

1 Outcomes of Catheter Ablation for Ventricular Tachycardia in Structural Heart Disease: A
2 Meta-Analysis and Quality Appraisal of Trials

3
4 Debbie Falconer MBBS*¹; Ahmed Salih BSc*²; Gabriella Captur MD PhD^{1,3}; Richard J. Schilling PhD⁴, Pier
5 D. Lambiase PhD^{1,4}, Nikos Papageorgiou MD PhD^{1,4}; Rui Providencia MD PhD^{4,5}

6
7 1. UCL Institute of Cardiovascular Science, University College London, London, UK.
8 2. School of Medicine; Imperial College London, London, UK.
9 3. Royal Free Hospital, Pond Street, London, UK.
10 4. Bart's Heart Centre; West Smithfield; London, UK.
11 5. Institute of Health Informatics Research, University College London, London, UK.

12 *Both authors contributed equally to the manuscript.

13

14 Corresponding author:

15 Professor Rui Providencia

16 Institute of Health Informatics Research – UCL

17 222 Euston Road, NW1 2DA

18 Email: r.providencia@ucl.ac.uk

19

20 Conflicts of interest: none

21 Word count: 4647

© The Author(s) 2025. Published by Oxford University Press on behalf of the European Society of Cardiology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(<https://creativecommons.org/licenses/by/4.0/>), which permits unrestricted reuse, distribution, and
reproduction in any medium, provided the original work is properly cited.

1 Funding: R.P. is supported by the UCL BHF Research Accelerator AA/18/6/34223, National Institute for
2 Health and Care Research grant NIHR129463 and UKRI/ERC/HORIZON 10103153 Aristoteles. This work
3 was funded by UK Research and Innovation (UKRI) under the UK government's Horizon Europe funding
4 guarantee EP/Z000211/1.

5

6 Abstract

7 Background

8 Catheter ablation (CA) of ventricular tachycardia (VT) in patients with structural heart disease is usually
9 reserved for those with recurrent implantable cardioverter defibrillator (ICD) shocks or intolerant to anti-
10 arrhythmic drugs. This meta-analysis synthesizes available trial evidence on CA for VT to clarify the role of
11 this approach.

12 Methods

13 MEDLINE, Pubmed, EMBASE and Cochrane were searched for randomised controlled trials (RCTs) of
14 patients with structural heart disease allocated to receive either CA or standard treatment. Outcomes of
15 interest were: all-cause and cardiovascular (CV) mortality, VT recurrence, incidence of appropriate ICD
16 therapy, CV hospitalisations and VT storm. Evidence was appraised using the risk of bias tool and the
17 grading of recommendations assessment, development and evaluation (GRADE) approach. Trial-level
18 pairwise meta-analyses were conducted for all outcomes. Reconstructed time-to-event data meta-analysis
19 was also performed for all-cause mortality.

20 Results

21 13 RCTs (N=1,735 patients) were included in the meta-analysis with a follow-up duration of 6–52 months.
22 No significant reduction in all-cause mortality was observed at trial level meta-analysis (risk ratio [RR] 0.87,
23 95% confidence interval [CI] 0.70–1.08, heterogeneity [$I^2=0\%$]), or reconstructed individual patient data
24 meta-analysis (hazard ratio [HR] 0.79, 95%CI 0.57–1.11 at 3 years). However, our pooled estimates,
25 observed effect size and GRADE assessments suggest a potential mortality reduction in the ablation group.

1 Patients who underwent CA experienced a significant reduction in CV hospitalizations (RR 0.78, 95%CI
2 0.65–0.94, $I^2=41\%$), VT storm (RR 0.78, 95%CI 0.63–0.97; $I^2=5\%$), VT recurrence (RR 0.83, 95%CI 0.72–
3 0.95, $I^2=21\%$), and appropriate ICD therapy (RR 0.74, 95%CI 0.61–0.89, $I^2=32.5\%$) compared to control
4 groups.

5 Conclusion

6 A potential all-cause mortality reduction by catheter ablation requires further confirmation in a properly
7 powered RCT. No reduction in cardiovascular mortality was found. VT recurrence, CV hospitalisations, VT
8 storm and ICD therapy were all significantly reduced by catheter ablation in patients with structural heart
9 disease.

10 Keywords: arrhythmia; catheter ablation; evidence synthesis; ventricular arrhythmia; sudden cardiac death.

11

12 Introduction

13 Patients with structural heart disease secondary to cardiomyopathy or ischaemic heart disease (IHD) are
14 at lifelong risk of ventricular tachycardia (VT), necessitating long-term pharmacotherapy to reduce
15 arrhythmia risk, and implantable cardiac defibrillators (ICDs) to prevent sudden cardiac death (SCD)¹.

16

17 Current management of VT involves arrhythmia prevention through optimisation of heart failure medication
18 and avoidance of exacerbating triggers. ICDs are placed according to international guidelines to treat
19 ventricular arrhythmias and prevent SCD^{2, 3}. However, repeated ICD shocks are associated with
20 depression⁵, post-traumatic stress disorder⁶ and increased mortality⁷. Evidence of localized myocardial
21 injury following shocks has also been found at autopsy⁴. Therefore, class I or III anti-arrhythmic drugs (AADs)
22 are usually added if VT persists. However, use of these drugs carries a range of side effects including
23 hepatotoxicity, pulmonary fibrosis and QT interval prolongation with proarrhythmic consequences⁸.

24

1 Decades of development in ablation techniques, equipment and substrate mapping underpin present-day
2 catheter ablation (CA)⁹ which has emerged as an important and effective treatment for VT¹⁰. Urgent CA
3 has a class I recommendation to treat electrical storm in the European Society of Cardiology (ESC)
4 guidelines² when medical therapy and ICD re-programming fails. The ESC guidelines² also recognize its
5 importance in preventing VT – CA should be considered in those with recurrent ICD therapies despite beta
6 blocker use (class IIa recommendation; evidence level C), and can be considered alongside ICD
7 implantation to reduce the future shock burden (class IIb; evidence level B). American Heart Associate/
8 American College of Cardiology (AHA/ACC) 2017 guidelines adopt a similar position, advising CA for
9 people in whom AADs are ineffective or not tolerated (class I recommendation; evidence level B)³.

10

11 Recent meta-analyses have assessed the efficacy of CA for VT, offering important insights for
12 clinicians^{11,12,13}. However, two important RCTs with large heterogenous cohorts have since been published –
13 one uniquely focusing on primary prevention and the other comprising the largest CA RCT to-date. This
14 meta-analysis therefore aims to comprehensively synthesize the most up-to-date evidence on the efficacy
15 of CA for VT in patients with structural heart disease, analysing the largest available dataset, assessing a
16 wide range of outcomes, and performing detailed subgroup analyses.

17

18 Methods

19 The meta-analysis was conducted to fulfil the Preferred Reporting Items for Systematic Reviews and Meta-
20 Analysis (PRISMA) criteria on published peer-reviewed journal articles, but also included conference
21 abstracts¹⁴ (**Supplementary Table S-1**). The protocol was prospectively registered on PROSPERO In
22 November 2024 (ID CRD42024619649). The Patient/Intervention/Comparator/Outcomes (PICO) approach
23 was used¹⁵. The population of interest included patients with structural heart disease (ischaemic and non-
24 ischaemic) with or at risk of having VT. The intervention of interest was CA. Controls groups received new
25 AADs, escalating doses of AADs or no AADs. ICDs were implanted in patients in the intervention and control
26 groups. The primary outcomes of interest were: all-cause and cardiovascular (CV) mortality. Secondary

1 outcomes were VT recurrence, appropriate ICD therapies, VT storm and CV hospitalisation. The initial
2 primary outcome was VT recurrence (as stated on the PROSPERO registration), but this was amended
3 during the review process, prior to data analysis, to reflect more consistent data availability.

4

5 **Search strategy**

6 Two reviewers (DF and AS) systematically searched the electronic databases MEDLINE, PUBMED,
7 EMBASE and Cochrane using the following expression: ("catheter ablation" OR "radiofrequency ablation")
8 AND ("ventricular tachycardia" OR "ventricular arrhythmia") AND ("structural heart disease" OR "ischaemic
9 heart disease"). The search was limited to studies on adult human subjects published in English language
10 peer-reviewed journals from 1995 until December 2024. Reference lists of all accessed full-text articles
11 were hand searched for sources of relevant additional information. The authors of full-text papers and
12 congress abstracts were also contacted by e-mail to retrieve additional information.

13

14 **Study Selection**

15 Prospective RCTs published as abstracts or original articles in peer-reviewed scientific journals in English
16 were included. Studies pertaining to treatment of electrical storm or acute ischaemia, or not reporting
17 outcomes of interest, were excluded. Two reviewers (DF and AS) independently screened all abstracts and
18 titles to identify eligible studies. Full texts were then evaluated. A third author (RP) was consulted in cases
19 of disagreement. Agreement of at least two reviewers was required for decisions regarding inclusion or
20 exclusion of studies. The study selection protocol is provided in **Figure 1**.

21

22 **Data Extraction**

23 Two authors (DF and AS) independently abstracted trial-level data. Information collected included author,
24 year of publication, interventions, sample size, baseline characteristics, use of AADs, procedural
25 information, outcomes, pertinent past medical history and complications.

26

1 Quality appraisal
2 Cochrane 'risk of bias' tool version 2 was applied by assessing the following domains: randomisation,
3 deviation from intended intervention, missing outcome data, measurement of the outcome, selection of
4 reported result, and other bias (e.g. evidence of prospective trial registration). Each study was classified as
5 high, low, or unclear risk of bias by two review authors (MA and RP). Disagreements were resolved by a
6 third author (DF).

7 The grading of recommendations assessment, development and evaluation (GRADE) approach was taken
8 to assess certainty of outcome evidence¹⁶. The GRADE approach appraises the certainty of evidence
9 based on the extent to which one can be confident that an estimate of effect or association reflects the item
10 being assessed. The certainty measure considers within-study risk of bias, directness of the evidence,
11 heterogeneity of the data, precision of effect estimates, and risk of publication bias. The decision to
12 downgrade the certainty of evidence resulted from a consensus between two authors (RP and AS), and a
13 third if needed (DF).

14

15 Sub-group and Sensitivity Analyses

16 To assess the impact of study design on outcomes, the following sub-group analyses were performed:

17 -type of anti-arrhythmic drug approach

18 -ablation strategy

19 -studies recruiting IHD patients only

20 -secondary prevention studies only

21 -follow-up duration

22 Sensitivity analyses were also performed for:

23 -publication year

24 -risk of bias

25 -published manuscripts (excluding abstracts and unpublished data)

1 These were only performed for conditions fulfilled by at least 2 studies.

2 Where appropriate to perform subgroup analysis, the median and interquartile range were used to estimate

3 the mean and standard deviation using the formula derived by Hozo et al¹⁷.

4

5 Data analysis

6 Trial-level pairwise data were pooled using the Mantel–Haenszel random-effects model. Risk ratios (RR)

7 and 95% confidence intervals (CI) were used as the measure of treatment effect for all outcomes. Visual

8 inspection of contour-enhanced funnel plots¹⁸ (when at least ten studies were included) was performed to

9 assess for publication bias. Asymmetrical funnel plots were interpreted as indicating the possibility of

10 publication bias. Statistical significance was determined using two-tailed tests, with a *p*-value of <0.05

11 considered significant. Statistical heterogeneity on each outcome of interest was quantified using Higgins

12 *I*² statistic. The *I*² statistic describes the percentage of total variation across studies because of

13 heterogeneity rather than chance. Values of <25%, 25% to 50%, and >50% are by convention classified

14 low, moderate, and high degrees of heterogeneity, respectively. A meta-regression was performed to

15 investigate the effect of proportion of ischemic cardiomyopathy participants on the outcomes. The analyses

16 were performed using R version 4.3.4, "meta" and "metafor" package.

17

18 A reconstructed individual patient data analysis from published Kaplan-Meier (KM) curves was conducted

19 for the primary outcome of all-cause mortality. This approach allowed for more precise and robust estimates

20 by directly incorporating individual-level time-to-event data, which is often limited in trial-level meta-analyses.

21 In this study, the two-stage approach described by Liu et al¹⁹ was followed to reconstruct individual patient

22 data from published KM curves using the R package "IPDfromKM" (version 0.1.10). KM curves were

23 digitized, raw data coordinates extracted, and individual patient data reconstructed using the modified KM

24 estimation algorithm (modified-iKM) from Guyot et al²⁰. The quality of the reconstruction was validated by

25 comparing at-risk tables, hazard ratios (HRs), and visually inspecting the KM curves.

26 The individual patient data from all studies were pooled into a single dataset, and survival curves generated

1 using the R package “survival”. A Cox-based shared-frailty model, treating trial as a random effect, was
2 used to estimate pooled HRs and 95% confidence intervals (CIs). The primary analysis was conducted at
3 a 3-year follow-up period, as this was the point at which at least half of the studies reported data. The
4 proportional hazards assumption was verified using the Grambsch–Therneau test and visually by plotting
5 the Schoenfeld residuals. Flexible parametric survival models and landmark analysis were performed if
6 proportional hazards assumptions were violated. A sensitivity analysis was conducted by comparing hazard
7 ratios at the trial level meta-analysis.

8

9 The Number Needed to Treat (NNT) or Number Needed to Harm (NNH), and respective 95% confidence
10 intervals were calculated^{21,22}, where applicable. These were estimated as the reciprocal of the absolute risk
11 difference for the particular outcome between treated subjects and the control or placebo group, i.e.:

$$13 \quad NNT = \frac{1}{\text{Absolute Risk}_{\text{Control Group}} - \text{Absolute Risk}_{\text{Treatment Group}}}$$

12

14 Results

15 The systematic review identified 13 RCTs^{23–35}, including one abstract²³ and one unpublished study³⁵, after
16 screening and exclusion (Figure 1)(n=1735 patients, 94.4% male). Reasons for exclusion are presented in
17 **Supplementary Table S-2**. Two ongoing RCTs were identified (**Supplementary Table S-3**).

18 Baseline characteristics are summarized in **Table 1**. The mean follow-up duration in Epstein et al. and
19 CALYPSO was six months, whilst all other studies performed longer follow-up of 13.2–52 months. Ten RCTs
20 included patients with IHD only, whereas three studies recruited patients with IHD and NICM^{23, 29, 34}.
21 PREVENTIVE-VT recruited patients having ICDs for primary prevention only. PAUSE-SCD recruited
22 patients who met both primary and secondary prevention criteria, though all other studies investigated CA
23 in the context of secondary prevention. All studies except Epstein implanted ICDs in 100% of patients (either
24 prior to or during the study). One study, ERASE-VT³³ remains unpublished meaning limited data was
25 available. However available information pertaining to study protocol and outcomes was extracted from a
26 prior meta-analysis¹¹ which had access to patient-level data.

1 Four studies offered endo-epicardial procedures^{26, 31, 32, 33}, whilst all others performed endocardial
2 procedures only. CALYPSO (n=27) and PREVENTIVE-VT (n=60) performed endocardial procedures in the
3 first instance, and epicardial if the initial ablation was unsuccessful. PAUSE-SCD (n=133) performed
4 epicardial ablation in 55% of cases, operators being encouraged (but not mandated) to do so in NICM and
5 VANISH-2 performed endocardial ablation, and epicardial ablation if VT remained inducible. In three trials
6 (SMASH-VT²⁴, PARTITA²⁹, & PREVENTIVE-VT³²), no class I or III AADs were used in either arm at baseline
7 or as part of study treatment. Details on study interventions are provided in **Table 2**.

8

9 Quality of Included Evidence

10 The risk of bias (ROB) assessment is presented in **Supplementary Figure S-1**. Epstein *et al.*¹¹ was only
11 available as an abstract, and ERASE-VT remains unpublished, limiting a full ROB assessment. Incomplete
12 outcome data (domain 3) and selective reporting (domain 5) were consistently low risk across all studies.

13 All trials were open-label due to the impracticality of masking treatment allocation for patients and operators,
14 resulting in the outcome 'some concerns' for most studies for domain 2 (deviations from intended
15 interventions). This warrants caution when interpreting more subjective outcomes such as cardiovascular
16 hospitalisations and cardiovascular mortality. However, lack of blinding should not impact outcome
17 assessment of objective metrics such as all-cause mortality or device therapy. SURVIVE-VT was classified
18 as high risk in domain 2 due to the high crossover rate between trial arms (>20%).

19 The PARTITA trial was classified as having 'some concerns' in domain 1 (randomization) owing to baseline
20 differences between the two groups (**Supplementary Table S-4**)²⁹. Studies for which the randomization
21 process was not clearly described were also classified as having 'some concerns' for domain 1. Studies in
22 which the outcome reporting was not clearly described (e.g. detailing if trial outcome adjudicators were
23 blinded to intervention) were deemed 'some concerns' for domain 4 (measurement of outcomes).

24 Heterogeneity was low for outcomes except VT recurrence, appropriate ICD therapy and CV hospitalization,
25 where it was considered moderate.

1 Certainty of evidence was considered moderate or low for most endpoints. This was driven mainly by
2 imprecision (broad confidence intervals in the effect estimates) and performance bias (i.e. lack of blinding)
3 for subjective outcomes (cardiovascular mortality and cardiovascular hospitalizations) (Summary of
4 findings table—**Supplementary table S-5**).

5

6 Efficacy outcomes

7 Data on procedural outcomes are summarized in **Table 3**.

8

9 All-cause mortality

10 12 RCTs reported on all-cause mortality during follow up²⁴⁻³⁵(n=1630). At trial-level analysis, no significant
11 prognostic benefit was seen following CA (**Figure 2A**). 126 patients in the ablation group died compared
12 with 152 in the control group with low heterogeneity between studies (15.7% vs. 18.4%; RR 0.87, 95%CI
13 0.70–1.08; $p=0.20$; $I^2=0\%$).

14 Funnel plots excluded publication bias (**Supplementary Figure S-2**).

15 To incorporate time-to-event data, published KM curves from six studies (BERLIN-VT³⁵, PARTITA²⁹,
16 PAUSE-SCD³⁴, SMASH-VT²⁴, VANISH²⁷ and VANISH-2³¹) were pooled together using a reconstructed
17 individual patient data analysis (n=1130, 558 CA group, 572 standard therapy group). The reconstructed
18 cumulative incidence curves for each trial (**Supplementary figure S-3**) were compared with the original
19 curves for each study. At the prespecified follow-up endpoint of 3-years, a comparable estimate was
20 obtained, with non-significant reduction of mortality in the ablation group (HR 0.79, 95%CI: 0.57–1.11,
21 $p=0.17$ (**Figure 3**). Significant heterogeneity was found ($p=0.003$). Similar results were found when
22 analysing at 1- and 2-year follow-up (**Supplementary Table S-6**).

23 There was no visual evidence of a violation of the proportional hazards assumption. The Schoenfeld
24 residuals are shown in **Supplementary Figure S-4**, and the Grambsch-Therneau test for time-invariant
25 effects had p-value of 0.75. Similar results were observed when pooling the hazard ratio at trial level

1 (Supplementary Figure S-5). The reconstructed time-to-event analysis for trials of IHD only is shown in
2 **Supplementary Figure S-6.**

3

4 Cardiovascular mortality

5 Nine studies reported on CV mortality during follow up ($n=1446$) ^{24, 25, 27-32, 34} which occurred in 68 patients
6 in the ablation group compared with 79 in the control group with low heterogeneity between studies (9.5%
7 vs 10.8%; RR 0.89, 95%CI 0.65–1.21; $p=0.46$; $I^2=0\%$; NNT=78.8). (Figure 2B).

8

9 VT recurrence

10 In ten studies ($n=1285$) ^{23, 25, 26, 28-35} VT recurred in 296 patients in the ablation group compared with 338 in
11 the controls, with low heterogeneity between studies (45.7% vs 53.1%; RR 0.83, 95%CI 0.72–0.95; $p=0.007$;
12 $I^2=21.4\%$; NNT=13.6, (95%CI 7.8–51.8) patients to prevent one relapse) (Figure 2C). Funnel plots
13 excluded publication bias (Supplementary Figure S-7).

14

15 VT storm

16 Eight studies reported on incidence of VT storm ($n=1272$) ^{24, 25, 27-32} (Figure 4A) which occurred in 105
17 patients in the ablation group compared with 145 in the control group, with low heterogeneity between
18 studies (17.5% vs 22.7%; RR 0.78, 95%CI 0.63–0.97; $p=0.026$; $I^2=5\%$; NNT=17.9 (95%CI 10.0–82.7)
19 patients to prevent one VT storm).

20

21 Cardiovascular hospitalisations

22 CV hospitalisation was reported in ten studies ($n=1451$) ^{25-32, 34, 35} (Figure 4B). There was a significant
23 reduction in the ablation group with 239 events, compared with 308 in the control group but with moderate
24 heterogeneity between studies (33.5% vs 41.8%; RR 0.78, 95%CI 0.65–0.94; $p=0.01$; $I^2=41\%$; NNT=12.0

1 (95% CI 7.5–29.8) patients to prevent one CV hospitalization). Funnel plots excluded publication bias
2 (**Supplementary Figure S-8**).

3

4 Appropriate ICD therapies

5 Six studies reported on incidence of appropriate ICD therapies (both shocks and antitachycardia
6 pacing)(n=706)^{24, 25, 28, 30, 32, 35}. There was a significant reduction in therapies: 102 in the ablation group
7 compared with 150 in the control group (29.7% vs. 41.4%; RR 0.74, 95%CI 0.61–0.89; p=0.02, I²=32.5%;
8 NNT=8.5 (95% CI 5.3–20.9) patients to prevent one ICD therapy) (**Figure 4C**).

9 Ten studies reported on the incidence of appropriate ICD shocks only (n=1549)^{24, 25, 27-32, 34, 35}. There was
10 a significant reduction in shocks – 182 in the ablation group compared with 261 in the control group (37.3%
11 vs 43.5%; RR 0.67, 95%CI 0.52–0.86; p=0.002; I²=44%; NNT=10.8 (95%CI 7.3–20.8)) (**Supplementary**
12 **Figure S-9**). There was, however, moderate heterogeneity of 44%.

13

14 Summary of main findings

15 The pooled estimates hint at a potential mortality reduction effect of catheter ablation, which requires further
16 confirmation in a large and properly powered RCT. No reduction in cardiovascular mortality was found.
17 There was a significant reduction in VT recurrence, VT storm, cardiovascular hospitalisations and ICD
18 therapies.

19

20 Sub-group and sensitivity analyses

21 Subgroup analyses of solely IHD or secondary prevention studies are shown in **Supplementary Table S-**
22 **7 and 8**. A separate analysis was conducted of the only trials available as full peer-reviewed publications,
23 excluding Epstein et al and ERASE-VT (**Supplementary Table S-9**)^{23,33}. No subgroup data of NICM was
24 available from mixed studies, so no subgroup analysis was possible.

1 There was a trend towards a more pronounced reduction in ICD therapies in lower quality RCTs following
2 CA ($p=0.052$) and a significantly greater reduction in CV hospitalization in studies performing endocardial
3 ablation only ($p=0.02$). There was also a significantly larger reduction in electrical storm, CV hospitalization,
4 CV mortality, appropriate ICD therapy, and appropriate ICD shocks following CA in studies with no AAD use
5 ($p<0.01$) (**Supplementary Table S-10–14**). Furthermore, although no significant subgroup differences were
6 observed for all-cause or cardiovascular mortality ($P = 0.23$ and $P = 0.25$, respectively), pooling the three
7 studies without AAD use (SMASH-VT, PARTITA, and PREVENTIVE-VT) revealed a significant reduction in
8 both outcomes: RR 0.56, 95% CI 0.32–0.99 for all-cause mortality, and RR 0.43, 95% CI 0.19–0.96 for
9 cardiovascular mortality.

10 Meta-regression was used to assess the variability across studies by the proportion of participants with
11 ischemic cardiomyopathy, (**Supplementary Table S-15**) and showed a significant effect on VT recurrence
12 but no other outcome. Meta-regression assessing variability by proportion of male patients and by age
13 showed no significant effect on any outcome (**Supplementary Tables S-16** and **S-17**). A leave-one-out
14 sensitivity analysis was conducted by sequentially excluding one study at a time and re-fitting the model of
15 the primary and secondary outcomes. The resulting pooled estimates are shown in **Supplementary**
16 **Figures S-10 and S-11**.

17 Detailed information on ICD programming and complications for all trials is presented in **Supplementary**
18 **Tables S-18 and S-19**. **Supplementary Table S-20** provides a comprehensive comparison of this
19 systematic review with other related publications from recent years.

20

21 Discussion

22 This meta-analysis provides evidence of a significant reduction in VT recurrence, VT storm, CV
23 hospitalisation and appropriate ICD therapies following CA in patients with structural heart disease
24 compared with standard therapy. There was no significant reduction in all-cause or cardiovascular mortality
25 at trial-level data. However, reconstructed KM curves show a trend towards improved all-cause mortality
26 following ablation, with separation of the curves seen as early as one month post-procedure.

1
2 The consistent separation of curves hints at a possible mortality benefit. A larger trial would be required to
3 confirm these observations: detection of an absolute 2.5% mortality difference with 80% power at a 0.05
4 statistical significance would require recruitment of over 7,000 patients (3584 in each treatment group)
5 before accounting for potential losses due to follow-up issues or patients not receiving the allocated
6 intervention. Though such vast numbers have been recruited by drug-based trials, they will be more difficult
7 to achieve for an ablation study.

8
9 Reconstructing individual patient data from published KM curves has become an increasingly popular
10 method to overcome limitations inherent in conventional trial-level meta-analyses, such as handling
11 censoring and varying follow-up durations. This approach allows for the direct incorporation of individual-
12 level time-to-event data, leading to more precise estimates. Several studies have demonstrated the high
13 reproducibility of reconstructed individual patient data meta-analyses to closely approximate results
14 obtained from original datasets³⁶. However, it is important to interpret these findings with caution.
15 Reconstructed patient data cannot completely replicate original individual-level data which offers a more
16 comprehensive understanding of participants' characteristics to explain study heterogeneity. Albeit with a
17 comparable effect estimate (HR 0.79, 95%CI 0.57–1.11, p=0.17), our findings differ slightly from a recently
18 published meta-analysis from Reddy et al¹¹ in which the all-cause mortality benefit reached statistical
19 significance (HR 0.73, 95% CI 0.53-1, p=0.047). Notably, Reddy et al. restricted their analysis to patients
20 with IHD, thereby excluding PAUSE-SCD, and incorporated individual patient data (IPD) from the ERASE
21 study, which was not formally published or available to us. The follow-up duration also varied, at 3 years for
22 the present study vs 4 years in the prior meta-analysis. However, neither our subgroup analysis of IHD
23 studies, nor the meta-regression by proportion of ischaemic patients demonstrated a significant effect on
24 mortality in studies exclusively or predominantly with IHD patients, suggesting the observed difference
25 cannot solely be explained by the exclusion of non-ischaemic patients. Potential study-specific factors in
26 the three trials that also included patients with NICM^{11, 29, 34} that may explain our results are described a

1 few paragraphs below. A detailed comparison with previously published systematic reviews is presented in
2 the Supplementary Material section (**Supplementary Table S-6**).

3

4 At individual trial level, only PARTITA detected a reduction in mortality following CA²⁹. There were no deaths
5 in the ablation group but a relatively high mortality in the control group (33%). The ablation group contained
6 fewer patients with a background of diabetes (41% vs 19%), kidney disease (27% vs 14%) and chronic
7 obstructive pulmonary disease (23% vs 9.5%) which may explain the findings not replicated elsewhere.

8

9 Our meta-analysis demonstrates significant reductions in VT storm, cardiovascular hospitalisations, and
10 ICD therapies, indicating a meaningful morbidity benefit. With increasing emphasis on patient-centred care
11 and the improving safety profile of catheter ablation, the potential for fewer hospitalisations and ICD shocks
12 represents an important clinical consideration that may substantially enhance patients' quality of life,
13 warranting intervention even in the absence of a proven mortality benefit. By incorporating a larger and
14 more diverse dataset, including patients with NICM, findings of this meta-analysis extend and reinforce
15 previous meta-analyses, further reinforce the role of catheter ablation in the contemporary management of
16 VT.

17

18 This review shows a reduction in CV hospitalisation with CA, but with imprecision (a broad 95%CI), so the
19 exact effect size is uncertain. The reduction is driven by positive results from PREVENTIVE-VT, SURVIVE
20 VT and VTACH, with others reporting neutral results. Notably, there was a sizeable difference between the
21 lowest and highest reported rates of CV hospitalisation (4.3% in the PARTITA ablation group vs 54.6% in
22 VTACH controls). Heterogeneity was not explained by subgroup analysis of AAD use or ablation type, but
23 sensitivity analysis revealed studies before 2020 had a lower heterogeneity than those from 2020–2024
24 ($I^2=0\%$ vs $I^2=63\%$). Later studies recruited patients with both IHD and NICM, as well as patients meeting
25 both primary and secondary prevention ICD criteria, and their mixed comorbidity will be reflected in higher
26 heterogeneity between studies.

1 There was a significant reduction in ICD therapy and ICD shocks, but with moderate heterogeneity for both
2 ($I^2=33\%$ and $I^2=44\%$ respectively). Some studies (e.g. VANISH-2, SURVIVE-VT) were designed as direct
3 comparison of AADs and ablation, and as such no class I or III AADs were used in the ablation arm, whilst
4 other RCTs such as PAUSE-SCD allowed baseline use of AADs in the ablation group with escalated doses
5 in the control arm. PAUSE-SCD advised additional AAD 'at the discretion of the treating physician and
6 based on local practice' which is likely to vary significantly in a multicentre, international study. This variation
7 reflects real-world practice and goes some way to explain the heterogeneity between study results. The
8 disparity in protocols also means question relating to CA being used as an alternative to, or in conjunction
9 with AADs, goes unanswered, as there is too much variation in timing, dosing and types of AADs used to
10 assimilate this information. Pragmatically, given how high-risk these patients are for deterioration, AADs will
11 continue to be used alongside CA in those who tolerate them.

12

13 While it is commonly accepted that VT ablation in patients with IHD has lower recurrence rate than in NICM
14 ³⁷, our meta-regression demonstrated a higher proportion of IHD was significantly associated with a smaller
15 relative benefit of ablation for VT recurrence (coefficient = 0.007, $p = 0.04$) (**Supplementary Table S-15**).
16 However, these results should be interpreted with caution due to additional study-specific factors in the
17 three trials that included patients with NICM, which may have influenced the outcomes and could not be
18 accounted for in the univariate meta-regression. These three trials were among those demonstrating a more
19 pronounced benefit of VT ablation compared with controls for VT recurrence. PARTITA ²⁹ included
20 approximately 19% of patients with NICM, and no AADs were used in the control group—consistent with
21 our subgroup analysis showing a greater benefit of ablation in studies without AAD use. PAUSE-SCD ³⁴
22 included 31% of patients with NICM and 34% with ARVC; epicardial ablation was encouraged per protocol
23 and performed in 55% of patients, which likely contributed to the observed benefit, as ablation of ARVC has
24 been associated with better outcomes compared with other forms of NICM ³⁸. Epstein *et al.* ¹¹ had the
25 shortest follow-up period (six months), and shorter follow-up durations have been shown to inflate the
26 apparent efficacy of VT ablation ³⁹. Longer follow-up, as observed in most trials including only IHD patients
27 (e.g. VANISH-2 had a median of 52 months), allows progression or development of new substrate leading

1 to recurrent VT. Importantly, VT recurrence was not measured uniformly (**Supplementary Table S-18**),
2 which can also explain observed differences for this endpoint across the different trials. No significant
3 associations were observed in the meta-regression assessing IHD as a study-level moderator for the other
4 outcomes.

5

6 There was variation in ICD programming between studies (**Supplementary Table S-18**). More aggressive
7 programming leads to more therapies, not all of which will be necessary. VANISH, which advised a VT
8 detection zone of 150 beats per minute (bpm) reported a high shock rate (42.5% both groups), but
9 SURVIVE VT with a recommended VT detection zone of 185bpm reported lower rates (25.4 and 21.9%).
10 The MADIT-RIT trial (2012) demonstrated improved all-cause mortality and a reduction in inappropriate
11 therapies with higher rate or delayed detection zones compared with conventional programming ³³. Studies,
12 where recruitment preceded MADIT-RIT, such as VANISH and SMS, encouraged lower detection zones,
13 meaning some therapies would not have occurred had higher thresholds been used. Indeed, this is reflected
14 in real-world data. Ruwald et al reported a significant reduction in appropriate therapies between 2007 and
15 2016 from 28.2 to 7.9 therapies per 100 person years ($p<0.001$), a reflection of both improved heart failure
16 therapies and ICD programming ⁴⁰.

17

18 The significant reduction in the primary endpoint in SURVIVE-VT (composite of CV death, heart failure
19 hospitalisation, appropriate ICD shock and significant treatment complications) was driven by a reduction
20 in treatment-related complications (9.9% vs 28.8%, $p=0.006$), the majority of which were AAD side effects.
21 The majority of CA studies focus on procedural safety rather than drug side effects (**Supplementary Table**
22 **S-19**). It is difficult to compare safety of each intervention directly when the treatments are so different.
23 Procedure-related vascular injury or tamponade are easily measured whereas drug side effects such as
24 pulmonary toxicity may happen years after initiation (even outside the study follow up period), so are likely
25 underrepresented in most studies, which may bias any risk vs benefit analysis.

26

1 As ongoing VT trials shift their focus towards newer therapies such stereotactic arrhythmia radioablation or
2 autonomic modulation ⁴¹, this study consolidates a growing body of evidence confirming an essential role
3 for CA in patients with structural heart disease, whilst newer techniques are yet to be validated through
4 RCTs ⁴².

5

6 Limitations

7 Our systematic review followed high-rigour methodology, with strict adherence to PRISMA and Cochrane
8 methodology, providing a detailed appraisal of evidence with GRADE methodology for the first time.
9 However, some limitations that are inherent to the data need to be highlighted. Firstly, the lack of patient
10 diversity and hence the generalizability of the data. The majority of patients were males (females account
11 for <10%) with a background of IHD reflecting the persistent underrepresentation of women in
12 cardiovascular research. This sex imbalance limits the generalisability of our findings, as sex-related
13 differences in arrhythmia substrate, ablation response, and outcomes remain incompletely understood⁴³,
14 and as such increased recruitment of women (or a study recruiting only women) is of the utmost important
15 for the field moving forward. Secondly, heterogeneity was observed for AAD use, ICD programming
16 protocols and VT ablation strategy. Where available, subgroup analyses were performed, but this was not
17 possible in some instances (including for patients with NICM only or based AAD type). It is also recognised
18 that combining trials with differing baseline exposures within subgroup definitions reduces interpretability.
19 However, the large number of covariates relative to the limited number of included studies precluded the
20 use of multivariable analysis. Therefore, several questions regarding optimal patient selection and
21 procedural protocols remain unanswered.

22 A 2019 meta-analysis of 1138 patients, from RCTs as well as non-randomised studies, in which 44% of
23 patients underwent an endo-epicardial approach, found there was significant benefit of endo-epicardial
24 procedures compared with endocardial procedures alone. Interestingly, the effect was largest in patients
25 with IHD, where there was a significant reduction in VT recurrence or appropriate ICD therapy (OR 0.39,
26 95%CI 0.18–0.83) and all-cause mortality (OR 0.38 95%CI 0.15–0.99) ⁴⁴. It is possible the full benefit of
27 combined endo-epicardial procedures is underestimated in our meta-analysis due to lack of statistical power,

1 as the vast majority of procedures were endocardial only. Thirdly, most studies focus on hard outcomes
2 relating to mortality and device therapies so there is limited data on how ablation affects quality of life. SMS
3 used the 36 item short form survey (SF-36) ⁴⁵, and found no difference in the scores relating to general
4 health, physical health or mental health between groups. A VANISH sub-study also found no overall
5 difference in health-related quality of life when using four validated questionnaires- the SF-36, the implanted
6 cardioverter defibrillator (ICD) Concerns questionnaire (ICDC), the Hospital Anxiety and Depression Scale
7 (HADS), and the EuroQol five dimensions questionnaire (EQ-5D) ⁴⁶.

8 Finally, all studies to-date lack sham-procedure control groups. Even though lack of blinding may be less
9 of an issue for truly objective outcomes like mortality or appropriate ICD shocks, unblinded trials may lead
10 to differences in subsequent patient management, for example more aggressive AADs in patients who do
11 not undergo ablation, exposing them to more adverse drug effects. However, due to slow enrolment in VT
12 trials adding a sham procedure arm would add further complexity, and may not be a realistic prospect. If
13 sham-controlled VT trials prove too challenging, studies in other fields—such as the recent SHAM-PVI trial⁴⁷
14 in atrial fibrillation—may offer insights into the placebo effects of sham ablation procedures more broadly,
15 although their generalisability to VT populations is uncertain.

16

17 Conclusion

18 In this largest-to-date meta-analysis, our pooled estimates hint at a potential mortality reduction effect of
19 catheter ablation, which requires further confirmation in a large and properly powered RCT. No reduction
20 in cardiovascular mortality was found. A clear reduction in VT recurrence, VT storm, ICD therapies and CV
21 hospitalisations was found in patients with structural heart disease treated with catheter ablation as
22 opposed to standard therapy.

1 REFERENCES

2

3 1. Batul SA, Olshansky B, Fisher JD, Gopinathannair R. Recent advances in the management of
4 ventricular tachyarrhythmias. *F1000Res* 2017;6:1027.

5 2. Zeppenfeld K, Tfelt-Hansen J, de Riva M, et al. 2022 ESC Guidelines for the management of
6 patients with ventricular arrhythmias and the prevention of sudden cardiac death. *Eur Heart J*
7 2022;43:3997-4126.

8 3. Al-Khatib SM, Stevenson WG, Ackerman MJ, et al. 2017 AHA/ACC/HRS guideline for management
9 of patients with ventricular arrhythmias and the prevention of sudden cardiac death: Executive
10 summary: A Report of the American College of Cardiology/American Heart Association Task Force
11 on Clinical Practice Guidelines and the Heart Rhythm Society. *Heart Rhythm* 2018;15:e190-e252.

12 4. Singer I, Hutchins GM, Mirowski M, et al. Pathologic findings related to the lead system and
13 repeated defibrillations in patients with the automatic implantable cardioverter-defibrillator. *J Am
14 Coll Cardiol* 1987;10:382-8.

15 5. Thylen I, Moser DK, Stromberg A, Dekker RA, Chung ML. Concerns about implantable
16 cardioverter-defibrillator shocks mediate the relationship between actual shocks and psychological
17 distress. *Europace* 2016;18:828-835.

18 6. Ladwig KH, Baumert J, Marten-Mittag B, Kolb C, Zrenner B, Schmitt C. Posttraumatic stress
19 symptoms and predicted mortality in patients with implantable cardioverter-defibrillators: results
20 from the prospective living with an implanted cardioverter-defibrillator study. *Arch Gen Psychiatry*
21 2008;65:1324-1330.

22 7. Aktas MK, Younis A, Zareba W, et al. Survival After Implantable Cardioverter-Defibrillator Shocks.
23 *J Am Coll Cardiol* 2021;77:2453-2462.

24 8. Dan GA, Martinez-Rubio A, Agewall S, et al. Antiarrhythmic drugs-clinical use and clinical decision
25 making: a consensus document from the European Heart Rhythm Association (EHRA) and
26 European Society of Cardiology (ESC) Working Group on Cardiovascular Pharmacology, endorsed
27 by the Heart Rhythm Society (HRS), Asia-Pacific Heart Rhythm Society (APHRS) and International
28 Society of Cardiovascular Pharmacotherapy (ISCP). *Europace* 2018;20:731-732an.

29 9. Natale A, Zeppenfeld K, Della Bella P, et al. Twenty-five years of catheter ablation of ventricular
30 tachycardia: a look back and a look forward. *Europace* 2023;25.

31 10. Konemann H, Dagres N, Merino JL, et al. Spotlight on the 2022 ESC guideline management of
32 ventricular arrhythmias and prevention of sudden cardiac death: 10 novel key aspects. *Europace*
33 2023;25.

34 11. Reddy RK, Swamways JW, Howard JP et al. Catheter ablation for ventricular tachycardia after
35 myocardial infarction: an updated meta-analysis of randomised controlled trials. *JACC Clinical
36 Electrophys*. 2025;11:1047-50.

1 12. Ravi V, Pouyal A, Khanal S, et al. A systematic review and meta-analysis comparing
2 radiofrequency catheter ablation with medical therapy for ventricular tachycardia in patients with
3 ischaemic and non-ischaemic cardiomyopathies. *J Interv Card Electrophysiol* 2023;66:161-75.

4 13. Shalganov T, Stoyanov M, Traykov V. Outcomes of early catheter ablation for ventricular
5 tachycardia in adult patients with structural heart disease and implantable cardioverter defibrillator:
6 an updated systematic review and meta-analysis of randomised controlled trials. *Front Cardiovasc
7 Med.* 2022;30:1063147.

8 14. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic
9 reviews and meta-analyses: the PRISMA statement. *Ann Intern Med* 2009;151:264-269, W264.

10 15. Higgins JP, Altman DG, Gotzsche PC, et al. The Cochrane Collaboration's tool for assessing risk
11 of bias in randomised trials. *BMJ* 2011;343:d5928.

12 16. Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of
13 evidence and strength of recommendations. *BMJ* 2008;336:924-926.

14 17. Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and
15 the size of a sample. *BMC Med Res Methodol* 2005;5:13.

16 18. Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L. Contour-enhanced meta-analysis funnel
17 plots help distinguish publication bias from other causes of asymmetry. *J Clin Epidemiol*
18 2008;61:991-996.

19 19. Liu N, Zhou Y, Lee JJ. IPDfromKM: reconstruct individual patient data from published Kaplan-Meier
20 survival curves. *BMC Med Res Methodol* 2021;21:111.

21 20. Guyot P, Ades AE, Ouwens MJ, Welton NJ. Enhanced secondary analysis of survival data:
22 reconstructing the data from published Kaplan-Meier survival curves. *BMC Med Res Methodol*
23 2012;12:9.

24 21. Laupacis A, Sackett DL, Roberts RS. An assessment of clinically useful measures of the
25 consequences of treatment. *N Engl J Med* 1988;318:1728-1733.

26 22. Altman DG. Confidence intervals for the number needed to treat. *BMJ* 1998;317:1309-1312.

27 23. Epstein AE, Wilber DJ, Calkins H, et al. Randomized controlled trial of ventricular tachycardia
28 treatment by cooled tip catheter ablation vs drug therapy. *Journal of the American College of
29 Cardiology* 1998;31:118-118.

30 24. Reddy VY, Reynolds MR, Neuzil P, et al. Prophylactic catheter ablation for the prevention of
31 defibrillator therapy. *N Engl J Med* 2007;357:2657-2665.

32 25. Kuck KH, Schaumann A, Eckardt L, et al. Catheter ablation of stable ventricular tachycardia before
33 defibrillator implantation in patients with coronary heart disease (VTACH): a multicentre
34 randomised controlled trial. *Lancet* 2010;375:31-40.

35 26. Al-Khatib SM, Daubert JP, Anstrom KJ, et al. Catheter ablation for ventricular tachycardia in
36 patients with an implantable cardioverter defibrillator (CALYPSO) pilot trial. *J Cardiovasc
37 Electrophysiol* 2015;26:151-157.

1 27. Sapp JL, Wells GA, Parkash R, et al. Ventricular Tachycardia Ablation versus Escalation of
2 Antiarrhythmic Drugs. *N Engl J Med* 2016;375:111-121.

3 28. Kuck KH, Tilz RR, Deneke T, et al. Impact of Substrate Modification by Catheter Ablation on
4 Implantable Cardioverter-Defibrillator Interventions in Patients With Unstable Ventricular
5 Arrhythmias and Coronary Artery Disease: Results From the Multicenter Randomized Controlled
6 SMS (Substrate Modification Study). *Circ Arrhythm Electrophysiol* 2017;10.

7 29. Della Bella P, Baratto F, Vergara P, et al. Does Timing of Ventricular Tachycardia Ablation Affect
8 Prognosis in Patients With an Implantable Cardioverter Defibrillator? Results From the Multicenter
9 Randomized PARTITA Trial. *Circulation* 2022;145:1829-1838.

10 30. Arenal Á, Ávila P, Jiménez-Candil J, et al. Substrate Ablation vs Antiarrhythmic Drug Therapy for
11 Symptomatic Ventricular Tachycardia. *J Am Coll Cardiol* 2022;79:1441-1453.

12 31. Sapp JL, Tang ASL, Parkash R, et al. Catheter Ablation or Antiarrhythmic Drugs for Ventricular
13 Tachycardia. *N Engl J Med* 2024.

14 32. Zizek D, Mrak M, Jan M, et al. Impact of preventive substrate catheter ablation on implantable
15 cardioverter-defibrillator interventions in patients with ischaemic cardiomyopathy and infarct-related
16 coronary chronic total occlusion. *Europace* 2024;26.

17 33. A Study of Early Robotic Ablation by Substrate Elimination of Ventricular Tachycardia (ERASE-
18 VT). 2017; <https://clinicaltrials.gov/ct2/show/NCT01182389>, Accessed February 2025.

19 34. Tung R, Xue Y, Chen M, et al. First-Line Catheter Ablation of Monomorphic Ventricular Tachycardia
20 in Cardiomyopathy Concurrent With Defibrillator Implantation: The PAUSE-SCD Randomized Trial.
21 *Circulation* 2022;145:1839-1849.

22 35. Willems S, Tilz RR, Steven D, et al. Preventive or Deferred Ablation of Ventricular Tachycardia in
23 Patients With Ischemic Cardiomyopathy and Implantable Defibrillator (BERLIN VT): A Multicenter
24 Randomized Trial. *Circulation* 2020;141:1057-1067.

25 36. Rogula B, Lozano-Ortega G, Johnston KM. A Method for Reconstructing Individual Patient Data
26 From Kaplan-Meier Survival Curves That Incorporate Marked Censoring Times. *MDM Policy Pract*
27 2022;7:23814683221077643.

28 37. Kumar S, Romero J, Mehta NK, Fujii A, Kapur S, Baldinger SH, Barhaiya CR, Koplan BA, John
29 RM, Epstein LM, Michaud GF, Tedrow UB, Stevenson WG. Long-term outcomes after catheter
30 ablation of ventricular tachycardia in patients with and without structural heart disease. *Heart*
31 *Rhythm*. 2016;13:1957-63. doi: 10.1016/j.hrthm.2016.07.001.

32 38. Vaseghi M, Hu TY, Tung R, Vergara P, Frankel DS, Di Biase L, Tedrow UB, Gornbein JA, Yu R,
33 Mathuria N, Nakahara S, Tzou WS, Sauer WH, Burkhardt JD, Tholakanahalli VN, Dickfeld TM,
34 Weiss JP, Bunch TJ, Reddy M, Callans DJ, Lakkireddy DR, Natale A, Marchlinski FE, Stevenson
35 WG, Della Bella P, Shivkumar K. Outcomes of Catheter Ablation of Ventricular Tachycardia Based
36 on Etiology in Nonischemic Heart Disease: An International Ventricular Tachycardia Ablation

1 Center Collaborative Study. JACC Clin Electrophysiol. 2018;4:1141-1150. doi:
2 10.1016/j.jacep.2018.05.007.

3 39. Garcia Garcia J, Arya A, Dinov B, Bollmann A, Ter Bekke RMA, Vernooy K, Dagres N, Hindricks
4 G, Darma A. Impact of repeat ablation of ventricular tachycardia in patients with structural heart
5 disease. *Europace*. 2023 Dec 28;26(1):euad367. doi: 10.1093/europace/euad367.

6 40. Ruwald MH, Ruwald AC, Johansen JB, et al. Temporal Incidence of Appropriate and Inappropriate
7 Therapy and Mortality in Secondary Prevention ICD Patients by Cardiac Diagnosis. *JACC Clin
8 Electrophysiol* 2021;7:781-792.

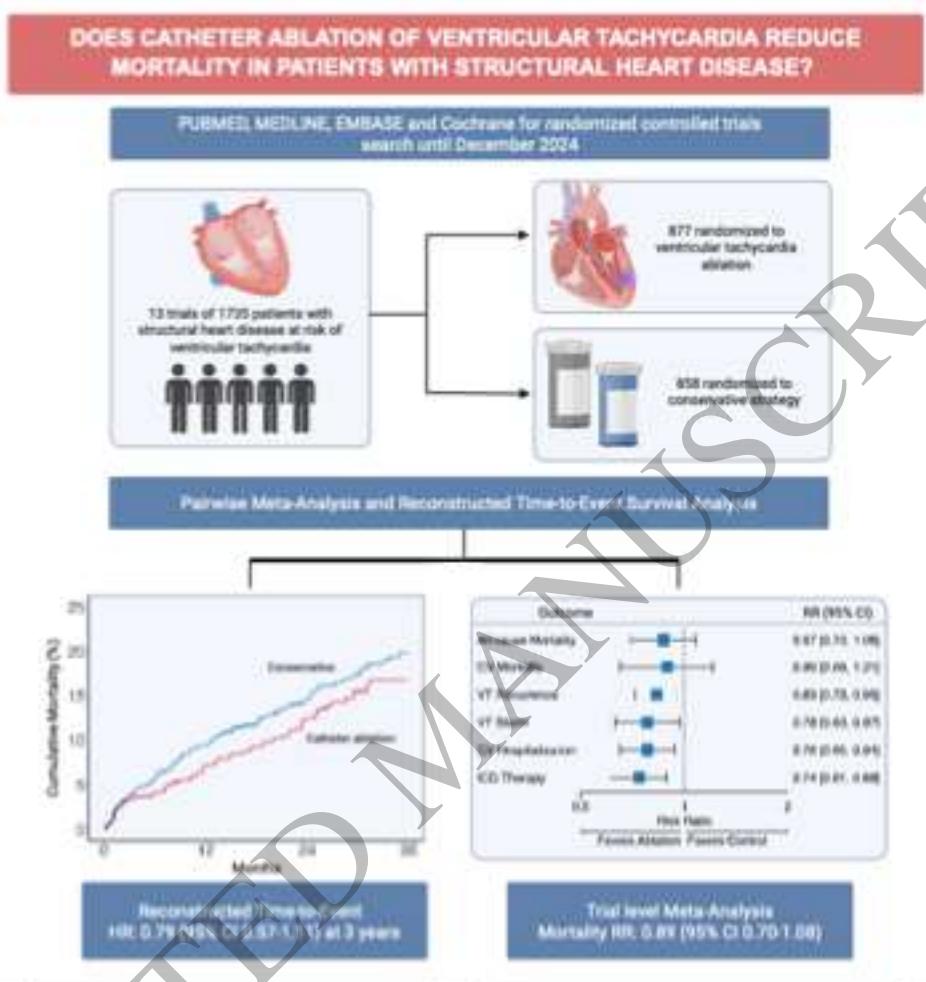
9 41. Gupta A, Danaila V, De Silva K, et al. The Current Landscape of Ventricular Tachycardia Trials: A
10 Systematic Review of Registered Studies. *Heart Lung Circ* 2024;33:1082-1096.

11 42. Zeppenfeld K, Rademaker R, Al-Ahmad A, et al. Patient selection, ventricular tachycardia substrate
12 delineation and data transfer for stereotactic arrhythmia radioablation. A Clinical Consensus
13 Statement of the European Heart Rhythm Association (EHRA) of the ESC and the Heart Rhythm
14 Society (HRS). *Europace* 2024.

15 43. Krisai P, Cheniti G, Takagi T, et al. Sex differences in ventricular arrhythmia: epidemiology,
16 pathophysiology and catheter ablation. *Rev Cardiovasc Med*. 2022;23:14.

17 44. Cardoso R, Assis FR, D'Avila A. Endo-epicardial vs endocardial-only catheter ablation of ventricular
18 tachycardia: A meta-analysis. *J Cardiovasc Electrophysiol* 2019;30:1537-1548.

19 45. Lins L, Carvalho FM. SF-36 total score as a single measure of health-related quality of life: Scoping
20 review. *SAGE Open Med* 2016;4:2050312116671725.


21 46. Gula LJ, Doucette S, Leong-Sit P, et al. Quality of life with ablation or medical therapy for ventricular
22 arrhythmias: A substudy of VANISH. *J Cardiovasc Electrophysiol* 2018;29:421-434.

23 47. Dulai R, Silke N, Freemantle N. Pulmonary vein isolation vs sham intervention in symptomatic atrial
24 fibrillation. The SHAM-PVI randomised clinical trial. 2024;332:1165-73.

25

26 Data sharing statement:
27 Datasets generated from this review are available from the corresponding author upon request.
28

1 Central graphical abstract

2

3 Abbreviation: VT, Ventricular Tachycardia; CI, confidence interval; HR, hazard ratio; RR, risk ratio

1 **Figure 1:** PRISMA flow-chart demonstrating study selection process

2

3

4 **Identification of studies via databases and registers**

5

6

7 Records identified from
8 MEDLINE, EMBASE and
9 Cochrane Central Registry of
10 Controlled Trials

11 (n = 1221)
12 Records from manual searching
13 (n = 5)

14 Records removed *before*
15 screening:
16 Duplicate records removed
17 (n = 237)

18 **Identification**

19

20

21

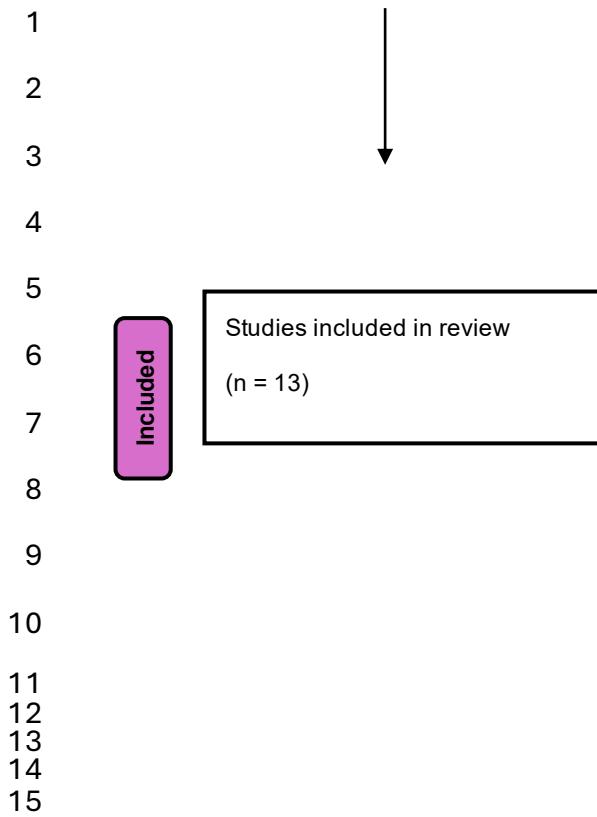
22

23 Records screened
24 (n = 990)

25 Records excluded
26 (n = 966)

27 **Screening**

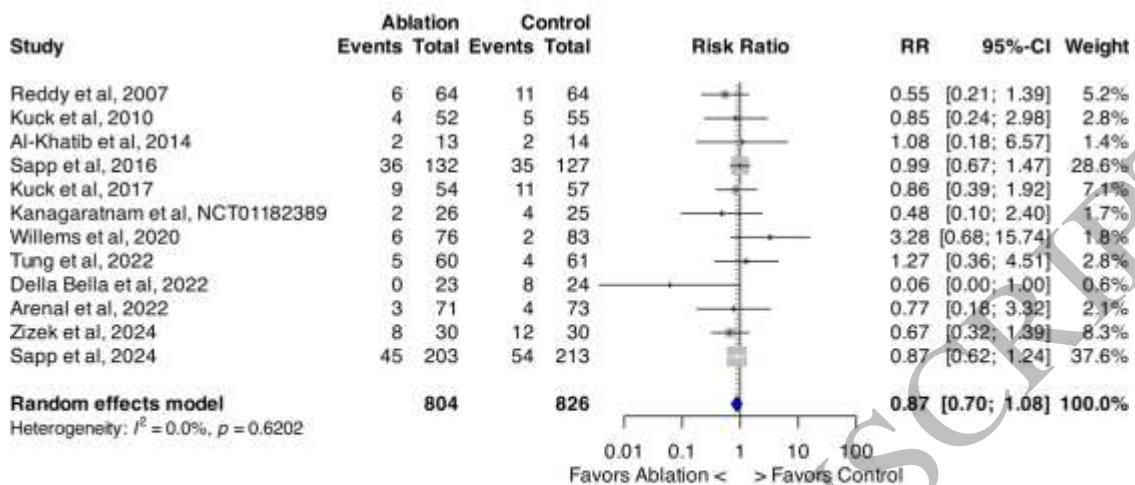
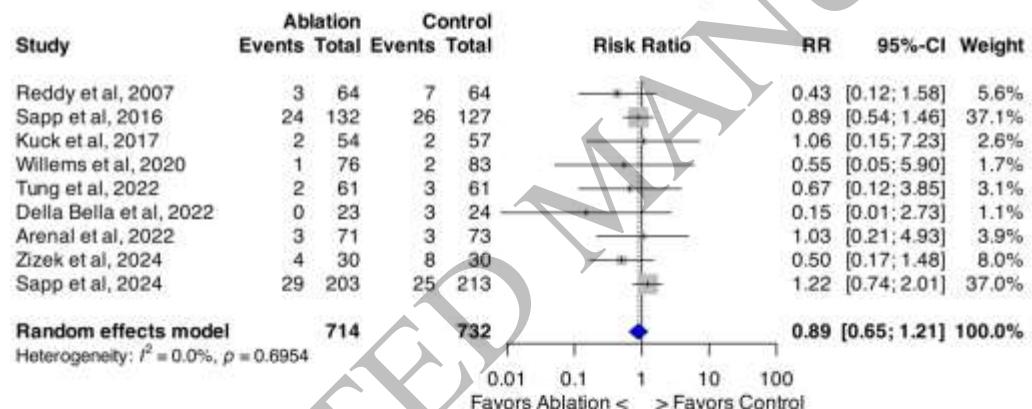
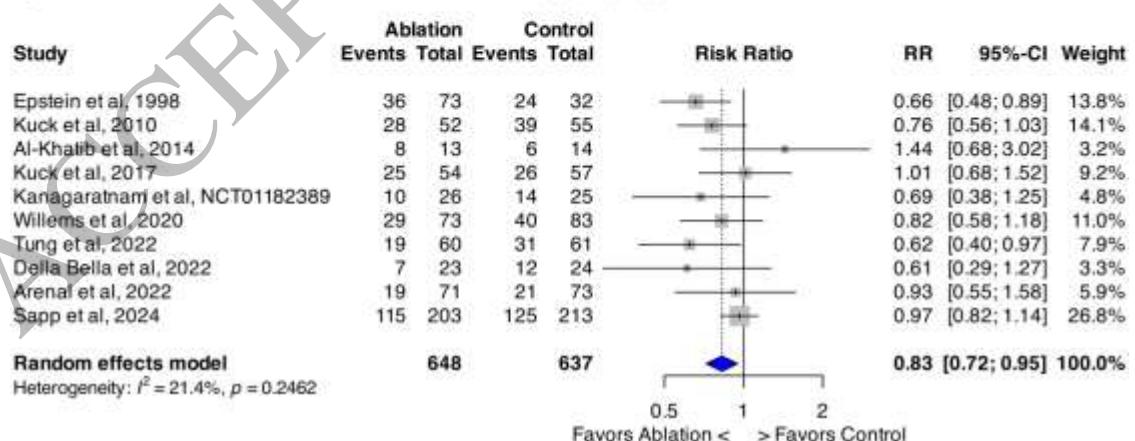
28 Reports sought for retrieval
29 (n = 25)


30 Reports assessed for full-text
31 eligibility

32 Reports excluded
33 (n = 12):
34 Editorial (n = 2)
35 Ongoing trial (n = 2)
36 Study protocol (n = 1)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

Studies included in review
(n = 13)

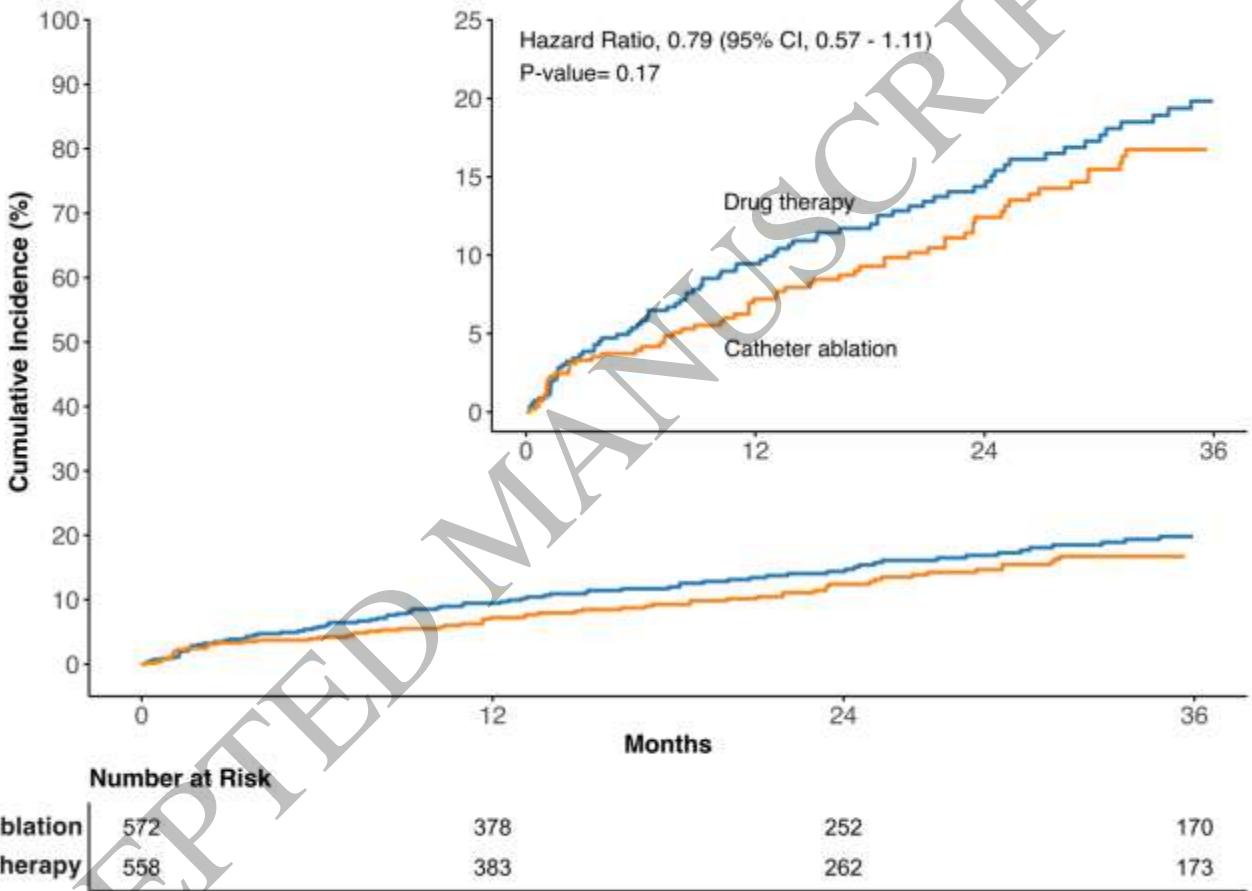



Included

ACCEPTED MANUSCRIPT

20 **Figure 2:** Forest plots of trial-level meta-analysis comparing catheter ablation therapy versus control for: A,
21 All-cause mortality. B, Cardiovascular mortality. C, VT recurrence.

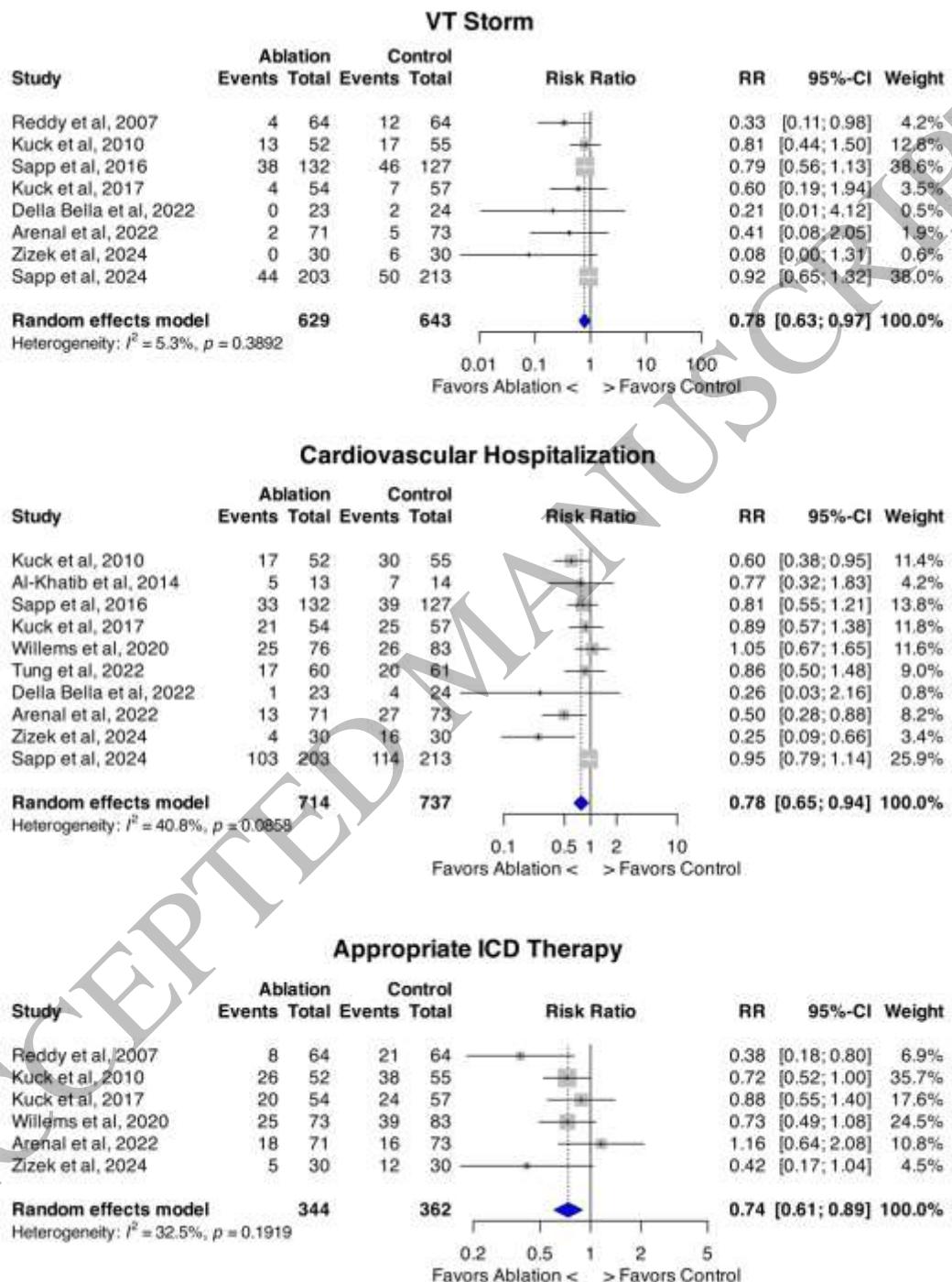
1

A**All-cause Mortality****B****Cardiovascular Mortality****C****VT Recurrence**


2

3

4 Abbreviation: VT, Ventricular Tachycardia; CI, confidence interval; RR, risk ratio.


5

1
2 **Figure 3** Reconstructed all-cause mortality cumulative incidence curves for individual patient data
3 comparing catheter ablation vs drug therapy
4
5

6 Individual patient data (IPD) were available for the following studies and were incorporated into the
7 construction of the incidence curve: BERLIN-VT³⁵, PARTITA²⁹, PAUSE-SCD³⁴, SMASH-VT²⁴, VANISH²⁷
8 and VANISH-2³¹.
9 Abbreviation: CI, confidence interval
10

1 **Figure 4:** Forest plots comparing catheter ablation therapy versus control for three clinical outcomes. A, VT
 2 Storm. B, Cardiovascular hospitalization. C, Appropriate ICD therapy

3

4 Abbreviations: VT, ventricular tachycardia. ICD; implantable cardioverter defibrillator; RR, risk ratio.

Author, year	Acronym	RCT comparison	Population	Primary/secondary/ mixed	Single vs Multicentre	N	ICD in situ/inserted during study N(%)	Amiodarone at enrolment N (%)	Beta-blockers N (%)	Age (mean ±SD or median(IQR))	Male %	Aetiology	LVEF (%). Mean ±SD or median (IQR)
Epstein, 1998 ²³	-	Abl vs AADs	VT with structural heart disease	Secondary	Multi	Ablation 73 Control 132	51 (70) 24 (75)			62.5±19.8 66.7±19.8	92 84	Ischaemic 83% Ischaemic 91%	31±13 29±12
Reddy, 2007 ²⁴	SMASH-VT	Abl and ICD vs ICD alone, no AADs	IHD with unstable VT/VF or after one ICD shock	Secondary	Multi	Ablation 64 Control 64	64 (100) 64 (100)	0 (0) 0 (0)	60 (94) 63 (98)	67±9 66±10	92 81	Ischaemic 100%	30.7±9.5 32.9±8.5
Kuck, 2010 ²⁵	VTACH	Abl and ICD vs ICD alone	IHD with stable VT and EF <50%	Secondary	Multi	Ablation 52 Control 55	52 (100) 55 (100)	18 (35) 19 (35)	39 (75) 41 (75)	67.7±8.3 64.4±8.2	96 91	Ischaemic 100%	34.0±9.6 34.1±8.8
Al-Khatib, 2014 ²⁶	CALYPSO	Abl vs AADs, no prior AAD	IHD with ICD and 1 shock or 3x ATP	Secondary	Multi	Ablation 13 Control 14	13 (100) 14 (100)	0 (0) 0 (0)	13 (100) 12 (86)	64 (44–81) 65 (43–81)	100 86	Ischaemic 100%	25 (15–65) 23 (10–45)
Sapp, 2016 ²⁷	VANISH	Abl vs escalating AADs	IHD and device treatment for VT-with ICD and AAD	Secondary	Multi	Ablation 132 Control 127	132 (100) 127 (100)	85 (64.4) 84 (66.1)	124 (93.9) 122 (96.1)	67.0±8.6 70.3±7.3	93 93	Ischaemic 100%	31.1±10.4 31.2±10.7
Kuck, 2017 ²⁸	SMS	Abl and ICD vs ICD alone	IHD with unstable VT EF <40%	Secondary	Multi	Ablation 54 Control 57	54 (100) 57 (100)	16 (30) 20 (35)	49 (91) 52 (91)	68±8 66±8	87 81	Ischaemic 100%	32.0±6.9 30.4±7.3
NCT 0118238 9	ERASE-VT	Abl vs AADs	IHD and VT with ICD	Secondary	Multi	Ablation 26 Control 25				69	84	Ischaemic 100%	31.2
Willems, 2020 ³⁵	BERLIN-VT	Abl+ICD vs ICD ± deferred ablation	IHD, LVEF 30–50% and document ed VT	Secondary	Multi	Ablation 76 Control 83	76 (100) 83 (100)	31 (40.8) 22 (26.5)	58 (76.3) 59 (71.1)	66±10 66±9	88.2 86.7	Ischaemic 100%	41±6 41±6
Tung, 2022 ³⁴	PAUSE-SCD	Abl+ICD vs AADs+ICD	IHD/NIDCM/ARVC with ICD indication	Mixed	Multi	Ablation 60 Control 61	60 (100) 61 (100)	16 (28.6) 20 (32.8)	47 (78.3) 53 (86.9)	51 (45.5–65) 57 (47–63)	73.3 88.5	Ischaemic 33.3% Ischaemic 36.1%	41 (31–60) 40 (30–48)
Della Bella, April 2022 ²⁹	PARTITA	Abl vs AADs	NI-DCM/ IHD post 1 ICD shock	Secondary	Multi	Ablation 23 Control 24	23 (100) 24 (100)	1 (5) 4 (21)	23 (100) 24 (100)	71.2±8.1 65.6±9.6	83 88	Ischaemic 87% Ischaemic 75%	31.9±9.0 32.4±8.3

Arenal, 2022 ³⁰	SURVIVE- VT	Abl vs AADs	IHD and ICD with symptomat- ic VT (shock or syncope)	Secondar- y	Multi	Ablatio- n 71 Contro- l 73	71 (100) 73 (100)	0 (0) 0 (0)	69 (97.2) 62 (86.1)	70 (63–75) 71 (64–76)	98.6 93.2	Ischaem- ic 100%	35 (26– 41) 33 (25– 40)
Žižek, 2024 ³²	PREVENTIV E-VT	Abl+ICD vs ICD alone	EF<40% and scar related to CTO- no previous VT/VF	Primary	Multi	Ablatio- n 30 Contro- l 30	30 (100) 30 (100)	0 (0) 0 (0)	29 (96.7) 29 (96.7)	65 (57–63) 71 (66–76)	96.7 86.7	Ischaem- ic 100%	37 (32.5– 41.5) 34 (30– 38)
Sapp, 2024 ³¹	VANISH-2	Abl vs AADs (+ICD)	IHD and VT whilst off AADs	Secondar- y	Multi	Ablatio- n 203 Contro- l 213	203 (100) 213 (100)	0 (0) ±50%	67.7±8.6 68.4±8.0	95.1 92.5	Ischaem- ic 100%	34±11 34.3±10. 3	

1 **Table 1:** Baseline characteristics.2 Abbreviations: AAD: antiarrhythmic drug; Abl: ablation; ARVC: arrhythmogenic cardiomyopathy; ATP: anti-tachycardia pacing; CTO: chronic total occlusion; EF: ejection fraction ICD: implantable cardiac defibrillator; IHD:
3 ischaemic heart disease; IQR: interquartile range; NI-DCM: non-ischaemic dilated cardiomyopathy; RCT: randomised-controlled trial; SD: standard deviation; VT: ventricular tachycardia; VF: ventricular fibrillation Boxes have
4 been left blank where information not supplied. *All on one of amiodarone, mexiletine, ranolazine, dofetilide. ** All on amiodarone alone/ amiodarone and beta blockers/ sotalol and beta blockers5
6

Study	Index arrhythmia	Ablation strategy	Mapping system	Follow-up duration, months (mean \pm SD unless stated)	Anti-Arrhythmic Therapy
Epstein, 1998	VT			6	
Reddy, 2007	VF; VT; syncope and inducible VT; ICD therapy for VT/VF	Endocardial 100%	CARTO (Biosense Webster, Inc., Diamond Bar, CA, USA)	22.5 \pm 5.5	No AADs; control arm received ICD implantation
Kuck, 2010	VT with no syncope/ arrest	Endocardial 100%	CARTO (Biosense Webster, Inc., Diamond Bar, CA, USA) OR Ensite (St Jude Medical, St Paul, MN, USA)	22.5 \pm 9	Both arms β -blockers and amiodarone
Al-Khatib, 2014	VT with 1 shock / 3 ATP	Endocardial preferred, epicardial if unsuccessful	Discretion of treating physician	6	Control arm only- First-line therapy: amiodarone and sotalol; Second-line therapy: mexiletine, ranolazine and dofetilide. β -Blockers
Sapp, 2016	VT with 1 shock/ 3 ATP; suspected VT below detection zone	Endocardial 100%		27.9 \pm 17.1	Both arms: Amiodarone or another Class I or Class III AAD at enrolment; Continued in the ablation arm and escalated in controls.
Kuck, 2017	Spontaneous unstable VT; syncope with inducible VT; cardiac arrest with VT	Endocardial 100%	CARTO (Biosense Webster, Inc., Diamond Bar, CA, USA) OR Ensite (St Jude Medical, St Paul, MN, USA)	27.6 \pm 13.2	Both arms: Pharmacological rhythm control, specifically with amiodarone
ERASE-VT				15	Pharmacological rhythm control, although no changes were made subsequent to enrolment
Willems, 2020	Sustained VT			13.2 \pm 9.5	AADs in both arms in 32.5 to 40.8%, mainly amiodarone.
Tung, 2022	Stable VT; VT with syncope or cardiac arrest; inducible VT	Endocardial 100% Epicardial 55%	Ensite Velocity, Abbott, IL	Median 31 (IQR 20.1-40)	Control group: AADs left to the discretion of the treating physician
Della Bella, 2022	Appropriate shock on ICD inserted for primary or secondary prevention	Endocardial 100% Epicardial if required	CARTO (Biosense Webster, Inc., Diamond Bar, CA, USA) OR Ensite (St Jude Medical, St Paul, MN, USA)	Median 28.8 (IQR 16.8-52.8)	No AADs; Exclusion criteria if used, except for amiodarone for AF.
Arenal, 2022	Following appropriate shock for any VT	Endocardial 100%		Median 23.5	Only in the AAD group: Amiodarone + β -blockers, amiodarone alone, or sotalol \pm β -blockers
\checkmark Žížek, 2024	Primary prevention- no documented VT/VF	Endocardial 100% (epicardial for repeat procedure if needed)	CARTO (Biosense Webster, Inc., Irvine, CA, USA)	44.7 \pm 20.7	No AADs at baseline; Avoided if possible during the study.

Sapp, 2024	VT storm; 1x shock; 3x ATP (1 symptomatic); sustained VT	Endocardial, epicardial if VT remains inducible	Median 52	Control group received AADs with either sotalol or amiodarone.
------------	--	---	-----------	--

3

4 Abbreviations as per Table 1. Boxes have been left blank where information not supplied.

5

6 **Table 3:** Procedural outcomes.

ACCEPTED MANUSCRIPT

Study	Primary endpoint of trial (composite if multiple)	Group	VT recurrence N (%)	VT Storm N (%)	All-cause Mortality N (%)	Cardiovascular hospitalization N (%)	Cardiovascular mortality N (%)	Appropriate ICD therapy N (%)	Appropriate shocks N (%)	Appropriate ATP N (%)
Epstein 1998	VT recurrence	Ablation	36 (49)							
		Control	24 (75) <i>p=0.0004</i>							
Reddy 2007	Freedom from shock/ ATP	Ablation		4 (6)	6 (9)		3 (5)	8 (12)	6 (9)	
		Control		12 (19)	11 (17)		7 (11)	21 (33)	20 (31)	
Kuck 2010	Time to recurrence of sustained VT/VF	Ablation	28 (53.6)	13 (25)	4 (8.5)	17 (32.6)		26 (50)	14 (26.9)	
		Control	39 (71.2)	17 (30.3)	5 (8.6)	30 (54.6)		38 (69.1)	26 (47.3)	
Al-Khatib 2014	Feasibility of ablation as first-line treatment	Ablation	8 (62)		2 (15)	5 (46)				
		Control	6 (43)		2 (14)	7 (50)				
Sapp 2016	All-cause mortality, VT storm, appropriate shock	Ablation		38 (28.8)	36 (27.3)	33 (25)	24 (18.1)		56 (42.4)	84 (63.6)
		Control		46 (36.2)	35 (27.6)	39 (30.7)	26 (20.4)		54 (42.5)	79 (62.2)
Kuck 2017	Time to recurrence of VT/VF	Ablation	25 (46.3)*	4 (7.4)	9 (16.7)	21 (38.8)	2 (3.7)	20 (37.0)	8 (14.8)	
		Control	26 (45.6)*	7 (12.2)	11 (19.3)	25 (43.9)	2 (3.5)	24 (42.1)	14 (24.6)	
ERASE-VT		Ablation	10 (38.5)		2 (7.7)					
		Control	14 (56.0)		4 (16)					
Willems, 2020	All-cause mortality, hospitalisation for VT/VF or HF	Ablation	29 (39.7)*		6 (7.9)	25 (32.9)	1 (1.3)	25 (34.2)	13 (17.8)	25 (34.2)
		Control	40 (48.2)*		2 (2.4)	26 (31.3)	2 (2.4)	39 (47)	18 (21.7)	38 (45.8)
Tung, 2022	Recurrent VT, hospitalisation, death	Ablation	19 (31.7)		5 (8.3)	17 (28.3)	2 (3.3)		6 (10.0)	10 (16.7)
		Control	31 (50.8)		4 (6.6)	20 (32.8)	3 (4.9)		15 (24.6)	20 (32.8)

Della Bella, 2022	All-cause mortality, HF hospitalisation	Ablation	7 (30.4)	0 (0)	0 (0)	1 (4.3)**	0 (0)	2 (8.7)	7 (30.4)
		Control	12 (50)	2 (8.3)	8 (33.3)	4 (16.7)**	3 (12.5)	10 (41.7)	11 (45.8)
Arenal, 2022	CV death, appropriate ICD shock, HF hospitalisation or severe treatment complication	Ablation	19 (26.8)	2 (2.8)	3 (4.2)	13 (18.3)	3 (4.2)	18 (25.4)	12 (16.9)
		Control	21 (28.8)	5 (6.8)	4 (5.5)	27 (37.0)	3 (4.1)	16 (21.9)	13 (17.8)
Žižek, 2024	ICD therapy, hospitalisation for VT/VF	Ablation	0 (0)	8 (26.7)	4 (13.3)	4 (13.3)	5 (16.7)	5 (16.7)	
		Control	6 (20)	12 (40)	16 (53.3)	8 (26.7)	12 (40)	10 (33.4)	
Sapp, 2024	All cause death; VT storm, appropriate shock; sustained VT below detection range	Ablation	115 (56.7)	44 (21.7)	45 (22.2)	103 (50.7)	29 (14.3)	60 (29.6)	96 (47.3)
		Control	125 (58.7)	50 (23.5)	54 (24.4)	114 (53.4)	25 (11.7)	81 (38)	103 (48.4)

1 Abbreviations as per Table 1. Boxes have been left blank where information not supplied. Where available, hazard ratios and 95% confidence intervals have been included. *VT or VF
 2 **HF hospitalisation only reported