged avoiding mid-day exertion
[341, 481, 485]. With others reporting a switch from walking to rickshaw to limit
exposure [482], this is consistent with the theory that heat is a tax on mobility, in
this case a monetary one, as it forces those who would walk onto transit. Informal
services thin out on hot days: with multiple sources reporting a hawker survey
indicates sharp declines in customers and ∼ 50% income hits for Delhi street
vendors; drivers and delivery workers report longer breaks, shading and cool-
ing improvisations, and reduced mid-day availability [488, 227, 486]. Spending
behaviour changes as people attempt to adapt—purchasing also air conditioners,
but also cold drinks—which rearranges errands. Water scarcity in poorer colonies
pushes reliance on tanker markets, raising the shadow cost of mid-day trips; the
net effect is mid-day contraction with partial evening substitution and indoor/AC
reallocation [402, 372, 43], consistent with what we find in our data.

Indonesia. Even when episodes do not meet the government’s criteria for a “heat-
wave”, official warnings about mid-day exposure, and elevated risk for outdoor
workers; guidance repeatedly encourages shifting errands to mornings/evenings
[238, 30, 365, 366, 160, 179]. Reporting emphasises adjustments in timing and
mode rather than widespread closures (e.g., gig workers and informal services
concentrating activity outside peak heat), which is consistent with smaller mea-
sured heat elasticities than in India or Mexico [366, 179].

Mexico. Record temperatures and grid alerts/blackouts accompany behavioral
shifts: mid-day outdoor commerce and errands contract, with consumers substi-
tuting toward air-conditioned venues and online channels [403, 404, 184]. Papers
of record and regional outlets document ambulantes reducing hours and reporting
50-60% sales drops as footfall evaporates in early afternoon; authorities shorten
or suspend school days during peak heat [354, 155, 378, 364]. Scarcities of cool-
ing goods—including ice rationing at one of Mexico’s largest grocers—further
raises the marginal cost of going out and weakens the business case for mid-day
vending, reinforcing evening reallocation [368].

Box 6

121



40°UTCI

a b

c d

45°UTCI

Figure 8.7. Future implications for India. A CMIP6 projections for days above 40◦UTCI in India by 2050;
these indicate that Northern India could experience as many as 150 days per year at or above this temperature.
B CMIP6 projects fewer days above 45◦UTCI but much of the North will still experience 25 days at this
extreme. C and D show the consequences of this heat according to our modeling: during those days between
40 − 45◦UTCI, we can expect activity to decrease by 5% in small cities and 2% in large agglomerations;
when the temperature is higher, the loss of activity could be as much as 7% and 5% in small and large urban
areas respectively.

Indonesia does not have cold weather, rising temperatures there are associated with an
decline of 2% across the year. In Mexico, activity will fall as temperatures rise, by 3%
on aggregate. This points to changing dynamics: we can expect heat waves to increase
in both frequency and magnitude, and thus for associated disruptions to increase, but ris-
ing temperatures will have mixed effects. These effects will be spatially and temporally
heterogeneous, affecting cities and seasons in different ways.

Discussion

Heat waves are expected to become a regular occurrence in urban areas over the coming
decades. While efforts to mitigate climate change are important, we must also develop
adaptive strategies. Understanding the relationship between human behavior and extreme
weather, such as heat waves, is essential for this. Our study considerably expands to a
growing body of research by examining how extreme heat affects human mobility in three
large developing countries. Our findings show that heat waves significantly change urban
mobility patterns. By examining three diverse counties across different climate zones,
our research allows for comparisons and helps identify broader behavioral trends. The
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Figure 8.8. Future implications for Mexico. A CMIP6 projections for days above a given threshold in
Mexico by 2050, A and B show frequency of days above 35◦UTCI and 40◦UTCI, respectively; we see that
the tropical South will have more frequent days above 35◦UTCI but the arid North will have more days
above 40◦UTCI, suggesting that heat ways will be a problem there. C and D show the consequences of
these temperatures according to our model, with strong effects at higher temperatures but Mexico City, the
capital and largest city, is spared of the worst effects because of its temperate climate.

highest activity levels and longest trips occur at the mean temperatures for each region.
However, the specifics vary between these counties. For instance, in India, activity levels
were more affected by extreme high temperatures than by lower ones, whereas in Mexico
and Indonesia, the reduction in activities was almost symmetric between high and low
temperature extremes.

Our results align with existing research on the economic impacts of high temperatures
[460, 445, 532] which found that productivity losses are the result of lower crop yields
or impaired worker performance; we expand on this by showing that extreme heat also
influences travel decisions. For example, anecdotal evidence suggests that farm workers
avoid outdoor labor when temperatures exceed 40◦UTCI and even service workers need
to change transportation modes to reduce heat stress from walking [134], and our data
aligns with this while pointing to broader changes cities. In India, research on congestion
indicates that people are willing and able to shift trips away from congested periods in
the presence of taxation [262]; in showing that people substitute afternoon activity for
morning activity, we find that heat functions as a tax on activity that people can avoid.

In India and Mexico, respectively, we observe a noticeable decline in activity levels
when average temperatures exceed 33◦UTCI and 35◦UTCI. We use rolling averages to
show that, in India, while longer heat waves have stronger effects, activity resumes when
high temperatures persist for a week or more. While extreme heat never shows a positive
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Figure 8.9. Modes of transport in study cities. Data from the Transformative Urban Mobility Initiative
[491] and the Asia Transport Observatory [34] show that the dominant modes of transport varies in key big
cities covered by our study. Motorcycles are common in Indonesian cities. Indian cities show more varied
choices but walking is more prevalent. Mexican cities are wealthier on average and show higher car use.

effect on mobility in our data, the negative effect converges to 0 when the temperature
averages more than 40◦UTCI for 6 or 7 days. We are unable to examine the mechanisms
by which this occurs but if it is the result of individuals needing to return to work, it adds
to the importance of cooling efforts.

However, the effects we observe are not equally distributed. They are more pro-
nounced in deprived areas, indicating that these regions are more vulnerable to extreme
weather disruptions. We find in India and Mexico that foot traffic in areas characterized
by high deprivation fell faster at higher temperatures than foot traffic in those with low
deprivation. Consistent with evidence on informal economies in India, mid-day losses
concentrate in poorer areas, suggesting that heat disrupts neighborhood service loops that
bind informal sellers to nearby buyers. When footfall falls, expected returns to opening a
stall or traveling to wholesale drop below heat costs; buyers stay home, sellers follow—a
thin-market feedback absent in Spain’s formal, more teleworking core.

Changes in activity will result from combinations of forces: the ability of the wealthy
to keep cool with air conditioning, for instance, might buoy activity in wealthy areas
while pressures to earn might sustain activity in poor areas. Our findings suggest that for
residents of deprived areas, the expected gains from working are less than the dangers
from working at high temperatures. This is especially concerning because residents in
these areas are more likely to hold jobs that require physical labor, making adaptation
more difficult.

India shows evening substitution during heat waves—consistent with retiming ac-
tivity rather than reducing it. In Mexico, a comparably less hot country on average,
this adaptation appears to be lacking. While Mexico shows some recovery at night on
hot days, the highest temperatures associated with fewer trips at all hours, pointing to
stronger constraints from cooling access and infrastructure stress. We aggregate data on
mode share in Fig. 8.9. This is important when we consider who is most affected by
high temperatures: for example, Indonesia’s lower elasticities are interesting given its
comparably higher use of motorcycles, which may enable more flexible travel.

The evidence we present here stands in contrast to what we saw earlier in Spain, where
wealthier groups can avoid travel via telework and cooled residences, shifting the burden
of adjustment away from subsistence work. Across settings, the same “tax on activity”
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operates, but who pays it differs: in Spain, discretionary trips by the well-to-do or office
workers; in India and Mexico, trips by the residents of deprived areas whose livelihoods
may be dependent on hyperlocal economies, as informal work typically occurs close to
home [5].

We should also note one key difference between Spain and the countries we study
here: the size and structure of the informal economy. Informal work differs from con-
tractual employment in that labor discipline is weakly mediated by formal contracts, al-
lowing workers to make day-by-day cost–benefit decisions about exposure to heat. Two
margins matter. Day labour (e.g., construction workers, loaders) is selected first-come,
first-served; failing to show today does not typically jeopardise tomorrow’s chances.
Self-employment (street vending, home production) likewise decouples income from em-
ployer mandates, so opening hours and trips are adjusted to footfall and heat. Empirically,
informality is pervasive in India (≈ 90% of workers), common in Mexico (≈ 50%), and
evident in Indonesia, with large home- and street-based segments that operate near home
[241, 383, 108, 280, 33]. Spain, by contrast, has a smaller shadow/informal sector by
both employment and value-added shares, reflecting stronger formal institutions [308].
Finally, cooling access is skewed: air conditioning and cooled travel are less prevalent
among the poor in India, Indonesia, and Mexico than in Spain, amplifying the heat cost of
mid-day trips: in Spain, transit usage is common amongst lower socio-economic strata,
but in poorer countries it still represents a cost above walking [240, 151, 353].

In hot spells, informal work’s margins of adjustment—opening, timing, mode choice—interact
with heat’s productivity and health effects. Heat reduces productivity and raises health
risk in open-air, labor-intensive settings, decreasing the expected return to work and in-
creasing the cost of travel; where revenues depend on street footfall, vendors may ratio-
nally shorten hours or delay trips [461, 108]. Because informal services cluster around
home and rely on mutual trade [5], the buyer-stays-home/seller-stays-home loop becomes
self-reinforcing at mid-day temperatures; evidence from Mexico City also shows that in-
formality reduces the need for long commutes, concentrating activity in local loops that
are more vulnerable to ambient heat [471, 108]. Spain’s greater formality and higher
feasibility of telework shift adjustment toward schedule changes by the wealthy than sup-
ply contractions by the poor, explaining the reversed socio-economic gradient in heat
sensitivity we document across chapters.

A limitation in our study is the coverage of the mobile phone data that we use. The
data are sparser in India than they are in Mexico, with Indonesia in between, and compen-
sate for potential biases by filtering our data to cities, where coverage is best. In Mexico,
where we are most confident in the data, we see the strongest effects and the cleanest dif-
ferentiation across the temperature gradient in both the GAM and TWFE models. That
the data in each country suggest an optimal temperature is also encouraging, but the fu-
ture work will need to triangulate these findings. Yet the evidence for displaced activity
in India warrants greater consideration as, if verified and validated with other datasets, it
shows an important channel by which cities can adapt to climate change.

Finally, by modeling future climate scenarios, we estimate how human activity will be
affected in the years to come. These projections allow us to better understand the evolving
situation, not just due to changing weather patterns but also due to broader shifts, such
as the planned relocation of Indonesia’s capital from Java to the island of Borneo. Heat
waves in India’s Rajasthan and Indonesia’s Sumatra will have the strongest effects on
mobility, with temperatures exceeding 40◦UTCI more than 100 days per year in both,
changes that are associated with 10% declines in activity according to our models.

A remaining question is whether or not populations will gradually adapt with rising
temperatures. Some places will have stronger heat waves, like Mexico’s arid North, and
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others will have higher but stabler temperatures, like its tropical South. Recent work
on economic growth and public health looking across 5 decades suggests the answer is
no: for most variables, responses to extreme heat have not changed [94]. An important
finding in our work is that more deprived areas see stronger effects than less deprived
ones, which has implications for adaptation: these areas will be amongst the last to adopt
air conditioning. In the coming decades, our results may hold for vulnerable populations
even if others are able to adapt.

Methods

We use origin-destination matrices for three nations—India, Indonesia and Mexico—spanning
2019. These data contain flows between tessellated units, called geohashes. The geohash-
ing system creates a nested hierarchy wherein longer codes indicate sharper resolution.
To preserve the anonymity of users, all data have been aggregated by the data provider
to the geohash5 level—with cells that are on average ∼ 22km2—and do not include any
individual records. Flows are summed from trips between any geohash6 cell where a
device has recurring GPS signals [533], and can thus occur in the data within the same
origin and destination geohash5 as a loop. Aggregated data were provided by Spectus
Social Impact as part of the Netmob 2024 conference. Data are collected with the in-
formed consent of anonymous users who have opted in to anonymized data collection for
research purposes.

For each geohash5 in the data, using Google Earth Engine [209] we also gather 365
days of weather data from the ERA5 daily climate aggregates [133]. These data gives
us temperature, in the form of Universal Thermal Climate Index (UTCI), per day per
geohash5, and it allows us to observe differences within and between regions without re-
lying on weather station data. We acquire modeled estimates of these variables for each
day of 2050 using spatially disaggregated data from the Coupled Model Intercompari-
son Project [480], an international collaboration to produce estimates of Earth’s climate
through 2100. These datasets both resolve to ∼ 775km2, and thus also capture spatial
heterogeneity in weather conditions. Finally, we attach data—via zonal statistics—on
population [440] and deprivation [191] to each geohash5, using gridded measures esti-
mated from remote sensing.

Using these data, we perform further checks on these data to understand is coverage
and reliability in Appendix Fig. C.8; while the number of devices in a given cell shows
a strong correlation with the number of residents in it, we also see that more deprived
areas are less represented in the data. Most of this bias comes from cells with very low
population, which are also typically poorer. Indeed, the correlation between deprivation,
so we clip our data to “functional urban areas” [441]. (We use multiple filters, show in
Table C.5, to stress test our models, but in the main analysis we use the “low” constraint
filter.)

It is important to note that there is limited data in the context we are exploring in this
paper, so we maintain that our work is still valuable even in the presence of bias.

Modeling the causal effect

We employ a two-way fixed effects (TWFE) approach to model the relationship between
temperature anomalies and mobility in a given geohash5 cell, specified as

ln(yit) = β0 + β1Θit + φi + νt + εit (8.1)
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where yit represents mobility (measured as the number of trips ending in cell i on
day t). The independent variable Θit captures temperature stress in cell i on day t, which
we define as the deviation from the cell’s mean temperature over the study period. This
specification allows us to examine how departures from typical local conditions affect
mobility patterns, rather than absolute temperature levels which could conflate adaptation
effects.

The model includes two types of fixed effects: φi represents cell-specific fixed effects
that control for time-invariant characteristics of each geographic unit, such as infrastruc-
ture, elevation, or proximity to water bodies. νt captures day fixed effects that account
for temporal factors affecting all cells simultaneously, including holidays, weekends, and
seasonal patterns. These day fixed effects also help control for potential sampling varia-
tions in the GPS data collection, as the number of active devices may fluctuate based on
the set of applications providing data on any given day.

To account for potential heterogeneity in temperature effects across different times
of day, we estimate separate models for morning (6:00-12:00), afternoon (12:00-18:00),
and evening (18:00-24:00) periods. This temporal disaggregation reveals how mobility
responses to heat stress vary throughout the day, capturing potential behavioral adapta-
tions such as shifting activities to cooler hours.

We cluster standard errors at the cell level to account for potential serial correlation
in mobility patterns within geographic units. The coefficient of interest, β1, represents
the semi-elasticity of mobility with respect to temperature stress, interpretable as the per-
centage change in mobility associated with a one-unit increase in temperature deviation
from the local mean.

Modeling the temperature gradient

We begin using a generalized additive model (GAM) to measure the partial effect of tem-
perature at different levels [514]. We build a directed acyclic graph (DAG) to determine
what controls are necessary in our model, shown in Fig. C.9A. In addition to tempera-
ture, solar radiation and precipitation could also modulate activity, with rain dampening
activity and sun heightening, so we control for these along with day-of-year. Day-of-year
is modeled with a cyclic cubic spline, which captures seasonality by allowing for varia-
tion by day while forcing the value of the spline at the start to equal its value at the end.
Because geography and area characteristics will also influence activity, we use various
geohash fixed effects, allowing the intercept to vary according to the unique activity pro-
file of each geographic unit. A key assumption with this approach is that the response
curve is the same across space—only the intercept will vary. Together, these spatial and
temporal controls constitute the minimally sufficient adjustment set. While they are not
confounds, adjusting for day-of-week and holiday effects improves the precision of our
estimates. The resulting equation is

T = β0 + f1(x1) + f2(x2) +Xβ + ε (8.2)

where T is the number of trips ending in the geohash5, f1(x1) represents the smooth
function of temperature, f2(x2) represents the smooth function of day (with a cyclic
cubic spline), X is a matrix of control variables, and β is a vector of coefficients for the
control variables. ε is the error term.

Modeling the time series

Because GAMs do not have an explicit time component, we then model the time series as
a robustness check. To analyze the relationship between activity and temperature while
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accounting for temporal dependencies, we employ an Autoregressive Integrated Moving
Average model with Exogenous variables (ARIMAX) [237]. This model combines au-
toregressive terms, moving average components, and exogenous factors to capture the
complex dynamics of the time series. Specifically, our model incorporates AR(1) and
AR(7) terms to account for immediate changes and day-of-the-week patterns in activity.
The moving average component allows the model to consider the impact of past shocks
and manages seasonality. Temperature is included as an exogenous factor with both lin-
ear and quadratic terms to capture potential nonlinear effects on activity. Our model is
specified as

Tt = c+ ϕ1Tt−1 + ϕ7Tt−7 + β1Tempt + β2Temp2t + θ1εt−1 + εt (8.3)

where Tt represents economic activity measured as Trips at time t, UTCI is a constant
term, ϕ1 and ϕ7 are autoregressive coefficients, β1 and β2 are coefficients for linear and
quadratic temperature effects, Tempt is the temperature at time t, θ1 is the moving average
coefficient, and εt is the error term. This model structure allows us to simultaneously ac-
count for time-dependent patterns in economic activity and the influence of temperature,
providing a comprehensive framework for analyzing the complex relationships within
our data.

We compute the average coefficient for Temperature2, which indicates the degree to
which the effect of temperature curves at extremes, and we identify the ideal tempera-
ture by making predictions using the model for each time series at all temperatures and
observing the point at which predictions begin to fall. We run a sensitivity analysis be-
cause not all time series span the full length of the year, showing the average coefficient
at various minimum thresholds.

Projecting into the future

In order to understand how rising temperatures will impact behaviors, we take two ap-
proaches. First, we take the covariates from Eq. 8.2 but switch the temperatures on any
given day for temperatures from the same day-of-year in 2050 using CMIP6 SSP 8.5
[480]. This gives us an aggregate estimate, incorporating both warmer winters (which
might be good) and hotter summers (which might be bad). Second, we explore specific
temperature thresholds that our modeling has shown to exert strong effects on mobility
and explore how often these thresholds will be crossed according to CMIP6 SSP 8.5 es-
timates in 2050. To see estimates of temperatures in our 3 study countries through 2100,
see Fig. C.15.
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9 Conclusion

This thesis set out to measure how cities generate interactions between citizens, how
they reconfigure when work detaches from place, and how they retime and redistribute
activity as heat rises. We find that urban form drives experienced segregation, remote
work reconfigures spending and mobility, and extreme heat reduces and retimes activity.
The most important lesson from this work can be summarised as such: centres mix,
peripheries sort, but remote work and heat threaten to change this dynamic.

Experienced segregation. Our first set of findings involves the structure of cities—the
combined spatial distributions of amenities, activities, and populations—and how it pro-
duces experienced segregation. We first document strong regularities: American cities
are typically surrounded by a ring isolating suburban neighbourhoods with residents
who do not see people from the full range of socio-economic strata in daily life; these
cities—especially denser, older cities—often have pockets of segregated urban neigh-
bourhoods that do not host visitors from the broader city. These segregated pockets reveal
that the effect of history on the present still lingers in mobility data, as they are often areas
with complicated legacies of deprivation [512] and “hypersegregation” [301]—notably
in South Los Angeles, South Chicago and South Bronx. Our results stand in contrast
to studies that have emphasised the differences in clientele between restaurants or other
amenities that are just metres apart [150, 321]. These studies miss something impor-
tant: we find that whether or not an area is segregated, it is predictable using just a few
key variables, like the median income of an area or its racial composition, twinned with
its location relative to the centre. Yet earlier work that focused on variability over pre-
dictability holds relevant in centres and downtowns. Agreeing with this work, we also see
that wealthy centres often have isolated populations that sort into homogeneous points of
interest despite heterogeneous daytime populations, most notably in Manhattan but also
in Chicago and elsewhere. Thus, predictability dominates at the mesoscale; variability
appears within centres.

This is where predictability and variability interact in our work extending these re-
sults with a simple intervening opportunities model to understand how the location of
amenities drives mixing. Although many residents of busy downtowns sort, likely be-
cause there is a surplus of options to facilitate sorting in these areas, centres are where
amenities exceed expectations vis-a-vis social mixing. Central place theory, a key inspi-
ration for the work in this thesis, explains why: it is the central places like downtowns
that people are willing to travel farther to access. The intervening opportunities model
assumes that a resident in a suburb should also dine out in that suburb, but if they are also
anchored to an office downtown, the set of opportunities relocates.

Thus in this work we have also revised our understanding of bridging amenities. Prior
work showed that bridging amenities are important to the broader mixing patterns in a
city, specifically finding that larger cities have higher experienced segregation, but that
the presence of amenities located between distinct socio-economic communities amelio-
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rates this regularity. We extract central business districts and show that this scaling law
does not hold for them: the city may become more experientially segregated with size,
but not its downtown. Our results have important implications as companies around the
world adopt remote work [53], enabling fewer and longer “supercommutes” [323], and
diminishing the importance of central offices—which brings us to our next set of findings.

Remote work. We then show that remote work is having durable effects on mobility.
Rather than a temporary shock followed by reversion, many cities—notably those that
were “superstars” before the pandemic [218]—appear to have settled into a hybrid steady
state: office anchors persist, but for smaller shares of the population. We find a marked
size gradient in which cities have recovered from the pandemic and which cities have not:
across a range of ordering strategies—using distance or density, for example—the largest
cities are those least likely to have returned to 2019 mobility, and the cities that stand
out most are older rustbelt cities like Washington, Philadelphia, and even Burlington.
Newer sunbelt metros, which have grown in population and expanded in area over recent
decades, have seen less change.

This reweighting matters for mixing. We see fewer trips between communities with
different racial compositions—what we term convergent and divergent flows. Here again
we see that the cities least likely to have recovered 2019 levels of these flows are larger
cities and rustbelt cities. As we demonstrated in earlier work, when the office ceases to be
an anchor, the intervening opportunities facing many residents relocate from the centre
to the neighbourhood. Errands that were once chained to downtown workdays are now
chained to home, shrinking the range of day-to-day activity and reducing the likelihood
of intergroup exposure. Take together, our work suggests that both direct connections
between different communities—convergent and divergent flows—and indirect connec-
tions moderated by points of interest in alternative locations like central business districts
are threatened by remote work.

We show that the consequences of this reweighting away from cities and into suburbs
have important implications for spending at local amenities. We find that the very places
that we identified as rings of isolation in our first section are those that have seen spend-
ing recover since the pandemic. Again, though, the degree to which spending has shifted
depends on the city—in particular where it is and how big it is. Expensive superstar cities
like Los Angeles and New York have seen the Gini coefficient for spending—how spend-
ing is distributed throughout the city—rise since 2019; comparably affordable cities like
Houston and Dallas have not. Our results suggest the most expensive cities in America
were in a metastable state when the pandemic began. These cities were held together by
intense agglomerative forces that remote work has attenuated.

Introducing a method that allows us to classify trips according to their lengths, we
added an important caveat to this work on core-periphery dynamics and integration. We
find that peripheral neighbourhoods are less efficient than central ones, committing to
longer distances on aggregate—even after weighting on the number of trips. In light
of research that suggests a fixed travel budget, this indicates that the automobile helps
reclaim some of the time that would be lost to longer journeys, but it also shows that a
world in which people must go to the central business district to work also forces residents
of peripheral neighbourhoods to traverse larger portions of the urban extent on average
than residents of central neighbourhoods.

Extreme heat. Using data on the present but with an eye toward the future, we show
that heat influences mobility in both subtle and obvious ways. Generally, we see that
on hot days around the world, people avoid going out during the hottest portion of the
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day. Our results are intuitive, but we obtain point estimates that allow for more precise
cost-benefit analysis. Using detailed data in Spain, we see that on balance, risks and in-
centives matter: older individuals reduce activity more on hot days than younger ones,
commensurate with greater risk of illness at high temperatures; poorer individuals reduce
activity less on hot days than wealthier ones, suggesting possible economic constraints.
We also show that short trips, more likely to be taken by active means like walking or
biking, are comparably more affected than longer trips more likely to be done by auto-
mobile—although we cannot identify travel mode in our data.

Expanding our analysis to India, Mexico and Indonesia, we find that the effects of heat
are not uniform. In India, we see that activity falls during the day but rises at night on hot
days, indicating what is called “intertemporal substitution”, but we do not see evidence
for this in Mexico. Our estimates are not statistically significant in Indonesia, which
is an equatorial country with limited temperature variation, but they are still negative
on hot days. An important difference that we see between developed and developing
contexts, however, is that deprived areas show larger drops in activity on hot days in
Mexico and India—where in Spain the poor appeared to be more constrained and did
not change activity as much as the wealthy on hot days. Future work should explore this
phenomenon in greater depth, but a plausible interpretation is institutional and sectoral:
informal work is more prevalent in India and Mexico, and by design allows day-to-day
adjustments in opening, timing, and travelling (self-employment, day-hire, piece-rate),
while formal jobs in Spain exhibit greater rigidity. This raises the possibility that in large
informal economies, hot days trigger a feedback loop—fewer people on the street, fewer
reasons to set up shop, still fewer people on the street, and so forth. We do, however, see
suggestive evidence for economic constraints in India and Mexico that fits with what we
see in Spain: longer heatwaves show weaker effects over time, which hints at a possible
need to restart work, errands and other chores as extreme heat drags on.

Finally, we see across countries, including Spain, that warm—but-not-hot days are
good for activity, and we find suggestive evidence that a concept from public health—the
“minimum mortality temperature”—inverts for urban dynamics: cities and regions ap-
pear to have a “maximum activity temperature” that hovers around the average temper-
ature in that region. This idea also demands further research but it suggests that locali-
ties can adapt to rising temperatures—although it is not clear on what time scales these
adaptations take place, since cultural and behavioural strategies to mitigate the effects of
extreme heat could evolve over decades or centuries rather than years.

9.1 A bigger picture

We began this study by engaging with two contentions about the present and future of
mobility. The first was that the past is foreign country, because they do things differently
there. The second was that the future is already here, it is just not evenly distributed.
These ideas frame the broader point that a reader should take away from this thesis. We
motivated our work with the belief that cities are “social reactors” that generate wealth
and innovation by pulling people together, allowing for both planned and spontaneous en-
counters, but this has been a study the forces that push people apart—from the emergent
structures of cities, to new technologies and changing climatic conditions. New technolo-
gies and economic pressures mean that people move around cities with characteristically
different trajectories than they did in 2019. Rising temperatures mean that the present in
one part of the world might be the future in another. Combined, these forces will have
important consequences for cities as social reactors.
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The past is a different country. The urban present is not a reversion to 2019 from the
pandemic. Prior to the COVID-19, superstar cities in particular were expensive; they
were also crowded-yet-energised [458], facilitating face-to-face contact. Large technol-
ogy companies that should have had the greatest capacity to virtualise were spending
billions of dollars on vast headquarters busy downtowns: Google was expanding in New
York City and London, Facebook and Apple in the Bay Area, and Amazon had announced
two new offices in Washington and New York City. Today, remote work persists at large
scales across countries, and the “doughnut effect” has dispersed activity away from ex-
pensive business districts—especially where the share of work-from-home days is high
[12, 379]. Downtown recovery has been partial and uneven. In commercial real estate,
the repricing of office buildings reflects a structural shift away from offices large enough
to host all employees at a company [217]. Our work here builds evidence that sharpens
our view of this new equilibrium: when day-to-day activity shifts to the suburbs, mixing
falls in cities. The mechanisms are clear: remote work lowers the price of staying home,
so the marginal lunch trip or coffee break with coworkers is less likely to happen [316].

Our findings should drive policy: a city centre that once mixed by default must now
mix by design. This thesis shows how that reweighting trims intergroup exposure and
weakens centre-to-centre links that normally deliver spillovers according to prevailing
theories; the periphery sorts while the core—no longer guaranteed a large daytime influx
of workers—must be animated to boost encounters at scale. This could take the form of
programming and events, or a new mix of land uses. In short, while the claim that centres
mix and peripheries sort holds across the work presented here, the very centrality of any
given downtown is now in question. Central place theory holds that people will trade
off the length and frequency of journeys to economise within fixed travel budgets; with
fewer commutes, the geometry of travel budgets will change as people find themselves
with more time. If central cities do not position themselves with these new travel budgets
by offering attractions, activity will move to or remain in peripheral suburbs.

One reading of the evidence presented in this thesis is pessimistic: if distant trips
and downtown anchors account for a disproportionate share of intergroup exposure, then
the shift to remote and hybrid work cools the social reactor not only by removing the
incidental encounters that cities once generated for free, but also by reducing planned
face-to-face meetings. Yet what looks like a drawback can also be an opportunity to
reorganise the city. Proposal for 15-minute cities or “urban villages” promise shorter dis-
tances and greater day-to-day autonomy, and our mixture results suggest that a proximate
activity space is already remarkably stable across neighbourhoods even as higher-order
travel reorganises. The risk is that proximity becomes a trap: dispersion can decrease
distance while increasing isolation, yielding neighbourhoods that are walkable but so-
cially separated. The alternative is a deliberate polycentricity: retain a strong, accessible
nucleus for valuable matching and meeting and shared civic life, while cultivating di-
verse hubs and third places that draw residents across neighbourhood lines, supported by
fast, affordable connections. In that framing, the decline of the monocentric commute
does not have to mean the decline of urban encounter; it simply means that mixing must
be produced—through design, programming, and connective infrastructure—rather than
assumed.

The future is here. Some cities are already living in the future the rest will face more
often. This thesis documents a common behavioural grammar of heat: activity com-
presses away from the hottest hours; routine and work trips are stickier than sporadic er-
rands; and the largest absolute losses concentrate in big agglomerations even as smaller
places suffer larger proportional contractions. The effects are mixed across developed
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and developing countries, but economic constraints and incentives also play a role. In
India, populations retime toward the evening during heat events; in Mexico, evening re-
covery is weaker, which implies adaptation is not costless—perhaps requiring solutions
to coordination problems, since both buyers and sellers need to change timing together,
and perhaps requiring expanded services, including transit.

Rank Advice n

1 Avoid drinking alcohol 34
2 Wear lightweight, loose fitting clothing 31
3 Drink regularly without waiting for thirst 28
4 Seek out an air-conditioned or cool environment 21
5 Stay indoors in an air-conditioned environment 20
6 Wear a hat 18
7 Avoid or reduce physical activities 18
8 Protect yourself from the sun 17
9 Know the symptoms of heat-associated illness, and know how to respond 15
10 Look in on susceptible people 15
11 Do not leave children in a closed, parked car 15
12 Avoid going out during the hottest part of the day 13
13 Take frequent baths or showers 11

Table 9.1. Most commonly provided heat-protection advice to the general public, with number of
sources in parentheses [220].

This is what “the future is here” looks like in practice. Hotter places have already
normalised delayed errands and staggered services; cooler places are beginning to show
changes on the hottest weeks of the year, but fewer consistent adaptive strategies emerge.
The portable lesson is not a one-for-one copying of habits but the enabling conditions:
late (and safe) transit, shading and cooling measures, and extended hours will enable any
country to become more like India or Indonesia. Where those supports exist, evening sub-
stitution preserves activity without commensurate health risk; where they do not, activity
falls across the day and the feedback effects threaten informal workers. An uncomfort-
able possibility, however, is that the ways that we respond to extreme heat cut against
what cities provide—social connection and “exuberant diversity” [242]. In Table 9.1 we
show a collation of recommendations for coping with extreme heat [220], highlighting
those actions that reduce urban vibrancy, like staying indoors, seeking air conditioning,
or reducing activity outdoors during the hottest parts of the day. As days get hotter in
many parts of the world, compressing the tolerable hours in a day, following these rec-
ommendations could mean that activity deferred becomes activity foregone.

We should note that learned adaption is not limited to heat: the shocks that we have
examined in this thesis interact. Be they epidemiological, technological, or climatolog-
ical, they demand renewed interest in combining social, natural and built infrastructure.
Take parks as an example: the availability of green spaces is associated with reduced
mortality from heat [328], improved mental health at the height of the COVID-19 pan-
demic [511], and, though recent evidence is still developing, helps mitigate some of the
negative effects of screen time—notably by encouraging physical activity and improving
mental health [110].

133



9.2 Limitations and future work

Our work here is limited along several key dimensions. We are often dealing with aggre-
gate data that obscure types of activity and modes of transit. Exploring heterogeneities
in both activity and mode will be important for building more precise estimates of the
costs of extreme heat. It will also allow us to understand the threat of extreme heat to
the social reactor: right now, we can only show that activity falls during the hottest parts
of the day in Spain, and that this includes trips that end at work, but fewer lunch meet-
ings and coffee breaks will be visible in more resolved data. Our work requires a logical
leap—leaving and returning the office counts in our data as a trip to work, but so it would
appear as fewer work trips in the afternoon—but we can build better models with better
data. Our data are also limited by resolution in India, Mexico and Indonesia, where we
aggregate to areal units that include large portions of any given city; understanding the
internal dynamics on hot days will allow us to make better inferences. In particular, we
have relied on triangulating our observations with other findings and regularities about
the informal economy, but detailed data could shed light on specific changes to behaviour.
Our data also require imputations: we infer socio-economic class in the US with admin-
istrative data and we classify areas in India, Mexico and Indonesia according to modelled
estimates of deprivation.

Yet another limitation in our work comes from the problem that we have tried to
solve with this thesis: mobility is not a stationary process; it is changing and many cities
are still adapting to various transitions—including remote work and extreme heat. This
means that our findings are subject to change. Future work should continue to compare
and contrast the present with the past in order to better understand the future. Although
the pandemic inspired many studies that construct time series to understand shocks to
mobility, many of our classic models of human mobility—notably some “laws”, or reg-
ularities that span countries or continents—are derived from data collected before the
pandemic [17, 444].

Finally, this work was inspired by the ways that our urbanism creates prosperity
from crowding and interpersonal contact. Having established the presence of new urban
regimes, the next step is to revisit agglomeration and scaling. Theories of agglomera-
tion rely on face-to-face contact, often using density as a proxy for human interaction.
We have a unique opportunity to revisit our assumptions, as data on patents, wages, and
other measures of agglomeration become available over time. Are cities today fit for pur-
pose, and will they be once our urban structures adapt to the twin shocks of extreme heat
and telecommuting, which change both the risks and rewards, respectively, to leaving the
home, taking lunch with a friend or a client, and experiencing the city in all its messiness?

How mobility patterns will evolve in the coming years is not clear, but habits and
preferences are malleable. In studies of rail strikes, looking at Deutsche Bahn and Lon-
don Underground specifically, a significant fraction of riders who are forced into a new
route will not return to the old commute; after the strikes abated in each city, ticket sales
for buses between German cities remained 8% higher [64] while in London 5% of com-
muters continued to take the newer route [266]. In London, the subtle rethink that the
strikes caused saved commuters 53 hours per year [266]; given the time saved, this im-
plies that the cost or annoyance of experimenting with the commute for a single worker
on a single day was $49. Prefiguring the pandemic, Hurricane Sandy disrupted tran-
sit in New York City, forcing some to adopt telework, and some of those people never
went back to the status quo ante [251]. Surveys indicate that commuting is one of the
least pleasant activities we perform daily [247, 256, 107], requiring in one estimation a
19% pay rise to compensate for the hit to wellbeing [470], which suggests that people
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“satisfice”—accepting an available option as satisfactory—rather than optimise.
As a shock and an opportunity to rethink behaviours and habits, the pandemic was

an example of a “moment of change” [510], and because unlike many of the disruptions
above it was comprehensive in its reach—affecting government and citizens, employers
and employees—it was also an opportunity to rethink policies and norms. The literature
suggests that commuting is an activity that is both psychologically taxing—with a stan-
dard deviation increase in journey times corresponding to a decrease in happiness that
represents 20% of the decrease from becoming unemployed [470]—and frequent enough
to allow for experimentation, and yet many consider that experimentation to be such a
hassle that they would need to be compensated $49 to do it [266]. Newer research shows
that a job that allows remote or hybrid work can pay much less [143]—indicating that the
pandemic caused many to assess the mental and temporal costs of commutes.

Our research indicates that while the moment of change that the pandemic repre-
sents may have passed, the push and pull between employees and employers, pricing
in office and housing markets, and adaptations to extreme heat are still evolving. This
gives researchers an opportunity to find points of leverage, find opportunities to improve
cities—to not let a good crisis go to waste.
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A Experienced segregation

A.1 Data reliability

Figure A.1. Data validation. We test the reliability and representativeness of our data by first checking the
distribution of devices: there is a tight distribution, with more than 150 devices in most block groups, and
an interquartile range between 111 and 280. Further, we document a correlation between population and
devices of ρ = 0.58, which is in line with previous studies, and more devices per block group that other
studies [506]. Finally, there is no detectable bias with respect to income or nonwhite population.
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Percentile 0% 1% 2% 3% 4% 5% 6% 7% 8% 9%
Devices 1 37 48 55 59 63 67 70 73 76

Percentile 10% 11% 12% 13% 14% 15% 16% 17% 18% 19%
Devices 78 81 83 86 88 90 92 94 96 98

Percentile 20% 21% 22% 23% 24% 25% 26% 27% 28% 29%
Devices 101 103 105 107 109 111 113 115 117 119

Percentile 30% 31% 32% 33% 34% 35% 36% 37% 38% 39%
Devices 121 123 126 128 130 132 134 137 139 141

Percentile 40% 41% 42% 43% 44% 45% 46% 47% 48% 49%
Devices 144 146 148 151 153 156 159 161 164 167

Percentile 50% 51% 52% 53% 54% 55% 56% 57% 58% 59%
Devices 170 173 176 179 182 185 188 192 195 199

Percentile 60% 61% 62% 63% 64% 65% 66% 67% 68% 69%
Devices 203 207 211 215 219 223 228 233 238 243

Percentile 70% 71% 72% 73% 74% 75% 76% 77% 78% 79%
Devices 249 254 260 267 273 280 288 296 305 314

Percentile 80% 81% 82% 83% 84% 85% 86% 87% 88% 89%
Devices 324 335 346 359 373 389 407 427 450 478

Percentile 90% 91% 92% 93% 94% 95% 96% 97% 98% 99%
Devices 510 547 594 654 730 833 979 1194 1541 2268

Table A.1. Distribution of devices per block group. The table shows the number of devices at each
percentile of the distribution. The median block group has 170 devices. We only lose 2.5% of block groups
when we limit to 50 devices.
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Figure A.2. Device counters over time. We show the median number of devices in each block group,
documenting a dropoff after the first quarter of 2019.

Variable 2019 2020 2021 2022

Total Population 0.58 0.67 0.70 0.66
[0.58, 0.59] [0.66, 0.67] [0.70, 0.70] [0.66, 0.66]

Nonwhite Population 0.02 -0.07 -0.14 -0.10
[0.01, 0.02] [-0.08, -0.07] [-0.14, -0.14] [-0.10, -0.09]

Median Income 0.02 0.11 0.10 0.06
[0.01, 0.02] [0.10, 0.11] [0.10, 0.11] [0.05, 0.06]

Table A.2. Pearson correlations between device counts and demographic variables (2019-2022). Each
cell contains the correlation coefficient. Total population shows strong positive correlations with device
counts in 2019 that grows stronger in later years, validating the device data as representative of population
distribution. Nonwhite population and median income correlations are comparatively weak, suggesting min-
imal demographic bias in the device sample. Estimates are precise, with 95% confidence intervals (rounded)
reported below.
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A.2 The role of amenity mix

Distance quintile Amenity count Amenity entropy

1 (near to CBD) 0.038 0.042
2 -0.087 -0.101
3 -0.132 -0.139
4 -0.158 -0.164
5 (far from CBD) -0.177 -0.144

Table A.3. Spearman’s correlation between median income and amenity mix. The consistent negative
correlation in higher distance quintiles shows how wealthy areas tend to have fewer amenities (amenity
count) and less variation in amenities (amenity entropy). This pattern suggests an exclusionary mechanism
where wealthier neighborhoods will see fewer visitors not through explicit barriers, but because of reduced
place attractiveness—fewer points of interest and less diverse activity options that would otherwise draw
visitors from different socio-economic backgrounds. (We use rank correlation because of skew in the data.)

Distance Segregation Isolation
quintile Amenity count Amenity entropy Amenity count Amenity entropy

(log) (log)

1 (near to CBD) -0.426 -0.276 -0.009 -0.055
2 -0.357 -0.269 -0.076 -0.084
3 -0.333 -0.268 0.008 -0.027
4 -0.327 -0.277 0.047 0.007
5 (far from CBD) -0.237 -0.080 0.392 0.013

Table A.4. Pearson’s correlation between amenity mix and segregation/isolation. The amenity count
shows strong negative correlations with segregation across all distance quintiles, providing robust evidence
that areas with fewer amenities experience substantially higher segregation. This relationship holds across
urban, suburban, and exurban areas, with correlations ranging from -0.33 to -0.43, until we get much farther
from the core and the relationship falls off. For isolation, the correlations are negligible across most distance
quintiles, contrasting with strong negative correlations observed for segregation. This difference suggests
different mechanisms—and could be indicative of resident preferences in areas rich with amenities. (We
use Pearson correlation because segregation and isolation are normally distributed and manage the skew in
amenity counts with log-transformation.)
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A.3 Bivariate classes and amenities

Figure A.3. Amenity mix and each class in our schema. While the relationship is mixed, we see consistent
variation in how amenity count and the different classes of neighborhood relate: the bright pink “seekers”
of diversity have the fewest amenities and the light blue “avoiders” of diversity have the most. Consider
the diagonal, where isolation and segregation are aligned, fewer amenities begets higher S/I and vice versa.
There is a similar pattern for the mix of amenities quantified with entropy.
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A.4 Legacy of “Redlining” in our data

Figure A.4. The legacy of Redlining in segregation/isolation. Contemporary patterns of segrega-
tion/isolation vary with historical HOLC grades (“redlining” maps); distributions are shown with dots rep-
resenting the mean value per grade. We see a clean gradient for segregation and a nosier one for isolation.
Areas that were C/D graded, which often correspond to urban pockets, exhibit higher segregation, while
ungraded areas—predominantly modern suburbs and exurbs that lay beyond the original HOLC bound-
aries—show higher isolation. This pattern reinforces our broader finding of isolated suburban rings sur-
rounding cities with segregated urban pockets. The connectivity signatures in ungraded areas likely reflects
the continuation of discriminatory practices through different mechanisms—while urban neighborhoods
faced redlining, suburbs employed exclusionary zoning and other discriminatory practices [424] to maintain
social and racial homogeneity. These historical practices appear to have created durable patterns in how
communities interact, visible in contemporary mobility.
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A.5 Histories of segregation in pockets

South Chicago. During the Great Mi-
gration, tens of thousands of African
Americans moved from the Jim Crow
South to Chicago, profoundly reshaping
the South Side. New Black arrivals in
the 1910s–1940s were met with a “dif-
ferent form of public denial” in north-
ern cities: racially restrictive covenants,
redlining by federal agencies, and discrim-
inatory real estate practices that cordoned
Black Chicagoans into the city’s expand-
ing “Black Belt” on the South Side. By
the 1930s, more than 200,000 African
Americans lived in this segregated South
Side enclave, also known as “Bronzeville”
or the “Black Metropolis,” which became
a center of Black culture and commerce
despite overcrowded housing and limited
opportunities. These structural barri-
ers—enforced by law, violence, and fed-
eral housing policy—ensured that segrega-
tion “lasted through the 20th century and
continues to define the city’s geography”
in Chicago, leaving the South Side pre-
dominantly Black and often underserved.
[213, 477]

South Central. South Central Los Ange-
les emerged as a major Black community
during the Second Great Migration, when
African Americans flocked to California
for defense industry jobs in the 1940s. Be-
cause racially restrictive covenants barred
Black residents from most of Los Angeles,
about 70% of the city’s Black population by
1940 was packed along the Central Avenue
corridor—the area that came to be called
“South Central”. World War II accelerated
this influx: between 1942 and 1945 roughly
200,000 Black Americans migrated to Los
Angeles, doubling the local Black popula-
tion by decade’s end. Yet Los Angeles au-
thorities and homeowners reinforced segre-
gation—housing covenants were enforced
even more tightly as the Black population
grew, so that the community “remained
confined to pre-war boundaries” despite se-
vere overcrowding. These practices created

a segregated, majority-Black South Cen-
tral enclave. In the postwar decades, as
whites decamped to suburbs, South Cen-
tral suffered from disinvestment, setting
the stage for the area’s persistent economic
challenges and its later reputation for un-
rest. [464]

South Bronx. The South Bronx’s post-
war decline was largely the result of de-
liberate urban planning and institutional-
ized racism. The construction of the Cross
Bronx Expressway (built 1948–1963 under
Robert Moses) tore through stable Bronx
neighborhoods, displacing 40,000–60,000
residents and leaving a gash of concrete that
devastated the local housing market. Prop-
erty values plummeted, and many white
residents fled en masse to suburban ar-
eas (aided by government-subsidized mort-
gages), while Black and Puerto Rican
New Yorkers often had no choice but to
stay behind in the Bronx due to redlin-
ing and discriminatory housing policies.
By the late 1960s the South Bronx was
overwhelmingly populated by low-income
African American and Latino families, and
city services and private investment had
largely dried up. This disinvestment cul-
minated in the 1970s “Bronx is burning”
era, when landlords torched buildings for
insurance and entire blocks were reduced to
ruins—roughly 80% of the area’s housing
stock was lost to arson and abandonment.
These structural forces produced a South
Bronx synonymous with urban blight and
concentrated poverty, a legacy that contin-
ues to shape its social structure today. [474]

North Philadelphia. North Philadelphia
became a segregated Black community
during the 20th century through migration
and systemic discrimination. In the 1920s
and 1930s, Philadelphia’s Black popula-
tion swelled as Southern Black migrants
arrived, roughly doubling the number of
Black residents in North Philly and con-
centrating them in a few dense neighbor-
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hoods. White Philadelphians increasingly
refused Black neighbors—through racist
violence, “neighborhood improvement” as-
sociations, and exclusionary real estate
practices—leading to what researchers call
hypersegregation, as Black families were
confined to crowded blocks of North
Philadelphia while whites moved else-
where. By the mid-20th century, fed-
eral housing policies like redlining rein-
forced this pattern: virtually all of North
Philly was deemed high-risk and denied
mortgages, and nearly every public hous-
ing project built in Philadelphia between
the 1940s and 1960s was located in these
redlined Black neighborhoods. These
forces entrenched poverty and blight in
North Philadelphia’s segregated communi-
ties—effects still visible today in the area’s
abandoned houses and chronic disinvest-
ment. [187, 77]

Roxbury. Roxbury’s modern form was
shaped by deliberate segregation and ag-
gressive “urban renewal.” In the 1930s,
federal Home Owners’ Loan Corporation
maps labeled all of Roxbury as “haz-
ardous” for lenders—literally coloring the
entire area red—because of its high Black
and immigrant population. This redlin-
ing made home loans nearly unobtainable
in Roxbury and reinforced a racial divid-
ing line: after World War II, white ethnic
residents left for the suburbs in a wave of
white flight, and Roxbury became almost
exclusively inhabited by African Ameri-
cans (along with some Caribbean immi-
grants). Then, in the 1960s, Boston of-
ficials targeted Roxbury for highway con-

struction and redevelopment schemes. Un-
der the Boston Redevelopment Authority,
nearly half of Roxbury’s buildings were
razed—ostensibly for a planned I-95 free-
way and other projects—displacing over
5,000 families before community protests
halted further demolition. These structural
interventions devastated Roxbury’s hous-
ing and economy, leaving behind a pre-
dominantly Black community cut off from
Boston’s prosperity by decades of disin-
vestment and physical isolation. [272, 473]

Anacostia. Anacostia underwent a rapid
racial turnover in the mid-20th century due
to desegregation, federal intervention, and
white flight. In 1950, the neighborhood’s
population was 82% white and 18% Black
(with Black residents largely relegated to a
small enclave). After the Supreme Court’s
1954 school desegregation rulings (includ-
ing D.C.’s Bolling v. Sharpe), White res-
idents initially protested but then fled en
masse to Maryland suburbs rather than
integrate local schools. By 1967 only
37% of Anacostia’s residents were white,
and following the 1968 riots that num-
ber dwindled to almost none. The depart-
ing White families were replaced by Black
families—including many who were up-
rooted by a 1950s urban renewal project
that cleared a large African American en-
clave in Southwest D.C., forcing those resi-
dents to relocate to places like Anacostia.
These structural forces transformed Ana-
costia into a predominantly Black neigh-
borhood marked by economic divestment
after white flight, a legacy that continues to
shape its social conditions. [156]
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A.6 Sensitivity analysis

Census block groups, while the smallest geographical unit with available income data,
contain heterogeneous populations. This internal variance raises concerns about whether
our findings might be artifacts of using median income as our primary assignment method.
To address this concern, we tested alternative income assignment approaches that cap-
ture different aspects of within-block-group distributions, allowing us to examine whether
our observed patterns of socioeconomic mixing persist regardless of how we characterize
neighborhood income composition.

To validate the robustness of our findings to the income assignment methodology,
we conducted a sensitivity analysis using alternative approaches to assign socioeconomic
status to visitors. In our main analysis, we assigned each visitor the median income of
their home block group. Here, we test whether our measures of segregation (S) and
isolation (I) are sensitive to this choice by recalculating them using three alternative
income assignment methods:

• Mean Income: We assigned each visitor the average income of their home block
group, which is more sensitive to outliers than the median.

• Modal Income Bracket: We assigned each visitor the most common income
bracket (approximately $10,000 bins) reported in the Census for their home block
group.

• “High Variance” Scenario: To simulate potential sampling bias in the mobile
phone data, we deliberately assigned incomes drawn from non-modal brackets
within the home block group. This represents a scenario where mobile phone users
systematically differ from the typical resident of their block group.

Our results demonstrate strong robustness to these alternative specifications. The
measures of segregation and isolation calculated using these alternative methods remain
highly correlated with our original median-based measures, with correlation coefficients
ρ > 0.78 for segregation/diversity and ρ > 0.9 for isolation/exposure (Fig. A.5). Fur-
thermore, the distinctive spatial patterns identified in our main analysis persist across all
specifications. The rings of isolation surrounding urban centers and the pockets of segre-
gation remain evident in all alternative scenarios, with the patterns becoming even more
pronounced in some regions under the high variance scenario (Fig. A.6).

To quantify this consistency, we examined how block groups were classified in our
3×3 isolation-segregation typology across different specifications. Approximately 80%
of block groups remained in the same classification category regardless of the income
assignment method used (Figure A.7). This demonstrates that our findings represent
robust socioeconomic mixing patterns rather than artifacts of our income assignment
methodology or potential biases in mobile phone representation.
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Figure A.5. Sensitivity analysis. We use alternative imputations that respond in different ways to underlying
distributions and outlier behaviors. For example, we use mean income instead of median income—assigning
each user the income of the average in block group. We also use the most common income according to
the Census’ income bins, which are ∼ $10, 000, in the modal specification, as well as a scenario where
we sample from the distribution holding out the modal bin. This represents a case in which mobile phone
data are maximally biased, representing a population that is not the most common in block group. When we
compute our measures of segregation and isolation using these alternative specifications, they show a high
correlation with our preferred specification.
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  Isolated + segregated

Residents travel to diversity, 
area not visited by it

Diverse visitors, residents 
seek uniformity

Integrated + open

How segregated is a place? 

Rings of isolation

Merged in Northeast

A

B

C

Pockets of segregation

Figure A.6. Ring/pocket robustness. We test the “high variance” mixing scenario, showing that the results
are indeed different but that the rings and pockets that still exist and in some cases are sharper and more
defined.
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Figure A.7. Transitions between classes with different income assignment strategies. When we create
our isolation-segregation classes using these alternative specification, most block groups are in the same
class that they would have in our preferred specification with median income. Generally, 80% of all block
groups are in the same class across all variations of our measures.
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A.7 Are small CBGs driving our results?

Figure A.8. Sensitivity to population.We ensure that our results are not being drive by rural areas with little
population by filtering out block groups with less than 1000 residents and recomputing our metrics. This
means that for Segregation (S) we only count visitors from these populous block groups and for Isolation (I)
we use the new S value to compute exposure and only do so for block groups with the minimum population.
Our results appear robust and the measures before and after filtering show high correlation.
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A.8 Comparing income to nonwhite share

A B

Figure A.9. Comparison with race. As a robustness check, we use estimates of the nonwhite population
to check whether the relationships we see for segregation and isolation hold along dimensions other than
income. In A, we show that place segregation using median income and place segregation using nonwhite
population are correlated. In B, we subtract nonwhite segregation from income segregation for all obser-
vations and plot the distributions for different city sizes. For large cities, nonwhite segregation tends to be
higher than income segregation, which strengthens our results. Comparison of segregation by estimated
income and nonwhite population shows that although the measures are correlated, for larger cities by popu-
lation, race segregation is systematically higher than class segregation.
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A.9 Further robustness checks

Figure A.10. Time of day and composition effects. Left: we partition amenities according to segregation
quantile, then plot visits by time of day, seeing now differences across quantile. While we cannot explore
whether or not segregation is different at different times of day, the consistency across all quantiles alleviates
these concerns: if time of day corresponds with different visitors, we would see variation in these distribu-
tions. Right: we assign a “dominant group” to each amenity, according to its most common visitor income
bracket, and then look at how many dominant groups different neighborhoods experience. The most isolate
neighborhoods experience the fewest dominant groups, alleviating concerns that an isolated neighborhood
could have a high value on this measure if its residents visit homogeneous, low-income amenities and ho-
mogeneous, high-income amenities (both would be high segregation). This does not seem to happen often
in practice.
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A.10 NULL model

Figure A.11. Counterfactual if people mixed at where they work. Mixing compared to a null model.
We construct our measures of segregation and isolation using commuting data acquired from the Census
Bureau’s LEHD Origin-Destination Employment Statistics [499]. We compute them for block groups and
thus assume that all employees within one block group are exposed to each other. Segregation and isolation
obtained from GPS data are systematically higher than when they are obtained from commuting data under
these assumptions. This suggests that people sort into amenities around where they work, rather than mixing
with the general population of workers. As the plot of isolation shows in particular, the assumption of general
mixing is generous and there is less variation in these null results than in the GPS data, but it serves as a
comparison to an unbiased counterfactual where individuals do not sort into amenities and simply mix at
home and at work.
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A.11 Features by importance

Rank Variable Importance

1 Median income 0.2589
2 Dist. to CBD 0.1543
3 Density 0.1445
4 Amenity (#) 0.1181
5 Nonwhite (%) 0.0991
6 College (%) 0.0799
7 Amenity (H) 0.0499
8 Household size 0.0319
9 Vacancy rate 0.0242
10 Rent burden 0.0195
11 Under 16 (%) 0.0126
12 Unemployed (%) 0.0071

Table A.5. Table of important features in our tree. Income is the single best predictor of segregation but
urban structural factors like distance to the CBD, density and the number of amenities are also important.
We also note here that, although it is collinear with income, unemployment is irrelevant in this model. We
might expect, insofar as many jobs require travel to work, employment would represent a connection to the
broader economy.
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A.12 Complete decision tree

Amenities help

Wealthy, white downtowns more 
mixed than wealthy, white 
suburbsLess residential, more 

commercial

Figure A.12. Full decision tree. Decision tree with all predictors, showing that wealth, race, and location
are dominant predictors, but also that amenities play an important role. There are segments of the population
that avoid diversity, despite considerable variety in visitors nearby, but these groups are idiosyncratic, with
a variety of features—that could be proxies for other facets of urban life—predicting them.
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A.13 Relationship between spatial and social mobility

% nonwhite → 

Figure A.13. Social mobility and segregation.Relationship between neighborhood segregation and ex-
pected adult income, across different neighborhood racial compositions and childhood income levels. In
predominantly white neighborhoods (0-50% nonwhite), higher segregation paradoxically predicts higher
incomes (ρ > 0.3), likely showing that it signals affluence. This relationship weakens as neighborhood
nonwhite share increases and becomes negative in high nonwhite areas (75-100%), suggesting that visitor
homogeneity may proxy for disadvantage in these communities, though the relationship cannot be inter-
preted causally.
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% nonwhite → 

Figure A.14. Social mobility and isolation. Relationship between neighborhood isolation (homogeneity of
residents’ destinations) and expected adult income, across different neighborhood racial compositions and
childhood income levels. Similar to segregation, isolation shows strong positive correlations with income
in whiter neighborhoods (ρ > 0.4 for 0-25% nonwhite), again reflecting affluence rather than causal effects.
However, unlike segregation, the relationship approaches zero rather than becoming negative in high non-
white areas, suggesting that the diversity of visited places may matter less than the diversity of visitors for
predominantly nonwhite neighborhoods. Because this seems implausible, it may again indicate that amenity
segregation is a proxy for other factors that determine the economic opportunity in a neighborhood.
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Variable Adult income (SD)

Isolation (SD) 0.093***
(0.017)

Segregation (SD) -0.026*
(0.011)

Median Income (000s) 0.017***
(< 0.001)

Nonwhite pop. (%) -1.412***
(0.063)

Metro Area FE Yes
Observations 70,687
Adjusted R2 0.743
Within R2 0.695
RMSE 0.504

*** p < 0.001, ** p < 0.01, * p < 0.05

Table A.6. Neighborhood connectivity and adult income outcomes. Fixed effects regression results exam-
ining the relationship between neighborhood social connectivity and adult income. A one standard deviation
increase in isolation corresponds to a 0.093 SD increase in adult income (approximately $1,274 annually),
while controlling for neighborhood characteristics and metro area fixed effects. This suggests that isolation
is a proxy for other aspects of a neighborhood, like the affluence we identify in rings. The segregation shows
a small negative association (-0.026 SD), indicating that it does not explain much of the difference in out-
comes in pockets. Traditional neighborhood characteristics remain stronger predictors: a one percentage
point increase in nonwhite population share is associated with a 1.41 SD decrease in adult income. Standard
errors (in parentheses) are clustered at the metro area level.
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A.14 Analysis of “churn"

A

B

Figure A.15. Transition probabilities. Transition matrices for segregated clusters (A) and isolated clusters
(B) showing that the hotspots of high segregation and isolation are stable over time.

We reduce dimensionality by summarizing each neighborhood using the Mann-Kendall
test for monotonicity [304]. This test, which produces a statistic called Kendall’s τ , cap-
tures both the direction and strength of a trend: 1 indicates perfect monotonic increase
and -1 perfect monotonic decrease, with monotonicity representing the degree to which
a trend is consistent, each month building on the last, compared to up-and-down over
time. Fig. A.16A looks at the top 20 cities and shows that there is indeed a great deal of
churn within top cities across the sample, with areas that became more isolated and more
segregated in the plurality. This suggests that a rise in experienced segregation since the
pandemic in 2020 is a big city phenomenon. Kendall’s τ , in Fig. A.16B, shows that
changes are also spatially clustered at the national level. In particular, the midwestern
and northeastern parts of the country have areas that experienced steep rises in experi-
ence segregation.
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Worse in much of the suburban midwest

A

B

Figure A.16. Changes over time. A Counts of different transitions between our 3x3 classes, along segre-
gation and isolation (first-second) for the 20 largest metros: a plurality of neighborhoods have become more
segregated and isolated. B Trends in isolation decomposed to neighborhoods show that certain parts of the
country have experienced large increases; far fewer have seen decreases in isolation.
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A.15 Tree stability

Figure A.17. Feature importance over time. We see remarkable stability, with the exception of a key
variable: distance to the central business district. We also note that there is little change in rank importance.
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A.16 Top amenities

Top Category n

Restaurants and Other Eating Places 659,421
Offices of Physicians 486,962
Personal Care Services 385,824
Offices of Other Health Practitioners 258,376
Religious Organizations 191,314
Offices of Dentists 168,601
Automotive Repair and Maintenance 163,662
Health and Personal Care Stores 144,068
Other Amusement and Recreation Industries 139,338
Offices of Real Estate Agents and Brokers 136,412
Activities Related to Credit Intermediation 132,456
Grocery Stores 131,093
Gasoline Stations 130,596
Agencies, Brokerages, and Other Insurance Related Activities 127,865
Museums, Historical Sites, and Similar Institutions 122,852
Elementary and Secondary Schools 110,412
Accounting, Tax Preparation, Bookkeeping, and Payroll Services 101,419
Clothing Stores 95,119
Depository Credit Intermediation 93,688
Other Miscellaneous Manufacturing 87,434

Table A.7. Top 20 Business Categories by Count. This table presents the most common business cate-
gories in the dataset, with Restaurants and Other Eating Places being the most numerous at over 659,000
establishments. The top three categories alone account for over 1.5 million of 6 million different points of
interests.
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B Urban structure

B.1 Sensitivity analysis

A

B

C

D

E

Figure B.1. Partitioning at the median. Splitting our matrices at the median for a given variable does little
to change the results compared to the top tercile split that we use in the main text.
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Figure B.2. Partitioning at the top quartile. With fewer tracts considered “hotspots” in this specification,
generally the fall in integrated flows and the rise in random flows is attenuated.
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D

Figure B.3. Size gradients. We show the scatter plots the scaling relationships here. A There is a clear
relationship between the change in convergent flows between 2019 and 2024 and the size of the city. B
There is a shallow gradient connecting change in our doughnut index and size. C Change in our mixing
index has a steeper gradient as does D the change in convergent and divergent flows in tandem.
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B.2 Spending inequalities

A B

C

Figure B.4. Lorenz curves and Gini coefficients. A Pooled Lorenz curves for tract–level spend, 2019–2024
(color ramp left→right): the curve bends further from the 45° line over time, indicating rising concentration
of dollars across tracts. B Lorenz small multiples for four metros. Inequality rises in expensive “superstar”
cities (Los Angeles, New York), while Houston and Dallas show flatter or reversing curves over the same
horizon. C Plot of Gini (spend) in 2019 against 2024 for the top–100 metros by population (rank, 1=largest).
Changes are varied but exhibit no clear relationship with city size.
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Figure B.5. Length distributions. Examples of distributions obtained from sampled users in our data,
which show that some have obvious multimodality. Some are more bimodal, but even these distributions
have spikes throughout.
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Figure B.6. Component weights. We note that distal weights are often lowest in the city centre, which
suggests that although these areas have a distal component—because our strategy automatically assigns
one—they are less important; these areas make trips that are occasional and regional, exiting the city centre.
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Figure B.7. Component residuals. Model fits are generally good across cities and components, but some
areas in London have large distal errors. The most notable area here is an area that includes Slough, which
is beyond the M25 and is thus a satellite of greater London.
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C Heat and mobility

C.1 Data validation

Figure C.1. Trends in the data. Time series per activity over the two summers of our study, with interquar-
tile range shaded. We see that work/study and frequent activities are more common during the weak and
infrequent activities are more common on the weekend; there is a seasonal trend wherein infrequent activi-
ties rise is August while work/study and frequent activities fall. We also note that in May 2022, when school
is not in session, frequent activities are higher and infrequent activities lower than in the same period during
2023—possibly due to a classification error. In light of these trends, we make adjustments to our model
specifications to account for these weekday/weekend and seasonal variations.
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Figure C.2. Mobility and population. A The ratio work trips per person in each district for each month.
We see that again in May the balance is different than in the remaining months; and urban districts tend
to have more work trips than rural ones. This is because school is still in session in may, and work/study
includes both of these trips. B We document a strong correlation between work trips and population, again
with the exception of may, which typically has more work trips per person than other months. The fit returns
to that of other months on the weekends, when school is out, during May. We address this in the model
specification, and we also perform sensitivity analysis including and excluding this period.
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C.2 Model results

Table C.1. Impact of Extreme Heat (UTCI > 40◦C) on Mobility by Activity Type

Dependent Variable: Flows
Within districts Between districts

Variables
Work or Study -0.0068 -0.0054

(0.0087) (0.0079)
Frequent Activity -0.0207** -0.0243***

(0.0086) (0.0069)
Infrequent Activity -0.125*** -0.105***

(0.0311) (0.0232)

Fixed effects
District Yes Yes
Date Yes Yes

Fit statistics
Pseudo R2 0.978 0.972

Notes: Standard errors (in parentheses) are clustered by province.
Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.10.

Note: Results from Poisson regressions including district and date fixed effects. Estimates represent semi-
elasticities of flows (i.e., logs of expected counts). Standard errors are robust to clustering at the province
level.
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C.3 Sensitivity analysis

a b

c d

Figure C.3. Sensitivity analysis. A GAM results for the top 50 cities in Spain, all with a population over
100,000, and B for the remainder of Spanish cities, showing that the results are largely stable, with the
possible exception being around work patterns: in large cities, people are more likely to avoid travel to work
on hot days than in small cities—interesting because information technology jobs concentrate in large cities
and thus can likely be taken from home [182]. C and D filter the data to 2022 and 2023, respectively, showing
that they are also stable across time.
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C.4 Placebo tests

a b

c d

Figure C.4. Placebo tests. We perform 4 separate placebo tests to rule out potential spurious associations:
A and B shuffle temperatures across districts on the same date, while C and D shuffle temperatures across
different dates within the same district. The cross-district shuffles help rule out the possibility that our
results are driven by events affecting all districts simultaneously. The within-district shuffles help rule out
the possibility that observed changes would occur within districts regardless of temperature variation. While
GAM confidence intervals occasionally exclude zero, effect sizes are reduced by an order of magnitude or
more compared to the main analysis, supporting our primary findings.
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C.5 Consistency between genders

Figure C.5. Trip distributions. Here we show the distributions of daily visits per month and class of trip.
We note that across all months and classes of trip, the distributions of trips are consistent between genders,
suggesting broad similarity.
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C.6 Gravity model

Dependent Variable: Trips
Base model Temperature bins With gradient

Model: (1) (2) (3)

Variables
Log Distance -1.87∗∗∗ -1.87∗∗∗ -1.87∗∗∗

(0.013) (0.013) (0.013)
Temperature 25-30°C 0.011∗∗∗ 0.012∗∗∗

(0.002) (0.002)
Temperature 30-35°C 0.008∗∗ 0.009∗∗∗

(0.004) (0.004)
Temperature 35-40°C -0.020∗∗∗ -0.018∗∗∗

(0.006) (0.006)
Temperature 40-45°C -0.053∗∗∗ -0.051∗∗∗

(0.007) (0.007)
Temperature 45-50°C -0.066∗∗∗ -0.062∗∗∗

(0.009) (0.010)
Log Distance × Temperature Gradient -0.001∗

(0.0007)

Fixed-effects
ID origin Yes Yes Yes
ID destination Yes Yes Yes
date Yes Yes Yes

Fit statistics
Observations 31,148,196 31,148,196 31,148,196
Pseudo R2 0.87382 0.87386 0.87386
Squared Correlation 0.78625 0.78636 0.78637

Clustered (origin & destination) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table C.2. Impact of temperature on mobility. We use gravity models to understand if flows are displaced,
moving from one district to another, during heat waves, which would violate TWFE assumptions. While
high temperatures reduce flows, agreeing with the TWFE analysis, we see that temperature gradient has no
significant effect, suggesting that people do not preference higher or lower temperatures during heat waves.
This also indicates that people do not seek out cooler parts of the country during extreme heat. All models
include origin, destination, and date fixed effects; Standard errors clustered by origin and destination.
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Population
Temperature Very Low Low Medium High Very High

25-30°C 0.0267∗∗∗ 0.0324∗∗∗ 0.0321∗∗∗ 0.0376∗∗∗ 0.0482∗∗∗
(0.0031) (0.0045) (0.0086) (0.0091) (0.0092)

30-35°C 0.0589∗∗∗ 0.0629∗∗∗ 0.0371∗∗∗ 0.0277∗∗ 0.0224∗∗
(0.0049) (0.0059) (0.0078) (0.0080) (0.0084)

35-40°C 0.0862∗∗∗ 0.0834∗∗∗ 0.0350∗∗∗ -0.0007 -0.0363∗∗∗
(0.0075) (0.0095) (0.0077) (0.0076) (0.0077)

40-45°C 0.0791∗∗∗ 0.0763∗∗∗ 0.0086 -0.0303∗∗ -0.0874∗∗∗
(0.0081) (0.0108) (0.0083) (0.0089) (0.0087)

45-50°C 0.0751∗∗∗ 0.0588∗∗∗ 0.0123 -0.0783∗∗∗ -0.0962∗∗∗
(0.0158) (0.0125) (0.0130) (0.0173) (0.0146)

log(d) -1.865∗∗∗ (0.0112)

Fixed-effects
ID origin Yes
ID destination Yes
date Yes

Fit statistics
Observations 19,638,009
Pseudo R2 0.87786
Squared Correlation 0.79586

Clustered (by origin & destination) standard-errors in parentheses
Signif. Codes: ***: 0.001, **: 0.01, *: 0.05, .: 0.1

Table C.3. Impact of temperature and combined population on mobility. In this gravity model we
report the results of a gravity model that groups flows by population at origin and destination. Because the
model has 5x5 population classes as well as temperature bands, we present the average effects for combined
population groups. Our results show large negative effects for the most populous areas, while moderate
warmth is positive relative to cold.
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C.7 Projecting into the future

Figure C.6. CMIP estimates. Andalusia, in the South will see annual temperatures rise more than Galicia,
in the North. Major cities like Barcelona and Madrid will also experience considerable changes.
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C.8 Network properties

a b

c

Figure C.7. Networks and statistics. A We construct networks where edges correspond to trips and nodes
corresponds to geohash5 aggregations. B and C show the properties of these edges, with trip times averaging
between 50 and 100 minutes and lengths in kilometers averaging between 5 and 10. We note a distance and
time decay, where trips of long lengths and times are less frequent across the sample.
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Figure C.8. Biases in the data. A We show the time series for various top cities in the data, finding
irregularities in the beginning and end of the year, which we remove from the data. We also follow the
recommendation the data provider [533] and remove a number of other anomalous days in May and August.
B and C show how device counts in each geohash correlate with population and deprivation. While see a
strong correlation to population by geohash in our data, lending confidence to our estimates, we also see
that more deprived areas are less represented in the data. Because population itself is anticorrelated with
deprivation (ρ = −0.7), this is not entirely the product of bias, but we do our best to address this with
stratification and sensitivity analysis.
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Origin-Destination Patterns Trips Share (%)

India

Urban-rural 4,527 0.01%
Rural-urban 4,870 0.01%
Inter-urban 30,152 0.05%
Rural-rural 2,333,024 3.54%
Within-urban 63,527,103 96.40%

of which within-cell 52,383,732 79.49%
Total trips 65,899,676 100.00%

Indonesia

Urban-rural 6,952 0.02%
Rural-urban 8,234 0.02%
Inter-urban 16,182 0.04%
Rural-rural 1,265,869 3.04%
Within-urban 40,366,663 96.89%

of which within-cell 30,211,502 72.51%
Total trips 41,663,900 100.00%

Mexico

Urban-rural 221,369 0.17%
Rural-urban 226,830 0.18%
Inter-urban 129,046 0.10%
Rural-rural 15,516,385 12.06%
Within-urban 112,561,977 87.49%

of which within-cell 76,076,308 59.13%
Total trips 128,655,607 100.00%

Table C.4. Comparison of trip patterns across all three countries. Most trips in all countries are urban-
urban and very few begin or end in rural areas. In Mexico, the most developed country in our dataset, the
share of trips originating and terminating the same cell is the lowest, indicating greater mobility.

180



C.9 Alternative specifications

c

a

b

Figure C.9. Modeling temperature and activity. A We set up a directed acyclic graph (DAG) to ensure that
we close all necessary causal paths to activity; we control for day-of-year, day-of-week, holidays, solar radi-
ation, precipitation, and use geographic fixed effects that necessarily stratify by population and deprivation.
B Model results for different countries, showing that the highest activity levels occur at average tempera-
tures for an area, and that high extremes correspond with fewer trips. C Model results using trip duration
rather than trip count reveal that the longest trips tend to occur at average temperatures, with extreme high
temperatures leading to shorter trips.
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C.10 Placebo tests

dc

ba

Figure C.10. Permutations tests. We use a variety of permutation tests to ensure that the relationship
we observed is not spurious, including shuffled temperatures within GeoHash5 between dates, giving each
cell a temperature from a different time of year in that cell. A and B does this for duration and trip count,
respectively. We also shuffled between GeoHash5 within dates, giving each cell a new temperature from the
same date in a different cell, again for duration and trip count in C and D.

182



C.11 Sensitivity analysis

Constraint Level and Requirements No. of cells No. of cities

India

Low constraint: 1,259 482
Min. days with mobility=50
Min. average mobility=10

Medium constraint: 1,043 384
Min. days with mobility=100
Min. average mobility=15

High constraint: 832 262
Min. days with mobility=150
Min. average mobility=20

Indonesia

Low constraint: 701 199
Min. days with mobility=50
Min. average mobility=10

Medium constraint: 574 161
Min. days with mobility=100
Min. average mobility=15

High constraint: 461 103
Min. days with mobility=150
Min. average mobility=20

Mexico

Low constraint: 964 177
Min. days with mobility=50
Min. average mobility=10

Medium constraint: 890 176
Min. days with mobility=100
Min. average mobility=15

High constraint: 731 109
Min. days with mobility=150
Min. average mobility=20

Table C.5. Sample sizes under varying data quality constraints. We test our results on various samples
of the data, conditioning on the level of mobility in the cells to ensure that large changes on small values are
not driving our results.

183



ba

Figure C.11. Medium and high constraints. We show the results of our TWFE regressions for both A
medium and B high constraints respectively. These results, which are almost identical, show that different
subsets of the data behave in similar ways, and our results are not driven by certain groups of cells with high
rates of change on low values.
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C.12 Time-of-day and population

a

c

b

d

Figure C.12. Mobility by time of day and population. A When we decompose the effect of temperature
on activity by time of day, we see that the reduction in activity comes during the afternoons, suggesting that
people are avoiding the hottest part of the day. B In Mexico, all periods of the day see reductions in activity.
We see that in India C and Mexico D, larger populations see stronger temperature effects in absolute terms,
with higher predicted values and moderate temperatures and lower predicted values at the extremes, while
these curves are flattened for smaller populations.
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C.13 ARIMAX curves

a

b

Figure C.13. ARIMAX curves. A We plot the curves for optimal temperature given the coefficients from
the average fitted ARIMAX model, seeing that the predictions turn negative between 30 and 40◦C for both
India and Indonesia, but fall much earlier in Mexico—which has a temperate climate many populous areas
like Mexico City and Guadalajara. B We disaggregate those averages to show all curves from all geohash3
ARIMAX models: there are some curves that show a positive effect of temperature but most show a negative
one, in particular those fit in India.
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C.14 Projections for Indonesia

Nusantara
a b

c d

Jakarta

35°UTCI 40°UTCI

Figure C.14. Temperatures and activity in 2050. A and B show frequency of days above 35◦UTCI and
40◦UTCI, respectively; we see that Borneo and Sumatra will have more frequent days above 35◦UTCI while
days 40◦UTCI will be concentrated in Sumatra, suggesting that heat ways will be a problem there. We note
here that Indonesia is in the process of moving its capital city to a hotter part of the country, which will either
force adaptation for new residents or limit activity. C and D show the consequences of these temperatures
according to our model, with strong effects at higher temperatures but Indonesia, the existing capital and
largest city, is will show the largest effects in absolute terms.
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C.15 CMIP6 estimates under different scenarios

Figure C.15. Temperatures under SSP 4.5 and 8.5 through 2100. We show CMIP6 estimates under
different scenarios for each country, with Mexico seeing warming from a low average today, India seeing the
strongest change, and Indonesia seeing less of a change but from a high average today. These estimates are
the averages from ensembles of models and the ribbons indicate the 10th and 90th percentiles of all models
[515].
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