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Fig. 1. Our online motion retargeting approach effectively mitigates penetrations and preserves contact fidelity, all while maintaining the overall semantic
integrity of the original motion. Furthermore, it enables precise control over attached objects, such as ensuring that a spear strikes its intended target accurately.
For each pose pair, the source character is depicted on the left and the retargeted result on the right.

Geometry-aware online motion retargeting is crucial for real-time char-
acter animation in gaming and virtual reality. However, existing methods
often rely on complex optimization procedures or deep neural networks,
which constrain their applicability in real-time scenarios. Moreover, they
offer limited control over fine-grained motion details involved in character
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interactions, resulting in less realistic outcomes. To overcome these limita-
tions, we propose a novel optimization framework for ultrafast, lightweight
motion retargeting with joint-level control (i.e., controls over joint posi-
tion, bone orientation, etc,). Our approach introduces a semantic-aware
objective grounded in a spherical geometry representation, coupled with
a bone-length-preserving algorithm that iteratively solves this objective.
This formulation preserves spatial relationships among spheres, thereby
maintaining motion semantics, mitigating interpenetration, and ensuring
contact. It is lightweight and computationally efficient, making it particu-
larly suitable for time-critical real-time deployment scenarios. Additionally,
we incorporate a heuristic optimization strategy that enables rapid con-
vergence and precise joint-level control. We evaluate our method against
state-of-the-art approaches on the Mixamo dataset, and experimental results
demonstrate that it achieves comparable performance while delivering an
order-of-magnitude speedup.
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1 Introduction

Motion retargeting has long been a challenge in computer anima-
tion, dating back to several decades [Choi and Ko 1999; Gleicher
1998]. In recent years, the problem has revived in the deep learning
era [Villegas et al. 2018], with data-driven approaches [Cheynel
et al. 2025; Ye et al. 2024; Zhang et al. 2023b] significantly advancing
the fidelity of retargeted motions. By integrating character geome-
try representations into semantic-aware constraints, these methods
achieve improved preservation of motion semantics and mitigation
of artifacts such as self-penetrations and mismatched contacts.

However, the game scenarios require online deployment, which
means runtime calculation at a rate no lower than the frame rate of
the game environment, as well as high quality results without the
need for post-processing. Unfortunately, recent geometry-aware
methods continue to exhibit three critical limitations that constrain
their applicability in game scenarios. (i) Current methods are too
computationally expensive to support real-time execution given the
limited computing resources available in interactive video games.
Unlike offline approaches, online performance is the only viable
solution in scenarios where the specific retargeting task cannot be
anticipated, such as in interactive gaming applications. (ii) They
lack precise control over frequent and subtle environmental interac-
tions, particularly in accurate contact handling between character
mesh and external environments, such as opening a door without
penetration between the character’s hand and the door. (iii) They
typically operate on characters with fixed-topology skeletons and
neglect attached objects, while the motion of attached objects, such
as the aiming target when holding a rifle, is critical for preserving
motion semantics during retargeting.

These limitations motivate us to develop an ultrafast and control-
lable geometry-aware motion retargeting framework tailored for
interactive gaming environments. This goal introduces two primary
challenges. The first is achieving real-time performance under lim-
ited computational resources. At runtime, most system resources
are allocated to rendering and core gameplay logic, necessitating a
lightweight online solution while still capable of preserving motion
semantics and mitigating artifacts. The second challenge lies in en-
abling fine-grained control without compromising overall motion
semantics. High-fidelity environmental interactions demand joint-
level or even vertex-level accuracy, whereas semantic preservation
requires adjusting the entire body to satisfy overall motion con-
straints. Unifying these constraints without conflict or degradation
in performance remains a challenge.

To address these challenges, we propose a novel optimization
framework that formulates the retargeting task as a conditioned
optimization problem, where a geometry-aware objective minimizes
the semantic difference, such as misplaced end-effectors and un-
maintained contact between the original and retargeted motions,
and joint-level conditions facilitate fine-grained control. To achieve
real-time performance, we further develop a heuristic optimization
strategy tailored for fast convergence.

Our method builds upon a hybrid representation that jointly
models the character and its attached objects. This representation
combines skeletal joints with a set of sampling spheres extracted
from the input mesh. Each sphere is associated with specific joints
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to maintain a consistent mapping between kinematic structure and
surface geometry. Based on this, we define an optimization objective
that maintains spatial relationships among the spheres, which not
only preserves motion semantics but also mitigates mesh interpene-
tration and preserves contact. Complementing this, joint-level con-
ditions impose spatial constraints on joints and associated spheres,
enabling precise control in interactive scenarios. We solve the op-
timization problem using a heuristic algorithm that updates joint
positions iteratively while preserving bone lengths and that allows
direct joint manipulation. Our method is rotation-free— it avoids
computing forward kinematics or Jacobians, which significantly
reduces computational cost. By integrating these components, our
framework achieves ultrafast performance with minimal compu-
tational overhead, making it suitable for online platforms. In addi-
tion, it supports highly controllable motion generation, enabling
customized interactions with environments. Experimental results
demonstrate that our method achieves comparable performance to
state-of-the-art approaches while delivering an order-of-magnitude
speedup. In summary, the contributions of this paper are as follows:

o An ultrafast and controllable motion retargeting method that
simultaneously ensures semantic preservation, precise con-
trol, and online performance.

o A sphere-based geometric representation and a corresponding
simplified optimization objective that enables the preserva-
tion of motion semantics at low computational cost.

o A rotation-free optimization method that bypasses forward
kinematics and Jacobian computations while remaining com-
patible with precise and fine-grained controls.

2 Related Works
2.1 Motion Retargeting

Motion retargeting aims to transfer motion from a source char-
acter to a target character with different skeletons and geometry.
Early approaches formulate motion retargeting as a space-time opti-
mization problem [Gleicher 1998], utilizing specialized optimization
techniques (e.g., inverse kinematics) to ensure precise control over
end-effectors [Choi and Ko 1999; Lee and Shin 1999]. However,
these methods often rely on carefully hand-designed constraints
tailored to specific motions, making them cumbersome to deploy.
To address these limitations, some semantic-aware spatial structure
methods [Al-Asqghar et al. 2013; Ho et al. 2010; Ho and Shum 2013;
Kim et al. 2016] are proposed for automatic optimization. Deep
learning-based methods further enhance the efficiency of holis-
tic and automatic retargeting through semantic preservation con-
straints [Aberman et al. 2020; Jang et al. 2018; Lim et al. 2019; Mourot
etal. 2023; Villegas et al. 2018]. While effective, these methods gener-
ally neglect the geometry of characters, leading to frequent contact
mismatches and severe self-penetrations. Several geometry-aware
optimization methods leverage different geometries to eliminate
these artifacts [Basset et al. 2019; Ho et al. 2010; Wang et al. 2023], but
they suffer from high computational cost due to complex objectives.
Recent approaches improve efficiency by leveraging latent optimiza-
tion [Villegas et al. 2021], geometry-aware networks [Zhang et al.
2023b], and vision-language fine-tuning [Zhang et al. 2024]. Rein-
forcement learning-based methods leverage physically simulated



characters to achieve more realistic motion control [Reda et al. 2023]
and environmental interaction [Zhang et al. 2023a]. Nevertheless,
the computational overhead of physical simulation poses significant
challenges for real-time deployment in games.

State-of-the-art methods [Cheynel et al. 2025; Ye et al. 2024] adopt
sampling-point-based strategies, enforcing semantic consistency
via point clouds sampled on the character surface. While dense
sampling [Ye et al. 2024] offers better geometric coverage at high
computational cost, sparse alternatives [Cheynel et al. 2025] are
more efficient but may fail to mitigate artifacts. Despite their abil-
ity to preserve whole-body semantics, these methods often lack
precise control over fine-grained interactions. In practice, inverse
kinematics-based methods remain the dominant solution in game
engines for retargeting with high-fidelity spatial constraints. To
date, no unified geometry-aware framework integrates semantic
preservation and fine-grained control for real-time game scenarios.

2.2 Character Geometry Representations

In motion retargeting, character geometry is commonly employed
to handle self-penetrations and preserve contacts. While original
meshes provide accurate geometric representations [Liu et al. 2018;
Wang et al. 2023], their high computational cost and indetermi-
nate topology render them unsuitable for real-time processing.
SMPL models [Loper et al. 2015] have been leveraged to enable
optimization-based, geometry-aware retargeting [Basset et al. 2019;

Jinetal. 2017], but are restricted to regular humanoid forms. Bounding-

volume-based methods offer greater generalizability [Ho et al. 2010;
Zhang et al. 2023b], typically attaching volumes such as bounding
boxes to bones. Point clouds provide high flexibility and generaliz-
ability for simplifying character meshes [Biswas et al. 2021; Jang
et al. 2024; Ye et al. 2024; Zhang et al. 2023b]; however, balancing
the sampling density to minimize computational overhead while
mitigating artifacts remains a significant challenge.

In addition to motion retargeting, simplified character geometries
also apply to other fields, such as rendering and cloth simulation.
Spherical approximation methods for soft shadowing offer low com-
putational overhead and plausible shadows [Ren et al. 2006; Wang
et al. 2006]. A mixed geometry approach using capsules and spheres
has been employed to accelerate cloth simulations [Wu et al. 2018].
The sparse sphere-based geometries have the advantage of sparse
sampling points that are computationally efficient and easy to manip-
ulate with skinning methods. Furthermore, spheres provide better
coverage of the character mesh due to their volume and mitigate
the risk of missing self-penetrations on small body parts.

3  Method
3.1 Overview

The standard motion retargeting task is formulated as follows: Given
a source character A with skeleton representation $4, geometry
representation G and motion sequence Q; a target character B with
skeleton SB and geometry GB; and a set of interaction controls {C;}
(manually defined constraints on parameters such as joint positions
for precise control of the environmental interactions, details are in
Sec. 3.6), the objective is to synthesize a plausible motion sequence
O for the target character:
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O=F (Q, s4,5%,64, G, {C1}) o

The retargeted motion O should preserve the semantics of the
source motion and satisfy the given controls while mitigating ar-
tifacts such as self-penetrations and mismatched contacts. In this
paper, we assume the source animation is of high quality and con-
tains few artifacts, which is certainly satisfactory for hand-made

animations. In our method, the character skeleton S is represented
J

j=r
The geometry G is represented by a set of sampling spheres {g;}
where N is the number of spheres. The motion Q is defined as a

by joint offsets in the T-pose {s j} where J is the number of joints.

N
i=1

sequence of poses over time: {qt}tT:l, where each pose q, € R/**
denotes quaternion joint rotations. As an online framework, our
method computes the retargeted pose ¢, for each input pose g, in
a streaming manner. Unless otherwise specified, we use q and g,
interchangeably to refer to a pose at a specific frame.

To solve this problem, we first design a semantic-preserving objec-
tive based on our novel spherical geometry representation (Sec. 3.2).
To solve this objective, we begin with a preprocessing step for ini-
tialization (Sec. 3.3), followed by a heuristic rotation-free strategy
to optimize the joint positions efficiently (Sec. 3.4) and two ways to
recover joint rotations from that yield the retargeted pose (Sec. 3.5).
Finally, we seamlessly integrate precise interaction control into
the framework (Sec. 3.6). The following sections will describe the
details.

3.2 Semantic-preserving Objective

In this section, we first introduce our novel spherical geometry rep-
resentation, which provides a simplified yet effective way to model
character geometry. Then, we introduce the semantic-preserving ob-
jective, which aims to preserve motion semantics while mitigating
artifacts such as self-penetrations and mismatched contacts.

3.2.1 Spherical Geometry Representation. State-of-the-art retarget-
ing methods [Cheynel et al. 2025; Ye et al. 2024] represent human
geometry with sampling points on the skin, which have two inherent
drawbacks: First, due to the sparsity of the sampling points, a large
number of points are required to eliminate penetrations. Second,
these points require normal directions to distinguish the inner and
outer sides of the mesh, leading to inevitable rotational calculations.
In contrast, our rotation-free spherical geometry representation
overcomes these limitations.

Specifically, we adopt a hybrid representation that models the
kinematic structure via skeletal joint positions and approximates
surface geometry using a set of sampling spheres {gi}fi o extracted
from the input mesh. Each sphere is associated with a bone, defined
by its parent joint J,(g;) and child joint J.(g;), thereby maintain-
ing a consistent mapping between kinematic structure and surface
geometry.

For a given joint with index j, we define two sets of indices of
associated spheres: the parent spheres Gy (j) = {ilJc(gi) = j} and
the child spheres G.(j) = {i|]p(g,-) = j}. Each sampling sphere
is represented as g; = (c;, cg, ri), where c¢; donates the position of

sphere center in world coordinates, cﬁ is the position of sphere center
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Fig. 2. Overview of our framework. The pipeline takes the skeletons and source poses, together with sampling spheres extracted from character mesh as
input, followed by preprocessing and iterative optimization steps. These stages successively adjust the joint positions p? and sphere positions ¢ of the target
character. Finally, the retargeted joint rotations ¢® are reconstructed based on the optimized joint positions. Spatial controls are incorporated into each
iteration by manipulating the expected offsets of joints (V) and spheres (), enabling precise control over motion details.

in local coordinates relative to parent joint, and r; is radius. To ensure
semantic consistency between the source and target characters, the
source and target sphere sets gf and g? must contain the same
number of spheres and maintain identical joint associations, that is,
JA (g?) =JB (gl ) for both parent and child joints.

We propose an automated method to generate sampling spheres,
thereby avoiding manual construction. Inspired by [Ren et al. 2006;
Wang et al. 2006; Wu et al. 2018], we iteratively optimize each sphere
gi by minimizing its external volume Vy,+(g;), defined as:

Vout(gi) = Vgi A (ﬁVmesh)s (2)

where Vj, denotes the volume of sphere g;, Vi,esp represents the
volume of character’s mesh. Minimizing V,,,;(g;) yields a compact
approximation of the mesh surface using the set of sampling spheres.
Further details can be found in the supplementary material.

3.22  Objective Definition. The semantic-aware objective operates
purely on the geometric representation to preserve motion seman-
tics while mitigating self-penetrations and mismatched contacts.
To this end, we introduce semantic vectors that represent spatial
relationships between sampling spheres, effectively capturing the
motion semantics, as shown in Fig. 3. For the source character, the
semantic vectors d . between spheres i and k are defined as the rel-
ative offset between the nearest points on their respective surfaces:

lled = || = (rA +rd)
A _ (A A k i i k
di’k—(ck—ci).max ||cA— AII el 3)
k
where ¢ is a small positive constant, and || - || denotes the Euclidean

length of a vector. We apply the max(-) operation to ensure the
semantic vectors do not flip in cases where self-penetration occurs
in the source character. For the target character, the semantic vectors
are defined as the relative offset between two auto-sampled points
that comes from projecting the centers of spheres g? and gf onto

their respective surface along the direction of d?k and —d?k
A A
B = |cB-rB. cBarB. dl k (4)
ik — |k " Tk G T :
' ||d Al Izl
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Fig. 3. lllustration of the semantic vectors dfk and d?k, representing the
spatial relationships between sampling spheres for the source and target
characters, respectively.

Matching such pairwise semantic vectors between the target and
source characters preserves motion semantics and mitigates arti-
facts. To better capture the semantic significance of different vectors,
each semantic vector is assigned a composite weight incorporat-

ing: (i) spatial prox1m1ty in the source pose, measured by wd‘“

(ii) a penetration mask m " that excludes physically 1mplau31ble
configurations due to self- penetration The overall weighting mech-
anism prioritizes contact preservation and reduces self-penetration.
Detailed definitions are in the supplementary material.

The pairwise semantic discrepancies are aggregated to compute

the semantic loss .L; for each sphere g;:

N wdist  p,pen
o B A ik ik
Li= Z (di,k - di,k) Z dlst mbPen’ ®)
k=1 Mk

We define the semantic-aware objective as minimizing the semantic
loss for all spheres:

argmmz [1.L:ll2 (6)

Pj i=1
where p; is the position of joints in the retargeted pose that deter-
mines the location of spheres.

3.2.3  Mapping Between Joints And Spheres. To maintain the consis-
tent mapping between kinematic structure and surface geometry,



we establish relations between the joint positions and sphere lo-
cations and optimize Eq. 6 by iteratively updating joint positions.
The relations are defined as linear mappings between the offsets of
joints and spheres during the iterative optimization, which offers
an efficient approximation of the precise position relations. For a
given sphere g;, let V;, and V. denote the offsets of its parent and
child joints, respectively. The offset of the sphere is approximated
as a linear interpolation between these two joint offsets:

Ui=Vp'(1—li)+Vc'li, (7)

where [; is a coefficient computed by projecting the center cf of
sphere g; onto the corresponding bone:

1

c; - Sc
lIsell?”

For a sphere g; with a desired offset v;, computing the exact
offsets of its parent and child joints constitutes a complex inverse
kinematics (IK) problem. For efficiency, we heuristically approximate
the corresponding joint offsets V;, and V. as:

I

where ¢ = J.(g;). (8)

v 1-1; v I;
= - "0j, = ——
PRy N Br(i-p)?

This approximation satisfies the linear interpolation constraint de-
fined in Eq. 7, along with two boundary conditions: (i) V. = 0 and
Vp = v; for a sphere overlaps with its parent joint (/; = 0); (ii)
V¢ =v; and V), = 0 for a sphere overlaps with its child joint (/; = 1).

In practice, a single bone may be associated with multiple spheres;
thus, the final offset for a joint j is computed as the average of all
mapped offsets from the associated spheres:

v;. )

1 1-15) v I - ox
Vi B+ 16,00 Z Er(-1)2 " Zk: Er(-12)
(10)
where | - | is the cardinal number of a set, i € G () is the indices
of child spheres and k € Gj(j) is the indices of parent spheres.
While our approximated mappings ignore twist rotations around
the bone axis, they remain effective for the retargeting task, as such
twist rotations tend to be approximately invariant throughout the
retargeting process.

3.3 Preprocessing

A well-initialized solution is critical to the effective optimization of
Eq. 6. To initialize the input for our retargeting framework, we begin
with motion copying from the source character, where the global
root motion is simply copied. However, this naive copying often
results in undesirable physical artifacts, such as ground penetrations
or floating behavior. To mitigate these issues, we propose a heuristic
preprocessing that ensures a physically plausible initialization.
The preprocessing consists of three sequential steps. First, the
ground plane is estimated in world space, and the target character
is positioned accordingly: it is placed on the ground if the source
character is in contact with the ground (e.g., standing poses), or
aligned to the same vertical height if airborne (e.g., jumping mo-
tions). Second, the target character’s joints are heuristically adjusted
to restore valid ground contact and eliminate ground penetrations.
Finally, we apply the FABRIK [Aristidou and Lasenby 2011] to refine
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Fig. 4. lllustration of the preprocessing pipeline.

joint positions and ensure bone lengths are strictly preserved. An
illustrative example is shown in Fig. 4, and detailed algorithmic
formulations are provided in the supplementary material.

3.4 Rotation-Free Optimization

An intuitive method to optimize Eq. 6 is to update joint rotations
through Jacobian matrix [Choi and Ko 1999] or gradient descent
frameworks [Cheynel et al. 2025]. However, the efficiency of these
methods is constrained by three primary limitations: (i) highly non-
linear gradients, (ii) forward-kinematics (FK) requirements for each
iteration, and (iii) constrained step sizes due to potential Jacobian
singularities. A more efficient strategy is to produce rotation-free
quadratic optimizations [Ho et al. 2010] with additional bone length
constraints. The bone length constraints, as difficult quadratic equa-
tions, can be integrated into quadratic objectives through Jacobian-
based approximation [Ho et al. 2010] or gradient descent frame-
works [Tang et al. 2022; Usman et al. 2022]. However, they are
not precise enough and may subsequently lead to inaccurate in-
teractions. For precisely preserving bone lengths, we propose an
efficient iterative optimization strategy to solve Eq. 6 that takes bone
lengths as conditions. Each iteration can be decomposed into four
distinct steps: (i) Estimate the expected offsets of spheres linearly.
(if) Map the expected sphere offsets to corresponding joint offsets.
(iii) Update the joint positions using a rotation-free algorithm that
preserves bone lengths. (iv) Adjust the sphere positions by mapping
the updated joint offsets back to sphere offsets.

3.4.1 Estimating Optimization Step. For efficiency, we adopt a heuris-
tic strategy that estimates the update step for each sphere indepen-
dently, rather than computing the overall derivatives. For a sphere

g? with semantic loss £;, we approximate its expected offset as:

vi=L;. (11)
Subsequently, the expected offset for joint j is derived through
Eq. 10.
The derivation of Eq. 11 begins by rewriting Eq. 5:
N
£i=Z(cE+C)-W—c?, (12)

k=1

where C including the source spheres and W including the weights
are constants in the current iteration. Although the semantic loss
L; is a linear function of both c? and the positions of other spheres

{Cf lk=1,2,.NAk# i}, we approximate the optimization by treat-

ing c? as the sole variable and fixing the others. Assuming £; = 0
after applying offset v; on sphere g;, we have:
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Fig. 5. lllustration of updating a 3-link.
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which directly leads the approximation in Eq. 11.

3.4.2 Updating Joints. We propose a heuristic algorithm to update
joint positions through {v;}. We model limbs as linkages, starting at
a fixed root (e.g., shoulders) and ending at end-effectors (e.g., hands).
For example, the shoulder-elbow-hand chain forms a 3-link, while
the pelvis-knee-ankle-toe is a 4-link. A K-link is defined by the joint

positions {pj lj=12,.., K}, satisfying the bone length constraint:

pjs —pjll =llsjsll.j=12...K-1. (14)
Given a set of desired offsets V; for each joint j < K along a kine-
matic link (with V1 = 0 for the root), the objective is to compute
updated joint positions p ; such that the displacement P =P approx-
imates the target offset V;, while strictly preserving bone lengths.
The algorithm for updating K-links(K > 3) proceeds as follows:

(1) End-effector update: Compute the target position of the K-th
joint as px = pr + V. Then, project py onto the spherical
surface centered at the K — 1-th joint with radius ||sx|| to
obtain the updated joint position.

(2) Intermediate joint updates (applicable for K > 4): For each
joint j from K — 1 down to 3, compute the target position
Pj = p; +Vj and project it onto the sphere centered at p;,,
with radius [|s;]].

(3) Second joint update: After other joints are located, only one
degree of freedom is left, i.e., rotating around the axis con-
necting the root and the third joint. Similar to the previous
step, we first calculate a target p,, and project it onto the
circle to obtain the updated joint location.

Noted that step (2) may produce invalid joint positions p;, causing

||pj -pill > Z{:z |Isi||, and needs additional handling. The illus-
tration for common cases K = 3 is shown in Fig. 5. More details
with the pseudo-code are presented in the supplementary material.

While efficient, the algorithm is less flexible and may struggle
to reach certain target positions as the number of joints increases.
Given that motion semantics are primarily conveyed through the
limbs [Zhang et al. 2023b], we restrict this algorithm to limb joints,
leaving the torso adjustments to preprocessing.

3.4.3 Regularization. Human joint motions are subject to biome-
chanical constraints, which help maintain naturalness and prevent
implausible poses. While these constraints can be manually speci-
fied as joint rotation limits [Aristidou and Lasenby 2011], manually
setting dozens of constraints is time-consuming and impractical.
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Fig. 6. lllustration of the regularization step that constrains the size of 6.

Instead, we propose an efficient strategy that regularizes the retar-
geted motion by leveraging the source motion, which inherently
satisfies such constraints.

For any 3-link chain, we define its twist as the rotation of the
intermediate joint around the axis linking both ends. Similar to
a single bone, the change in the twist of 3 links is small in the
retargeting task. This insight inspired us to regularize the optimized
result by constraining the twist change 6 of 3-link chains:

éze-(l—sin(g)). (15)

The regularization process, illustrated in Fig. 6, avoids excessive
twists while allowing smaller ones, satisfying two boundary condi-
tions: § — 6 for @ — 0 and § — 0 for § — 7. Instead of the precise
rotation-relevant solution, we employ two rotation-free approxima-
tions that achieve similar effects with greater efficiency:

(1) Approximate 0 as the angle between d:)ei , and doz.

(2) Approximate the interpolation between 0 and 6 by a linear

ref

interpolation between d ;- , and dp—».

The detailed pseudo-code is provided in the supplementary material.

3.5 Reconstructing Rotations

After the last optimization iteration, joint rotations are reconstructed
from joint positions in two ways, which respectively minimize the
global and local twist change of bones. The first strategy, i.e, the
one minimizing change of global twists, is performed by a mini-
mal rotation from the motion copied orientation to the optimized
orientation:

(j?lo = between (qi}.lo “Se, P — pj) - q?lo, (16)
where the subscript ¢ refers to the child of joint j, s; is the relative
offset of ¢ as mentioned in Sec. 3.1, p, p,. are the optimized global
joint position, g, q j indicate the motion copied and retargeted joint
rotation respectively, and between(A - B) is a quaternion operation
calculating the rotation from direction A to B.

The second strategy, minimizing the change of local twists, is
performed by a minimal rotation in local space:

. lo\ ™1
q§°“=between(q§“-sc, (a7°) -(pc—pj))-qﬂ-“, (17)

where the subscript p refers to the parent joint of j.

Users can combine the use of the two strategies for joint-wise
control over rotation reconstruction. By default, we use the first
strategy for the root and the second for the other joints. Pseudo-code
is provided in the supplementary material.



3.6 Interaction Control

3.6.1 Attached Objects. Although often overlooked, attached ob-
jects—such as weapons—are common for game characters. Our
method supports attaching arbitrary objects to end-effectors (e.g., a
sword in hand) by treating them as additional bones with uniform
spherical representations, as illustrated in Fig. 7. The optimization
process flexibly accommodates the dynamic attachment and removal
of such objects. Once modeled as spheres, these items are seam-
lessly incorporated into the semantic-preservation optimization,
effectively preventing artifacts such as collisions or penetrations
with the character body.

3.6.2  Spatial Interactions. Most interactions with the environment
are defined through spatial constraints, such as foot placement or
contact with specific locations. These constraints are especially
critical in motions involving weapons. For example, consider a tall
warrior wielding a spear as the source character and a shorter dwarf
as the target; despite the height difference, the spear is expected to
strike the same point in space. Our framework integrates spatial
interactions seamlessly by directly constraining the expected offsets
of joints ({Vj}) and spheres ({v;}).

For a joint-level interaction defined at a global position P; with
joint j, we enforce Vj = P — p; during optimization. Similarly, for
a sphere-level interaction defined at P;, we constrain v; = P; —c;.
These constraints ensure precise control when the targets are within
reach. However, due to skeletal differences, some targets may lie
outside the reachable region and can only be approximated.

3.6.3 Applications. To reduce the need for cumbersome manual
configurations, we implement several common applications using
the aforementioned control mechanisms. The first is to avoid pene-
trations into the ground. We check if any sphere i that penetrates
into the ground, then constrain the expected offset by:

v; = —min (height (C?) - TiB, 0) *Ngnd> (18)

where ng, g is the normal direction of the ground.
The second is to keep footsteps. Footstep is defined by the hori-
zontal offset of the foot joint:

Fy= (Pt,f - Pt—l,f) ~Mgnd ((Pt,f - Pt—l,f) : ngnd)’ (19)
where t indicates frame index, f is a foot joint. We constrain the
footstep of the target character by referring to the source character:

B_ B A _ B
Vf—pt_l,f+Ff Py (20)
The third is to preserve the "hit" point of a weapon. To preserve
impact locations for weapon-based interactions, we treat the inter-
active point (e.g., a spearhead) as a weapon joint. The hit position is
preserved by matching the global position of this joint:
Vi =Pl - P (21)

where w refers to the extra weapon joint.

4 Experiments and Results
4.1 Dataset

We construct our test dataset using characters and animations from
Mixamo [Adobe 2025]. To better reflect the characteristics of game
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Fig. 7. Attaching a sword to a character by extending the right arm with an
extra weapon bone. The sword is represented by sampling spheres.

Table 1. Comparison of inference speed in experimental environment
Tindicates the methods evaluated using GPUs, while all other methods are
tested on CPUs.

Method Platform FpsT
ReConForMT [Cheynel et al. 2025] PyTorch 67
R2ET [Zhang et al. 2023b] PyTorch 268
MeshRet7 [Ye et al. 2024] PyTorch 30

Ours Numpy 2,204

Ours C++ 22,431

scenarios, we carefully select four game-style characters as source
characters and eight game-style characters with significant skeletal
and geometric differences as target characters. We manually select
a subset of 157 game-style animations with minimal artifacts.

4.2 Inference Speed

We compare our method with existing geometry-aware retarget-
ing approaches by measuring average per-frame processing time.
For ReConForM [Cheynel et al. 2025] and MeshRet [Ye et al. 2024],
we adopt GPU-based framerates reported in their respective pub-
lications. Other methods are parallelized for optimal CPU usage
on an Intel i9-13900K. Despite this, our CPU-only implementation
achieves significantly higher speeds. As shown in Tab. 1, our method
achieves an order-of-magnitude speedup, making it highly suitable
for real-time applications. To reflect the real performance in engi-
neering, we tested the per-frame time cost of our method and the
fastest geometry-aware method R2ET, in Unity deployment. Our
method costs 0.13ms for each frame, while the R2ET costs 3.92ms.
More details about the Unity deployment are in the supplementary
material.

4.3 Quantitative Results

Tab. 2 presents comparisons between our method and baseline
methods, including state-of-the-art geometry-aware approaches
MeshRet [Zhang et al. 2023b], R2ET [Ye et al. 2024] and a skeleton-
only method SAN [Aberman et al. 2020]. Our method achieves
superior performance in contact preservation (Con.), and demon-
strates competitive results on the self-penetration rate (Pen.), which
quantifies the proportion of vertices engaged in self-intersections. It
is worth noting that relatively higher MSE and MSE!¢ values do not
necessarily imply degraded motion semantic preservation, as MSE
measures joint position error with respect to the source motion and
fails to capture geometry-level motion semantics. Further discussion
can be found in the supplementary material.
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Table 2. Quantitative comparisons with baseline methods. Bold and
underline denote best and second best, respectively.

Methods MSE | MSE! | Pen.(%) | Con. |
Source - - 3.715 -
Copy 0.069 0.045 5.114 0.959
SAN 0.069 0.045 4.674 1.974
R2ET 0.087 0.048 4.375 1.274
MeshRet 0.280 0.072 5.282 0.912
Ours 0.108 0.050 4.915 0.394
Ours w/o Regu. 0.108 0.050 4.837 0.349

Table 3. User study across Semantic Preservation, Motion Quality
and Smoothness.

Methods Semantic Preservation Motion Quality Smoothness
ReConForM 3.219 2.707 3.129
R2ET 3.667 2.624 2.710
MeshRet 3.4 2.912 3.152
Ours 4.424 4.164 4.207

4.4 Qualitative Results

The qualitative results in Figs. 10 and 11 highlight the effectiveness
of our approach. As shown in Fig. 11, our method effectively pre-
serves motion semantics, mitigates geometric penetrations, and en-
sures accurate contact. In contrast, SAN fails to eliminate geometric
artifacts as a skeleton-only method. R2ET suffers from inconsis-
tencies between the skeleton-aware and geometry-aware modules,
resulting in jitter and unnatural poses. MeshRet is unable to pro-
duce satisfactory results in our setting, and we attribute this to the
significant domain gap between its motion-captured, photorealis-
tic training dataset and our stylized game characters and motions.
Fig. 10 further demonstrates our method’s ability to preserve motion
semantics with attached objects and to support fine-grained control
over environmental interactions—such as the precise positioning of
a spearhead or the orientation of a sword—capabilities that remain
challenging for current deep learning-based methods.

4.5 User Study

We conducted a user study to evaluate the perceived performance
of our method against baseline approaches. A total of 20 partici-
pants rated the results of four methods across fourteen motion clips,
involving four source characters and eight target characters. Partic-
ipants were asked to assess each result on a 1-5 scale for Semantic
Preservation, Motion Quality, and Smoothness. Further details of
the user study are provided in the supplementary material. The re-
sults presented in Tab. 3 demonstrate our method’s competitiveness
across all criteria.

4.6 Ablation Study

4.6.1 Efficiency. We evaluate the computational efficiency of our
heuristic joint update method (Sec. 3.4.2) against the standard Jacobian-
based optimization. In the Jacobian-based approach, the joint rota-
tions are iteratively updated using the Jacobian matrix, followed by
forward kinematics to recompute joint positions. We first compare
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Fig. 8. Comparison between our method and the Jacobian-based approach
in terms of convergence speed (left) and per-frame computational cost
(right). "Jstep” denotes the optimization step size used in the Jacobian-based

method.

w/o regularization w/ regularization

Fig. 9. Visualization of the regularization process, which corrects the erro-
neous pose shown on the left.

the convergence speed between our method and the Jacobian-based
method by measuring the relative change in joint positions per iter-
ation. Specifically, for i-th iteration, we compute the joint position
change divided by the change in the first iteration as an indicator
of convergence:
max; ||p’; - pi ']
i Fj o .

i=1,2, ..., maxiters. (22)

Conv(i) = ———————,i =
max; || p} — pYl|

Smaller values indicate better convergence. We also measure the
average time per frame with the maximum iterations ranging from
10 to 50. As shown in Fig. 8, our method converges faster and
requires less computation per iteration, resulting in an order-of-
magnitude speedup overall. Detailed experiments about Jacobian-
based optimization can be found in the supplementary material.

4.6.2 Regularization. We evaluate the qualitative results without
applying regularization, as shown in the bottom of Tab. 2. While
the unregularized variant achieves slightly higher scores, the lack
of biomechanical constraints leads to physically implausible poses
and reduced perceptual quality, as demonstrated in Fig. 9.

4.6.3 Sphere Configuration. In the main experiments, we use N =
40 spheres for geometry representation. Eight spheres are assigned
to the torso (i.e., body and head), and thirty-two spheres are as-
signed to the limbs, with eight for each limb. An ablation study was
conducted to evaluate how the number of spheres affects the speed
and motion quality. As shown in Tab. 4, the quality improves as N
increases. However, when N > 40, the metrics improve little while
the speed degrades. Further details of the sphere configuration are
provided in the supplementary material.
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Fig. 10. Qualitative comparison with baseline methods. Our approach preserves motion semantics involving attached objects more effectively and enables

precise control over interactions with the environment.

Table 4. Quality metrics and speed under different sphere configura-
tion. For each configuration, "A+B" means A spheres assigned to torso and
B spheres assigned to limbs.

Configuration MSE | MSE!® 1 Pen.(%) | Con. | FpsT
8+32 0.108 0.050 4915 0.394 2204
8+40 0.108 0.050 4.901 0.379 2033
16+40 0.108 0.050 4.815 0.416 2062
6+14 0.108 0.050 4.766 0.635 2376
16+40 0.108 0.050 4.856 0.398 1992

5 Limitations and Conclusions

Our method operates under the minimal twist assumption, which
holds when the source and target characters share the same skeletal
topology and T-pose, as empirically validated in the supplemen-
tary material. While effective in typical settings, this assumption
may lead to suboptimal performance in extreme cases. Addition-
ally, although the spherical representation enhances efficiency, its

geometric approximation makes it less effective at detecting fine-
grained self-penetrations, such as those between fingers.

In conclusion, we propose an ultrafast, lightweight online motion
retargeting method with joint-level control, capable of real-time per-
formance even in highly resource-constrained environments such
as online games. Our approach introduces a semantic-aware objec-
tive grounded in a spherical geometry representation, combined
with a heuristic, rotation-free optimization strategy that bypasses
forward kinematics and Jacobian computations, significantly simpli-
fying the optimization pipeline and yielding an order-of-magnitude
speedup. Furthermore, our method is inherently scalable: it supports
extensions such as attaching objects and enables precise joint-level
control to preserve interaction semantics. Its efficiency and flexibil-
ity make it well-suited for real-time applications in interactive game
scenarios. In addition, our method can be used as a postprocessing
tool for motion generation methods [Tang et al. 2024; Tevet et al.
2023; Wu et al. 2025].
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Fig. 11. Qualitative comparison with baseline methods. Our approach effectively maintains the motion semantics, ensures accurate contact preservation and
significantly reduces geometric interpenetration.
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