

1 **Mortality risks in different subtypes of masked hypertension in the Spanish**

2 **Ambulatory Blood Pressure Monitoring Registry**

3

4 **Alejandro de la Sierra¹, Luis M. Ruilope², Natalie Staplin³, George S. Stergiou⁴, Bryan**

5 **Williams⁵**

6 ¹Hypertension Unit. Department of Internal Medicine. Hospital Mutua Terrassa. University
7 of Barcelona, Terrassa, Spain. ²Hypertension Unit and Cardiorenal Translational
8 Laboratory, Hospital 12 de Octubre, Madrid, Spain. ³Medical Research Council Population
9 Health Research Unit, Clinical Trial Service Unit and Epidemiological Studies Unit,
10 Nuffield Department of Population Health, University of Oxford, Oxford, UK.

11 ⁴Hypertension Center STRIDE-7, National and Kapodistrian University of Athens, School of
12 Medicine, Third Department of Medicine, Sotiria Hospital, Athens, Greece. ⁵University
13 College London (UCL) Institute of Cardiovascular Science and National Institute for
14 Health Research (NIHR) UCL Hospitals Biomedical Research Centre, London, UK.

15 **Runing title:** Masked hypertension and mortality

16

17 **Word count (without abstract, references, and tables): 2207**

18 **Abstract word count: 249**

19 **Tables: 3**

20 **Figures: 1**

21 **Supplementary material: YES**

22

23 Correspondence: **Alejandro de la Sierra**, Department of Internal Medicine, Hospital

24 Mutua Terrassa, University of Barcelona, Terrassa, Spain. Email:

25 asierra17583@gmail.com

26

27 **ABSTRACT**

28 **Objective:** We aimed to evaluate the risks of death and cardiovascular death of different
29 subtypes of masked hypertension (MH), defined by either isolated daytime or nighttime
30 blood pressure (BP) elevation, or both, compared with patients with normal both office
31 and 24-hour BP.

32 **Methods:** We selected 4999 patients with MH (normal office BP and elevated 24-hour BP).
33 They were divided in 3 different categories: isolated daytime MH (elevated daytime BP and
34 normal nighttime BP, 800 patients), isolated nighttime MH (elevated nighttime BP and
35 normal daytime BP, 1069 patients) and daytime and nighttime MH (elevation of both
36 daytime and nighttime BP, 2989). All-cause and cardiovascular death (median follow-up
37 9.7 years) were assessed in each of these subtypes in comparison to 10006 patients with
38 normal both office and 24-hour BP. Hazard ratios from Cox models after adjustment for
39 clinical confounders were used for such comparisons.

40 **Results:** Compared to patients with normal both office and 24-hour BP, isolated daytime
41 MH was not associated with an increased risk of death in models adjusted for clinical
42 confounders (HR 1.07; 95%CI: 0.80-1.43). In contrast, isolated nighttime MH (HR: 1.39;
43 95%CI: 1.19-1.63) and daytime and nighttime MH (HR: 1.22; 95%CI: 1.08-1.37) had an
44 increased risk of death in comparison to patients with BP in the normal range. Similar
45 results were observed for cardiovascular death.

46 **Conclusion:** The risk of death in MH is not homogeneous and requires nocturnal BP
47 elevation, either isolated or with daytime elevation. Isolated daytime MH is not associated
48 with an increased risk of death.

49 **Keywords:** Masked hypertension; Isolated nocturnal hypertension; Ambulatory Blood
50 Pressure Monitoring; Mortality

51 **INTRODUCTION**

52 The use of out-of-office blood pressure (BP) measurements has determined the
53 existence of discrepancies in the diagnosis of about one third of individuals having both
54 office and out-of-office BP measurements [1]. This is mainly due to the presence of new
55 phenotypes, named “white-coat” and masked hypertension.

56 Masked hypertension (MH) is defined as having normal office BP (< 140/90 mm
57 Hg), but elevated BP measured by home BP monitoring, or ambulatory BP monitoring
58 (ABPM). Its prevalence ranges from 5% to 10% among the general hypertensive
59 population, but from 15% to 30% among patients with normal office BP [2]. MH is
60 associated with a high cardiovascular risk, with increased rates of cardiovascular events,
61 and mortality [3,4].

62 On the other hand, nocturnal blood pressure is widely recognized as the most
63 informative BP parameter related to cardiovascular risk and mortality [4,5]. We have
64 previously reported that nocturnal systolic BP was 6 times more informative than office
65 systolic BP in relation to mortality [4]. Moreover, the association between nocturnal BP
66 and mortality was not affected by the level of daytime BP. In contrast, daytime BP was not
67 associated with mortality after adjusting for nocturnal BP [4].

68 Mechanisms leading to masked hypertension are not fully understood and could
69 be different among individuals. Smoking and increased job strain [6], leading to increased
70 BP variability, are mostly related with daytime BP elevation. In contrast, sleep
71 disturbances [7], and lack of normal nocturnal fall in BP due to different conditions [8]
72 may be responsible for nocturnal BP elevation.

73 Based on these considerations, we sought to determine the association with
74 mortality and cardiovascular mortality of different masked hypertension subtypes,
75 defined as isolated increase in daytime BP (isolated daytime MH), isolated increase in

- 76 nighttime BP (isolated nighttime MH) or increase in both daytime and nighttime BP
- 77 (daytime and nighttime MH) in patients with normal office BP who participated in the
- 78 Spanish ABPM Registry, a prospective cohort study.

79 **PATIENTS AND METHODS**

80 **Study Design**

81 Details about Spanish ABPM Registry characteristics have been previously
82 reported [4,8]. Patients untreated or treated for hypertension were required to be aged
83 ≥ 18 years and to meet guideline-recommended indications for ABPM, which included
84 suspected white-coat hypertension, refractory or resistant hypertension, assessment of
85 drug treatment efficacy, high-risk hypertension, labile or borderline hypertension, and the
86 study of circadian BP pattern. Patients were recruited from March 2004 to December
87 2014. The study was approved by the local institutional ethics committees, and informed
88 consent was obtained from the participants.

89 **BP Measurements**

90 BP was measured at the office with a validated upper-arm cuff oscillometric
91 device, after a 5-minute rest in a sitting position. BP values were estimated as the mean of
92 2 readings. Thereafter, 24-hour ABPM was performed using the SpaceLabs 90207
93 automated oscillometric device (Snoqualmie, WA), programmed to register BP at 20-
94 minute intervals for the day and at 30-min intervals for the night. Valid registries had to
95 fulfil a series of pre-established criteria, including $\geq 70\%$ of SBP and DBP successful
96 readings during the daytime and nighttime periods, 24-hour duration, and at least one BP
97 measurement per hour [4,8]. Daytime and nighttime periods were defined individually
98 according to the patient's self-reported data of going-to-bed and getting-up times.

99 **Study Variables**

100 Variables collected for each patient based on the interviews and physical
101 examination at the time of visit and on data drawn from clinical records were defined and
102 measured in accordance with contemporary European guidelines [9-11]. These included

103 age, sex, weight, height, cardiovascular risk factors, such as smoking, diabetes mellitus,
104 and dyslipidaemia, and history of cardiovascular disease (coronary heart disease,
105 congestive heart failure, symptomatic peripheral artery disease, or cerebrovascular
106 disease).

107 **Mortality data**

108 The date and cause of death were ascertained by a computerized search of the
109 vital registry of the Spanish National Institute of Statistics (contract 20535 between the
110 University of Barcelona and the National Institute of Statistics), which has been shown to
111 be accurate and reliable with complete coverage [12]. Cause of death was determined by
112 a nosologist from the death certificate and was coded according to the *International*
113 *Statistical Classification of Diseases, Tenth Revision* (I00-I99 code for those of
114 cardiovascular origin). For each study participant, follow-up was from the date of their
115 recruitment visit in the blood pressure registry to the date of death or December 31, 2019.

116 **Statistical Analysis**

117 Data are presented as percentages for categorical variables and as mean \pm SD for
118 continuous variables. Differences in study variables among groups were assessed with
119 the Pearson χ^2 for categorical variables and ANOVA for continuous variables.

120 Associations between subtypes of masked hypertension and risk of all-cause and
121 cardiovascular death were summarized with hazard ratios and their 95% CI separately for
122 each subtype in comparison to patients with blood pressure in the normal range (office BP
123 $< 140/90$ mm Hg and 24-hour BP $< 130/80$ mm Hg), defined as the reference group.

124 Hazard ratios were calculated by Cox models, adjusted for clinical confounders (age, sex,
125 body mass index, smoking, diabetes, dyslipidaemia, antihypertensive treatment, and
126 previous cardiovascular disease) The analysis was repeated separately in hypertension-
127 treated and untreated patients.

128 The SPSS for Windows version 25.0 software (IBM, Armonk, New York) was used
129 for statistical analysis.

130

131 **RESULTS**

132 **Patient disposition and group definition**

133 The mortality cohort from the Spanish Registry included 59 124 patients (59.4%
134 treated with antihypertensive agents), from whom 15 005 (25.4%) had normal office blood
135 pressure (< 140/90 mm Hg). Among them, ABPM revealed normal 24-hour BP (< 130/80
136 mm Hg) in 10006 (66.7%), defined as having blood pressure in the normal range
137 (normotension or controlled hypertension), whilst 4999 (33.3%) had 24-hour BP \geq 130
138 and/or \geq 80 mmHg, and were classified as having MH. They were subsequently divided in 3
139 groups: isolated daytime MH (800 patients, 16% of MH), defined as having elevated
140 daytime BP (\geq 135 and/or \geq 85 mmHg), but normal nighttime BP (< 120/70 mm Hg);
141 isolated nighttime MH (1069 patients; 21.4% of MH), defined as having elevated nighttime
142 BP (\geq 120 and/or \geq 70 mmHg), but normal daytime BP (< 135/85 mm Hg), and combined
143 daytime and nighttime MH (2989; 59.8% of MH), defined as having both elevated daytime
144 and nighttime BP. A small group of MH (141 patients, 2.8% of MH) had normal both
145 daytime and nighttime BP, even global values of 24-hour BP were elevated. They were
146 excluded from the present analysis (Figure 1).

147 Table 1 shows clinical characteristics of the 3 different subtypes of MH patients,
148 as well as patients with BP in the normal range. The group with isolated daytime MH was
149 younger, more frequently smokers, and with lower proportions of diabetes, dyslipidaemia
150 and previous cardiovascular disease, compared with those with isolated nocturnal MH or
151 with combined daytime and nighttime MH. 24-hour BP was higher in patients with
152 combined daytime and nighttime MH, while mean values were similar in groups with
153 either isolated daytime or nighttime MH. Patients with isolated daytime MH were less
154 frequently treated, and as a consequence, they show lower proportions of each
155 antihypertensive drug class compared to the other two groups.

156 Compared with patients with BP in the normal range (normal values for both office
157 and 24-hour BP), the group of patients with isolated daytime MH did not show an
158 increased risk of all-cause death (HR: 1.07; 95%CI: 0.80-1.43) or cardiovascular death
159 (HR: 0.99; 95%CI: 0.55-1.76), in the confounder-adjusted model. In contrast, isolated
160 nighttime MH was associated with an increased risk in all-cause death (HR: 1.39; 95%CI:
161 1.19-1.63) and a borderline increased risk in cardiovascular death (HR: 1.33; 95%CI: 1.00-
162 1.76). Patients with combined daytime and nighttime MH also had an increased risk in all-
163 cause death (HR: 1.22; 95%CI: 1.08-1.37) and cardiovascular death (HR: 1.46; 95%CI:
164 1.19-1.78) (Table 2).

165 The same analysis was performed considering as the reference group only
166 patients with normal BP at office and at all ambulatory periods (24-hour, daytime, and
167 nighttime). Cox-regression models comparing subtypes of MH with this stricter normal BP
168 reference group revealed similar results (Table S1).

169 When the risk of all-cause and cardiovascular death in subtypes of MH was
170 estimated separately in untreated and treated patients, results went in the same
171 direction, with higher hazard ratios in isolated nighttime MH and daytime and nighttime
172 MH with respect to isolated daytime MH (Table 3). Hazard ratios for isolated nighttime MH
173 and daytime and nighttime MH were numerically higher in the treated group, although
174 interactions were not statistically significant.

175

176

177 **DISCUSSION**

178 The present study shows that the risk associated with MH may vary depending on
179 the subtype of such condition. In particular, only MH patients with nocturnal BP elevation,
180 either isolated or combined with daytime BP elevation show an increased risk of all-cause
181 and cardiovascular mortality, after adjustment for clinical confounders. In contrast, the
182 group of MH defined by an isolated daytime BP elevation with nighttime BP normal does
183 not show an increased risk of mortality. These results emphasize both the importance of
184 nocturnal BP as a risk carrier for mortality, and the evaluation of nighttime BP even in
185 patients with a diagnosis of MH.

186 MH, the condition of normal office, but elevated out-of-office BP is recognized as a
187 hypertension phenotype with high cardiovascular risk. We have previously reported that
188 MH, as defined by 24-hour BP was associated with an increased risk in all-cause and
189 cardiovascular mortality [4]. Moreover, previous smaller studies have also identified MH
190 as a condition associated with increased risk of both mortality and cardiovascular events
191 [3,13-16]. The risk has been confirmed independently of the criteria for definition of MH,
192 either elevated daytime BP, 24-hour BP, or home BP.

193 In previous reports from the Spanish ABPM Registry examining the prevalence of
194 MH, such prevalence was doubled when considering nocturnal BP elevation in
195 comparison to only daytime elevation [17,18], thus emphasizing the need of including
196 nocturnal BP for an adequate BP phenotype definition.

197 Previous studies have examined the risk of different MH subtypes (nighttime or
198 daytime BP elevation) by using either home BP measurements or ABPM, with conflicting
199 results. First, using data from the International Database on Ambulatory Blood Pressure in
200 Relation to Cardiovascular Outcomes (IDACO), Asayama et al [19] reported increased
201 hazard ratios for cardiovascular events and mortality for MH defined either by using

202 daytime or nighttime BP thresholds. In contrast, Coccina et al [20], reported that neither
203 isolated daytime nor nighttime MUCH were associated with increased risk of
204 cardiovascular events in comparison to normotensive individuals. These latter results,
205 however, were based on small numbers of both patients and events.

206 In the opposite direction and similar to our results, Fujiwara et al [21] studied 2745
207 patients included in the Japan Morning Surge-Home Blood Pressure (J-HOP), who
208 underwent nighttime home BP monitoring (3 times per night during 14 consecutive days).
209 They concluded that masked nocturnal hypertension, but not masked daytime
210 hypertension, was associated with an increased risk of cardiovascular events in
211 comparison to controlled BP. As in the previous mentioned report, the number of
212 cardiovascular events was relatively low (162).

213 Our results are also aligned with other previous reports demonstrating the
214 superiority of nocturnal over daytime BP in the evaluation of cardiovascular risk
215 [4,5,22,23]. Moreover, this increased risk also affects patients with isolated nocturnal
216 hypertension, in some cases also fulfilling the criteria for definition of isolated nocturnal
217 MH [24,25]. Reasons for the superiority of nighttime over daytime BP are probably based
218 on a more standardized measurement during sleep, without important changes in body
219 position and activity, as well as less variability. In this view, we have previously reported a
220 higher regression dilution ratio of nighttime versus daytime SBP in patients who
221 underwent 2 ABPM [4].

222 The prevalence of nocturnal MH increases in patients receiving antihypertensive
223 treatment, whilst this does not affect the prevalence of MH defined by daytime BP [18]. As
224 most patients receiving antihypertensive treatment take their medications in the morning,
225 it is possible to speculate that such treatment will interfere more closely with daytime
226 than nighttime risk. However, we have previously reported that in this cohort of patients,

227 the risk of mortality was not affected by time dosing of antihypertensive treatment [26],
228 such results aligned with a previous clinical trial [27].

229 The weaknesses of the present study are those typical of observational studies,
230 with results suggesting associations, but not causality. In addition, results are based on a
231 single set of BP measurements (office and ABPM). It has been widely recognized that the
232 reproducibility of BP phenotypes is low when two or more sets of measurements are
233 performed [28,29]. Additionally, changes in treatment occurred during follow-up could
234 also affect both BP phenotype definition and risk of mortality. Strengths of the study
235 include the large number of patients (more than 15 000 with normal office BP and almost
236 5000 fulfilling criteria of MH) and a long follow-up of almost 10 years.

237 In conclusion, the risk of MH varies depending on the subtype, with only those with
238 nighttime BP elevation (either isolated or combined with daytime elevation) having
239 increased risk of mortality. In contrast, MH defined by isolated daytime BP elevation, with
240 normal nocturnal values, does not have an increased risk in comparison to patients with
241 normal BP. These results emphasize the importance of nocturnal BP in the assessment of
242 risk and the need to include such parameter in an accurate evaluation of individuals.
243 Although some guidelines recommend only daytime out-of-office BP evaluation (home BP
244 monitoring or daytime ABPM) [30], it seems reasonable, as the most recent European
245 guidelines recommend [31], the inclusion of the nighttime period (by 24-hour ABPM, or by
246 nocturnal home BP monitoring, if available) in the out-of-office BP evaluation.

247

248

249 **REFERENCES**

- 250 1. O'Brien E, Parati G, Stergiou G, Asmar R, Beilin L, Bilo G, et al. European Society of
251 Hypertension position paper on ambulatory blood pressure monitoring. *J
252 Hypertens* 2013; 31: 1731-1768.
- 253 2. Gorostidi M, Vinyoles E, Banegas JR, de la Sierra A. Prevalence of white-coat and
254 masked hypertension in national and international registries. *Hypertens Res* 2015;
255 38: 1-7.
- 256 3. Bobrie G, Clerson P, Ménard J, Postel-Vinay N, Chatellier G, Plouin PF. Masked
257 hypertension: a systematic review. *J Hypertens* 2008; 26:1715-1725.
- 258 4. Staplin N, de la Sierra A, Ruilope LM, Emberson JR, Vinyoles E, Gorostidi M, et al.
259 Relationship between clinic and ambulatory blood pressure and mortality. An
260 observational cohort study in 59,124 patients. *Lancet* 2023; 401:2041-2050.
- 261 5. Yang WY, Melgarejo JD, Thijss L, Zhang ZY, Boggia J, Wei FF, et al. Association of
262 office and ambulatory blood pressure with mortality and cardiovascular
263 outcomes. *JAMA* 2019; 322: 409-420.
- 264 6. Landsbergis PA, Dobson M, Koutsouras G, Schnall P. Job strain and ambulatory
265 blood pressure: a meta-analysis and systematic review. *Am J Public Health* 2013;
266 103: e61-e71.
- 267 7. Mezick EJ, Hall M, Matthews KA. Sleep duration and ambulatory blood pressure in
268 black and white adolescents. *Hypertension* 2012; 59: 747-752.
- 269 8. De la Sierra A, Redon J, Banegas JR, Segura J, Parati G, Gorostidi M, et al.
270 Prevalence and factors associated with circadian blood pressure patterns in
271 hypertensive patients. *Hypertension* 2009; 53: 466-472.
- 272 9. European Society of Hypertension-European Society of Cardiology Guidelines
273 Committee. 2003 European Society of Hypertension-European Society of

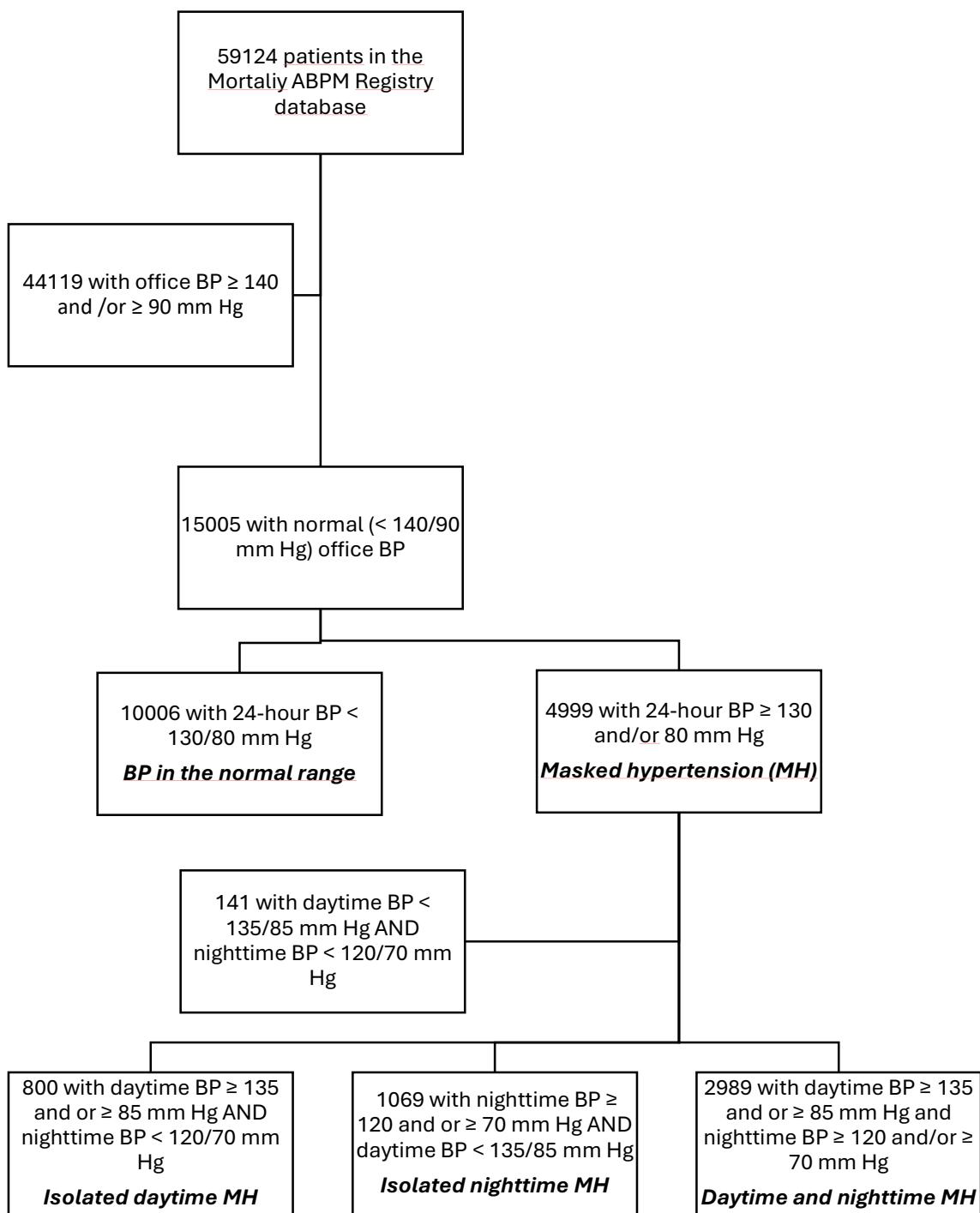
274 Cardiology guidelines for the management of arterial hypertension. *J Hypertens*
275 2003; 21: 1011-1053.

276 10. Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G, et al.
277 2007 Guidelines for the management of arterial hypertension: The Task Force for
278 the Management of Arterial Hypertension of the European Society of Hypertension
279 (ESH) and of the European Society of Cardiology (ESC). *J Hypertens* 2007; 25:
280 1105-1187.

281 11. Mancia G, Fagard R, Narkiewicz K, Redón J, Zanchetti A, Böhm M, et al.
282 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Task
283 Force for the management of arterial hypertension of the European Society of
284 Hypertension (ESH) and of the European Society of Cardiology (ESC). *J Hypertens*
285 2013; 31: 1281-1357.

286 12. Instituto Nacional de Estadística. Informes metodológicos estandarizados.
287 <http://www.ine.es/dynt3/metadatos/es/RespuestaPrint.html?oper=23> (accessed
288 May 27, 2024).

289 13. Stergiou GS, Asayama K, Thijss L, Kollias A, Niiranen TJ, Hozawa A, et al. Prognosis
290 of white-coat and masked hypertension: International Database of Home blood
291 pressure in relation to Cardiovascular Outcome. *Hypertension* 2014; 63: 675-682.


292 14. Ohkubo T, Kikuya M, Metoki H, Asayama K, Obara T, Hashimoto J, et al. Prognosis
293 of "masked" hypertension and "white-coat" hypertension detected by 24-h
294 ambulatory blood pressure monitoring 10-year follow-up from the Ohasama study.
295 *J Am Coll Cardiol.* 2005; 46: 508-515.

296 15. Pierdomenico SD, Lapenna D, Bucci A, Di Tommaso R, Di Mascio R, Manente BM,
297 et al. Cardiovascular outcome in treated hypertensive patients with responder,
298 masked, false resistant, and true resistant hypertension. *Am J Hypertens* 2005; 18:
299 1422-1428.

- 300 16. Zhang DY, Guo QH, An DW, Li Y, Wang JG. A comparative meta-analysis of
301 prospective observational studies on masked hypertension and masked
302 uncontrolled hypertension defined by ambulatory and home blood pressure. *J
303 Hypertens* 2019; 37: 1775-1785.
- 304 17. Banegas JR, Ruilope LM, de la Sierra A, de la Cruz JJ, Gorostidi M, Segura J, et al.
305 High prevalence of masked uncontrolled hypertension (MUCH) in people with
306 treated hypertension. *Eur Heart J*. 2014; 35: 3304-3312.
- 307 18. De la Sierra A, Banegas JR, Vinyoles E, Segura J, Gorostidi M, de la Cruz JJ, et al.
308 Prevalence of masked hypertension in untreated and treated patients with office
309 blood pressure below 130/80 mmHg. *Circulation* 2018; 137: 2651-2653.
- 310 19. Asayama K, Thijs L, Li Y, Gu YM, Hara A, Liu YP, et al. Setting thresholds to varying
311 blood pressure monitoring intervals differentially affects risk estimates associated
312 with white-coat and masked hypertension in the population. *Hypertension*. 2014;
313 64: 935-942.
- 314 20. Coccina F, Pierdomenico AM, Cuccurullo C, Pizzicannella J, Madonna R, Trubiani
315 O, et al. Prognostic value of masked uncontrolled hypertension defined by
316 different ambulatory blood pressure criteria. *Am J Hypertens* 2020; 33: 726-733.
- 317 21. Fujiwara T, Hoshide S, Kanegae H, Kario K. Cardiovascular event risks associated
318 with masked nocturnal hypertension defined by home blood pressure monitoring
319 in the J-HOP nocturnal blood pressure study. *Hypertension* 2020; 76: 259-266.
- 320 22. Hansen TW, Li Y, Boggia J, Thijs L, Richart T, Staessen JA. Predictive role of the
321 nighttime blood pressure. *Hypertension* 2011; 57: 3-10.
- 322 23. Kario K, Kanegae H, Tomitani N, Okawara Y, Fujiwara T, Yano Y, et al. Nighttime
323 blood pressure measured by home blood pressure monitoring as an independent
324 predictor of cardiovascular events in general practice. *Hypertension* 2019; 73:
325 1240-1248.

- 326 24. Fan HQ, Li Y, Thijs L, Hansen TW, Boggia J, Kikuya M, et al. Prognostic value of
327 isolated nocturnal hypertension on ambulatory measurement in 8711 individuals
328 from 10 populations. *J Hypertens* 2010; 28: 2036-2045.
- 329 25. Wang C, Li Y, Zhang J, Ye Z, Zhang Q, Ma X, et al. Prognostic effect of isolated
330 nocturnal hypertension in Chinese patients with nondialysis chronic kidney
331 disease. *J Am Heart Assoc* 2016; 5: e004198.
- 332 26. De la Sierra A, Ruilope LM, Martínez-Camblor P, Vinyoles E, Gorostidi M, Segura
333 J, et al. Impact of timing of antihypertensive treatment on mortality: an
334 observational study from the Spanish Ambulatory Blood Pressure Monitoring
335 Registry. *J Hypertens* 2024; 42: 260-266.
- 336 27. Mackenzie IS, Rogers A, Poulter NR, Williams B, Brown MJ, Webb DJ, et al.
337 Cardiovascular outcomes in adults with hypertension with evening versus morning
338 dosing of usual antihypertensives in the UK (TIME study): a prospective,
339 randomised, open-label, blinded-endpoint clinical trial. *Lancet* 2022; 400: 1417-
340 1425.
- 341 28. Abdalla M, Goldsmith J, Muntner P, Diaz KM, Reynolds K, Schwartz JE, et al. Is
342 Isolated Nocturnal Hypertension. A Reproducible Phenotype? *Am J Hypertens*
343 2016; 29: 33-38.
- 344 29. De la Sierra A, Vinyoles E, Banegas JR, Parati G, de la Cruz JJ, Gorostidi M, et al.
345 Short-term and long-term reproducibility of hypertension phenotypes obtained by
346 office and ambulatory blood pressure measurements. *J Clin Hypertens*
347 (Greenwich) 2016; 18: 927-933.
- 348 30. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb
349 C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA
350 Guideline for the Prevention, Detection, Evaluation, and Management of High
351 Blood Pressure in Adults. A Report of the American College of

352 Cardiology/American Heart Association Task Force on Clinical Practice
353 Guidelines. *J Am Coll Cardiol* 2018; 71: e127-e248.
354 31. Mancia G, Kreutz R, Brunström M, Burnier M, Grassi G, Januszewicz A, et al. 2023
355 ESH Guidelines for the management of arterial hypertension The Task Force for the
356 management of arterial hypertension of the European Society of Hypertension
357 Endorsed by the International Society of Hypertension (ISH) and the European
358 Renal Association (ERA). *J Hypertens* 2023; 41: 1874-2071.
359

360

361 **Figure 1. Flow chart of patients' disposition.**

362 **Table 1. Demographic and clinical characteristics of the 3 different groups of patients**
 363 **with masked hypertension (MH)**

Parameter	BP in the normal range N=10006	Isolated daytime MH N=800	Isolated nighttime MH N=1069	Daytime and nighttime MH N=2989	P value
Male sex, %	45.9	60.1	58.7	59.5	0.895
Age, y	58.1 ± 14.9	51.8 ± 13.6	60.6 ± 14.4	57.4 ± 14.3	<0.001
BMI, kg/m ²	28.6 ± 5.0	27.9 ± 4.2	28.7 ± 4.9	28.4 ± 4.6	<0.001
Current smoker, %	14.6	22.3	15.2	18.5	<0.001
Diabetes, %	16.8	12.5	21.2	18.6	<0.001
Dyslipidaemia, %	42.2	34.6	43.7	41.8	<0.001
Cardiovascular disease, %	12.1	5.4	14.3	10.6	<0.001
Blood pressure, mmHg					
Clinic systolic	125.8 ± 10.1	129.6 ± 7.3	128.1 ± 9.3	129.9 ± 8.0	<0.001
Clinic diastolic	76.2 ± 8.4	80.2 ± 6.9	77.2 ± 8.8	78.9 ± 8.1	<0.001
24-h systolic	116.3 ± 7.9	129.1 ± 6.3	128.8 ± 5.4	136.4 ± 9.1	<0.001
24-h diastolic	69.5 ± 6.7	79.7 ± 6.1	76.7 ± 6.7	82.2 ± 8.4	<0.001
Daytime systolic	119.1 ± 8.4	135.2 ± 7.1	129.1 ± 5.0	139.3 ± 8.9	<0.001
Daytime diastolic	72.3 ± 7.3	84.8 ± 6.9	77.8 ± 7.0	84.9 ± 9.0	<0.001
Nighttime systolic	108.9 ± 10.4	110.5 ± 6.3	127.3 ± 11.0	128.4 ± 12.8	<0.001
Nighttime diastolic	62.2 ± 7.3	64.3 ± 4.7	73.2 ± 7.5	74.5 ± 8.4	<0.001
Antihypertensive treatment, %	61.0	47.6	63.4	58.1	<0.001
Type of treatment, %					
Diuretics	28.5	18.8	28.0	26.2	<0.001
CCB	17.1	12.8	24.6	19.4	<0.001
Beta-blockers	16.0	9.9	14.5	13.7	<0.001
ACE inhibitors	19.1	15.1	20.9	18.2	0.007
ARB	31.6	22.1	31.6	31.6	<0.001
Alpha-blockers	3.2	1.5	7.4	4.4	<0.001
Others	0.9	0.6	1.1	0.9	0.858

364 Data expressed as mean ± SD, or %. BMI: body mass index; CCB: calcium channel

365 blockers, ARB: angiotensin receptor blockers

366 **Table 2. Number of deaths and hazard ratios (95% confidence interval) for different**
 367 **subtypes of masked hypertension (isolated daytime, isolated nighttime, and**
 368 **combined daytime and nighttime) in relation to all-cause and cardiovascular**
 369 **mortality**

	Number of deaths (%)	Confounder- adjusted*	P value
All-cause mortality			
Blood pressure in the normal range	1074 (10.7%)	1.00 (ref)	
N=10006			
Isolated daytime masked hypertension	48 (6.0%)	1.07 (0.80-1.43)	0.655
N=800			
Isolated nighttime masked hypertension	189 (17.7%)	1.39 (1.19-1.63)	<0.001
N=1069			
Daytime and nighttime masked hypertension	364 (12.2%)	1.22 (1.08-1.37)	0.001
N=2989			
Cardiovascular mortality			
Blood pressure in the normal range	337 (3.4%)	1.00 (ref)	
N=10006			
Isolated daytime masked hypertension	12 (1.5%)	0.99 (0.55-1.76)	0.962
N=800			
Isolated nighttime masked hypertension	57 (5.3%)	1.33 (1.00-1.76)	0.052
N=1069			
Daytime and nighttime masked hypertension	137 (4.6%)	1.46 (1.19-1.78)	<0.001
N=2989			

370 Adjusted for age, sex, body mass index, smoking habit, diabetes, dyslipidaemia, previous
 371 cardiovascular disease, and treatment for hypertension

Table 3. Number of deaths and hazard ratios (95% confidence interval) for different subtypes of masked hypertension (isolated daytime, isolated nighttime, and combined daytime and nighttime) in relation to all-cause and cardiovascular mortality in patients with and without treatment for hypertension

	Untreated			Treated			Interaction p value
	Number of deaths (%)	Confounder-adjusted*	P value	Number of cardiovascular deaths (%)	Confounder-adjusted*	P value	
All-cause mortality							
Blood pressure in the normal range, N=3901	266 (6.8%)	1.00 (ref)		808 (13.2%)	1.00 (ref)		
Isolated daytime MH, N=419	15 (3.6%)	1.02 (0.60-1.72)	0.954	33 (8.7%)	1.09 (0.75-1.51)	0.725	0.901
Isolated nighttime MH, N=391	40 (10.2%)	1.18 (0.85-1.66)	0.326	149 (22.0%)	1.44 (1.20-1.71)	<0.001	0.433
Daytime and nighttime MH, N=1252	85 (6.8%)	1.10 (0.86-1.40)	0.468	279 (16.1%)	1.25 (1.09-1.44)	0.001	0.386
Cardiovascular mortality							
Controlled blood pressure, N=6105	66 (1.7%)	1.00 (ref)		271 (4.4%)	1.00 (ref)		
Isolated daytime MH, N=381	0 (0%)			12 (3.1%)	1.25 (0.70-2.24)	0.451	
Isolated nighttime MH, N=678	10 (2.6%)	1.20 (0.61-2.37)	0.602	47 (6.9%)	1.31 (0.96-1.79)	0.092	0.982
Daytime and nighttime MH, N=1737	23 (1.8%)	1.25 (0.77-2.01)	0.367	114 (6.6%)	1.50 (1.20-1.87)	<0.001	0.453

Adjusted for age, sex, body mass index, smoking habit, diabetes, dyslipidaemia, and previous cardiovascular disease. MH: Masked hypertension; MUCH: Masked uncontrolled hypertension