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 A B S T R A C T

Accurate and scalable generation of Building Energy Models (BEM) from Building Information Modelling (BIM) 
data is critical for performance-driven building design. However, existing methods are often constrained by 
data quality issues and rigid workflows, limiting automation. This paper proposes an automated and scalable 
BIM-to-BEM (BIM2BEM) framework enabled by knowledge graph integration, designed to support automation 
and scalability in model generation from imperfect BIM data. To manage model complexity, zoning-based 
mappings from BIM spaces to thermal zones are derived through multi-factor analysis of spatial relationships, 
functional usage, thermal load similarity, and HVAC configuration. Applied to a real-world complex building, 
the framework reduces simulation time by up to 70%, while maintaining energy use deviations within 3% 
and HVAC sizing variations up to 10%, compared with the full-model baseline. These findings indicate that 
the proposed framework can enhance BIM2BEM automation, supporting the scalable and flexible generation 
of simulation-ready models under practical data limitations.
1. Introduction

Building Information Modelling (BIM) provides rich spatial and 
semantic data that supports the automated generation of Building 
Energy Models (BEM), which are essential for the design and operation 
of energy-efficient buildings. This forms the foundation of BIM-to-
BEM (BIM2BEM) workflows, aiming to improve modelling accuracy 
and reduce manual work. At the same time, semantic technologies, 
supported by ontologies and knowledge graphs, offer structured and 
consistent digital representations of buildings and their systems. These 
technologies enhance data integration and support the management 
of geometric, system-level, and device-level information. For build-
ing energy modellers, it is essential that BIM2BEM conversion results 
in simulation models with appropriate levels of detail and accuracy, 
including the correct mapping of BIM spaces to BEM thermal zones 
and the consistent incorporation of information on passive and ac-
tive components. Integrating these elements into a cohesive BIM2BEM 
framework can significantly improve the flexibility, scalability, and 
reliability of modelling processes.

The feasibility of BIM2BEM methodologies has been extensively ex-
plored, with numerous studies demonstrating their potential to stream-
line building energy modelling in automated or semi-automated work-
flows. Bazjanac et al. [1] first showed that structured BIM data could 

∗ Corresponding author.
E-mail address: wang.meng@ucl.ac.uk (M. Wang).

be leveraged to support building performance simulations, laying the 
groundwork for subsequent developments. Gao et al. [2] reviewed 
automated BIM2BEM frameworks and highlighted their benefits in im-
proving data exchange and simulation accuracy, particularly in sustain-
able design applications. Further reviews have categorised BIM-based 
energy modelling by key objectives such as performance prediction, 
operational management, and retrofit planning, as highlighted by Al-
hammad et al. [3] and Pezeshki et al. [4]. BIM has also proven 
valuable for computational fluid dynamics (CFD) applications, offering 
detailed geometric and system information for airflow and thermal 
modelling [5]. Despite these advancements, the vision of a fully au-
tomated and error-free BIM2BEM workflow remains unmet, largely 
due to persistent challenges in model completeness, data inconsistency, 
and semantic misalignment, as reported by Kamel and Memari [6]. 
These limitations underscore the need for ongoing advancements in au-
tomation, interoperability, and simulation readiness, calling for flexible 
and robust BIM2BEM processes that can effectively manage imper-
fect BIM data and accurately capture both spatial and system-level 
characteristics in complex building scenarios.

To address these challenges, this work aims to develop an auto-
mated and scalable framework for BIM2BEM conversion with model 
simplification, thereby improving the flexibility and reliability of model 
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generation for complex buildings. Specifically, the research investi-
gates how semantic technologies and knowledge graph integration can 
support BIM2BEM conversion by managing imperfect BIM data and 
integrating building system information, while maintaining simulation 
accuracy and efficiency. Moreover, the simplified BEM models gener-
ated in this work are intended to support facility managers in assessing 
and optimising operational strategies, rather than for redesigning HVAC 
systems, particularly in large, complex buildings, where manual BEM 
development is highly time-consuming and error-prone.

Based on this objective, the proposed framework starts with the con-
struction of a comprehensive knowledge graph that integrates semantic 
technologies with architectural and HVAC data to create a coherent 
and accurate representation of the building and its systems. Thermal 
zoning scenarios are then derived by querying and simplifying the 
knowledge graph, using a multi-factor analysis that considers spatial 
adjacency, functional usage, HVAC system configurations, and thermal 
load similarity. These scenarios guide the mapping of multiple Ifc-
Spaces to thermal zones and support geometric simplification through 
space merging, resulting in a geometry-error-free model compatible 
with simulation requirements. Finally, a BIM2BEM workflow is estab-
lished that combines geometric data processing with the integration of 
non-geometric information from the knowledge graph, ensuring that 
the simplified BEM models retain sufficient geometric precision, system 
detail, and modelling accuracy.

By applying the methodology to a newly constructed, large-scale 
building with a complex layout and intricate HVAC systems, the main 
contributions of this paper are as follows:

• From a scientific perspective, the framework integrates BIM2BEM 
conversion, knowledge graph technologies, and zoning-based
model simplification into a unified workflow. This seamless in-
tegration significantly improves the scalability and flexibility of 
the BIM2BEM conversion process, enabling the generation of 
high-reliability models for building performance simulation.

• From a practical perspective, the framework can effectively han-
dle imperfect BIM data and overly complex building geometry. 
By incorporating multi-factor zoning-based model simplification 
within BIM2BEM conversion, the resulting BEM model main-
tains a manageable level of complexity, enhancing simulation 
efficiency while preserving modelling accuracy.

The remainder of this paper is organised as follows. Section 2 
reviews related literature. Section 3 introduces the methodology and 
framework. Section 4 presents the case study and zoning scenarios. 
Section 5 discusses the results, including the graph-based building 
representation and building performance under model simplification. 
Section 6 concludes and summarises the main findings.

2. Background and related work

The geometric conversion process in BIM2BEM has been the focus of 
extensive research. Industry Foundation Classes (IFC) is widely adopted 
as the primary input format due to its structured and comprehensive 
representation of architectural, mechanical, and electrical elements. 
IFC-based approaches have been implemented in various workflows. 
For instance, Ramaji and Memari [7] utilised IFC data to support energy 
model generation. Lilis et al. [8] proposed a method for producing 
second-level space boundary (2LSB) surface sets directly from IFC files, 
which is a critical yet technically demanding step in BIM2BEM work-
flows. Ying et al. [9] developed an algorithm to convert curved BIM 
geometries into polyhedral approximations, thereby improving geomet-
ric consistency and simulation efficiency. In addressing interoperability 
between IFC and simulation tools, Lobos et al. [10] introduced a 
framework for automated data exchange, enabling integration between 
BIM tools and national energy certification platforms.

In addition to IFC, gbXML has been used as a lightweight alternative 
to represent building information. Dena et al. [11] applied gbXML to 
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support the generation of 2LSB, while Yang et al. [12] emphasised 
its advantage in reducing the effort required to reconstruct simula-
tion models. Elnabawi et al. [13] demonstrated the integration of 
gbXML with EnergyPlus to facilitate energy modelling during early 
design stages. Alongside EnergyPlus, a widely adopted simulation en-
gine, other studies have explored the use of Modelica in BIM2BEM 
workflows. Kim et al. [14] developed a Modelica library to support 
semi-automated conversion, while Jeong et al. [15] proposed a direct 
method for BIM2BEM conversion to support thermal simulation and 
system optimisation. More recently, Kiavarz et al. [16] investigated 
data-driven energy models interacting with IFC-based information for 
performance analysis. In the context of HVAC system modelling, Li 
et al. [17] and Chen et al. [18] used OpenStudio to map HVAC con-
figurations, while Wang et al. [19] employed a graph-based approach 
to extract complete HVAC topologies for EnergyPlus simulations. These 
studies confirm the feasibility and adaptability of BIM2BEM workflows 
across various simulation engines and modelling approaches.

Besides these academic developments, several industry-adopted 
toolchains, such as IfcOpenShell, BlenderBIM, Ladybug and Honey-
bee, have also been extending their capabilities to support BIM2BEM 
conversion [20]. More recently, Pollination has emerged as a cloud-
based platform that supports BIM2BEM conversion through geometry 
validation, model cleaning, and interoperable exports [21]. While these 
tools provide essential functionality, their performance is strongly 
dependent on the quality and completeness of the input IFC data [22]. 
In practice, missing attributes or inconsistent semantics often lead to in-
correct outputs or even export failures, necessitating substantial manual 
intervention [23]. This dependency is particularly evident for building 
systems where the semantic links between equipment are frequently 
incomplete or inaccurate. Moreover, current tools are generally more 
advanced in geometric processing for architectural components than in 
HVAC modelling, which typically configure simplified systems through 
predefined templates [18]. However, their customisation options are 
often limited, restricting system-level and device-level analyses in 
complex buildings with diverse HVAC configurations. Moreover, some 
tools that embed thermal zoning approaches are primarily designed 
to subdivide large spaces into multiple thermal zones, whereas the 
automated aggregation of small spaces with similar functions remains 
limited and often requires manual adjustment [24]. Additionally, inter-
operability challenges across data formats compromise the robustness 
and scalability of these workflows, particularly when applied to large, 
complex buildings with imperfect BIM data.

Both academic methods and industry tools that support BIM2BEM 
have demonstrated feasibility and provided valuable functionalities, 
yet they remain somewhat constrained in terms of robustness and 
scalability. Most approaches still rely on one-to-one mappings be-
tween BIM spaces and thermal zones, often assume high-quality and 
complete input data, and are typically validated only on relatively 
simple cases. These limitations underscore the need for more flexible 
and error-tolerant solutions that can accommodate the complexity and 
imperfections inherent in real-world building models.

To overcome the limitations of imperfect BIM data and enable a 
digital representation of building components and their interrelation-
ships, recent studies have introduced semantic technologies to integrate 
and manage BIM alongside other data sources. Ontology-based knowl-
edge graphs structure BIM data into machine-interpretable formats, 
representing not only geometric and physical attributes but also se-
mantic and topological relationships [25]. This graph-based approach 
enables advanced querying and reasoning, supporting the identifica-
tion and correction of incomplete or inconsistent information in spa-
tial and system-level data [26]. Existing building ontology schemas, 
such as Brick [27] and FSO [28], provide standardised vocabularies 
for interoperability, while Shapes Constraint Language (SHACL) en-
ables rule-based validation of topological structure [29]. Werbrouck 
et al. [30] highlighted the use of semantic web technologies to en-
rich existing building geometry through graph-based representations, 
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Fig. 1. Proposed framework.
addressing geometric uncertainties and enhancing the consistency and 
interpretability of reconstructed data. Similarly, Küçükavci et al. [31] 
demonstrated the effectiveness of these technologies in digitally repre-
senting HVAC systems and detecting data quality issues in BIM, thereby 
improving the accuracy and reliability of system information during the 
design phase. Beyond the integration of static data, Wang et al. [32] 
introduced a digital twin incorporating sensing and monitoring real-
time data, and Boje et al. [33] further proposed a semantic construction 
that integrates BIM data with standard ontologies to enable lifecycle-
based modelling and multi-source data exchange. These developments 
highlight the potential of creating a digital counterpart to serve as 
intelligent middleware, enhancing data interoperability and facilitating 
more flexible BIM2BEM conversions beyond rigid one-to-one mappings.

In large buildings with complex layouts, maintaining a strict one-to-
one mapping between BIM spaces and BEM thermal zones often results 
in overly detailed models that significantly increase simulation time 
without a corresponding gain in accuracy. To address this, researchers 
have explored zoning optimisation techniques that intelligently aggre-
gate spaces into thermal zones, aiming to balance simulation fidelity 
with computational efficiency [24]. Geometric simplification remains a 
fundamental step in this process. For example, Lilis et al. [34] reduced 
the complexity of 2LSB surface sets, while Georgescu et al. [35] applied 
Koopman operator theory to decompose building geometry into spatial 
modes, enabling zoning at different levels of granularity. These studies 
demonstrate the importance of managing geometric complexity as a 
basis for effective zoning.

Beyond building geometry, zoning strategies should also account for 
thermal loads and HVAC system configurations. Shin et al. [36] pro-
posed a cluster- and load-based zoning method to enhance simulation 
accuracy in multi-zone buildings, while Chen et al. [37] analysed how 
different zoning schemes influence energy predictions across building 
stocks with varying HVAC systems. More recently, researchers have 
begun integrating zoning approaches into BIM2BEM workflows to im-
prove modelling efficiency without sacrificing accuracy. Wu et al. [38] 
proposed an ontology-based BIM2BEM workflow with thermal zoning 
to achieve substantial reductions in modelling time, albeit in a simple 
single-floor case. Gourlis et al. [39] further investigated digital twin-
based simplification guided by high-level HVAC system information. 
These studies demonstrate the feasibility of such approaches, sug-
gesting that integrating zoning strategies into BIM2BEM workflows 
offers significant potential to enhance scalability, flexibility, and ap-
plicability. Despite recent progress, most existing studies are based on 
simplified cases and ideal data inputs, leaving their applicability to 
imperfect data and large, real-world buildings insufficiently explored.

While many studies have investigated BIM2BEM workflows and 
thermal zoning methods, most rely on simplified, illustrative cases and 
3 
complete, error-free BIM data. Existing approaches often use rigid one-
to-one mappings between BIM spaces and thermal zones, which limits 
scalability and flexibility when applied to large buildings with complex 
layouts and intricate building services systems. These methods may also 
fail to meet the practical needs of building energy modellers. More-
over, current zoning strategies tend to focus primarily on geometric 
simplification, with limited integration of information on system con-
figurations, which is essential for generating reliable BEM models. The 
lack of seamless coordination between zoning strategies and BIM2BEM 
processes remains a significant challenge, underscoring the need for 
more robust and adaptable workflows that can effectively manage 
imperfect BIM data and accurately capture both spatial and system 
characteristics. Furthermore, the potential of semantic technologies to 
enhance the scalability and flexibility of BIM2BEM workflows also re-
mains underexplored. Incorporating zoning-based model simplification 
supported by knowledge graph integration offers promising potential to 
improve simulation efficiency while maintaining accuracy, particularly 
in complex real-world building scenarios.

3. Methodology

This paper proposes an automated and scalable BIM2BEM frame-
work with zoning-based model simplification leveraging knowledge 
graph integration. As illustrated in Fig.  1, this framework consists of 
four main components: (1) knowledge graph construction, (2) zon-
ing scenario generation, (3) geometric data processing and model 
simplification, and (4) scalable BIM2BEM workflow.

First, a comprehensive knowledge graph is constructed by integrat-
ing semantic technologies with architectural and Mechanical, Electri-
cal, and Plumbing (MEP) BIM data to represent building spaces, HVAC 
components, and their logical relationships. A rule-based validation 
process is then applied to ensure the topological completeness of the 
knowledge graph, resulting in a structurally coherent digital counter-
part that accurately reflects the real-world system configuration.

Second, a multi-factor analysis is conducted to determine the key 
criteria for thermal zoning. These include geometric adjacency, func-
tional usage, HVAC system configuration, and thermal load similarity. 
Spaces that meet all criteria are aggregated into candidate groups, 
forming the foundation for mapping IfcSpaces to thermal zones. Zon-
ing scenarios are then generated by leveraging semantic technolo-
gies embedded in the knowledge graph to ensure consistency and 
traceability.

Third, geometric data processing converts architectural BIM data 
into geometry compatible with building performance simulations, start-
ing with the extraction of volumetric representations via the IFC ge-
ometry exporter and the generation of second-level space boundaries 
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Fig. 2. Partial view of knowledge graph representing building components and relationships.
 

(2LSB). Based on the mapping defined by zoning scenarios, multiple 
IfcSpaces are merged to form corresponding thermal zones. In addition, 
to ensure the geometric model is suitable for simulation, a polygon 
simplification method is introduced to reduce surface complexity while 
maintaining topological consistency.

Finally, a scalable BIM2BEM workflow is developed to generate 
EnergyPlus-compatible BEMs automatically. Information extracted from
the knowledge graph, including passive and active components, en-
riches both the full-model baseline and the simplified geometric BEM 
models. This workflow is a seamless and automated pipeline that 
integrates IFC, XML, gbXML, TTL, and IDF formats, ensuring data 
interoperability across domains. A comparative analysis is conducted 
to evaluate the impact of zoning-based model simplification on the 
accuracy and efficiency of the generated BEM models.

3.1. Knowledge graph construction

Knowledge graph facilitates seamless BIM2BEM conversion by uni-
fying geometric, semantic, and topological data into a coherent,
machine-readable structure. This section outlines a three-step develop-
ment process comprising ontology-based semantic modelling, enrich-
ment of connectivity within the graph, and rule-based validation of 
structural completeness. Together, these steps ensure that the resulting 
knowledge graph provides an accurate and well-structured digital 
counterpart, supporting the efficient transfer of consistent information 
from BIM to BEM.

3.1.1. Semantic technology and ontology
Semantic technologies are fundamental to constructing a compre-

hensive digital representation of buildings by integrating spatial geom-
etry with device-level information. This work utilises ontology-based 
knowledge graphs to represent building spaces, HVAC components, 
and their attributes and relationships, thereby enabling a structured 
and interoperable representation. Rather than developing a project-
specific ontology, existing ontologies are reused to ensure scalability 
and consistency across heterogeneous data sources.

Brick ontology, developed by the Brick Consortium, provides a stan-
dard vocabulary for representing spatial entities (e.g., spaces and zones) 
and HVAC equipment (e.g., air handling units, radiators, and VAV 
boxes), along with their associated semantic relationships. It supports 
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data integration across BIM and building performance applications. In 
this work, IFC-derived information is automatically transformed into 
knowledge graph entities using the Knowledge Graph Generator (KGG), 
developed in the previous work [40]. KGG builds on IfcOpenShell 
and extends it into an automated ETL pipeline that supports multiple 
ontologies (including Brick, BOT, and FSO), thereby enabling richer 
semantic representation [41]. Each generated entity is explicitly linked 
to its original IFC global unique identifier (GUID) to ensure provenance, 
maintain traceability, and avoid naming conflicts.

3.1.2. Knowledge graph enrichment
While the initial graph construction captures component-level and 

spatial information using ontology classes, many interconnections re-
main incomplete due to limitations in BIM semantics and modelling 
inconsistencies. To address this, a hybrid enrichment approach is 
employed, combining semantic extraction and geometric inference. 
Functional relationships are first extracted from IFC entities such as
IfcRelConnectsPorts, which define intended system connections 
between HVAC components. These are then supplemented through 
reasoning using the Geometric Relation Checker (GRC) [42], which 
identifies adjacency, clash, and containment based on the geometric 
configurations present in the BIM models.

By integrating these two sources, the knowledge graph incorporates 
explicit and inferred relationships, resulting in a more comprehensive 
representation of spatial and system configurations. The enriched graph 
accurately mirrors real-world building layouts and HVAC connectivity, 
providing a solid foundation for building digitisation. In addition to 
topological relationships, space-level attributes are required to support 
simulation tasks. Specifically, each space entity in the graph must be 
associated with its intended function (e.g., office, lab, toilet), as this 
directly affects internal heat gains and HVAC control logic. However, 
BIM models often lack or inconsistently define such functional classifi-
cations. Therefore, manual identification based on floor plans, design 
documents, or domain expert input is typically required for labelling, 
such as assigning space functions, identifying HVAC equipment types, 
or resolving missing and conflicting attributes.

The detailed methodology for constructing such a knowledge graph 
is described in the previous works [19,25]. Fig.  2 illustrates a rep-
resentative example of the knowledge graph derived from BIM data. 
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Although the enriched knowledge graph improves coverage and con-
nectivity, it may still contain incomplete or erroneous links due to data 
gaps or limitations in inference logic. Therefore, validation procedures 
are essential for assessing and refining the graph’s structure before it is 
applied.

3.1.3. Graph completeness validation
Validating the structural completeness is essential to ensure that 

the knowledge graph accurately reflects the real-world system and 
supports reliable energy modelling. This work employs a rule-based 
validation approach using SHACL (Shapes Constraint Language) to 
evaluate the graph structure and verify that key functional and spatial 
relationships are explicitly defined. A domain-informed ruleset (see 
Table  1) is established based on the typical design logic of building 
service systems, specifying the required relationships among spaces, 
terminals, distribution devices, and energy sources. The goal is to 
detect missing, incorrect, or redundant connections that would hinder 
the graph’s interpretability and completeness, thereby ensuring the 
accurate delivery of information to the BEM.

SHACL shapes are generated from the ruleset and applied to the es-
tablished graph using a validation engine such as pySHACL. The valida-
tion process produces a detailed report that identifies non-conforming 
nodes or subgraphs, along with specific constraint violations. These 
results support targeted corrections directly on the knowledge graph, 
improving its structural integrity without modifying the original BIM 
data. When rule violations are identified, corrections are performed 
manually with reference to design drawings to ensure alignment with 
the intended system configuration. Further details on SHACL validation 
can be found in the previous work [29].

A structurally validated knowledge graph is a prerequisite for reli-
able BIM2BEM conversion. By ensuring that key system components 
and their relationships are consistently represented, the knowledge 
graph enables accurate transfer of information into simulation-ready 
BEMs, thereby maintaining alignment between design logic and per-
formance analysis. The validation rules primarily address space-level 
equipment and typical HVAC system configurations, and therefore do 
not extend to every possible system element. Nevertheless, once valida-
tion passes and all defined relationships are confirmed, the knowledge 
graph can effectively support high-fidelity and trustworthy energy 
modelling.

3.2. Zoning scenario generation

Zoning, in the context of BIM2BEM, refers to the mapping process 
from IFC-defined building spaces (IfcSpace) to thermal zones used in 
BEM. As energy simulations typically require an abstracted thermal 
zoning structure, this mapping may involve a one-to-one or many-to-
one relationship, depending on geometric relationships, functional us-
age, system configuration, thermal load similarity, and even modelling 
resources. This section introduces a structured approach to generate 
zoning scenarios that define how multiple IfcSpaces can be aggregated 
into a single thermal zone. It includes the selection of relevant zoning 
factors, the definition of zoning criteria, and graph-driven thermal 
zoning to guide the BIM2BEM conversion.

3.2.1. Zoning factor selection
The selection of zoning factors plays a crucial role in defining 

how BIM-defined spaces (IfcSpaces) are aggregated into thermal zones, 
directly influencing the realism and accuracy of building simulations. 
This work selects four key factors, including geometric relation, space 
function, HVAC system configuration, and thermal load similarity. 
These factors are chosen for their direct influence on thermal be-
haviour, control logic, and system operation, which are all critical to 
generating a reliable BEM model.
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• Geometric relation: Adjacency is a prerequisite for merging multi-
ple IfcSpaces into a thermal zone. Only horizontally or vertically 
adjacent spaces are eligible, as non-adjacent ones cannot support 
consistent wall merging or shared boundary generation in the 
geometric model.

• Space function: Spaces with the same functional usage typically 
share similar occupancy patterns, internal heat gains, and comfort 
requirements. Grouping spaces by function ensures that thermal 
zones reflect consistent usage profiles, which is fundamental for 
defining appropriate control schedules and boundary conditions 
in simulation.

• HVAC system configuration: HVAC terminal setup determines 
how spaces are conditioned and controlled. Spaces connected to 
the same ventilation system or served by similar terminals tend to 
operate under shared setpoints and control strategies. Recognising 
this system-level or equipment-level similarity is essential for 
creating zones that align with actual HVAC operation, particularly 
in buildings with mixed system types.

• Thermal load similarity: Even among functionally and system-
wise similar spaces, variations in envelope conditions, orienta-
tion, storey, and internal loads can lead to divergent thermal 
demand profiles. By considering similarities in space-level cooling 
and heating loads obtained through Ideal Load Air System simu-
lations, thermal zones can be formed to ensure uniform thermal 
behaviour, improving simulation accuracy and model robustness.

These four factors collectively support the creation of thermal zones 
that are physically meaningful, operationally aligned, and computation-
ally effective for simulation-based performance analysis.

3.2.2. Identifying thermal load similarity
This paper evaluates the similarity of space-level cooling and heat-

ing loads using clustering analysis. First, a one-to-one mapping was 
established between BIM-defined spaces (IfcSpaces) and thermal zones. 
The geometric model and the conversion of passive components used 
to construct this full-resolution ideal-load BEM are developed by the 
proposed BIM2BEM workflow in Section 3.4. Based on this setup, 
each IfcSpace was simulated independently using the Ideal Load Air 
System to obtain its annual heating and cooling loads under ideal HVAC 
control.

To ensure consistent comparison across spaces of different sizes 
and heights, the simulated loads were normalised by each space’s 
volume. This produced unit-volume indicators (in W/m3 or kWh/m3), 
which were the basis for assessing thermal load similarity. Besides, 
spaces were then classified into two categories: (a) those requiring 
both cooling and heating, and (b) those requiring heating only. This 
categorisation was based on the results of the ideal load simulation, 
informed by the HVAC system configuration and control setpoints 
specified in the building design manuals. For each category, clustering 
analysis used the standardised annual cooling and heating demands per 
cubic metre as input features.

Gaussian Mixture Model (GMM) clustering was adopted for its 
probabilistic foundation and its capacity to represent overlapping clus-
ters [43]. To ensure an objective and data-driven selection of the 
number of clusters, the Bayesian Information Criterion (BIC) was eval-
uated across candidate results with varying component counts, and the 
configuration with the lowest BIC was selected. This approach enables 
objective clustering results that capture common patterns in thermal 
loads across different spaces.

The resulting clusters represent the underlying similarity in heating 
and cooling loads, serving as one of the key zoning factors in the sub-
sequent model simplification. These cluster labels were embedded into 
the previously constructed knowledge graph by tagging each IfcSpace 
node with its corresponding load similarity cluster. This semantic an-
notation enhances the graph’s capacity to support informed, consistent 
decisions when aggregating IfcSpaces into thermal zones.
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Table 1
Validation ruleset for ensuring completeness of the generated knowledge graph.
 Node checking Constraints

 Source Edge Sink Card. 
 Brick:Air_Diffuser a Brick:feedsAir Brick:Space =1  
 Brick:FCU a Brick:feedsAir Brick:Space =1  
 Brick:Radiator a Brick:hasLocation Brick:Space =1  
 
Brick:AHU a Brick:feedsAir

{Brick:Air_Diffuser;
≥1

 
 brick:CAV;  
 brick:VAV}  
 Brick:VAV a Brick:feedsAir Brick:Air_Diffuser ≥1  
 Brick:VAV Brick:AHU Brick:feedsAir a ≥1  
 Brick:Air_Diffuser {Brick:VAV; Brick:feedsAir a ≥1  
 brick:AHU}  
 
Brick:Water_Pump a Brick:feeds

{Brick:HX;

≥1

 
 brick:AHU;  
 brick:Radiator;  
 brick:FCU}  
 
Brick:Water_Pump

{Brick:Boiler;
Brick:feeds a ≥1

 
 brick:HX;  
 brick:Chiller}  
 Brick:AHU Brick:Water_Pump Brick:feeds a ≥1  
 Brick:FCU Brick:Water_Pump Brick:feeds a ≥1  
 Brick:Radiator Brick:Water_Pump Brick:feeds a ≥1  
 

Brick:Boiler a Brick:feeds

{Brick:Water_Pump;

≥1

 
 brick:AHU;  
 brick:Radiator;  
 brick:HX;  
 brick:FCU}  
 
Brick:Chiller a Brick:feeds

{Brick:Water_Pump;
≥1

 
 brick:AHU;  
 brick:FCU}  
a Indicates the node serving as the subject or object when validated.
3.2.3. Graph-driven thermal zoning
Thermal zoning in this paper is governed by a set of multi-factor 

criteria that determine whether multiple IfcSpaces can be merged into a 
single thermal zone. These criteria are applied to the knowledge graph, 
integrating both geometric and semantic information. Specifically, four 
core conditions must be satisfied for space aggregation: (1) vertical or 
horizontal adjacency, determined through geometric relationships; (2) 
identical functional usage, such as office or lab; (3) similar thermal load 
characteristics, based on the load similarity clusters derived from the 
above subsection; and (4) consistent HVAC system association.

Among the zoning criteria, HVAC configuration also plays a critical 
role. The knowledge graph captures system topology by linking each 
space to its associated terminal units and ventilation systems. In typical 
HVAC configurations for mixed-use non-domestic buildings in Europe, 
these systems include air handling units (AHUs), fan coil units (FCUs), 
and radiators, which condition the indoor environment. Spaces are 
eligible for merging only if the same ventilation system serves them 
or they do not require mechanical ventilation, ensuring they can be 
controlled as a single thermal zone. Additionally, spaces equipped with 
FCUs or radiators may be grouped if they share a hydronic loop with 
consistent control settings. These relationships are represented as edges 
in the graph and assessed through semantic queries. Fig.  3 illustrates 
how zoning criteria are applied in a representative example, comparing 
the original knowledge graph with its simplified counterpart.

It is important to note that all zoning criteria must be satisfied 
simultaneously. These include geometric adjacency, space function, 
HVAC system configuration, and thermal load similarity. In practice, 
this means that merging decisions are based on the intersection of 
these conditions rather than their union. Only spaces that meet all 
requirements are considered suitable for aggregation. As a result, the 
full set of IfcSpaces is divided into many smaller candidate groups, 
within which merging can be evaluated. Besides, multiple combinations 
of merging decisions may be generated for each zoning scenario. This 
results in up to 2𝑁  possible zoning configurations, where 𝑁 is the 
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number of space groups that are independently eligible for merging. 
The exponential growth in potential scenarios significantly increases 
computational demands, especially for large and complex buildings.

All zoning criteria are resolved within the knowledge graph, en-
abling zoning operations to be performed directly. Once groupings are 
determined, a structured mapping is created between each IfcSpace 
and its assigned thermal zone. This mapping is exported as a plain-
text file using IFC GUID, which serves as the zoning definition to guide 
the BIM2BEM conversion process. Based on this mapping, the original 
BIM-derived geometric model is updated to reflect the new zoning 
configuration. A simplified geometric model with fewer thermal zones 
is then generated in gbXML format, which is subsequently converted 
and enriched to produce a simulation-ready BEM model.

3.3. Geometric data processing and model simplification

To generate the appropriate geometric content for BEM based on 
specific space-to-zone grouping rules, two geometric processing steps 
are required. These are described in the following subsections. In brief, 
the first step involves generating the geometry of the complete BEM 
model, where thermal zones are not yet defined, and each space in 
the building corresponds to an enclosure (a closed volume) formed 
by the building’s structural elements (e.g., walls and slabs). This BEM 
geometry, referred to as the 2LSB surface set, is derived from the 
space volumes and does not account for the grade of the building’s 
construction materials. The required thermal characteristics of the 
building materials are added as an enrichment step after the initial and 
simplified BEM models are generated. In the second step, simplified 
BEM geometries are derived from the full model by applying predefined 
space-to-zone grouping rules, as introduced in the previous work [34]. 
Additionally, a novel polygon simplification algorithm is developed 
to reduce geometric complexity while preserving the essential spatial 
characteristics.
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Fig. 3. Illustrative thermal zoning example for mapping IfcSpaces to thermal zones.
3.3.1. Geometric data processing for BIM2BEM
The geometric information required to generate the BEM geometry 

is initially extracted from the input BIM model, provided in IFC format, 
using the Geometry Exporter tool. This tool is part of the cloud-
based toolkit, namely BIM-MP, which was presented in the previous 
work [44]. It retrieves 3D solid representations of internal spaces and, 
when available, the volumetric enclosures of openings such as windows 
and doors. These geometries are converted into boundary represen-
tations (Breps) that follow the outward normal convention, ensuring 
surface normals consistently point outward from solid volumes. The 
resulting data is stored in an intermediate XML format for further 
processing.

Subsequently, the obtained XML-based geometric data are pro-
cessed using the Common Boundary Intersection Projection (CBIP) 
algorithm [8], to construct the BEM geometry. This step produces a 
comprehensive surface set that captures spatial adjacencies and consists 
of thermal exchange planar surfaces among the building spaces and the 
environment. Known as the 2LSB surface set, this structure encodes 
zone connectivity information and serves as the geometric backbone 
for simulation-ready models [45].

To satisfy the format requirements of building performance simula-
tion tools, the 2LSB surface set undergoes an Extract-Transform-Load 
(ETL) process to be converted into a gbXML file. External surfaces are 
mapped directly, whereas each pair of internal surfaces is consolidated 
into a single representative surface. This is achieved by projecting 
both surfaces of the pair onto their median plane and computing the 
geometric intersection of these projections. As a result, the thickness 
of internal building constructions, originally defined by the distance 
between the planes of the paired internal 2LSB surfaces, is no longer 
needed in the generated gbXML and IDF models, since these models 
represent these surface pairs with single surfaces. Fig.  4 illustrates an 
example of a middle-plane polygon located within the slab between a 
building’s floors, as represented in the output gbXML model.

This transformation produces a simplified yet topologically coherent 
gbXML representation, which is then converted into an EnergyPlus in-
put data file (IDF format) using the OpenStudio SDK, thereby finalising 
the geometric conversion from BIM to BEM.
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Fig. 4. Example of middle-plane polygon within building slab contained in 
output gbXML file.

3.3.2. Geometric model simplification
The geometric simplification for BIM2BEM involves two comple-

mentary procedures to improve computational efficiency while pre-
serving spatial and simulation accuracy: (1) the merging of spaces 
into thermal zones based on zoning group definitions from the gener-
ated zoning scenarios, and (2) the simplification of polygonal surface 
geometry.

The first procedure applies predefined space-to-zone mappings to re-
structure the model geometry. These mappings, provided in a plain-text 
input file, define how individual IfcSpaces are aggregated into thermal 
zones. A dedicated tool called Simplification Tool (SMT), which was 
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Fig. 5. Illustrative process of the proposed polygon simplification algorithm.
Fig. 6. Proposed BIM2BEM workflow with zoning-based model simplification. KGG = Knowledge Graph Generator; GRC = Geometric Relation Checker; CBIP = 
Common Boundary Intersection Projection; ETL = Extract-Transform-Load; SMT = Simplification Tool.
introduced and adopted in the previous works [34,46], is used to carry 
out this process. The SMT identifies adjacent spaces that belong to the 
same zone and merges their surfaces by constructing connecting planes 
across the volumetric gaps between them. This produces simplified 
gbXML geometries with fewer surfaces than the gbXML geometry of 
the initial unmerged BEM.

Furthermore, in the case of complex or large-scale buildings, the 
2LSB surface set provides rich geometric detail; however, this level 
of complexity can hinder compatibility with simulation engines like 
EnergyPlus. In particular, curved edges represented as segmented poly-
lines often result in excessive surface triangulation, generating a large 
number of small mesh elements. This, in turn, significantly increases 
computational load and can render the simulation process inefficient or 
even unfeasible. To address this challenge, a polygon simplification al-
gorithm is applied to the boundary polygon points of all 2LSB surfaces, 
aiming to reduce geometric complexity while maintaining topological 
consistency. This is illustrated in Fig.  5, where the external and internal 
2LSB surface polygons are displayed with orange and grey colours, 
respectively. As shown in Fig.  5, a boundary point 𝑃𝑖 is removed from 
a polygon’s perimeter if the following two conditions are satisfied:
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(1) The length of the line segments ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑃𝑖−1𝑃𝑖 and ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑃𝑖𝑃𝑖+1 is smaller than 
a threshold 𝐿𝑡ℎ.

(2) The cosine of the angle formed by the line segments ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑃𝑖−1𝑃𝑖 and 
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑃𝑖𝑃𝑖+1 differs from one by a quantity less than an angle threshold 
𝐴𝑡ℎ.

As illustrated in Fig.  5, the polygon simplification process trans-
forms geometrically complex contours, such as circular openings and 
curved slab edges, into simplified representations. In particular,
rounded holes are approximated by regular polygons, and curved 
boundaries are substituted with a connected straight-line segment 
sequence. This simplification yields a simpler geometric model that 
aligns better with the requirements of building performance simulation.

3.4. Scalable BIM2BEM workflow

This paper presents an automated workflow for BIM2BEM con-
version with zoning-based model simplification leveraging semantic 
technologies. The corresponding data flow is illustrated in Fig.  6. The 
primary objective is to generate simulation-ready BEM models for 
EnergyPlus from imperfect BIM inputs and complex service system 
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Fig. 7. Overview of the OPS building, including (a) IfcSpace inventory, (b) architectural BIM model, and (c) MEP BIM models.
configurations, while accounting for geometric and system variability. 
The proposed workflow comprises multiple transformation stages and 
operates on top of the knowledge graph. During the conversion process, 
thermal zoning is applied to aggregate multiple IfcSpaces into a single 
thermal zone, significantly reducing model complexity. Zoning scenar-
ios are defined using semantic queries on the graph, informed by space 
attributes such as function, adjacency, HVAC system connections, and 
thermal load similarity, as detailed in the above subsections.

Building on the geometric processing outlined previously, a key 
feature of the latter stages of the conversion process is enriching the 
geometric model with simulation-relevant properties. This enrichment 
mainly consists of passive and active components.

• Passive component enrichment encompasses internal heat gain 
profiles, including occupancy density, lighting, and equipment 
loads. These parameters are typically derived from space function 
classifications and assigned using corresponding IDF object types 
such as People, Lights, and ElectricEquipment.

• Active component enrichment mainly incorporates HVAC system 
information based on the topology captured in the knowledge 
graph, as detailed in the previous work [19]. This task is not 
straightforward and requires additional graph processing to ex-
tract the HVAC topology, representing all logical relationships 
comprehensively. This ensures that water and air loops are ac-
curately described through upstream and downstream dependen-
cies, as well as primary and branch lines. The implementation 
is carried out in a Python environment, where RDFLib manages 
the graph and Eppy enables direct editing of IDF files. System-
level configurations are generated using HVACTemplate objects 
(e.g., Zone, System, and Plant), with subsequent refinements to 
device types applied through post-processing if needed. Since 
operational schedules cannot be inferred from topology, they are 
obtained from operation manuals, with graph indices linking to 
stored schedule files. This process results in a simulation-ready 
BEM model.

The BIM2BEM conversion process is implemented using a hybrid 
C++ and Python environment that integrates several specialised tools. 
Most geometric data processing, including conversion and simplifica-
tion, is conducted in C++, while semantic querying, zoning scenario 
generation, enrichment, and IDF file generation are handled in Python. 
The primary conversion pathway begins with the BIM model in IFC 
format, which is converted into XML and then to gbXML. Data quality 
checks are conducted at each step to ensure reliability. Thermal zoning 
operations are carried out during the transformation from XML to 
gbXML, after which the knowledge graph, stored in TTL format, is 
used to guide the enrichment of the gbXML-derived IDF file with 
both passive and active settings. This integrated approach results in a 
simulation-ready BEM model. The workflow is seamless and includes 
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verification at each stage to ensure accuracy and enable traceability of 
potential errors.

Overall, the proposed BIM2BEM workflow enables the robust, scal-
able, and accurate model generation of building performance simula-
tions. It is particularly effective in dealing with imperfect BIM data 
and complex buildings by combining semantic modelling, geometric 
simplification, and thermal zoning.

Additionally, the proposed workflow does not depend on complete 
or perfect IFC models. For the architectural BIM, only basic space 
information (e.g., volumes and boundaries) is required. For the HVAC 
BIM, geometric representation and essential classification are neces-
sary, along with most equipment-level semantic links. The degree of 
data completeness primarily affects the level of automation. More 
complete models enable higher automation, while missing or inconsis-
tent attributes can be supplemented within the knowledge graph. This 
ensures the workflow remains robust when applied to imperfect BIM 
inputs.

4. Case study

This work applies the proposed BIM2BEM framework to a real-
world case, with this section structured around three core aspects: 
an overview of the building and systems, ideal load-based clustering 
analysis, and zoning scenarios for model simplification.

4.1. Overview

This work adopts One Pool Street (OPS), located on the UCL East 
Campus in London, as the case study building. OPS is a newly con-
structed, multi-purpose facility equipped with a complex HVAC in-
frastructure, managed by an integrated building management system. 
The building has a podium and two towers named Tower East and 
Tower West. The podium serves as a multi-use area, housing various 
types of rooms. The towers offer residential spaces, including accom-
modation units and shared kitchens. The HVAC system incorporates 
several energy technologies, such as an air-cooled chiller, a district 
heating connection, and multiple systems, including mechanical ven-
tilation with heat recovery (MVHR) units, AHUs, FCUs, and radiators, 
to address cooling, heating, and ventilation requirements. Most of the 
HVAC components for cooling and heating purposes are located in 
the podium, which covers the ground to the third floor. Additional 
MVHR units and radiators have been installed in Tower East and Tower 
West to meet the heating, ventilation, and heat recovery needs of the 
residential areas.

The BIM data used in this paper are provided in IFC4 format and in-
clude both architectural and HVAC information required for BIM2BEM 
conversion. To manage the large file size and avoid memory issues 
during processing, the federated BIM model was divided into four sepa-
rate IFC files, corresponding to architectural elements and MEP systems 



M. Wang et al. Automation in Construction 182 (2026) 106712 
for the Podium, Tower East, and Tower West. Together, these models 
define the spatial layout and HVAC configuration. Fig.  7 presents the 
IfcSpace inventory and 3D visualisations of the architectural and MEP 
BIM models, where subfigures (a), (b), and (c) correspond to the space 
inventory, architectural model, and MEP model, respectively.

The architectural BIM model contains 834 IfcSpace entities, each 
mapped one-to-one to a thermal zone, forming the full-model base-
line. The raw IFC data used in this paper, however, lacked explicit 
representations of external openings such as windows and doors. As 
a result, corresponding window elements could not be generated in the 
BEM, which reduces its geometric completeness and limits the physical 
realism of the model. The proposed framework, nevertheless, is capable 
of incorporating window information when such elements are present 
in the BIM model. Specifically, the BIM-MP tool embedded within this 
framework for geometric IDF generation has already been applied in 
previous studies [44,46], where it demonstrated the ability to process 
window information when provided in IFC inputs.

Moreover, the HVAC devices had both geometric representations 
and classification in the BIM, but many detailed performance param-
eters of individual components were missing. Despite this limitation, 
OPS remains an ideal case for evaluating the methodology. Its complex 
architectural layout and system configuration make complete one-
to-one space-level manual modelling highly time-consuming, labour-
intensive, and error-prone. In addition, detailed simulations of such 
a large and intricate model can be computationally expensive. These 
factors underscore the case’s relevance for evaluating the effectiveness 
and scalability of the proposed BIM2BEM framework.

4.2. Ideal load-based clustering analysis

To facilitate a space-level load similarity analysis, an ideal load 
simulation was performed using the BEM model generated from the 
geometry-focused BIM2BEM conversion process. Each IfcSpace directly 
maps to a thermal zone in a one-to-one relationship. The purpose of 
this simulation was to independently determine the ideal heating and 
cooling loads for each space. As described in the preceding subsection, 
the resulting simulation model comprises 834 thermal zones, each 
precisely corresponding to one of the 834 IfcSpace instances. Moreover, 
the ideal load simulation was used solely for the clustering analysis of 
thermal load similarity in zoning-based scenario generation, whereas 
the subsequent BEM simulations incorporated detailed HVAC system 
configurations.

It should be noted that incomplete geometric data, particularly the 
absence of external openings such as windows, limits the representation 
of thermal dynamics in the model and thereby affects the accuracy of 
the ideal load simulation. Moreover, the thermal load of each space 
is influenced not only by internal heat gains and temperature control 
settings, but also by spatial factors such as orientation and position of 
the space within the building. Since the zoning approach spans multiple 
floors and the building features varying floor heights, the ideal load 
density was calculated based on unit volume rather than the more 
common unit floor area. As a result, while the simulation outcomes 
are sufficient for comparative load similarity analysis across spaces, the 
model is not suitable for detailed calibration or performance validation. 
Consequently, the influence of openings on the simulation results was 
not considered in this paper.

In addition to geometric incompleteness, detailed information on 
the construction envelope and electrical systems is not available. To 
address this, standard values were adopted based on building regula-
tions aligned with the design characteristics and construction period 
of the case building. The thermal transmittance (U-values) used in 
the simulation are 0.18 W/m2 K for roofs, 0.25 W/m2 K for floor 
slabs, 0.26 W/m2 K for external walls, and 0.30 W/m2 K for internal 
walls. Moreover, the internal heat gain settings are primarily derived 
from the National Calculation Methodology [47], supplemented by 
other studies [48,49]. According to building operation manuals for 
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Fig. 8. Distribution and clustering results of spaces, excluding those without 
heating or cooling loads.

HVAC systems, primary function rooms such as offices and lobbies are 
typically maintained at 21 ± 1 ◦C, while secondary function rooms 
like toilets and store areas are usually supplied with air at 18 ◦C. The 
building management system (BMS) room and plant rooms operate 
with continuous cooling throughout the year.

For the clustering analysis of thermal load similarity, the 834 spaces 
were first categorised based on their load characteristics into three 
types: those with both heating and cooling loads, those with only 
heating loads, and those without any thermal loads. The first two 
types were analysed separately using the GMM algorithm, with the 
number of clusters determined according to BIC. This resulted in 6 
clusters for the spaces with both heating and cooling demands, and 
8 clusters for those with only heating demand. The remaining spaces, 
which exhibited neither heating nor cooling loads, were treated as 
a single group. Consequently, all 834 spaces were classified into 15 
load groups based on their ideal load similarity. Fig.  8 illustrates the 
distribution of spaces with their heating and cooling loads, as well as 
their corresponding groupings according to load similarity.

4.3. Zoning scenarios for model simplification

A set of potential mergeable groups was identified based on the 
graph-driven thermal zoning strategies introduced earlier, including 
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space function, HVAC configuration consistency, and thermal load 
similarity. While geometric adjacency is also considered, it serves 
more as a spatial constraint during geometric data processing rather 
than a direct factor in scenario generation. Since all three conditions 
must be met simultaneously to merge spaces, the resulting mapping 
from IfcSpaces to thermal zones includes various candidate groups. 
Specifically, 19 groups were identified based on HVAC configuration, 
15 based on space function, and an additional 15 derived from the 
clustering analysis of thermal load similarity. A set of candidate groups 
was then generated by identifying the intersections across these three 
dimensions. Each candidate group was defined as the intersection of 
one HVAC-based group, one function-based group, and one load-based 
group. Groups in which the intersection included only a single IfcSpace 
were excluded, since merging requires at least two spaces. After this, 
18 preliminary valid groups remained that satisfied all zoning criteria 
and were selected for model simplification.

Through further filtering, 5 unconditioned groups (spaces with-
out temperature control and terminal devices) and 3 ventilation-only 
groups (spaces served only by simple ventilation devices) were merged 
by default, with the spaces inside each group being merged. Since these 
groups have no heating or cooling demand, they exert very limited 
influence on zoning outcomes compared with the conditioned spaces. 
Therefore, the remaining 10 conditioned groups were finally selected 
for model simplification, forming the basis for the zoning scenario gen-
eration. This reduction was necessary given the model complexity, as 
analysing all 218 combinations (over 260,000 scenarios) would impose 
an unacceptable computational burden for such a complex building.

The full-model baseline maintains a one-to-one mapping between 
IfcSpaces and thermal zones, with no merging applied. To represent 
and manage different zoning scenarios, each scenario was encoded 
as a binary string in which each digit corresponds to a conditioned 
group. A digit of ‘‘1’’ indicates that the group is merged, while a 
digit of ‘‘0’’ indicates that it is not. This approach yields 2𝑁  possible 
zoning scenarios, where N = 10. Under this scheme, the configuration 
‘‘0000000000’’ corresponds to the case in which all unconditioned and 
ventilation-only groups are merged by default, while no conditioned 
groups are merged; this is distinct from the full-model baseline having a 
strict one-to-one mapping. Moreover, the configuration ‘‘1111111111’’ 
represents the case in which all conditioned groups are merged, in 
addition to the default merging of unconditioned and ventilation-only 
groups. A configuration with a single ‘‘1’’ specifies that only the spaces 
within the corresponding conditioned group are merged, while all 
other groups remain unmerged. In all scenarios, the unconditioned and 
ventilation-only groups are merged by default, regardless of the binary 
configuration, since their contribution to overall building performance 
is substantially smaller than that of conditioned spaces. This enables 
the analysis to focus on zoning scenarios that are more relevant to BEM 
outcomes.

Hence, this setup results in one baseline model and 1024 possible 
zoning scenarios. However, due to the high computational cost of 
running simulations for all scenarios, this paper further employs the 
Sobol sampling method [50] to explore the space of zoning scenario 
configurations efficiently. Through this method, the number of scenar-
ios was reduced from 1024 to 256 representative samples. Additionally, 
the baseline, the ‘‘all-zero’’, the ‘‘all-one’’, and all single-merge config-
urations (those with only one ‘‘1’’) were included, while avoiding any 
duplicates already covered by the Sobol samples. In total, 256 (Sobol) 
+ 2 (‘‘all-one’’ and ‘‘all-zero’’) + 10 (‘‘single-1’’) −1 (duplicates) = 267 
unique zoning scenarios were selected to generate corresponding BEM 
models.

Finally, the zoning scenarios not only guided the SMT tool in sim-
plifying the geometry-related components of the BEM model but also 
supported the corresponding simplification of the knowledge graph, 
ensuring consistency with the BEM geometry.
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5. Results and discussion

This section illustrates the graph-based building representation, the 
full-model baseline simulation, and building performance under model 
simplification.

5.1. Graph-based building representation

This knowledge graph integrates both geometric and HVAC infor-
mation within a structured node-edge framework, enabling scalable 
querying, reasoning, and model simplification. Unlike traditional geo-
metric or schematic representations, it supports multi-layer abstraction 
and ensures data consistency between BIM and BEM, thereby facili-
tating seamless integration, interoperability, and performance analysis. 
The constructed knowledge graph, geometric representation, entity 
inventory, and their interconnections can be found in Fig.  9.

Fig.  9(a) illustrates the abstracted graph structure comprising spaces 
and HVAC components, where each node represents an entity (e.g., 
space, VAV, AHU), and each edge encodes a spatial or logical relation-
ship, such as air supply or spatial containment. The geometric view 
beneath the knowledge graph serves as a visual reference, supporting 
interpretation of the spatial context and distribution of the elements.

Fig.  9(b) presents a chord diagram illustrating the interconnections 
among spaces and key HVAC entity types, such as Radiators, FCUs, 
AHUs, and Chillers. The thickness of each chord indicates the number 
of connections between two types, thereby highlighting dominant flow 
paths and subsystem structures. This visualisation reveals the modular-
ity and heterogeneity of the HVAC systems within the OPS building, 
underscoring the prevalence of specific terminal types. This graph-
based representation provides an accurate and structured overview of 
the system architecture and interconnections for large-scale buildings 
such as OPS with complex HVAC configurations.

Fig.  9(c) provides a quantitative summary of entity counts extracted 
from the knowledge graph. The results highlight the diversity and large 
number of HVAC components, along with more than 800 spatial enti-
ties. This level of scale and complexity poses considerable challenges 
for generating accurate and high-quality BEM models, particularly in 
terms of transformation fidelity and computational cost. These find-
ings further underscore the importance of the proposed BIM2BEM 
framework with model simplification in enabling scalable and efficient 
energy simulations.

Additionally, the knowledge graph, acting as a back-end, offers 
significant potential for broader applications, such as real-time moni-
toring, control integration, and semantic querying. It integrates hetero-
geneous data, accurately captures complex relationships and supports 
a data-rich management architecture. It also ensures a consistent for-
mat across sources and enables straightforward validation through 
constraint-based reasoning. These features make it a robust and adapt-
able foundation for data interoperability and intelligent operation.

5.2. Baseline simulation of the full model

As a reference for evaluating the impact of model simplification, a 
baseline simulation was conducted using the full BEM model generated 
from the original BIM data and its knowledge graph without any zoning 
aggregation. In this configuration, each thermal zone maintains a one-
to-one correspondence with its associated space in the BIM model, 
resulting in a detailed and high-resolution simulation setup. This full-
model baseline serves as the benchmark for evaluating the impact of 
zoning simplification on energy performance and system behaviour.

To ensure consistency across zoning scenarios and to address the 
absence of detailed performance parameters for HVAC devices, the 
capacity of each HVAC component in the BEM model was configured 
using the ‘‘Autosize’’ setting in EnergyPlus. This practical compromise, 
adopted to handle incomplete input data, enables the simulation en-
gine to automatically determine the appropriate sizing required to 
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Fig. 9. Overview of graph-based building representation for case study, including (a) knowledge graph and geometric representation, (b) interconnections among 
entities, and (c) the inventory of entities.
meet thermal loads and zone-level temperature setpoints. At the same 
time, it provides a consistent basis for comparing scenarios and allows 
examination of how zoning influences HVAC system sizing.

Given this autosizing setup, the simulation analysis in this sub-
section focuses on energy consumption, using Energy Use Intensity 
(EUI), defined in Eq.  (1), as the primary performance metric. The 
EUI enables direct comparison across different zoning configurations, 
offering a consistent basis for evaluating the performance implications 
of zoning-based model simplification. 

EUI =
∑8760

ℎ=1 (Load
electricity, district heating
h × 1)
Floor Area

(1)

Fig.  10 illustrates the complete BIM2BEM process for generating the 
full-model baseline. Based on the current version of the BIM data, the 
building has a total floor area of approximately 13,500 m2, including 
11,300 m2 of conditioned space and 2200 m2 of unconditioned space. 
This is slightly smaller than the 17,300 m2 indicated in the original 
design documents, primarily due to missing elements such as stairs, 
lifts, and an auxiliary service building. Additionally, external windows 
were not included in the original BIM data. While these omissions 
introduce some geometric discrepancies between the digital model and 
the actual structure, the case remains valid for testing the proposed 
methodology. They reflect data quality issues that may arise in practice, 
yet the model still retains the essential spatial and system information 
necessary for conducting the BIM2BEM conversion.

Based on the results of building performance simulation, the full-
model baseline yielded an electricity EUI of 100.07 kWh/m2/year, com-
pared to the actual electricity use of approximately 120 kWh/m2/year 
recorded by the building’s meters for the year 2024. For district heat-
ing, the simulated heating EUI was 50.26 kWh/m2/year, which closely 
aligns with the metred value of 47 kWh/m2/year. A detailed break-
down of electricity use across end uses, such as chillers, pumps, venti-
lation, and lighting, is provided in the pie chart in the bottom right 
corner of Fig.  10. Despite the BIM model lacking certain geometric 
elements, such as windows and some internal spaces, the deviations of 
16.6% in electricity and 6.9% in heating fall within the ranges reported 
in recent building energy simulation studies [51,52], in calibration 
review papers [53,54], and in ASHRAE Guideline 14 [55]. These re-
sults suggest that the full-model baseline provides a reliable basis for 
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evaluating the impact of zoning-based model simplification on energy 
performance. More detailed calibration is achievable in future once 
more comprehensive data, including window information and complete 
on-site weather records, becomes available.

5.3. Building performance under model simplification

This section examines the impact of zoning-based model simplifi-
cation on building performance from three key perspectives, includ-
ing simulation efficiency, energy performance, and HVAC system siz-
ing. The analysis is based on 267 zoning scenarios coupled with the 
BIM2BEM conversion, each representing a different level of spatial ag-
gregation. The following subsections elaborate on how model simplifi-
cation influences simulation time, energy consumption, and HVAC sys-
tem sizing, offering insights into the behaviour of building performance 
simulations under varying levels of model complexity.

Fig.  11 presents the geometry of the baseline full-model BEM along-
side 12 simplified models based on some representative zoning sce-
narios. These include the ‘‘all-zero’’ scenario, 10 ‘‘single-1’’ scenarios, 
and the ‘‘all-one’’ scenario. In this context, a value of ‘‘1’’ indicates 
that a specific group of spaces has been merged. This means that 
multiple IfcSpaces are merged into one or more thermal zones, taking 
into account spatial adjacency. The remaining 255 scenarios gener-
ated through Sobol sampling are not included here, as they represent 
different combinations of these 10 ‘‘single-1’’ scenarios.

5.3.1. Simulation efficiency across zoning scenarios
Fig.  12 illustrates the relationship between the number of thermal 

zones and simulation time across the 267 zoning scenarios. Gener-
ally, zoning-based model simplification reduces the number of ther-
mal zones, thereby shortening simulation time. The full-model base-
line, which maintains a one-to-one mapping between individual Ifc-
Spaces and thermal zones, comprises 834 zones and takes approxi-
mately 1200 s to complete the simulation. In comparison, the most 
simplified scenario (‘‘all-one’’), where the spaces within all mergeable 
groups are merged accordingly, reduces the number of zones to fewer 
than 100 and lowers the simulation time to just under 400 s. This 
corresponds to a time reduction of around 70% relative to the full-
model baseline, demonstrating the substantial efficiency gains enabled 
by zoning-based model simplification.
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Fig. 10. BIM2BEM process for generating the baseline full-model building performance simulation.
Fig. 11. Geometric representations of the baseline full-model BEM and 12 simplified models derived from representative zoning scenarios.
However, Fig.  12 also shows that simulation time does not always 
decrease in proportion to the number of zones. In some scenarios, 
merging spaces across different floors with complex geometric configu-
rations can introduce additional computational overhead, particularly 
in zones that involve airflow or ventilation calculations. It can lead to 
large-volume thermal zones that slow down convergence during simu-
lation, irregular zone shapes, and more intricate surface relationships, 
which may offset the expected efficiency gains. This effect is especially 
evident in some mergeable groups where merged zones span multiple 
levels or include diverse system types. Despite these exceptions, the 
overall trend confirms that zoning-based model simplification enhances 
simulation efficiency and is especially beneficial for large-scale building 
energy models with complex service system configurations.

5.3.2. Energy performance across zoning scenarios
Fig.  13 illustrates the distribution of HVAC-related electricity and 

heating energy use across all zoning scenarios. Each point represents 
a zoning scenario, with its position indicating the simulated electricity 
and heating energy use, and its colour reflecting the number of thermal 
zones. The results show that zoning-based model simplification, when 
guided by HVAC system configuration, space function, and thermal 
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load similarity, has a limited impact on overall energy use. For HVAC-
related electricity use, the baseline model yields approximately 191,000 
kWh. Across all zoning scenarios, values for the simplified models fall 
within the range of 187,000 kWh to 196,000 kWh, corresponding to 
a deviation of under 3%. For heating energy use, the baseline model 
yields a value of approximately 674,000 kWh, while the highest value 
among the simplified models reaches 688,000 kWh, corresponding to 
a deviation of about 2%.

As the level of zoning-based model simplification increases, indi-
cated by a darker colour gradient, deviations from the baseline become 
more noticeable, particularly in heating energy use. In contrast, elec-
tricity use displays a more scattered pattern, with values fluctuating 
above and below the baseline without a consistent trend. These findings 
indicate that even with substantial reductions in model resolution, 
the energy performance of the simplified models remains consistent 
and robust. While heating energy use tends to increase slightly in 
most simplified BEM models, and electricity use shows no systematic 
variation, both deviations remain small. These results suggest that 
the proposed zoning-based model simplification method can maintain 
accurate energy assessments even in large buildings with complex 
geometries and diverse HVAC configurations.
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Fig. 12. Scatter plot of simulation time versus number of thermal zones across 
zoning scenarios.

Fig. 13. Scatter plot of HVAC-related electricity and heating energy use across 
zoning scenarios.

Fig.  14 further examines the relationship between the number of 
thermal zones and HVAC-related energy use, separating the results 
into (a) electricity use and (b) heating use. Compared to Fig.  13, this 
presentation offers a clearer view of how the degree of zoning-based 
model simplification influences each energy metric. The plots also 
explicitly show the deviation ranges introduced by zoning. The scatter 
patterns reveal that dots tend to cluster around specific zone counts, 
reflecting the structure of the predefined zoning groups. This indicates 
that the merging of intra-group spaces influences HVAC-related energy 
calculations to varying degrees.

The most simplified BEM model, in which all mergeable groups 
are merged into the minimum number of zones, does not produce 
the most significant deviation from the full-model baseline. This sug-
gests that simplified models can still closely align with the full-model 
baseline when zoning decisions consider system configuration, space 
function, and load similarity. These findings reinforce that, when prop-
erly applied, zoning-based model simplification can preserve the accu-
racy of energy performance simulations while substantially improving 
computational efficiency.

In addition, Fig.  15 illustrates the impact of model simplification 
on solar heat gain on exterior surfaces. As shown in Fig.  11, zoning-
based simplification slightly alters the exterior geometry because some 
14 
Fig. 14. Impact of model simplification on HVAC-related energy use for (a) 
electricity and (b) heating.

wall elements are combined when the associated spaces are merged. 
This results in moderate variations in solar heat gain across the zon-
ing scenarios. The full-model baseline, with the most detailed façade 
representation, yields the lowest annual solar heat gain, whereas the 
most simplified model records the highest value, about 10.6% above 
the baseline. This difference mainly arises from the combined effects 
of altered thermal coupling among interior zones and minor geo-
metric changes to exterior walls introduced by the merging process. 
These factors affect the internal heat storage and transfer behaviour, 
slightly modifying the temperature distribution on exterior surfaces. 
Consequently, the simplified models tend to overpredict absorbed solar 
radiation, although the deviation remains small. However, the ad-
ditional solar absorption is not fully utilised for space heating due 
to reduced thermal inertia and interzone heat transfer. This partly 
explains why heating energy use and solar heat gains vary in the same 
direction across zoning scenarios, as model simplification leads to a 
less accurate representation of heat redistribution within the building. 
Moreover, since the BIM data used in this case do not include win-
dows, this deviation might become more pronounced if windows are 
considered. Overall, the zoning-based model simplification improves 
computational efficiency but introduces a minor loss of accuracy in 
estimating solar heat gains, which in turn affects the prediction of 
heating and cooling demand.

Nevertheless, while the full-model baseline lies close to the centre of 
the range for electricity use across zoning scenarios, it yields the lowest 
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Fig. 15. Impact of model simplification on exterior surface solar heat gain.

heating energy use, with simplified models tending to overpredict. 
This may primarily result from the loss of load diversity after space 
aggregation. Although zoning groups were defined considering thermal 
load similarity, space merging may still reduce the temporal variability 
of thermal behaviour, coinciding peak loads and increasing heating 
demand. The loss of thermal inertia and reduced heat redistribution 
further reinforce this tendency. A secondary factor may involve the al-
tered treatment of internal partitions, which in the full-model baseline 
helps offset heat gains and losses between adjacent spaces. Despite this, 
the deviations in energy use relative to the full-model baseline remain 
small, suggesting that the proposed approach can deliver reasonably 
reliable results under model simplification.

5.3.3. HVAC system sizing across zoning scenarios
To assess the impact of zoning-based model simplification on HVAC 

system sizing during simulation, this subsection examines the capacities 
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of key components across all zoning scenarios. Four representative 
HVAC components are considered: central sources (chiller and district 
heating), AHUs, FCUs, and radiators. As shown in Fig.  16, the violin 
plots illustrate the distribution of their capacities across the 267 scenar-
ios, with particular emphasis on the full-model baseline and the most 
simplified BEM model of the ‘‘all-one’’ scenario.

First, the results show that sizing variation across zoning scenarios 
is relatively limited. For all critical components, the distribution range 
remains within 10%, demonstrating the robustness of the proposed 
multi-factor zoning approach in the BIM2BEM conversion process. This 
is particularly evident in the central sources shown in Fig.  16(a). The 
chiller capacity, which serves only the public zones in the podium, 
remains closely aligned with the baseline. District heating, covering the 
entire building, exhibits a wider spread due to its broader service scope. 
However, the deviation from the baseline remains under 5% even in 
the most simplified model (‘‘all-one’’ scenario). While the zoning-based 
model simplification slightly reduces the estimated chiller capacity, it 
tends to increase the capacity of district heating. This trend is specific 
to the case but remains within a narrow and acceptable range.

For the air-supplying subsystems, as shown in Fig.  16(b–c), zoning-
based model simplification leads to larger thermal zone volumes, 
thereby increasing the airflow demands for both AHUs and FCUs. This 
increase is consistent across zoning scenarios, mainly driven by space 
merging across floors, though the magnitude remains limited. The coil 
capacities, however, show less consistent behaviour, while they may 
either increase or decrease depending on the spatial arrangement and 
functional usage of the merged spaces. Despite this variability, the esti-
mated coil capacities remain within a reasonable range, supporting the 
applicability of the proposed zoning strategy. For radiators, as shown 
in Fig.  16(d), which operate through thermal radiation rather than air 
supply, a more apparent trend is observed. As zoning merges spaces, the 
associated increase in zone volume and fresh air requirements tends to 
result in consistently higher radiator sizing across zoning scenarios. In 
general, the full-model baseline produces the lowest sizing values for 
heating-related end-use components, consistent with its lower heating 
demand, which can be attributed to reduced load diversity and the 
treatment of internal partitions, as noted in the previous subsection.
Fig. 16. Distribution of HVAC system sizing across zoning scenarios in terms of major equipment.
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Overall, the impact of zoning-based model simplification on HVAC 
system sizing is limited, indicating that the proposed method success-
fully reduces simulation time and model complexity without compro-
mising the reliability of sizing outcomes. The results confirm that the 
graph-driven thermal zoning enables consistent and accurate system 
sizing within the BIM2BEM conversion process, even under substantial 
spatial aggregation. Deviations in both energy performance and HVAC 
sizing remain minor and within acceptable limits, underscoring the 
robustness of the proposed methodology and its strong potential for 
broader application, particularly in large and complex buildings with 
intricate service systems.

6. Conclusions

This paper presented an integrated and synchronised framework 
that unifies BIM2BEM conversion, knowledge-graph integration, and 
zoning-based model simplification into a seamless workflow. When ap-
plied to a large, complex real-world building, this BIM2BEM framework 
helps address challenges related to imperfect BIM data and exces-
sively detailed geometry, enabling the generation of well-structured 
and high-reliability building performance simulations. The results in-
dicate that the proposed framework preserves the modelling accuracy 
of the generated BEMs while substantially improving simulation effi-
ciency. The findings also highlight both the research and the practical 
relevance of embedding zoning-based model simplification and knowl-
edge graph-based digitalisation within BIM2BEM conversion processes. 
The proposed framework offers a scalable and robust solution for 
delivering simulation-ready models that support performance-driven 
building design and the assessment of different operational strate-
gies, which is particularly valuable for large and complex buildings 
where developing fully detailed BEMs is both time-consuming and 
error-prone. In summary, the main conclusions, limitations, and future 
research directions are summarised below.

(1) The proposed framework integrates BIM2BEM conversion,
knowledge graph-based digitalisation, and zoning-based model 
simplification into a unified workflow, demonstrating the ca-
pability to handle imperfect BIM data and generate BEMs with 
appropriate levels of complexity.

(2) Geometric data processing methods are developed to extract 
2LSB and simplify complex polygons, thereby reducing geo-
metric complexity while preserving topological consistency and 
improving compatibility with simulation tools.

(3) A comprehensive knowledge graph is constructed to digitalise 
the building information and represent the relationships be-
tween spatial elements and HVAC components. Based on the 
graph structure, zoning scenarios are generated to map IfcSpaces 
to thermal zones by analysing multiple factors such as adjacency, 
function, thermal load similarity, and HVAC configuration.

(4) In the case study, the zoning-based model simplification im-
proved simulation efficiency, achieving up to a 70% reduction 
in simulation time compared to the full-model baseline.

(5) Across the generated zoning scenarios, the zoning-based model 
simplification produced consistent energy performance and
HVAC system sizing. Deviations in HVAC electricity and heating 
energy use were within approximately 3% of the full-model 
baseline, while system sizing variations reached up to about 10% 
in this case study.

Although the case study demonstrates the proposed framework’s 
ability to support scalable and automated BIM2BEM conversion while 
accommodating imperfect BIM data, several limitations remain. First, 
while semantic technologies with knowledge graphs can identify and 
pinpoint data quality issues, repairing incomplete or low-quality BIM 
inputs still requires manual intervention, meaning that the level of 
automation decreases significantly when the source data are of very 
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poor quality or insufficient detail. Second, the case study used in this 
work did not include external window elements in the BIM model. 
Hence, the applicability of the framework to buildings with complex 
openings still needs to be verified. This may also limit the reliability 
of evaluating energy performance differences under various thermal 
zoning scenarios. Third, the observed deviations of around 10% in 
HVAC system sizing highlight the need for a calibration module to 
ensure closer alignment between building performance simulations 
and real design requirements, thereby enhancing the reliability of the 
generated BEMs. Finally, despite the case building being complex in 
both geometry and HVAC configuration, the proposed framework has 
so far only been tested on a single project. Broader validation across a 
wider range of building types, climatic conditions, and operational con-
texts will be necessary to confirm the generalisability of the proposed 
framework.

Future work will therefore focus on several directions. First, be-
yond detecting data quality issues, future studies could investigate 
automated error correction, either by repairing missing or inconsistent 
information directly within the BIM model or within the digital rep-
resentation (e.g., knowledge graphs). In particular, the integration of 
window-related details, when available, will be a priority to enhance 
the reliability of the generated BEMs and their simulation outcomes. 
Second, the framework should be applied to a wider range of building 
types and contexts to test its robustness under different design prac-
tices and conditions. Third, incorporating dynamic real-time IoT data 
would allow the transition from a static digital representation to a 
dynamic digitalisation process. This would move the work towards a 
building digital twin with bidirectional data flow and enable real-time 
calibration of the BEMs, thereby improving the alignment of simulation 
outcomes with actual building operation.
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