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ABSTRACT

Sudden unexpected death in epilepsy (SUDEP) is the leading cause of premature mortality among people with epi-
lepsy. Evidence from witnessed and monitored SUDEP cases indicates seizure-induced cardiovascular and respira-
tory failures; yet, the underlying mechanisms remain obscure. SUDEP occurs often during the night and early morning
hours, suggesting that sleep or circadian rhythm-induced changes in physiology contribute to the fatal event. Resting-
state functional MRI (fMRI) studies have found altered functional connectivity between brain structures involved in
cardiorespiratory regulation in later SUDEP cases and in individuals at high risk of SUDEP. However, those connectiv-
ity findings have not been related to changes in cardiovascular or respiratory patterns. Here, we compared fMRI
patterns of brain connectivity associated with regular and irregular cardiorespiratory rhythms in SUDEP cases with
those of living epilepsy patients of varying SUDEP risk and healthy controls. We analysed resting-state fMRI data from
98 patients with epilepsy (9 who subsequently succumbed to SUDEP, 43 categorized as low SUDEP risk (no tonic-
clonic seizures (TCS) in the year preceding the fMRI scan), and 46 as high SUDEP risk (>3 TCS in the year preceding
the scan)), and 25 healthy controls. The global signal amplitude (GSA), defined as the moving standard deviation of
the fMRI global signal, was used to identify periods with regular (“low state”) and irregular (“high state”) cardiorespi-
ratory rhythms. Correlation maps were derived from seeds in 12 regions with a key role in autonomic or respiratory
regulation for the low and high states. Following principal component analysis, component weights were compared
between the groups. We found widespread alterations in connectivity of precuneus/posterior cingulate cortex in epi-
lepsy compared with controls in the low state (regular cardiorespiratory activity). In the low state, and to a lesser
degree in the high state, reduced anterior insula connectivity (mainly with anterior and posterior cingulate cortex) in
epilepsy appeared, relative to healthy controls. For SUDEP cases, the insula connectivity differences were inversely
related to the interval between the fMRI scan and death. The findings suggest that anterior insula connectivity mea-
sures may provide a biomarker of SUDEP risk. The neural correlates of autonomic brain structural activity associated
with different cardiorespiratory rhythms may shed light on the mechanisms underlying the fatal event in SUDEP.
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1. INTRODUCTION

Sudden unexpected death in epilepsy (SUDEP) is the
leading cause of premature death in patients with intrac-
table epilepsy, with an annual incidence estimated at
approximately 1.2 per 1,000 persons with epilepsy (Keller
et al., 2018; Sveinsson et al., 2017; Thurman et al., 2017).
SUDEP is defined as “the sudden, unexpected, wit-
nessed or unwitnessed, nontraumatic, and nondrowning
death in patients with epilepsy, with or without evidence
for a seizure and excluding documented status epilepti-
cus, in which postmortem examination does not reveal a
structural or toxicologic cause for death” (Nashef et al.,
2012). SUDEP imposes a substantial public health bur-
den (Thurman et al., 2017) and, among neurological dis-
orders, ranks second only to stroke in terms of potential
years of life lost (Thurman et al., 2014). Frequent general-
ized and focal-to-bilateral tonic—clonic seizures (TCS;
Fisher et al., 2017) are the greatest risk factors. Sleep and
nocturnal TCS appear to facilitate SUDEP (Ali et al., 2017;
Ryvlin et al., 2013). The pathophysiology of SUDEP
remains poorly understood (Devinsky et al., 2016;
Sveinsson et al., 2020), and seizure control is considered
the most effective strategy for reducing risk of fatal out-
comes. However, currently, strategies for assessing
SUDERP risk on an individual basis are still lacking.
Epilepsy monitoring unit data from the MORTEMUS
study (MORTality in Epilepsy Monitoring Unit Study) sug-
gest that SUDEP results from cardiorespiratory dysfunc-
tion induced by TCS (Ryvlin et al., 2013). Vilella et al.
(2019) found that post-ictal central apnea occurs in one
out of five TCS and was present in near-SUDEP and
SUDEP cases, suggesting that breathing cessation may
represent an important SUDEP biomarker. Cardiovascu-
lar parameters may also provide markers; heart rate and
its variability, measured in the peri-ictal period (e.g., post-
ictal mean heart rate; Arbune et al., 2020), are associated
with markers of seizure severity that have been linked to
SUDEP, such as the presence of TCS and duration of
post-ictal generalized EEG suppression (PGES). How-
ever, although some patients succumb to SUDEP after a
few seizures, others survive hundreds of similar attacks,
which suggests the presence of additional pathophysio-
logical mechanisms in SUDEP victims (Devinsky &
Sisodiya, 2020). Reduced interictal heart rate variability
(HRV) measured during wakefulness has also been asso-
ciated with SUDEP (DeGiorgio et al., 2010; Sivathamboo
et al., 2021), raising the possibility of chronic impairment
in autonomic regulation in SUDEP. Further evidence of
the role of chronic dysregulation is provided by the recent
observation of abnormal heart rate responses during and
after hyperventilation in patients who subsequently died
of SUDEP (Szurhaj et al., 2021), and of volume changes

in brain regions with key roles in autonomic regulation
(Allen, Vos, et al., 2019; Mueller et al., 2018).

Functional MRI (fMRI) is a non-invasive neuroimaging
tool that can evaluate functional connectivity (FC)
between brain structures at a whole-brain level. Early
fMRI studies focusing on FC revealed altered connectiv-
ity of regions involved in cardiorespiratory regulation
such as the anterior cingulate cortex, thalamus, and
regions of the brainstem in SUDEP cases and patients at
high risk of SUDEP (Allen et al., 2017; Allen, Harper, et al.,
2019; Tang et al., 2014). These studies, however, did not
take into consideration the time-varying nature of FC
observed on the scale of seconds to minutes, which may
provide a more holistic understanding of brain functional
organization (Chang & Glover, 2010; Preti et al., 2017).
There is accumulating evidence that FC dynamics change
with different autonomic and sleep states (Chang et al.,
2013; Haimovici et al., 2017). Thus, examining the
changes in FC occurring in different dynamic patterns of
breathing or cardiovascular action, such as those that
appear during different sleep states or other provoca-
tions, may reveal new insights into mechanisms that con-
tribute to SUDEP different from those FC values obtained
in stable physiological conditions.

In addition to the apparent role of sleep and nocturnal
TCS, more attention to the state-dependent nature of
autonomic manifestations is warranted. A stronger asso-
ciation exists between SUDEP and post-ictal rather than
ictal central apnea (Vilella et al., 2019); whereas abnor-
mally low HRV occurred in SUDEP during wakefulness,
but not during sleep (Sivathamboo et al., 2021). Thus,
examination of the state-dependent nature of autonomic
influences on resting-state fMRI appears warranted. In
particular, the observation that subjects who exhibit
strong fluctuations in heart rate and breathing patterns
during fMRI scans also show elevated global signal
amplitudes (GSA), which reflect strong BOLD fMRl fluctu-
ations globally in the brain (Orban et al., 2020; Power
et al., 2017; Xifra-Porxas et al., 2021), and may be key to
better understand SUDEP physiology.

We sought to characterize the patterns of FC in
patients who eventually succumbed to SUDEP, living
patients of varying SUDEP risk levels, and healthy con-
trols, with respect to variations in regularity of cardiore-
spiratory rhythms. First, we used a publicly available
fMRI dataset (Van Essen et al.,, 2013) with concurrent
physiological recordings to demonstrate that the associ-
ation of GSA with cardiac and breathing rhythms is main-
tained even within short fMRI scans (~15 minutes), with
periods of high GSA corresponding to times with irregu-
larities in cardiac or breathing activity, such as periods
with transient apnea. Second, we characterized patterns
of FC in SUDEP cases and epilepsy patients alive at the
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time of this analysis by employing a state-dependent
framework and GSA as a marker of cardiorespiratory
variability. Moreover, given the well-documented success
of FC measures in predicting symptom severity in individ-
uals for a range of disorders (Du et al., 2017; Uddin et al.,
2013; Yoo et al., 2018), we also investigated whether FC
measures in SUDEP cases were associated with the time
between the fMRI scan and SUDEP occurrence.

2. MATERIALS AND METHODS

The principal aim was to study the link between brain
connectivity and autonomic activity in patients with epi-
lepsy using a large resting-state fMRI dataset that did not
comprise physiological recordings. This study consisted
of two experiments: In Experiment 1, we employed a set
of resting-state fMRI data that included concurrent
recordings from a photoplethysmograph (PPG) and a
respiratory belt to demonstrate that global signal ampli-
tude (GSA) fluctuations reflect changes in cardiorespira-
tory activity. Previous studies defined GSA as the
standard deviation of the global signal across the entire
scan (Wong et al., 2013, 2016) and showed that GSA is
linked to physiological parameters (Orban et al., 2020).
Here, we computed GSA over significantly shorter dura-
tions, using a sliding window approach, to illustrate that
the relationship of GSA with physiological parameters
also is maintained at shorter timescales. Experiment 2
consisted of the characterization of the patterns of FC in
patients with epilepsy using GSA as a marker for breath-
ing and cardiac irregularities.

A methodological difference between the two data-
sets used in this study is the repetition time (TR): 0.72 sec-
onds in the HCP data and 3 seconds in our own dataset.
While faster TRs are generally advantageous for captur-
ing high-frequency physiological signals, the physiologi-
cal variables of interest in our study (heart rate, breathing
rate, respiration volume, and PPG amplitude) fluctuate at
lower frequencies (~0.1 Hz), which are well within the
range captured by our sampling rate (0.33 Hz), satisfying
the Nyquist criterion. Furthermore, previous work has
shown that fMRI fluctuations related to these physiologi-
cal variables can be reliably characterized even with
slower TRs (Kassinopoulos & Mitsis, 2019, 2021). There-
fore, we believe the TR difference does not significantly
impact the validity of our findings.

2.1. Experiment 1: Association of fMRI global signal
amplitude with variations in cardiorespiratory
rhythms (HCP data)

To demonstrate that the global signal amplitude is linked
to cardiorespiratory activity, we examined resting-state

fMRI data from the Human Connectome Project (HCP;
Van Essen et al., 2013) that included concurrent record-
ings from a photoplethysmograph (PPG) and a respira-
tory belt. A description of the preprocessing pipeline for
the HCP dataset can be found in the Supplementary
Material. Data from a subset of 400 healthy young partic-
ipants previously characterized by good-quality physio-
logical recordings through visual inspection in earlier
studies (Kassinopoulos & Mitsis, 2019, 2022; Xifra-Porxas
et al., 2021) were included. The global signal, defined as
the mean fMRI time series averaged across all voxels in
the grey matter, was computed from the fMRI data after
volume realignment and high-pass filtering (0.008 Hz).
Subsequently, the global signal amplitude (GSA), defined
as the standard deviation of the global signal, was com-
puted in a sliding window manner for window lengths
ranging from 10 to 120 seconds (or equivalently, 14 to
167 time points) using the Matlab function movstd. A
one-sample shift was applied between consecutive win-
dows, and the standard deviation computed within a win-
dow was assigned to the center of the window in terms of
time. In addition, the following four variables were
obtained from the physiological recordings: (1) breathing
rate; (2) respiration volume, as defined in Chang et al.
(2009; i.e., moving standard deviation of respiratory sig-
nal with a window length of 6 seconds); (3) heart rate; and
(4) PPG amplitude, defined as the amplitude of the oscil-
latory signal in the PPG (Kassinopoulos & Mitsis, 2021).
Subsequently, the moving standard deviation of the
physiological variables was also estimated for window
lengths ranging from 10 to 120 seconds in 10-second
increments. Then, for each window length, the correlation
of the GSA with each of the four physiological variables
was computed and averaged across all individuals, to
determine the length that maximized the correlation with-
out sacrificing temporal resolution.

2.2. Experiment 2: Characterization of the GSA-
related patterns of FC in patients with epilepsy

2.2.1. Subjects

We retrospectively ascertained cases of SUDEP and
high- and low-risk patients from the University College
London Hospitals (UCLH) clinical database who had
undergone an EEG-fMRI scan in the period between
2005 and 2015 (Coan et al., 2016). The inclusion criteria
were (1) the availability of a resting-state EEG-fMRI scan
and (2) a high-resolution T,-weighted scan. The exclusion
criteria were (1) large brain lesion or previous neurosur-
gery (we considered “large” as lesions extending across
multiple lobes, involving deep brain structures, or caus-
ing significant mass effect—for example, tumors, vascu-
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lar malformations—and typically larger than a small area
of focal cortical dysplasia (FCD) or hippocampal sclero-
sis; (2) incomplete clinical or imaging data (e.g., aban-
doned scans); and (3) having died in the following years
with a cause of death not related to SUDEP. Only patients
alive at the time of writing were considered as low-risk or
high-risk epilepsy controls.

Out of a cohort of 189 patients who underwent
resting-state EEG-fMRI, 14 deaths were identified in the
UCLH clinical database, of which 10 were classified as
SUDEP based on their death certificate. One SUDEP
case was excluded due to the presence of a large brain
lesion. The remaining nine SUDEP cases (five females,
mean age 26.2 + 6.2 years) were classified as either
probable or definite SUDEP based on the definitions
proposed in Nashef et al. (2012). The 9 examined SUDEP
cases were matched with 43 low-risk, 46 high-risk
patients, and 25 healthy controls based on sex and age
at the time of scan. High-risk patients were considered
those who experienced more than three TCS in the year
preceding the scan and low-risk patients were consid-
ered those who did not experience TCS. Only patients
whose clinical records allowed for a clear classification
into low- or high-risk groups based on tonic—clonic sei-
zure frequency were included. This approach helped to
maintain relatively balanced and homogeneous group
sizes, avoiding the inclusion of cases with ambiguous
risk profiles or incomplete data. Group demographics
and clinical details are shown in Supplementary
Table S1. The study was approved by our local research
ethics committee, and all patients gave written informed
consent.

2.2.2. Simultaneous EEG-fMRI acquisition

Scanning was performed at the Epilepsy Society (Chal-
font St Peter, Buckinghamshire, UK) on a 3.0 Tesla GE
(Signa excite HDX) scanner. A 20-minute (400 vol) T,*-
weighted fMRI scan was collected from each subject
except for two patients who were scanned for 10 min-
utes. The fMRI scan was collected using a gradient-echo
echo-planar-imaging with the following characteristics:
repetition time (TR) = 3,000 ms, echo time (TE) = 30 ms,
flip angle = 90°, matrix size = 64 x 64, field of view
(FOV) = 24 x 24 cm?, slice thickness = 2.4 mm with
0.6 mmgap, 44 slices, and voxel size =3.75x 3.75x3mm?3.
Subjects were instructed to keep their eyes closed, avoid
falling asleep, and not think about anything in particular.
A T,-weighted image was also acquired using a FSPGR
(fast spoiled gradient recalled echo) sequence, with the
following parameters: matrix size = 256 x 256, FOV = 24
X 24 cm?, slice thickness = 1.5 mm, 150 slices, and voxel
size = 0.94 x 0.94 x 1.5 mm?.

Scalp EEG signals and an electrocardiogram (ECG)
signal were simultaneously acquired during fMRI scan-
ning at 5 kHz using a 64-channel MR-compatible EEG
system with a cap comprising ring Ag/AgCl electrodes
(BrainAmp MR+; Brain Products GmbH, Gilching, Ger-
many). The electrodes were placed according to the
10/20 system and referenced to electrode FCz.

2.2.3. Preprocessing of fMRI data

The preprocessing of fMRI data was conducted using the
Statistical Parametric Mapping software (SPM12, Wel-
come Trust Centre for Neuroimaging, London, UK, http://
www.fil.ion.ucl.ac.uk/spm; Friston et al., 2007) in a Mat-
lab environment (R2020a; Mathworks, Natick, Massa-
chusetts, USA). The first five functional volumes were
discarded to allow steady-state magnetization to be
established, and the remaining volumes were realigned
to correct for head movements. The structural image of
each subject was co-registered to the mean realigned
functional volume and, subsequently, underwent tissue
segmentation into grey matter, white matter, and cerebro-
spinal fluid tissue compartments. The functional images,
as well as the coregistered structural images and tissue
compartment masks, were spatially normalized to the
Montreal Neurological Institute (MNI) reference space
using non-linear transformation.

To account for anatomical variability across partici-
pants and reduce thermal noise, all individual functional
volumes were smoothed using a 5 mm full-width half-
maximum (FWHM) Gaussian kernel. The fMRI time series
were high-pass filtered at 0.008 Hz to avoid spurious cor-
relations that arise from low-frequency fluctuations
(Leonardi & Van De Ville, 2015).

We used the frame-wise displacement (FD) introduced
by Salek-Haddadi et al. (2006), implemented here as cal-
culated in Power et al. (2012), to identify and exclude
subjects with high levels of motion, as motion can lead to
systematic biases in FC studies (Kassinopoulos & Mitsis,
2022; Power et al., 2015; Savva et al., 2020; Xifra-Porxas
et al.,, 2021). FD was calculated from the six motion
realignment parameters, reflecting the extent of scan-to-
scan head motion at each time point. Subjects who were
characterized by mean FD larger than 0.25 mm were
excluded. For the datasets included in this study, time
points with FD larger than 0.2 mm were considered outli-
ers, and corrected by linear interpolation.

Finally, to further mitigate the effects of motion and
reduce contributions from physiological processes and
scanner artefacts, we regressed the following nuisance
effects from all voxel time series: the first 10 principal
components extracted from all white matter voxel time
series (Behzadi et al., 2007), 6 regressors related to
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cardiac pulsatility artefacts obtained with the convolu-
tion model proposed in Kassinopoulos and Mitsis (2021)
in conjunction with the R-wave peaks detected in the
ECG (Supplementary Material —Section b), and the mean
fMRI time series averaged across all voxels within the
grey matter (Macey et al., 2004). The mean grey matter
signal was considered a nuisance regressor—a practice
known as global signal regression (GSR)—as there is
accumulating evidence that the mean grey matter signal
(also referred to as the global signal) reflects changes in
heart rate and breathing patterns (Kassinopoulos &
Mitsis, 2019; Xifra-Porxas et al., 2021). Note that although
GSA, which is used in this study to probe regularities in
cardiorespiratory activity, is derived from the grey matter
signal, the two aforementioned signals are weakly cor-
related, with a group average correlation of -0.05 (+0.25)
(for a GSA estimation with a sliding window length of
80 seconds).

2.2.4. Seed-based connectivity and spatial
distribution pattern analysis

A seed-based FC analysis was employed with seeds
consisting of regions with a key role in autonomic and
respiratory regulation (Benarroch, 1993; Critchley et al.,
2003; Lacuey et al., 2018; Song et al., 2018; Valenza
et al., 2019). Specifically, the seeds consisted of the
mean time series of voxels within the following 12 regions:
anterior cingulate cortex, anterior insula, posterior insula,
thalamus, amygdala, hippocampus, parahippocampal
gyrus, precuneus/posterior cingulate cortex (PCu/PCC),
cuneus, caudate, putamen, and Brodmann area 25.
Those regions were defined based on parcels (i.e., non-
overlapping contiguous regions) from the Brainnetome
atlas (Fan et al., 2016).

As in Experiment 1, the global signal used to derive
GSA was computed as the mean time series averaged
across all voxels in the grey matter, after volume realign-
ment and high-pass filtering (0.008 Hz), and before
regressing out nuisance regressors. A window length of
80 seconds was used to derive the GSA, as this length
was found in Experiment 1 to yield a strong association
between the GSA and the physiological variables, while
also preserving an adequate temporal resolution (see
Results, Section 3.1). To identify periods of relatively
stable versus unstable cardiorespiratory activity, we
used GSA as a proxy. Specifically, we divided the GSA
time series into quartiles and selected the time points in
the lowest 25% (first quartile) to represent the “low
state” —periods of more regular physiological rhythms —
and the highest 25% (fourth quartile) to represent the
“high state” —periods of more irregular rhythms. This
classification is supported by results from Experiment 1

(see Fig. 2; Supplementary Fig. S2), which demonstrate
that low GSA values correspond to periods of stable
breathing and heart rate, while high GSA values coin-
cide with transient apnea, heart rate surges, or fluctua-
tions in PPG amplitude. These selected time points were
then used to compute functional connectivity separately
for each state (Fig. 1A). Time points that corresponded
to the second and third quartile were discarded from the
analysis.

The fMRI time series derived for each seed was cor-
related with all regions in the grey matter on a voxel-wise
basis (Pearson correlation), considering the low and high
states, separately. Time points that corresponded to the
low state were concatenated before computing the
Pearson correlation between seed and voxel time series.
Likewise, time points in the high state were concate-
nated before computing the Pearson correlation. Impor-
tantly, while this process involves concatenating
non-contiguous time points corresponding to each
physiological state, the use of Pearson correlation as the
metric of connectivity is inherently blind to the temporal
order of the input data. That is, Pearson correlation eval-
uates the linear relationship between two signals regard-
less of the order of the observations. A similar strategy
has been used in prior studies, such as Rai et al. (2024),
where high-motion volumes were censored and the
remaining parcel time series were concatenated across
runs and days before computing the functional connec-
tivity matrices.

The correlation values were then converted into
z-scores using Fisher’s transform (Fig. 1B). For each
seed, the correlation maps were vectorized and concate-
nated across subjects and states, resulting in a two-
dimensional matrix where rows represent subjects and
states (e.g., a row may correspond to subject i in the low
state), and columns correspond to voxels. Finally, the
resulting matrix was decomposed through principal com-
ponent analysis (PCA) to generate a set of FC patterns,
also known as eigenconnectivities (Leonardi et al., 2013),
and a set of weights reflecting the degree to which a sub-
ject expresses each of the FC patterns in a given state
(Fig. 1C). To reduce the number of tests, the subsequent
analysis was restricted to the components explaining the
highest fraction of variance with a 90% of cumulative
variance.

2.2.5. Permutation-based statistical analysis

The PCA weights obtained for each component were
compared between the four groups (SUDEP, high-risk
patients, low-risk patients, controls) using ANOVA, con-
sidering the weights associated with the low and high
states separately. The F-statistics associated with pairs
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Fig. 1.

Experiment 2. Analytical framework for characterizing functional connectivity (FC) in individuals based on a linear

combination of group-level FC patterns. (A) The global signal amplitude (GSA), defined as the moving standard deviation
of the fMRI global signal (window length: 80 seconds), was computed and used to determine times with regular (“low
state”) and irregular (“high state”) cardiorespiratory activity. (B) Subsequently, for each subject, state, and seed region of
interest (here, precuneus/posterior cingulate cortex), we computed whole-brain correlation maps represented in vectorized
form. (C) Finally, for each seed, the connectivity strength vectors were concatenated across subjects and states, and the
resulting two-dimensional matrix (left of the equal sign) was fed into a principal component analysis (PCA) to derive the

underlying group-level FC patterns.

of components and states were mapped to p-values
based on a null distribution generated using permutation
tests. To generate the null distribution of F-statistics,
10,000 permutations were performed where in each per-
mutation the subjects were randomly assigned to one of
the four groups keeping the size of each group same to
the size of the real groups. Subsequently, the F-statistics
obtained from all examined components (i.e., the M most
significant components that corresponded to a 90%
cumulative variance), the 12 seeds, and the 2 states were
pooled to generate the null distribution. The alpha level
was set at p<0.05 which was corrected for multiple
comparisons (M = 150, 12 seeds, 2 states) using Bonfer-
roni correction. For the components found to discrimi-
nate between the four groups, we explored the possibility

that the involvement of a component in brain connectivity
is associated with the time interval between the fMRI
scan and occurrence of SUDEP using the Pearson’s cor-
relation coefficient.

2.2.6. Large-scale network involvement

Finally, we estimated the level of involvement of the seven
large-scale networks reported by Yeo et al. (2011) for each
connectivity component found to discriminate between
the four groups. This was done by calculating each com-
ponent’s spatial overlap (Serensen-Dice coefficient) with
Yeo’s large-scale networks using the ICN_Atlas toolbox
(Kozak et al., 2017). The sign of the connectivity compo-
nent was taken as that of its Serensen-Dice coefficient.
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3. RESULTS

3.1. Experiment 1: Association of fMRI global signal
amplitude with variations in cardiorespiratory
rhythms (HCP data)

The GSA was strongly correlated with the standard devi-
ation of each of the four examined physiological variables
(breathing rate, respiration volume, heart rate, and PPG
amplitude; Supplementary Fig. S1) in the HCP data (Van
Essen et al.,, 2013). The strongest association was
observed for respiration volume; furthermore, increasing
the window length from 20 to 80 seconds led to a signif-
icant increase of the correlation from 0.29 (+0.02) to 0.53
(£0.03) which remained at similar levels for longer lengths.
A window length of approximately 80 seconds increased
the correlation of GSA with breathing rate (0.34 + 0.03)
and PPG amplitude (0.30 + 0.03). Figure 2 shows the
breathing-related and fMRI signals for a subject where
the levels of GSA co-fluctuate with variations in respira-
tion volume. For instance, we observed that periods with
strong fluctuations in respiration volume (e.g., 200-
500 seconds) were characterized by higher levels of GSA,
as compared with periods with regular breathing activity
(e.g., 500-600 seconds). Finally, while a similar associa-
tion of GSA with respiration volume was observed, for
several subjects, high levels of GSA often corresponded
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to periods with transient apnea (i.e., brief pauses of
breathing activity; Supplementary Fig. S2A), transient
increase in heart rate (Supplementary Fig. S2B), or varia-
tions in PPG amplitude (Supplementary Fig. S2C). There-
fore, GSAis strongly driven by variations in cardiovascular
and breathing activity, although it cannot distinguish the
former from the latter.

3.2. Experiment 2: Characterization of the GSA-
related patterns of FC in patients with epilepsy

Three low-risk and one high-risk epilepsy patients were
excluded due to excessive motion (mean FD > 0.25 mm)
resulting in a cohort of 119 subjects (57 women; mean
age 30.4 + 8.4): healthy controls, 25; low-risk, 40; high-
risk, 45; SUDEP, 9. The sex and age distributions were
similar between the four groups (Supplementary Table S1).
In addition, the four groups exhibited similar levels of
fMRI scan-wise motion as assessed with ANOVA (F = 1.3;
p > 0.05).

3.2.1. Identification of autonomic structures
with significant group differences

The seed-based correlation maps of 12 brain structures
with a key role in autonomic regulation were computed for
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Fig. 2. Experiment 1. lllustration of strong correlation (r = 0.93) between global signal amplitude (GSA) and irregularity
in breathing for an HCP dataset subject. (15! row) Respiration monitored with respiratory bellows placed around the
chest. (2" row) Respiration volume (RV) defined as the moving standard deviation of respiration using a window length
of 6 seconds as in Chang et al. (2009). (3 row) Moving standard deviation of RV (black line) and global signal (GS;

orange line) using a window length of 80 seconds (4™ row) FMRI GS defined as the mean time series averaged across all
voxels in the grey matter. Note that high values of GSA (e.g., between 200 and 500 seconds) indicate periods with strong
fluctuations in RV, whereas low values of GSA (e.g., 500-600 seconds) indicate periods with regular breathing. Resting-
state data from HCP subject HCP101915 (Van Essen et al., 2013). For an illustration of the association between GSA and
breathing rate, heart rate and PPG amplitude, see Supplementary Figure S2.
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all subjects in the low and high state (i.e., considering
functional volumes with GSA values in the lowest and
highest quartile, respectively). For each of the 12 seeds,
150 principal components were found to explain about
90% of the variance in the correlation maps. Among the
12 seeds, only 3 (anterior insula, PCu/PCC, and cuneus)
yielded components for which the weights could discrim-
inate between the 4 groups (i.e., healthy controls, low-risk,
high-risk, and SUDEP patients; Fig. 3). More specifically
the F-statistic, which reflects the degree to which the
mean of component weights differed between the four
groups, was significant (chance level: F < 9.4, correspond-
ing to a p-value of 2x 10~ under a null distribution of
10,000 permutations) for the following components: ante-
rior insula #3 in the low state (F=13.8, p < 107), PCu/PCC
#2 in the low state (F = 12.0, p < 10°), and Cuneus
#1 in the high state (F = 10.2, p < 10%). Similar results
were obtained when excluding data from the two subjects
with shorter fMRI scans (Supplementary Fig. S6).

3.2.2. Functional connectivity (FC) patterns and
relationship with interval between the time of fMRI
scan acquisition and SUDEP

In this section, we examine the FC patterns specific to
the three structures identified with significant group dif-
ferences: anterior insula, PCu/PCC, and cuneus.

3.2.2.1. Anterior insula seed connectivity. Figure 4A
shows the mean anterior insula seed-based correlation
map (averaged across subjects and time) used as a refer-
ence for the interpretation of the different component
weights observed across the groups. The anterior insula
was positively correlated with the anterior cingulate cor-
tex, regions of the middle frontal gyrus, postcentral gyrus,
inferior parietal lobe, and posterior insula, and negatively
correlated with the posterior cingulate cortex, and regions
of the middle temporal gyrus and frontal gyrus. The FC
pattern of component #3 that was the most discriminant
principal component of anterior insula exhibited positive
weights in the posterior cingulate cortex, and regions of
the middle temporal gyrus and frontal gyrus, and nega-
tive weights in the anterior cingulate cortex, and anterior
and posterior insula (Fig. 4B).

It can be seen that the FC pattern #3 of anterior insula
is, to a large degree, the inverse of the anterior insula
seed-based correlation map, and thus, a positive weight
for the involvement of this pattern on a subject can be
interpreted as decline in anterior insula connectivity as
compared with the mean connectivity observed in the
entire cohort. In other words, both positive and negative
correlation values of the anterior insula’s connectivity, with
the anterior and posterior cingulate cortices, respectively,
are weaker. Similarly, a negative weight of FC pattern #3
for within-subject involvement indicates stronger anterior

A Anterior insula
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Fig. 3. Experiment 2. F-statistics for assessing dispersion between groups based on FC patterns of (A) anterior insula,
(B) precuneus/posterior cingulate cortex (PCu/PCC), and (C) cuneus. The dashed line indicates the chance level (p < 0.05,
Bonferroni corrected), as determined by permutation distribution. All three regions had one of the first three principal
components with an F-statistic at above chance level. None of the other nine seed regions examined here was found to

yield a significant component in terms of F-statistic.
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Fig. 4. Experiment 2. Involvement of FC pattern #3 of anterior insula connectivity in the low and high (GSA) states.

(A) Seed-based correlation map with the seed placed in the anterior insula averaged across subjects and time. (B) FC
pattern of component #3 derived from the anterior insula connectivity profiles of all subjects through PCA. Component
weights of the four groups in the (C) low and (D) high state (the bottom and top of each box correspond to the 25" and
75" percentiles of the sample distribution, the line in the box corresponds to the median and the crosses indicate outliers,
defined as values that are more than 1.5 times the interquartile range away from the edges of the box). The FC pattern

of component #3 was, to a large degree, opposite of the anterior insula connectivity profile. Thus, a positive component
weight as found in the epilepsy groups can be interpreted as weakening of the anterior insula connectivity with its typical
connections (e.g., anterior and posterior cingulate cortex). For the spatial involvement of large-scale networks in FC

pattern #3, see Supplementary Figure S5.

insula connections with respect to the mean connectivity.
In both the low and high states, the epilepsy groups were
characterized by significantly elevated component
weights (p < 0.01; Fig. 4C, D). In addition, the majority of
individuals with epilepsy were characterized by a positive
component weight in contrast to negative component
weights for most healthy controls. Furthermore, for the
SUDEP cases, the anterior insula FC pattern #3 compo-
nent weights observed in the high state were found to be
strongly negatively correlated with the interval between
the fMRI scan and time of SUDEP (r = -0.74, p = 0.02,

uncorrected for the six tests performed; Fig. 5), whereas
this association was not observed in the low state
(p > 0.05). A similar strong negative correlation between
FC pattern #3 component weights and the interval
between the fMRI scan and time of SUDEP was observed
in the low state when excluding data from the two sub-
jects with shorter fMRI scans (Supplementary Fig. S7).

3.2.2.2. PCu/PCC seed connectivity. The correlation
map of the PCu/PCC averaged across subjects and time
consisted of positive correlations with the posterior
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Fig. 5. Experiment 2. Strength of anterior insula
connectivity linked to the interval between the fMRI scan
and time of SUDEP. The weight of component #3 in the
high state (irregular cardiorespiratory activity) decreased
with interval length (r = -0.74, p = 0.02). Given that the FC
pattern of component #3 (Fig. 4B) is, to a large extent, the
inverse of the mean anterior insula connectivity (Fig. 4A), a
positive weight for the within-subject involvement can be
interpreted as reduced anterior insula connectivity. Thus,
the inverse relationship between component weight and
scan-SUDERP interval indicates that patients who died
relatively soon after the scan exhibited weak anterior insula
connectivity.

middle and superior temporal gyri, and the medial frontal
gyrus, and negative correlations with the precentral and
postcentral gyri, inferior frontal gyrus, anterior superior
temporal gyrus, and anterior insula cortex (Supplemen-
tary Fig. S3A). The FC pattern of component #2 (most
discriminant principal component of PCu/PCC) consisted
of positive weights in the precuneus/posterior cingulate
cortex, superior occipital cortex, middle temporal gyrus,
angular gyrus, and middle and medial frontal gyri (Sup-
plementary Fig. S3B). In addition, it exhibited negative
weights in regions close to the cerebral hemispheres and
brainstem, such as the amygdala, hippocampus, para-
hippocampal gyrus, putamen, claustrum, superior tem-
poral gyrus, and fusiform gyrus. In the low state, the three
epilepsy groups exhibited significantly reduced weights
for component #2 (p < 0.001; Supplementary Fig. S3C),
with the majority of patients exhibiting negative weights
and the majority of controls exhibiting positive weights.
Similar observations were made in the high state (Sup-
plementary Fig. S3D). The weights of PCu/PCC compo-
nent #2 did not show any association with the interval
between the fMRI scan and the occurrence of SUDEP.

3.2.2.3. Cuneus seed connectivity. The cuneus correla-
tion map averaged across subjects and time presented
negative correlations with the inferior parietal lobe, infe-
rior frontal gyrus, and inferior temporal gyrus (Supple-
mentary Fig. S4A). The FC pattern of component #1
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(most discriminant component of cuneus) consisted of
positive weights in the ventral anterior cingulate cortex,
precentral and postcentral gyrus, superior temporal
gyrus, as well as cuneus, and negative weights in the
posterior cingulate cortex, regions of the superior and
middle temporal gyrus, thalamus, and frontal gyrus (Sup-
plementary Fig. S4B). In the low state, the three epilepsy
groups exhibited significantly higher component weights
than healthy controls (p < 0.05; Supplementary Fig. S4C).
The higher component weights of low-risk and high-risk
patients as compared with controls were also observed
in the high state (Supplementary Fig. S4D). The weights
of cuneus component #1 did not show any association
with the interval between the fMRI scan and the occur-
rence of SUDEP.

3.2.2.4. Large-scale network involvement. With regard
to the spatial involvement of the Yeo et al. (2011) large-
scale networks in the connectivity patterns revealed in
this work, the anterior insula component #3 reflected
engagement of the anterior insula with regions of the
default mode network and, to a lesser degree, frontopari-
etal network, and disengagement with the ventral atten-
tion and somatomotor network (Supplementary Fig. S5).
The PCu/PCC component #2 engaged connectivity with
regions that partly belong to the default mode network.
Although widespread regions of this component were
disengaged with the PCu/PCC, they did not resemble
any of the large-scale networks. Finally, the cuneus com-
ponent #1 reflected mainly engagement of the cuneus
with regions of the somatomotor network, and disen-
gagement with regions of the default mode network.

4. DISCUSSION

This study utilized resting-state fMRI data to examine FC
in patients with drug-resistant epilepsy, some of whom
subsequently succumbed to SUDEP. Given the strong
link between time-varying FC and variations in autonomic
activity (Chang et al., 2013; Mulcahy et al., 2019; Nikolaou
et al., 2016), particular attention was placed on charac-
terizing connectivity in periods with regular and irregular
cardiorespiratory activity, separately. We also examined
whether any of the observed effects are linked to the risk
for SUDEP.

We first demonstrated that the moving standard devi-
ation of fMRI global signal, termed here “global signal
amplitude” (GSA), is elevated during periods with strong
fluctuations in breathing and cardiac activity (Experiment
1) using data in the public domain. Specifically, we
showed that GSA is elevated during periods of the order
of 1 minute that present at least one of the following fea-
tures: a transient apnea, variations in respiratory volume,
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transient increases in heart rate, or variations in the
amplitude of the PPG (Supplementary Fig. S1). In this
work, such periods correspond to a “high GSA state”.
Our study extends previous findings by demonstrating
that the association of GSA and variations in cardiorespi-
ratory rhythms previously found across subjects and
fMRI runs (Kassinopoulos & Mitsis, 2019; Orban et al.,
2020; Power et al., 2017) is also present within a run at
the scale of minutes. This finding indicates that previ-
ously collected fMRI datasets that did not include moni-
toring of physiological processes could be revisited to
study aspects of the autonomic nervous system. This
outcome is particularly relevant for fMRI studies examin-
ing rare diseases and phenomena with a low incidence
rate, such as SUDEP.

To our knowledge, the approach of using the lowest
and highest quartiles of global signal amplitude (GSA) to
define discrete physiological states is novel. While prior
studies linked GSA to physiological variability, they have
not used it to segment fMRI data into distinct states for
functional connectivity analysis. We focused on the
extreme quartiles to enhance contrast between stable
and unstable autonomic conditions, thereby improving
interpretability. The middle quartiles were excluded to
avoid transitional periods that may introduce physiologi-
cal heterogeneity. Future work may explore these inter-
mediate states to better understand the full continuum of
autonomic dynamics.

Subsequently, we characterized FC in nine SUDEP
cases as compared with healthy participants, and
patients (alive at the time of this analysis) classified as
either at low or high risk of SUDEP based on the fre-
quency of TCS (Experiment 2). Resting-state fMRI scans
of 20-minute duration from each subject were considered
for connectivity assessment in the “low GSA state” and
“high GSA state”. Seed-based connectivity analysis was
employed, focusing on 12 brain structures with key roles
in autonomic and respiratory regulation. The seed-based
correlation maps were further analysed with PCA to sum-
marize differences in connectivity between the groups
and states in terms of a few components that explain
most of the variance in the data.

Consistent with previous studies (Chang & Glover,
2009; Deen et al., 2011; Seeley et al., 2007; Uddin et al.,
2009), activity in the anterior insula was positively cor-
related with that in the anterior cingulate cortex and infe-
rior parietal lobe (“anterior insula positive network”), and
negatively correlated with PCu/PCC and lateral parietal
cortices (“anterior insula negative network”; Fig. 4A).
However, our analysis yielded an FC pattern (in the form
of the 3 principal component) with a spatial map that is,
to a large extent, the inverse of the mean anterior insula
connectivity (Fig. 4B) and whose involvement in epilepsy
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patients was relatively high (Fig. 4C, D). This finding indi-
cates weaker anterior insula networks in epilepsy patients
compared with healthy controls. Furthermore, this weak-
ening was more pronounced in the low state (character-
ized by more regular cardiac and breathing activity).

The findings also showed that the connectivity of
cuneus and PCu/PCC is altered in epilepsy patients (low-
and high-risk patients and SUDEP cases; Supplementary
Figs. S3 and S4), which is in line with previous findings
(Kay et al., 2013; Luo et al., 2012; Rajpoot et al., 2015).
However, we found no evidence specifically implicating
the aforementioned regions in SUDEP. Namely, the prin-
cipal components that discriminated epilepsy patients
from healthy controls did not reveal significant differ-
ences between SUDEP cases and low- or high-risk
patients.

4.1. Relationship of anterior insula connectivity
with survival time from fMRI scan

The observation of a negative correlation between the
strength of anterior insula connectivity during the high
state (irregular cardiorespiratory activity) and the interval
between the fMRI scan and time of SUDEP may point to
a predictive marker. Specifically, we found that patients
who died sooner after the fMRI scan (2-4 years post-
scan) exhibited lower anterior insula connectivity than
patients who died later (5-8 years post-scan; p = 0.02,
uncorrected; N = 9; Fig. 5). While this outcome suggests
an important dysfunctional role specific to the insula in
SUDERP, it should be pointed out that the strength of ante-
rior insula connectivity with its associated positive and
negative networks was similar in SUDEP cases to that for
low- and high-risk patients. Therefore, it is likely that
other factors are required to coexist with weak connectiv-
ity in the anterior insula to predispose individuals with
epilepsy to SUDEP.

The anterior insula plays a major role in cardiovascular
and respiratory functions, and has reciprocal connec-
tions with several limbic structures, including the anterior
cingulate cortex, amygdala, and hypothalamus (Palma &
Benarroch, 2014). It receives viscerosensory inputs and,
through its projections to brainstem output nuclei, con-
tributes to regulation of blood pressure and other auto-
nomic responses (Benarroch, 1993; Palma & Benarroch,
2014; Ruggiero et al., 1987; Saper, 1982; Stephen
Oppenheimer & Cechetto, 2016). Functional imaging
studies consistently report activation of the anterior
insula in a wide range of interoceptive stimuli including
dyspnea, “air hunger” and heartbeat awareness, as well
as in emotional processing (Brannan et al., 2001; Craig,
2009; Harrison et al., 2021; Zaki et al., 2012). In epilepsy,
it has been suggested that seizures may affect insula
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activity leading to respiratory depression and cardiac
arrhythmia, thereby increasing the risk of SUDEP (Li
etal.,2017; S. Oppenheimer, 2001). However, scalp EEG,
as used typically in the clinic for detecting seizures, has
poor sensitivity to electrical activity from deep structures
such as the insula and, consequently, it is difficult to
assess whether seizure-induced autonomic manifesta-
tions are caused by insular dysfunction (Stephen
Oppenheimer & Cechetto, 2016).

Altered FC between the insula and cingulate cortex
in SUDEP and high-risk cases has been previously
shown (Allen, Harper, et al., 2019), which is in line with
our findings. In addition, patients who died of SUDEP at
atime close to a structural MRl scan exhibited increased
volume of the anterior insula (Allen, Vos, et al., 2019),
further supporting the notion that impairment in the
anterior insula may contribute to SUDEP. Finally, we
recently found, in epilepsy patients, abnormal connec-
tivity of the insula with the thalamus relative to changes
in cardiac rhythms (Kassinopoulos et al., 2021). Collec-
tively, these findings suggest that, in epilepsy, commu-
nication of the anterior insula with other regions of the
central nervous system may deteriorate over time,
potentially leading to increased risk of cardiac or respi-
ratory failure.

While anterior insula connectivity did not significantly
differ between SUDEP and non-SUDEP epilepsy patients,
we observed a strong inverse correlation between con-
nectivity strength and the interval between the fMRI scan
and SUDEP occurrence. This association was only pres-
ent during periods of irregular cardiorespiratory activity
(high GSA state), suggesting that anterior insula dysfunc-
tion may be particularly relevant under autonomic stress.
Importantly, the distribution of connectivity values across
the epilepsy cohort indicates that reduced anterior insula
connectivity is not unique to SUDEP cases. This implies
that while insula dysfunction may reflect a vulnerability
factor, it is likely not sufficient on its own to predict
SUDERP. Instead, the dysfunction may need to coexist
with other, SUDEP-specific mechanisms to contribute to
the fatal outcome. In this context, recent findings show-
ing that post-convulsive bradycardia and exaggerated
sinus arrhythmia with bradycardia are overrepresented in
SUDEP cases (Vilella et al., 2024) underscore the poten-
tial role of peri-ictal autonomic instability in SUDEP
pathophysiology.

4.2. Impaired communication between ventral and
default mode network in epilepsy patients

We observed that activity in the anterior insula is posi-
tively correlated with that in regions of the ventral net-
work and negatively correlated with regions of the default
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mode network (Fig. 4), and that this effect is weaker in
patients with epilepsy, and is linked to SUDEP (Fig. 5).
Seeley et al. (2007) first identified the so-called ventral
network (also known as salience network) consisting of
the anterior insula and anterior cingulate cortex as well as
subcortical and limbic structures, with their activity linked
to measures of anxiety. Subsequent functional studies
implicated ventral attention regions mediating sympa-
thetic activity (Beissner et al., 2013). Similarly, regions of
the default mode network, including the posterior cingu-
late cortex, were found to be associated with parasym-
pathetic activity (Beissner et al., 2013). Sridharan et al.
(2008) demonstrated that the salience network, and par-
ticularly the anterior insula, is responsible for reducing
activity in the default mode network during goal-directed
tasks. Initial studies attributed autonomic dysfunction in
epilepsy to seizures originating from, or spreading to,
individual regions such as the anterior insula (S.
Oppenheimer, 2001) and anterior cingulate cortex
(Devinsky et al., 1995). However, our results suggest also
the possibility that cardiorespiratory failure may rise from
impaired communication between the ventral and default
mode network due to insula dysfunction which could also
explain the alteration in parasympathetic and sympa-
thetic activity observed often in individuals with epilepsy
(Myers et al., 2018).

The use of the mean grey matter signal (global signal)
as a nuisance regressor may appear counterintuitive in a
study investigating autonomic and breathing influences
on functional connectivity, given that the global signal
reflects fluctuations related to heart rate and breathing
patterns. However, this approach is justified by the fact
that the global signal predominantly captures widespread
physiological artefacts, which are often driven by sys-
temic vascular fluctuations rather than localized neural
activity. These artefacts can obscure true neural connec-
tivity patterns, particularly in regions with dense vascula-
ture. Therefore, regressing out the global signal helps
mitigate these confounds and enhances the specificity of
functional connectivity estimates. While the global signal
is used here to reduce physiological noise, we also rec-
ognize its interpretive value. Specifically, fluctuations in
the amplitude of the global signal, as captured by the
global signal amplitude (GSA), reflect systemic physio-
logical changes, including variations in heart rate and
breathing patterns. These autonomic modulations can, in
principle, coincide with changes in neural-driven func-
tional connectivity. Thus, although the global signal is
regressed out to mitigate widespread physiological arte-
facts, its amplitude remains a valuable tool for identifying
periods of altered autonomic state, which may help
uncover state-dependent neural connectivity patterns
relevant to SUDEP.
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4.3. Limitations and possible future work

Our study has a number of limitations. The unavailability
of concurrent PPG and respiratory belt recordings led us
in using GSA as a probe of cardiac and breathing activity.
Although GSA reflects physiological changes, it cannot
distinguish between irregular cardiovascular (transient
increase in heart rate, variations in PPG amplitude, varia-
tions in blood pressure) and breathing (transient apnea,
variations in tidal volume, etc.), with possible loss of sen-
sitivity. Moreover, the relationship between GSA and
physiological variability, as established in healthy individ-
uals (Experiment 1), may not fully generalize to epilepsy
patients. Differences in autonomic regulation, seizure-
related effects, or medication use could alter the physio-
logical underpinnings of GSA in this population. This
limitation should be taken into account when interpreting
the findings. It is also important to note that prior studies
have shown that respiratory signals can exert a particu-
larly strong influence on brain activity, particularly in lim-
bic and autonomic regions (Kananen et al., 2022; Wu
et al., 2015; Zelano et al., 2016). As such, respiratory
dynamics play a dominant role in shaping the observed
brain states in our analysis. For most witnessed SUDEP
events, a TCS is observed a few minutes before death
which triggers abnormal breathing patterns followed by
episodes of bradycardia and terminal asystole, pointing
to possible future studies focused on the link between
irregular breathing and brain connectivity.

While some scans showed relatively strong correla-
tions between GSA and individual physiological vari-
ables, in most cases, the correlations were of low to
moderate strength. This outcome likely reflects the multi-
factorial nature of the GS, which is influenced not only by
physiological processes, but also by motion, neural activ-
ity, and potential noise in the physiological recordings.

Another physiological factor not accounted for in the
analysis was epileptiform activity. Epileptic discharges
may directly influence cardiovascular rhythms and their
neural correlates, potentially interacting with GSA-
derived signals and FC patterns. Although EEG data were
acquired alongside fMRI, a detailed inspection of epilep-
tiform events has not yet been performed. Nevertheless,
subjects with frequent epileptiform spikes were excluded
based on preliminary EEG review. A comprehensive eval-
uation by a clinical neurophysiologist remains a key com-
ponent of our planned future work.

Another important consideration is the potential
decline in vigilance during resting-state fMRI sessions.
Prior studies have shown that arousal levels often
decrease within the first 5-10 minutes of scanning, lead-
ing to systematic changes in fMRI signals, functional
connectivity, and global signal amplitude (Bijsterbosch
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et al., 2017; Orban et al., 2020; Tagliazucchi & Laufs,
2014). Although EEG was not available in the HCP data-
set to confirm wakefulness, and sleep staging was not
performed in our dataset, the observed amplitude
changes over time may reflect such vigilance-related
effects. While these fluctuations introduce variability, they
may also offer a window into the physiological processes
that modulate brain-body interactions. Future studies
incorporating EEG-based sleep staging will be essential
to disentangle the contributions of arousal and sleep to
the observed dynamics.

Our data were collected during daytime. SUDEP often
occurs at night, and likely during sleep, when physiologi-
cal processes change (e.g., heart and respiratory rates
initially decline, but then increase and become more vari-
able on entering rapid eye movement sleep; Purnell et al.,
2018). Given these changes, in the present study, we
sought to assess FC at different physiological states.
However, the increased risk of SUDEP at night may result
from other factors such as the influence of circadian
rhythms and sleep on the brain, which could not be stud-
ied here since the fMRI data had been collected during
daytime in a resting condition. While studying FC during
sleep could help us understand the mechanisms underly-
ing cardiorespiratory dysfunction, such studies are rare,
as sleeping inside the scanner overnight is not well toler-
ated by participants. Therefore, fMRI studies need to
consider protocols which mimic conditions that likely
contribute to cardiorespiratory failure, while also being
safe and practical. An example of such a test is the
hypercapnic ventilatory response which was shown by
Sainju et al. (2019) to indicate individuals with a pro-
longed increase in post-ictal CO, after TCS, who are
arguably at a high risk of SUDEP. Future fMRI studies
may need to consider breathing or cardiovascular chal-
lenges during scans, along with physiological monitoring,
to better understand how regional brain areas respond to
such manipulation in patients at risk for SUDEP.

Another important limitation is the heterogeneity of our
sample, which included individuals with different epilepsy
syndromes and etiologies. This issue was largely due to
the relative rarity of SUDEP cases who have undergone
fMRI, which necessitated a broader recruitment strategy
to ensure sufficient sample size for meaningful analysis.
Additionally, while the frequency of TCS could, in princi-
ple, be treated as a continuous variable to explore asso-
ciations with connectivity measures, we opted for a
categorical classification due to inconsistencies in sei-
zure documentation across patients. We also did not
examine the influence of the epileptogenic hemisphere
on connectivity patterns, as lateralization data were not
consistently available across the cohort. Future studies
with more standardized and granular clinical information,
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including seizure frequency, lateralization, and etiology,
may enable more refined analyses of SUDEP risk factors.

We also acknowledge that the brainstem and midcin-
gulate cortex, despite their established roles in auto-
nomic regulation (Ferraro et al., 2022), were not included
as seed regions due to the poor signal-to-noise ratio
observed in our 3T fMRI data in brainstem and the need
to limit the number of statistical comparisons. Future
studies with optimized acquisition protocols and larger
sample sizes may help clarify the contribution of these
regions to SUDEP risk.

Moreover, in this study, we included global signal
regression (GSR) to mitigate widespread physiological
noise (Kassinopoulos & Mitsis, 2021; Xifra-Porxas et al.,
2021), with the aim of enhancing sensitivity to subtle
effects of autonomic activity. However, given the ongoing
debate in the field and concerns that GSR may inadver-
tently remove signal related to vigilance or neural pro-
cesses, we repeated the key analyses without applying
GSR. As anticipated, the results differed: of the three
seed-based connectivity components that initially dis-
criminated between groups, only one (PCu/PCC) retained
a component with an F-statistic above chance level (Sup-
plementary Figs. S8 and S9). While we maintain that GSR
is a reasonable approach for reducing global physiologi-
cal confounds, further work is needed to evaluate its
appropriateness in studies investigating autonomic influ-
ences on brain connectivity.

Finally, although our data suggest that the strength of
anterior insula connectivity is inversely proportional to the
interval between the fMRI scan and time of SUDEP
(r=-0.74; p = 0.02, uncorrected; N = 9; Fig. 5), this find-
ing is based solely on cross-sectional data and, thus,
should be interpreted with caution. Longitudinal data,
ideally incorporating postmortem data, may help clarify
whether insular dysfunction progresses over time and
how it relates to neuropathological findings in SUDEP
(e.g., Nascimento et al., 2017).

5. CONCLUSIONS

In this work, we revealed altered FC patterns of cuneus
and precuneus/posterior cingulate cortex in epilepsy as
compared with healthy controls during periods of regular
cardiorespiratory rhythms. These findings were based on
the use of global signal amplitude (GSA), which we
showed to be a marker of cardiorespiratory rhythm irreg-
ularity (transient apnea, transient increase in heart rate,
etc.). In addition, we found reduced anterior insula con-
nectivity in epilepsy, particularly during periods of regular
cardiac and breathing activity. For SUDEP cases, the
insular connectivity effect was inversely correlated with
the scan-SUDEP interval. Overall, our results suggest
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that connectivity measures of the anterior insula may rep-
resent a contributing factor to SUDEP risk, rather than a
standalone biomarker, as similar connectivity patterns
were also observed in non-SUDEP epilepsy patients.
Future research efforts should focus on gaining insight
into the role of anterior insula connectivity in seizure-
induced cardiorespiratory failure and how intervention
strategies could be employed to restore anterior insula
function.
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