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ABSTRACT
We demonstrate high-accuracy classification for handwritten digits from the MNIST dataset (∼98.00%) and RGB images from the CIFAR-10
dataset (∼86.80%) by using resistive memories based on a 2D van der Waals semiconductor: hafnium disulfide (HfS2). These memories are
fabricated via dry thermal oxidation, forming vertical crossbar HfOxSy/HfS2 devices with a highly ordered oxide-semiconductor structure.
Our devices operate without electroforming or current compliance and exhibit multi-state, non-volatile resistive switching, allowing resistance
to be precisely tuned using voltage pulse trains. Using low-energy potentiation and depression pulses (0.7–0.995 V, 160–350 ns), we achieve
31 (∼5 bits) stable conductance states with high linearity, symmetry, and low variation over 100 cycles. Key performance metrics—such as
weight update, quantization, and retention—are extracted from these experimental devices. These characteristics are then used to simulate
neural networks with our resistive memories as weights. Neural networks are trained on state-of-the-art (SOTA) digital hardware (CUDA
cores), and a baseline inference accuracy is extracted. IBM’s Analog Hardware Acceleration Kit is used to modify and remap digital weights in
the pretrained network based on the characteristics of our devices. Simulations account for factors like conductance linearity, device variation,
and converter resolution. In both image recognition tasks, we demonstrate excellent performance, similar to SOTA, with only <0.07% and
<1.00% difference in inference accuracy for the MNIST and CIFAR-10 datasets, respectively. The forming-free, compliance-free operation,
fast switching, low energy consumption, and high-accuracy classification demonstrate the strong potential of HfOxSy/HfS2-based resistive
memories for energy-efficient neural network acceleration and neuromorphic computing.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0286727

I. INTRODUCTION

The economic and environmental costs of training and deploy-
ing neural networks for machine learning and artificial intelligence
must be addressed.1,2 From their conception, neural networks have
taken inspiration from the brain to enable and improve perfor-
mance in machine learning tasks. Arrangements of artificial neurons
and synapses comprise the network, where the strengths of connec-
tions between different nodes in the network (artificial neurons) are
represented by the weight values of branches connecting the lay-
ers (artificial synapses). Once a network has been trained to solve
a particular task, its weights encode the network’s ability to eval-
uate new, untested data and thus should be trainable, precise, and
resilient to repeated programming and device aging. In the early
days of machine learning, computation for neural networks was

performed on digital hardware such as central processing units
(CPUs), resulting in performance increases over time that gener-
ally followed Moore’s Law. However, since 2012, computation for
machine learning on digital hardware has been performed on graph-
ical processing units (GPUs), from which a doubling of performance
has been achieved every 3.4 months or fewer. Aside from improved
algorithms and the increased parallelism offered by GPU cores, this
rapid increase in performance can also be explained by the rate at
which GPU hardware has improved, with NVIDIA GPUs improv-
ing in computational performance by a factor of 317 since 2012.1
However, despite recent advances in more efficient algorithms and
hardware architectures, a rethinking of machine learning systems
at the most fundamental level is urgently required to address the
ever-growing demand for computing power.1 Taking inspiration
from the brain, developing hardware that can co-locate processing
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and memory functions is key to breaking the von Neumann bot-
tleneck, which limits computational efficiency by necessitating the
shuttling of data back and forth between processing and memory
units.3

Many different types of devices are potential candidates for
accelerating performance in machine learning tasks and surpassing
the von Neumann bottleneck. Memristors are one class of simple,
two-terminal analog devices that have shown promise in hardware
acceleration for neuromorphic computing and machine learning
tasks when integrated into densely packed crossbar arrays.4 Anal-
ogous to biological systems, where the transmission strength of
incoming signals can be controlled at a synapse, most memris-
tors can variably impede the flow of current due to modulation
of their conductance between multiple states. Conductance states
in a memristor can be modified by the application of electrical
stress, such as a voltage or current pulse, where increasing the
memristor’s conductance state is referred to as potentiation, and
decreasing it is referred to as depression. Similar to biological
synapses, some memristors can retain programmed conductance
states when electrical stress is removed, making them non-volatile
memory devices. Hence, in most implementations where memris-
tors are used for machine learning, the devices are integrated into
crossbar arrays utilized for weight storage and update. The analog
crossbar array can then be interfaced with digital integrated cir-
cuits via analog-to-digital converters (ADC) and digital-to-analog
converters (DAC) for other processes in a machine learning task,
such as applying activation functions. In existing digital hardware,
weight values are calculated and stored in separate logic and memory
units, respectively. However, analog crossbar arrays of memris-
tors offer vastly increased parallelism and avoid shuffling data back
and forth, as weight values can be both programmed and stored
as non-volatile conductance states in the same memristive hard-
ware. Therefore, by inputting voltages across the rows of a crossbar
array where memristors have been programmed to precise conduc-
tance states and measuring the output currents along the columns,
a memristor-based crossbar array can perform multiplication and
accumulation operations (using Ohm’s and Kirchhoff’s laws) to
enable fast matrix-vector multiplications (MVM). In some appli-
cations, such as compressed sensing, this presents a key advantage
of memristor-based crossbar arrays, which is to allow for different
matrix-vector multiplication (MVM) operations to execute in the
same amount of time, regardless of the input data size [O(1) time
complexity].4 The same is not true for GPUs, in which execution
time grows with n2 for input data of size n in MVM operations.
A good example of the performance enhancements offered by mem-
ristive hardware in machine learning tasks can be found in the work
of Yao et al.5 In this paper, network weights were first trained on
digital hardware, then transferred to physically implemented cross-
bar arrays of TiN/TaOx/HfOx/TiN memristors, with modifications
made to network weights to account for the characteristics of their
memristor hardware.5 Their memristor-based neural network was
able to correctly classify a large proportion of previously unseen
handwritten numbers from the MNIST dataset,6 resulting in a clas-
sification accuracy of 96.19%, close to a digital hardware baseline
score of 97.99%.5 The small difference in accuracy, together with the
significant decrease in energy consumption and improved perfor-
mance density compared to conventional digital hardware for stor-
ing weights, clearly demonstrates a strong use case for integrating

memristor-based hardware accelerators with digital components.
Therefore, owing to their potential for efficiency, scalability, and
strong non-volatile memory performance, memristors are strong
candidates for use as analog weight storage in crossbar arrays.5,7

Despite their excellent performance, there are a number of
challenges associated with using memristive hardware for machine
learning applications. Noise during conductance update or read
steps can originate from a variety of sources and reduces the effec-
tiveness of using memristors for weight storage or update in a neural
network. Precisely programming and distinguishing states in noisy
devices that show highly nonlinear conductance update within a lim-
ited conductance range can become impossible, leading to reduced
machine learning accuracy. On the other hand, linear conductance
update allows different conductance states to be more accurately dis-
tinguished during potentiation and depression, provided that there
is low cycle-to-cycle variation and small drift in the devices. When
trying to program memristors to represent specific weights in a
neural network, this behavior facilitates high machine learning accu-
racy. Furthermore, not only should conductance update be linear in
potentiation and depression, but the device should also show a high
degree of symmetry in both schemes.

To enable the use of energy-efficient and scalable memris-
tive hardware in machine learning tasks, tailored potentiation and
depression pulsing schemes in which pulse widths and amplitudes
are modulated by pulse number are often introduced.8–12 Incremen-
tally varying pulse widths, amplitudes, or otherwise tuning biasing
pulse trains while being conscious of device characteristics can also
improve cycle-to-cycle variation.12 By operating the device in a bias-
ing regime that does not result in sudden changes in conductance
due to stochastic and unpredictable effects like filament formation
or rupture, predictable and repeatable changes in conductance can
be utilized to program the device.12 Therefore, despite increasing
computational latency and circuit area, schemes that incrementally
update conductance with respect to programming pulse number
can be used to more accurately and repeatably program resistive
switching devices.8,12

Another set of challenges associated with implementing mem-
ristive hardware in neural networks includes the requirements
of electroforming and current compliance for each device. Elec-
troforming is a one-time initialization step typically required
by a class of memristors called resistive random access mem-
ory (RRAM) devices, typically based on insulating metal oxides.
RRAM devices have otherwise shown excellent performance,
reliability, energy efficiency, and scalability. However, requir-
ing electroforming presents a barrier to their adoption since it
necessitates increased peripheral circuitry and hinders scaling.13

Current compliance circuitry is required by most memristive
devices that do not have a self-limiting mechanism to prevent
high currents from damaging the device. In most implementa-
tions, memristive chips require 1-transistor-1-memristor archi-
tectures (1T1M), which limit integration density and increase
computational complexity.14,15 Defect engineering can be used to
address electroforming by introducing a large number of defects
or modifying the microstructure of the pristine device to pro-
vide pre-existing conductive pathways. Self-limiting currents in the
memristor stack have been achieved by intentionally engineering
heterostructures that slow the motion of charge carriers responsi-
ble for changing the device resistance, such as oxygen vacancies.14,15
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One class of materials that allows for precise defect engineer-
ing and facile control of heterostructures with pristine interfaces
is two-dimensional layered materials (2DLMs). Memristors based
on partially oxidized 2DLM semiconductors have shown promise
in energy efficiency, fast, compliance-free, and electroforming-free
operation,16,17 along with strong non-volatile memory characteris-
tics and independence from surrounding conditions such as water
vapor, temperature, and oxygen.17

While there are a variety of candidates and methods for inte-
grating memristors into neural networks to address many of these
issues, it is necessary to have a means of rapidly and accurately
evaluating the potential performance of new classes of memristive
devices for hardware accelerators. Such devices may be able to pro-
vide a breakthrough in performance that could carve a niche for their
use within machine learning and neuromorphic applications. How-
ever, due to the nature of device fabrication with novel materials and
engineering methods, the path from individual device fabrication
and performance evaluation to wide-scale chip fabrication and pro-
gramming is often long, expensive, and does not allow for exploring
the materials and parameter space for device optimization, limit-
ing adoption by industry. The Analog Hardware Acceleration Kit
(AIHWKIT) developed by IBM18 is a Python-based, open-source
library that enables estimation of the performance of analog
memristive hardware in a variety of machine learning tasks
by implementing a wide range of measured device perfor-
mance parameters, non-idealities, and necessary peripheral cir-
cuitry in machine learning simulations.19 While performance esti-
mations based on AIHWKIT may not account for all possi-
ble challenges that may arise when exploring new hardware for

analog in-memory computation, it allows for devices based on
less mature technologies to demonstrate their potential perfor-
mance in memristive chips. Consequently, it provides an excel-
lent route toward rapid device optimization and materials screen-
ing without the need for complex fabrication of large arrays of
devices.

In this work, we investigate the machine learning perfor-
mance of a simulated network/crossbar chip whose elements are
experimental HfOxSy/HfS2 memristors. Such devices have shown
high potential for ML applications as they combine sub-nJ switch-
ing, excellent thermal and environmental stability, current self-
limiting (compliance-free), and forming-free operation.17 These
devices were investigated with tailored potentiation and depres-
sion pulses, producing highly linear and symmetric conductance
update with low cycle-to-cycle variation. Such linearity, together
with the non-volatility of the states, enables the use of our mem-
ristors in neural networks to store synaptic weights. The network
weights are mapped into a number of programming pulses and
stored in the memristors as resistance or conductance values.
As a result, despite accounting for a range of measured device
characteristics—such as ON/OFF ratio, cycle-to-cycle, and device-
to-device variations—our simulations show high-accuracy classifi-
cation scores with the MNIST dataset6 and the more challenging
CIFAR-10 dataset,20 nearing state-of-the-art (SOTA) performance.
The combination of the desirable figures of merit of the individ-
ual memristors we investigated, and their simulated performance
in memristive chips for machine learning tasks provides strong
motivation for further research on memristive chips based on
2DLM semiconductor-insulator structures.

FIG. 1. Process flow for using the AIHWKIT18 to evaluate the potential machine learning performance of an analog memory device intended for use in a crossbar array for
weight storage or update.
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II. EVALUATION OF ML PERFORMANCE OF NOVEL
ANALOG MEMORIES

To evaluate the potential machine learning performance of our
devices in a suitable task, we have used an open-source PyTorch
toolkit developed by IBM called the Analog Hardware Acceleration
Kit (AIHWKIT).18 In Fig. 1, we outline the typical workflow for eval-
uating the use of memristors in a simulated crossbar array used for
a machine learning task.19

Prior to using the toolkit, the performance of the device as
a non-volatile memory should be evaluated, which involves test-
ing the resistive switching of the device with voltage pulses and the
non-volatility or retention characteristics of the programmed states.
When designing a crossbar array of memristors for weight storage
and update in a machine learning task, the conductance or resis-
tance state of the device should then be programmed to increase and
decrease in a linear and gradual manner (potentiation and depres-
sion, respectively). Since the weights held in digital logic can take
values between −1 and 1, and conductance states represent weights
in memristive hardware accelerators, a differential configuration of
memristors (Fig. 1, panel 3) is often employed, as only positive con-
ductances can be encoded in each individual device. Therefore, each
memristor cell is composed of two memristors in the array, with
one corresponding to positive weights and the other correspond-
ing to negative weights. An example of the measurement and data
extraction process is shown in the next section.

Once device characteristics have been determined, a machine
learning task should be chosen, and an associated neural network
can be programmed and evaluated in its ability to solve the task.
By default, both training and inference will run on digital hardware
such as CPU or GPU cores, locally or by utilizing cloud computing
services. In our case, we ran our code locally on an NVIDIA RTX
3080 GPU, utilizing its compute unified device architecture (CUDA)
cores.

Using the device conductance update and retention character-
istics, a suite of device features and non-idealities can be configured
for the digital hardware to simulate while solving the machine learn-
ing task. These include, but are not limited to, the device type
(e.g., PCM, RRAM, etc.), the number of conductance states/bit reso-
lution, voltage drops across rows and columns of the crossbar array
due to interconnect resistance (IR drop), retention characteristics,
update linearity and asymmetry, and peripheral circuitry features
such as ADC/DAC size. In the context of simulating a crossbar array
of memristors to store and update weights, all of these limitations
and features in device performance are applied by modifying the
way that weights (programmed in digital hardware) would change
if the network were deployed onto analog hardware. Then, when
the network deployed on simulated analog hardware is used for
inference, the impact of programmable bit resolution, inaccurate
weight programming, and limited retention on machine learning
performance due to analog hardware characteristics can be eval-
uated by observing a difference in performance compared to the
unmodified, SOTA digital hardware. It is worth mentioning that
the network can also be trained on the simulated analog hard-
ware.21 In this case, Step 3 in Fig. 1 is performed before Step 2,
such that the training is performed utilizing the performance para-
meters and non-idealities of the analog hardware. In the following
sections, we explore several examples of evaluating the machine

learning potential for memristive hardware based on our experimen-
tal HfOxSy/HfS2 memristors.

III. POTENTIATION AND DEPRESSION
We extract relevant parameters for simulating image recogni-

tion performance of compliance-free and forming-free memristors
based on a crystalline 2DLM semiconductor (HfS2), which was par-
tially dry oxidized to form the HfOxSy/HfS2 structure shown in
Fig. 2(a). Devices were measured on a Form Factor MPS150 probe
station, connected to a Keysight B1500A Parameter Analyzer with
remote sensing units and B1530A WGFMU (waveform genera-
tor/fast measurement unit) with a temporal resolution of 10 ns. The
devices show stable non-volatile resistive switching when measured
with fast voltage pulses [Fig. 2(b)].

Similar to other RRAM technologies,5,8–10,18,22 our devices show
non-linear conductance update characteristics when biased with
repeated identical voltage pulses. However, although not ideal, this
has been circumvented by using pulses with increasing voltage and
pulse width [Fig. 2(c)] at the cost of increasing the required periph-
eral circuitry in a physical implementation of such a circuit.8,9

Twenty pulses were used for both potentiation and depression to
leave headroom to extract an optimal performance range, with
one complete potentiating pulse train and one complete depressing
pulse train constituting one programming cycle, therefore contain-
ing 40 programming pulses. To ensure robust characterization of
our devices, read pulses were employed as −0.1 V, 30 μs pulses,
20 μs apart from programming pulses, avoiding any contribution
to read currents from spurious charging or discharging capaci-
tances due to the high-frequency operation. The voltages and pulse
widths employed were low (<1 V and <350 ns, respectively) and are
indicated in Fig. 2(c).

Potentiation and depression pulse trains were conducted on
a single device for 100 cycles to determine the resilience of the
device to repeated programming [Fig. 2(d)]. The raw conductance
read data for each of the 100 cycles are shown superimposed on
one complete programming cycle, with the average values plotted
using a dashed line. From the data, we extract the conductance states
obtained from potentiation and depression within the most linear
range of both regimes [Fig. 2(d)]. We require a differential config-
uration of our devices to represent positive and negative weights;
therefore, weight values (w) encoded by our devices must be rep-
resented by the difference in conductance of the memristors on a
positive (G+) and negative (G−) branch (w ∝ G+ − G−). In this
configuration, each unique combination (G+ − G−) of quantized
conductance states is assigned a “bin” number, and the separation
between neighboring bins is defined as the bin width. This results
in 31 total bins [or log2(31) ∼ 5 bits] being accessible for reli-
able programming in both potentiation and depression combined
[Fig. 2(e)]. We choose to program our devices to ∼5 bits, as this is
the point at which the precision of analog implementations can be
superior to digital ones while not having much higher multiply-and-
accumulate (MAC) energy, and is therefore a realistic application for
our devices.23

In addition, the cycle-to-cycle variation, and consequently the
standard deviation of each state, is also crucial for determining
how reliably a memristor within a memristive chip can achieve a
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FIG. 2. (a) The forming-free, compliance-free device used in potentiation and depression experiments shows (b) robust non-volatile resistive switching with fast (80 ns)
WRITE and ERASE pulses. (c) We employ a tailored pulsing scheme to achieve gradual and linear conductance update, which are required to attain the desired bit
resolution for high-accuracy machine learning with our devices. (d) Distribution of conductances achieved using the pulsing scheme in (c), over 100 cycles. (e) Linear region
extracted from (d), with average conductances and standard deviation fitted with linear functions. (f) A high degree of symmetry between potentiation and depression and
low standard deviation at all conductance values allows for 31 bins (unique values of G+ − G−) to be defined with bin width (BW) > 2σ.

predicted or specified conductance when programmed with an asso-
ciated pulse train. Within our linear range, each step between bins
or average conductance states is encoded by the average bin width,
81.077 or 80.520 μS for programming in potentiation or depression,
respectively. Crucially for machine learning accuracy, the standard
deviations of neighboring states do not overlap. This is indicated
between a pair of neighboring states in Fig. 2(e). Furthermore, com-
paring the gradients of the fitted lines for both potentiation and
depression, we observe only a very small difference. A high degree of
symmetry between potentiation and depression conductance update

also positively influences machine learning accuracy and is present
in our data. The high R-squared values for both lines (0.998 98 for
potentiation and 0.999 25 for depression) also indicate how closely
we can fit a linear conductance update model to our data, from
which we will base our simulated crossbar array devices for machine
learning. Figure 2(f) shows the standard deviation of each state,
which can be taken at an average value of 23.700 μS. Overall, the
device shows strong linear and symmetrical conductance update
characteristics at low energy (23.74 ± 1.26 nJ total programming
energy per complete potentiation/depression cycle, averaged over
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ten cycles), without requiring electroforming or current compliance,
from which we can build a device model for simulating machine
learning performance of a memristor chip.

IV. MNIST IMAGE CLASSIFICATION
In Fig. 3(a), we show the network utilized to classify handwrit-

ten number images included in the MNIST dataset.6 The 28 × 28
input images are flattened to a 1 × 784 vector in the first layer of the
network. We use one hidden layer consisting of 500 neurons, and the
network has a fully connected architecture where each neuron from
one layer is connected to all neurons in the subsequent layer. We use
this architecture as it has been shown to result in high-accuracy clas-
sification of handwritten numbers in the MNIST dataset.24 Finally,
in the last layer of the network in Fig. 3(a), a predicted handwritten
number is determined from ten possible values (0–9). Deploying this
network architecture on SOTA digital hardware (an NVIDIA RTX
3080 GPU) and training the network weights for 30 epochs results
in an inference accuracy of 98.07%.

In the simulated analog implementation of this network, we
employ a differential configuration of two memristors (one to rep-
resent positive weights and the other for negative weights) between
each neuron, as described in the previous section and in Fig. 1, panel
3. When simulating deployment of the network on our memristive
hardware, we map network weights to the number of program-
ming pulses required to reach each corresponding analog weight
within the linear operating range of the device, using the linear fit in
Fig. 2(e). The “0” weight value is mapped to the start of the device’s
linear range.

Based on the electrical data in Fig. 2, we extracted relevant
performance parameters pertaining to (i) cycle-to-cycle variation,

(ii) linearity, (iii) symmetry, (iv) IR drop, (v) bit resolution, and
(vi) the characteristics of conductance update in our HfOxSy/HfS2
devices, which inform our device model. However, prior to deploy-
ing weights to our simulated arrays of HfOxSy/HfS2 devices, we
perform a further five epochs of hardware-aware training (HWAT)
on the network. During HWAT, the network learns to ensure robust
weight deployment to our HfOxSy/HfS2 devices by retraining net-
work weights on digital hardware for a small number of cycles while
accounting for the characteristics of the analog hardware on which
we wish to deploy the network. Although we have a good picture
of device characteristics over a range of experimentally measured
parameters (i–vi above), in lieu of data with similar statistical signif-
icance, we have simulated the impact of device-to-device variation
informed by literature on arrays of HfO2 memristors fabricated by a
scalable method (ALD)25 and arrays of hBN-based 2D layered mem-
ristors.26 This has informed a baseline value of 30% for conductance
update and how reliably we can achieve the minimum/maximum
conductance states of our devices. Therefore, during HWAT, we
account for our experimentally measured analog hardware char-
acteristics (i–vi listed above) and for simulated device-to-device
(DTOD) variation. Inference accuracy is subsequently extracted
by simulating deployment of the HWAT-modified weights on our
HfOxSy/HfS2 devices and evaluating the proportion of correctly
predicted handwritten numbers from an unseen test set from the
MNIST dataset.

Simulations were conducted for both potentiation and depres-
sion, with separate noise characteristics corresponding to each pro-
gramming mode. In both potentiation and depression (positive
and negative weight update, respectively), we achieve 98.00% accu-
racy with low variation across five runs, only 0.07% lower than
SOTA accuracy, showing the potential of this hardware to solve

FIG. 3. (a) Network architecture
employed for the MNIST image classifi-
cation task. (b) High-accuracy inference
results with five repetitions indicat-
ing consistent MNIST classification
performance close to SOTA devices.
Resilience of memristive hardware to
drift in potentiation (c) and depression
(d) given global drift compensation
and hardware-aware retraining of the
network weights.
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machine learning tasks with high accuracy [Fig. 3(b)]. This is largely
attributed to the linear operation and low σ/bin-width (BW) ratio in
both programming regimes, extracted from Fig. 2(e).

In our simulations, we have also utilized the capability of the
AIHWKIT to simulate the peripheral circuitry connecting analog
memristor hardware and SOTA hardware, as memristive chips can-
not be operated in isolation. We map analog weights to digital values
and utilize 8-bit ADC and DACs, which, despite being higher reso-
lution than our devices (which have shown ∼5-bit operation), make
our circuit more resilient to programming noise, albeit at a cost to
total computation energy and chip area. Along with adaptive scal-
ing of input data for the first few batches of training data (ensuring
weights are represented as accurately as possible within the limita-
tions of our analog hardware), this ensures that our simulation is
not agnostic to the other peripheral hardware required to operate a
memristive chip for use in a neural network for machine learning
tasks.

To create an even more complete device model, we also uti-
lized conductance drift data from the ReRAMWan2022 analog
device model.27 This model is based on electrical measurements of
thousands of HfO2 memristors, allowing us to reasonably predict
inference accuracy drift for a future array of our own HfOxSy/HfS2
devices fabricated by a scalable method. Over the same time span for
which we observe <3% conductance drift across the whole range of
conductances programmed in our devices,17 the ReRAMWan2022
data show considerably more conductance drift, up to 30%,27 which
we take as a worst-case scenario baseline due to its higher statis-
tical significance. We compare the retention of inference accuracy
by simulating deployment on our HfOxSy/HfS2 devices with HWAT
and drift compensation against a baseline model, which we take to
mean without HWAT and without any compensation for conduc-
tance drift described by the ReRAMWan2022 model27 [Figs. 3(c)
and 3(d)]. This shows that the impact of HWAT on MNIST infer-
ence accuracy is relatively small for our devices and therefore may
be unnecessary. However, by applying global drift compensation,
we observe superior retention of inference accuracy over the tested
period compared to the baseline ReRAMWan2022 drift model27

without compensation.

V. CIFAR-10 IMAGE CLASSIFICATION
To further evaluate the potential of our devices for machine

learning applications, we chose an image classification task based on
the CIFAR-10 dataset.20 This dataset contains 60 000 32 × 32 pixel
RGB images of ten different categorical items, including dogs, cats,
frogs, and others. To classify the CIFAR-10 dataset, we implemented
a convolutional neural network (CNN), shown in Fig. 4. This net-
work is composed of three repeated blocks, where the input image
is split into two branches. In the upper branch, it undergoes two
convolutions—being scanned by a 3 × 3 filter to extract a num-
ber of reduced-dimension feature maps each time. After the first
convolution in the upper branch, the feature maps are normalized
with respect to a dynamically calculated mean and standard devia-
tion (batch normalization, improving stability during training) and
then passed through a rectified linear unit (ReLU) activation func-
tion, which introduces non-linearity into the data, improving the
ability of the network to learn complex patterns. After the second

convolution in the top branch, only a further ReLU operation is
performed.

In the lower branch, only one convolution is performed, with
a 1 × 1 filter to extract an equivalent number of feature maps to
the other branch. This lower branch corresponds to the residuals,
which are then combined with the result of the two convolutions in
the upper branch and pooled to the maximum value in a 2 × 2 filter,
which is passed over the different channels to reduce the dimension-
ality of the output of each block. The output of each preceding block
becomes the input of the next. These blocks are one possible imple-
mentation of ResNet blocks, which have been shown to be successful
in image recognition machine learning tasks.28 We employ only
three ResNet blocks, although many modern network architectures
implement tens of these blocks to achieve very high accuracy in even
more challenging tasks. However, this comes at the cost of increasing
the number of trainable weights. Thus, we employ only three blocks
to maintain the number of memristors required to implement this
network relatively low. The final part of the network is a fully con-
nected network with three layers, outputting a prediction from the
ten possible categories. Given a differential configuration of mem-
ristors, in total, ∼420 000 HfOxSy/HfS2 devices would be required to
store ∼210 000 trained weights for the whole network, due to convo-
lutions and other operations in each of the three blocks (see analog
weight matrix dimensions in each panel, Fig. 4).

The network was first trained for 200 epochs to an inference
accuracy of 87.51% [Fig. 5(a)] using SOTA hardware (an NVIDIA
RTX 3080 GPU, as before). When simulating deployment of the net-
work weights on our memristive hardware, as conducted for MNIST
handwritten number classification, we observe a <0.9% decrease in
accuracy despite all the memristor non-idealities we have imple-
mented in our simulation, with only 20 hardware-aware retraining
(HWAT) epochs of the deployed network weights.

We implemented device-to-device (DTOD) variation as in our
MNIST simulations (Fig. 3). However, to inform future fabrica-
tion and estimate the impact of DTOD as well as other device
non-idealities on inference accuracy, we varied the DTOD variation
values and re-ran simulations for inference in CIFAR-10 [Fig. 5(b)].
The loss in accuracy of ∼0.9%, which we report from our CIFAR-10
simulations, is achieved at 30% DTOD. Due to the low cycle-to-
cycle variation, high linearity, and good symmetry in our poten-
tiation/depression data, DTOD variation is the dominating factor
causing loss in inference accuracy when simulating deployment
on our HfOxSy/HfS2 devices compared to SOTA digital hardware
[Fig. 5(b)]. It is important to note that acceptable limits of accu-
racy loss compared to SOTA hardware are application-dependent.
Despite not using a scalable fabrication method in our work, exist-
ing literature shows that our image classification accuracy scores are
achievable within a realistic DTOD range of 30% for HfO2-based
memristors fabricated using a scalable method (ALD),25 and for 2D
materials-based memristors as well.26 Similar to our MNIST simu-
lations [Figs. 3(c) and 3(d)], we compare the network’s resiliency to
drift given a baseline network (uncompensated for drift and with-
out HWAT) and a drift-compensated, HWAT-retrained network
[Figs. 5(c) and 5(d)]. We observe a much larger variation in accu-
racy between the HWAT and baseline scores, of ∼9%, highlighting
the advantage of using HWAT in more challenging machine learn-
ing tasks to provide robust weight deployment on analog hardware.
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FIG. 4. Convolutional neural network composed of three ResNet blocks and a fully connected layer. This network was trained with data from the CIFAR-10 dataset
augmented with random horizontal flips, rotations, normalization, resizes, and crops. Simulated arrays of HfOxSy /HfS2 device arrays act as analog weight matrices in the
network.
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FIG. 5. (a) High-accuracy, low-variation inference results with five repetitions indicating consistent CIFAR-10 classification performance close to SOTA devices. (b) Device-
to-device (DTOD) variation below 30% results in <1% drop in inference accuracy compared to SOTA devices. Resilience of memristive hardware to drift in potentiation (c)
and depression (d) given global drift compensation and hardware-aware retraining of the network weights.

With global drift compensation applied, our network modeled on
HfOxSy/HfS2 memristor hardware retains its accuracy of 86.80%,
compared to the baseline model without drift compensation and
HWAT, which degrades in performance significantly over time.

VI. COMPARISON TO OTHER MEMRISTORS
Evaluating the performance of memristive devices in machine

learning applications by simulating the impact of measured device
characteristics is a common and important practice in the field.
However, different authors use a variety of different toolkits, such
as AIHWKIT,18,21 XPESIM,5,29 NeuroSIM,10,30,31 and others.22,32 In
their simulations, authors deploy various neural network archi-
tectures to solve a variety of different machine learning tasks on
different datasets and evaluate different types of memristive devices.
Therefore, to meaningfully contextualize the performance of our
devices, we compare our results to existing literature where poten-
tiation and depression measurements of a few RRAM devices have
been used to extract device parameters relevant for weight storage in
a neural network. We believe the papers chosen are the most rele-
vant, as Nguyen et al.11 and Lu et al.10 both employ pulsing schemes
with increasing pulse heights in their potentiation and depression
experiments. Furthermore, as in our work, Lu et al.10 also use a

chalcogenide switching layer in their Ag/SnS/Pt devices and do not
require electroforming to operate their devices. Pan et al.22 measure
devices with a similar structure to ours (TiN/HfO2/Ti), and Yao et al.
also use a hafnia-based device stack (TiN/TaOx/HfOx/TiN). It is
important to note that the MNIST inference result achieved by Yao
et al. was performed fully in hardware, consisting of large memristor
arrays connected to integrated programming and readout circuitry,
highlighting a significant achievement in the field.5 However, for
inference on the CIFAR-10 dataset, the authors used a neural net-
work with a much larger number of weights (which would require
more memristors than they had fabricated). Therefore, for inference
on the CIFAR-10 dataset, Yao et al. used a device model that consid-
ered the device-to-device and cycle-to-cycle variation they measured
in their experimental hardware.5

In the examples chosen, inference accuracy of a network trained
on the MNIST [Fig. 6(a)] and CIFAR-10 datasets [Fig. 6(b)] has been
evaluated on both SOTA digital hardware and simulated RRAM
hardware, allowing for comparison between the two.5,10,11,22 Abso-
lute accuracy was not used, as this depends strongly on the net-
work architecture and size, which is not being evaluated here. We
also compare the programming voltages used to update memristor
weights in CIFAR-10 image classification [Fig. 6(c)]. While there
are many other metrics by which the effectiveness of memristive
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FIG. 6. Loss in accuracy resulting from the deployment of neural networks on simulated analog memristive hardware compared to SOTA, in inference tasks based on test
data from the (a) MNIST and (b) CIFAR-10 datasets. Using a simulated crossbar array of our devices, we observe low loss in accuracy for both datasets. (c) Our devices are
able to retain high accuracy compared to similar existing literature, despite utilizing low programming voltages. (d) To increase the realism of our simulations, we account
for a range of device non-idealities while being conscious of peripheral circuitry and drift.

hardware for neural networks can be evaluated, accuracy degrada-
tion compared to SOTA in MNIST and CIFAR-10 classification and
maximum voltage used during programming were three criteria that
were available across a number of different works. Across these met-
rics, our devices show consistently low loss in accuracy compared to
SOTA in both image classification tasks [Figs. 6(a) and 6(b)], while
only requiring low programming voltages [Fig. 6(c)].

The table in Fig. 6(d) indicates the different device non-
idealities that have been implemented in each image recogni-
tion simulation, as disclosed in the main texts or their associated
supplementary material. Given all the non-idealities we have imple-
mented in our simulation, we believe our simulations offer a realistic
prediction of the performance of arrays of HfOxSy/HfS2 devices in
machine learning tasks. Our devices show promising machine learn-
ing performance and strong potential for maintaining high accuracy
compared to SOTA hardware while being programmed with short
pulses (<350 ns) at low voltages (<1.0 V). Despite the increased com-
putational latency and chip area caused by requiring tailored pulsing
schemes, which are used for many memristive devices,8 including
the work by Lu et al.,10 Nguyen et al.,11 and our own, our memristors
are forming-free and compliance-free, which contributes toward
enabling simplified operation and reduced area consumption for
memristor-based chips.33

VII. CONCLUSIONS
We have shown that low-energy, fast-switching HfOxSy/HfS2

memristor hardware can achieve highly linear and symmetric

conductance update with high granularity, without requiring elec-
troforming or current compliance. By using the IBM toolkit, we
performed highly realistic simulations where not only the real device
characteristics are considered but also the impact of a number of
other factors, such as device-to-device variation, ADCs/DACs size,
IR drop, and inference accuracy drift over time. The results show
that high accuracy is achieved for inference on both the MNIST
and CIFAR-10 datasets, showing the potential of resistive memo-
ries based on HfOxSy/HfS2 semiconductor-insulator structures for
future hardware accelerators. With further fine-tuning of device
characteristics, our forming-free, compliance-free memristors based
on HfOxSy/HfS2 have the potential to enable energy-efficient, area-
efficient, and highly accurate memristor chips for machine learning
and neuromorphic computing.
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V. Nicolosi, and A. Lombardo, “Forming and compliance-free operation of
low-energy, fast-switching HfOxSy/HfS2 memristors,” Nanoscale Horiz. 10, 616
(2025).
18M. J. Rasch, D. Moreda, T. Gokmen, M. Le Gallo, F. Carta, C. Goldberg, K. El
Maghraoui, A. Sebastian, and V. Narayanan, “A flexible and fast PyTorch toolkit
for simulating training and inference on analog crossbar arrays,” in 2021 IEEE 3rd
International Conference on Artificial Intelligence Circuits and Systems (AICAS)
(IEEE, 2021), pp. 1–4.
19M. Le Gallo, C. Lammie, J. Büchel, F. Carta, O. Fagbohungbe, C. Mackin, H.
Tsai, V. Narayanan, A. Sebastian, K. El Maghraoui, and M. J. Rasch, “Using the
IBM analog in-memory hardware acceleration kit for neural network training and
inference,” APL Mach. Learn. 1(4), 041102 (2023).
20A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny
images,” Technical Report, University of Toronto (2009).
21Y. Kim, H. Kim, S. Jeon, H. W. Kim, E. Hong, N. Kim, H. Choi, H. Park, J. Jeong,
D. Lee, and J. Woo, “Linear synaptic weight update in selector-less HfO2 RRAM
using Al2O3 built-in resistor for neuromorphic computing systems,” IEEE Trans.
Electron Devices 71(8), 4637–4643 (2024).
22W.-Q. Pan, J. Chen, R. Kuang, Y. Li, Y.-H. He, G.-R. Feng, N. Duan, T.-C.
Chang, and X.-S. Miao, “Strategies to improve the accuracy of memristor-based
convolutional neural networks,” IEEE Trans. Electron Devices 67(3), 895–901
(2020).
23B. Murmann, “Mixed-signal computing for deep neural network inference,”
IEEE Trans. VLSI Syst. 29(1), 3–13 (2020).
24N. Manral, “MLP-training-for-MNIST-classification” (2019); https://
github.com/nipunmanral/MLP-Training-For-MNIST-Classification?tab=readme
-ov-file#readme/.
25E. Pérez, D. Maldonado, C. Acal, J. E. Ruiz-Castro, F. J. Alonso, A. M. Aguilera,
F. Jiménez-Molinos, Ch. Wenger, and J. B. Roldán, “Analysis of the statistics of
device-to-device and cycle-to-cycle variability in TiN/Ti/Al: HfO2/TiN RRAMs,”
Microelectron. Eng. 214, 104–109 (2019).
26S. S. Teja Nibhanupudi, A. Roy, D. Veksler, M. Coupin, K. C. Matthews, M.
Disiena, Ansh, J. V. Singh, I. R. Gearba-Dolocan et al., “Ultra-fast switching
memristors based on two-dimensional materials,” Nat. Commun. 15(1), 2334
(2024).
27W. Wan, R. Kubendran, C. Schaefer, S. B. Eryilmaz, W. Zhang, D. Wu, S. Deiss,
P. Raina, H. Qian, B. Gao et al., “A compute-in-memory chip based on resistive
random-access memory,” Nature 608(7923), 504–512 (2022).
28K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (IEEE, 2016), pp. 770–778.
29W. Zhang, X. Peng, H. Wu, B. Gao, H. He, Y. Zhang, S. Yu, and H. Qian, “Design
guidelines of RRAM based neural-processing-unit: A joint device-circuit-algorithm
analysis,” in Proceedings of the 56th Annual Design Automation Conference 2019
(ACM, 2019), pp. 1–6.
30X. Peng, S. Huang, Y. Luo, X. Sun, and S. Yu, “DNN+ NeuroSim: An end-to-
end benchmarking framework for compute-in-memory accelerators with versatile

APL Electron. Devices 1, 036124 (2025); doi: 10.1063/5.0286727 1, 036124-11

© Author(s) 2025

 18 D
ecem

ber 2025 10:27:04

https://pubs.aip.org/aip/aed
https://doi.org/10.1038/s41586-021-04362-w
https://doi.org/10.1038/d41586-018-06610-y
https://doi.org/10.1038/s42254-020-0208-2
https://doi.org/10.1002/aisy.202000085
https://doi.org/10.1038/s41586-020-1942-4
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1038/s41586-023-05973-1
https://doi.org/10.1021/acs.nanolett.1c03169
https://doi.org/10.3390/mi12070791
https://doi.org/10.1021/acsami.5b01080
https://doi.org/10.1021/acsaelm.0c00002
https://doi.org/10.1587/elex.17.20200343
https://doi.org/10.1002/admi.202400481
https://doi.org/10.1002/admi.202400481
https://doi.org/10.1039/d4nh00508b
https://doi.org/10.1063/5.0168089
https://doi.org/10.1109/ted.2024.3408784
https://doi.org/10.1109/ted.2024.3408784
https://doi.org/10.1109/ted.2019.2963323
https://doi.org/10.1109/tvlsi.2020.3020286
https://github.com/nipunmanral/MLP-Training-For-MNIST-Classification?tab=readme-ov-file#readme/
https://github.com/nipunmanral/MLP-Training-For-MNIST-Classification?tab=readme-ov-file#readme/
https://github.com/nipunmanral/MLP-Training-For-MNIST-Classification?tab=readme-ov-file#readme/
https://doi.org/10.1016/j.mee.2019.05.004
https://doi.org/10.1038/s41467-024-46372-y
https://doi.org/10.1038/s41586-022-04992-8


APL Electronic Devices ARTICLE pubs.aip.org/aip/aed

device technologies,” in 2019 IEEE International Electron Devices Meeting (IEDM)
(IEEE, 2019), pp. 32–35.
31X. Peng, S. Huang, H. Jiang, A. Lu, and S. Yu, “DNN+NeuroSim V2.0: An
end-to-end benchmarking framework for compute-in-memory accelerators for
on-chip training,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 40(11),
2306–2319 (2020).

32C. Lammie, W. Xiang, B. Linares-Barranco, and M. Rahimi Azghadi,
“MemTorch: An open-source simulation framework for memristive deep learning
systems,” Neurocomputing 485, 124–133 (2022).
33Y. Huang, T. Ando, A. Sebastian, M.-F. Chang, J. J. Yang, and Q. Xia,
“Memristor-based hardware accelerators for artificial intelligence,” Nat. Rev.
Electr. Eng. 1(5), 286–299 (2024).

APL Electron. Devices 1, 036124 (2025); doi: 10.1063/5.0286727 1, 036124-12

© Author(s) 2025

 18 D
ecem

ber 2025 10:27:04

https://pubs.aip.org/aip/aed
https://doi.org/10.1109/tcad.2020.3043731
https://doi.org/10.1016/j.neucom.2022.02.043
https://doi.org/10.1038/s44287-024-00037-6
https://doi.org/10.1038/s44287-024-00037-6

