

A morphometric approach to the taxonomic dilemma of *Zonozoe draboviensis* Barrande, 1872 and *Zonoscutum solum* Chlupáč, 1999 (Upper Ordovician, Czech Republic)

Lorenzo Lustri^{1,2}, Lukáš Laibl³, Luis Collantes^{1,2}, Jana Bruthansová⁴, Martina Nohejlová⁵, Yu Liu^{1,2,6}, Stephen Pates^{7,8}

1 *Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, 650091, Kunming, China*

2 *MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, 650500 Kunming, China*

3 *Czech Academy of Sciences, Institute of Geology, Rozvojová 269, 165 00, Prague 6, Czech Republic*

4 *Department of Palaeontology, National Museum, Cirkusová 1740, 193 00, Prague 9, Czech Republic*

5 *Czech Geological Survey, Klárov 3, 11800, Prague, Czech Republic*

6 *School of Geography, Geology and the Environment, University of Leicester, Leicester, UK*

7 *Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK*

8 *Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK*

<https://zoobank.org/A779FDDE-461A-4325-8281-5896C571D21E>

Corresponding author: Lorenzo Lustri (lorenzo.lustri90@gmail.com)

Academic editor: Allison Daley ♦ Received 20 November 2025 ♦ Accepted @@@@ @@@@ ♦ Published @@@@ @@@@

Abstract

Zonozoe draboviensis Barrande, 1872 and *Zonoscutum solum* Chlupáč, 1999 are rare and incompletely preserved arthropods from the Upper Ordovician of the Czech Republic. Their classification has been a subject of debate for over a century due to the limited number of specimens, lack of knowledge related to post-cephalic morphology and the absence of clear diagnostic features. They were previously considered as members of Aglaspida, an extinct group of arthropods from the Cambrian and Ordovician, within Vicissicaudata, a branch of the larger arthropod clade Artiopoda. Herein, we analysed the cephalic outlines of *Zonozoe* and *Zonoscutum* to determine whether their shapes align more closely with vissicaudatans than with other early Palaeozoic arthropods, offering a new morphological perspective on their systematics. We assembled a data set of cephalic outlines each representing one of thirty-three early Palaeozoic species, including *Zonozoe*, *Zonoscutum*, nine euhelicerates, six aglaspids, three cheloniellids, and a selection of other artiopodans. We quantified their shape using elliptical Fourier analysis. Principal component analysis (PCA) and linear discriminant analysis (LDA) place *Zonozoe* within the vicissicaudatan morphospace, and *Zonoscutum* in their proximity, clearly distinguishing them from euhelicerates. These data add support to the most conservative classification of *Zonozoe* and *Zonoscutum* within Artiopoda, while strengthening the case for a more specific affinity with Vicissicaudata, helping to resolve a 150-year-old taxonomic uncertainty. More broadly, this study demonstrates the value of outline-based morphometrics in aiding systematic hypotheses when discrete characters are unavailable or scarce, offering a reproducible tool for re-evaluating other problematic fossils.

Keywords

Artiopoda, elliptical Fourier analysis, Vicissicaudata, *Zonoscutum solum*, *Zonozoe draboviensis*

Introduction

Zonozoe draboviensis Barrande, 1872 and *Zonoscutum solum* are enigmatic arthropods known from the Letná and the Libeň Formations of the upper Ordovician of the Czech Republic (Chlupáč 1965, 1999b; Rak et al. 2009; Vokáč and Grigar 2024). Barrande (1872) originally described *Zonozoe* as an arthropod, specifically as a large carapace of an ostracod. Later on, Novák (1887) in his unpublished manuscript, considered *Zonozoe* to be a merostome arthropod close to *Synziphosurina* (Chelicerata) (Chlupáč 1963, 1965, 1999b; Rak 2009). Since then, these fossils did not receive much attention until the second half of the twentieth century. Chlupáč (1963) assigned *Zonozoe* to the group Aglaspida (Walcott 1911) – a group of extinct marine arthropods, known from the Cambrian and Ordovician strata. However, this assignment remains uncertain (Chlupáč 1963). It should also be noted that at that time, Aglaspida was considered as one of the basal-most groups within Xiphosura (Chelicerata). Subsequent studies have revisited the taxon, reiterating its general association with Aglaspida and/or the Merostomata, but always with a low degree of confidence (Chlupáč 1965, 1999a; Hou 1997; Rak et al. 2009). As for *Zonoscutum*, the only fossil ascribed to this species was described in Chlupáč (1999a), who tentatively assigned it to Aglaspida.

During the one hundred and fifty years since the discovery of *Zonozoe*, and twenty-five years for *Zonoscutum*, their classification has been complicated by two main factors. Firstly, the material ascribed to both *Zonozoe* and *Zonoscutum* is scarce, incomplete and not well preserved (Ortega-Hernández et al. 2013; Van Roy et al. 2022). There are currently only eight known specimens of *Zonozoe* and only one specimen of *Zonoscutum*, all of which are isolated moulds of cephalon (Chlupáč 1999b; Rak et al. 2009; Vokáč and Grigar 2024), preserved in quartzose sandstones of the Libeň and Letná Formations. In most cases, the specimens preserve only the general vaulted cephalon outline with a raised longitudinal region terminated with a ridge bearing what is a vague indication of the eyes (Rak et al. 2009; Van Roy et al. 2022). The only exception is a single specimen of *Zonozoe* preserving what has been referred to as glabellar furrows (Rak et al. 2009) and a specimen of *Zonoscutum* preserving similar structures but in a different position (Chlupáč 1999a). Secondly, the classification of *Zonozoe* and *Zonoscutum* has been further complicated by the complex history of the classification of aglaspidid arthropods themselves, especially during the second half of the twentieth century. Their overall dorsal morphology led several authors to consider the aglaspids as an order of the subclass Xiphosura (Størmer 1955), grouping Aglaspida with Xiphosura and Eurypterida, as part of the Merostomata (Raasch 1939; Størmer 1944; Eldredge and Smith 1974) or to consider Aglaspida as the sister group to chelicerates (Weygoldt and Paulus 1979).

This is in contrast to more recent aglaspidid phylogenies, which emphasize ventral anatomical features as key to understanding their true affinities (Briggs et al. 1979; Hesselbo 1992; Ortega-Hernández et al. 2013; Leroosey-Aubril et al. 2017a, 2017b;). Currently, they have been placed within the broader clade Artiopoda, as part of the clade Vicissicaudata (Ortega-Hernández et al. 2013; Leroosey-Aubril et al. 2017a, 2017b;). Until very recently, the absence of strong defining characteristics for the clade has made Aglaspida prone to being used as a wastebasket taxon (Plotnick and Wagner 2006). This could be the case for the poorly preserved *Zonozoe* and *Zonoscutum*, which lack strong anatomical evidence supporting placement within aglaspidids. Other factors that led previous workers to assign *Zonozoe* and *Zonoscutum* to Aglaspida are likely not only the general similarity between their cephalon, but also the known (or suspected) presence of aglaspidids in the same paleogeographic region (Chlupáč 1963, 1965; Van Roy 2005; Ortega-Hernández et al. 2010) and the weak resemblance with other arthropod groups (e.g. position of the eyes and glabella if compared with trilobites).

Later authors, commenting on *Zonozoe* and *Zonoscutum*, decided to have a more parsimonious approach. Ortega-Hernández et al. (2013) opted for the exclusion of those taxa from an extensive phylogenetic analysis of Vicissicaudata due to the lack of compelling taxonomically relevant features. Van Roy et al. (2022), instead, revised *Zonozoe* and *Zonoscutum* to critically assess their possible affinity with *Triopus draboviensis* Barrande, 1872. In their re-examination of the material, the authors did more than simply dismiss the affinity with *Triopus*; they advanced a conservative and more parsimonious taxonomic classification for both *Zonozoe* and *Zonoscutum*. They suggested that, at most, the fossils could be broadly classified as Artiopoda, and argued that any attempt to refine the classification beyond that level would be unwarranted (Van Roy et al. 2022). Known only from cephalic moulds, both *Zonozoe* and *Zonoscutum* lack the diagnostic features of Vicissicaudata, all of which are post-cephalic (Leroosey-Aubril et al. 2017b; Briggs et al. 2023). They also lack several defining traits of Aglaspida, including all post-cephalic diagnostic characters, most notably the modified posterior appendages, as well as evidence of a biomimeticized cuticle and dorsal ecdysial sutures (Ortega-Hernández et al. 2013; Leroosey-Aubril et al. 2017b;). As a result, they cannot be confidently classified through standard phylogenetic or comparative analysis (Ortega-Hernández et al. 2013; Van Roy et al. 2022), a conclusion fully supported by this study. While the enigmatic *Zonozoe* and *Zonoscutum* are unlikely to be key taxa in contributing to resolving the phylogeny of Aglaspida, a more accurate assignment of this species to this group may yield valuable palaeoecological and paleobiogeographical insights.

In order to contribute to resolving the taxonomic dilemma surrounding *Zonozoe* and *Zonoscutum* more

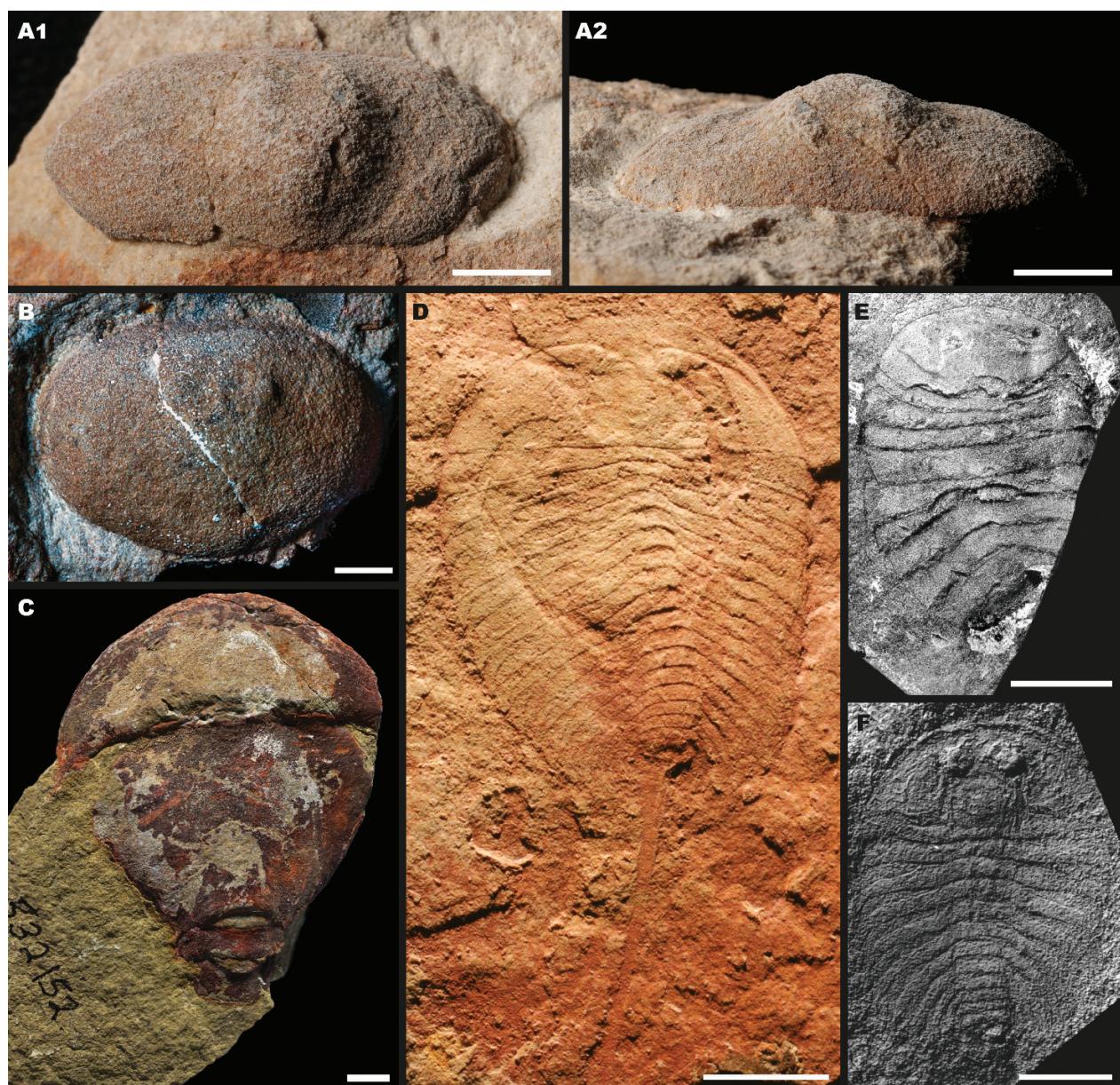
effectively, we adopted an alternative approach to phylogenetic analysis and classical comparative anatomy, focusing instead on an overlooked well preserved feature in these fossils: the overall cephalic outline. We compared the outline of the cephalon of *Zonozoe* and *Zonoscutum* with thirty-three other arthropods. We implemented a principal component analysis (PCA) and linear discriminant analysis (LDA) on the study of the cephalic outline to extract the maximum morphological information from the limited material of *Zonozoe* and *Zonoscutum*. This methodology has been used in paleobiology to compare the outline of different fossils and can provide information on their taxonomy, ecology, and development (Gevirtz 1976; Healy-Williams and Williams 1981; Burke et al. 1987; Foote 1989; Pates et al. 2021; Ma et al. 2023; Braig et al. 2024; Drage and Pates 2024; Collantes and Pates 2025). A significant advantage of this methodology over landmark-based approaches is that it does not rely on discrete morphological characters, facilitating quantification of shape variation when such discrete characters are absent. Combined with the classical taxonomic work carried out by various authors over the years (Chlupáč 1963, 1965, 1999b; Rak 2009), our approach offers a new line of evidence, contributing to either confirming or rejecting previous hypotheses about the taxonomic affinities of these fossils. Both *Zonozoe* and *Zonoscutum* plotted within the Vicissicaudata area of morphospace, and thus the shape of their cephalon concurs with a vicissicaudate affinity.

Materials and methods

Species involved in the study and the criteria of selection

In addition to one *Zonozoe* and one *Zonoscutum* specimen (Fig. 1), nine euhelicerates, two nektaspids, six non-vicissicaudatans artiopodans and fourteen vicissicaudatans arthropods (including six aglaspidids and three cheloinellids), representing thirty-three species, were included in our study. Trilobites were excluded for several reasons: 1) While Cambrian and/or Ordovician nektaspids, euhelicerates, and vicissicaudatans are morphologically rather conservative—at least in the general shape of their cephalon/prosomas (cf. Fig. 1; Leroey-Aubril et al. 2017; Pérez-Peris et al. 2021)—this is not the case for trilobites. The cephalic morphology of trilobites is extremely diverse, particularly during the Ordovician period (e.g., Drage and Pates 2024; Balseiro et al. 2025), and such diversity would necessarily introduce substantial noise into our dataset. This study aims to build on previous taxonomic work and, given the limitations of our methodology, to avoid introducing additional variability that would likely reduce the predictability of our analyses; (2) *Zonozoe* and *Zonoscutum* have never been considered closely related

to Trilobita; and (3) the position of the eyes and glabella in *Zonozoe* and *Zonoscutum* differs markedly from that of any contemporaneous trilobite.


The most complete and horizontally preserved specimen of *Zonozoe* (Lectotype NM L 23586) was chosen, while *Zonoscutum* is known from only one specimen (Holotype NM L 33021). The selection from the literature of other taxa, was made following four main criteria: 1) to include Early Palaeozoic diversity from various geographic regions, but with particular emphasis on species coeval and sympatric to *Zonozoe* and *Zonoscutum* (e.g. *Paraeurypterus anatoliensis* Lamsdell et al. 2013); 2) to exclude taxa with aberrant cephalic outlines; 3) to favour those potentially related to *Zonozoe* and *Zonoscutum* (e.g. *Eozetetes gemmelli* Edgecombe et al. 2017 and *Chlupacaris dubia* Van Roy 2005); and 4) to maximize higher-level taxonomic diversity (e.g. *Carimersa neptuni* Briggs et al. 2023 and *Lunataspis borealis* Lamsdell et al. 2022). A summary of the species and specimens included in the analysis, along with inventory numbers, geological age, geographic provenance, and references to the original sources from which raw images were obtained, is provided in Table 1, while the specimen sample, one for each high taxonomic group, is shown in Fig. 1.

Material and photography

The studied material of *Zonozoe* and *Zonoscutum* is housed in the palaeontological collections of the National Museum, Prague (prefix NM L). The photographs of *Zonozoe* were taken using a Sony Alpha A7R V digital camera equipped with a Canon EF 100 mm f/2.8 Macro lens under normal lighting conditions, using a stand and a sandbox to hold the sample in place and ensure the horizontality of both the camera and the specimen. Specimens were coated with ammonium chloride prior to photography to enhance morphological details.

Geological settings of *Zonozoe* and *Zonoscutum*

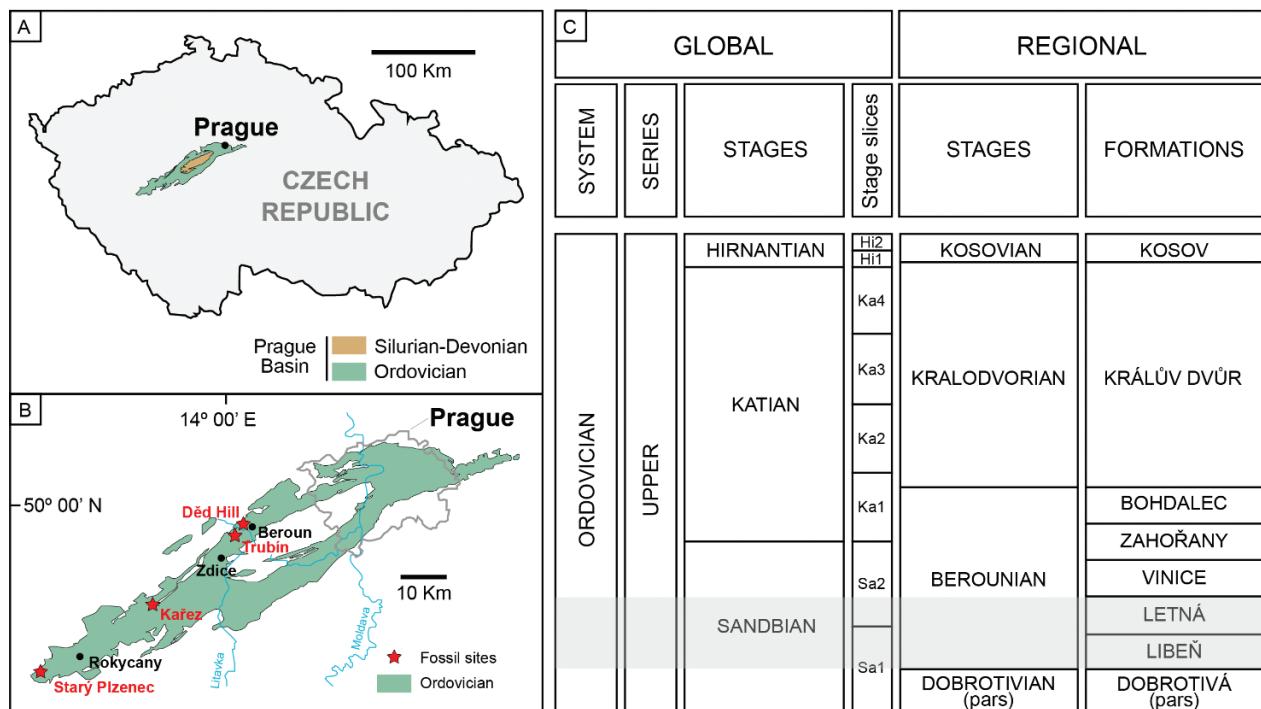
The examined specimens of *Zonozoe* and *Zonoscutum* (Fig. 1) come from the Ordovician deposits of the Prague Basin (Czech Republic, Barrandian area). All *Zonozoe* and *Zonoscutum* specimens represent internal moulds preserved as imprints in coarse quartzose sandstones, showing limited anatomical details. The majority of them were collected at the Děd Hill near Beroun (five specimens of *Zonozoe*; NM L 32986, NM L 23590, NM L 33029, NM L 23586, NM L 32 987) or in the fields between Trubín and Trubská villages near Králův Dvůr (one specimen of *Zonozoe* NM L 33029; see Drage et al. (2018) for details of the location), in the upper part of the Letná Formation (Chlupáč 1965). The only known cephalon of *Zonoscutum* (NM L 33021) also originates

Figure 1. Representative cephalas of *Zonozoe draboviensis*, *Zonoscutum solum*, euchelicerate arthropods, vicissicaudatan cheloniellids, vicissicaudatan aglaspids, and non-vicissicaudatan artiopodans featured in this study. **A1.** *Zonozoe draboviensis*, dorsal view; **A2.** *Zonozoe draboviensis*, frontal view; **B.** *Zonoscutum solum*, dorsal view, modified from Van Roy et al. (2022); **C.** Unnamed Xiphosura from the Fezouata biota, modified from (Lamsdell et al. 2013). **D.** *Eozetetes gemmelli*, modified from (Edgecombe et al. 2017); **E.** *Neostrabops martini*, modified from (Caster and Macke 1952); **F.** *Aglaspis barrandei*, modified from (Hesselbo 1992). Scale bar: 5 mm.

from this latest formation and locality (Chlupáč 1999a). Additionally, one specimen of *Zonozoe* (NM L 37385) was recovered from the Řevnice Quartzite Member within the Libeň Formation near Kařez (Rak et al. 2009), and another one has been recently reported from the Řevnice Quartzite Member near Starý Plzenec (Vokáč and Grigar 2024).

The Libeň Formation is developed in three different members – the shallow water Řevnice Quartzite, the sequence of black shales deposited in deeper sea below the wave base in anoxic conditions, and the pyroclastic material (Havlíček 1998). The Letná Formation

is generally composed of alternating quartzose sandstones, greywackes, siltstones, and occasional shales, with sandstones representing a shallow-water environment (Chlupáč and Kukal 1988; Kraft et al. 2023). *Zonozoe* and *Zonoscutum* have so far been discovered only in the shallow water facies of Libeň and Letná Formations. Both Letná and Libeň Formations are of Sandbian age (Upper Ordovician) (Kraft et al. 2023). From the palaeogeographical perspective, these formations within the Prague Basin were deposited in high-latitude area near the western margin of Gondwana (Kraft et al. 2023; Scotese 2023).


Table 1. List of specimens used for the outline analyses. Figures refer to figure number in Reference column from which outline was taken.

Species	Number	Age and origin	Clade	Reference	Figures
<i>Zonoscutum solum</i>	NM L 33021	Upper Ordovician, Czech Republic	Suspected Aglaspidida	(Van Roy et al. 2022)	fig. 8C
<i>Zonozoe draboviensis</i>	NM L 23586	Upper Ordovician, Czech Republic	Suspected Aglaspidida	Present work	Fig. 1E
<i>Beckwithia typa</i>	BPM 1060	Late Cambrian, Utah	Aglaspidida	(Leroeay-Aubril et al. 2017a)	fig. 9F
<i>Chlupacaris dubia</i>	NMSG.2005.103.1	Upper Ordovician, Morocco	Aglaspidida	(Van Roy 2005)	fig. 3A
<i>Tremaglaspis unite</i>	NHMIA56	Upper Ordovician, Wales	Aglaspidida	(Fortey and Rushton 2003)	fig. 1B
<i>Glypharthrus trispinicaudatus</i>	NIGPAS 165044	Late Cambrian, South China	Aglaspidida	(Leroeay-Aubril et al. 2017a)	fig. 3 G
<i>Chraspedops modesta</i>	MPM 11938	Late Cambrian, US	Aglaspidida	(Hesselbo 1992)	fig. 18, 4
<i>Aglaspis barrandei</i>	AMNH 39193	Late Cambrian, Wisconsin	Aglaspidida	(Hesselbo 1992)	fig. 2, 5
<i>Xiphosura from Fezouata</i>	YPM IP 532152	Lower Ordovician, Morocco	Euchelicerata	(Lamsdell and Ocon 2025)	fig. 2, 7
<i>Paraeurypterus anatoliensis</i>	MTANHMSETR 10-1Z-01-1	Upper Ordovician, Turkey	Euchelicerata	(Lamsdell et al. 2013)	fig. 3A
<i>Lunataspis borealis</i>	MM I-4583	Upper Ordovician, Canada	Euchelicerata	(Lamsdell et al. 2022)	fig. 2, 1
<i>Pseudoniscus falcatus</i>	UK. NHMUK PI	Early Silurian, Scotland	Euchelicerata	(Bicknell and Pates 2020)	fig. 9A
<i>Kasibelinurus amicorum</i>	AM F68969	Devonian, Australia	Euchelicerata	(Bicknell and Pates 2020)	fig. 11A
<i>Kwanyinaspis maotianshanensis</i>	ELI-12004001	Early Cambrian, South China	Artiopoda	(Zhang and Shu 2005)	fig. 2A-D
<i>Pygmaclypeatus daziensis</i>	YKLP 11427	Early Cambrian, South China	Artiopoda	(Schmidt et al. 2025)	fig. 1A
<i>Thulaspis tholops</i>	MGUH 34172a	Early Cambrian, North Greenland	Artiopoda	(Berks et al. 2023)	fig. 1A
<i>Retifacies abnormalis</i>	JS-840	Early Cambrian, South China	Artiopoda	(Lin et al. 2024)	fig. 1A
<i>Kuamaia lata</i>	YKLP 17296	Early Cambrian, South China	Artiopoda, Helmetiidae	(O'Flynn et al. 2024)	fig. 2A
<i>Emeraldella brocki</i>	USNM 136641	Middle Cambrian, Canada	Artiopoda, Vicissicaudata	(Stein and Selden 2012)	fig. 3B
<i>Tardisia broeckei</i>	FMNH PE 88856	Late Carboniferous, Illinois	Artiopoda, Vicissicaudata	(McCoy et al. 2025)	fig. 1D
<i>Eozetetes gemmelli</i>	SAM P48369a	Early Cambrian, Australia	Artiopoda, Vicissicaudata	(Edgecombe et al. 2017)	Fig. 2A
<i>Carimersa neptuni</i>	OUMNH PAL-C.376503	Early Silurian, England	Artiopoda, Vicissicaudata	(Briggs et al. 2023)	fig. 1A
<i>Sidneyia minor</i>	YKLP 12435	Early Cambrian, South China	Artiopoda, Vicissicaudata	(Du et al. 2023)	fig. 2A
<i>Triopsp. draboviensis</i>	NM L 16736	Upper Ordovician, Czech Republic	Cheloniellida	(Van Roy et al. 2022)	fig. 2B
<i>Drabovaspis complexa</i>	NM L 23577	Upper Ordovician, Czech Republic	Cheloniellida	(Van Roy et al. 2022)	fig. 9A
<i>Neostrabops martini</i>	25560	Late Cambrian, Missouri	Cheloniellida	(Caster and Macke 1952)	fig. 2
<i>Lunataspis borealis</i>	ROM IP 64616	Upper Ordovician, Canada	Euchelicerata	(Lamsdell et al. 2022)	fig. 1A
<i>Brachypterus stublefieldi</i>	D. 3124	Middle Ordovician, Wales	Euchelicerata	(Størmer 1951)	fig. 1
<i>Orcanopterus manitoulinensis</i>	ROM 56450	Upper Ordovician, Canada	Euchelicerata	(Stott et al. 2005)	fig. 3.1
<i>Chasmataspis laurencii</i>	USNM 125099	Middle Ordovician, US	Euchelicerata	(Dunlop et al. 2003)	fig. 1B
<i>Arthroaspis bergstroemi</i>	MGUH 30388	Early Cambrian, Greenland	Artiopoda, Conciliterga	(Stein et al. 2013)	fig. 2E
<i>Naraoia magna</i>	ROMIP 64557	Middle Cambrian, Canada	Artiopoda, Nektaspida	(Mayers et al. 2019)	fig. 15B
<i>Naraoia arcana</i>	ROMIP 64515	Middle Cambrian, Canada	Artiopoda, Nektaspida	(Mayers et al. 2019)	fig. 16C

Silhouette drawing, Principal component analysis (PCA), linear discriminant analysis (LDA)

We used photographs of selected specimens to make black silhouettes of carapace outlines on a white background for selected specimens. Photographs were either taken by the authors in museum collections or sourced from the literature (see Table 1 and Fig. 1). Using Adobe

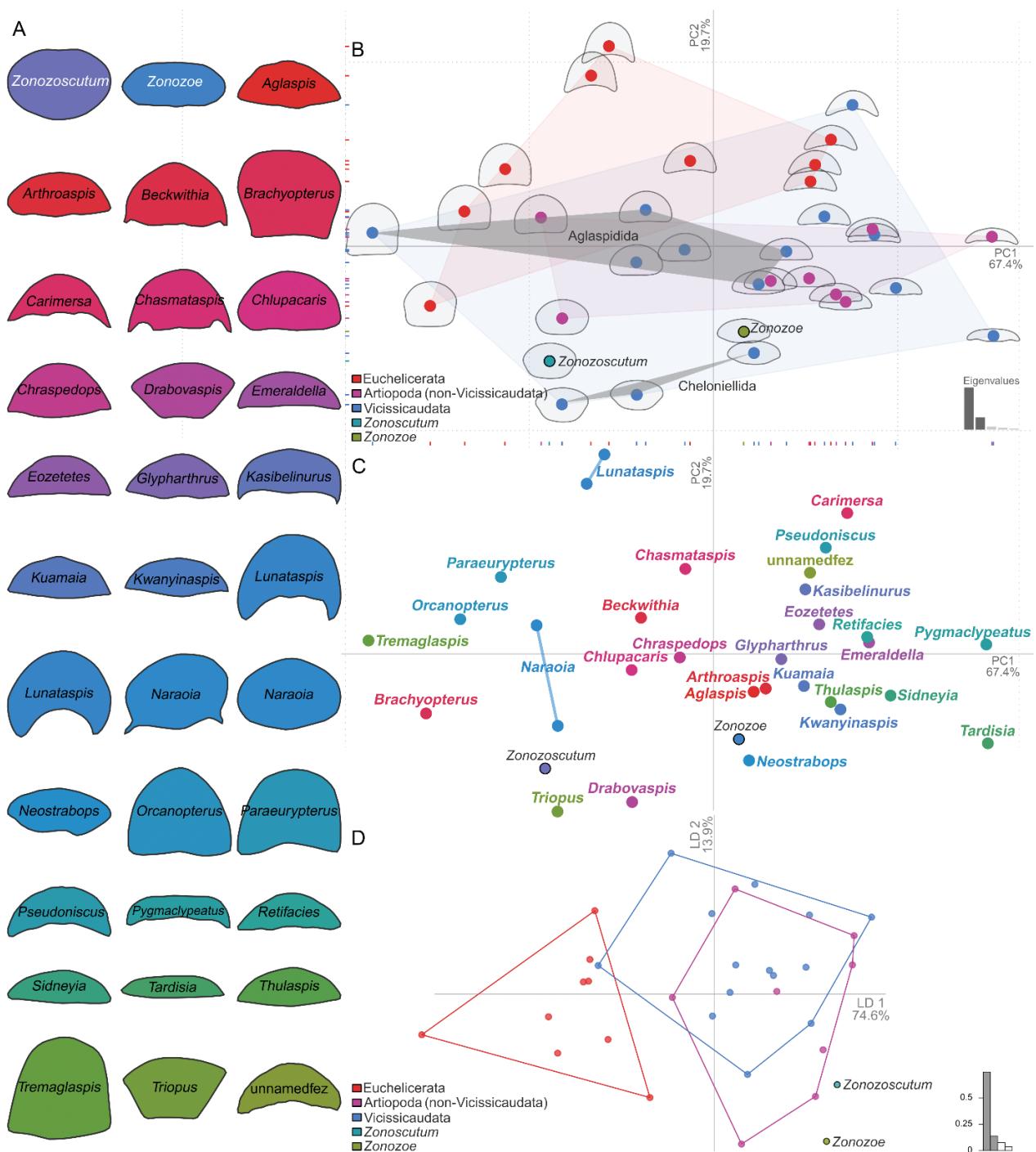
Illustrator 2021, we manually traced each specimen's outline over the photograph, then exported the silhouette as a JPG file (Fig. 3A). These image files served as input for the Momocs package in R (Bonhomme et al. 2014; RCoreTeam 2024), which we used to perform the subsequent outline analyses. JPG files were imported and converted to outlines, scaled, centered, and sampled at 64-point resolution, and subjected to elliptical Fourier analysis. The function calibrate_harmonicpower_efourier

Figure 2. Geographical and stratigraphical position of the localities where *Zonozoe draboviensis* and *Zonoscutum solum* were collected. **A.** Map of the Czech republic; **B.** Stratigraphical column of the upper Ordovician (modify after Van Roy et al. 2022).

was used to determine the number of harmonics required for 99.9% of the harmonic power. Elliptical Fourier coefficients were visualised using Principal Component Analysis. Linear Discriminant Analysis was used to model differences between the major groupings in the dataset (Artiopoda (non-Vicissicaudata), Euchelicerata, Vicissicaudata, *Zonozoe*, *Zonoscutum*). R code used for the analysis, and silhouettes in .jpg format, are supplied in Suppl. material 1, 2 respectively.

Results

EFA, Principal component analysis (PCA), linear discriminant analysis (LDA)


Fifteen harmonics were retained, providing 99.9% of the harmonic power for the dataset. Principal component analysis reduced the dimensionality of elliptical Fourier analysis results, with PC1 and PC2 explaining 87.1% of the variation (67.4% and 19.7% respectively). Higher principal components (PC3–PC26) explain < 5% of the variation each, and < 15% overall. All groups overlap at least to some extent in the PCA space: Euchelicerata, Vicissicaudata, and Non-Vicissicaudata artiopodans (Fig. 3B). Euchelicerates cluster toward the upper left, while non-Vicissicaudata artiopodans occupy the area close to the origin. Vicissicaudata occupy a broader area in the morphospace, including most of the area occupied by non-Vicissicaudata, as well as areas more positive in PC1 and more negative in both PC1 and PC2. Within Vicissicaudata, aglaspidids fall near the origin of morphospace, except for *Tremaglaspis unite* (Fortey and Rushton 2003), which plots with a negative PC1 value (Fig. 3B, C). Cheloniellids form a tight cluster with negative

PC2 values. Both *Zonozoe* and *Zonoscutum* lie within the lower region of the vicissicaudata space. *Zonozoe* plots between the cheloniellid *Neostrabops martini* (Caster and Macke 1952) and the aglaspidid *Aglaspis barrandei* (Hall 1862) (Fig. 3B, C), whereas *Zonoscutum* lies close to the cheloniellids *Triopus* and *Drabovaspis complexa* (Barrande 1872) and the artiopodan *Naraoia* (Fig. 3B, C).

Linear discriminant analysis is dominated by LD1 (74.6% of the trace), with LD2 (13.9%), with remaining LDs providing only a relatively small amount of information. Our LDA (Fig. 3D) separates Euchelicerata from all other taxa but cannot separate vicissicaudates from non-vicissicaudate artiopodans (Table 2). Leave-one-out cross-validation was 48.4% (15/31) for the whole dataset, but 77.8% (7/9) for Euchelicerata. Non-Vicissicaudata artiopodans fall into the vicissicaudata space, with leave-one-out cross-validation poor for both these groups, with most incorrect assignments placing vicissicaudata in the non-vicissicaudata space and vice versa (Table 2). Both *Zonozoe* and *Zonoscutum* plot at the lower right part of the LDA space, outside of all other groups but close to the Vicissicaudata/non-Vicissicaudata areas, far from the Euchelicerata area (Fig. 3D).

Discussion

Our outline analyses provide some morphological support for an artiopodan affinity for both *Zonozoe* and *Zonoscutum*. This was the recently lowest taxonomic level assigned to this species through the weak morphological traits with taxonomic relevance available. The PCA does not explicitly support an affinity with Aglaspida, particularly in the case of *Zonoscutum*. Instead, both taxa are

Figure 3. Data and Results of Principal Component Analysis and Linear Discriminant Analysis of elliptical Fourier coefficients. **A.** Cephalic outline of *Zonozoe drabowiensis*, *Zonoscutum solum* and the other specimens involved in the study; colors of silhouettes match colors for points in panel C. **B.** Position of *Zonoscutum* and *Zonozoe* in relation to major taxonomic groupings: Euchelicerata, Artiopoda (not including Vicissicaudata), and Vicissicaudata. Grey convex hulls show subgroups within Vicissicaudata, specifically Aglaspidaida and Cheloniellida. Coloured marks along x and y axis indicate PC1 and PC2 values of individual specimens plotted in the space, with positions of specimens shown by filled circles. Grey outlines show variation in cephalic outline across PC1 and PC2. Histogram in bottom right shows amount of variation explained by PC1, PC2, and PC3–5; **C.** Results by individual outline of PCA analyses. Abbreviation ‘unnamedfez’ refers to an unnamed Xiphosura from the Fezouata biota (Van Roy et al. 2010; Lamsdell and Ocon 2025); **D.** Position of *Zonoscutum* and *Zonozoe* in relation to major taxonomic groupings: Euchelicerata, Artiopoda (not including Vicissicaudata), and Vicissicaudata in Linear Discriminant space. Coloured circles show positions of individual specimens. Histograms in B and D the shows the proportion of the trace for each principal component (B, C) or linear discriminant (D).

placed closer to cheloniellids than to other groups, in an intermediated position towards aglaspids and some non-vicissicaudatan artiopodans (Fig. 3B, C).

Although our analysis places *Zonozoe* and *Zonoscutum* near the cheloniellid cluster, we interpret these results cautiously. Key differences in cephalic morphology, which

Table 2. Cross validation table following Linear Discriminant Analysis, showing the classification of groups and the class accuracy. Class accuracy and classification not displayed for *Zonoscutum* and *Zonozoe* as they are represented only by a single specimen.

	Euchelicerata	Non-Vicissicadata	Vicissicaudata	Zonoscutum	Zonozoe	Class accuracy
Euchelicerata	7	0	1	0	1	77.8%
Non-Vicissicadata	2	1	5	0	0	12.5%
Vicissicaudata	2	5	7	0	0	50%

are most apparent in three-dimensional views, are not fully captured by our two-dimensional dataset, and both *Zonoscutum* and cheloniellids follow in this case. They show, respectively, a highly vaulted and extremely flattened cephalon, which may have been more affected by this methodological constraint, respectively to what was retrieved for *Zonozoe* and the other involved taxa. We believe this is the explanation behind the results of our PCA, concerning *Zonoscutum* clustering closer to the well-defined cheloniellids *Triopus* and *Drabovaspis* than to any other taxa. Based on this, we consider our method less effective for taxa with extremely vaulted or flattened cephala, such as cheloniellids and *Zonoscutum*. This limitation might have been addressed by using 3D volume data, but such data are difficult to obtain for fossils held in collections across multiple continents, and will also be impacted by flattening during or after fossilisation. Thus, we do not consider the results of our analyses strong enough to question (Van Roy et al. 2022), who rejected a close relationship between *Zonozoe*, *Zonoscutum*, and cheloniellids, especially with the coeval and sympatric *Triopus*. On the other hand, our analyses show low support for the alternative hypothesis of euhelicerate affinities, as euhelicerates are separated in the PC space from the other groups, with *Zonozoe* and *Zonoscutum* plotting far from euhelicerates and within the Vicissicaudata area.

The closest non-cheloniellid arthropod to *Zonoscutum*, is *Naroia*, followed by the euhelicerate *Brachyopterus* and the aglaspidid *A. barrandei*. Those results do not allow us to state further interpretations for *Zonoscutum*. The results for *Zonozoe*, instead, present some clearer insight. The closest taxa in our PCA to *Zonozoe* are the cheloniellid *Neostrabops* and the aglaspidid *A. barrandei*. Ortega-Hernández et al. (2013) assigned *Neostrabops* as the less derived Cheloniellida, on the basis of a shared “presence of rounded genal angles, the anterior boundaries of the trunk reflexed anterolaterally and a reduced head shield”. However, the absence of a well-developed thoracic axis, already led Van Roy (2006) to suggest it may represent the less derived form of the group. Other studies (e.g., Legg et al. 2013; Lerosey-Aubril et al. 2017b) also placed *Neostrabops* as a basal cheloniellid, but again relied on limited synapomorphies. The lack of preservation of key traits, such as furcal rami or the morphology of terminal tergites, hinders reliable comparison with better-known forms like *Triopus* or *Cheloniellon calmani* Broili, 1932. The proximity of *Zonozoe* and *Neostrabops* in our PCA may therefore reflect more on the uncertain taxonomy of *Neostrabops* than on *Zonozoe* itself. Both fall within the vicissicaudatan morphospace, closer to aglaspidids than to other cheloniellids. Based on our results, we suggest

that the taxonomical assignment of *Neostrabops* could be reconsidered towards Aglaspida after new investigations or, in a more parsimonious way, towards Xenopoda.

On the other hand, the close PCA placement of *Zonozoe* (and *Neostrabops*) with *A. barrandei* supports a possible affinity with aglaspidids. While we do not draw a definitive conclusion, this result is consistent with previous observations, such as the position of the eyes and glabellar furrows behind them, which, while not strongly diagnostic (Van Roy et al. 2022), align with our morphometric findings and the exclusion of a possible euhelicerate affinity retrieved in our analyses (Fig. 3).

Our LDA results, though more influenced by predefined categories, provide additional insight. Euhelicerates are distinguished from Artiopoda, however vicissicaudatans and non-vicissicaudatans cannot be clearly separated (Fig. 3D; Table 2). This was an unexpected finding for our outline data, given the superficial similarity in dorsal morphology between some early euhelicerates and vicissicaudatans like aglaspidids (e.g. *P. anatoliensis* and *T. unite*). Previous authors have even suggested the affinities of euhelicerates with aglaspidids based on such similarities (Størmer 1955), but our LDA analyses were able to discriminate the two groups. Both taxa of interest, *Zonoscutum* and *Zonozoe*, are positioned closer to non-vicissicaudatan artiopods than to vicissicaudatans, in contrast with our PCA results, however, they are clearly separated from Euhelicerata. These results reinforce the more recent interpretation of aglaspidids, and by extension *Zonozoe* and *Zonoscutum*, as artiopodans, most likely vicissicaudatans, by clearly distinguishing them from euhelicerates.

Conclusion

Our outline-based morphometric analyses provide quantitative support for placing *Zonozoe* and *Zonoscutum* within artiopodans. Although they plot closer to cheloniellids in the morphospace of two-dimensional carapace outlines, this could reflect methodological limits due to three-dimensional cephalic shape being compressed. Both PCA and LDA consistently separate Vicissicaudata, Aglaspida, *Zonozoe* and *Zonoscutum* from euhelicerates. Within PCA space, they plot closest to vicissicaudata artiopods. Taken together, these results support a vicissicaudatan affinity for these taxa and reject an euhelicerates affinity. Overall, our method has proven to be a useful alternative for classifying arthropod fossils when discrete characters required for phylogenetic methods are absent. This is often the case with moulds, which rarely preserve

fine anatomical details. While our approach is less precise than formal phylogenetic analysis, it allows for the inclusion of specimens that would otherwise be excluded from broader evolutionary or paleoecological studies. In our case, it provides evidence for the presence of non-cheloniellid vicissicaudatans in the Letná Formation, based on poorly preserved specimens that would likely be overlooked using only traditional qualitative methods.

Acknowledgments

We are thankful to the reviewers for their valuable comments and suggestions, which greatly improved this manuscript. This paper is a contribution to IGCP project 735 “Rocks and the Rise of Ordovician Life: Filling knowledge gaps in the Early Palaeozoic Biodiversification.

Additional information

Conflict of interest

The authors have declared that no competing interests exist.

Ethical statement

No ethical statement was reported.

Use of AI

To refine grammar, spelling and readability of the text.

Funding

This study was supported by the grant “Borse di studio SPI” from “Società Paleontologica Italiana” (SPI) awarded to L. Lu. in 2024. This study was also supported by the grants of PostDoctoral Research Fund to L.Lu.

and L.C at Yunnan University. Y.L. is currently supported by the Yunnan Revitalization Talent Support Program (Grant number: 202401BC070012) from the Natural Science Foundation of Yunnan Province, China, and an Honorary visiting professor at the University of Leicester, UK funded by the Chinese Scholarship Council. SP acknowledges support from a NERC IRF NE/X017745/2. L.La is supported by the Czech Science Foundation grant GA 25-16610S and by the institutional support RVO 67985831 of the Institute of Geology of the Czech Academy of Sciences. J.B. was financially supported by the Ministry of Culture of the Czech Republic through the DKRVO 2024–2028/2.III.b, National Museum, 00023272. M.N. was supported by an internal grant of the Czech Geological Survey no. 311 630, which contributes to the Strategic Research Plan of the Czech Geological Survey (DKRVO/CGS 2023–2027).

Author contributions

L.Lu. conceptualised the original idea and wrote the first draft of the manuscript. L.Lu., L.La. and L.C. collected the data. S.P. analysed the data. L.La. and L.C., and S.P. prepared the figures and wrote sections of the material and methods, results, and discussion. Y.L., J.B. and M.N. were involved in the discussion and final editing of the manuscript. All authors read and approved the final version of the manuscript.

Author ORCIDs

Lorenzo Lustri <https://orcid.org/0000-0002-8951-5160>
 Lukáš Laibl <https://orcid.org/0000-0001-9049-3811>
 Luis Collantes <https://orcid.org/0000-0001-9571-4433>
 Jana Bruthansová <https://orcid.org/0000-0002-6218-2255>
 Martina Nohejlová <https://orcid.org/0000-0001-7972-8165>
 Yu Liu <https://orcid.org/0000-0002-2346-740X>
 Stephen Pates <https://orcid.org/0000-0001-8063-9469>

Data availability

All of the data that support the findings of this study are available in the main text or Supplementary Information.

References

Barrande J (1872) Système silurien du centre de la Bohême: trilobites, crustacés divers et poissons: supplément (Vol. 1) chez l'auteur et l'éditeur.

Berks HO, Lunde Nielsen M, Flannery-Sutherland J, Thorshøj Nielsen A, Park TYS, Vinther J (2023) A possibly deep branching artiopodan arthropod from the lower Cambrian Sirius Passet Lagerstätte (North Greenland). *Papers in Palaeontology* 9(3): e1495. <https://doi.org/10.1002/spp2.1495>

Bicknell RD, Pates S (2020) Pictorial atlas of fossil and extant horseshoe crabs, with focus on Xiphosurida. *Frontiers in Earth Science* 8: 98. <https://doi.org/10.3389/feart.2020.00098>

Bonhomme V, Picq S, Gaucherel C, Claude J (2014) Momocs: outline analysis using R. *Journal of Statistical Software* 56(13): 1–24. <https://doi.org/10.18637/jss.v056.i13>

Braig F, Torres G, Giménez L, Haug JT (2024) Outline analysis as a new method for investigating development in fossil crabs. *Palaeontologia Electronica* 27(1.a24): 1–13. <https://doi.org/10.26879/1207>

Briggs DE, Bruton DL, Whittington HB (1979) Appendages of the arthropod Aglaspis spinifer (Upper Cambrian, Wisconsin) and their significance. *Palaeontology* 22: 167–180.

Briggs DE, Siveter DJ, Siveter DJ, Sutton MD, Legg D, Lamsdell JC (2023) A vicissicaudatan arthropod from the Silurian Herefordshire Lagerstätte, UK. *Royal Society Open Science* 10(8): 230661. <https://doi.org/10.1098/rsos.230661>

Broili F (1932) Eine neue Crustacee aus dem rheinischen Unterdevon. *Sitzungsberichte der Mathematisch-Naturwissenschaftlichen (Abteilung). Klasse der Bayerischen Akademie der Wissenschaften zu München*, 27–38.

Burke CD, Full WE, Gernant RE (1987) Recognition of fossil fresh water ostracodes: Fourier shape analysis. *Lethaia* 20(4): 307–314. <https://doi.org/10.1111/j.1502-3931.1987.tb02050.x>

Caster KE, Macke WB (1952) An aglaspid merostome from the Upper Ordovician of Ohio. *Journal of Paleontology* 26(5): 753–757.

Chlupáč I (1963) Report on the merostomes from the Ordovician of Central Bohemia. *Věstník Ústředního ústavu geologického* 38(6): 399–403.

Chlupáč I (1965) Xiphosuran merostomes from the Bohemian Ordovician. *Sborník geologických věd, Paleontologie* 5: 7–38.

Chlupáč I (1999a) Some problematical arthropods from the Upper Ordovician Letná formation of Bohemia. *Journal of Geosciences* 44(1–2): 79–92.

Chlupáč I (1999b) Unusual arthropods from the Bohemian Ordovician—a review. *Acta Universitatis Carolinae Geologica*(1/2): 393–396.

Chlupáč I, Kukal Z (1988) Possible global events and the stratigraphy of the Palaeozoic of the Barrandian (Cambrian–Middle Devonian, Czechoslovakia). *Sborník geologických věd Geologie* (43): 83–146.

Collantes L, Pates S (2025) Isoxys carbonelli and the palaeoenvironmental disparity of Isoxys during Cambrian Stage 3. *Historical Biology* 10: 1–9. <https://doi.org/10.1080/08912963.2025.2529395>

Drage HB, Laibl L, Budil P (2018) Postembryonic development of Dalmanitina, and the evolution of facial suture fusion in Phacopina. *Paleobiology* 44(4): 638–659. <https://doi.org/10.1017/pab.2018.31>

Drage HB, Pates S (2024) Distinct causes underlie double-peaked trilobite morphological disparity in cephalic shape. *Communications Biology* 7(1): 1490. <https://doi.org/10.1038/s42003-024-07221-2>

Du K, Bruton DL, Yang J, Zhang X (2023) An early Cambrian Sidneye (Arthropoda) resolves the century-long debate of its head organization. *Science China Earth Sciences* 66(3): 521–527. <https://doi.org/10.1007/s11430-022-1019-8>

Dunlop JA, Anderson LI, Braddy SJ (2003) A redescription of *Chasmataspis laurencii* Caster & Brooks, 1956 (Chelicerata: Chasmataspidida) from the Middle Ordovician of Tennessee, USA, with remarks on chasmataspid phylogeny. *Earth and Environmental Science Transactions of the Royal Society of Edinburgh* 94(3): 207–225. <https://doi.org/10.1017/S0263593300000626>

Edgecombe GD, Paterson JR, Garcia-Bellido DC (2017) A new aglaspidid-like euarthropod from the lower Cambrian Emu Bay Shale of South Australia. *Geological Magazine* 154(1): 87–95. <https://doi.org/10.1017/S0016756815001053>

Eldredge N, Smith L (1974) Revision of the suborder Synziphosurina (Chelicerata, Merostomata): with remarks on merostome phylogeny. *American Museum novitates* 2543: 1–41.

Foote M (1989) Perimeter-based Fourier analysis: a new morphometric method applied to the trilobite cranidium. *Journal of Paleontology* 63(6): 880–885. <https://doi.org/10.1017/S0022336000036556>

Fortey RA, Rushton AW (2003) A new aglaspidid arthropod from the Lower Ordovician of Wales. *Palaeontology* 46(5): 1031–1038. <https://doi.org/10.1111/1475-4983.00331>

Gevirtz JL (1976) Fourier analysis of bivalve outlines: implications on evolution and autecology. *Journal of the International Association for Mathematical Geology* 8: 151–163. <https://doi.org/10.1007/BF01079032>

Hall J (1862) On a new crustacean from the Potsdam Sandstone. *Canadian Naturalist* 7: 443–445.

Havlíček V (1998) Ordovician. In: Chlupáč I, Havlíček V, Kříž J, Kukal Z, Štorch P (Ed.) Palaeozoic of the Barrandian (Cambrian to Devonian). Czech Geological Survey (Prague), 41–79

Healy-Williams N, Williams DF (1981) Fourier analysis of test shape of planktonic foraminifera. *Nature* 289(5797): 485–487. <https://doi.org/10.1038/289485a0>

Hesselbo SP (1992) Aglaspidida (Arthropoda) from the upper Cambrian of Wisconsin. *Journal of Paleontology* 1: 885–923. <https://doi.org/10.1017/S0022336000021016>

Hou X-G (1997) Arthropods of the lower Cambrian Chengjiang fauna, southwest China. *Fossils and Strata* 45: 1–116. <https://doi.org/10.18261/8200376931-1997>

Kraft P, Linnemann U, Mergl M, Bruthansová J, Laibl L, Geyer G (2023) Ordovician of the Bohemian Massif. In: Harper DAT, Lefebvre B, Percival IG, Servais T (Ed.) A Global Synthesis of the Ordovician System Part 1: Geological Society of London Special Publication 532: 433–464. <https://doi.org/10.1144/sp532-2022-191>

Lamsdell JC, Hoşgör İ, Selden PA (2013) A new Ordovician eurypterid (Arthropoda: Chelicerata) from southeast Turkey: evidence for a cryptic Ordovician record of Eurypterida. *Gondwana Research* 23(1): 354–366. <https://doi.org/10.1016/j.gr.2012.04.006>

Lamsdell JC, Isotalo PA, Rudkin DM, Martin MJ (2022) A new species of the Ordovician horseshoe crab *Lunataspis*. *Geological Magazine* 160(1): 167–171. <https://doi.org/10.1017/S0016756822000875>

Lamsdell JC, Ocon SB (2025) Segmentation in early Xiphosura and the evolution of the thoracetrone. *Journal of Paleontology* 99(3): 524–543. <https://doi.org/10.1017/jpa.2024.31>

Legg DA, Sutton MD, Edgecombe GD (2013) Arthropod fossil data increase congruence of morphological and molecular phylogenies. *Nature communications* 4(1): 1–7. <https://doi.org/10.1038/ncomms3485>

Leroosey-Aubril R, Paterson JR, Gibb S, Chatterton BD (2017) Exceptionally-preserved late Cambrian fossils from the McKay Group (British Columbia, Canada) and the evolution of tagmosis in aglaspidid arthropods. *Gondwana Research* 42: 264–279. <https://doi.org/10.1016/j.gr.2016.10.013>

Leroosey-Aubril R, Zhu X, Ortega-Hernández J (2017) The Vicissicau data revisited insights from a new aglaspidid arthropod with caudal appendages from the Furongian of China. *Scientific Reports* 7(1): 1–18. <https://doi.org/10.1038/s41598-017-11610-5>

Lin W, Pates S, Losso SR, Fu D (2024) Intraspecific variation of early Cambrian (stage 3) arthropod *Retifacies abnormalis* revealed by morphometric analyses. *Frontiers in Ecology and Evolution* 12: 1336365. <https://doi.org/10.3389/fevo.2024.1336365>

Ma J, Pates S, Wu Y, Lin W, Liu C, Wu Y, Zhang M, Fu D (2023) Ontogeny and brooding strategy of the early Cambrian arthropod *Isoxys minor* from the Qingjiang biota. *Frontiers in Ecology and Evolution* 11: 1174564. <https://doi.org/10.3389/fevo.2023.1174564>

Mayers B, Aria C, Caron JB (2019) Three new naraoiid species from the Burgess Shale, with a morphometric and phylogenetic reinvestigation of Naraoiidae. *Palaeontology* 62(1): 19–50. <https://doi.org/10.1111/pala.12383>

McCoy VE, Herrera F, Wittry J, Mayer P, Lamsdell JC (2025) A possible vicissicau data arthropod from the Late Carboniferous Mazon Creek Lagerstätte. *Geological Magazine* 162(e3): 1–6. <https://doi.org/10.1017/S001675682400044X>

Novák O (1887) Merostomata. Archive of the National Museum, Unpublished manuscript, Prague.

O’Flynn RJ, Williams M, Liu Y, Hou X-G, Guo J, Edgecombe GD (2024) The early Cambrian *Kuamaia lata*, an artiopodan euarthropod with a raptorial frontal appendage. *Journal of Paleontology* 98(5): 808–820. <https://doi.org/10.1017/jpa.2024.33>

Ortega-Hernández J, Braddy SJ, Rak Š (2010) Trilobite and xiphosuran affinities for putative aglaspidid arthropods *Caryon* and *Drabovaspis*, Upper Ordovician, Czech Republic. *Lethaia* 43(3): 427–431. <https://doi.org/10.1111/j.1502-3931.2010.00216.x>

Ortega-Hernández J, Legg DA, Braddy SJ (2013) The phylogeny of aglaspidid arthropods and the internal relationships within Artiopoda. *Cladistics* 29(1): 15–45. <https://doi.org/10.1111/j.1096-0031.2012.00413.x>

Pates S, Daley AC, Legg DA, Rahman IA (2021) Vertically migrating Isoxys and the early Cambrian biological pump. *Proceedings of the*

Royal Society B 288(1953): 20210464. <https://doi.org/10.1098/rspb.2021.0464>

Pérez-Peris F, Laibl L, Lustri L, Gueriau P, Antcliffe JB, Enright OGB, Daley AC (2021) A new nektaspid euarthropod from the Lower Ordovician strata of Morocco. Geological Magazine 158(3): 509–517. <https://doi.org/10.1017/S001675682000062X>

Plotnick RE, Wagner PJ (2006) Round up the usual suspects: common genera in the fossil record and the nature of wastebasket taxa. Paleobiology 32(1): 126–146. [https://doi.org/10.1666/0094-8373\(2006\)032\[0126:RUTUSC\]2.0.CO;2](https://doi.org/10.1666/0094-8373(2006)032[0126:RUTUSC]2.0.CO;2)

Raasch GO (1939) Cambrian merostomata. Geological Society of America Special Papers 19: 1–146.

Rak Š (2009) The occurrence of non-trilobite arthropods from the quartzites of Letná Formation from the vicinity of Beroun. Geologie, paleontologie, speleologie — Český kras 35: 14–25.

Rak Š, Bergström J, Fatka O, Budil P (2009) The Upper Ordovician arthropod Zonozoe draboviensis Barrande (Libeň and Letná formations, Sandbian, Barrandian area, Czech Republic). Bulletin of Geosciences 84: 185–188. <https://doi.org/10.3140/bull.geosci.1026>

RCoreTeam (2024) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (Austria). <http://www.R-project.org/>

Schmidt M, Schoenemann B, Hou X-G, Melzer RR, Liu Y (2025) Pygmaclypeatus daziensis, a unique lower Cambrian arthropod with two different compound eye systems. Communications Biology 8(1): 317. <https://doi.org/10.1038/s42003-025-07664-1>

Scotese CR (2023) Ordovician plate tectonic and palaeogeographical maps. Geological Society of London Special Publication 532: 91–109. <https://doi.org/10.1144/SP532-2022-311>

Stein M, Budd GE, Peel JS, Harper DA (2013) *Arthroaspis* n. gen., a common element of the Sirius Passet Lagerstätte (Cambrian, North Greenland), sheds light on trilobite ancestry. BMC evolutionary Biology 13(1): 99. <https://doi.org/10.1186/1471-2148-13-99>

Stein M, Selden PA (2012) A restudy of the Burgess Shale (Cambrian) arthropod *Emeraldella brocki* and reassessment of its affinities. Journal of Systematic Palaeontology 10(2): 361–383. <https://doi.org/10.1080/14772019.2011.566634>

Størmer L (1944) On the relationships and phylogeny of fossil and recent Arachnomorpha: a comparative study on Arachnida, Xiphosura, Eurypterida, Tribolita, and other fossil Arthropoda. Skrifter Utgitt av Det Norske Videnskaps-Academi I Oslo. IMatematisk-Naturvidenskapelig Klasse 5: 1–158.

Størmer L (1951) A new eurypterid from the Ordovician of Montgomeryshire, Wales. Geological Magazine 88(6): 409–422. <https://doi.org/10.1017/S001675680006996X>

Størmer L (1955) Merostomata. In: RC Moore (ed.) Treatise on invertebrate paleontology, part P, Arthropoda 2:4-1. Geol. Soc. America and Univ. Kansas Press. <https://doi.org/10.17161/dt.v0i0.5344>

Stott CA, Tetlie OE, Braddy SJ, Nowlan GS, Glasser PM, Devereux MG (2005) A new eurypterid (chelicerata) from the Upper Ordovician of Manitoulin Island, Ontario, Canada. Journal of Paleontology 79(6): 1166–1174. [https://doi.org/10.1666/0022-3360\(2005\)079\[1166:ANECAFT\]2.0.CO;2](https://doi.org/10.1666/0022-3360(2005)079[1166:ANECAFT]2.0.CO;2)

Van Roy P (2005) An aglaspidid arthropod from the Upper Ordovician of Morocco with remarks on the affinities and limitations of Aglaspidida. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 96(4): 327–350. <https://doi.org/10.1017/S0263593300001334>

Van Roy P, Orr PJ, Botting JP, Muir LA, Vinther J, Lefebvre B, El Hariri K, Briggs DE (2010) Ordovician faunas of Burgess Shale type. Nature 465(7295): 215–218. <https://doi.org/10.1038/nature09038>

Van Roy P, Rak Š, Budil P, Fatka O (2022) Redescription of the cheloniellid euarthropod *Triopodus draboviensis* from the Upper Ordovician of Bohemia, with comments on the affinities of *Parioscorpio venator*. Geological Magazine 159(9): 1471–1489. <https://doi.org/10.1017/S0016756822000292>

Vokáč V, Grigar L (2024) New finding of the fossil arthropod Zonozoe draboviensis Barrande, 1872 in the Řevnice Quartzite (Libeň Formation, Upper Ordovician, Sandbian) bear Starý Plzenec (Prague Basin, Czech Republic). Erica 31: 83–87.

Walcott CD (1911) Middle Cambrian Merostomata. In: Cambrian geology and paleontology II. Smithsonian Miscellaneous Collections 57(2): 17–40.

Zhang X, Shu D (2005) A new arthropod from the Chengjiang Lagerstätte, Early Cambrian, southern China. Alcheringa 29(2): 185–194. <https://doi.org/10.1080/03115510508619300>

Supplementary material 1

R code used for the analysis

Authors: Lorenzo Lustri, Lukáš Laibl, Luis Collantes, Jana Bruthansová, Martina Nohejlová, Yu Liu, Stephen Pates

Data type: R file

Copyright notice: This dataset is made available under the Open Database License (<http://opendatacommons.org/licenses/odbl/1.0>). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Link: <https://doi.org/10.3897/sjp.145.179154.suppl1>

Supplementary material 2

Silhouettes in .jpg format

Authors: Lorenzo Lustri, Lukáš Laibl, Luis Collantes, Jana Bruthansová, Martina Nohejlová, Yu Liu, Stephen Pates

Data type: zip

Copyright notice: This dataset is made available under the Open Database License (<http://opendatacommons.org/licenses/odbl/1.0>). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Link: <https://doi.org/10.3897/sjp.145.179154.suppl2>

