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Abstract

Neutrinos are arguably the least well-understood and most compelling
Standard Model particle. The Standard Model does not require they
have mass, which they do, albeit on a scale at least six orders of mag-
nitude lighter than other particles. Their mixing properties provide a
wealth of information about the lepton sector, in particular the size of
leptonic charge-parity violation, which could help explain why we live
in a matter dominated universe. In this thesis, we will discuss two ex-
periments, NOvA and DUNE, the former currently running, and the
latter set to begin taking data in the coming years. For NOvA, we will
briefly describe the workings of the experiment, then focus on optimising
cut values and calculating posterior ranges on neutrino event spectra for
its latest analysis, which achieved world leading precision for the sin-
gle experiment measurement of the neutrino mass splitting �m2

32. For
DUNE we will discuss some phenomenological projects, undertaken in
an attempt to maximise the already appreciable sensitivity of DUNE
to neutrino oscillation parameters. We will utilise machine learning to
demonstrate how the energy resolution could be improved, and quantify
the e�ect of this improvement on its sensitivity. We will also propose
a new technique to exploit the capabilities of the DUNE near detector
to move o�-axis in order to constrain hadron production uncertainties.
Again we will show the corresponding improvements this a�ords on the
accuracy and robustness of DUNE’s measurements.
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Impact Statement

Impact Statement

Although about 100 trillion neutrinos pass through our bodies every sec-
ond, they are perhaps the least understood particle in the known uni-
verse. Yet, the discovery of neutrino oscillations was one of the first
indications that the Standard Model of particle physics is incomplete.
Studying their properties may also help explain why we live in a world of
matter as opposed to antimatter, one of the most pressing questions in
modern physics, and help in the search for a grand unified field theory.

The research presented in this thesis was undertaken to deepen our
understanding of these fascinating particles, and contribute to answering
these fundamental questions. It focuses on the role of current and future
long-baseline oscillation experiments, NOvA and DUNE, and explores
methods to improve their precision and sensitivity to neutrino oscillation
parameters.

Outside its scientific significance, particle physics has also contributed
greatly to technologies we rely upon in our day-to-day lives. The World
Wide Web was developed at CERN, while novel techniques of information
storage and retrieval have been developed for storing huge datasets from
particle physics experiments, and particle accelerators are now widely
used in medical treatment. Research into neutrinos creates more oppor-
tunities for discoveries which benefit both the scientific community, and
society as a whole.
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Chapter 1

Introduction

1.1 A short history of neutrinos

Neutrinos were first postulated by Pauli in 1930 as a solution to the
seeming violation of energy conservation seen in beta minus (—≠) decay
[1]. Prior to his suggestion it was thought that —≠ decay occurred via
a neutron converting to a proton (i.e. a down quark converting to an
up quark via the weak force) within the nucleus, and emitting a single
electron. However, in 1914, Chadwick observed that the energy spectrum
of —≠ decay electrons was continuous as opposed to resembling a delta
function, which would be expected for a single body decay [2]. Pauli’s
solution ensured the conservation of energy and momentum in such a
decay, but posed another issue. The particle he proposed was electrically
neutral, could be massless, and would have penetration length no shorter
than a photon. This combination of characteristics would make the de-
tection of this particle very challenging [3]. Indeed, the first detection
of neutrinos didn’t occur until 1956. Cowan and Reines, using a nuclear
reactor as a source of electron anti-neutrinos (‹e) were able to detect
inverse beta decay [4]

‹e + p æ n + e+ (1.1.1)

thus proving the existence of the neutrino. The experiment (dubbed
‘Project Poltergeist’), used detectors consisting of cadmium enriched wa-
ter tanks sandwiched between scintillator layers. When inverse beta de-
cay occurred, the electron-positron annihilation which followed could be
detected by measuring the coincident gamma rays emitted, while the fi-
nal state neutron would be absorbed by the cadmium in the detector,
emitting another gamma ray, providing a unique signature for a ‹e in-
teraction. Their observation of inverse beta decay with a cross section of
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6.3 ◊ 10≠44cm2 agreed with predicted rates, and provided the first direct
neutrino measurement [4].

The weak force was proven to be parity violating, or chiral, by Wu,
Lee and Yang in 1956 [5, 6]. If parity were conserved by the weak force
(which mediates beta decay), electrons emitted by beta decay of spin-
polarised nuclei would be equally likely to travel parallel and antiparallel
to the nuclear spin. This follows as spin, an axial vector, is invariant un-
der parity transformations, while velocity is not. However, Wu observed
an asymmetry in the spatial distribution of emitted electrons relative to
their spin. In fact, electrons were predominantly emitted in the opposite
direction to the spin vector, indicating that parity is maximally violated
by the weak force. Lee and Yang shared the 1957 Nobel Prize for this dis-
covery, while Wu, (the only woman involved), who designed and carried
out the experiment, was not recognised.

Building on parity violation in the weak force, in 1957 Goldhaber et
al. used Europium decays to determine that neutrinos are left-handed
(their spin points opposite to their momentum) [7]. Because no right-
handed neutrinos were observed, it was assumed that neutrinos are mass-
less: a massive particle cannot travel at the speed of light, as such, there
always exists a reference frame in which, for example, a left-handed par-
ticle will appear right-handed. Therefore, the only scenario allowing
all observed neutrinos to be left-handed is one in which they are mass-
less. In the same year, contrary to this result, Pontecorvo suggested that
neutrino-antineutrino oscillations could occur [8], analogous to neutral
kaon mixing [9], which would require neutrinos to have a non-zero mass,
however, such oscillations have never been observed. Upon the detection
of the muon neutrino by Lederman et al. in 1962 [10] Maki, Nakagawa
and Sakata introduced a model describing lepton mixing [11], which ex-
panded on Pontecorvo’s work in 1957, but considered mixing between
flavour states as opposed to particles and anti-particles. The theory for
neutrino flavour oscillation which we recognise today was formalised in
1967 by Gribov and Pontecorvo [12]. Evidence for neutrino flavour os-
cillations was provided when solar neutrinos (‹e’s created by fusion in
the Sun’s core) were first detected in 1968 by Davis and Bahcall at the
Homestake experiment at a rate of 1

3 predicted by the standard solar
model [13, 14]. This deficit was dubbed the ‘solar neutrino problem’,
and motivated additional research into the properties of neutrinos.

When the tau (·) lepton was detected in 1975, a third generation of
neutrino, ‹· , became seemingly likely. While the existence of 3 distinct
neutrinos was confirmed by Z-decays at the LEP experiment in 1989 [15],
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Figure 1.1: Table of all particles in the Standard Model and their spins,
electromagnetic charges and approximate masses, from [20].

the ‹· itself wasn’t detected until 2000, when the DONUT experiment
measured nine tau neutrino interactions [16, 17]. By 2015, the OPERA
experiment had seen five further events [18], and in 2024 the IceCube ex-
periment reported the first observation of astrophysical ‹· , adding seven
events to the dataset [19]. To date, only 21 tau neutrinos have been
detected.

1.2 Neutrinos in the Standard Model

Under the Standard Model (SM) of particle physics, illustrated by Figure
1.1, neutrinos are electrically neutral, massless particles which can only
interact via the weak force. The Standard Model is a renormalizable
SU(3)◊SU(2)L ◊U(1)Y quantum field theory in flat 3+1 spacetime, i.e.
not including gravitational e�ects. SU(3) represents the strong force,
which is mediated by gluons, and acts on quarks. SU(2)L ◊ U(1)Y is
the electroweak gauge symmetry which undergoes spontaneous symme-
try breaking. After this breaking, the gauge bosons manifest as the W ±
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and Z bosons (mediating the weak force, which acts on all fermions),
and the photon (mediating the electromagnetic force, which acts only on
charged fermions). While the simplest version of the standard model La-
grangian has been successful at describing many areas of particle physics,
it falls short at explaining neutrino masses, and by extension, neutrino
oscillations [21].

Neutrinos are only acted upon by the SU(2) ◊ U(1) electroweak sub-
group. We can write the electroweak Lagrangian for neutrinos (choosing
to include a Dirac mass term, which will be explained in Section 1.2.1),
as

L ∏
ÿ

–=e,µ,·

C

‹–i /̂‹– + gÔ
2

1
‹–,L“µl–W +

µ
+ h.c.

2
+ g

2 cos ◊W

‹–,L“µ‹–,LZµ

D

≠
ÿ

–=e,µ,·

(m–—‹–,L‹—,R + h.c.)

(1.2.1)

where g is the weak coupling constant, ◊W is the Weinberg angle, W and
Z are the gauge bosons of the weak force [22]. The first term describes
the kinetic energy, of the neutrino field. The second and third terms
show the couplings between neutrinos and the weak bosons, which allow
interactions between neutrinos and charged leptons via coupling to the
W ± boson (known as the charged current, or CC), or between neutrinos
via coupling to the Z boson (known as the neutral current, or NC) as
shown in Figure 1.2.

The fields ‹–,L and ‹–,R are obtained by acting on the spinor field ‹–

with the chirality projection operators

‹–,L © PL‹– © 1
2(1 ≠ “5)‹–, ‹–,R © PR‹– © 1

2(1 + “5)‹– (1.2.2)

which are constructed using gamma matrices,

“5 = i“0“1“2“3 (1.2.3)

As discussed in Section 1.1 the weak force is chiral, and only interacts
with left-handed particles. That is to say that only left-handed fermions
are SU(2)L doublets and therefore couple to W and Z, while right-handed
fermions are SU(2)L singlets and do not participate in weak interactions.
We should note that this would mean a right-handed neutrino field, ‹R,
has no interactions with any SM force, so is not technically part of the
standard model. Nonetheless, we include it here because it is required
to construct a gauge invariant neutrino mass term - the final part of
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W

l–‹–

Z

‹‹

Figure 1.2: Feynman diagrams of charged current (left) and neutral cur-
rent (right) interactions.

Equation 1.2.1.

1.2.1 Neutrino Mass

The neutrino mass term included in Equation 1.2.1 is analogous to the
mass terms used for charged fermions in the Standard Model, known as
a Dirac mass term [23]. This term couples fields of opposite chirality
together and is the only gauge invariant mass term possible for charged
fermions. It arises from the Yukawa interaction with the Higgs field,
which generates mass after spontaneous symmetry breaking. While it
is plausible that neutrinos acquire mass through this mechanism, it’s
also possible to construct an alternative mass term which couples a left-
handed neutrino and left-handed antineutrino together. This requires
the charge conjugation operation C, which exchanges particles and an-
tiparticles

C : Â æ Âc © ≠CÂ
T © ≠i“2“0Â

T © ≠i“2Âú. (1.2.4)

By acting on Âc with “5 we can see that charge conjugation changes the
chirality of a field,

“5Âc = ≠i“5“2Âú = +i“2“5Âú = ≠
1
“5Â

2
c

, (1.2.5)

i.e. it interchanges left and right-handed fields. As a result the charge
conjugate of a left-handed neutrino field, (‹L)c is right-handed, and we
can create an alternative mass term without using the right-handed neu-
trino field ‹R,

LMajorana ∏ ≠1
2m(‹L)c‹L + h.c. (1.2.6)

known as the Majorana mass term [24]. We must note that in the
Standard Model, ‹L is part of an SU(2)L doublet with non-zero weak
isospin and hypercharge, meaning Equation 1.2.6 is not invariant under
SU(2)L ◊ U(1)Y gauge symmetry. Gauge invariance can be restored us-
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ing the dimension-5 Weinberg operator [25], such that the Lagrangian
includes

L = 1
��L

c

L� + h.c. (1.2.7)

where L is the lepton doublet, � is the Higgs field with a vacuum expec-
tation value v =

Ô
2È�Í ¥ 246 GeV and � is the energy scale at which

some new physics generates the Weinberg operator. After electroweak
symmetry breaking (SSB), the Weinberg operator induces a Majorana
mass for the active neutrinos of order v2/�. Models which realise neu-
trino mass generation by the Weinberg operator are known as seesaw
mechanisms.

In the type-I seesaw, a heavy right-handed neutrino field N is intro-
duced at energy scales above SSB allowing a Yukawa coupling between
N and the left-handed SU(2) doublet, L. Integrating out the heavy neu-
trino N generates the Weinberg operator, leading to active (left-handed)
neutrino masses of m‹ ≥ v2/mN (where mN is on the same scale as
�). The active neutrino mass is therefore suppressed by the heavy right-
handed neutrino, meaning seesaw mechanisms can explain the disparity
between the mass of neutrinos and other Standard Model fermions.

It’s not clear whether neutrinos are Dirac or Majorana particles, how-
ever from the observation of their oscillations we know they must be
massive.

1.3 Neutrino Oscillations

We will first derive neutrino oscillations in the 3 flavour picture in a
vacuum, before moving on to modify the treatment and take into account
propagation through matter.

1.3.1 Neutrino Oscillations in Vacuum

The active neutrino flavour states (i.e. the states which feel the weak
interaction) ‹e, ‹µ and ‹· , are comprised of a superposition of neutrino
mass states, which we will label 1, 2 and 3. As discussed in Section 1.1,
the relationship between these states can be parameterised by the PMNS
matrix [11, 26] Q

ccca

‹e

‹µ

‹·

R

dddb =

Q

ccca

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

U·1 U·2 U·3

R

dddb

Q

ccca

‹1

‹2

‹3

R

dddb . (1.3.1)
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The PMNS matrix is not diagonal, meaning the flavour and mass eigen-
states are misaligned, leading to neutrino oscillations. If left-handed
neutrinos are the only states, the matrix can be decomposed into 3 ◊ 3
matrices such that

UP MNS =

Q

ccca

1 0 0
0 c23 s23

0 ≠s23 c23

R

dddb

¸ ˚˙ ˝
atmospheric

Q

ccca

c13 0 s13ei”CP

0 1 0
s13e≠i”CP 0 c13

R

dddb

¸ ˚˙ ˝
reactor

Q

ccca

c12 s12 0
≠s12 c12 0

0 0 1

R

dddb

¸ ˚˙ ˝
solar

(1.3.2)
Where the sab © sin ◊ab, cab © cos ◊ab and ”CP is the Dirac phase. Neu-
trino flavour states can thus be written

|‹–Í =
3ÿ

j=1

U–j |‹jÍ (1.3.3)

where the mass states |‹jÍ evolve according to the time dependent Schrödinger
equation

ˆ

ˆt
|‹jÍ = iH |‹jÍ (1.3.4)

where j = 1, 2, 3 and the solutions can be approximated as plane waves
|e≠iEjt‹jÍ, and E is the energy of the neutrino mass state. After propa-
gating over a distance L for time T , the neutrino flavour state becomes

|‹–(T, L)Í =
3ÿ

j=1

Uú
–j

e≠iEjT |‹jÍ . (1.3.5)

The amplitude for ‹– æ ‹—, i.e. for an oscillation from ‹– to ‹— is then

È‹—|‹–(T, L)Í =
3ÿ

j,k=1

Uú
–j

U—ke≠iEjT È‹k|‹jÍ =
3ÿ

j=1

Uú
–j

U—je≠iEjT (1.3.6)

where, moving from middle to right, we have used the orthogonality of
the mass states, i.e. È‹k|‹jÍ = ”jk.

In the relativistic limit, L ≥ ct, (however we use natural units, where
c © 1) and the energy of the jth neutrino mass state Ej can be rewritten
in terms of mass and momentum as

Ej =
Ò

p2
j

+ m2
i

ƒ p(1 +
m2

j

2p2 ) ƒ E +
m2

j

2E
, (1.3.7)

where the E is the total neutrino energy. The penultimate step is ob-
tained by Taylor expanding, applying the equal momentum approxima-
tion (which assumes the mass eigenstates are created with equal momen-
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tum) and using the ultrarelativistic limit, such that p≠1 ƒ E≠1.

The oscillation probability is then

P–æ—(T, L) = |È‹—|‹–(T, L)Í |2=
3ÿ

j,k=1

Uú
–j

U—jU–kUú
—k

e≠i
�m

2
jkL

2E , (1.3.8)

with the mass squared splitting �m2
jk

© m2
j

≠ m2
k
.

Next, we apply the unitarity of the PMNS matrix, particularly that
q

j U–jUú
—j

= ”–—, and use Euler’s Theorem to deconstruct the complex
exponential term, then 2 sin2(◊/2) = 1 ≠ cos ◊ to write everything in
terms of sin, to give

P–æ— = ”–— ≠ 4
ÿ

j>k

R[Uú
–j

U—jU–kUú
—k

] sin2 �m2
jk

L

4E

+2
ÿ

j>k

I[Uú
–j

U—jU–kUú
—k

] sin
�m2

jk
L

2E
.

(1.3.9)

The oscillation probability therefore depends on the propagation distance
(or baseline) L, the neutrino energy, E, the mass squared splittings �m2

jk
,

the mixing angles ◊jk and phase ”CP . This result is identical to the one
arrived at by more formal (and technically correct) treatments which do
not use the equal momentum approximation. One such approach is to
treat the eigenstates as quantum mechanical wave packets, and rather
than assuming pure momentum eigenstates, to use a superposition of
many momentum eigenstates [27, 28].

To obtain the equivalent expression for antineutrinos one must replace
U æ Uú, which is equivalent to performing a CP transformation on the
neutrino states. If there is CP violation in the lepton sector, this would
imply

P‹–æ‹—
”= P‹–æ‹—

. (1.3.10)

The product of charge (C) parity (P)
1
‹–

CP≠≠æ ‹–

2
and time (T)

1
P‹–æ‹—

T≠æ P‹—æ‹–

2
transformations, however, must be conserved in the

standard model, meaning for neutrino oscillations we require

P‹–æ‹—
= P‹—æ‹– (1.3.11)

Therefore the observation of CP violation necessarily implies T violation
as well.

The di�erence between neutrino and antineutrino oscillation proba-
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bilities,

�P–æ— (L) ƒ
3ÿ

j,k=1

Uú
–j

U—jU–kUú
—k

e≠i
�m

2
jkL

2E ≠
3ÿ

j,k=1

U–jU
ú
—j

Uú
–k

U—ke≠i
�m

2
jkL

2E

=
3ÿ

j ”=k

1
Uú

–j
U—jU–kUú

—k
≠ U–jU

ú
—j

Uú
–k

U—k

2
e≠i

�m
2
jkL

2E

=
3ÿ

j ”=k
2iI

1
Uú

–j
U—jU–kUú

—k

2
e≠i

�m
2
jkL

2E

(1.3.12)

can be written as Jjk

–—
© I

1
Uú

–j
U—jU–kUú

—k

2
which is proportional to the

Jarlskog invariant [29]. For survival probabilities – = —, Jjk

–—
= 0, con-

sistent with CPT symmetry. In the three flavour case we can write

J = c12s12c23s23c2
13s13 sin ”CP (1.3.13)

noting that J vanishes if any mixing angle is zero, illustrating that CP-
violation is a three flavour e�ect. This characteristic was first observed
in the CKM matrix by Cecilia Jarlskog, but can also be used to quantify
CP violation in the lepton sector [30].

Long-baseline oscillation experiments can therefore probe the amount
of CP violation in the lepton sector (”CP ), by comparing the oscillation
rates of neutrinos and antineutrinos. While this phenomenon has been
proven to occur via multiple processes in the quark sector, for example in
Bs and D meson decays [31, 32], no such measurement has been made in
the lepton sector. CP-violation is a necessary condition for Baryogenesis
- the process which produced the matter-antimatter asymmetry in the
universe. The current degree of CP-violation observed in the quark sector
isn’t su�cient to explain the size of this asymmetry, as such, its existence
in the lepton sector is both expected and of critical importance to the
scientific community.

1.3.2 Neutrino Oscillations in Matter

When neutrinos propagate through matter, their oscillation probabili-
ties are modified by interactions with the particles they encounter. Al-
though incoherent neutrino-nucleon scatterings occur, their cross section
is very small and scales linearly with the number of targets N . There-
fore, they have a negligible impact on oscillations. In contrast, coherent
forward scattering events, wherein the neutrino interacts with the nu-
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Figure 1.3: Feynman diagrams of a charged current interaction between
a ‹e and electron(left) and a neutral current interaction between any
neutrino flavour and an electron, proton, or neutron (right). Only elec-
tron neutrinos can interact with the Earth’s matter via charged current,
meaning they experience a stronger matter potential than muon or tau
neutrinos.

cleus as a whole, scale with N2, as the interference between the phases
of constituent nucleons add constructively [33]. This e�ect introduces
a refractive index for the neutrinos, or equivalently an e�ective matter-
induced mass, which alters their flavour evolution. Because ordinary
matter consists of protons, neutrons and electrons, all flavours of neu-
trino can scatter with all matter via NC interactions, and ‹e and ‹e can
also scatter with electrons via CC interactions.

To include matter e�ects in oscillation probabilities, we must con-
struct an e�ective Hamiltonian describing neutrino-matter coherent scat-
tering. When considering neutrinos with energies << MW , it is possible
to integrate out the W boson propagator and replace it with 1/M2

W
, yield-

ing an e�ective Hamiltonian (for the interaction of ‹e with electrons) of

He� ∏ g2

2M2
W

[‹e,L“µeL][eL“µ‹e,L]

= GFÔ
2

[e“µ(1 ≠ “5)e][‹e“
µ(1 ≠ “5)‹e],

(1.3.14)

where the Fermi constant, GF ©
Ô

g
2

8M
2
W

.

The electrons can be treated static relative to neutrinos propagat-
ing through matter, meaning we can replace the electron field term in
Equation 1.3.14 with its expectation value. This can be calculated by
Fourier expanding the electron fields and integrating over their momen-
tum space, assuming they follow a momentum distribution normalised
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to the electron number density, Ne. This yields

He� ∏ GFÔ
2

Ne[‹e“
0(1 ≠ “5)‹e]

= GFÔ
2

Ne‹e,L“0‹e,L

(1.3.15)

where GFÔ
2 Ne = VCC , the potential due to charged current neutrino-

electron interactions. For ‹e the sign of VCC is reversed.

The calculation for the neutral current potential for each neutrino
flavour is analogous, and gives

VNC = ≠1
2

Ô
2GF Nn (1.3.16)

where Nn is the number density of neutrons, and the contributions of
protons and electrons cancel because matter is electrically neutral. In
fact, because oscillation probabilities are sensitive only to phase di�er-
ences, and the NC potential contributes equally to all flavours, VNC can
be ignored altogether. The Hamiltonian for neutrino oscillation in matter
can then be written

H = HV + VMSW (1.3.17)

where HV = Udiag(E1, E2, E3)U † is the vacuum Hamiltonian and VMSW

is the Mikhehyev Smirnov Wolfenstein potential [34, 35],

VMSW =
Ô

2GF

Q

ccca

Ne 0 0
0 0 0
0 0 0

R

dddb . (1.3.18)

The evolution equation of neutrino flavour states in matter is identical
to Equation 1.3.4, but uses the modified Hamiltonian in Equation 1.3.17.
Considering all three neutrino states,

ˆ

ˆt

Q

ccca

|‹eÍ
|‹µÍ
|‹· Í

R

dddb = iH

Q

ccca

|‹eÍ
|‹µÍ
|‹· Í

R

dddb = i

2E

S

WWWUU

Q

ccca

m2
1 0 0

0 m2
2 0

0 0 m2
3

R

dddb U † +

Q

ccca

A 0 0
0 0 0
0 0 0

R

dddb

T

XXXV

Q

ccca

|‹eÍ
|‹µÍ
|‹· Í

R

dddb ,

(1.3.19)

where A =
Ô

2GF NeE, U is the PMNS matrix, and we have used the
total flavour state energy E to express the mass state energies Ei, as
in Equation 1.3.7, and removed the global factor of E, which a�ects all
flavours identically.

Numerical techniques must be employed to find the modified oscilla-
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tion probabilities for an arbitrary matter density profile, however we can
find exact solutions for the case where the matter density is constant.
This is a very good approximation for long-baseline neutrino oscillation
experiments, because the neutrinos only pass through the upper layer
of the earth, and don’t approach the core. In this case, we diagonalise
the Hamiltonian defined in Equation 1.3.17, which yields the e�ective
eigenvalues ⁄i and the e�ective mixing matrix Ũ , such that

Ũ †HŨ =

Q

ccca

⁄1 0 0
0 ⁄2 0
0 0 ⁄3

R

dddb . (1.3.20)

The oscillation probability in matter is then

P–æ— = ”–— ≠ 4
ÿ

j>k

R[Ũú
–j

Ũ—jŨ–kŨú
—k

] sin2 (⁄j ≠ ⁄k) L

4E

+ 2
ÿ

j>k

I[Ũú
–j

Ũ—jŨ–kŨú
—k

] sin (⁄j ≠ ⁄k) L

2E
.

(1.3.21)

Note that the expression for oscillation probability in vacuum, (Equation
1.3.9), can be recovered by replacing Ũ æ U and ⁄j æ m2

j
.

Understanding the impact of matter on neutrino oscillations requires
solving to the eigenvalues of the modified Hamiltonian, ⁄. In the three-
flavour paradigm this process is non-trivial and the results somewhat
di�cult to interpret. We will therefore first consider the two-flavour
approximation, which is more intuitive.

2 Flavour Approximation

In the 2-flavour picture the mixing matrix simplifies to the standard
rotation matrix

Um =
Q

a cos ◊ sin ◊

≠ sin ◊ cos ◊

R

b (1.3.22)

where ◊ is the mixing angle between two arbitrary flavour states, ‹– and
‹—. The evolution equation in the flavour basis then becomes

ˆ

ˆt

Q

a|‹–Í
|‹—Í

R

b = iH

Q

a|‹–Í
|‹—Í

R

b = i

2E

S

UUm

Q

am2
1 0

0 m2
2

R

b U †
m

+
Q

aA– 0
0 A—

R

b

T

V

Q

a|‹–Í
|‹—Í

R

b .

(1.3.23)
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The flavour basis Hamiltonian can be written explicitly as

H = 1
2E

Q

am2
1 cos2 ◊ + A– m2

1 sin ◊ cos ◊

m2
1 sin ◊ cos ◊ m2

2 sin2 ◊ + A—

R

b (1.3.24)

and diagonalised to give the e�ective eigenvalues in matter

⁄1(x) = 1
2

5
m2

1 + m2
2 + A– + A— ≠

Ò
(�m2 sin 2◊)2 + (�m2 cos 2◊ ≠ (A– ≠ A—))2

6

⁄2(x) = 1
2

5
m2

1 + m2
2 + A– + A— +

Ò
(�m2 sin 2◊)2 + (�m2 cos 2◊ ≠ (A– ≠ A—))2

6
.

(1.3.25)

Using the two-flavour mixing matrix (Equation 1.3.22)and Equation 1.3.8
we can write the two-flavour oscillation probability

P–æ— = sin2 2◊e� sin2 (⁄1 ≠ ⁄2)L
4E

. (1.3.26)

(⁄1 ≠ ⁄2) is the e�ective mass splitting �m2
e�,

�m2
e� = �m2

Ò
[2E (V– ≠ V—) /�m2 ≠ cos 2◊]2 + sin2 2◊ (1.3.27)

and ◊e� the e�ective mixing angle, (which is derived by requiring it diag-
onalises the Hamiltonian)

tan 2◊e� = �m2 sin 2◊

�m2 cos 2◊ ≠ 2E (V– ≠ V—) . (1.3.28)

We can therefore see that in matter, the neutrino mixing angle de-
pends on both the neutrino energy and the matter potential (and by
extension the matter density). The mixing angle has a resonance at

2E(V– ≠ V—) = �m2 cos 2◊ (1.3.29)

at which point ◊e� © fi/4, meaning the mixing between mass and flavour
states is maximal, regardless of the size of the vacuum mixing angle
◊. This enhancement in mixing in matter is known as the Mikhehyev-
Smirnow-Wolfenstein (MSW) resonance condition. Below the resonance
◊e� ƒ ◊, and far above it, ◊e� æ 0.

Note that reversing the mass ordering by replacing �m2 æ ≠�m2

changes the e�ective mixing angle. Oscillations in matter therefore pro-
vide sensitivity to the sign of the mass squared splitting, or neutrino mass
ordering, whereas oscillations in vacuum can probe only the magnitude
of this splitting. This is illustrated in Figure 1.4, which shows the oscil-
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lation probability P ((≠)
‹µ æ (≠)

‹e) in matter and in vacuum for normal and
inverted ordering. In vacuum the oscillation probability is una�ected by
the mass ordering.

3 Flavour Treatment

An examination of the various methods of Hamiltonian diagonalisation
can be found in [36], however we will use the formalism described in
[37], which algebraically diagonalises the 3-flavour Hamiltonian in matter,
Equation 1.3.19 to find the eigenvalues

⁄2
i

= ≠2
3

Ò
–2 ≠ 3— cos

A
1
3 arccos

A
2–3 ≠ 9–— + 27“

2 (–2 ≠ 3—)3/2

BB

+ m2
1 ≠ –/3

(1.3.30)
where the coe�cients are defined as

– = 2
Ô

2EGNe + �m2
21 + �m2

31

— = �m2
21�m2

31 + 2
Ô

2EGNe +
Ë
�m2

21
1
1 ≠ |Ue2|2

2
+ �m2

31
1
1 ≠ |Ue3|2

2È

“ = 2
Ô

2EGNe�m2
21�m2

31|Ue1|2.
(1.3.31)

Substituting these values into Equation 1.3.21 gives the full oscillation
probabilities in matter, however the algebra is impenetrable and the re-
sults di�cult to interpret. Instead, for long-baseline oscillations such as
NOvA and DUNE, a useful approximation is to expand to second order
in the mass ordering parameter – © �m2

21/�m2
31, as in [38]. In this

regime, the ‹µ æ ‹e oscillation probability can be written as

Pµæe = –2 sin2 2◊12c
2
23

sin2 A�
A2 + 4s2

13s
2
23

sin2(A ≠ 1)�
(A ≠ 1)2

+ 2–s13 sin 2◊12 sin 2◊23 cos(� + ”CP )sin A�
A

sin(A ≠ 1)�
A ≠ 1 ,

(1.3.32)

where

� © �m2
31L

4E

A © 2EV

�m2
31

.
(1.3.33)
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Figure 1.4: Neutrino (blue) and anti-neutrino (red) oscillations in mat-
ter(top panels), and in vacuum(bottom panels), in the cases of normal
(left) and inverted (right) neutrino mass ordering. Three values of ”CP

are shown: minimal violation - ”CP = 0, fi, in dotted and dashed lines,
respectively, and maximal violation in solid lines. In vacuum, neutrino
and anti-neutrino oscillations look extremely similar regardless of mass
ordering, whereas in matter and normal ordering neutrino oscillations
are enhanced and anti-neutrino oscillations suppressed, while in inverted
ordering the reverse is true.

1.4 Current picture of neutrino oscillations

Table 1.1 shows the current best fit values for neutrino oscillation param-
eters dependent on the mass ordering, from [39]. It also details which
type of neutrino experiment has the strongest sensitivity to each param-
eter.

1.4.1 Reactor (◊13)

The smallest, and now most accurately measured mixing angle ◊13 was
only verified to be non-zero in 2012. After the first hints of this result
from Double-Chooz [40], Daya Bay reported the exclusion of the zero ◊13

hypothesis at 5.2‡ via the observation of reactor electron antineutrino
disappearance [41] i.e. the oscillation ‹e æ ‹µ,· , which has probability

P(‹eæ‹e) ¥ 1 ≠ sin2 2◊13 sin �m2
31L

4E‹

(1.4.1)

Reno in South Korea quickly confirmed this result, observing such oscilla-
tions at 4.9‡ [42]. Each of these experiments used a source of antineutri-
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Table 1.1: Results for 3‹ mixing parameters from NuFit 6.0 [39], and the
dominant experiment type used to constrain each parameter.

Parameter Normal Ordering Inverted Ordering Dominant
source

BFV ±1‡ 3‡ range BFV ±1‡ 3‡ range

◊12 33.68+0.73
≠0.70 31.63 æ 35.95 33.68+0.73

≠0.70 31.63 æ 35.95 Solar

◊13 8.52+0.11
≠0.11 8.18 æ 8.87 8.58+0.11

≠0.11 8.24 æ 8.91 Reactor

◊23 48.5+0.7
≠0.9 41.0 æ 50.5 48.6+0.7

≠0.9 41.4 æ 50.6 Accelerator
�m

2
21

10≠5eV2 7.49+0.19
≠0.19 6.92 æ 8.05 7.49+0.19

≠0.19 6.92 æ 8.05 Reactor
�m

2
31

10≠3eV2 +2.534+0.025
≠0.023 +2.463 æ +2.606 - - Reactor

�m
2
32

10≠3eV2 - - ≠2.510+0.024
≠0.025 ≠2.584 æ ≠2.438 Accelerator

”CP 212+26
≠41 124 æ 364 274+22

≠25 201 æ 335 Accelerator
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ranging from less than one to a few tens of counts per day per 100 tons 
(t) for different solar-neutrino components. To cope with such a low 
event rate, Borexino has a large target mass (about 300 t) and is housed 
deep underground, under 3,800 m water equivalent of dolomitic rock 
that suppresses the flux of cosmic radiation by a factor of approximately 
one million. For more details on the detector, see Methods.

Radioactive decays of unstable isotopes contained in the scintillator 
or in the materials surrounding it represent the main sources of back-
ground (referred to as internal and external, respectively). Whereas 
external background is greatly reduced by concentric layers of high- 
purity materials surrounding the scintillator and by the selection of a 
centrally located software-defined fiducial volume, most of the inter-
nal background can only be cut down by means of liquid-scintillator 
purification. Particularly, interactions of beta particles (β; electrons 
and positrons) and of gamma particles (γ; high-energy photons) must 
be reduced to very low levels, since they cannot be distinguished from 
neutrino interactions on an event-by-event basis. Borexino has reached 
unprecedented levels of scintillator radio-purity. As an example, one 
gram of liquid scintillator contains less than 9.4 × 10−20 grams of 
uranium-238 and less than 5.7 × 10−19 grams of thorium-232 (95% 
confidence level, C.L.), a concentration about ten orders of magni-
tude smaller than in any natural material on Earth. This low level of 
background has enabled real-time detection of solar neutrinos with an 
energy threshold of 0.19 MeV, and allowed us to perform the complete 
spectroscopy of the pp chain.

Solar neutrinos reach the Earth as a mixture of all neutrino flavours 
(electronic, muonic, and tauonic) owing to the flavour-conversion mech-
anism enhanced by the MSW effect (see Methods). Borexino detects 
them by means of their weak elastic scattering off electrons. A fraction 
of the incoming neutrino energy Eν is transferred to one electron, which 

deposits it in the liquid scintillator. The scintillator light is detected by 
about 2,000 photomultiplier tubes, which ensure high detection effi-
ciency of photoelectrons produced by incident optical photons at their 
photocathodes. For 7Be (Eν = 0.384 MeV and 0.862 MeV) and pep 
(Eν = 1.44 MeV) neutrinos, the induced electron recoil endpoints are 
0.230 MeV, 0.665 MeV and 1.22 MeV, respectively. For the continuous pp 
and 8B spectra, they are 0.261 MeV and 15.2 MeV, respectively.

The detected light and its time distribution among photomultiplier 
tubes yield three important quantities for each interaction event in  
the detector: its deposited energy, roughly proportional to the total 
number of detected photoelectrons; its position within the detector, 
obtained from the analysis of the photon arrival times at each photo-
multiplier tube; and its particle identification, based on a pulse-shape 
discrimination method that exploits the different time structure of 
liquid-scintillator light pulses produced by different particles (elec-
trons, positrons, α particles and protons)27. For reference, a 1-MeV 
electron produces on average 500 photoelectrons in 2,000 photomul-
tiplier tubes, its energy is measured with σ ≈ 50 keV and its position is 
reconstructed28,29 with σ ≈ 12 cm.

We divided the analysis into two energy regions that are affected 
by different backgrounds, which need to be handled differently: a 
low-energy region (LER) of 0.19–2.93 MeV, to measure the pp, 7Be 
and pep neutrino interaction rates, and a high-energy region (HER) of 
3.2–16 MeV, to measure 8B neutrinos. For the same reason, the HER is 
further divided into two subregions, below and above 5.7 MeV (HER-I 
and HER-II). The measurement of 8B neutrinos cannot be extended 
below 3.2 MeV because of the 2.614-MeV γ-ray background from 208Tl 
decays, originating from trace 232Th contamination of the thin nylon 
liquid-scintillator containment vessel.

The reconstructed position of each event within the detector allows 
us to define a fiducial volume optimized differently for the analysis in 
the LER and HER-I/II. The LER fiducial volume is chosen to suppress 
external γ-rays from 40K, 214Bi and 208Tl contained in materials sur-
rounding the scintillator and consists of the innermost 71.3 t of scintil-
lator selected with a radial cut (radius R < 2.8 m) and a cut in the vertical 
direction (−1.8 m < z < 2.2 m). The HER is above the energy of the 
aforementioned γ-rays. The analysis in HER-I requires only a z < 2.5 m 
cut to suppress background events related to a small pinhole in the inner 
vessel that causes liquid scintillator to leak into the region outside the 
inner vessel. The total selected mass in this case is 227.8 t. In contrast, 
the analysis in HER-II uses the entire scintillator volume, 266 t, since 
the above-mentioned background does not affect this energy window.

The LER analysis uses exclusively Borexino Phase-II data collected 
between December 2011 and May 2016, in which the internal 85Kr and 
210Bi contamination was reduced with respect to Borexino Phase-I, 
thanks to a liquid-scintillator purification campaign carried out in 
2010 and 2011. The total LER exposure is 1,291.51 days × 71.3 t.  
With the exception of 208Tl decays (Q-value, total energy released  
in the decay, about 5 MeV), the HER is above the natural, long-lived 
radioactive background, making it possible to use a larger dataset, col-
lected between January 2008 and December 2016, for a total exposure 
of 2,062.4 days × 227.8 (266.0) t for HER-I (or HER-II), respectively.

The analysis proceeds in two steps: (1) the event selection, with a 
different set of cuts in the three energy regions to maximize the signal- 
to-background ratio, and (2) the extraction of the neutrino and  
residual background rates with a combined fit of distributions of global 
quantities built for the events surviving the cuts. The main event selec-
tion criteria are conceptually similar for the LER and the HER and are 
conceived to: reject cosmic muons surviving the mountain shield30; 
reduce the cosmogenic background (that is, radioactive elements pro-
duced in muon-induced nuclear spallation processes); and select an 
optimal spatial region of the scintillator (the fiducial volume). More 
details on the cuts are discussed in Methods.

Several backgrounds, listed in Table 1 and described in detail in 
Methods, survive the event selection cuts. To disentangle the neu-
trino signal from these backgrounds, two different fitting strategies 
are adopted for the LER and the HER. The LER analysis follows a 

Fig. 1 | Nuclear fusion sequences and neutrino energy spectrum. 
Schematic view of the pp and CNO nuclear fusion sequences. The solar-
neutrino energy spectrum is obtained from http://www.sns.ias.edu/~jnb/, 
using the updated fluxes taken from ref. 18. The flux (vertical scale) is given 
in units of cm−2 s−1 MeV−1 for continuum sources and in cm−2 s−1 for 
monoenergetic sources.
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Figure 1.5: Solar neutrino fluxes resulting from di�erent processes in the
nuclear fusion reaction chain. Only the 8B and hep processes produce
electron neutrinos with energies exceeding 2 MeV. Figure from [43].

nos created in nuclear reactors, and consisted of gadolinium-doped liquid
scintillator detectors, with near and far detectors placed O (100m) and
O (1km) from the source, respectively. In their detectors, ‹e’s were de-
tected via the same process as Eq. 1.1.1, with gadolinium increasing the
chance of neutron capture as opposed to cadmium, as used by Cowan
and Reines [4].

1.4.2 Solar (◊12, �m2

21
)

Solar neutrinos are ‹e produced by nuclear fusion reactions in the sun’s
core, with energies depending on which fusion process has created them,
as shown in Figure 1.5. The solar neutrino problem arose when the
Homestake experiment (1970) measured the flux of (7Be and 8B) solar
neutrinos to be roughly one third of the predicted value. This discrep-
ancy was resolved almost thirty years later, when it was confirmed that
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the deficit was explained by vacuum-like oscillations for lower energy
neutrinos, and adiabatic flavour conversion (the MSW e�ect) for higher
energy neutrinos.

8B neutrinos undergo adiabatic flavour conversion because they ex-
perience a large matter potential in the sun’s core. In the two flavour
approximation, which holds well for solar neutrinos, the produced elec-
tron neutrino can be written as

‹e = cos ◊e� |‹1Í + sin ◊e� |‹2Í (1.4.2)

where ◊e� is, as before, the e�ective mixing angle in matter. In the sun’s
core, ◊e� is large, so ‹e are produced almost entirely in the |‹2Í state. As
they propagate outward the state remains as |‹2Í, but crosses the MSW
resonance region defined in Equation 1.3.29, causing the flavour mixing
within |‹2Í to become maximal. Therefore, at the solar surface, |‹2Í is a
combination of |‹eÍ and |‹µÍ [44]. The probability of a ‹e interaction is
then approximately

Pee ≥ |Ue2|2 ≥ sin2 ◊12 (1.4.3)

which, from Table 1.1 gives approximately 1/3, agreeing with the deficit
observed by Homestake.

Lower energy neutrinos, (e.g. from the pp chain) experience small
matter e�ects, so propagate out of the sun essentially as they would in
vacuum. Over the earth-sun baseline, the ‹e survival probability can
be written as 1 ≠ sin2 2◊12, as the �m2

21L/4E term averages over the
long-baseline, yielding Pee ≥ 0.55.

Borexino [43] has now measured the survival probability of both pp

and 8B neutrinos, as shown in Figure 1.6.

Solar neutrino experiments, such as SuperKamiokande [45], SNO [46],
and Borexino [47] measure the disappearance and survival rate of solar
neutrinos to place constraints on ◊12 and �m2

21.

1.4.3 Atmospheric (◊23, �m2

32
)

Atmospheric neutrinos are produced when high-energy cosmic rays [48],
primarily protons, collide with nuclei in the earth’s atmosphere. These
collisions produce cascades of charged mesons; mainly charged pions
(fi±), and, to a lesser extent due to their higher mass, Kaons (K±) [49].
The charged pions quickly decay into muons and muon neutrinos via
fi+ æ µ+‹µ (and charge conjugates), and the resulting muons decay
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identical results. We obtain an upper limit of <8.1 counts per day per 
100 t (95% C.L.) for the CNO neutrino interaction rate, in agreement 
with the Borexino sensitivity to CNO studied with Monte Carlo.

For completeness, we also perform a search for the hep neutrinos, 
emitted by the proton capture reaction of 3He (Fig. 1). The expected 
flux is more than two orders of magnitude smaller than that of 8B neu-
trinos. Despite their higher end-point energy, this signal in Borexino 
is extremely small and covered by background, particularly cosmo-
genic 11Be decays (Q = 11.5 MeV, β−, τ = 19.9 s) and 8B neutrinos. 
We perform a dedicated analysis on the whole dataset (0.8 kt yr) and 
in the energy region 11–20 MeV we find 10 ± 3 events, consistent 
with the expected background. We obtain an upper limit for the hep 
neutrino flux of 2.2 × 105 cm−2 s−1 (90% C.L.) to be compared with 
the expected flux 7.98 × 103 cm−2 s−1 (8.25 × 103 cm−2 s−1) assuming 
the HZ (LZ) SSM.

Discussion and outlook
The measurements reported in this work represent a complete study of 
the solar pp chain and of its different terminations by means of neutrino 
detection in a single detector and with a uniform data analysis proce-
dure. These measurements can be used either to test the MSW-LMA 
paradigm assuming SSM flux predictions or, alternatively, to probe our 
understanding of solar physics assuming the validity of the neutrino 
oscillation mechanism.

The interaction rates of pp, 7Be, pep and 8B neutrinos reported  
in Table 2 can be used to infer the electron neutrino survival  
probability at different energies. Assuming the HZ-SSM fluxes18  
and standard neutrino-electron cross-sections27, we obtain the electron 
neutrino survival probabilities for each solar-neutrino component: 
Pee(pp, 0.267 MeV) = 0.57 ± 0.09, Pee(7Be, 0.862 MeV) = 0.53 ± 0.05, 
and Pee(pep, 1.44 MeV) = 0.43 ± 0.11. The quoted errors include the 
uncertainties on the SSM solar-neutrino flux predictions. The 8B elec-
tron neutrino survival probability is calculated in each HER range 
following the procedure described in ref. 24. We obtain Pee(8BHER, 
8.1 MeV) = 0.37 ± 0.08, Pee(8BHER-I, 7.4 MeV) = 0.39 ± 0.09, and 
Pee(8BHER-II, 9.7 MeV) = 0.35 ± 0.09. These results are summarized 
in Fig. 3. For non-monoenergetic components, that is, pp and 8B neu-
trinos, the Pee value is quoted for the average energy of neutrinos that 
produce scattered electrons in the given energy range.

Borexino provides the most precise measurement of the Pee in the 
LER, where flavour conversion is vacuum-dominated. At higher energy, 

where flavour conversion is dominated by matter effects in the Sun, 
the Borexino results are in agreement with the high-precision meas-
urements performed by SuperKamiokande31 and SNO32. Borexino is 
the only experiment that can simultaneously test neutrino flavour con-
version both in the vacuum and in the matter-dominated regime. We 
performed a likelihood ratio test to compare our data with the MSW-
LMA and the vacuum-LMA predictions (pink and grey bands in Fig. 3, 
respectively). Our data disfavour the vacuum-LMA hypothesis at 98.2% 
C.L. (see Methods). Overall, the results are in excellent agreement with 
the expectations from the MSW-LMA paradigm with the oscillation 
parameters indicated in ref. 19.

Since solar neutrinos are detected on Earth only about 8 min after 
being produced, they provide a real-time picture of the core of the Sun. 
In particular, the neutrino fluxes determined experimentally can be 
used to derive the total power generated by nuclear reactions in the 
Sun’s core33. By using exclusively the new Borexino results reported in 
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Fig. 3 | Electron neutrino survival probability Pee as a function of 
neutrino energy. The pink band is the ±1σ prediction of MSW-LMA 
with oscillation parameters determined from ref. 19. The grey band is the 
vacuum-LMA case with oscillation parameters determined from refs 38,39. 
Data points represent the Borexino results for pp (red), 7Be (blue), pep 
(cyan) and 8B (green for the HER range, and grey for the separate HER-I 
and HER-II sub-ranges), assuming HZ-SSM. 8B and pp data points are set 
at the mean energy of neutrinos that produce scattered electrons above the 
detection threshold. The error bars include experimental and theoretical 
uncertainties.

Table 2 | Borexino experimental solar-neutrino results
Solar neutrino Rate (counts per day per 100 t) Flux (cm−2 s−1) Flux–SSM predictions (cm−2 s−1)

pp ± −
+134 10 10

6 . ± . ×− .
+ .(6 1 0 5 ) 100 5

0 3 10 . . ± . ×5 98(1 0 0 006) 10 (HZ)10  
. . ± . ×6 03(1 0 0 005) 10 (LZ)10

7Be . ± . − .
+ .48 3 1 1 0 7

0 4 . ± . ×− .
+ .(4 99 0 11 ) 100 08

0 06 9 . . ± . ×4 93(1 0 0 06) 10 (HZ)9  
. . ± . ×4 50(1 0 0 06) 10 (LZ)9

pep (HZ) . ± . − .
+ .2 43 0 36 0 22

0 15 . ± . ×− .
+ .(1 27 0 19 ) 100 12

0 08 8 . . ± . ×1 44(1 0 0 01) 10 (HZ)8  
. . ± . ×1 46(1 0 0 009) 10 (LZ)8

pep (LZ) . ± . − .
+ .2 65 0 36 0 24

0 15 . ± . ×− .
+ .(1 39 0 19 ) 100 13

0 08 8 . . ± . ×1 44(1 0 0 01) 10 (HZ)8  
. . ± . ×1 46(1 0 0 009) 10 (LZ)8

8BHER-I . − . − .
+ . + .0 136 0 013 0 003

0 013 0 003 . ×− . − .
+ . + .(5 77 ) 100 56 0 15

0 56 0 15 6 . . ± . ×5 46(1 0 0 12) 10 (HZ)6  
. . ± . ×4 50(1 0 0 12) 10 (LZ)6

8BHER-II . − . − .
+ . + .0 087 0 010 0 005

0 080 0 005 . ×− . − .
+ . + .(5 56 ) 100 64 0 33

0 52 0 33 6 . . ± . ×5 46(1 0 0 12) 10 (HZ)6  
. . ± . ×4 50(1 0 0 12) 10 (LZ)6

8BHER . − . − .
+ . + .0 223 0 016 0 006

0 015 0 006 . ×− . − .
+ . + .(5 68 ) 100 41 0 03

0 39 0 03 6 . . ± . ×5 46(1 0 0 12) 10 (HZ)6  
. . ± . ×4 50(1 0 0 12) 10 (LZ)6

CNO <8.1 (95% C.L.) < . ×7 9 108 (95% C.L.) . . ± . ×4 88(1 0 0 11) 10 (HZ)8  
. . ± . ×3 51(1 0 0 10) 10 (LZ)8

hep <0.002 (90% C.L.) < . ×2 2 105 (90% C.L.) . . ± . ×7 98(1 0 0 30) 10 (HZ)3  
. . ± . ×8 25(1 0 0 12) 10 (LZ)3

Measured neutrino rates (second column): for pp, 7Be, pep and CNO neutrinos we quote the total counts without any threshold; for 8B and hep neutrinos we quote the counts above the corresponding 
analysis threshold. Neutrino "uxes (third column) are obtained from the measured rates assuming the MSW-LMA oscillation parameters19, standard neutrino–electron cross-sections27 and a density of 
electrons in the scintillator of . ± . ×(3 307 0 003) 1031 electrons per 100 t. All "uxes are integral values without any threshold. The result for pep neutrinos depends on whether we assume HZ or LZ SSM 
predictions to constrain the CNO neutrino "ux. The last column shows the "uxes predicted by the SSM for the HZ or LZ hypotheses18.

5 0 8  |  N A T U R E  |  V O L  5 6 2  |  2 5  O C T O B E R  2 0 1 8
© 2018 Springer Nature Limited. All rights reserved.

Figure 1.6: Electron neutrino survival probabilities as measured by
Borexino (points) and as predicted by the solar model (bands) for so-
lar neutrinos produced via di�erent fusion subprocesses. Taken from
[43].

again into electrons and additional muon neutrinos. The more massive
kaons decay predominantly into pions and muons, from which more muon
(anti)neutrinos and electron (anti) neutrinos are produced.

Although the decay fi+ æ e+‹e (and its charge conjugate) is kine-
matically allowed, it is highly spin suppressed due to the electron’s low
mass. Because the charged pion has spin zero, its decay must emit the
final-state lepton and neutrino with opposite spins. The weak interaction
couples only to left-handed particles and right-handed antiparticles. The
nearly massless neutrino must therefore be produced with left-handed
helicity, (in the massless limit helicity and chirality are equivalent). The
charged lepton must then be produced with right-handed helicity to con-
serve spin. For the light electron, helicity and chirality are closely aligned,
so producing a right-handed electron is highly suppressed. In contrast,
the heavier muon can flip helicity more easily, making the pion-muon
decay channel overwhelmingly dominant.

This spin suppression explains why atmospheric neutrinos are pro-
duced mainly as (≠)

‹µ, with a smaller fraction of (≠)
‹e from subsequent µ±

decay. In absence of oscillations, the expected flavour ratio atmospheric
neutrinos the earth’s surface would be ‹µ : ‹e ≥ 2 : 1. As with so-
lar neutrinos, early measurements observed a deficit of muon neutrinos,
bolstering the evidence for neutrino oscillation.

Atmospheric neutrino oscillations are governed by the mixing angle
◊23 and the atmospheric mass squared splitting �m2

32. These parameters
can be measured by observing atmospheric neutrinos directly, which is
the approach taken by experiments such as SuperKamiokande and Ice-
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Cube [50, 51]. Long-baseline (LBL) accelerator experiments, such as
T2K and NOvA, create beams of muon neutrinos via the decay of pi-
ons and kaons, and measure their oscillations over baselines of 295 km
and 810 km respectively [52, 53]. LBL experiments access these param-
eters by measuring the energy spectrum and survival rate (also known
as disappearance) of muon neutrinos at the beginning and end of their
propagation.

While �m2
32 and ◊23 have been measured with reasonable precision,

the octant of ◊23, i.e. whether it lies above or below fi/4, is unknown.
This dictates whether the ‹3 mass state is primarily composed of ‹µ

or ‹· , which can serve to distinguish the neutrino mass ordering in some
proposed neutrino mass generation models, such as [54]. This degeneracy
also contributes to di�culties in disentangling the e�ects of mass ordering
and CP violation. Resolving the ◊23 octant is therefore a goal of current
and future atmospheric neutrino experiments.

1.4.4 ”CP and Mass Ordering

Long-baseline accelerator experiments can also probe the leptonic CP
violating phase, ”CP , by comparing the appearance rates of electron neu-
trinos and electron antineutrinos in a muon neutrino beam. As discussed
in Section 1.3.1 a di�erence in these probabilities implies CP violation,
and is proportional to the Jarlskog invariant. A non-zero value of ”CP

would signal that charge-parity is violated in the lepton sector. How-
ever, current measurements place only weak constraints on ”CP . This is
in part due to limited statistics, but is also due to the observed appear-
ance asymmetry depending not only on ”CP , but also on the neutrino
mass ordering. This refers to whether ‹3 is heavier or lighter than ‹1 and
‹2, as shown in Fig 1.7. As we noted in Sec 1.3.2, matter e�ects in neu-
trino oscillations modify the e�ective mixing angles di�erently depending
on this ordering.

These matter induced modifications make the e�ects of CP violation
and the mass ordering di�cult to disentangle. For example as shown
in Figure 1.4, even if ”CP is zero, the MSW e�ect masquerades and CP
violation, enhancing P (‹µ æ ‹e) and suppressing P (‹µ æ ‹e) in normal
ordering, and the reverse in inverted ordering. This degeneracy reduces
the sensitivity of current LBL experiments, especially NOvA, due to its
baseline and beam energy. This will be discussed in further detail in
Chapter 2.

Upcoming long-baseline experiments DUNE and HyperKamiokande
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Figure 1.7: Schematic showing the Normal Ordering (NO) and Inverted
Ordering (IO) of the neutrino mass eigenstates. The relative composition
of the mass eigenstates in terms of flavour eigenstates is also shown, along
with the probability of finding the neutrino flavour – in the ith mass state
at di�erent values of ”CP . From [57].

de Salas et al. Neutrino Mass Ordering in 2018

Despite the good precision that neutrino experiments have
reached in the recent years, still many neutrino properties
remain unknown. Among them, the neutrino character, Dirac
vs. Majorana, the existence of CP violation in the leptonic
sector, the absolute scale of neutrino masses, and the type of
the neutrino mass spectrum. Future laboratory, accelerator and
reactor, astrophysical and cosmological probes will address all
these open questions, that may further reinforce the evidence for
physics beyond the SM. Themain focus of this review is, however,
the last of the aforementioned unknowns. We will discuss what
we know and how we could improve our current knowledge of
the neutrino mass ordering.

Neutrino oscillation physics is only sensitive to the squared
mass differences (!m2

ij = m2
i → m2

j ). Current oscillation data
can be remarkably well-fitted in terms of two squared mass
differences, dubbed as the solar mass splitting (!m2

21 " 7.6 ×
10→5 eV2) and the atmospheric mass splitting (|!m2

31| " 2.5 ×
10→3 eV2) (de Salas et al., 2018)1. Thanks to matter effects in
the Sun, we know that !m2

21 > 02. Since the atmospheric
mass splitting !m2

31 is essentially measured only via neutrino
oscillations in vacuum, which exclusively depend on its absolute
value, its sign is unknown at the moment. As a consequence, we
have two possibilities for the ordering of neutrino masses: normal
ordering (NO, !m2

31 > 0) or inverted ordering (IO, !m2
31 < 0).

The situation for the mass ordering has changed a lot in
the last few months. The 2017 analyses dealing with global
oscillation neutrino data have only shown a mild preference
for the normal ordering. Namely, the authors of Capozzi
et al. (2017), by means of a frequentist analysis, found χ2

IO →
χ2
NO = 3.6 from all the oscillation data considered in their

analyses. Very similar results were reported in the first version
of de Salas et al. (2018)3, where a value of χ2

IO → χ2
NO = 4.3

was quoted4 (nufit)5 Furthermore, in Gariazzo et al. (2018a),
the authors verified that the use of a Bayesian approach and the
introduction of cosmological or neutrinoless double beta decay
data did not alter the main result, which was a weak-to-moderate
evidence for the normal neutrino mass ordering according to
the Jeffreys’ scale (see Table 2). The most recent global fit
to neutrino oscillation data, however, reported a strengthened
preference for normal ordering that is mainly due to the new data
from the Super-Kamiokande Abe et al. (2018a), T2K Hartz
(2017), and NOνA Radovic (2018) experiments. The inclusion of
these new data in both the analyses of Capozzi et al. (2018a)
and the 2018 update of de Salas et al. (2018)1 increases the
preference for normal ordering, which now lies mildly above
the 3σ level. In this review we will comment these new results
(see section 2) and use them to perform an updated global

1Valencia-Globalfit, 2018; Available online at: http://globalfit.astroparticles.es/.
2Note that the observation of matter effects in the Sun constrains the product
!m2

21 cos 2θ12 to be positive. Therefore, depending on the convention chosen to
describe solar neutrino oscillations, matter effects either fix the sign of the solar
mass splitting !m2

21 or the octant of the solar angle θ12, with !m2
21 positive by

definition.
3See the “July 2017” version in1.
4A somewhat milder preference in favor of normal mass ordering was obtained in
the corresponding version of the analysis in Refs. Esteban et al. (2017)
5NuFIT v3.2, http://www.nu-fit.org/.

FIGURE 1 | Probability of finding the α neutrino flavor in the i-th neutrino mass

eigenstate as the CP-violating phase, δCP, is varied. Inspired by Mena and

Parke (2004).

analysis, following the method of Gariazzo et al. (2018a) (see
section 5).

The two possible hierarchical6 neutrino mass scenarios are
shown in Figure 1, inspired by Mena and Parke (2004), which
provides a graphical representation of the neutrino flavor content
of each of the neutrino mass eigenstates given the current
preferred values of the oscillation parameters de Salas et al.
(2018), see section 2. At present, even if the current preferred
value of δCP for both normal and inverted mass orderings lies
close to 3π/2 de Salas et al. (2018), the precise value of the
CP violating phase in the leptonic sector remains unknown.
Consequently, in Figure 1, we have varied δCP within its entire
range, ranging from 0 to 2π .

Given the two known mass splittings that oscillation
experiments provide us, we are sure that at least two neutrinos

have a mass above
√

!m2
21 " 8 meV and that at least one of

these two neutrinos has a mass larger than
√
|!m2

31| " 50 meV.
For the same reason, we also know that there exists a lower
bound on the sum of the three active neutrino masses (

∑
mν =

m1 +m2 +m3):

∑
mNO

ν = m1 +
√
m2

1 + !m2
21 +

√
m2

1 + !m2
31 , (1)

∑
mIO

ν = m3 +
√
m2

3 + |!m2
31| +

√
m2

3 + |!m2
31| + !m2

21 ,

where the lightest neutrino mass eigenstate corresponds to m1
(m3) in the normal (inverted) ordering. Using the best-fit values
for the neutrino mass splittings in Table 1 one finds that

∑
mν !

0.06 eV in normal ordering, while
∑

mν ! 0.10 eV in inverted

6A clarification about the use of “hierarchy” and “ordering” is mandatory. One
talks about “hierarchy” when referring to the absolute scales of neutrino masses,
in the sense that neutrino masses can be distinguished and ranked from lower to
higher. This does not include the possibility that the lightest neutrinomass is much
larger than the mass splittings obtained by neutrino oscillation measurements,
since in this case the neutrino masses are degenerate. On the other hand, the mass
“ordering” is basically defined by the sign of !m2

31, or by the fact that the lightest
neutrino is the most (least) coupled to the electron neutrino flavor in the normal
(inverted) case.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 2 October 2018 | Volume 5 | Article 36

are designed with larger detectors than their predecessors, and aim to
measure both the mass ordering and CP violation to a high precision
[55, 56].

20 of 110



2. NOvA

Chapter 2

NOvA

NOvA (NuMI On-Axis ‹eAppearance) is a long-baseline neutrino os-
cillation experiment based in Fermilab, Illinois, where its near detector
sits, and Ash River, Minnesota, which houses the far detector. A beam
of mostly muon neutrinos is created by the NuMI beamline at Fermilab
and travels 810 km from the near to far detector. Over this distance some
‹µ oscillate to ‹e or ‹· . By measuring the rate of ‹µ disappearance and
‹e appearance, NOvA can probe neutrino oscillation parameters and the
mass ordering. In this chapter we will describe the experiment with a
focus on the 3-flavour analysis, specifically that performed in the frame-
work of Bayesian Statistics.

2.1 Physics Goals

NOvA’s physics goals are:

• Precisely measure the atmospheric mass splitting �m2
32, and in

turn determine the neutrino mass ordering.

• Determine the value and octant of ◊23.

• Measure ”CP.

The relevant oscillation channels for the NOvA experiment are (≠)
‹µ æ

(≠)
‹µ (disappearance) and (≠)

‹µ æ (≠)
‹e (appearance). The muon disappearance

probability in matter can be taken as the same as in vacuum (muon
neutrinos will not coherently scatter o� the earth’s matter via the charged
current, which is the source of matter e�ect, as discussed in Section 1.3.2).
The (≠)

‹µ æ (≠)
‹e probability can be simplified from those quoted in Section

21 of 110



2.2. NuMI beam Chapter 2

1.3.2 to

P(≠)
‹µæ

(≠)
‹µ

= 1 ≠ sin2 2◊23 sin2 �23

P(≠)
‹µæ

(≠)
‹e

= Patm + Psolar + 2
Ò

Patm + Psol (cos ”CP cos �32 ± sin ”CP sin �32)
(2.1.1)

Where we have defined

�ij = �m2
ij

L/4E
Ò

Patm © sin ◊23 sin 2◊13 sin
A

sin(�31 ≠ aL)
�31 ≠ aL

B

�31

Ò
Psol © cos ◊23 sin 2◊12 sin

A
sin(aL)

aL

B

�21

(2.1.2)

and a © ±GF Ne/
Ô

2, the matter potential for neutrinos(positive) and
antineutrinos(negative). This simplification takes advantage of ◊13 be-
ing small compared to other mixing angles, meaning sin2 ◊13 ≥ 0 and
cos ◊13 ≥ 1, (this approximation is only applied for the disappearance
channel). Additionally, terms at order sin2 ◊13 and higher are dropped in
the appearance case.

The disappearance channel provides sensitivity to the atmospheric
parameters: the oscillation amplitude (as a function of energy) depends
on sin2 2◊23, and is used to measure the size of ◊23, while the position of
the oscillation maximum depends on the size of �m2

32. However, it does
not distinguish the ◊23 octant or the sign of the mass splitting.

The appearance channel, however, is sensitive to ”CP , the octant of
◊23, and can probe the mass ordering through matter-induced modifica-
tions to the oscillation probability. As discussed in Section 1.3.2, the
e�ects of the mass ordering and ”CP are somewhat degenerate, limiting
the significance with which NOvA can comment on either phenomenon.

To achieve these goals, NOvA needs the ability to correctly di�erenti-
ate between di�erent neutrino flavours to measure the disappearance and
appearance rates and excellent neutrino energy resolution, to ensure the
depth and position of the oscillation maximum is measured accurately.

2.2 NuMI beam

The muon neutrinos studied by NOvA are supplied by the Neutrinos
at the Main Injector (NuMI) beam at Fermilab. The beam originates
as 400 MeV H≠ ions, which are accelerated, stripped down to protons
upon entering the booster, where they are accelerated and passed into
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Figure 2.1: Schematic of the NuMI beamline. From [58].

the Main Injector to be boosted to 120 GeV. These protons are extracted
in groups of 5◊1013, known as spills, and directed towards NOvA’s 1.2 m
graphite target located 350 m downstream, as shown in Figure 2.1.

Proton-carbon interactions in the target produce a hadron shower
comprised mainly of pions and kaons. Two magnetic focusing horns select
the charge sign of the hadrons which enter the steel decay pipe, allowing
either a neutrino or antineutrino beam to be made further downstream.
In the decay pipe the mesons decay predominantly via

fi+(≠) æ µ+(≠) +(≠)
‹µ

K+(≠) æ µ+(≠) +(≠)
‹µ

(2.2.1)

A hadron monitor at the end of the decay pipe records the profile of the
residual hadrons (protons and undecayed mesons), which are attenuated
by an absorber before the beam, now containing primarily muons and
neutrinos, passes through the muon flux monitors. These are placed
within 240 m of rock, which stops most muons. The beam of neutrinos
then passes through the near detector (ND) and travels 810 km to the
far detector (FD). In Forward Horn Current (FHC) mode, which selects
positive sign hadrons, the beam (the product of the neutrino flux and
associated interaction cross section) is 94% ‹µ at the ND, while in Reverse
Horn Current (RHC) mode, the beam is 93% ‹µ. Beam contaminants
include wrong sign (≠)

‹µ and (≠)
‹e which are produced by

µ+ æ e+ + ‹e + ‹µ

K+ æ fi0 + e+ + ‹e

(2.2.2)

at branching fractions far lower than the ‹µ producing processes in (2.2.1)
The beam intensity is quantified by the number of protons delivered to
the NOvA target (POT). The number of neutrinos produced is propor-
tional to the POT.
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Both NOvA detectors are placed 14.6mrad o� the beam axis. This
selects a narrower band of energies, peaked around the oscillation max-
imum for P (‹µ æ ‹e) over an 810km baseline. Pions and kaons decay
isotropically in their rest frame to produce monoenergetic neutrinos. In
the lab frame, however, the mesons and their daughter neutrinos are
boosted, meaning the detectors see a broad neutrino energy spectrum,
as shown in the left-hand panel of Figure 2.2. The flux (F) and energy
(Eµ) of neutrinos produced by a boosted fi+ æ µ+ + ‹µ decay seen by
a detector of area A at distance Z from the decay can be described, for
small angles ◊, by

F =
A

2“

1 + “2◊2

B2 A
4fiz2

E‹ = (1 ≠ (mµ/mfi)2)Efi

1 + “2◊2

(2.2.3)

where ◊ is the angle between the pion and neutrino direction, Efi is the
pion energy, mfi the pion mass, and “ = Efi

mfi
the pion’s Lorentz factor.

The expression for kaons is identical, however mfi is replaced by mK .
The kaon is 3.5 times more massive than the pion, meaning the energy
spectrum for neutrinos from kaon decay is shifted towards higher energies
and is broader.

The relationship between pion and neutrino energy for 4 di�erent
angles can be seen in the right-hand pane of Figure 2.2. On axis, the
neutrino energy has a strong dependency on the pion energy, however
moving o� axis this dependency becomes weaker, leading to a narrower
range of neutrino energies. This can also be seen in Figure 2.3, where
the peak of the unoscillated muon neutrino flux becomes sharper as the
o� axis angle increases.

We note that at 14mrad o� axis, the number of ‹µ’s at the oscillation
maximum energy is about 5◊ higher than on axis. Positioning the far
detector 14mrad o� axis therefore maximises the chance a ‹µ will oscil-
late by the time it reaches the far detector. It also acts as a natural
veto, particularly for background events caused by feed down from high
energy NC interactions, as the acceptance window for neutrino energy is
narrowed by moving o� axis.
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NOνA TDR Ch  October 8, 20072-2

2.2  Off-Axis Concept

The NOνA Far Detector will be sited 14.6 mrad off the NuMI beam axis, in contrast to the

MINOS Far Detector which is sited on the center of the NuMI beam.  The rationale for this

choice is explained below.

In their rest frame, pions and kaons decay isotropically producing mono-energetic

neutrinos. When these pions and kaons are boosted, the neutrino energy spectrum seen in the lab

frame has a broad distribution, falling off as the angle between the boost direction and neutrino

production angle increases.  For small angles, the flux and energy of neutrinos produced from the

decay π→ µ + ν  in flight and intercepted by a detector of area A and located at distance z are

given in the lab frame by:

� 

                                                      

� 

F =
2γ

1+ γ 2θ 2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

A

4π z2
(2.1)

� 

                                                            

� 

Eν =
0.43Eπ

1+ γ 2θ 2
, (2.2)

where θ is the angle between the pion direction and the neutrino direction, Eπ the energy of the

parent pion, mπ the mass of the pion and γ = Eπ/mπ. The expressions for neutrinos from the

corresponding charged kaon decays are identical except that 0.43 is replaced by 0.96 resulting in

a more energetic and broader distribution for identical meson energies.

The functions in Equations 2.1 and 2.2 are plotted in Fig. 2.2.  The right portion of Fig. 2.2

shows that at 14 mrad the energy of the neutrino does not have a strong dependence on the energy

of the parent pion.  This is further demonstrated in Fig. 2.3, which shows the resulting number of

neutrino events as a function of energy and off-axis angle.  At 14 mrad, the medium energy beam

produces a narrow energy beam with approximately five times more neutrinos at 2 GeV.  This

peak is well matched to the oscillation maximum which is expected to be 1.6 GeV for Δm32
2
=2.4

meV
2
.

Fig. 2.2: Left: The neutrino flux from a pion of energy Eπ as viewed from a site located at an angle

θ from the beam axis. The flux has been normalized to a distance of 800 km. Right: The energy of

the neutrinos produced at an angle θ relative to the pion direction as a function of the pion energy.

Figure 2.2: Left: The flux of neutrinos from a pion with energy Efi seen
by a detector located at angle ◊ from the beam axis, over a distance of
810km. Right: Energy of neutrino produced at angle ◊ relative to the
parent pion as a function of Efi. Taken from [59].

Figure 2.3: Unoscillated ‹µ charged current events calculated 810km from
Fermilab at di�erent o� axis angles ◊. Left and right plots show spectra
for two di�erent beam configurations, low energy and medium energy,
respectively. Taken from [59].
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Figure 2.4: Schematic showing the orientation of planes in NOvA’s de-
tectors and the two possible event views that this allows. Taken from
[60].

2.3 NOvA detectors

The NOvA experiment consists of two functionally identical detectors,
composed of stacked, highly reflective PVC cells filled with liquid scin-
tillator. Charged particles passing through the scintillator produce light,
which is collected by wavelength shifting fibres (WLS) and amplified and
read out by avalanche photodiodes (APDs). Events occurring within
±15 µs of the NuMI spill time are recorded by NOvA’s Data Acquisition
system. Hits (readouts from the detector) which are light-like intervals
apart are grouped into slices, which represent event candidates, while
isolated hits are labelled as noise. In NOvA, the slice object is often
referred to as an event.

The configuration of both the near and far detectors can be seen in
Figure 2.4. Each detector consists of planes, (made by sealing 32 scintil-
lator filled plastic cells into modules), which are stacked together. Alter-
nating the orientations of the planes allows 3D tracking within NOvA’s
detectors.

NOvA uses the higher statistics at the Near Detector to constrain
predictions at the Far Detector.
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2.3.1 Near Detector

The near detector sits underground at the bottom of the MINOS shaft at
Fermilab. The rock which it sits beneath provides a shield from cosmic
rays, which would otherwise form a large background. Its active (fiducial)
volume is 222 tons, with dimensions 2.9 m wide, 4.2 m tall, and 14.3 m
long. The detector comprises 186 planes, each 96 cells high and 64 cells
wide. 10 additional planes alternating with planes of steel are placed
at the end of the detector where the beam exits, in order to tag muons
exiting the detector’s fiducial volume.

2.3.2 Far Detector

The far detector sits 810 km downstream from the ND in Ash River,
Minnesota, has a fiducial volume of 15 kton and dimensions 15.6 m wide,
15.6 m tall and 78 m long. Unlike the ND, it sits closer to the Earth’s
surface, under a small overburden of rocks. The far detector is therefore
constantly bombarded by cosmic rays (in particular cosmic muons). As
a result, the timing resolution at the far detector must be su�cient to
di�erentiate between beam neutrinos (in the spill window), and neutrinos
produced by cosmic ray muons.

2.4 Particle identification

NOvA measures two features of interacting neutrinos, their energy and,
for charged current interactions, their flavour. NOvA determines the neu-
trino flavour by identifying which charged lepton was produced when said
neutrino interacted. Examples of how CC and NC interactions appear in
NOvA can be seen in Figure 2.5. Muons from ‹µ CC interactions produce
long, straight tracks which end with a muon decay. Electrons from ‹e CC
interactions behave di�erently, producing photons which cause electro-
magnetic showers very close to the interaction vertex. NC interactions
preserve the incident neutrino (which is invisible to the detector) but
excite the nucleus involved, producing a hadronic shower. As it is not
possible to distinguish between ‹µ and ‹e NC interactions, the oscillation
analysis takes such events as background to both ‹µ and ‹e CC events.
In fact, NC events are easily distinguished from ‹µ CC events unless they
contain a charged pion, which can mimic a muon track. However, the
hadronic shower of an NC event can be misidentified as an electron when
a fi0 is produced, as the two photons from its decay produce electromag-
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Figure 2.5: Simulated 2.15 GeV neutrino interactions showing ‹µ CC
(top) ‹e CC (middle) and NC (bottom). Taken from [61].

netic showers.

The events shown in Figure 2.5 are reconstructed by identifying slices:
hits (detector readouts) which are clustered together in spacetime. Hits
which are light-like time intervals apart (the particles in question will
be travelling close to the speed of light) are considered part of the same
slice, while isolated hits are labeled as noise. In NOvA, the slice object
contains all of the information in an event, so it is often referred to as an
event.

In the following section we will briefly review the techniques used by
NOvA to discriminate between di�erent event types.

2.4.1 Convolutional Visual Network (CVN)

NOvA utilises a convolutional neural network based tool for particle iden-
tification, known as CVN. CNN’s are particularly well suited to image
recognition tasks due to their ability to parse 2D, or grid-like, datasets,
meaning they can be directly applied to hit maps from NOvA. As shown
in Figure 2.4, each event has an x and y view. As such, the CVN takes
as input two 100◊80 pixel hit maps per event. Directly learning features
prevents useful information from being discarded. An example of a true
‹µ CC event and the feature maps extracted from it after the first module
of the CVN can be seen in Figure 2.6. Feature maps are the results of ap-
plying di�erent convolutional filters to the image. These filters activate
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Figure 2.6: Illustration of feature extraction on true ‹µ CC event(left).
Event hit map is fed to CVN as a heatmap representing deposited charge,
and a series of transformations applied to extract 256 features. A feature
can be understood as a variable in the underlying image which is key
to classifying the interaction. The features are used to construct the
feature map (bottom right). The green, blue and purple features seem
to be responses to muon tracks, electromagnetic showers and hadronic
showers, respectively. The event shown is a ‹µ CC event, so the response
in the blue (electron shower) feature is much weaker than the green.
Taken from [62].

certain aspects of the image, e.g. edges or shapes, allowing the network
to learn from them. The CVN is trained on simulated beam events and
cosmic ray data. The output of the network is a set of scores between
zero and one which estimate how likely a given event is to be ‹µ CC,
‹e CC, ‹· CC, NC, or cosmic activity. The ‹µ CC scores of signal and
background events can be seen in Figure 2.7.

2.4.2 Reconstructed Muon Identifier (ReMId)

ReMId is a boosted decision tree (BDT) used to find and score muon
like tracks among the di�erent particles in an event. The algorithm uses
tracks whose trajectories have been reconstructed using a Kalman-filter
algorithm, which iteratively collects hits which only constitute small an-
gular deviations (as would be expected of a muon, which should only be
deflected by scattering as opposed to showering), or which are collinear
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Figure 2.7: ‹µ CC CVN scores for appearance and beam ‹e, survived ‹µ

and NC events. The network has excellent discrimination between all
event types, with vanishing numbers of non ‹µ CC events scoring higher
than 0.5. Taken from [63]

within a few planes. Simulated ‹µ CC and NC events are used for train-
ing, and represent signal and background, respectively. Scores are as-
signed based on

• deposited energy per unit length (dE/dx) likelihood

• scattering likelihood

• track length

• fraction of planes overlapping with hadronic activity.

By calculating the 4D distance between the Kalman tracks in a can-
didate event and the simulated tracks, the ReMId algorithm assigns a
score to each track based on its similarity to a simulated muon track.
The highest scoring track is selected as the muon candidate, and its
score used for the entire event. An event with no good muon candidates
will receive a low score, and can likely be classed as NC background.

2.4.3 Cosmic Rejection BDTs

Dedicated branching decision trees (BDTs) are trained to identify and
reject cosmic ray muons which can look similar to ‹µ and ‹e events.
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The ‹µ BDT is trained on seven variables; the angle between the
lepton and neutrino, the length of the muon track and how vertical said
track is, the distance of the track to either end of the detector, distance of
the track start/stop to the top or bottom of the detector, the fraction of
hits in slice belonging to the track, and the CVN cosmic score. The
BDT is trained using real cosmic data (out of beam spill events) as
background, and MC simulated ‹µ CC events as signal. All events used
in training must have a ReMID score and CVN ‹µ score of at least 0.4.
The BDT is therefore trained on events which have been identified as
possible muon candidates by previous classifiers, and aims to improve
upon them, ideally removing incorrectly labelled cosmic events from the
sample. The algorithm outputs a score which quantifies how likely the
event is to not be a cosmic ray.

Two ‹e BDTs are trained. One for the ‘core’ sample of events, and the
other for the ‘peripheral’ sample, where the latter contains events which
have failed containment cuts (i.e. do not deposit all of their energy in
the active volume of the detector), but have high ‹e CVN scores. The
training variables for the core sample are similar to those used for ‹µ.
The peripheral BDT is trained on; number of hits, distance from the end
of the prong to the top of the detector, minimum distance from the end of
the prong to a detector face, normalised X and Y momentum, and vertex
position. Similarly to the ‹µ BDT, the networks are trained using MC
simulated ‹e CC events as signal, and real cosmic data as background,
where only events with reasonably high ‹e CVN scores are included in
the training sample.

2.5 Energy Reconstruction

2.5.1 Calibration

As discussed in Section 1.2, neutrinos do not directly ionise the detector
medium and cause scintillation. Instead, we infer their energy using the
energies of particles they produce, in particular charged leptons (electrons
and muons), and hadrons. To ensure accurate energy reconstruction
across the volume of the detector and convert the photodetector signals
into physically meaningful units, NOvA performs a two part calibration.
Both detectors use cosmic-ray muons as standard candles, and beam
muons are also used in the ND.

Relative calibration is the first step, and corrects for the e�ects of at-
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Figure 2.8: Ratio of reconstructed and true energy of a cosmic ray muon
track along the length of an FD cell, with and without relative calibration.
Taken from [66].

tenuation in wavelength-shifting fibres. Light loses intensity as it travels
from its point of production to the readout, meaning without calibration,
two identical energy deposits would produce disparate signal strengths
depending on where in the cell they originated. (at the end of a detec-
tor cell) is attenuated before detection, the same energy deposit will be
read out at di�erent values depending on its position in the cell. This
is accounted for by using attenuation curves of throughgoing cosmic ray
muons to fit the distribution of mean recorded number of photoelec-
trons per centimetre (PE/cm) as a function of distance from the readout
[64]. The fit uses a double exponential distribution, and describes the
behaviour of light in both the main body of the cell, and near the non-
reflective cell endcaps [65]. An example of the ratio between the true and
reconstructed (measured) energy of a simulated cosmic ray muon track,
with and without the correction derived from the fit, is shown in Figure
2.8. We see that the relative energy calibration flattens the attenuation
curve, meaning the muon energy appears constant across the cell.

The absolute calibration then translates the corrected photoelectron
measurement (PE/cm) into GeV/cm. This step uses stopping muons,
which deposit all of their energy in the active volume of the detector. The
tracks selected for absolute calibration must be away from the cell edges,
as the relative calibration in this area is less reliable. The predictions
of the Bethe-Bloch equations [67] for the dE/dx (rate of energy loss) a
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Figure 2.9: Distribution of attenuation corrected PE/cm as a function
of distance to the end of the track, for all hits in selected stopping muon
tracks. The black line shows the mean value for the corrected response in
each distance bin. The region between 100 and 200 cm is most uniform,
so these hits are used for absolute calibration. Taken from [68].

particle travelling through a material in units of PE/cm are compared
to the corresponding prediction in GeV/cm to determine the conversion
factor. Figure 2.9 shows the distribution of attenuation corrected PE/cm
for all hits in selected cosmic ray muon tracks.

2.5.2 ‹µ Energy Reconstruction

Charged current muon neutrino interactions are characterised by their
long muon track and shower of hadronic activity. The energy of the
incoming ‹µ (‹µ) can therefore be estimated by the sum of muon(anti-
muon) energy and hadronic energy.

Ê‹µ = Êµ + ÊHad (2.5.1)

The muon energy is found using the track length, which has an uncer-
tainty equal to the length of one detector plane. The hadronic energy is
estimated by summing the calorimetric energy of all hits not associated
with the muon track. Spline (or piecewise) functions then translate the
reconstructed muon track length to true muon energy, and the recon-
structed visible energy to hadronic energy. These functions are shown in
Figure 2.10. The muon spline function lies closer to the diagonal(which
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Neutrino Beam NOvA Simulation NOvA SimulationNeutrino Beam

Figure 2.10: Spline functions for converting reconstructed muon track
length to true muon energy (left) and reconstructed visible energy to
hadronic energy (right) for FHC mode. Taken from [69].

represents a 1:1 conversion) than the hadronic function. This translates
to the energy resolution achieved for each component; muon energy reso-
lution is 3%, while hadronic energy resolution is 30%. The resulting total
‹µ energy resolution at the FD ((averaged across the neutrino beam en-
ergy distribution)) is 9% in neutrino mode and 8% in antineutrino mode.

2.5.3 ‹e Energy Reconstruction

Electron neutrino reconstruction is more challenging, primarily because
electrons shower within the detector, while muons leave clean tracks.
Although the ‹e energy is also estimated by the sum of the electron and
hadronic energy, the length of the electromagnetic shower produced by
the electron is not a reliable energy estimator. The EM shower grows as
ln E, and is elongated by stochastic Bremsstrahlung activity towards its
end. Calorimetric reconstruction is therefore used for both components,
and the total energy calculated using a quadratic fit,

Ê‹e = –1ÊEM + –2ÊHad + –3Ê
2
EM

+ –4Ê
2
Had

(2.5.2)

where Prong CVN labels hits as electromagnetic (EM), and the hadronic
label is assigned to all non-EM hits. The coe�cients –i are determined by
minimising the variance between reconstructed neutrino energy and true
neutrino energy in simulated events. This method achieves a ‹e FD en-
ergy resolution (averaged across the neutrino beam energy distribution)
of ≥ 10% in neutrino mode, and ≥ 9% in antineutrino mode.
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2.6 Simulation

To constrain oscillation parameters, NOvA must compare the expected
rates of (‹µ) ‹e (dis)appearance with those observed. Accurate simu-
lation of the beam, neutrino production, neutrino interactions and the
interactions of their products within the detector is therefore essential to
obtain precise measurements.

The simulation proceeds in several stages. First, a Geant4 [70] based
package known as G4NuMI models the production, propagation and de-
cay of hadrons into muons and neutrinos in the NuMI beamline. This
includes e�ects of the geometry and material composition of the target,
focusing horns and decay pipe in the NuMI beam. The simulation begins
with 120 GeV protons whose profile is Gaussian in the transverse plane,
and tracks hadrons until they decay to neutrinos (and, where applicable,
continues to track any simultaneously produced muon until its decay).
The resulting neutrino flux is then reweighted by the Package to Predict
the Flux (PPFX), developed by the MINERvA collaboration [71], which
uses external hadroproduction data (e.g. from NA49 [72]) to improve the
hadron production prediction and estimate flux uncertainties.

The meson decay information (decay points and momenta) and re-
sults from the beam simulation are then passed to a Monte Carlo neutrino
event generator. NOvA uses a specially tuned version of GENIE [73] to
generate neutrinos and model their interactions with the detector nuclei.
The generator outputs the topology of each simulated event, the type of
interaction and final state particle kinematics. Cosmic ray interactions,
a significant background in the FD, are generated by the Cosmic Ray
Shower Library (CRY) generator, and added to the simulation of beam
events.

Finally, Geant4 simulates the propagation and energy deposition of
all final state particles in the detector. Custom NOvA algorithms then
simulate the transport of the scintillation light in the WLS fibres, the
collection of these signals by the APDs, and their conversion to electronic
signals. This stage accounts for scintillator response, cell reflectivity, fibre
absorption and APD noise.
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Chapter 3

NOvA 3-Flavour analysis

The results from NOvA’s 2024 analysis were made possible by the work
of many collaboration members. In this chapter we give a brief overview
of the entire analysis, with more detail on the author’s contributions,
followed by a discussion of the results.

A schematic of the NOvA 3-flavour analysis is shown in Figure 3.1.
The first step is to classify the event type, which, as discussed in Section
2.4, involves applying the CVN and ReMId algorithms. Event energies
are then reconstructed according to their flavour and current, and ‹µ

and ‹e CC energy spectra formed. The near detector data (an example
of which can be seen in Figure 3.2) is ‘decomposed’ - a procedure which
assigns events in the ND dataset to specific neutrino interaction cate-
gories present in the MC simulation, for example ‹µCC or NC. These
decomposed samples are then extrapolated using the appropriate oscil-
lation probability, so they are comparable to FD MC simulations. By
comparing extrapolated ND data to FD MC simulation, we can account
for MC mis-modelling - we assume that any discrepancy arises from in-
accuracies in the MC rather than the data. Finally, FD spectra are
compared to the corrected simulation, allowing constraints to be placed
on oscillation parameters.

3.0.1 ‹µ PID Cut Optimisation

As illustrated in Figure 3.1, the first step in the analysis toolchain is
particle identification (PID), where cuts on the CVN, ReMId and Cosmic
BDT scores are applied to near and far detector datasets to form samples
of ‹eCC, ‹µCC, NC and cosmic events. These cuts are optimised to
maximise the statistical power of NOvA’s measurements. In the most
recent analysis, the author was responsible for the ‹µCC cut optimisation,
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Figure 3.1: Flowchart of the NOvA oscillation analysis framework. The
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‹e. Taken from [74].
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Figure 3.3: ‹µ CC CVN scores for appearance and beam ‹e, survived
‹µ and NC events. At scores of 0.8 and higher the only appreciable
contribution to the events comes from survived ‹µ. Taken from [63]

which will be discussed in this section.

To avoid bias, cut optimisation is not performed on real far detector
signal. Instead, we use MC signal and background samples, and real
out-of-spill data for cosmics. Oscillation weights are applied to MC sam-
ples using the previous analysis best fit values for sin2 ◊23 and �m2

32 to
approximate far detector event spectra.

Cuts on ReMId, CVN and Cosmic rejection scores are optimised si-
multaneously by scanning over their phase spaces and calculating the
number of signal, background and cosmic events at each point. For ex-
ample, Figure 3.3 shows the ‹µCC CVN score of survived ‹µ, appeared
‹e, NC background and beam ‹e background events. Most true ‹µCC
signal events lie at values above 0.8, however placing the cut at a higher
value could improve signal to background ratio, despite sacrificing some
signal events.

A loose preselection, requiring ‹µCC signal events have ReMId> 0.3,
CVN ‹µCC > 0.4 and Cosrej > 0.4, is applied before scanning over:

• ReMId 0.3 - 0.95

• CVN 0.4 - 0.95

• CosRej 0.4 - 0.65

We consider four figures of merit (FOMs) by which to quantify the
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e�ectiveness of a given cut combination:

• S/
Ô

S + B over the entire energy region

• S/
Ô

S + B over the energy region of the oscillation maximum, or
dip region (between 1 and 2 GeV)

• number of signal events in the dip region (maximum)

• number of cosmic events in the dip region (minimum)

NOvA’s sensitivity to atmospheric parameters depends on the lo-
cation and depth of the oscillation maximum (also called the dip) in
the ‹µ energy spectrum, hence three FOMs focus on this energy range.
One FOM calculated over the entire energy region is included to ensure
that improvements in the dip region aren’t detrimental to the rest of
the spectrum. Previous analyses showed that the signal maximising and
cosmic-minimising FOMs were ine�ective – the first led to a large back-
ground in the dip region while the latter cut too harshly on signal events.
Therefore, we focus on S/

Ô
S + B metrics and refer to them as the FOM

below.

We identify the optimal cut combination as the one yielding the max-
imum FOM and define any combination within 0.2 of this maximum as
‘good’. This ‘good’ sample is used to assess the stability of the selection.
Figure 3.4 shows the FOM distributions of good cut points in the dip
and full energy regions in both FHC and RHC beam mode. In FHC
mode the number of background events can be increased quite signifi-
cantly without an outsized impact on the S/

Ô
S + B. In RHC mode,

however, the FOM decreases faster with increasing background because
antineutrino events have a lower visible hadronic energy fraction, which
lead to clearer anti-muon tracks. Tight CVN and ReMId cuts therefore
preserve the majority of the RHC signal, and loosening them only serves
to increase background.

Figures 3.5 and 3.6 show projections of the 3D PID phase space in
FHC and RHC mode, respectively. These distributions indicate that the
FOM is stable over wide regions of phase space. In particular, in both
FHC and RHC we see a high concentration of points at low cut values of
the Track PID, or ReMId algorithm, but stricter cuts on the CVN score
(particularly in RHC mode).

The RHC dip region cuts optimised over all hadronic energy quartiles
were chosen for the 2024 analysis. These cuts perform well across the full
energy range while maintaining low levels of cosmic background. Tables
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Figure 3.4: 2D histograms showing values of figure of merit against num-
ber of background events. Here the FOM is S/

Ô
S + B over the full or

dip (oscillation maxmimum) energy region. The upper panels show neu-
trino mode (FHC) events, and lower RHC.
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Figure 3.5: FHC cut stability plots. The colour axis shows the number
of cut combinations with a ’good’ FOM for a given value of the X and Y
axes.
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Figure 3.6: RHC cut stability plots. The colour axis shows the number
of cut combinations with a ’good’ FOM for a given value of the X and Y
axes.

3.1 and 3.2 summarise the expected signal and background rates when
the FHC dip, RHC dip, and previous analysis cuts are applied. While
the FHC dip optimised cuts yield slightly more signal, they admit more
cosmic background. Meanwhile, the RHC dip cuts slightly reduce signal,
but achieve lower cosmic background.

Figure 3.7 compares the expected signal, background and cosmic
event spectra for the 2020 and 2024 selections. While the number of
signal events are largely unchanged, the cosmic rates are reduced by the
2024 cuts. The beam background in RHC mode is higher in 2024 than
2020, however its event rate is extremely low for both sets of cuts. A
final test to ensure good sensitivity and cut performance in the case of
maximal mixing between ‹µ and ‹· (sin2 ◊23 = 0.5) was performed. The
regions of PID space with high concentrations of ‘good’ FOMs were un-
changed, meaning the selected cuts would be appropriate in the case
nature has chosen maximal µ ¡ · mixing.

3.0.2 Analysis Binning

NOvA bins ‹eCC and ‹µCC samples di�erently to maximise sensitivity
in each analysis. Accurate energy estimation in the ‹µ disappearance
channel relies on reconstructing the muon track and hadronic energy. The
hadronic component’s energy resolution is roughly 10 times worse than
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Figure 3.7: Signal (‹µ CC and ‹µ CC), Background(NC and beam ‹e)
and Cosmic energy spectra for the PID cuts used in 2020, and those
chosen for 2024. The considerable scale di�erences between FHC and
RHC mode samples are due to NOvA having received mostly neutrino
beam during its running time.
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Table 3.1: FHC: Cut combinations considered for the 2024 Analysis and
the corresponding figures of merit and expected event counts for each
case.

Full Energy Range Dip Energy Range
Optimisation REMId CVN CosRej FOM N Sig N Bkg FOM N Sig N Bkg

FHC DIP 0.30 0.71 0.46 19.2 383.8 11.9 9.37 94.1 6.76
RHC DIP 0.30 0.76 0.48 19.1 372.1 7.4 9.31 90.6 4.2

Ana2020 0.30 0.80 0.45 19.23 380 10.6 9.36 93.7 6.45

Table 3.2: RHC: Cut combinations considered for the 2024 Analysis
and the corresponding figures of merit and expected event counts for
each case.

Full Energy Range Dip Energy Range
Optimisation REMId CVN CosRej FOM N Sig N Bkg FOM N Sig D N Bkg

FHC DIP 0.30 0.71 0.46 9.892 101.5 3.806 4.313 20.58 2.19
RHC DIP 0.30 0.76 0.48 9.853 99.27 2.245 4.343 20.08 1.297

Ana2020 0.30 0.80 0.45 9.87 100.7 3.405 4.31 20.49 2.12

the muon’s, (see Section 2.5.2), meaning events with low hadronic activity
have superior energy resolution and PID accuracy. Separating events
into resolution bins according to their hadronic energy fraction Ehad/E‹

(in reconstructed energy space) therefore increases the sensitivity of the
disappearance analysis. Quartile ranges of fractional hadronic energy in
un-oscillated ‹µ CC events define the boundaries used for the resolution
bins. As shown in Figure 3.8, quartile 1 (lowest hadronic energy fraction)
has the most pronounced dip at the oscillation maximum, while most
background events are concentrated in quartile 4.

While energy resolution is paramount in the ‹µ disappearance analy-
sis, the ‹e appearance analysis prioritises discrimination between ‹e CC
signal events and background in order to maximise its sensitivity to ”CP

and the mass ordering (see Section 2.1). The core ‹e CC sample is there-
fore separated into two samples based on CVNe scores: a ‘low PID’
sample and a ‘high PID’ sample. The peripheral sample, whose events
aren’t guaranteed to be contained within the FD (see Section 2.4) is put
into a separate bin with no energy dependence, since their reliable energy
reconstruction isn’t guaranteed.

The 2024 analysis includes a new low energy ‹e bin, containing events
which were previously excluded due to the high background at low re-
constructed neutrino energies. A new BDT has been trained to reject
backgrounds in this energy region. Currently, this bin is only included
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Figure 3.8: Spectra of ‹µCC, background and cosmic events for each
fractional hadronic energy quartile, where Quartile 1 has the best resolu-
tion (and smallest background and cosmic rates), and Quartile 4 has the
worst resolution, and highest background and cosmic rates. The average
energy resolution in the FD for each quartile is 6.2%, 8.2%, 10.3% and
12.4% respectively. Taken from [76].

for FHC data due to limited statistics in RHC mode.

As with the ‹µ CC binning, the PID binning isolates cosmic back-
ground in the low PID and peripheral bins, while in the high PID bin,
beam neutrino backgrounds dominate, as shown in Figure 3.9.

3.0.3 Decomposition and Extrapolation

The use of near detector data to constrain far detector uncertainties is
central to NOvA’s analysis methodology. The ND ‹e sample is used
to predict the background to ‹e appearance at the FD, while the ND
‹µ sample is used to predict both the ‹µ æ ‹e appearance and ‹µ æ
‹µ disappearance signal. As shown in Figure 3.1, this is achieved by
decomposition (determining the composition of ND samples) followed by
extrapolation (projecting ND samples to the FD).

The methods for decomposition and extrapolation di�er slightly de-
pending on the sample under consideration. We will outline the processes
for each sample below.
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‹µ æ ‹µ signal

The ‹µ æ ‹µ signal at the FD is predicted by the ND ‹µ sample. The
NuMI beam is very pure (95% and 97% (≠)

‹µ, in FHC and RHC mode re-
spectively) at the ND. Therefore, decomposition is simply performed by
assigning any di�erence between data and simulation to the (≠)

‹µ compo-
nent of the sample.

The extrapolation is then performed as follows: first, the background
in the ND sample (found using simulation), is subtracted. A smearing
matrix (obtained from ND simulation) is applied to the background sub-
tracted sample to unfold it from reconstructed to true energy. Di�erences
in event rates between the near and far detector due to, e.g. detector
acceptance or size, are then accounted for by multiplying the true energy
ND spectrum by an FD/ND event ratio. The spectrum can now be con-
sidered to be an FD sample in true energy. Energy dependent oscillation
weights are then applied, followed by another smearing matrix to con-
vert the spectrum back into reconstructed energy space. Backgrounds
are then added back in.

‹µ æ ‹µ background

The ‹µ æ ‹µ signal has two sources of background, however neither
require ND samples to constrain them. The first is background from in-
trinsic beam electron (anti) neutrinos, which is expected to be small due
to high beam purity, so can be taken directly from FD simulation. Cos-
mic background is estimated using data from the cosmic trigger (which
captures events out of time with the beam). The final FD spectra cor-
respond to a specific amount of cosmic livetime, so the cosmic data is
scaled to this livetime and the cosmic background added to the total
background sample.

‹µ æ ‹e signal

The ‹µ æ ‹e signal sample uses the same extrapolation as the ‹µ æ ‹µ

signal, however the FD/ND event rate ratio and oscillation weights are
altered as required for ‹e events, and ‹µ æ ‹e oscillations.

‹µ æ ‹e background

The ND ‹e sample is used to predict the ‹e appearance background at
the far detector. This sample consists of mis-identifed NC and ‹µ CC
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events, and ‹eCC events from instrinsic beam electron neutrinos. No
component is negligible, so simply assigning any discrepancies to one
event type is not e�ective. Instead, the samples are decomposed using
di�erent methods depending on the HC mode. FHC decomposition uses
additional samples to provide information on event type proportions,
then assigns discrepancies accordingly. For example, the ‹µ ND signal
sample constrains beam ‹e background by examining the peaks formed
by pion and kaon decays in the ‹µ energy spectrum, and using these peaks
to estimate the number of electron neutrinos present in the beam from
the processes in Equation 2.2.2. Due to lower signal statistics and higher
rates of background, proportional decomposition is applied to RHC ND
‹e samples. Here the discrepancies are assigned to all three components,
and it is assumed the MC correctly predicts their relative proportions,
but not their absolute normalisation in each bin.

Extrapolation of this sample di�ers because the energy estimator is
expected to perform poorly on the ‹e appearance background, in partic-
ular on NC events. Converting from reconstructed to true energy space
is then more likely to introduce uncertainties. Therefore, the FD/ND
event rate ratio is simulated and applied in reconstructed space, and the
smearing reco-to-true matrix only used to apply oscillation weights in
true space where necessary.

3.0.4 Systematic Uncertainties

60 di�erent systematic uncertainties are considered in the 3-Flavour anal-
ysis. Generally, their e�ects are evaluated by reproducing analysis steps
with modified simulated samples. This is achieved by reweighting events,
or by simulating new samples with di�erent parameters and performing
reconstruction again. The variation in predictions found when consid-
ering di�erent values of systematic parameters defines their ±1 and 2‡

values, which are then included in the experiment’s fit to data.

Flux

Uncertainties in hadron production and beam transport contribute to
the overall neutrino flux uncertainty. Beam transport systematic uncer-
tainties include the horn current, the beam position on the target, the
beam spot size and the horn and target positions. Hadron production
uncertainties are constrained by external data using the PPFX package
[71]. Their e�ect is assessed by creating multiple universes with varying
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proton-target cross sections and theoretical assumptions, to produce a
set of alternative flux correction weights. These alternative weights are
combined and reduced into a set of uncorrelated weights via Principal
Component Analysis (PCA). PCA reduces the dimensionality of highly
correlated datasets while preserving most of the underlying information.
By computing the covariance matrix of the alternate weights, and cal-
culating its eigenvectors (Principal Components), and eigenvalues (the
variance explained by the PC), we can select the largest PCs, which ex-
plain much of the dataset’s variance with far fewer parameters. In the
case of the hadron production uncertainty the five most dominant PCs,
which account for 68% of the total variance, are scaled up to account for
the total e�ect of the systematic and used as uncertainties in the fit.

Cross Section

The GENIE event generator (see Section 2.6) includes many tunable pa-
rameters (knobs) that, for example, control neutrino-nucleus interaction
models. Instead of regenerating events for each parameter variation, GE-
NIE provides reweight factors which modify existing samples to reflect
di�erent knob values. These reweights are used to evaluate the e�ect
each parameter has on the predicted sensitivities. The 2024 analysis in-
cludes 78 knobs. Those with small e�ects on the final sensitivities are
condensed to 8 systematic uncertainties using PCA, while the remaining
thirty large knobs are each considered a separate systematic uncertainty.

Detector

Uncertainties in detector response and calibration are characterised by
regenerating ND and FD samples with the relevant systematics altered.

The dominant detector uncertainty is the overall energy calibration
scale (±5%), and is motivated by a data-MC discrepancy in the responses
of protons and muons in the ND. This includes an absolute and relative
scale uncertainty: in the former we assume the ND and FD have iden-
tical calibration, and the latter we assume their calibration is anticorre-
lated. Spatial variations in detector response necessitates a calibration
shape uncertainty, which is found by assuming a linear shape, and char-
acterising the di�erences in the middle and edge responses using fits to
data/simulation ratios.

The 2024 analysis used an improved light model, which describes the
amount of light produced in the detector and collected by the fibre. Light
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within the detector comes from both scintillation and Cherenkov photons
produced as a charged particle passes through its volume. Uncertainties
on both light sources are found by varying the relevant parameters when
tuning simulated detector light levels to data. NOvA detector response
has reduced over its run time due to scintillator and fibre ageing, among
other e�ects. This drift in repsonse is described by a linear decrease in
light level as a function of time.

As discussed in Section 2.5.2, a muon’s energy reconstruction relies
on its track length. The uncertainty on track length for a muon of known
energy is accounted for by a muon energy scale systematic, which includes
both correlated and anticorrelated near and far detector uncertainties.

Finally, a new detector response systematic, ‘Geant4 Reweight’ was
included in the 2024 analysis. Geant4Reweight is a framework which
allows events to be reweighted after production, and is used to account
for uncertainties in inelastic hadron scattering in both neutrino nucleus,
and resulting secondary interactions.

Other

A new neutron interaction model, known as MENATE [77], replaced
the built in Geant4 model used in previous analyses. An additional
systematic was thus included to parameterise the di�erences in sensitivity
when each model is used.

The statistical uncertainty on the number of cosmics expected to be
seen at the FD (which is used to make predictions) is covered by the
cosmic scale systematic, which decreased in 2024 due to the increased
dataset size.

Other uncertainties include the total POT, number of events caused
by interactions in the rock surrounding the FD, and the matter density
of the earth are also included, and are described in further detail in [78].

3.0.5 Oscillation parameter extraction

Oscillation parameters are found by comparing the measured (≠)
‹µ and

(≠)
‹e datasets to extrapolated FD predictions as a function of oscillation
parameters and systematic nuisance parameters [78]. We fit the oscilla-
tion parameters ◊̨ to the observed data by minimising a binned Poisson
log-likelihood between the prediction E(◊̨) and the observed data O, in-
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cluding Guassian penalty terms for systematic degrees of freedom ”̨:
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Here N is the analysis bins (Section 3.0.2) and M the systematic parame-
ters (Section 3.0.4). ◊̂ is the set of oscillation parameters which minimise
‰2.

In the fit we vary sin2 ◊23, sin2 2◊13, �m2
32 and ”CP . Solar parameters

are fixed at values �m2
21 = 7.53 ◊ 10≠5eV2 and sin2 ◊12 = 0.0307.

NOvA’s 2024 analysis used two di�erent statistical approaches to
measure oscillation parameters. Traditionally, NOvA’s results were ex-
tracted using Frequentist statistics, however a Bayesian analysis was first
performed in 2022 (on 2020 data), and was again performed in 2024. Here
we will predominantly discuss the Bayesian approach, as per the focus of
the author’s work.

In brief, Frequentist and Bayesian statistics di�er in their interpre-
tation of probability. While a Bayesian approach sees probability as a
statement about how likely a particular outcome is, a Frequentist one
sees it is a statement of long range likelihood. Consider an experiment
with two possible outcomes: a Frequentist would consider the probability
of outcome A being 90% to mean that were the experiment performed
100 times over, 90 of the results would be outcome A, while a Bayesian
would consider the same probability to mean there is a 90% chance that
on performing the experiment, the outcome will be A.

Methods of reporting results also vary between the two approaches.
A standard metric used in Frequentist statistics is ‘confidence intervals’
(or regions in the case of higher order phase spaces) - regions which, if a
measurement were made many times with independently collected data,
would include the true values with at least a minimum given probabil-
ity (this is known as coverage). In Bayesian statistics credible intervals
(or regions) are reported. Perhaps more intuitively, credible intervals
represent regions that should contain the true value with a minimum
given probability. The Frequentist analysis uses the Feldman-Cousins
technique to create confidence intervals, which is explained in [79].
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3.0.6 Bayesian Analysis

Bayesian inference is built on Bayes’ Theorem [80, 81], which states, for
measured values x̨ and parameters ◊̨,

P
1
◊̨|x̨

2
=

P
1
x̨|◊̨

2
P

1
◊̨

2

P (x̨) (3.0.2)

where P
1
◊̨|x̨

2
is the posterior probability - the probability of the param-

eters ◊̨ being correct given data x̨. P
1
x̨|◊̨

2
is the likelihood, (which for

our purposes is the binned Poisson likelihood used to get (3.0.1)) and
P

1
◊̨

2
, is the prior [82], representing pre-existing knowledge of ◊̨. Should

there be no previous information about the parameter in question one
can choose an ‘uninformative’ prior which is uniform in said parameter.
The combination of the likelihood and the prior is commonly referred to
as the model in Bayesian inference. P (x̨) is the probability for observ-
ing the data. Given that our goal here is to estimate parameters using
existing data, this term is a normalization constant, and can be ignored.

An undoubted advantage of Bayesian inference is the ease with which
it incorporates systematic uncertainties. Each systematic uncertainty
adds a degree of freedom to the fit which is uninteresting for our analysis
- in the frequentist approach this is remedied by profiling; scanning over
all possible values of the systematics and finding the combination which
maximises the likelihoods of the parameters of interest. In Bayesian
inference however, we can account for these parameters and absorb the
extra degrees of freedom by marginalizing - integrating the likelihood
across them, i.e.

P
1
x̨|◊̨

2
=

⁄
P

1
x̨|◊̨, ”̨

2
d” (3.0.3)

where as before, ”̨ are the nuisance parameters.

When comparing hypotheses in Bayesian statistics it is necessary to
consider that the probability of a hypothesis (H0) given data x, P(H0|x)
is dependent on the prior used in (3.0.2). As a result, for a binary hy-
pothesis test (e.g. whether neutrino mass ordering is normal or inverted)
it is often useful to find the Bayes Factor, where, considering two models,
H0 and H1 with associated priors P(H0) and P(H1)

BF = P(x|H1)
P(x|H0)

= P(H1|x)
P(H1)

/
P(H0|x)
P(H0)

= P(H1|x)
P(H0|x)

P(H0)
P(H1)

(3.0.4)
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If the priors are identical, this is equal to the ratio of the hypotheses’
posterior probabilities, and a large Bayes factor indicates H1 is preferred
to H0. For di�erent priors, a large Bayes Factor implies H1 is preferred to
a greater degree than the prior information on H1 and H0 would suggest.

Markov Chain Monte Carlo

While Bayes’s theorem can be solved analytically to find the posterior
probability in problems with few parameters, the dimensionality of the
posterior space grows with the number of parameters: it becomes nec-
essary to perform multidimensional integrals to marginalize away nui-
sance parameters (recall NOvA has ≥ 60 systematic uncertainties which
must be treated this way). We therefore use Markov Chain Monte Carlo
(MCMC) to calculate the posterior probability. MCMC is highly com-
putationally e�cient because instead of sampling points equally over the
posterior space, it samples according to the shape of the posterior prob-
ability. Therefore, areas of high probability are heavily sampled, and
computational power isn’t wasted on areas of low probability which do
not contain the maximum. This is achieved by using the probability at
a given point to inform the next sampled point, each sample point is
recorded, creating a so-called chain.

NOvA has implemented two di�erent techniques for MCMC sam-
pling, known as ARIA and Stan.

ARIA

ARIA uses the Metropolis-Rosenbluth-Rosenbluth-Teller-Teller (MRRTT)
approach, and is named for Arianna Rosenbluth, who first implemented
the method computationally. MRRTT uses a proposal-acceptance tech-
nique, such that a new point xÕ is proposed from a symmetric distribution
(in NOvA’s case a multivariate Gaussian with dimensions matching the
number of parameters). The proposed point and previous point are then
used to find the acceptance criterion A = min

Ë
P (xÕ)
P (x)

È
. The proposed

point is accepted if a value randomly sampled from a uniform distribu-
tion between 0 and 1, u, lies below the acceptance criterion A. If the
point is rejected, the previous point is reused. The structure of A means
that proposed points which lie in high posterior probability regions are
more likely to be accepted. The MRRTT algorithm leads to high levels
of autocorrelation (the degree of dependency a given point has on its
predecessor) between steps in the chain. The chain must therefore be
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‘thinned out’ (steps removed at fixed intervals, e�ectively increasing the
space between steps), before use. It can also be ine�ective for posteriors
with many dimensions and tight constraints, leading to computational
ine�ciency.

Stan

Hamiltonian Monte Carlo (HMCMC) [83], avoids some pitfalls associated
with ARIA, and is implemented in NOvA via an external package, Stan
[84]. HMCMC treats the negative of the posterior space as a topological
object across which a particle is moving. As such, the ‘gravitational’
gradient is always in the direction of a high probability region. By nu-
merically solving Hamilton’s equations for a simulated particle with some
initial momentum and whose Hamiltonian is a function of the posterior
probability distribution, the algorithm finds the endpoint of the particle’s
trajectory (which should move towards regions of high probability), and
uses its coordinates to choose the next sample. This proposed point is
accepted or rejected as in ARIA. HMCMC yields lower autocorrelation in
the MC chain than MRRTT, and, because it makes use of the posterior
distribution when proposing new points, requires fewer sample attempts
to explore the entire posterior space.

Mass Ordering

Unlike the mixing angles and (within 0 and 2fi) ”CP , the mass ordering
is a discrete parameter. This presents an issue for MCMC, as it will
not naturally ’jump’ from a positive �m2

32 to a negative one, meaning
only the ordering the chain begins in will be explored. This is remedied
in ARIA and Stan by adding a step in the proposal acceptance proce-
dure which gives an acceptance score for the proposed point also moving
switching mass ordering. This switch is accepted/rejected in the same
way as previously described.

Reactor Constraints

Long-baseline experiments, such as NOvA, have limited sensitivity to
sin2 ◊13 because, as seen in Equation 2.1.1, it only appears in combi-
nation with sin2 ◊23. Applying external constraints from reactor exper-
iment Daya Bay [85] can increase NOvA’s sensitivity to other param-
eters which it is better placed to measure. Three di�erent treatments
of sin2 2◊13 are used. In the first, sin2 2◊13 is allowed to vary freely. In
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the second, the so-called 1D constraint from Daya Bay is used, wherein
sin2 2◊13 = 0.0851±0.0024.The third utilises ‘2D’ constraints - Daya Bay
also reports separate constraints for sin2 2◊13 vs �m2

32 in the normal and
inverted mass ordering. These separate constraints allow NOvA to in-
crease its sensitivity to the mass ordering via a technique proposed by
Nunokawa et. al in [86], which showed that reactor and long-baseline ex-
periments would measure di�erent values for �m2

32 when assuming the
incorrect mass ordering, but would agree when assuming the correct mass
ordering. This e�ect can be seen in Figure 3.14.

In the Bayesian analysis these constraints are implemented after sam-
pling, which is performed with an uninformative (i.e. uniform) prior on
sin2 ◊13. The resulting posterior distributions are then simply multiplied
by the likelihood of the external constraint to find the constrained distri-
butions. Performing the sampling with a prior flat in sin2 ◊13 also provides
a NOvA only measurement of this parameter, which had previously been
excluded due to the computational power required to compute this with
the Feldman-Cousins method.

3.0.7 2024 Bayesian Analysis Results

NOvA’s 2024 analysis observed 384 ‹µ signal events, of which 11.3 are
expected to be background, and 106 ‹µ events, of which 1.7 are expected
to be background. If neutrinos didn’t oscillate, one would expect to see
≥ 2100 ‹µ at the FD. In the appearance channel, 169 ‹e events and
32 ‹e signal events were observed, with expected background counts of
54.9 and 12.2, respectively. The data and posterior ranges are shown in
Figure 3.10. This dataset was fitted according to the method described
in Section 3.0.5. After describing the goodness of fit metric used to check
the robustness of our model, we will discuss the preferred regions NOvA
has found with this data analysis.

The goodness of fit was evaluated using posterior predictive p-values
(PPP), the Bayesian analogue of Frequentist p-values. To calculate the
PPP we draw S samples of ◊̨ from the posterior probability distribution
and use them to create predictions E for the observed data O. We then
compute the ‰2 between the observed and predicted values, ‰2

data. An-
other set of predictions is then formed by applying Poisson fluctuations
to the predictions E, and calculate the ‰2 between the fluctuated and
original predictions, ‰2

pseudodata. ‰2
data tests how well the model encap-

sulates oscillation and systematic parameter variations, while ‰2
pseudodata

treats only statistical uncertainties. By examining the distribution of the
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‰2
data,‰2

pseudodata pairs, we can infer how well our model describes both
kinds of uncertainties and oscillation parameters. The PPP is defined as
the fraction of ‰2

psuedodata > ‰2
data. A PPP of 0.5 indicates that the model

describes the data perfectly with the exception of statistical variations.

The PPP for the 2024 analysis is 0.48, indicating the data is well
described by our model. This is clear in the total posterior predictive
distribution in Figure 3.11, which is symmetric around ‰2 = 1 per bin in
both axes, implying that the model is capable of describing both statis-
tical fluctuations and systematic parameter variations.

The ‹µ and ‹µ samples individually have good p-values, and their
distributions closely match the combined results. The e�ect of statistical
fluctuations is more visible in the smaller statistics samples. The ‹e, ‹e

and low energy ‹e samples all have a wider spread of ‰2 values than their
‹µ equivalents, particularly in ‰2

pseudodata
, due to their larger statistical

uncertainties. The ‹e sample has a good p-value of 0.58, however, ‰2

between each of the pseudodata spectra and predicted spectra is typically
larger than the equivalent between the predictions and the data. The
same can be seen, but to a greater extent, in the ‹e low energy sample.
This is a result of very low statistics in this sample, and, as can be
seen in the top left panel of Figure 3.10, good description of the data
points by the prediction in both the nominal and low energy ‹e samples.
The opposite e�ect is seen in the ‹e contour, where the systematic and
oscillation parameter fluctuations give rise to larger ‰2’s when compared
to data than the statistical fluctuations when compared to predictions.
Once again this is evident in Figure 3.10, where we can see, in the top
right panel, three datapoints which lie outside the posterior ranges.

HPD
Parameter Both MO NO IO

�m2
32

1
◊10≠3eV2

2
- 2.431 ≠2.476

sin2 ◊23 0.547 0.547 0.474
”CP 0.89fi 0.89fi 1.57fi

Table 3.3: Highest Posterior Density (HPD) points for oscillation param-
eters in both, Normal and Inverted Mass Orderings (Both MO, NO and
IO, respectively). Results from [87].

The highest posterior density points for oscillation parameters with
the 1D reactor constraint applied are shown in Table 3.3. Here, the
HPD point for sin2 ◊23 lies in the upper octant regardless of the mass
ordering. Figure 3.12 shows the 90% credible intervals in �m2

32 - sin2 ◊23

space in both mass ordering cases for both NOvA and other experiments.
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Figure 3.10: Reconstructed neutrino energy distribution of 2024 data
events (black crosses), for ‹e and ‹e appearance (top), and ‹µ and ‹µ

disappearance (bottom), without Daya Bay constraints applied. The ‹e

samples are divided into bins of low (I) and high (II) PID scores, plus
the peripheral sample (III). In the ‹e sample only, � indicates the low
energy sample which was added for 2024 analysis. The coloured bands
correspond to the range of 1‡(darkest), 2‡ and 3‡ (lightest) confidence
intervals from the posterior distribution resulting from our fit to data
(including oscillation and systematic parameters, but not statistical er-
ror.)
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with the 1D reactor constraint applied to ◊13. The purple distribution
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pseudodata sets, both divided by the number of degrees of freedom in
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same posterior-predictive distributions calculated only for ‹e (dark blue,
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Figure 3.12: 90% Credible Intervals for NOvA and other experiments in
the �m2

32- sin2 ◊23 space when considering only Normal (left) or Inverted
(right) ordering points. To find the best fit point both orderings are
considered, this point is marked with a star, and lies in normal ordering,
upper ◊23 octant. From [88].

NOvA’s favoured regions are consistent with those of other experiments,
and show improved sensitivity to both parameters in question relative to
its previous analysis (shown in pale blue) due to the increase in statistics.
NOvA’s results are consistent with maximal mixing (sin2 ◊23 = 0.5) at
1‡.

No constraint 1D constraint 2D constraint
BF Probability BF Probability BF Probability

NO preference 2.2 69% 3.2 76% 6.8 87%

Table 3.4: Bayes factor for normal ordering against inverse ordering hy-
pothesis with no, 1D and 2D reactor constraints applied.

From Figure 3.12 we can also observe that the HPD point lies in the
normal ordering region. Indeed, NOvA prefers normal ordering (albeit
weakly, with a Bayes factor of 2.2) without reactor constraints applied.
This preference strengthens with the application of 1D and 2D reactor
constraints (87% NO preference), as predicted in [86]. The Bayes factors
and associated probabilities for mass orderings can be seen in Table 3.4,
and the 1D posterior distribution for �m2

32 with and without reactor
constraints applied can be seen in Figure 3.14.

As discussed in Section 2.1, NOvA gleans sensitivity to ”CP by ‹e and
‹e comparing appearance rates, which di�er if there is leptonic CP viola-
tion. Figure 3.15 shows the observed ‹e and ‹e event counts alongside the
values one would expect for various ”CP values and in each mass ordering.
Here degeneracy between CP violation and mass ordering on appearance
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Figure 3.13: 68% Confidence Intervals for NOvA and other experiments
in the sin2 ◊23 - ”CP space when considering only Normal (left) or Inverted
(right) ordering points. The best fit point lies in NO, upper octant, at
”CP = 0.93fi. From [88].

S12

II:4. Mass ordering and ω23 octant preferences

Table S3 shows NOvA’s preferences for the Normal MO and the upper octant of ω23, quantified using Bayes factors
and the integrated posterior probabilities associated with these hypotheses. Results are presented for three treatments
of external reactor constraint: no constraint, and the 1D and 2D Daya Bay constraints.

Figure S13 further illustrates how di!erent constraints on ω13 and ”m2
32 from Daya Bay a!ect the MO preference,

presenting the 1D posterior probabilities for ”m2
32 in both Normal and Inverted orderings across the three choices on

external constraint.

TABLE S3. Bayes factors, with percentage posterior probability preference reported in parentheses, illustrating the preference
for the Normal MO over the Inverted MO (top row) and for the upper octant over the lower octant (bottom row).Values are
derived from fits using no external constraint on ω13, 1D and 2D constraints from Daya Bay.

Bayes Factors Unconstrained 1D Daya Bay 2D Daya Bay

Normal Ordering Preference 2.4 (70%) 3.3 (77%) 6.6 (87%)
Upper Octant Preference 1.3 (56%) 2.1 (68%) 2.0 (66%)
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FIG. S13. Marginalized posterior probability densities for !m2
32 from a fit to data with di”erent options of the Daya Bay

constraint applied (left panels without any constraint, middle panels with ω13 constraint, right panels with ω13–!m2
32 constraint).

Figure 3.14: Marginalised posterior probability densities for �m2
32 from

a fit to data with di�erent Daya Bay constraints applied- left without
constraint, the middle with ◊13 constraint, and the rightmost with 2D
�m2

32 ≠◊13 constraint. NOvA measurements are complementary to Daya
Bay, with the normal ordering preference increasing as constraints are
applied. Figure from [87].
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rates is apparent - NOvA’s data point lies in a region compatible with
maximally violating ”CP and inverted ordering, and less violating ”CP

and normal ordering. As seen in Figure 3.13, the best fit point lies near
CP conserving values in normal ordering, however the preference is very
small. Interestingly, while NOvA’s preferred regions are disparate with
the equivalents of other experiments in the normal ordering, they agree
well in the inverted ordering.

Figure 3.16, shows the posterior densities for the Jarlskog invariant for
normal ordering. When applying a prior to sin ”CP , the posterior density
distribution is peaked near J = 0, tending slightly towards CP conserv-
ing values, in normal ordering, but has a strong preference towards CP
violation in inverted ordering. This is confirmed by the Bayes Factors
for CP violation over CP conservation extracted from these spectra: 1.1
(51% preference for CP violation) in NO, and 4.3 (81% preference) in IO
[87].
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Machine Learning for
Neutrino Energy Resolution

Machine learning has been put to great use in neutrino oscillation exper-
iments. In fact, NOvA was the first long-baseline oscillation experiment
to use convolutional neural networks (see Section 2.4.1) for event re-
construction/classification. Many other neutrino experiments, such as
MicroBooNE, ICECUBE and SBND have also used machine learning to
improve their analyses [89–92]. In this chapter we consider an approach
wherein, unlike the use discussed in Section 2.4, a neural network is not
applied directly to event displays, but is instead used after reconstruc-
tion, operating on truth level information to correct for missing energy
caused by long-lived, neutral final state particles, such as neutrons. A
description of this work can be found in [93].

4.1 DUNE experiment

DUNE is a next-generation long-baseline neutrino oscillation experiment
based at Fermilab, Illinois, and the Sanford Underground Research Fa-
cility (SAND), South Dakota. Like NOvA, it will use a high-purity neu-
trino beam produced at Fermilab, where its near detector will be located.
However, DUNE’s far detector will be positioned 1297 km downstream,
directly on the beam axis. It will employ Liquid Argon Time Projec-
tion Chambers (LArTPCs), which o�er improved spatial resolution and
detailed event imaging. This leads to superior energy resolution and
particle identification compared to NOvA. Combined with a more pow-
erful beam, longer baseline, and larger detector mass, these features will
enable DUNE to measure quantities unresolved by current experiments
such as NOvA and T2K.
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In particular, DUNE will break the mass ordering–CP degeneracy
seen by NOvA. Its extended baseline increases the matter e�ect experi-
enced by beam neutrinos, which, along with larger datasets in both neu-
trino and antineutrino modes will allow DUNE to separate the overlap of
normal ordering with ”CP = fi/2 and inverted ordering with ”CP = 3fi/2
shown in Figure 3.15. DUNE is consequently expected to determine the
neutrino mass ordering at 5‡ with only 90 kt-MW-years of exposure [94].

In this chapter and the next we will focus on analysis improvements
which could maximise DUNE’s sensitivity, particularly in measuring pa-
rameters it will not resolve as easily as the mass ordering, i.e. ”CP and
the octant of ◊23.

Central to DUNE’s sensitivity are neutrino energy resolution and the
reduction of systematic uncertainties. To improve the former, we develop
a neural network that uses final state event information to predict the
energy of the incident beam neutrino. The DUNE FD will also collect
atmospheric neutrino data before the beam is operational. This data will
be invaluable, however in this case there is another missing variable - the
direction of the incoming neutrino. We therefore also train a network to
reconstruct both the energy and direction of the atmospheric neutrinos.
The direction is related to the distance the neutrino has travelled – a key
ingredient in an oscillation analysis. It is particularly important for sub-
GeV neutrinos which can give DUNE sensitivity to CP violation before
the beam turns on [95], and which allow for neutrino tomography of the
Earth’s interior [96, 97].

Beyond DUNE, our results can also benefit the LArTPCs comprising
Fermilab’s Short Baseline Neutrino Program [98].

4.2 Event topologies and missing energy

Neutrino-nucleus charged current interactions occur via four main pro-
cesses relevant for DUNE, illustrated in Figure 4.1:

• Quasielastic scattering (QE) - neutrino exchanges some energy and
momentum with a nucleon via the weak force, leaving the nucleon
intact, but with one quark changing flavour.

• Resonance (Res) - neutrino excites a nucleon to a resonant state
from which it decays, typically producing a meson.

• Two-particle two-hole (2p2h) - neutrino interacts with two nucleons
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Figure 4.1: Schematics for four main neutrino-nucleon (‹ ≠ N) charged
current interaction mechanisms. 2p2h stands for two-particle two-hole.

in the nucleus causing both to be ejected without an accompany-
ing meson. One mechanism for this is Meson Exchange Currents
(MEC), wherein the nucleons interact via meson exchange, but
once again, no meson is produced.

• Deep inelastic scattering (DIS) - neutrino interacts with a nucleon’s
constituent quarks, causing an energetic intranuclear cascade.

For QE interactions the incident neutrino energy can (neglecting de-
tector e�ects) be reconstructed from simple kinematics. For a ‹µCC QE
interaction,

E‹ =
2MnEµ ≠ M2

n
+ M2

µ
≠ M2

p

2(Mn ≠ Eµ) +
Ò

E2
µ

≠ M2
µ

cos ◊
(4.2.1)

where Mn, Mp and Mµ are the neutron, proton and muon masses, re-
spectively, Eµ is the muon energy, and ◊ the angle between the muon and
the incident neutrino. However, while QE events are the dominant inter-
action process between 0 ≠ 1 GeV, they are overtaken by Resonant and
then DIS at higher energies, as shown in Figure 4.2. These higher energy
exchange interactions lead to more complex final states, often containing
more neutral particles which the detector cannot reconstruct.

Furthermore, the fraction of the incoming neutrino energy taken up
by final state neutral particles is energy dependent, as shown in Fig-
ure 4.9, meaning it cannot be corrected with a simple constant o�set.
Instead, more complex reconstruction techniques are necessary.

After an interaction via one of the processes above, outgoing particles
propagate through the nuclear medium and may undergo further inter-
actions with other nucleons before exiting the nucleus. These final state
interactions may distort the event signature, meaning the topology seen
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by a detector (which, in the case of LArTPCs, will already be missing
neutral particles), may di�er from the true final state of the interaction.

The combination of neutral long-lived particles, complex event topolo-
gies and final state interactions can lead to inaccurate neutrino energy
predictions. Nevertheless, it is possible to exploit the complexity of the
problem by using the many correlations between the kinematics of final
state particles, (as evidenced by the Pearson matrix shown in Figure 4.3),
to inform machine learning techniques, which are well suited for dealing
with correlations in high-dimensional parameter spaces.
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(a) Muon neutrinos
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(b) Muon antineutrinos

Figure 4.2: Charged current neutrino-liquid argon cross sections used by
the GENIE [73] event generator for ‹µ(top left), ‹µ(top right). There is
no appreciable di�erence between muon and electron (anti)neutrino cross
sections. Antineutrino cross sections tend to be a factor of three lower
than the corresponding neutrino cross section due to the parity selecting
nature of the weak force.

4.3 Dataset

We simulate the DUNE beam by generating 8 ◊ 105 ‹µ–argon charged
current events in NuWro 21.09 [99], with neutrino energies distributed
according to the DUNE flux in FHC mode [100]. Event generators out-
put ‘true’ particle information., which di�ers from detector output due to
reconstruction e�ciencies and detection thresholds. To approximate de-
tector e�ects, we impose a minimum kinetic energy threshold for charged
particles, below which they are excluded from the dataset. We also smear
their angles and momenta by the values shown in Table 4.1. To simulate
atmospheric neutrinos, we additionally randomize the incoming neutrino
direction.

We consider three neutrino reconstruction scenarios. The first, 0n,
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Figure 4.3: Example of a Pearson correlation matrix between several ob-
servables in charged-current neutrino–argon interactions with at least one
proton and one neutron in the final state, for the DUNE neutrino-mode
flux and before including detector responses. We include the total kinetic
energy of all protons (Kp) and neutrons (Kn) per event, the energies of
the neutrino and outgoing lepton (E‹ , E¸), the angle between a given
particle and the beam axis cos ◊¸,p,n, and the angles between particles
cos ◊¸p,¸n,pn. Note that neutrons are very challenging to reconstruct, so
information on the neutron system is typically not available in realistic
event records.
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Particle Threshold resolution coe�cient –p ‡(◊)
µ, e, “ 30 MeV 5% 2¶

fi, K, proton 30 MeV 10% 10¶

neutron “0n” invisible – –
neutron “En” 100 MeV 40% –

neutron “En+◊n” 100 MeV 40% 10¶

Table 4.1: The kinetic energy threshold, momentum resolution coe�cient
–p (which is used to calculate the resolution as a function of momentum
using ‡(p) = –p

Ò
p/GeV), and angular resolution for di�erent final-state

particles. For neutron reconstruction, we list the three di�erent scenarios.
The values in this table were developed in consultation with members of
the DUNE collaboration for Ref. [96].

assumes no reconstruction capabilities for neutrons. The second, En,
is motivated by attempts to reconstruct some neutron energy [101] by
using the small deposits of energy, or ‘blips’, they leave when propagat-
ing through liquid argon. Here we assume reconstruction of the neu-
tron energy with a fractional resolution of 40%/

Ò
Kn/GeV. These blips

have been detected [102], however neutron reconstruction has not been
firmly demonstrated. As such, the third neutron reconstruction scenario,
En+◊n is an optimistic one, where we allow reconstruction of the neutron
direction in addition to the energy, with a resolution of 10¶. This final
configuration serves to quantify the e�ects of neutron direction informa-
tion on energy resolution.

Although the detector simulation attempts to account for the di�er-
ences in simulated and real data, reconstruction of experimental data
remains more challenging due to issues such as the misidentification of
charged pions and protons. Our work therefore serves as a motivation
to what could be achieved by leveraging machine learning to improve
neutrino energy resolution.

To provide a benchmark for energy resolution performance in our
detector simulation, we will compare our results to a purely calorimetric
method, in which the neutrino energy is obtained as

Ecal
‹

= E¸ +
mesonsÿ

i

Ei +
baryonsÿ

i

Ki, (4.3.1)

where Ei and Ki denote the total and kinetic energy of a particle i,
respectively.
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4.4 Neural Network

We use a dense neural network (DNN) [103, 104] to predict the neutrino
energy for beam events, and the neutrino energy, zenith and azimuth
angles for atmospheric events. The DNN input is the summed four-
momentum of each particle species produced in the event. For example,
the energy of 3-momenta of all protons in a given event are summed and
passed to the network as a single 4-vector. We consider sixteen particle
types, and each element of the 4-momentum corresponds to an input
neuron, so the input layer has 64 notes. The network architecture is
[64 ≠ 16 ≠ 32 ≠ 1] for beam neutrinos and [64 ≠ 16 ≠ 32 ≠ 3] atmospheric
neutrinos. The reduced dimensionality after the input layer allows for
more e�ective training.

Summing over all particles of a given species improves the network’s
robustness to inaccuracies in neutrino interaction models used in event
generators, or di�erences in event generator output. As shown in Figure
4.4 GENIE [73] and NuWro [99] predict di�erent numbers of low-energy
final state protons. Aggregating four-momenta reduces the networks sen-
sitivity to such discrepancies.

The network is trained using a fractional mean squared error loss
function for beam events,

Lenergy = 10 [1 ≠ EPred/ETrue]2 (4.4.1)

where ETrue and EPred denote the true and predicted neutrino energy.

For atmospheric neutrinos an angular term is added

Langle = 30 arccos2
Ë
v̂True(x) · v̂Pred(x)

È
(4.4.2)

where v̂True(x) and v̂Pred(x) are unit vectors in the true and predicted neu-
trino momentum directions, respectively. The factor of 30 on Langle

weights angular reconstruction more heavily than the less challenging
energy reconstruction, and was optimised by training multiple networks
with di�erent scaling factors on the atmospheric loss term.

The training curves for the beam and atmospheric neutrino DNN’s
can be seen in Figure 4.5.
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Figure 4.6: Normalized event distribution using DNN energy reconstruc-
tion (filled histogram) and the calorimetric method (unfilled histogram).
Neutrinos with true energies uniform across six ranges, [500≠600, 1000≠
1100, 2000≠2100, 3000≠3100, 4000≠4100, 5000≠5100 MeV], were used.
The DNN reconstruction produces a narrower event distribution and re-
duces the bias in the mean reconstructed energy compared to the calori-
metric method.

4.5 Results

Figure 4.6 shows normalised event distributions for beam ‹µ with true en-
ergies uniformly distributed across ranges [500≠600, 1000≠1100, 2000≠
2100, 3000 ≠ 3100, 4000 ≠ 4100, 5000 ≠ 5100 MeV]. Results are shown
for calorimetric reconstruction (unfilled histogram) and the DNN (filled
histogram), both with no neutron information. The DNN reduces the
bias inherent in the calorimetric method, improving the accuracy of re-
constructed neutrino energy.

To further evaluate the model’s performance, we calculate the frac-
tional energy resolution, ‡(E‹)/E‹ , of distributions like those shown in
Figure 4.6 across multiple energies. As shown in Figures 4.7 and 4.8
the DNN 0n outperforms the calorimetric method, and surpasses the res-
olutions quoted in DUNE’s Technical Design Report (TDR) [105] and
Conceptual Design Report (CDR) [106]. This implies that the DNN is
able to partially infer the kinematics of invisible particles from corre-
lations between other kinematic variables. Adding limited neutron re-
construction (En) leads to further improvement in ‡(E‹), particularly at
higher incoming neutrino energies, where complex final states are more
likely. Including neutron direction reconstruction yields no further im-
provement.
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(a) Beam muon neutrinos
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Figure 4.7: Top: fractional neutrino energy resolution ‡(E‹)/E‹ as a
function of neutrino energy from DNN-based analyses trained on muon
neutrino (left) and antineutrino (right) events with no information on
final-state neutrons (solid purple), with limited information on the neu-
tron energy (dashed purple), and with information on the neutron energy
and direction (dotted purple). When information on the energy of final-
state neutrons is available, the improvement is more than a factor of two
at high energies. The energy resolutions anticipated in the DUNE CDR
and TDR simulations can be seen in magenta, and the resolution of a
simple calorimetric method assuming invisible neutrons in grey. Bottom:
reconstruction bias for the DNN compared to the calorimetric method.
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Figure 4.8: Top: fractional neutrino energy resolution ‡(E‹)/E‹ as a
function of neutrino energy from DNN-based analyses trained on elec-
tron neutrino (left) and antineutrino (right) events with no information
on final-state neutrons (solid purple), with limited information on the
neutron energy (dashed purple), and with information on the neutron
energy and direction (dotted purple). When information on the energy
of final-state neutrons is available, the improvement is more than a fac-
tor of two at high energies. The energy resolutions anticipated in the
DUNE CDR and TDR simulations can be seen in magenta, and the res-
olution of a simple calorimetric method assuming invisible neutrons in
grey. Bottom: reconstruction bias for the DNN compared to the calori-
metric method.
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Reconstruction method – —

DNN 0.099 0.046
Calorimetric 0.084 0.102

Table 4.2: Best fit parameters from fitting the no neutrino information
‹µ DNN and calorimetric fractional energy resolution curves shown in
Figure 4.7 to (4.5.1). While the – parameter, which dictates how fast
the resolution falls with increasing energy, is similar for calorimetric and
DNN methods, the — parameter, which controls the overall normalisa-
tion of the energy resolution, is smaller for the DNN case. This implies
that the DNN improves energy resolution uniformly across energies when
compared to the calorimetric method.

Fitting the DNN and calorimetric ‡(E‹)/E‹ curves to the energy
resolution function

‡(E‹)/E‹ = –/
Ò

E‹ + — (4.5.1)

gives the parameters shown in Table 4.2. The similar – values indicate
that both methods scale similarly with energy, but the DNN improves
energy resolution uniformly across neutrino energies, as shown by its
smaller — value.

It should be noted that, as shown in Figure 4.9, the fraction of the
total neutrino energy taken up by the final state neutron also falls at
higher neutrino energies, where the missing energy accounts for less of
the total event energy, and reconstruction is less challenging.

Figures 4.7 and 4.8 show energy resolutions for beam ‹µ, ‹e and
‹e. The network performance is consistent across flavours, despite the
calorimetic method achieving better resolution for antineutrino events at
higher energies, and poorer resolution at low energies. This behaviour
is expected; ‹ quasielastic CC scattering typically produces a neutron,
whereas ‹CC scattering produces a proton. The former (in the 0n con-
figuration) is invisible to the detector, meaning at E‹ < 2.7 GeV where
QE interactions dominate (see Figure 4.2), calorimetric reconstruction is
poorer. The DNN shows the same behaviour.

For atmospheric neutrinos, the DNN improves energy resolution, but,
as shown in Figure 4.10, does not increase angular resolution. The
calorimetric neutrino direction is defined as the vector sum of the three-
momenta of all visible outgoing particles. This method’s performance
proves comparable to the DNN’s, except at higher energies. This may
be due to lower energy events having a smaller hadronic energy fraction,
leaving little room for the angular reconstruction to be improved further.
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Figure 4.9: Fraction of ‹µCC event energy taken up by neutron as a func-
tion of the energy of the incident neutrino. In most ‹µCC events a proton
is produced, but in those events with a neutron, the fraction of energy it
takes up is not constant. At energies greater than 4000 MeV there are far
fewer events in which the neutron energy accounts for more than 40% of
the true neutrino energy, making reconstruction less challenging for the
DNN.

Results at low energies could be improved by using a DNN-based clas-
sifer to separate events into several samples based on the accuracy of the
energy reconstruction [53, 95].

4.6 Impact on Oscillation Analyses

Here we use the GLoBES framework to quantify the impact of improved
energy resolution on DUNE’s sensitivity to leptonic CP violation, the
octant of ◊23, and the neutrino mass ordering. For CP violation, the
sensitivity is found by scanning over true values of ”CP and testing how
well CP conservation (”CP œ {0, fi}) could be excluded by finding the ‰2

at each value. Similarly, for the ◊23 octant and mass ordering we scan
over regions of phase space which cover each scenario (upper or lower
octant, inverted or normal ordering), and test exclusion of the alternate
scenario at each point in the scan.

Throughout, we compare the energy resolution of the DNN without
neutron information (see Equation 4.5.1 and Table 4.2), to results from
DUNE TDR configurations, as outlined in [100, 105]. The statistical
analysis and fit used code originally developed in [107–109].

Figure 4.11 shows the impact of DNN-achieved energy resolution on
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Figure 4.10: Fractional neutrino energy resolution, ‡(E‹)/E‹ (top), and
angular resolution, ‡(◊‹) (bottom) from DNN-based analyses of atmo-
spheric neutrino events with no information on final-state neutrons (solid
cyan), and with information on neutron energies and directions included
(dashed/dot-dashed cyan). For comparison, we also show the resolutions
achievable with simple calorimetric methods (gray curves). The dotted
black curve in the bottom panel is based on only the charged lepton kine-
matics, as in Cherenkov detectors at low energy.
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the ‹µ disappearance and ‹e appearance event spectra at the DUNE FD
for the case of maximal CP violation. In the disappearance channel we see
oscillations become more pronounced, particularly the oscillation max-
imum at 2.2 GeV, which translates to more accurate measurements of
�m2

32 and ◊23 (see Section 2.1). Improvements in the appearance channel
are more modest, although the second oscillation maximum, at 1.2 GeV
for a baseline of 1300 km, becomes more defined with improved energy
resolution. This should boost sensitivity to CP violation, as lower neu-
trino energies correspond to relatively larger L/E terms, which translate
to enhanced CP e�ects on neutrino oscillation probability (see Equation
2.1.1).
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Figure 4.11: Impact of neural network-improved energy resolution on the
energy spectrum of ‹µ events in DUNE. Here, S and B denote signal and
background.

Looking at the e�ects on CP violation sensitivity, we can see in Figure
4.12 that the greatest gains occur for ”CP = ≠fi/2, i.e. at maximal
values. In this scenario the updated energy resolution allows for earlier 5‡

sensitivity to CP violation, corresponding to a 10% increase in exposure.
Smaller improvements can be seen for the less violating ”CP = ≠fi/4.
Sensitivity to non-maximal ◊23, shown in Figure 4.12 with comparison to
◊23 = 40¶ and 50¶, also benefits from increased energy resolution. DUNE
will the mass ordering at 5‡ with only 100 kt MW years of exposure,
meaning this measurement benefits less from improved ‡(E‹) and is not
included here [110].

We can also test the e�ects of improved ‡(E‹) on the relative precision
of oscillation parameter measurements. Figure 4.13 shows that the mass
splitting �m2

31 and mixing angles ◊23 and ◊13 could be measured more
precisely in the case of maximal and minimal CP violation. The precision
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Figure 4.12: Impact of neural network-improved energy resolution on
precision oscillation measurements in DUNE. The solid lines show the
DUNE TDR’s predicted sensitivity, and the dashed lines the sensitivity
achievable using the improved energy resolution a�orded by the DNN.
For the sensitivity to CP violation and to non-maximal ◊23, the improve-
ment in sensitivity due to the DNN is equivalent to a ≥ 10% increase in
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of ”CP only sees an increase in the case of maximal violation.
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4.7 Dependence on neutrino–nucleus cross
section modeling

Current models of neutrino–nucleus interactions exhibit significant dis-
crepancies with experimental data [111–115]. As a result, the DNN,
which is trained on Monte Carlo events generated by NuWro, could ex-
hibit poorer performance when applied to data if it learns features of
mis-modelled interactions.

To obtain a qualitative understanding of the impact neutrino-nucleus
interaction uncertainties may have on DNN performance, we apply our
network trained on NuWro 21.09 events to mock data generated with
GENIE 3.4.0. In the upper panel of Figure 4.14, the navy lines show
the performance of the network trained on NuWro events, but tested on
Genie events (abbreviated to G-NW DNN). For comparison, the purple
lines show the network trained and tested on NuWro only, (NW-NW 0n

DNN). Across all energies, the NW-NW 0n DNN outperforms the G-NW
0n DNN. In fact, below 1.5 GeV, the G-NW 0n DNN even performs more
poorly than 0n calorimetric reconstruction (solid grey line). This is likely
due to di�erences in how the generators calculate intranuclear cascades
and low energy final state nucleons. Adding neutron energy information
significantly improves performance over the 0n case, but the G-NW En

DNN (dashed navy line) still only slightly outperforms the equivalent
calorimetric result (dashed grey line).

More importantly, however, is the bias shown in the lower panel of
Figure 4.14. Here it is apparent that the G-NW DNN underpredicts
neutrino energies at order ≥ 10% across most of the energy spectrum,
with larger bias when neutron kinematics are included. This again high-
lights discrepancies in the treatment of final-state nucleons across event
generators. The G-NW DNN 0n bias is nonetheless smaller than the com-
parable calorimetric method up to energies of several GeV. Contrastingly,
the G-NW DNN En exhibits larger bias than En calorimetry across all
energies.

Overall, this serves as evidence that improved neutrino energy res-
olution is crucial for maximising the physics potential of the upcoming
DUNE experiment, particularly for measuring CP violation and the oc-
tant of ◊23. Furthermore, we have shown that understanding neutrino–
nucleus interactions is critical to ensure the accuracy and precision of
next generation experiments.
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Figure 4.14: Top: fractional neutrino energy resolution, ‡(E‹)/E‹ from a
DNN trained on NuWro events, and applied to GENIE (blue) and NuWro
(purple) events. We compare to the performance of the calorimetric
method when applied to GENIE events with no neutron information
(grey solid line), and with neutron energy included (dashed grey line).
Bottom: Energy reconstruction bias for the DNN trained on the “wrong”
neutrino–nucleus interaction model, and for the calorimetric method.
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Chapter 5

Reducing systematic
uncertainties with
DUNE-PRISM

5.1 DUNE-PRISM

Neutrino physics will move from being statistically to systematically lim-
ited with the arrival of next generation experiments such as DUNE [105]
and HyperKamiokande [55]. These increasingly critical systematic un-
certainties will be dictated by our limited understanding of hadron pro-
duction and neutrino-nucleus interactions, i.e. neutrino fluxes and cross
sections.

DUNE’s primary tool for reducing these uncertainties is its suite of
near detectors, which, as in the NOvA experiment, can be used to tune
simulations to mitigate the e�ect of mis-modeling. The DUNE ND will
have the additional ability to move o�-axis from the beamline, as shown
in Figure 5.1, enabling measurements of multiple neutrino fluxes from

ND LAr

ND LAr
θoa

574m

Target

36m off-axis

0m off-axis⟷

Figure 5.1: Schematic of the DUNE-PRISM setup [116]. The detector
will sit on moveable rails, meaning it can take data at any position be-
tween 0 m and 36 m o�-axis.
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Figure 5.2: Total neutrino flux in the DUNE/LBNF beam at di�erent
o�-axis positions. The flux moves towards lower neutrino energies and
becomes more peaked as the detector moves further o� axis.

the same beam [116]. Interestingly, the NuMI beamline initially had a
moveable target for a similar purpose. In this chapter, we will discuss
how these o�-axis measurements can directly constrain neutrino flux un-
certainties, the e�ect these constraints have on DUNE’s sensitivity to
oscillation parameters.

While the muon neutrino beam produced by DUNE’s PIP-II accel-
erator [117] is primarily produced by charged pion decays, (as in the
NuMI beam), there is also a non-negligible contribution from kaons and,
to a lesser extent, secondary muon decays. The kinematics of two body
boosted meson decays at small angles can be described by

E‹ = (1 ≠ (mµ/mM)2)EM

1 + “2◊2 M = fi±, K± (5.1.1)

where EM and mM are the meson’s energy and mass, “ = EM/mM and
◊ is the angle between the neutrino and parent meson. From this expres-
sion it is clear that neutrinos produced at angles ◊ > 0 relative to the
parent meson have lower energies, as illustrated in Figure 5.2. Because
pions are lighter than kaons, they are more strongly boosted in the beam
direction, and tend to produce more forward-going neutrinos, leading to
the flux being dominated by fi± decays on-axis. Kaons, however, pro-
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Figure 5.3: Total neutrino flux and the constituent flux components split
by parent hadron in the on-axis (top) and maximally o�-axis (bottom)
positions. On-axis the flux is dominated by fi+ decays, while maximally
o�-axis the K+ component has a distinct shape and greater relative im-
portance.

duce neutrinos with a broader energy distribution, and at larger angles
relative to the beamline. Consequently, as the detector moves o�-axis,
the kaon contribution becomes more visible and has increasing relative
importance at the flux peak. This e�ect is illustrated in Figure 5.3.

The PRISM (Precision Reaction Independent Spectrum Measure-
ment) method combines ND flux measurements from multiple o�-axis
positions to obtain a prediction of the oscillated flux at the FD [118].
For ND and FD fluxes „ND(E; ◊oa) and „FD(E;

≠æ
� ),

„FD(E;
≠æ
� ) =

ÿ

j

cj(�)„ND(Ei; ◊oa,j) (5.1.2)

where
≠æ
� = (◊12, ◊13, ◊23, ”CP �m2

21, �m2
31), and i and j the energy bins

and o�-axis angles, respectively. The coe�cients cj(�) are determined
using MC simulated ND and FD fluxes, such that

cj =
ÿ

i

51
„MC

ND
2≠16

ji

„MC

FD,i
(5.1.3)

cj are applied to measured ND data to obtain an FD prediction with
reduced systematic uncertainties compared to „MC

FD . FD predictions for
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Figure 4.6: Focusing (left) and hadron production (right) uncertainties on the neutrino mode muon
neutrino flux at the FD.

neutrino energies, hadron production uncertainties are larger than focusing uncertainties. However,
hadron production uncertainties are expected to decrease in the next decade, as more thin target
data becomes available. Hadron production measurements taken with a replica target are also
being considered and would substantially reduce the uncertainties.

Figure 4.7 shows correlations of the total flux uncertainties. In general, the uncertainties are highly
correlated across energy bins. However, the flux in the very high energy, coming predominantly
from kaons, tends to be uncorrelated with flux at the peak, arising predominantly from pion decays.
Flux uncertainties are also highly correlated between the near and far detectors and between
neutrino-mode and antineutrino-mode running. The focusing uncertainties do not a�ect wrong-
sign backgrounds, which reduces correlations between e.g., muon neutrinos and muon antineutrinos
in the same running configuration in the energy bins where focusing uncertainties are significant.

The unoscillated fluxes at the near detector (ND) and FD are similar but not identical. Figure 4.8
shows the ratio of the near and far neutrino-mode muon neutrino unoscillated fluxes and the
uncertainties on the ratio. The uncertainties are approximately 1% or smaller except at the falling
edge of the focusing peak, where they rise to 2%, but are still much smaller than the uncertainty
on the absolute fluxes. And unlike the case for absolute fluxes, the uncertainty on the near-to-far
flux ratio is dominated by focusing rather than hadron production uncertainties. This ratio and
its uncertainty are for the fluxes at the center of the near and far detectors, and do not take into
account small variations in flux across the face of the ND.

4.1.1.2 O�-axis Neutrino Flux and Uncertainties

The neutrino flux has a broad angular distribution and extends outward at the ND hall. At an
“o�-axis” angle relative to the initial beam direction, the subsequent neutrino energy spectrum
is narrower and peaked at a lower energy than the on-axis spectrum. The relationship between
the parent pion energy and neutrino energy is shown in Figure 4.9. At 575 m, the location of
the ND hall, a lateral shift of 1 m corresponds to approximately a 0.1° change in o�-axis angle.
The DUNE-PRISM concept, in which the near detector LArTPC can be moved to enable o�-axis
measurements, relies on this feature to help constrain systematic errors for the long-baseline (LBL)

DUNE Physics The DUNE Technical Design Report

Figure 5.4: Uncertainties on beam focusing (left) and hadron production
(right) in the ‹µ flux at DUNE’s Far Detector. From [100]

di�erent sets of oscillation parameters are then compared to the observed
FD data using a standard maximum likelihood fit. A new set of coe�-
cients must be calculated for each set of oscillation parameters

≠æ
� .

This method reduces uncertainties on neutrino cross sections and to-
tal neutrino fluxes (because these uncertainties a�ect the near and far
detectors identically), and can improve the mapping between true and
reconstructed neutrino energy [118]. However, PRISM is vulnerable to
errors in the assumed proportions of parent hadrons in the beam, which
could cause di�erences in the shapes of the assumed and true flux spec-
tra. We propose the Lateral Extraction of Neutrino Spectra (LENS),
an ND only joint fit over multiple o�-axis angles. By exploiting the
additional information on the beam composition a�orded by DUNE’s
moveable ND, LENS aims to improve PRISM spectrum predictions and
reduce hadron production uncertainties which, as seen in Figure 5.4, will
be the dominant beam production uncertainty at DUNE.

5.2 Generating fluxes

We generate neutrino fluxes using ROOT Ntuple files provided by the
DUNE collaboration [119], which contain outputs of MC simulations of
the DUNE beam. This simulation accounts for hadron production in
the target, the subsequent absorption or decay of these hadrons, and the
full beamline geometry. Only information about hadrons which decay
to produce neutrinos is stored in these files. Each simulated neutrino is
labelled with its parent particle, said parent particle’s position and mo-
mentum at the time of decay, and the decay channel. The relevant decay
modes and their contribution to the neutrino flux are listed in Table 5.1.
Fluxes are be formed using these neutrinos with their weights adjusted
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to account for the detector moving o�-axis. However, performing the
PRISM procedure requires ≥ 40 fluxes at varying o�-axis positions, so
to ensure adequate statistics we decay each parent meson 200 times us-
ing the phasespace package [120] which, due to the probabilistic nature
of decays, produces many random kinematic configurations of daughter
neutrinos.

To assign geometric weights to neutrinos produced by the above de-
cays, we simulate the flux propagating through the ND-LAr (Liquid Ar-
gon Near Detector) described in [121]. This detector is a cuboid with
dimensions 5 m (along the beam axis) ◊ 7 m (transverse to the beam
axis) ◊ 3 m, and sits 574 m downstream from the target. Following con-
vention in literature, we halve the width (transverse measurement) of the
detector to ensure we consider only neutrinos passing through its centre.
We select neutrinos which pass through this simulated ND by calculat-
ing their intersection vertices using the Trimesh package [122]. Moving
the detector o�-axis by a distance d then corresponds to an o�-axis an-
gle tan ◊ = d/574 rad. For each o�-axis position the flux is expressed
as a sum of five contributions, corresponding to neutrinos with di�erent
parent hadrons,

„ND,–(E; ◊oa) =
ÿ

p

rp „(p)
ND,–

(E; ◊oa) (5.2.1)

where p = KL, K+, K≠, fi+, fi≠ are the neutrino parent particles and
the coe�cients rp are their flux component normalisations we will vary
in the fit. We do not treat neutrinos from µ+ and µ≠ independently
because 98% of µ± in the beam originate from fi± and K± decays. The
normalisation of the µ± daughter neutrino flux therefore depends on the
pion and kaon normalisation, and can be expressed as

„µ
±

ND,–
(E; ◊oa) = rfi±„fi

±æµ
±

ND,–
(E; ◊oa) + rK±„K

±æµ
±

ND,–
(E; ◊oa) (5.2.2)

where „M
±æµ

±

ND,–
(E; ◊oa) is the flux of neutrinos produced by muons whose

parent was meson M .

5.3 Fit

We calculate the neutrino event spectrum by folding the flux „ND,–(E; ◊oa)
with the associated cross section, ‡–(E). As discussed in Section 4.7, neu-
trino cross sections are poorly understood and prone to mis-modelling.
For this reason, although we use cross sections from GENIE for each
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Decay process Beam contribution (%)
K0

L
æ ‹e + fi≠ + e+ 0.522

K0
L

æ ‹e + fi+ + e≠ 0.540
K0

L
æ ‹µ + fi≠ + µ+ 0.353

K0
L

æ ‹µ + fi+ + µ≠ 0.356
K+ æ ‹µ + µ+ 5.35
K+ æ ‹e + fi0 + e+ 0.428
K+ æ ‹µ + fi0 + µ+ 0.275
K≠ æ ‹µ + µ≠ 1.78
K≠ æ ‹e + fi0 + e≠ 0.145
K≠ æ ‹µ + fi0 + µ≠ 0.0911
µ+ æ ‹µ + ‹e + e+ 0.843
µ≠ æ ‹µ + ‹e + e≠ 0.643
fi+ æ ‹µ + µ+ 48.3
fi≠ æ ‹µ + µ≠ 40.3

Table 5.1: Hadron decay processes and the percentage of neutrinos at
the DUNE ND (on-axis) produced by each one.

major interaction type (QE, Res, MEC and DIS), we include a nuisance
parameter on both the normalisation (a) and tilt (“) of each cross section
component, such that

‡‹– =
ÿ

i=QE, Res, DIS, MEC
ai‡‹µ,i

3
E

E0

4“i

– = e, µ (5.3.1)

where E0 is some base energy around which the cross section distribu-
tion can be tilted. This attempts to capture discrepancies between the
predicted cross sections as given by GENIE and NuWro. We also include
detector response R–(Ereco, E) and add backgrounds B–,ij as defined in
[105], giving the event rate N–,ij in the ith and jth energy and angular
bin, respectively,

N–,ij =
⁄

dE‹ „ND,–,ij ‡–(Ei) R–(Ereco,i, E‹) + B–,ij (5.3.2)

To study the impact of flux mis-modelling, we simulate o�-axis spec-
tra (at 7 di�erent o�-axis angles between 0¶ and 3.59¶) based on the
nominal fluxes from [119], but randomly vary the parent-normalisation
factors rp within a uniform distribution ranging between 0.9 and 1.1
- corresponding to the total fractional error shown in Figure 5.4. We
then attempt to recover the true values of rp by performing a frequentist
maximum-likelihood fit to this dataset, allowing rp to vary. The system-
atic uncertainties on the cross section normalisation and tilt, detailed in
Table 5.2, which have been increased to include a 1.5% uncertainty on
the detector response and e�ciency, as per the prediction made in [100].
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Parameter Systematic uncertainty
QE MEC RES DIS

a 7% 8% 8% 11%
“ 4% 10% 10% 3%

Table 5.2: Systematic uncertainties on cross-section normalisation (a)
and tilt (“) used in the LENS fit. The values used for each interaction
type were derived by requiring that they covered the di�erence between
the predicted cross sections as given by GENIE and NuWro. The nor-
malisation cross section uncertainty has then been increased to include
a 1.5% uncertainty on detector response and e�ciency.

Kl K+K°p+p° aQ aR aD aM gQ gR gDgM

Kl
K+

K°

p+

p°

aQ

aR
aD
aM
gQ

gR
gD
gM °1.00

°0.75

°0.50

°0.25

0.00

0.25

0.50

0.75

1.00

Figure 5.5: Correlation matrix for hadron production normalisation pa-
rameters extracted from the fit performed.

The likelihood function is then

≠2 logL(r̨) = min
ą

5 ÿ

i=energies
j=angles
–=flavors

A
Nobs

–,ij
≠ Npred

–,ij
(r̨; ą)

Npred
–,ij

(r̨; ą)

42
+

ÿ

k

a2
k

‡2
k

D

, (5.3.3)

where Nobs
–,ij

is the ‘observed’ number of events in the ith energy and jth

angular bin, and Npred
–,ij

is the corresponding number of predicted events
for that bin. The function depends on the coe�cients r̨ = (rp) and nui-
sance parameters ą, both of which are independent of energy, flavour and
angle. From the fit, we extract a covariance matrix for the normalisation
parameters, corresponding to parent particle contributions, from which
their 1‡ error bands, as shown in Figure 5.6, are derived.
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5.4 Results

The results of the LENS fit are shown in Table 5.3 and Figure 5.6. We
see that by using an ND only fit, PRISM can constrain most flux compo-
nents to the few percent level, with the dominant fi+ and fi≠ components
further constrained to below 2%. The KL component is the least con-
strained, which is expected – KL is neutral, so cannot be focused into
the beamline by the magnetic horns, and decays semileptonically only
via three-body processes. As a result it has a di�erent angular depen-
dence to the dominant two-body decay fluxes, and its contribution to the
total flux is small, as shown in Figure 5.3. Nonetheless, the fit achieves
a significant improvement over an a priori hadroproduction uncertainty
of order 5%, which represents the uncertainty on a future flux model
based on improved data from hadroproduction experiments and other
external measurements, as well as theory improvements. We adopt this
optimistic prediction on flux modelling improvements because our pre-
dictions on the improvements due to LENS are also optimistic, due to
our relatively simple systematics model and our assumption of perfect
particle and charge identification when generating the fluxes.

The equal time running strategy considered yields marginally better
results than 50% on-axis. The FHC and RHC beam results are broadly
similar, however we note that in FHC mode the fi+ normalisation is
more strongly constrained than the fi≠, while the reverse is true in RHC
mode. This follows from the beam composition - in FHC mode fi+ are
focused into the beamline while fi≠ are removed, and vice versa for RHC
- meaning this di�erence is simply due to statistics. More interestingly,
the constraints on the di�erent flux components are more similar in RHC
mode than in FHC. This is likely due to the neutrino cross section being
approximately three times larger than the antineutrino cross section over
the relevant energy range. As such, the measured RHC flux has a non-
negligible contribution from neutrinos, allowing tighter constraints to be
placed on rfi+ and rK+ in the RHC fit than on the analogous parameters
in the FHC fit.

The 1‡ confidence intervals and regions for each normalisation param-
eter rp are shown in Figure 5.6. Here we observe significant correlations
between charged pion and kaon flux components, implying that a bias in
the pion contribution is more easily masked if it is accompanied by a sim-
ilar bias in the kaon contribution. This occurs because our fit is largely
insensitive to the overall flux normalisation (as evidenced by the anticor-
relation of the cross-section normalisations and hadron normalisations in
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Parameter ‹-dominated beam ‹̄-dominated beam
equal time 50% on-axis equal time 50% on-axis

rKL 4.1% 4.5% 3.5% 4.1%
rK+ 1.7% 1.7% 1.8% 1.9%
rK≠ 2.7% 3.2% 1.9% 2.0%
rfi+ 1.7% 1.6% 1.8% 1.8%
rfi≠ 2.1% 1.9% 1.6% 1.6%
aQE 2.3% 2.3% 2.4% 2.3%
aRES 2.3% 2.3% 2.2% 2.2%
aDIS 2.1% 2.0% 2.6% 2.6%
aMEC 3.0% 3.0% 3.0% 3.0%
“QE 1.1% 1.1% 1.2% 1.2%
“RES 1.1% 1.1% 1.0% 1.0%
“DIS 0.6% 0.5% 0.7% 0.7%
“MEC 3.4% 3.4% 3.4% 3.4%

Table 5.3: Projected fractional uncertainties on the fit parameters rp (the
normalisation of the various flux components) and the nuisance parame-
ters ak and “k(parameterizing the cross section uncertainties) from a fit
to 6.6 ◊ 1021 pot of DUNE near detector data. Results are shown for
a neutrino-dominated beam (“forward horn current”) and for an anti-
neutrino-dominated beam (“reverse horn current”), and for two di�erent
running strategies (equal data-taking time at each of the seven detector
positions, or 50% of the data-taking time spent in the on-axis positions
and the rest equally distributed among six o�-axis positions.)
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Figure 5.6: Projected constraints on the individual components of the
DUNE neutrino flux from a fit to PRISM data in FHC mode (orange)
and RHC mode (blue), assuming half of the total 6.6e21 POT are col-
lected in the on-axis position, while the rest are equally split over six
di�erent o�-axis positions (6.3 m, 12.6 m, 18.9 m, 24.3 m, 30.6 m, 36.0 m,
corresponding to o�-axis angles out to 0.063 radians).
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Figure 5.7: Left: Error bands for on-axis ND event distribution when us-
ing hadron production uncertainty shown in Figure 5.4 (navy) and when
using uncertainties derived from LENS (magenta). Right: Comparison
of fractional hadron production uncertainty from DUNE and LENS as a
function of neutrino energy.

Figure 5.5) – this can be absorbed into the nuisance parameters associ-
ated with the neutrino cross sections. Changes in the neutrino spectrum
however, achieved for example by biasing the pion contribution, but not
the kaon, are easily detected by the fit. Small anticorrelations between
the negatively charged mesons and K0

L
are visible in the FHC fit due

to the degeneracy in their flux distributions across o�-axis positions, as
shown in Figure 5.3.

Figure 5.7 compares the total fractional uncertainty on hadron pro-
duction achieved with the LENS method to that shown in Figure 5.4.
Note that we compare the ‹µ only uncertainty from DUNE to the un-
certainty on all neutrino types from LENS, because hadron production
uncertainties for the other neutrino flavours at DUNE are not publicly
available. All uncertainties shown in Figure 5.4 do however apply to the
‹e flux, except the uncertainty on pion production from proton-carbon
interactions, PC æ fi. The LENS uncertainty is notably smaller and
more consistent across all energies. The left-hand panel of Figure 5.7
also shows the 1‡ uncertainty band on the total on-axis neutrino event
distribution at DUNE’s ND for 6 years of exposure, assuming half the
runtime is spent on-axis. Figure 5.8 shows the uncertainty band for each
neutrino flavour in FHC mode. Unsurprisingly, due to its small contri-
bution to the total FHC flux, the ‹e error band is the largest, however
stays within 5%. The results are analogous in RHC mode, where the ‹e

flux is the least constrained.
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Figure 5.8: Error bands for each neutrino flavour’s on-axis ND event dis-
tribution when using the hadron production uncertainty shown in Figure
5.4 for ‹µ, and a flat 5% uncertainty for ‹µ, ‹e and ‹e.
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5.5 Impact on Oscillation Measurements

We now examine how improved flux modelling with LENS a�ects DUNE’s
oscillation sensitivities. Similar benefits could, of course, be achieved by
improving neutrino flux modelling with, for example, improved theoret-
ical modelling, monitored and tagged neutrino beams such as EnuBET
[123] and NuTag [124], or hadroproduction experiments with replica tar-
gets, such as NA61/SHINE [125, 126].

We simulate the PRISM method in GLoBES [107], expanding on the
GLoBES implementation of DUNE from [127], and incorporating code
developed in [107, 128, 129]. For each set of oscillation parameters under
consideration, we compute the PRISM coe�cients cj from simulations in
which the meson flux normalisations rp may vary around their nominal
values within a given range. These cj are then used to form an oscillated
FD flux prediction based on simulated ND ‘data’ generated using the
nominal flux model QGSP_BERT from [119]. Finally, the FD prediction
is compared to simulated FD ‘data’, also generated using the nominal flux
model.

Figure 5.9 shows the impact of the LENS procedure on the FD event
spectrum predicted by PRISM using nominal near detector data. Each
curve represents the results of generating the coe�cients cj from a di�er-
ent flux model, i.e. a flux made with di�erent values of rp. Blue curves
are generated by sampling rp from a multivariate Gaussian parameterised
by the LENS covariance matrix, while the pink curves sample from a mul-
tivariate Gaussian allowing uncertainties of up to 5%. The black curve
shows the FD spectrum obtained using the nominal model with rp = 1
for all flux components to determine both cj and the FD prediction, and
FD ‘data’.

Figure 5.10 shows DUNE’s projected sensitivity to leptonic CP vio-
lation as a function of the true CP phase, ”true

CP
. For each value of ”true

CP
,

Figure 5.10 we show the significance with which this ”true

CP
can be dis-

tinguished from the case of CP conservation; ”true

CP
œ {0, fi}. We have

marginalised over all other oscillation parameters, and applied an exter-
nal prior of 5% on the solar parameters �m2

21 and ◊21. As before, blue
and pink curves correspond to LENS-constrained and 5% constrained
flux models, and the solid black curve the expected result from using
the same, unvaried flux, for both FD predictions and ‘data’. From these
results it is apparent that constraining the hadroproduction model using
LENS prior to using PRISM to predict FD fluxes can reduce the un-
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Figure 5.9: Impact of the flux uncertainty on the DUNE far detector
event spectrum with and without using the LENS procedure to constrain
the flux model. All curves were obtained using PRISM to predict the
oscillated far detector fluxes based on near detector data. While the
near and far detector data were predicted using the nominal flux model,
the PRISM coe�cients cj were derived from biased flux models in which
the relative importance of individual flux components rp were allowed to
vary either by 5% (red curves) or within the tighter constraints imposed
by our LENS fit to on-axis and o�-axis near detector data, see Table 5.3.
In each case, we show 100 random realizations. The solid black curve
shows for comparison the spectrum based on the nominal flux model
with no variation in hadron-contribution normalisation. The spread in
possible outcomes is substantially reduced when the LENS constraint is
included.
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Figure 5.10: Impact of LENS on DUNEs sensitivity to leptonic CP vio-
lation. For each value of the true ”CP , we show the significance at which
the CP-conserving hypothesis (”CP œ {0, fi}) can be excluded. All curves
were obtained using PRISM to predict the oscillated far detector fluxes
based on near detector data. While the near and far detector data were
predicted using the nominal flux model, the PRISM coe�cients cj are
derived from biased flux models in which the relative importance of indi-
vidual flux components rp is allowed to vary within the constraints set by
LENS (blue contours) or within 5% of the nominal value (no LENS con-
straint, red). We show 100 random realizations of biased flux models for
each case. We see that the spread in possible outcomes is substantially
reduced when the LENS constraint is included. The solid black curve
shows for comparison the spectrum based on the nominal flux model,
with no variation in hadron-contribution normalisation, and the dashed
black curve shows the same result, but with no systematic uncertainties.
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certainty on DUNE’s results. Both Figures 5.9 and 5.10 show that in
the case of a mismodelled flux, applying the LENS procedure prior to
determining cj means they are based on fluxes which lie closer to the
model realised in nature. As shown by the pink curves in Figure 5.10,
the sensitivity to CP violation can otherwise be over or underestimated
by up to 1‡.

Further evidence of the impact of constraining hadroproduction mod-
els is shown in Figure 5.11, which presents DUNE’s anticipated sensitivity
contours in ◊13 ≠ ”CP , and ◊23 ≠ �m2

31 planes. Again blue and pink cor-
respond to FD predictions made using LENS and 5% hadroproduction
uncertainties, respectively, and stars of the same colours indicate the best
fit points for each contour shown. The same marginalisation and priors
are used here as in Figure 5.10. In the sin2 2◊13 ≠ ”CP plane, the LENS-
constrained hadroproduction uncertainties ensure the best fit points are
clustered within the nominal flux contours (black). In the �m2

31≠◊23

plane the LENS variation contours give tighter 90% confidence limits
and a smaller spread of best fit points. The results can therefore be
considered more reliable and robust.

Of course, improving the uncertainty on the neutrino flux with LENS
should yield gains in sensitivity by reducing the systematic uncertainties
used in the oscillation fit, as opposed to just making the results more reli-
able. However, this improvement cannot be shown without disentangling
the flux uncertainty from cross-section and detector uncertainties in the
systematics model employed in the DUNE simulation [105], which goes
beyond the scope of this work. Additionally, as discussed in Section 5.4,
the improvements on the flux uncertainty by LENS are optimistic. As
such, we instead show the results of a fit with no systematic uncertainties
(dashed black line) in Figures 5.10 and 5.11. We expect the sensitivity
improvements from LENS to yield results falling somewhere between the
no-systematics and current systematics case (solid black line).

This work highlights how long-baseline oscillation experiments can
optimally benefit from their near detectors, and implies that highly capa-
ble detectors are crucial for their success. We have also shown that, in the
systematics dominated regime in which DUNE and HyperKamiokande
will operate, even modest improvements in near detector performance
can lead to substantial gains in oscillation sensitivities.
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Figure 5.11: Impact of LENS on the measurement of the oscillation pa-
rameters (◊13, ”CP ) (left) and (◊23, �m2

31) (right). As in Fig. 5.10, red
and blue contours correspond to neutrino flux models with and without
the LENS constraint. In all cases, the far detector prediction is based on
the PRISM procedure, with the superposition coe�cients cj determined
from the biased flux models and the data generated using the nominal
model. Solid black contours show the anticipated sensitivity using the
nominal flux model with all rp = 1, utilising DUNE’s simulated system-
atic uncertainties as per [105]. Dashed black contours show results from
the same procedure, but without systematic uncertainties. For compar-
ison, we also show the current constraints on the oscillation parameters
from NuFit 6.0 [130] in beige with an orange outline.
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Summary and Conclusions

The accurate measurement of neutrino oscillation parameters will answer
important outstanding questions in particle physics. The work presented
in this thesis has served to maximise the physics potential of both current
and next generation experiments from an experimental and phenomeno-
logical standpoint.

In Chapter 3, we discussed the most recent NOvA analysis, focussing
in particular on the cut optimisation performed by the author to enhance
the signal to background ratio of the ‹µ CC dataset, which provides sen-
sitivity to atmospheric mixing parameters. Work was also presented on
constructing posterior ranges on neutrino event spectra for the Bayesian
analysis, which allow the construction of credible intervals for neutrino
oscillation parameters. This analysis achieved the most precise single
experiment measurement of the size of the atmospheric mass splitting,
|�m2

32| = 2.431+0.036
≠0.039 ◊10≠3 eV2. This corresponds to a 1.7% precision on

the absolute mass di�erence between ‹2 and ‹3, whose individual masses
are only loosely constrained. Despite the degeneracy NOvA sees in the
”CP - mass ordering phase space, the latest dataset was also able to dis-
favour the scenario of minimal charge-parity violation in the inverted
mass ordering.

DUNE, a next generation long-baseline oscillation experiment, promises
to determine the neutrino mass ordering, and measure the amount of
charge-parity violation in the leptonic sector of the Standard Model.
While its Liquid Argon Time Projection Chamber detectors promise out-
standing reconstruction capabilities, their performance will be hampered
by our lack of knowledge on neutrino-nucleus interactions. Due to the
many sub-processes which occur when neutrinos interact with nuclei, the
final state of a neutrino interaction may confer misleading information
about the incident neutrino, making the reconstruction of its true energy
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a challenge. This is problematic, as neutrino oscillation experiments rely
on only two measurements - the number of neutrinos of a given flavour,
and their energy. In Chapter 4, by employing a simple neural network, we
showed how the neutrino energy resolution could be improved after recon-
struction, and quantified the corresponding gains in DUNE’s sensitivity
to charge-parity violation and ◊23 octant. This work also illustrated the
necessity of better understanding neutrino-nucleus interactions at lower
energies by showing that a network trained on one neutrino event gener-
ator but tested on another underperformed at energies < 2.5 GeV due to
di�erences in the models used by each generator.

The PRISM method will be employed by DUNE in order to circum-
vent our lack of knowledge about neutrino cross-sections. By using near
detector data at multiple o�-axis locations to form far detector predic-
tions, PRISM will hugely constrain systematic uncertainties. However,
mis-modelling of hadron production in the DUNE PIP-II beam, introduc-
ing errors in the relative importance of parent hadrons at di�erent o�-axis
locations in the predicted flux, could lead to biased oscillation parameter
measurements. In Chapter 5 we outlined LENS, a method wherein an
all-axis ND only fit can be used alongside PRISM to further constrain
hadron production uncertainties. We showed that the LENS method
can increase DUNE’s robustness to hadron production mis-modelling,
ensuring more reliable oscillation measurements, and may also improve
its sensitivity to oscillation parameters.

Hopefully this thesis has convinced the reader both of how exciting
the field of neutrino oscillation physics is, and how crucial it is that we
keep pushing to further understand these particles and their interactions
in order to maximise the potential of experiments in the next decade.
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