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ABSTRACT

Sudden unexpected death in epilepsy (SUDEP) is the leading cause of premature mortality among people with epi-
lepsy. Evidence from witnessed and monitored SUDEP cases indicates seizure-induced cardiovascular and respira-
tory failures; yet, the underlying mechanisms remain obscure. SUDEP occurs often during the night and early morning 
hours, suggesting that sleep or circadian rhythm-induced changes in physiology contribute to the fatal event. Resting-
state functional MRI (fMRI) studies have found altered functional connectivity between brain structures involved in 
cardiorespiratory regulation in later SUDEP cases and in individuals at high risk of SUDEP. However, those connectiv-
ity findings have not been related to changes in cardiovascular or respiratory patterns. Here, we compared fMRI 
patterns of brain connectivity associated with regular and irregular cardiorespiratory rhythms in SUDEP cases with 
those of living epilepsy patients of varying SUDEP risk and healthy controls. We analysed resting-state fMRI data from 
98 patients with epilepsy (9 who subsequently succumbed to SUDEP, 43 categorized as low SUDEP risk (no tonic–
clonic seizures (TCS) in the year preceding the fMRI scan), and 46 as high SUDEP risk (>3 TCS in the year preceding 
the scan)), and 25 healthy controls. The global signal amplitude (GSA), defined as the moving standard deviation of 
the fMRI global signal, was used to identify periods with regular (“low state”) and irregular (“high state”) cardiorespi-
ratory rhythms. Correlation maps were derived from seeds in 12 regions with a key role in autonomic or respiratory 
regulation for the low and high states. Following principal component analysis, component weights were compared 
between the groups. We found widespread alterations in connectivity of precuneus/posterior cingulate cortex in epi-
lepsy compared with controls in the low state (regular cardiorespiratory activity). In the low state, and to a lesser 
degree in the high state, reduced anterior insula connectivity (mainly with anterior and posterior cingulate cortex) in 
epilepsy appeared, relative to healthy controls. For SUDEP cases, the insula connectivity differences were inversely 
related to the interval between the fMRI scan and death. The findings suggest that anterior insula connectivity mea-
sures may provide a biomarker of SUDEP risk. The neural correlates of autonomic brain structural activity associated 
with different cardiorespiratory rhythms may shed light on the mechanisms underlying the fatal event in SUDEP.
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1.  INTRODUCTION

Sudden unexpected death in epilepsy (SUDEP) is the 
leading cause of premature death in patients with intrac-
table epilepsy, with an annual incidence estimated at 
approximately 1.2 per 1,000 persons with epilepsy (Keller 
et al., 2018; Sveinsson et al., 2017; Thurman et al., 2017). 
SUDEP is defined as “the sudden, unexpected, wit-
nessed or unwitnessed, nontraumatic, and nondrowning 
death in patients with epilepsy, with or without evidence 
for a seizure and excluding documented status epilepti-
cus, in which postmortem examination does not reveal a 
structural or toxicologic cause for death” (Nashef et al., 
2012). SUDEP imposes a substantial public health bur-
den (Thurman et al., 2017) and, among neurological dis-
orders, ranks second only to stroke in terms of potential 
years of life lost (Thurman et al., 2014). Frequent general-
ized and focal-to-bilateral tonic–clonic seizures (TCS; 
Fisher et al., 2017) are the greatest risk factors. Sleep and 
nocturnal TCS appear to facilitate SUDEP (Ali et al., 2017; 
Ryvlin et  al., 2013). The pathophysiology of SUDEP 
remains poorly understood (Devinsky et  al., 2016; 
Sveinsson et al., 2020), and seizure control is considered 
the most effective strategy for reducing risk of fatal out-
comes. However, currently, strategies for assessing 
SUDEP risk on an individual basis are still lacking.

Epilepsy monitoring unit data from the MORTEMUS 
study (MORTality in Epilepsy Monitoring Unit Study) sug-
gest that SUDEP results from cardiorespiratory dysfunc-
tion induced by TCS (Ryvlin et  al., 2013). Vilella et  al. 
(2019) found that post-ictal central apnea occurs in one 
out of five TCS and was present in near-SUDEP and 
SUDEP cases, suggesting that breathing cessation may 
represent an important SUDEP biomarker. Cardiovascu-
lar parameters may also provide markers; heart rate and 
its variability, measured in the peri-ictal period (e.g., post-
ictal mean heart rate; Arbune et al., 2020), are associated 
with markers of seizure severity that have been linked to 
SUDEP, such as the presence of TCS and duration of 
post-ictal generalized EEG suppression (PGES). How-
ever, although some patients succumb to SUDEP after a 
few seizures, others survive hundreds of similar attacks, 
which suggests the presence of additional pathophysio-
logical mechanisms in SUDEP victims (Devinsky & 
Sisodiya, 2020). Reduced interictal heart rate variability 
(HRV) measured during wakefulness has also been asso-
ciated with SUDEP (DeGiorgio et al., 2010; Sivathamboo 
et al., 2021), raising the possibility of chronic impairment 
in autonomic regulation in SUDEP. Further evidence of 
the role of chronic dysregulation is provided by the recent 
observation of abnormal heart rate responses during and 
after hyperventilation in patients who subsequently died 
of SUDEP (Szurhaj et al., 2021), and of volume changes 

in brain regions with key roles in autonomic regulation 
(Allen, Vos, et al., 2019; Mueller et al., 2018).

Functional MRI (fMRI) is a non-invasive neuroimaging 
tool that can evaluate functional connectivity (FC) 
between brain structures at a whole-brain level. Early 
fMRI studies focusing on FC revealed altered connectiv-
ity of regions involved in cardiorespiratory regulation 
such as the anterior cingulate cortex, thalamus, and 
regions of the brainstem in SUDEP cases and patients at 
high risk of SUDEP (Allen et al., 2017; Allen, Harper, et al., 
2019; Tang et al., 2014). These studies, however, did not 
take into consideration the time-varying nature of FC 
observed on the scale of seconds to minutes, which may 
provide a more holistic understanding of brain functional 
organization (Chang & Glover, 2010; Preti et  al., 2017). 
There is accumulating evidence that FC dynamics change 
with different autonomic and sleep states (Chang et al., 
2013; Haimovici et  al., 2017). Thus, examining the 
changes in FC occurring in different dynamic patterns of 
breathing or cardiovascular action, such as those that 
appear during different sleep states or other provoca-
tions, may reveal new insights into mechanisms that con-
tribute to SUDEP different from those FC values obtained 
in stable physiological conditions.

In addition to the apparent role of sleep and nocturnal 
TCS, more attention to the state-dependent nature of 
autonomic manifestations is warranted. A stronger asso-
ciation exists between SUDEP and post-ictal rather than 
ictal central apnea (Vilella et al., 2019); whereas abnor-
mally low HRV occurred in SUDEP during wakefulness, 
but not during sleep (Sivathamboo et  al., 2021). Thus, 
examination of the state-dependent nature of autonomic 
influences on resting-state fMRI appears warranted. In 
particular, the observation that subjects who exhibit 
strong fluctuations in heart rate and breathing patterns 
during fMRI scans also show elevated global signal 
amplitudes (GSA), which reflect strong BOLD fMRI fluctu-
ations globally in the brain (Orban et  al., 2020; Power 
et al., 2017; Xifra-Porxas et al., 2021), and may be key to 
better understand SUDEP physiology.

We sought to characterize the patterns of FC in 
patients who eventually succumbed to SUDEP, living 
patients of varying SUDEP risk levels, and healthy con-
trols, with respect to variations in regularity of cardiore-
spiratory rhythms. First, we used a publicly available 
fMRI dataset (Van Essen et  al., 2013) with concurrent 
physiological recordings to demonstrate that the associ-
ation of GSA with cardiac and breathing rhythms is main-
tained even within short fMRI scans (~15 minutes), with 
periods of high GSA corresponding to times with irregu-
larities in cardiac or breathing activity, such as periods 
with transient apnea. Second, we characterized patterns 
of FC in SUDEP cases and epilepsy patients alive at the 
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time of this analysis by employing a state-dependent 
framework and GSA as a marker of cardiorespiratory 
variability. Moreover, given the well-documented success 
of FC measures in predicting symptom severity in individ-
uals for a range of disorders (Du et al., 2017; Uddin et al., 
2013; Yoo et al., 2018), we also investigated whether FC 
measures in SUDEP cases were associated with the time 
between the fMRI scan and SUDEP occurrence.

2.  MATERIALS AND METHODS

The principal aim was to study the link between brain 
connectivity and autonomic activity in patients with epi-
lepsy using a large resting-state fMRI dataset that did not 
comprise physiological recordings. This study consisted 
of two experiments: In Experiment 1, we employed a set 
of resting-state fMRI data that included concurrent 
recordings from a photoplethysmograph (PPG) and a 
respiratory belt to demonstrate that global signal ampli-
tude (GSA) fluctuations reflect changes in cardiorespira-
tory activity. Previous studies defined GSA as the 
standard deviation of the global signal across the entire 
scan (Wong et al., 2013, 2016) and showed that GSA is 
linked to physiological parameters (Orban et al., 2020). 
Here, we computed GSA over significantly shorter dura-
tions, using a sliding window approach, to illustrate that 
the relationship of GSA with physiological parameters 
also is maintained at shorter timescales. Experiment 2 
consisted of the characterization of the patterns of FC in 
patients with epilepsy using GSA as a marker for breath-
ing and cardiac irregularities.

A methodological difference between the two data-
sets used in this study is the repetition time (TR): 0.72 sec-
onds in the HCP data and 3 seconds in our own dataset. 
While faster TRs are generally advantageous for captur-
ing high-frequency physiological signals, the physiologi-
cal variables of interest in our study (heart rate, breathing 
rate, respiration volume, and PPG amplitude) fluctuate at 
lower frequencies (~0.1  Hz), which are well within the 
range captured by our sampling rate (0.33 Hz), satisfying 
the Nyquist criterion. Furthermore, previous work has 
shown that fMRI fluctuations related to these physiologi-
cal variables can be reliably characterized even with 
slower TRs (Kassinopoulos & Mitsis, 2019, 2021). There-
fore, we believe the TR difference does not significantly 
impact the validity of our findings.

2.1.  Experiment 1: Association of fMRI global signal 
amplitude with variations in cardiorespiratory 
rhythms (HCP data)

To demonstrate that the global signal amplitude is linked 
to cardiorespiratory activity, we examined resting-state 

fMRI data from the Human Connectome Project (HCP; 
Van Essen et al., 2013) that included concurrent record-
ings from a photoplethysmograph (PPG) and a respira-
tory belt. A description of the preprocessing pipeline for 
the HCP dataset can be found in the Supplementary 
Material. Data from a subset of 400 healthy young partic-
ipants previously characterized by good-quality physio-
logical recordings through visual inspection in earlier 
studies (Kassinopoulos & Mitsis, 2019, 2022; Xifra-Porxas 
et al., 2021) were included. The global signal, defined as 
the mean fMRI time series averaged across all voxels in 
the grey matter, was computed from the fMRI data after 
volume realignment and high-pass filtering (0.008  Hz). 
Subsequently, the global signal amplitude (GSA), defined 
as the standard deviation of the global signal, was com-
puted in a sliding window manner for window lengths 
ranging from 10 to 120  seconds (or equivalently, 14 to 
167 time points) using the Matlab function movstd. A 
one-sample shift was applied between consecutive win-
dows, and the standard deviation computed within a win-
dow was assigned to the center of the window in terms of 
time. In addition, the following four variables were 
obtained from the physiological recordings: (1) breathing 
rate; (2) respiration volume, as defined in Chang et  al. 
(2009; i.e., moving standard deviation of respiratory sig-
nal with a window length of 6 seconds); (3) heart rate; and 
(4) PPG amplitude, defined as the amplitude of the oscil-
latory signal in the PPG (Kassinopoulos & Mitsis, 2021). 
Subsequently, the moving standard deviation of the 
physiological variables was also estimated for window 
lengths ranging from 10 to 120  seconds in 10-second 
increments. Then, for each window length, the correlation 
of the GSA with each of the four physiological variables 
was computed and averaged across all individuals, to 
determine the length that maximized the correlation with-
out sacrificing temporal resolution.

2.2.  Experiment 2: Characterization of the GSA-
related patterns of FC in patients with epilepsy

2.2.1.  Subjects

We retrospectively ascertained cases of SUDEP and 
high- and low-risk patients from the University College 
London Hospitals (UCLH) clinical database who had 
undergone an EEG-fMRI scan in the period between 
2005 and 2015 (Coan et al., 2016). The inclusion criteria 
were (1) the availability of a resting-state EEG-fMRI scan 
and (2) a high-resolution T1-weighted scan. The exclusion 
criteria were (1) large brain lesion or previous neurosur-
gery (we considered “large” as lesions extending across 
multiple lobes, involving deep brain structures, or caus-
ing significant mass effect—for example, tumors, vascu-
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lar malformations—and typically larger than a small area 
of focal cortical dysplasia (FCD) or hippocampal sclero-
sis; (2) incomplete clinical or imaging data (e.g., aban-
doned scans); and (3) having died in the following years 
with a cause of death not related to SUDEP. Only patients 
alive at the time of writing were considered as low-risk or 
high-risk epilepsy controls.

Out of a cohort of 189 patients who underwent 
resting-state EEG-fMRI, 14 deaths were identified in the 
UCLH clinical database, of which 10 were classified as 
SUDEP based on their death certificate. One SUDEP 
case was excluded due to the presence of a large brain 
lesion. The remaining nine SUDEP cases (five females, 
mean age 26.2  ±  6.2  years) were classified as either 
probable or definite SUDEP based on the definitions 
proposed in Nashef et al. (2012). The 9 examined SUDEP 
cases were matched with 43 low-risk, 46 high-risk 
patients, and 25 healthy controls based on sex and age 
at the time of scan. High-risk patients were considered 
those who experienced more than three TCS in the year 
preceding the scan and low-risk patients were consid-
ered those who did not experience TCS. Only patients 
whose clinical records allowed for a clear classification 
into low- or high-risk groups based on tonic–clonic sei-
zure frequency were included. This approach helped to 
maintain relatively balanced and homogeneous group 
sizes, avoiding the inclusion of cases with ambiguous 
risk profiles or incomplete data. Group demographics 
and clinical details are shown in Supplementary 
Table S1. The study was approved by our local research 
ethics committee, and all patients gave written informed 
consent.

2.2.2.  Simultaneous EEG-fMRI acquisition

Scanning was performed at the Epilepsy Society (Chal-
font St Peter, Buckinghamshire, UK) on a 3.0 Tesla GE 
(Signa excite HDX) scanner. A 20-minute (400  vol) T2*-
weighted fMRI scan was collected from each subject 
except for two patients who were scanned for 10 min-
utes. The fMRI scan was collected using a gradient-echo 
echo-planar-imaging with the following characteristics: 
repetition time (TR) = 3,000 ms, echo time (TE) = 30 ms, 
flip angle  =  90 ° , matrix size  =  64  x  64, field of view 
(FOV)  =  24  x  24  cm2, slice thickness  =  2.4  mm with 
0.6 mm gap, 44 slices, and voxel size = 3.75 x 3.75 x 3 mm3. 
Subjects were instructed to keep their eyes closed, avoid 
falling asleep, and not think about anything in particular. 
A T1-weighted image was also acquired using a FSPGR 
(fast spoiled gradient recalled echo) sequence, with the 
following parameters: matrix size = 256 x 256, FOV = 24 
x 24 cm2, slice thickness = 1.5 mm, 150 slices, and voxel 
size = 0.94 x 0.94 x 1.5 mm3.

Scalp EEG signals and an electrocardiogram (ECG) 
signal were simultaneously acquired during fMRI scan-
ning at 5  kHz using a 64-channel MR-compatible EEG 
system with a cap comprising ring Ag/AgCl electrodes 
(BrainAmp MR+; Brain Products GmbH, Gilching, Ger-
many). The electrodes were placed according to the 
10/20 system and referenced to electrode FCz.

2.2.3.  Preprocessing of fMRI data

The preprocessing of fMRI data was conducted using the 
Statistical Parametric Mapping software (SPM12, Wel-
come Trust Centre for Neuroimaging, London, UK, http://
www​.fil​.ion​.ucl​.ac​.uk​/spm; Friston et al., 2007) in a Mat-
lab environment (R2020a; Mathworks, Natick, Massa-
chusetts, USA). The first five functional volumes were 
discarded to allow steady-state magnetization to be 
established, and the remaining volumes were realigned 
to correct for head movements. The structural image of 
each subject was co-registered to the mean realigned 
functional volume and, subsequently, underwent tissue 
segmentation into grey matter, white matter, and cerebro-
spinal fluid tissue compartments. The functional images, 
as well as the coregistered structural images and tissue 
compartment masks, were spatially normalized to the 
Montreal Neurological Institute (MNI) reference space 
using non-linear transformation.

To account for anatomical variability across partici-
pants and reduce thermal noise, all individual functional 
volumes were smoothed using a 5  mm full-width half-
maximum (FWHM) Gaussian kernel. The fMRI time series 
were high-pass filtered at 0.008 Hz to avoid spurious cor-
relations that arise from low-frequency fluctuations 
(Leonardi & Van De Ville, 2015).

We used the frame-wise displacement (FD) introduced 
by Salek-Haddadi et al. (2006), implemented here as cal-
culated in Power et  al. (2012), to identify and exclude 
subjects with high levels of motion, as motion can lead to 
systematic biases in FC studies (Kassinopoulos & Mitsis, 
2022; Power et al., 2015; Savva et al., 2020; Xifra-Porxas 
et  al., 2021). FD was calculated from the six motion 
realignment parameters, reflecting the extent of scan-to-
scan head motion at each time point. Subjects who were 
characterized by mean FD larger than 0.25  mm were 
excluded. For the datasets included in this study, time 
points with FD larger than 0.2 mm were considered outli-
ers, and corrected by linear interpolation.

Finally, to further mitigate the effects of motion and 
reduce contributions from physiological processes and 
scanner artefacts, we regressed the following nuisance 
effects from all voxel time series: the first 10 principal 
components extracted from all white matter voxel time 
series (Behzadi et  al., 2007), 6 regressors related to 

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
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cardiac pulsatility artefacts obtained with the convolu-
tion model proposed in Kassinopoulos and Mitsis (2021) 
in conjunction with the R-wave peaks detected in the 
ECG (Supplementary Material—Section b), and the mean 
fMRI time series averaged across all voxels within the 
grey matter (Macey et al., 2004). The mean grey matter 
signal was considered a nuisance regressor—a practice 
known as global signal regression (GSR)—as there is 
accumulating evidence that the mean grey matter signal 
(also referred to as the global signal) reflects changes in 
heart rate and breathing patterns (Kassinopoulos & 
Mitsis, 2019; Xifra-Porxas et al., 2021). Note that although 
GSA, which is used in this study to probe regularities in 
cardiorespiratory activity, is derived from the grey matter 
signal, the two aforementioned signals are weakly cor-
related, with a group average correlation of -0.05 (±0.25) 
(for a GSA estimation with a sliding window length of 
80 seconds).

2.2.4.  Seed-based connectivity and spatial 
distribution pattern analysis

A seed-based FC analysis was employed with seeds 
consisting of regions with a key role in autonomic and 
respiratory regulation (Benarroch, 1993; Critchley et al., 
2003; Lacuey et  al., 2018; Song et  al., 2018; Valenza 
et  al., 2019). Specifically, the seeds consisted of the 
mean time series of voxels within the following 12 regions: 
anterior cingulate cortex, anterior insula, posterior insula, 
thalamus, amygdala, hippocampus, parahippocampal 
gyrus, precuneus/posterior cingulate cortex (PCu/PCC), 
cuneus, caudate, putamen, and Brodmann area 25. 
Those regions were defined based on parcels (i.e., non-
overlapping contiguous regions) from the Brainnetome 
atlas (Fan et al., 2016).

As in Experiment 1, the global signal used to derive 
GSA was computed as the mean time series averaged 
across all voxels in the grey matter, after volume realign-
ment and high-pass filtering (0.008  Hz), and before 
regressing out nuisance regressors. A window length of 
80 seconds was used to derive the GSA, as this length 
was found in Experiment 1 to yield a strong association 
between the GSA and the physiological variables, while 
also preserving an adequate temporal resolution (see 
Results, Section  3.1). To identify periods of relatively 
stable versus unstable cardiorespiratory activity, we 
used GSA as a proxy. Specifically, we divided the GSA 
time series into quartiles and selected the time points in 
the lowest 25% (first quartile) to represent the “low 
state”—periods of more regular physiological rhythms—
and the highest 25% (fourth quartile) to represent the 
“high state”—periods of more irregular rhythms. This 
classification is supported by results from Experiment 1 

(see Fig. 2; Supplementary Fig. S2), which demonstrate 
that low GSA values correspond to periods of stable 
breathing and heart rate, while high GSA values coin-
cide with transient apnea, heart rate surges, or fluctua-
tions in PPG amplitude. These selected time points were 
then used to compute functional connectivity separately 
for each state (Fig. 1A). Time points that corresponded 
to the second and third quartile were discarded from the 
analysis.

The fMRI time series derived for each seed was cor-
related with all regions in the grey matter on a voxel-wise 
basis (Pearson correlation), considering the low and high 
states, separately. Time points that corresponded to the 
low state were concatenated before computing the 
Pearson correlation between seed and voxel time series. 
Likewise, time points in the high state were concate-
nated before computing the Pearson correlation. Impor-
tantly, while this process involves concatenating 
non-contiguous time points corresponding to each 
physiological state, the use of Pearson correlation as the 
metric of connectivity is inherently blind to the temporal 
order of the input data. That is, Pearson correlation eval-
uates the linear relationship between two signals regard-
less of the order of the observations. A similar strategy 
has been used in prior studies, such as Rai et al. (2024), 
where high-motion volumes were censored and the 
remaining parcel time series were concatenated across 
runs and days before computing the functional connec-
tivity matrices.

The correlation values were then converted into 
z-scores using Fisher’s transform (Fig.  1B). For each 
seed, the correlation maps were vectorized and concate-
nated across subjects and states, resulting in a two-
dimensional matrix where rows represent subjects and 
states (e.g., a row may correspond to subject i in the low 
state), and columns correspond to voxels. Finally, the 
resulting matrix was decomposed through principal com-
ponent analysis (PCA) to generate a set of FC patterns, 
also known as eigenconnectivities (Leonardi et al., 2013), 
and a set of weights reflecting the degree to which a sub-
ject expresses each of the FC patterns in a given state 
(Fig. 1C). To reduce the number of tests, the subsequent 
analysis was restricted to the components explaining the 
highest fraction of variance with a 90% of cumulative 
variance.

2.2.5.  Permutation-based statistical analysis

The PCA weights obtained for each component were 
compared between the four groups (SUDEP, high-risk 
patients, low-risk patients, controls) using ANOVA, con-
sidering the weights associated with the low and high 
states separately. The F-statistics associated with pairs 
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of components and states were mapped to p-values 
based on a null distribution generated using permutation 
tests. To generate the null distribution of F-statistics, 
10,000 permutations were performed where in each per-
mutation the subjects were randomly assigned to one of 
the four groups keeping the size of each group same to 
the size of the real groups. Subsequently, the F-statistics 
obtained from all examined components (i.e., the M most 
significant components that corresponded to a 90% 
cumulative variance), the 12 seeds, and the 2 states were 
pooled to generate the null distribution. The alpha level 
was set at p < 0.05 which was corrected for multiple 
comparisons (M = 150, 12 seeds, 2 states) using Bonfer-
roni correction. For the components found to discrimi-
nate between the four groups, we explored the possibility 

that the involvement of a component in brain connectivity 
is associated with the time interval between the fMRI 
scan and occurrence of SUDEP using the Pearson’s cor-
relation coefficient.

2.2.6.  Large-scale network involvement

Finally, we estimated the level of involvement of the seven 
large-scale networks reported by Yeo et al. (2011) for each 
connectivity component found to discriminate between 
the four groups. This was done by calculating each com-
ponent’s spatial overlap (Sørensen–Dice coefficient) with 
Yeo’s large-scale networks using the ICN_Atlas toolbox 
(Kozák et al., 2017). The sign of the connectivity compo-
nent was taken as that of its Sørensen–Dice coefficient.

Fig. 1.  Experiment 2. Analytical framework for characterizing functional connectivity (FC) in individuals based on a linear 
combination of group-level FC patterns. (A) The global signal amplitude (GSA), defined as the moving standard deviation 
of the fMRI global signal (window length: 80 seconds), was computed and used to determine times with regular (“low 
state”) and irregular (“high state”) cardiorespiratory activity. (B) Subsequently, for each subject, state, and seed region of 
interest (here, precuneus/posterior cingulate cortex), we computed whole-brain correlation maps represented in vectorized 
form. (C) Finally, for each seed, the connectivity strength vectors were concatenated across subjects and states, and the 
resulting two-dimensional matrix (left of the equal sign) was fed into a principal component analysis (PCA) to derive the 
underlying group-level FC patterns.
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3.  RESULTS

3.1.  Experiment 1: Association of fMRI global signal 
amplitude with variations in cardiorespiratory 
rhythms (HCP data)

The GSA was strongly correlated with the standard devi-
ation of each of the four examined physiological variables 
(breathing rate, respiration volume, heart rate, and PPG 
amplitude; Supplementary Fig. S1) in the HCP data (Van 
Essen et  al., 2013). The strongest association was 
observed for respiration volume; furthermore, increasing 
the window length from 20 to 80 seconds led to a signif-
icant increase of the correlation from 0.29 (±0.02) to 0.53 
(±0.03) which remained at similar levels for longer lengths. 
A window length of approximately 80 seconds increased 
the correlation of GSA with breathing rate (0.34 ± 0.03) 
and PPG amplitude (0.30  ±  0.03). Figure  2 shows the 
breathing-related and fMRI signals for a subject where 
the levels of GSA co-fluctuate with variations in respira-
tion volume. For instance, we observed that periods with 
strong fluctuations in respiration volume (e.g., 200–
500 seconds) were characterized by higher levels of GSA, 
as compared with periods with regular breathing activity 
(e.g., 500–600 seconds). Finally, while a similar associa-
tion of GSA with respiration volume was observed, for 
several subjects, high levels of GSA often corresponded 

to periods with transient apnea (i.e., brief pauses of 
breathing activity; Supplementary Fig.  S2A), transient 
increase in heart rate (Supplementary Fig. S2B), or varia-
tions in PPG amplitude (Supplementary Fig. S2C). There-
fore, GSA is strongly driven by variations in cardiovascular 
and breathing activity, although it cannot distinguish the 
former from the latter.

3.2.  Experiment 2: Characterization of the GSA-
related patterns of FC in patients with epilepsy

Three low-risk and one high-risk epilepsy patients were 
excluded due to excessive motion (mean FD > 0.25 mm) 
resulting in a cohort of 119 subjects (57 women; mean 
age 30.4 ± 8.4): healthy controls, 25; low-risk, 40; high-
risk, 45; SUDEP, 9. The sex and age distributions were 
similar between the four groups (Supplementary Table S1). 
In addition, the four groups exhibited similar levels of  
fMRI scan-wise motion as assessed with ANOVA (F = 1.3;  
p > 0.05).

3.2.1.  Identification of autonomic structures 
with significant group differences

The seed-based correlation maps of 12 brain structures 
with a key role in autonomic regulation were computed for 

Fig. 2.  Experiment 1. Illustration of strong correlation (r = 0.93) between global signal amplitude (GSA) and irregularity 
in breathing for an HCP dataset subject. (1st row) Respiration monitored with respiratory bellows placed around the 
chest. (2nd row) Respiration volume (RV) defined as the moving standard deviation of respiration using a window length 
of 6 seconds as in Chang et al. (2009). (3rd row) Moving standard deviation of RV (black line) and global signal (GS; 
orange line) using a window length of 80 seconds (4th row) FMRI GS defined as the mean time series averaged across all 
voxels in the grey matter. Note that high values of GSA (e.g., between 200 and 500 seconds) indicate periods with strong 
fluctuations in RV, whereas low values of GSA (e.g., 500–600 seconds) indicate periods with regular breathing. Resting-
state data from HCP subject HCP101915 (Van Essen et al., 2013). For an illustration of the association between GSA and 
breathing rate, heart rate and PPG amplitude, see Supplementary Figure S2.
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all subjects in the low and high state (i.e., considering 
functional volumes with GSA values in the lowest and 
highest quartile, respectively). For each of the 12 seeds, 
150 principal components were found to explain about 
90% of the variance in the correlation maps. Among the 
12 seeds, only 3 (anterior insula, PCu/PCC, and cuneus) 
yielded components for which the weights could discrim-
inate between the 4 groups (i.e., healthy controls, low-risk, 
high-risk, and SUDEP patients; Fig. 3). More specifically 
the F-statistic, which reflects the degree to which the 
mean of component weights differed between the four 
groups, was significant (chance level: F < 9.4, correspond-
ing to a p-value of 2×10−5 under a null distribution of 
10,000 permutations) for the following components: ante-
rior insula #3 in the low state (F = 13.8, p < 10-7), PCu/PCC 
#2 in the low state (F = 12.0, p < 10-6), and Cuneus  
#1 in the high state (F  =  10.2, p  <  10-5). Similar results  
were obtained when excluding data from the two subjects 
with shorter fMRI scans (Supplementary Fig. S6).

3.2.2.  Functional connectivity (FC) patterns and 
relationship with interval between the time of fMRI 
scan acquisition and SUDEP

In this section, we examine the FC patterns specific to 
the three structures identified with significant group dif-
ferences: anterior insula, PCu/PCC, and cuneus.

3.2.2.1.  Anterior insula seed connectivity.  Figure  4A 
shows the mean anterior insula seed-based correlation 
map (averaged across subjects and time) used as a refer-
ence for the interpretation of the different component 
weights observed across the groups. The anterior insula 
was positively correlated with the anterior cingulate cor-
tex, regions of the middle frontal gyrus, postcentral gyrus, 
inferior parietal lobe, and posterior insula, and negatively 
correlated with the posterior cingulate cortex, and regions 
of the middle temporal gyrus and frontal gyrus. The FC 
pattern of component #3 that was the most discriminant 
principal component of anterior insula exhibited positive 
weights in the posterior cingulate cortex, and regions of 
the middle temporal gyrus and frontal gyrus, and nega-
tive weights in the anterior cingulate cortex, and anterior 
and posterior insula (Fig. 4B).

It can be seen that the FC pattern #3 of anterior insula 
is, to a large degree, the inverse of the anterior insula 
seed-based correlation map, and thus, a positive weight 
for the involvement of this pattern on a subject can be 
interpreted as decline in anterior insula connectivity as 
compared with the mean connectivity observed in the 
entire cohort. In other words, both positive and negative 
correlation values of the anterior insula’s connectivity, with 
the anterior and posterior cingulate cortices, respectively, 
are weaker. Similarly, a negative weight of FC pattern #3 
for within-subject involvement indicates stronger anterior 

Fig. 3.  Experiment 2. F-statistics for assessing dispersion between groups based on FC patterns of (A) anterior insula, 
(B) precuneus/posterior cingulate cortex (PCu/PCC), and (C) cuneus. The dashed line indicates the chance level (p < 0.05, 
Bonferroni corrected), as determined by permutation distribution. All three regions had one of the first three principal 
components with an F-statistic at above chance level. None of the other nine seed regions examined here was found to 
yield a significant component in terms of F-statistic.
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insula connections with respect to the mean connectivity. 
In both the low and high states, the epilepsy groups were 
characterized by significantly elevated component 
weights (p < 0.01; Fig. 4C, D). In addition, the majority of 
individuals with epilepsy were characterized by a positive 
component weight in contrast to negative component 
weights for most healthy controls. Furthermore, for the 
SUDEP cases, the anterior insula FC pattern #3 compo-
nent weights observed in the high state were found to be 
strongly negatively correlated with the interval between 
the fMRI scan and time of SUDEP (r =  -0.74, p = 0.02, 

uncorrected for the six tests performed; Fig. 5), whereas 
this association was not observed in the low state 
(p > 0.05). A similar strong negative correlation between 
FC pattern #3 component weights and the interval 
between the fMRI scan and time of SUDEP was observed 
in the low state when excluding data from the two sub-
jects with shorter fMRI scans (Supplementary Fig. S7).

3.2.2.2.  PCu/PCC seed connectivity.  The correlation 
map of the PCu/PCC averaged across subjects and time 
consisted of positive correlations with the posterior 

Fig. 4.  Experiment 2. Involvement of FC pattern #3 of anterior insula connectivity in the low and high (GSA) states. 
(A) Seed-based correlation map with the seed placed in the anterior insula averaged across subjects and time. (B) FC 
pattern of component #3 derived from the anterior insula connectivity profiles of all subjects through PCA. Component 
weights of the four groups in the (C) low and (D) high state (the bottom and top of each box correspond to the 25th and 
75th percentiles of the sample distribution, the line in the box corresponds to the median and the crosses indicate outliers, 
defined as values that are more than 1.5 times the interquartile range away from the edges of the box). The FC pattern 
of component #3 was, to a large degree, opposite of the anterior insula connectivity profile. Thus, a positive component 
weight as found in the epilepsy groups can be interpreted as weakening of the anterior insula connectivity with its typical 
connections (e.g., anterior and posterior cingulate cortex). For the spatial involvement of large-scale networks in FC 
pattern #3, see Supplementary Figure S5.
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middle and superior temporal gyri, and the medial frontal 
gyrus, and negative correlations with the precentral and 
postcentral gyri, inferior frontal gyrus, anterior superior 
temporal gyrus, and anterior insula cortex (Supplemen-
tary Fig.  S3A). The FC pattern of component #2 (most 
discriminant principal component of PCu/PCC) consisted 
of positive weights in the precuneus/posterior cingulate 
cortex, superior occipital cortex, middle temporal gyrus, 
angular gyrus, and middle and medial frontal gyri (Sup-
plementary Fig.  S3B). In addition, it exhibited negative 
weights in regions close to the cerebral hemispheres and 
brainstem, such as the amygdala, hippocampus, para-
hippocampal gyrus, putamen, claustrum, superior tem-
poral gyrus, and fusiform gyrus. In the low state, the three 
epilepsy groups exhibited significantly reduced weights 
for component #2 (p < 0.001; Supplementary Fig. S3C), 
with the majority of patients exhibiting negative weights 
and the majority of controls exhibiting positive weights. 
Similar observations were made in the high state (Sup-
plementary Fig. S3D). The weights of PCu/PCC compo-
nent #2 did not show any association with the interval 
between the fMRI scan and the occurrence of SUDEP.

3.2.2.3.  Cuneus seed connectivity.  The cuneus correla-
tion map averaged across subjects and time presented 
negative correlations with the inferior parietal lobe, infe-
rior frontal gyrus, and inferior temporal gyrus (Supple-
mentary Fig.  S4A). The FC pattern of component #1 

(most discriminant component of cuneus) consisted of 
positive weights in the ventral anterior cingulate cortex, 
precentral and postcentral gyrus, superior temporal 
gyrus, as well as cuneus, and negative weights in the 
posterior cingulate cortex, regions of the superior and 
middle temporal gyrus, thalamus, and frontal gyrus (Sup-
plementary Fig. S4B). In the low state, the three epilepsy 
groups exhibited significantly higher component weights 
than healthy controls (p < 0.05; Supplementary Fig. S4C). 
The higher component weights of low-risk and high-risk 
patients as compared with controls were also observed 
in the high state (Supplementary Fig. S4D). The weights 
of cuneus component #1 did not show any association 
with the interval between the fMRI scan and the occur-
rence of SUDEP.

3.2.2.4.  Large-scale network involvement.  With regard 
to the spatial involvement of the Yeo et al. (2011) large-
scale networks in the connectivity patterns revealed in 
this work, the anterior insula component #3 reflected 
engagement of the anterior insula with regions of the 
default mode network and, to a lesser degree, frontopari-
etal network, and disengagement with the ventral atten-
tion and somatomotor network (Supplementary Fig. S5). 
The PCu/PCC component #2 engaged connectivity with 
regions that partly belong to the default mode network. 
Although widespread regions of this component were 
disengaged with the PCu/PCC, they did not resemble 
any of the large-scale networks. Finally, the cuneus com-
ponent #1 reflected mainly engagement of the cuneus 
with regions of the somatomotor network, and disen-
gagement with regions of the default mode network.

4.  DISCUSSION

This study utilized resting-state fMRI data to examine FC 
in patients with drug-resistant epilepsy, some of whom 
subsequently succumbed to SUDEP. Given the strong 
link between time-varying FC and variations in autonomic 
activity (Chang et al., 2013; Mulcahy et al., 2019; Nikolaou 
et al., 2016), particular attention was placed on charac-
terizing connectivity in periods with regular and irregular 
cardiorespiratory activity, separately. We also examined 
whether any of the observed effects are linked to the risk 
for SUDEP.

We first demonstrated that the moving standard devi-
ation of fMRI global signal, termed here “global signal 
amplitude” (GSA), is elevated during periods with strong 
fluctuations in breathing and cardiac activity (Experiment 
1) using data in the public domain. Specifically, we 
showed that GSA is elevated during periods of the order 
of 1 minute that present at least one of the following fea-
tures: a transient apnea, variations in respiratory volume, 

Fig. 5.  Experiment 2. Strength of anterior insula 
connectivity linked to the interval between the fMRI scan 
and time of SUDEP. The weight of component #3 in the 
high state (irregular cardiorespiratory activity) decreased 
with interval length (r = -0.74, p = 0.02). Given that the FC 
pattern of component #3 (Fig. 4B) is, to a large extent, the 
inverse of the mean anterior insula connectivity (Fig. 4A), a 
positive weight for the within-subject involvement can be 
interpreted as reduced anterior insula connectivity. Thus, 
the inverse relationship between component weight and 
scan–SUDEP interval indicates that patients who died 
relatively soon after the scan exhibited weak anterior insula 
connectivity.
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transient increases in heart rate, or variations in the 
amplitude of the PPG (Supplementary Fig.  S1). In this 
work, such periods correspond to a “high GSA state”. 
Our study extends previous findings by demonstrating 
that the association of GSA and variations in cardiorespi-
ratory rhythms previously found across subjects and 
fMRI runs (Kassinopoulos & Mitsis, 2019; Orban et  al., 
2020; Power et al., 2017) is also present within a run at 
the scale of minutes. This finding indicates that previ-
ously collected fMRI datasets that did not include moni-
toring of physiological processes could be revisited to 
study aspects of the autonomic nervous system. This 
outcome is particularly relevant for fMRI studies examin-
ing rare diseases and phenomena with a low incidence 
rate, such as SUDEP.

To our knowledge, the approach of using the lowest 
and highest quartiles of global signal amplitude (GSA) to 
define discrete physiological states is novel. While prior 
studies linked GSA to physiological variability, they have 
not used it to segment fMRI data into distinct states for 
functional connectivity analysis. We focused on the 
extreme quartiles to enhance contrast between stable 
and unstable autonomic conditions, thereby improving 
interpretability. The middle quartiles were excluded to 
avoid transitional periods that may introduce physiologi-
cal heterogeneity. Future work may explore these inter-
mediate states to better understand the full continuum of 
autonomic dynamics.

Subsequently, we characterized FC in nine SUDEP 
cases as compared with healthy participants, and 
patients (alive at the time of this analysis) classified as 
either at low or high risk of SUDEP based on the fre-
quency of TCS (Experiment 2). Resting-state fMRI scans 
of 20-minute duration from each subject were considered 
for connectivity assessment in the “low GSA state” and 
“high GSA state”. Seed-based connectivity analysis was 
employed, focusing on 12 brain structures with key roles 
in autonomic and respiratory regulation. The seed-based 
correlation maps were further analysed with PCA to sum-
marize differences in connectivity between the groups 
and states in terms of a few components that explain 
most of the variance in the data.

Consistent with previous studies (Chang & Glover, 
2009; Deen et al., 2011; Seeley et al., 2007; Uddin et al., 
2009), activity in the anterior insula was positively cor-
related with that in the anterior cingulate cortex and infe-
rior parietal lobe (“anterior insula positive network”), and 
negatively correlated with PCu/PCC and lateral parietal 
cortices (“anterior insula negative network”; Fig.  4A). 
However, our analysis yielded an FC pattern (in the form 
of the 3rd principal component) with a spatial map that is, 
to a large extent, the inverse of the mean anterior insula 
connectivity (Fig. 4B) and whose involvement in epilepsy 

patients was relatively high (Fig. 4C, D). This finding indi-
cates weaker anterior insula networks in epilepsy patients 
compared with healthy controls. Furthermore, this weak-
ening was more pronounced in the low state (character-
ized by more regular cardiac and breathing activity).

The findings also showed that the connectivity of 
cuneus and PCu/PCC is altered in epilepsy patients (low- 
and high-risk patients and SUDEP cases; Supplementary 
Figs. S3 and S4), which is in line with previous findings 
(Kay et al., 2013; Luo et al., 2012; Rajpoot et al., 2015). 
However, we found no evidence specifically implicating 
the aforementioned regions in SUDEP. Namely, the prin-
cipal components that discriminated epilepsy patients 
from healthy controls did not reveal significant differ-
ences between SUDEP cases and low- or high-risk 
patients.

4.1.  Relationship of anterior insula connectivity 
with survival time from fMRI scan

The observation of a negative correlation between the 
strength of anterior insula connectivity during the high 
state (irregular cardiorespiratory activity) and the interval 
between the fMRI scan and time of SUDEP may point to 
a predictive marker. Specifically, we found that patients 
who died sooner after the fMRI scan (2–4  years post-
scan) exhibited lower anterior insula connectivity than 
patients who died later (5–8 years post-scan; p = 0.02, 
uncorrected; N = 9; Fig. 5). While this outcome suggests 
an important dysfunctional role specific to the insula in 
SUDEP, it should be pointed out that the strength of ante-
rior insula connectivity with its associated positive and 
negative networks was similar in SUDEP cases to that for 
low- and high-risk patients. Therefore, it is likely that 
other factors are required to coexist with weak connectiv-
ity in the anterior insula to predispose individuals with 
epilepsy to SUDEP.

The anterior insula plays a major role in cardiovascular 
and respiratory functions, and has reciprocal connec-
tions with several limbic structures, including the anterior 
cingulate cortex, amygdala, and hypothalamus (Palma & 
Benarroch, 2014). It receives viscerosensory inputs and, 
through its projections to brainstem output nuclei, con-
tributes to regulation of blood pressure and other auto-
nomic responses (Benarroch, 1993; Palma & Benarroch, 
2014; Ruggiero et  al., 1987; Saper, 1982; Stephen 
Oppenheimer & Cechetto, 2016). Functional imaging 
studies consistently report activation of the anterior 
insula in a wide range of interoceptive stimuli including 
dyspnea, “air hunger” and heartbeat awareness, as well 
as in emotional processing (Brannan et al., 2001; Craig, 
2009; Harrison et al., 2021; Zaki et al., 2012). In epilepsy, 
it has been suggested that seizures may affect insula 
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activity leading to respiratory depression and cardiac 
arrhythmia, thereby increasing the risk of SUDEP (Li 
et al., 2017; S. Oppenheimer, 2001). However, scalp EEG, 
as used typically in the clinic for detecting seizures, has 
poor sensitivity to electrical activity from deep structures 
such as the insula and, consequently, it is difficult to 
assess whether seizure-induced autonomic manifesta-
tions are caused by insular dysfunction (Stephen 
Oppenheimer & Cechetto, 2016).

Altered FC between the insula and cingulate cortex 
in SUDEP and high-risk cases has been previously 
shown (Allen, Harper, et al., 2019), which is in line with 
our findings. In addition, patients who died of SUDEP at 
a time close to a structural MRI scan exhibited increased 
volume of the anterior insula (Allen, Vos, et al., 2019), 
further supporting the notion that impairment in the 
anterior insula may contribute to SUDEP. Finally, we 
recently found, in epilepsy patients, abnormal connec-
tivity of the insula with the thalamus relative to changes 
in cardiac rhythms (Kassinopoulos et al., 2021). Collec-
tively, these findings suggest that, in epilepsy, commu-
nication of the anterior insula with other regions of the 
central nervous system may deteriorate over time, 
potentially leading to increased risk of cardiac or respi-
ratory failure.

While anterior insula connectivity did not significantly 
differ between SUDEP and non-SUDEP epilepsy patients, 
we observed a strong inverse correlation between con-
nectivity strength and the interval between the fMRI scan 
and SUDEP occurrence. This association was only pres-
ent during periods of irregular cardiorespiratory activity 
(high GSA state), suggesting that anterior insula dysfunc-
tion may be particularly relevant under autonomic stress. 
Importantly, the distribution of connectivity values across 
the epilepsy cohort indicates that reduced anterior insula 
connectivity is not unique to SUDEP cases. This implies 
that while insula dysfunction may reflect a vulnerability 
factor, it is likely not sufficient on its own to predict 
SUDEP. Instead, the dysfunction may need to coexist 
with other, SUDEP-specific mechanisms to contribute to 
the fatal outcome. In this context, recent findings show-
ing that post-convulsive bradycardia and exaggerated 
sinus arrhythmia with bradycardia are overrepresented in 
SUDEP cases (Vilella et al., 2024) underscore the poten-
tial role of peri-ictal autonomic instability in SUDEP 
pathophysiology.

4.2.  Impaired communication between ventral and 
default mode network in epilepsy patients

We observed that activity in the anterior insula is posi-
tively correlated with that in regions of the ventral net-
work and negatively correlated with regions of the default 

mode network (Fig. 4), and that this effect is weaker in 
patients with epilepsy, and is linked to SUDEP (Fig. 5). 
Seeley et  al. (2007) first identified the so-called ventral 
network (also known as salience network) consisting of 
the anterior insula and anterior cingulate cortex as well as 
subcortical and limbic structures, with their activity linked 
to measures of anxiety. Subsequent functional studies 
implicated ventral attention regions mediating sympa-
thetic activity (Beissner et al., 2013). Similarly, regions of 
the default mode network, including the posterior cingu-
late cortex, were found to be associated with parasym-
pathetic activity (Beissner et al., 2013). Sridharan et al. 
(2008) demonstrated that the salience network, and par-
ticularly the anterior insula, is responsible for reducing 
activity in the default mode network during goal-directed 
tasks. Initial studies attributed autonomic dysfunction in 
epilepsy to seizures originating from, or spreading to, 
individual regions such as the anterior insula (S. 
Oppenheimer, 2001) and anterior cingulate cortex 
(Devinsky et al., 1995). However, our results suggest also 
the possibility that cardiorespiratory failure may rise from 
impaired communication between the ventral and default 
mode network due to insula dysfunction which could also 
explain the alteration in parasympathetic and sympa-
thetic activity observed often in individuals with epilepsy 
(Myers et al., 2018).

The use of the mean grey matter signal (global signal) 
as a nuisance regressor may appear counterintuitive in a 
study investigating autonomic and breathing influences 
on functional connectivity, given that the global signal 
reflects fluctuations related to heart rate and breathing 
patterns. However, this approach is justified by the fact 
that the global signal predominantly captures widespread 
physiological artefacts, which are often driven by sys-
temic vascular fluctuations rather than localized neural 
activity. These artefacts can obscure true neural connec-
tivity patterns, particularly in regions with dense vascula-
ture. Therefore, regressing out the global signal helps 
mitigate these confounds and enhances the specificity of 
functional connectivity estimates. While the global signal 
is used here to reduce physiological noise, we also rec-
ognize its interpretive value. Specifically, fluctuations in 
the amplitude of the global signal, as captured by the 
global signal amplitude (GSA), reflect systemic physio-
logical changes, including variations in heart rate and 
breathing patterns. These autonomic modulations can, in 
principle, coincide with changes in neural-driven func-
tional connectivity. Thus, although the global signal is 
regressed out to mitigate widespread physiological arte-
facts, its amplitude remains a valuable tool for identifying 
periods of altered autonomic state, which may help 
uncover state-dependent neural connectivity patterns 
relevant to SUDEP.
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4.3.  Limitations and possible future work

Our study has a number of limitations. The unavailability 
of concurrent PPG and respiratory belt recordings led us 
in using GSA as a probe of cardiac and breathing activity. 
Although GSA reflects physiological changes, it cannot 
distinguish between irregular cardiovascular (transient 
increase in heart rate, variations in PPG amplitude, varia-
tions in blood pressure) and breathing (transient apnea, 
variations in tidal volume, etc.), with possible loss of sen-
sitivity. Moreover, the relationship between GSA and 
physiological variability, as established in healthy individ-
uals (Experiment 1), may not fully generalize to epilepsy 
patients. Differences in autonomic regulation, seizure-
related effects, or medication use could alter the physio-
logical underpinnings of GSA in this population. This 
limitation should be taken into account when interpreting 
the findings. It is also important to note that prior studies 
have shown that respiratory signals can exert a particu-
larly strong influence on brain activity, particularly in lim-
bic and autonomic regions (Kananen et  al., 2022; Wu 
et  al., 2015; Zelano et  al., 2016). As such, respiratory 
dynamics play a dominant role in shaping the observed 
brain states in our analysis. For most witnessed SUDEP 
events, a TCS is observed a few minutes before death 
which triggers abnormal breathing patterns followed by 
episodes of bradycardia and terminal asystole, pointing 
to possible future studies focused on the link between 
irregular breathing and brain connectivity.

While some scans showed relatively strong correla-
tions between GSA and individual physiological vari-
ables, in most cases, the correlations were of low to 
moderate strength. This outcome likely reflects the multi-
factorial nature of the GS, which is influenced not only by 
physiological processes, but also by motion, neural activ-
ity, and potential noise in the physiological recordings.

Another physiological factor not accounted for in the 
analysis was epileptiform activity. Epileptic discharges 
may directly influence cardiovascular rhythms and their 
neural correlates, potentially interacting with GSA-
derived signals and FC patterns. Although EEG data were 
acquired alongside fMRI, a detailed inspection of epilep-
tiform events has not yet been performed. Nevertheless, 
subjects with frequent epileptiform spikes were excluded 
based on preliminary EEG review. A comprehensive eval-
uation by a clinical neurophysiologist remains a key com-
ponent of our planned future work.

Another important consideration is the potential 
decline in vigilance during resting-state fMRI sessions. 
Prior studies have shown that arousal levels often 
decrease within the first 5–10 minutes of scanning, lead-
ing to systematic changes in fMRI signals, functional 
connectivity, and global signal amplitude (Bijsterbosch 

et  al., 2017; Orban et  al., 2020; Tagliazucchi & Laufs, 
2014). Although EEG was not available in the HCP data-
set to confirm wakefulness, and sleep staging was not 
performed in our dataset, the observed amplitude 
changes over time may reflect such vigilance-related 
effects. While these fluctuations introduce variability, they 
may also offer a window into the physiological processes 
that modulate brain–body interactions. Future studies 
incorporating EEG-based sleep staging will be essential 
to disentangle the contributions of arousal and sleep to 
the observed dynamics.

Our data were collected during daytime. SUDEP often 
occurs at night, and likely during sleep, when physiologi-
cal processes change (e.g., heart and respiratory rates 
initially decline, but then increase and become more vari-
able on entering rapid eye movement sleep; Purnell et al., 
2018). Given these changes, in the present study, we 
sought to assess FC at different physiological states. 
However, the increased risk of SUDEP at night may result 
from other factors such as the influence of circadian 
rhythms and sleep on the brain, which could not be stud-
ied here since the fMRI data had been collected during 
daytime in a resting condition. While studying FC during 
sleep could help us understand the mechanisms underly-
ing cardiorespiratory dysfunction, such studies are rare, 
as sleeping inside the scanner overnight is not well toler-
ated by participants. Therefore, fMRI studies need to 
consider protocols which mimic conditions that likely 
contribute to cardiorespiratory failure, while also being 
safe and practical. An example of such a test is the 
hypercapnic ventilatory response which was shown by 
Sainju et  al. (2019) to indicate individuals with a pro-
longed increase in post-ictal CO

2 after TCS, who are 
arguably at a high risk of SUDEP. Future fMRI studies 
may need to consider breathing or cardiovascular chal-
lenges during scans, along with physiological monitoring, 
to better understand how regional brain areas respond to 
such manipulation in patients at risk for SUDEP.

Another important limitation is the heterogeneity of our 
sample, which included individuals with different epilepsy 
syndromes and etiologies. This issue was largely due to 
the relative rarity of SUDEP cases who have undergone 
fMRI, which necessitated a broader recruitment strategy 
to ensure sufficient sample size for meaningful analysis. 
Additionally, while the frequency of TCS could, in princi-
ple, be treated as a continuous variable to explore asso-
ciations with connectivity measures, we opted for a 
categorical classification due to inconsistencies in sei-
zure documentation across patients. We also did not 
examine the influence of the epileptogenic hemisphere 
on connectivity patterns, as lateralization data were not 
consistently available across the cohort. Future studies 
with more standardized and granular clinical information, 
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including seizure frequency, lateralization, and etiology, 
may enable more refined analyses of SUDEP risk factors.

We also acknowledge that the brainstem and midcin-
gulate cortex, despite their established roles in auto-
nomic regulation (Ferraro et al., 2022), were not included 
as seed regions due to the poor signal-to-noise ratio 
observed in our 3T fMRI data in brainstem and the need 
to limit the number of statistical comparisons. Future 
studies with optimized acquisition protocols and larger 
sample sizes may help clarify the contribution of these 
regions to SUDEP risk.

Moreover, in this study, we included global signal 
regression (GSR) to mitigate widespread physiological 
noise (Kassinopoulos & Mitsis, 2021; Xifra-Porxas et al., 
2021), with the aim of enhancing sensitivity to subtle 
effects of autonomic activity. However, given the ongoing 
debate in the field and concerns that GSR may inadver-
tently remove signal related to vigilance or neural pro-
cesses, we repeated the key analyses without applying 
GSR. As anticipated, the results differed: of the three 
seed-based connectivity components that initially dis-
criminated between groups, only one (PCu/PCC) retained 
a component with an F-statistic above chance level (Sup-
plementary Figs. S8 and S9). While we maintain that GSR 
is a reasonable approach for reducing global physiologi-
cal confounds, further work is needed to evaluate its 
appropriateness in studies investigating autonomic influ-
ences on brain connectivity.

Finally, although our data suggest that the strength of 
anterior insula connectivity is inversely proportional to the 
interval between the fMRI scan and time of SUDEP 
(r = -0.74; p = 0.02, uncorrected; N = 9; Fig. 5), this find-
ing is based solely on cross-sectional data and, thus, 
should be interpreted with caution. Longitudinal data, 
ideally incorporating postmortem data, may help clarify 
whether insular dysfunction progresses over time and 
how it relates to neuropathological findings in SUDEP 
(e.g., Nascimento et al., 2017).

5.  CONCLUSIONS

In this work, we revealed altered FC patterns of cuneus 
and precuneus/posterior cingulate cortex in epilepsy as 
compared with healthy controls during periods of regular 
cardiorespiratory rhythms. These findings were based on 
the use of global signal amplitude (GSA), which we 
showed to be a marker of cardiorespiratory rhythm irreg-
ularity (transient apnea, transient increase in heart rate, 
etc.). In addition, we found reduced anterior insula con-
nectivity in epilepsy, particularly during periods of regular 
cardiac and breathing activity. For SUDEP cases, the 
insular connectivity effect was inversely correlated with 
the scan–SUDEP interval. Overall, our results suggest 

that connectivity measures of the anterior insula may rep-
resent a contributing factor to SUDEP risk, rather than a 
standalone biomarker, as similar connectivity patterns 
were also observed in non-SUDEP epilepsy patients. 
Future research efforts should focus on gaining insight 
into the role of anterior insula connectivity in seizure-
induced cardiorespiratory failure and how intervention 
strategies could be employed to restore anterior insula 
function.
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