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Abstract—Beyond diagonal reconfigurable intelligent surfaces
(BD-RIS) with interconnected reflecting elements present an
emerging technology for manipulating the propagation environ-
ment, and their new structure requires careful investigation.
In this paper, we explore BD-RIS-aided power minimization
beamforming, where the BD-RIS scattering matrix and transmit
beamforming are jointly optimized under nonconvex constraints
related to signal-to-interference-plus-noise ratio (SINR) thresh-
olds and the structure of the scattering matrix. To efficiently
solve the problem, we propose a single-loop algorithm, where
we adopt a variable splitting strategy with an auxiliary variable
to split the scattering matrix, and then alternately update the
resulting variables. Through further derivations, we show that
each nonconvex subproblem can be solved efficiently. Simulation
results demonstrate the high efficiency of our proposed single-
loop algorithm and the effectiveness of BD-RIS in improving
performance.

Index Terms—Beyond diagonal reconfigurable intelligent sur-
faces (BD-RIS), power minimization, beamforming, MIMO.

I. INTRODUCTION

ECONFIGURABLE intelligent surfaces (RIS) have

emerged as a pivotal technique in the evolution of future
ubiquitous and intelligent wireless communications [1], [2].
Composed of a large number of passive reflecting elements
made from metamaterials, RIS are known for their ability to
adaptively control the reflection of impinging electromagnetic
signals with extremely low power consumption and without
the need for radio frequency (RF) chains.

Owing to their intelligent reflection capabilities and low-cost
operation, RIS have been widely studied in wireless commu-
nications for channel shaping [3]-[5] and signal enhancement
[6]-[8]. For example, [3] investigates passive beamforming
for multi-user multiple-input multiple-output (MIMO) systems
with one-bit analog-to-digital converters, where the cascaded
channel is designed to minimize the symbol error rate. The
authors of [4] study joint optimization of the transmit power
and RIS reflection coefficients for orthogonal frequency divi-
sion multiplexing (OFDM) systems, aiming to maximize the
achievable rate. In [5], an RIS is used to increase the rank of
the channel matrix, and a closed-form solution is derived to
increase the multiplexing gain and channel capacity. In these
channel-shaping studies, the RIS functions as a standalone
device for programming the propagation environment. For
signal enhancement scenarios, the RIS collaborates with active
beamforming at the transmitter to more effectively optimize

the received signal. In [6], the authors propose minimizing
transmit power through the joint optimization of active beam-
forming at the transmitter and passive beamforming at the RIS,
and solve the problem using semidefinite relaxation (SDR).
The authors of [7] consider joint optimization of the transmit
power allocation for all users and the reflection coefficients of
the RIS to maximize energy efficiency. An RIS-aided weighted
sum-rate maximization problem is investigated in [8] using
fractional programming.

The work cited above assumes a conventional RIS consist-
ing of isolated reflecting elements that result in a diagonal
reflection matrix. Such RIS can be referred to as diagonal RIS
(D-RIS). Building on this, the concept of beyond diagonal
RIS (BD-RIS) with interconnected reflecting elements has
recently been proposed for enhanced design [9], [10]. The
elements of a BD-RIS are connected together via reconfig-
urable impedances that provide additional degrees of freedom
(DoFs) for manipulation of the reflected signal. These DoFs
can be exploited to provide significant performance advantages
compared to conventional D-RIS [11]. However, the use of
BD-RIS also introduces new challenges for scattering matrix
optimization, necessitating new signal processing approaches.
The authors in [12] address the problem of optimizing the
BD-RIS passive beamforming to maximize received signal
power, and they derive a corresponding closed-form solution.
However, this solution cannot be extended to other BD-
RIS scenarios and does not consider coordination with the
active transmit beamforming. Although [13] proposes a unified
approach to optimize the BD-RIS configuration based on the
penalty dual decomposition (PDD) method, it includes an outer
alternating optimization layer and an inner PDD layer with two
nested layers, which results in high computational complexity
that limits its practical implementation.

In this paper, we consider BD-RIS-aided power minimiza-
tion beamforming in a MIMO system, where the BD-RIS
scattering matrix and transmit beamforming are jointly opti-
mized to minimize transmit power while adhering to individual
signal-to-interference-plus-noise ratio (SINR) constraints, as
well as constraints on the BD-RIS scattering matrix. In addi-
tion to the SINR performance, the BD-RIS scattering matrix
must be constrained to be a symmetric and orthogonal matrix.
This means that the feasible region for the solution is the
intersection of three different subspaces or manifolds, which



BS

ll,._/,. Vk

]l(/ ks Vk

Users

The BD-RIS-aided multi-antenna beamforming system.

71 Zy

Port 1 Port 2

Port 3 Port 4

7, 74

(a) (b)

Fig. 2. (a) 4-element/port single-connected RIS. (b) 4-element/port fully-
connected RIS.

accounts for the main obstacle in solving the problem. To
solve this joint optimization problem with multiple variables
and constraints, we split the scattering matrix into two parts by
introducing an auxiliary variable that is equal to the scattering
matrix itself. We allocate different constraints to the resultant
variables: one for the SINR and symmetric constraints, and
the other for the orthogonality constraint. We propose a
novel single-loop algorithm to solve this nonconvex problem.
By leveraging the alternating direction method of multipliers
(ADMM), we decompose the problem into three subproblems,
each of which can be solved efficiently using the phase
invariance of the SINR and the singular value decomposition
(SVD). We present simulation results demonstrating the high
efficiency of the proposed single-loop algorithm. These results
also show that the BD-RIS-aided system requires significantly
lower transmit power compared to conventional D-RIS.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a BD-RIS-aided multi-user multiple-input single-
output (MU-MISO) communication system, where a base
station (BS) with N, transmit antennas serves N, single-
antenna users in the same resource block, and an /N;-element
BD-RIS is deployed as part of the communication link to

enhance the performance, as shown in Fig. 1. We use ® ¢
CNixNi to denote the scattering matrix of the BD-RIS. The
reconfigurable impedance network of a 4-element/port single-
connected and fully-connected RIS are compared in Fig. 2 [9].
While the single-connected D-RIS has only 4 reconfigurable
impedances, the fully-connected BD-RIS has 9. Therefore,
the fully-connected BD-RIS clearly provides increased DoFs.
In this paper, we consider a lossless fully-connected BD-
RIS model [9], [10], which has a symmetric and orthogonal
scattering matrix, i.e.,

®=3" ®"® =1 €]

Single- and group-connected BD-RIS can be regarded as
special cases of the architecture.

The wireless channels between the BS and user k, be-
tween the BS and the BD-RIS, and between the BD-RIS and
user k are denoted as hgy, G, and h, j, respectively. The

stacked channels are expressed as Hy = [hg1, -+, han,]
and H, £ [h,.1, -+, h, y.]. Given the modulated data symbol
vector s £ [s1,-++,sn,]T, the received signal for user k is
given by:
N,
ye = (hly + b, 8G) Y " wis; + ny, )
i=1

where wy, denotes the beamforming vector for user k, and
nk ~ CN(0,0%) denotes additive white Gaussian noise.
Assuming that |s;| = 1,Vk, the SINR for user k is given
by

[fwi|*
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SINR;, & (3)

where h{f = hg{ s hfk{)G denotes the cascaded channel.
In this paper, we focus on the problem of optimizing the ac-
tive and passive beamforming to minimize the transmit power
while ensuring that the received SINR of each user is no less
than a given threshold. Meanwhile, the scattering matrix of the
BD-RIS is subject to symmetric and orthogonality constraints.
The considered optimization problem is formulated as follows:
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where v, denotes the prescribed SINR threshold for user k,
and W £ [wy,---,wpy,]. Note that (4) involves the joint
optimization of W and ®, which makes it difficult to achieve
a reasonable trade-off between performance and complexity.
Moreover, this problem is nonconvex not only because of the
fractional SINR constraint on W and ®, but also due to the
nonconvex orthogonality constraint on ®.



III. SINGLE LOOP ALGORITHM

In this section, we address the difficulties inherent in the
problem structure of (4). We propose a single-loop algorithm
to iteratively solve the joint optimization problem. Specifically,
we begin by incorporating the SINR, symmetric, and orthogo-
nality constraints into the objective using indicator functions,
resulting in a more tractable formulation. The steps for solving
the reformulated problem using the single-loop algorithm are
then detailed.

Since the scattering matrix @ is subject to three different
kinds of constraints, the feasible region of ® is complicated
to enforce. Therefore, we use a variable splitting strategy to
address this issue. We introduce a copy of ® as an auxiliary
variable, denoted as W¥. The auxiliary variable essentially
serves as a splitting operator for ®. The new problem with
the variable splitting strategy can then be formulated as:
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In the next step, we retain the newly introduced equality
constraint ® = W and incorporate the other constraints
into the objective function. Let the feasible region of W
and ®, defined by the SINR and symmetric constraints, be
denoted as C, and let the feasible region of W, defined by
the orthogonality constraint, be denoted as D. The indicator
function associated with the two feasible regions can then be
expressed as follows:

if W, ®
Hc(W, q,) _ {O,l 5 €Ca (11)
400, otherwise,
0,if ¥ € D,
Ip(P) = 12
o(¥) {+oo,0therwise. (12)

Using (11) and (12), the problem in (7) can be equivalently
written as:

N
. 2
Wn’lé){lq,;HWzH +1c(W, @) +1p(¥)  (13)
st ® =0, (14)

The problem in (13) has only one equality constraint, and thus
has a simpler structure compared to its original form in (7).
In the following, we propose a single-loop algorithm based on
the ADMM framework to address the reformulated problem.
By adopting ADMM, we introduce a Lagrange multiplier and
a penalty parameter to decompose the reformulated problem
into three subproblems, followed by a closed-form update of
the Lagrange multiplier.

According to Lagrangian duality [14], the augmented La-
grangian for (13) is defined as
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where A and p denote the Lagrange multiplier and the penalty
parameter associated with the equality constraint, respectively.
It is observed that if the reformulated problem in (7) is solved,
then plugging the optimal variables into the augmented La-
grangian will produce an optimal value equal to the objective
function in (7). Conversely, by minimizing the augmented
Lagrangian with respect to W, ®, ¥, and A, we can obtain
an approximate solution to (7). The accuracy of this solution
is determined by the penalty parameter p and the number
of iterations. Next, we outline the decomposition procedure
and elaborate on the solution to the resulting subproblems.
The subproblem for the scattering matrix is transformed into
an equivalent problem using the phase invariance inherent in
the SINR constraint, resulting in a convex formulation. The
update of the auxiliary variable is formulated as a quadratic
programming problem with an orthogonality constraint and
solved using the SVD.

The four optimization variables in the augmented La-
grangian are updated in an alternating manner, as follows:

Wit = arglr%nﬁ(w,@t,\Ilt,At), (16)
it = argngnz(wt“, & W A", 17)
it = argmqi’n LWL 1L @ Al (18)
AT = AN 4 p (BT - B (19)

where the superscripts ¢ and ¢ 4+ 1 denote iteration indices.
It is evident that the updates for W, ®, and ¥ require
further investigation because the indicator functions used in
the augmented Lagrangian cannot be evaluated directly. We
address the three subproblems in the remainder of this section,
deriving a convex reformulation of (16) and (17), as well as
a closed-form solution to problem (18).

A. Update of the Beamforming Matrix

To update the beamforming matrix W, we can fix the other
variables and substitute the augmented Lagrangian into (16).
By rewriting the indicator function for W in terms of the
original SINR constraint, we obtain the following subproblem
for updating W:
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Note that the fractional SINR constraint is nonconvex. Al-
though this problem cannot be solved directly due to its



nonconvex nature, a fixed-point algorithm is proposed in [15]
using Lagrangian duality. Additionally, thanks to the phase
invariance in the SINR formulation, it can be reformulated as
a convex second-order cone constraint [16]:
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Therefore, this problem can be readily solved using standard
convex optimization tools.

B. Update of the Scattering Matrix

Following the procedure for updating W, the scattering
matrix ® can be updated as follows:
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The SINR constraint in (26) is nonconvex with respect to
®. Below, we leverage the phase invariance inherent in the
SINR formulation to rewrite the fractional SINR constraint as
a quadratic constraint. Since a phase rotation of the precoding
matrix is irrelevant to the SINR, we can choose the phase such
that the desired signal, th wp, is real-valued and positive.
To this end, the SINR constraint with respect to ® can be
equivalently written as:

bW+ h,8GW ]| -
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While this leads to a convex problem for updating the matrix
®, to solve the problem using standard optimization tools, we
derive an equivalent formulation using a vector-valued opti-
mization variable for problem (25). The symmetry constraint
on ® indicates that there are IV;(N;+1)/2 independent entries
in ®. Based on this, ® can be vectorized as follows:

¢ = vec{®} = Kop, (30)
where ¢ is obtained by vectorizing the upper triangular part
of &, and K € {0,1}1\[’i2XNi(N1+1)/2 serves as a reshaping
matrix that links ¢ and ¢. Based on this relationship and the

Kronecker product, we rewrite the update of ® in a new form
with the vector optimization variable:

min ® {7 (0~ )} + £l - vl G31)
[*]
ot vec {hng} +Fp 1Ko B
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S{hfwi + £ 2K} = 0,Vk, (33)

where ¢ = vec {¥}, A = vec{A}, F1; = (GW)" © hf,
and f o = (ka)T ® hfk Thus we obtain a standard
quadratic programming problem with quadratic constraints,
which can be solved using conventional algorithms.

C. Update of the Auxiliary Matrix

Substituting the augmented Lagrangian into (18) and fixing
all other variables except W, we obtain the following subprob-
lem for updating the auxiliary matrix:

12
P -¥+-A

min
v P

F

st UHw =1 (34)

Note that the orthogonality constraint in (34) is nonconvex.
Insights can be gained by examining (34) from the perspective
of projection. Essentially, the problem in (34) is equivalent to
projecting the matrix ® + %A onto the feasible region defined
by the orthogonality constraint. Assume the SVD of & + %A
is expressed as:

®+ %A =UxVH, (35)
where U and V denote unitary matrices composed of the left
and right singular vectors, respectively, and 3 is a diagonal
matrix containing the singular values of ® + 1A on the
diagonal. To satisfy the orthogonality constraint by means of a
projection, we set the singular values of the candidate solution
to 1. Therefore, the optimal closed-form solution to (34) is
given by [17]

¥ =UV~Y, (36)

After obtaining the three aforementioned variables, we can
update the Lagrange multiplier according to (19) to complete
one iteration. It is evident that the proposed algorithm features
a single-loop structure, making it capable of achieving a better
trade-off between complexity and performance. The proposed
single-loop algorithm based on ADMM is summarized in
Algorithm 1.

D. Algorithm Initialization

Since the joint optimization problem in (4) is nonconvex,
a good initialization for the proposed single-loop algorithm
is crucial to avoid convergence to a bad local minimum. To



address this issue, we adopt an approximate solution to the ef-
fective channel gain maximization problem [18]. Specifically,
the initial value of @ is given by:

®=UV, 37
where U and V are comprised of the left and right singular
vectors of H,HYGH + (HTH{; GH )T, respectively. This
initialization is a feasible solution to the joint optimization
problem in (4), with each impedance configured to maximize
the effective channel gain, which is intuitively beneficial for
transmit power minimization beamforming. In addition, the
complexity of this method is low [18].

Algorithm 1 Single-Loop Algorithm for BD-RIS-Aided
Power Minimization Beamforming (4)
Input: hd,k; hr,s’k, G, OkyVk, Vk
Output: W, &
Initialize ®°, ¥°, and A"
Set p
Sett <+ 0
repeat
Update the beamforming matrix W**! by solving (22)
Update the scattering matrix &' by solving (31)
Update the auxiliary matrix ¥*** by (36)
Update the Lagrange multiplier matrix A“*! by (19)
Sett«+t+1
until the convergence criterion is met

IV. SIMULATION RESULTS

In this section, we present simulation results to demonstrate
the performance of the proposed single-loop algorithm. The
noise variance and SINR threshold for each user are assumed
to be the same, i.e., a,% = —70 dBm, v, = ~,Vk. The
simulation settings are as follows: a BS with N; = 4 transmit
antennas is located at (0,0,4) m, and a BD-RIS with N;
reflecting elements is positioned at (0,52,2). Meanwhile,
N, = 4 single-antenna users are randomly distributed within
a horizontal circular area with a radius of 5 m, centered at
(0,55,1). The distance-dependent path loss is modeled as

Lij (dij) = Lo { -~ :
0

where Ly = —30 dB is the path loss at the reference distance
do = 1 m, d;; denotes the distance, and a;; denotes the path
loss exponent for a direct signal link from ¢ to j, where ¢ and
7 can represent the BS, a user, or the BD-RIS. We set the
path loss exponents for the links between the BS and users,
BS and RIS, and RIS and users as agyr = 3.5, ayr = 2, and
aprr = 2.8, respectively. The channel vector between ¢ and j
is given by:

| _Kr | 1os [ 1 NLoS
h;; = \/L;; h; %> + h;> "
) ) ( 1 KF ) 1 KF ) ’ (39)
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where Kr = 3 dB denotes the Rician factor, fliLjOS represents
the line-of-sight (LoS) component, and flf}w"s ~ CN (0,1)
denotes the Rayleigh fading non-line-of-sight (NLoS) compo-
nent. The penalty parameter is set to p = 0.5.

In Fig. 3, we illustrate the convergence of the optimized
transmit power for different scenarios with various BD-RIS
sizes, for a case with v = 12 dB. We observe that in
all scenarios, the transmit power converges within about 10
iterations. Fig. 3 demonstrates the efficiency of the proposed
single-loop algorithm for various BD-RIS sizes, and illustrates
that the required transmit power decreases as the BD-RIS
size increases. Clearly, a larger BD-RIS provides more DoFs
for designing the reflected signal, which enables less transmit
power to be consumed.

In Fig. 4, we evaluate the proposed single-loop algorithm
under various SINR thresholds, with the number of BD-RIS
elements set to N; = 32. The results are compared to the
case without RIS, and the case with conventional D-RIS as
proposed in [6]. Fig. 4 illustrates that transmit power increases
with the SINR threshold and that the proposed single-loop
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algorithm is effective for different SINR thresholds. The
results also highlight the significant advantage of the BD-RIS
architecture compared with conventional D-RIS.

In Fig. 5, we plot the transmit power as a function of the
number of RIS elements for an SINR threshold of v = 24 dB.
The results validate that BD-RIS-aided beamforming is the
most efficient approach for transmit power reduction. Similar
to Fig. 3, we see that the transmit power decreases as the
number of RIS elements increases. The figure also validates
the effectiveness of the proposed single-loop algorithm for
various BD-RIS sizes.

V. CONCLUSION

In this paper, we investigated BD-RIS-aided power min-
imization beamforming, and formulated the problem as a
transmit power minimization task with SINR constraints,
as well as symmetric and orthogonality constraints on the
BD-RIS scattering matrix. To solve this joint optimization
problem, we proposed a single-loop algorithm based on a
splitting strategy that introduces an auxiliary variable to split
the scattering matrix. We adopted the ADMM framework
to alternately update the relevant variables. The nonconvex
subproblem for the scattering matrix is reformulated as a
convex problem by leveraging the invariance of the SINR to
a common phase rotation of the transmit signal. Additionally,
we presented a closed-form solution based on the SVD for
updating the auxiliary matrix. Simulation results demonstrate
the superiority of the BD-RIS compared with conventional
single-connected D-RIS.
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