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Abstract—We report the development of InAs/InAlGaAs 

quantum-dot (QD) lasers grown on both InP and Si substrates. A 

modified indium flush technique was employed to control dot-

height distribution and tailor the emission wavelength by using a 

strained partial capping layer. Using this approach, 7-stack 

InAs/InAlGaAs QD lasers on InP substrates exhibit a low 

threshold current density (Jth) of 63 A/cm2 per QD layer and high-

temperature operation up to 140 °C. Furthermore, electrically 

pumped InAs/InAlGaAs QD lasers directly grown on Si are also 

demonstrated, with a low Jth of 1.35 kA/cm2 and a maximum 

operating temperature of 100 °C. This work highlights the 

effectiveness of the modified indium flush in achieving high-

performance InAs/InAlGaAs QD lasers. These results represent a 

significant step forward in the development of high-performance 

C-/L-band QD lasers in the InAs/InAlGaAs/InP material system 

for Si photonics. 

 Index Terms—Quantum dots, semiconductor lasers, indium 

flush, InAs/InAlGaAs, molecular beam epitaxy.  
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I. INTRODUCTION 

High-performance semiconductor lasers operating in the C- 

and L-band wavelengths are of great importance for modern 

optical communication systems applied in data center and Si 

photonics [1-3]. Furthermore, amid the rise of artificial 

intelligence and big data, light sources compatible with large-

scale photonic integration are urgently required to tackle the 

surging bandwidth and energy consumption [4]. In particular, 

light sources that can be monolithically integrated onto Si 

platforms are considered key elements for next-generation 

electronic and photonic integrated circuits for artificial 

intelligence and big data [5]. 

Quantum-dot (QD) lasers have emerged as a promising 

candidate for such applications, offering various advantages 

over conventional quantum well lasers [6-8]. Their three-

dimensional carrier confinement leads to a discrete energy state, 

resulting in low threshold current density (Jth), nearly-zero 

linewidth enhancement factor, ultra-fast gain dynamics, high 

temperature operation, etc [6, 9-14]. Furthermore, the strong 

carrier localization in QDs provides defect tolerance, making 

them suitable for monolithic integration on Si substrates, which 

inevitably suffer from high density of defects during the 

heteroepitaxy [15-18]. 

Although InAs/InAlGaAs QD lasers are promising 

candidates for C- and L-band light sources, their development 

has been hampered by epitaxial growth challenges. One of the 

primary obstacles in InAs/InP material system is the anisotropic 

indium diffusion coefficient along [110] and [11̅0] directions 

on an InP (001) substrate, leading to the formation of elongated 

quantum dash (Qdash) structures along the [11̅0] direction, 

which disrupts the desired three-dimensional carrier 

confinement and undermines many benefits of QDs [9, 19-21]. 

Additionally, the broader dot-size distributions induced by 

moderate lattice mismatch (~ 3.2 %) between InAs and InP 

result in significant inhomogeneous spectral broadening, which 

limits modal gain and hinders the realization of high-

performance InAs/InAlGaAs QD lasers [6, 22, 23]. 

Over the past two decades, a great deal of effort has been 

made to improve the size/shape uniformity of InAs/InAlGaAs 

QDs. Various growth strategies have been explored, including 

the adjustments to growth temperature, V/III ratio, growth rate, 

growth interruption and use of As2 instead of As4 [19, 24-26]. 

These aim at accelerating the dot formation process and thereby 

suppressing the anisotropic surface diffusion of indium. 

Furthermore, modifications to the underlying layer 

composition, such as InAlAs, InGaAs, AlGaAs, GaAs or 
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InAlGaAs, have been employed to control the growth front, 

strain field, and phase separation, thereby optimizing QD 

nucleation and morphology [19, 27-31]. 

As an alternative solution, the indium flush technique 

controls the dot-height uniformity and tunes the emission 

wavelength [32-37]. This involves partially capping the QDs 

with a thin first capping layer (FCL), followed by annealing at 

elevated temperature to evaporate the indium or to induce an 

As/P exchange process, which reduces the height of large dots. 

A subsequent second capping layer (SCL) is then grown to 

complete the structure. Most dots present a similar height as the 

FCL, leading to a significant blueshift in emission wavelength 

and a narrower full-width at half-maximum (FWHM) of 

photoluminescence (PL). For example, Luo et al. demonstrated 

a peak wavelength blueshift from 1690 nm to 1570 nm and a 

PL FWHM reduction from 124 meV to 87 meV for 5-stacked 

InAs/InGaAsP QDs, by using an optimal SCL growth 

temperature that maximizes the indium migration and As/P 

exchange reaction [34]. Our previous work optimized the FCL 

thickness and annealing temperature, achieving a narrow PL 

FWHM of 50.9 meV for a 5-layer InAs/InAlGaAs QD stack 

[32]. However, the employment of the indium flush technique 

in the InAs/InAlGaAs/InP QD system remains relatively 

underexplored, particularly with varied composition of FCL 

and thickness adjustment for FCL/SCL combinations.  

Furthermore, there is a growing demand toward realizing 

monolithic InAs/InAlGaAs QD lasers on Si as an on-chip light 

source for Si photonics, because QDs are less sensitive to 

defects generated from the interface between III-V and Si [15, 

38, 39]. While O-band InAs/GaAs QD lasers have shown 

substantial advances in monolithic integration on Si platforms, 

the situation for the C-/L-band InAs/InAlGaAs QD lasers is 

more complex. The large lattice mismatch of ~ 8% between InP 

and Si (~ 4% for GaAs and Si) results in much higher densities 

of threading dislocation, as well as antiphase boundaries and 

thermal cracks [40, 41]. These issues make the direct growth of 

electrically pumped InAs/InAlGaAs QD lasers on Si (001) 

extremely difficult, and only a few reports have demonstrated 

such devices to date [42, 43]. For instance, Zhu et al. [42] 

reported pulsed InAs/InAlGaAs QD lasers on Si with Jth of 1.6 

kA/cm2, total output power of 110 mW, and maximum 

operating temperature of 80 °C, using InGaAs/InP defect filter 

layer and V-groove patterned (001) Si. 

In this work, we present an epitaxial approach to develop 

InAs/InAlGaAs QD lasers on both InP and Si substrates. The 

QD active regions were grown by molecular beam epitaxy 

(MBE) as its sub-monolayer precision and solid-source 

evaporation offer superior control over interface abruptness and 

stoichiometry compared to metal-organic chemical vapor 

deposition (MOCVD), where gas-phase reactions can introduce 

variability. We first examine a modified indium flush 

technique, utilizing a strained InAlGaAs layer as part of the 

FCL and varying strained/unstrained FCL thickness 

combination, to improve dot height uniformity and control 

emission wavelength. This growth strategy is then used to 

fabricate 7-stack InAs/InAlGaAs QD lasers on (001) InP 

substrates, demonstrating high-performance lasers with low Jth 

and high-temperature operation. This technique is further 

exploited to grow InAs/InAlGaAs QD lasers directly on Si 

(001) substrates. Lasing operation up to 100 oC is demonstrated 

for InAs/InAlGaAs QD lasers directly grown on Si with a low 

Jth of 1.35 kA/cm2 at room temperature (RT). These results 

represent significant progress in InAs/InAlGaAs QD laser 

development and highlight the potential for InP- and Si-based 

InAs/InAlGaAs QD lasers in optical communication and Si 

photonics. 

II. EXPERIMENT  

All the active regions of the InAs/InAlGaAs QD samples 

were grown by solid-source MBE system equipped with a 

valved arsenic cracker source on InP (001) and Si (001) 

substrates. Prior to growth, the substrates were degassed in the 

buffer chamber at 400 °C for an hour and then transferred to the 

growth chamber for a 1-min deoxidation at 500 °C under As2 

overpressure. The detailed growth information regarding 

InAs/InAlGaAs QDs will be presented in each respective 

section. Scanning transmission electron microscopy (STEM) 

was performed to investigate the cross-sectional structural 

characteristics. In addition, atomic force microscopy (AFM) 

was employed to examine the surface morphology of QD 

samples, enabling direct comparison before and after stacking. 

PL measurements at RT were conducted using a Nanometrics 

RPM2000 system, incorporating a 635 nm continuous-wave 

laser at an excitation power density of 430 W/cm² and a 

wavelength-extended InGaAs detector with a cutoff at 2 μm.  

Fabry-Pérot (FP) lasers were fabricated on both InP and Si 

substrates. Ridges were formed slightly above the active region 

by conventional photolithography and wet chemical etch using 

a mixture of HCl and H3PO4. For Si-based lasers, an additional 

wet etch step was employed to form a second mesa structure 

and expose the n-type InP contact layer for a top-top contact 

configuration. After the ridge formation, a 400 nm SiO2 

passivation layer was deposited by plasma-enhanced chemical 

vapor deposition, and contact windows were opened by reactive 

ion etching. Ti/Au (20/400 nm) was deposited on the exposed 

ridge using a sputtering system as the p-contact. For InP-based 

lasers, substrates were thinned to 150 µm and subsequently, an 

n-type Ni/AuGe/Ni/Au (10/100/10/200 nm) contact layer was 

deposited on the polished surface using a thermal evaporator. 

For Si-based lasers, the same n-type metallization was first 

deposited on the exposed n-type InP contact layer, followed by 

substrate thinning to 150 µm. Both were annealed at 380 °C for 

1 min to form ohmic contacts. No facet coating was applied.  

III. INDIUM FLUSH FOR INAS/INALGAAS QD GROWTH 

A. Mechanism Revealed by STEM Investigations 

While indium flush has been widely applied to InAs/GaAs 

QD growth to manipulate the dot uniformity and hence enhance 

gain [44-46], its adoption in InAs/InAlGaAs/InP material 

system remains less explored, especially in the quaternary alloy 

barrier matrices. Therefore, we studied the mechanism of 

indium flush in an InAs/InAlGaAs material system. Two 

single-layer QD samples were grown to study the effect of 
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indium flush, of which the growth parameters were discussed 

in our previous work [32]. Reference sample A (without indium 

flush) consists of 500 nm InAlAs and 100 nm InAlGaAs grown 

on an n-type InP (001) substrate. 5.5 monolayers (MLs) of InAs 

were deposited directly onto InAlGaAs at 485 °C with a V/III 

ratio of 18, followed by a 10-second growth interruption under 

As overpressure to promote QD ripening [26]. A 100 nm 

InAlGaAs capping layer was then deposited at the same 

temperature. Additional 100 nm InAlAs, 100 nm InAlGaAs, 

and surface QDs were grown sequentially to complete the 

reference sample for PL measurements. A high indium growth 

rate of 0.42 ML/s and As2 were used for the QD growth to 

suppress the anisotropic indium surface diffusion. All layers 

except the InAs QD layer are lattice-matched to InP. Sample B 

(with indium flush) was grown under identical conditions 

except that after the QD deposition and growth interruption, a 

4-nm InAlGaAs FCL was grown at 485 °C. Then, the substrate 

temperature was increased to 540 °C and held for 1 min under 

As2 flux with a beam equivalent pressure of 7 × 10-6 Torr (the 

indium flush step), followed by the growth of the remaining 96 

nm InAlGaAs SCL at 500 °C [47]. The emission wavelength 

was blue shifted by over 300 nm from 1824 nm for sample A to 

1522 nm for sample B, and the PL FWHM improved 

significantly from 89.2 to 47.9 meV. High-angle annular-dark-

field (HAADF) STEM images of sample A and B are presented 

in Fig. 1 (a) and (b), respectively. For sample A without indium 

flush, a large QD size dispersion is observed, with a mean QD 

height of 5.46 ± 0.84 nm. In contrast, the QDs in sample B with 

indium flush are clearly truncated, with a reduced average 

height of 3.54 ± 0.48 nm, as the larger dots are affected by the 

flush while smaller dots are fully buried. This facilitates the size 

quantization-assisted blue shift and improves the uniformity of 

the dot ensemble dramatically.  

Apart from the QD height modifications, HAADF images of 

sample B also show dark-contrasted regions connecting 

adjacent dots and bright-contrasted regions above large, 

truncated dots. Electron energy loss spectroscopy (EELS) 

measurements confirm these to be Al-rich and In-rich regions, 

respectively, as seen in Figure 1 (c) and (d). Based on these 

distinctive observations, we propose a growth model, as shown 

in Fig. 1 (e – j). Initially, QDs form via Stranski-Krastanov 

growth mode. Then, the 4 nm quaternary InAlGaAs FCL is 

deposited; as the average dot height is 5.46 ± 0.84 nm, only 

larger dots (> 4 nm) remain exposed while smaller dots (< 4 

nm) are buried. The elastically relaxed InAs island apices of 

exposed QDs create energetically unfavorable nucleation sites 

for Ga and Al adatoms, thereby limiting the FCL growth atop 

the QDs [22, 44, 46-48]. Strain from the InAlGaAs FCL 

promotes indium migration across the FCL surface, forming a 

partial capping layer to reduce the surface energy [44]. Upon 

substrate temperature elevation, indium desorbs from both the 

partially capped dot layer and the FCL, leaving the top of the 

FCL Al-rich, thereby accounting for the dark-contrasted 

regions between adjacent dots in atomic-number-sensitive 

STEM-HAADF images. During the subsequent SCL growth, 

indium atoms readily incorporate above the truncated dots 

because of the smaller lattice mismatch, i.e. less compressive 

strain, forming In-rich regions above truncated dots as shown 

in Fig. 1(b). 

These findings offer important insight into the complex 

dynamics occurring during the indium flush process in 

quaternary material matrices, thereby contributing to the further 

optimization and broader applicability of this technique.  

 
Fig. 1. HAADF images of QD morphologies and adjacent 

layers of sample A (without indium flush) in (a) and sample B 

(with indium flush) in (b). (c) and (d) Individual EELS maps of 

sample B, showing the relative distribution of Al (green 

intensity channel) and In (red intensity channel). (e – j) The 

schematic illustration of the proposed impact of the indium 

flush technique on QDs and adjacent regions. (e) Formation of 

InAs QDs. (f) The deposition of FCL. (g) The substrate 

temperature is elevated, and indium atoms desorb from both 

FCL and QDs. (h) Desorbed indium atoms are flushed away. (i) 

Indium-rich region and (j) indium-depleted (Al-rich) region 

formed after the deposition of SCL (Adapted from [47] under 

CC BY 4.0). 

B. Modified Indium Flush Technique 

More flexibility is given to optimizing the growth condition 

for high density and uniform QDs due to the capability of 

indium flush to effectively tune the emission wavelength and 

QD height uniformity. Theoretically, increasing the InAs 

deposition thickness leads to a shape transition from elongated 

QD dashes to round-shaped islands, hence increasing QD 

density [8]. Consequently, to increase QD density, we further 

increased the InAs thickness based on previous work [32]. High 

QD densities of 4.4 × 1010 cm-2 and 5.2 × 1010 cm-2 were 
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achieved by an InAs coverage of 6.5 MLs and 6.8 MLs, 

respectively. However, the emission wavelength also increases 

with increasing InAs coverage [32]. For the sample with 6.5 

ML InAs coverage, even using indium flush technique with an 

unstrained InAlGaAs FCL of 3.5 nm, the emission wavelength 

is still as long as 1726 nm.  

To further shift the emission wavelength to within the C-/L- 

band, we developed a modified indium flush technique that 

utilized a strained InAlGaAs layer as part of the FCL. By 

changing the thickness of the strained In0.359Al0.323Ga0.318As 

FCL, which has a smaller lattice parameter than InP, significant 

blue shift in PL peak wavelength can be achieved. Three 

samples with different FCL were grown to investigate the 

capability of wavelength tuning. The schematic QD structure is 

shown in Fig. 2(a). For sample R1, after the 6.5 ML QD growth 

and interruption for 10 seconds at 485 °C, a 0.5-nm strained 

In0.359Al0.323Ga0.318As layer and a 2-nm In0.528Al0.238Ga0.234As 

layer were subsequently deposited on the QDs as the FCL. Then 

the thermal annealing was carried out at 515 °C for 3 min and 

the remaining 97.5-nm In0.528Al0.238Ga0.234As SCL growth 

resumed at 485 °C. Note that the difference in annealing 

temperature compared with that in Section III-A is due to the 

variations in the different facility setup. For sample R2, the FCL 

consisted of 1.5 nm strained In0.359Al0.323Ga0.318As and 1 nm 

In0.528Al0.238Ga0.234As and R3 is a reference sample with 

unstrained FCL. It should be noted that in our experiment, the 

stressor layer was grown directly on top of QDs rather than in 

the second part of the FCL because this should have an 

immediate impact on the strain field within and around the dots, 

which more readily affects the indium flush procedure and the 

material exchange at the interface. The PL spectra of the three 

samples are shown in Fig. 2(b). The inset in Fig. 2(b) shows a 

1 × 1 µm2 AFM image of the uncapped surface dots of the 

samples with highly uniform and high density QDs. A 

significant blue shift from 1624.8 nm to 1576.2 nm is obtained 

just by changing the strained In0.359Al0.323Ga0.318As layer 

thickness by 1 nm from R1 to R2. The effectiveness of using 

lower composition InAlGaAs FCL in tuning emission 

wavelength is also reported by Kwoen et al. [49], thanks to the 

band energy modification and reduced indium interdiffusion 

during subsequent annealing process. In addition, a 27% 

enhancement in PL intensity is achieved for the sample with 0.5 

nm strained In0.359Al0.323Ga0.318As. The reduction in strain in the 

FCL and the spacer layer brought by this strained InAlGaAs is 

reported to affect the interdiffusion of indium atoms at the 

InAs/InAlGaAs interface [50], which might account for the 

observed improvement in PL intensity. Compared to the 

reference sample, the peak wavelength of the sample with 1.5 

nm strained InAlGaAs is blue shifted significantly by 150 nm. 

The FWHM of the strained InAlGaAs samples shows a slight 

decrease (58.2 meV for R1 and 58.3 meV for R2) compared to 

the reference sample (59 meV). 

This modified indium flush technique not only effectively 

shifts the emission wavelength, thus allowing more flexibility 

for QD growth optimization, but is also especially 

advantageous for multi-layer QD stack growth due to the strain 

compensation effect [35, 51]. More QD stacks and thinner 

spacer layers can be expected using this technique, which 

favors the growth of high gain, low defect density QDs. In the 

following sections, multi-layer InAs/InAlGaAs/InP QD lasers 

based on this modified indium flush have been developed and 

demonstrated high performance in terms of high-temperature 

operation and low Jth. 

 
Fig. 2. (a) Schematic structure of single-layer QD sample 

applying the modified indium flush with different strained FCL. 

(b) RT PL spectra for single-layer QD samples with different 

FCL applying modified indium flush. The inset shows 1 × 1 

µm2 AFM of the uncapped surface dots of the samples. 
 

IV. INAS/INALGAAS QD LASERS ON (001) INP SUBSTRATE 

Compared with InAs/GaAs QD lasers, the performance of 

InAs/InAlGaAs QD lasers lags, particularly in terms of low Jth 

and temperature-insensitive operation, mainly due to the severe 

size/shape inhomogeneity of QDs. To realize high-performance 

InAs/InAlGaAs QD lasers, achieving uniform QDs with narrow 

FWHM of PL is critical for enhancing modal gain, low Jth, and 

high-temperature operation. Here, we employed the modified 

indium flush technique to effectively control dot height and thus 

obtain high-density and uniform QDs. This approach resulted 

in InAs/InAlGaAs QD lasers with low threshold and high-

temperature operation.  

A. 7-stack InAs/InAlGaAs QD laser Growth 

The InAs/InAlGaAs QD laser structure was grown on a (001) 

n-type InP substrate by MBE, and consists of the following 

layers: Si-doped 200 nm In0.524Al0.476As, Si-doped 200 nm 

In0.528Al0.238Ga0.234As, a 7-stack InAs QD active region with 

optimized growth conditions, Be-doped 200 nm 

In0.528Al0.238Ga0.234As, and Be-doped 200 nm In0.524AlAs. A 10 

nm Be-doped InGaAs cap was deposited to prevent oxidation 

during the subsequent transfer to MOCVD, where a Zn-doped 

1700 nm InP p-type cladding layer and a Zn-doped 200 nm 

InGaAs p-contact layer were grown.  

Fig. 3 presents HAADF STEM images for the seven-stack 

QD laser along the (a) [110] and (b) [11̅0] directions to confirm 

the dot morphology. The InAs QDs exhibit a truncated lens 

shape with an average size of 25.7 nm along [110] and 47.3 nm 

along [11̅0] direction. Although minor elongation is observed, 

the nanostructures are distinct from the Qdash that presents 

continuous-phase InAs layer along the [1 1̅ 0] direction 

resembling a QW [26]. The height along [110] direction is 3.4 

nm, slightly higher than 2.9 nm observed along [1 1̅ 0], 

indicating a minor anisotropy. Importantly, the positions of the 

QDs in each layer are randomly distributed, rather aligned with 
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the bottom of QDs in layers above or below, evidencing 

negligible strain coupling effects. 

 
Fig. 3 HAADF images along both (a) [110] and (b) [1 1̅0] 

directions of the seven-QD-layer laser on InP substrate and their 

schematic shapes. 

B. Low threshold InAs/InAlGaAs QD lasers 

Broad-area FP lasers with a ridge width of 15 μm were first 

fabricated and tested. The fabricated FP lasers were 

characterized under pulsed injection (1 % duty cycle, 1 μs pulse 

width) to minimize the self-heating effect. Fig. 4(a) displays 

typical power-current (LI) curves for varied cavity lengths. The 

threshold current (Ith) and Jth for devices with 3000, 2000, 1000, 

and 500 μm cavity lengths were measured to be 198 mA (440 

A/cm2), 145 mA (483 A/cm2), 92 mA (613 A/cm2), and 89 mA 

(1,189 A/cm2), respectively. These correspond to Jth per QD 

layer of 63, 69, 88, and 170 A/cm2. The achieved Jth per QD 

layer of 63 and 69 A/cm2 for the 3000 and 2000 μm devices 

outperformed prior reports for C-/L-band InAs/InAlGaAs QD 

lasers on (001) InP. Fig. 4(b) presents temperature-dependent 

LI characteristics of the 2000 µm device, showing a maximum 

operating temperature of 130 °C. The inset of Fig. 4(b) depicts 

Jth versus temperature on a logarithm scale, in which the Jth 

increases from 483 A/cm2 at 20 °C to 6,628 A/cm2 at 130 °C. 

The characteristic temperature (T0), a measure of temperature 

sensitivity of Ith or Jth evaluated from Jth(T) = J0 × exp(T/T0), 

was 48.2 K (below 70 °C) and 44.9 K (above 70 °C). The RT 

peak lasing wavelength is 1624 nm and the shift rate is 0.37 

nm/K. Note that maximum operating temperatures for the 3000, 

1000, and 500 µm devices were 110, 120, and 120 °C, 

respectively (not shown here). 

 

 
Fig. 4. (a) RT LI for the InAs/InAlGaAs QD lasers with cavity 

width of 15 µm and different cavity lengths. (b) Temperature-

dependent LI characteristics for the 15 µm × 2000 µm device. 

The inset presents the Jth versus temperature. (Adapted from 

[52] under CC BY 4.0) 

 

Fig. 5 exhibits continuous-wave (CW) temperature-

dependent LI curves of the 15 µm × 2000 µm device, 

confirming a maximum operating temperature of 35 °C. The 

device yields Ith of 393 mA (Jth of 1.31 kA/cm2; 187 A/cm2 per 

QD layer), series resistance of 1.6 Ω, and turn-on voltage of ~ 

0.7 V. The reduced T0 of 32 K was evaluated, highlighting the 

substantial impact of self-heating under CW operation. As 

shown in the inset of Fig. 5, the RT peak lasing wavelength at 

an injection current of 1.1 × Ith and wavelength shift rate are 

evaluated as 1631 nm and 0.76 nm/K, respectively. 
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Fig. 5. CW temperature-dependent LI characteristics of the 15 

μm × 2000 μm device. The inset shows peak lasing wavelength 

versus temperature. 

 

Low threshold L-band InAs/InAlGaAs QD lasers were 

demonstrated using the modified indium flush technique. The 

fabricated seven-stack as-cleaved lasers with a cavity length of 

15 µm and cavity lengths of 2000 and 3000 µm under pulsed 

injection achieved very low Jth per QD layer of 63 and 69 A/cm2 
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and maximum operating temperature of 110 and 130 °C, 

respectively. While the pulsed performance is promising, the 

performance under CW—a Jth per QD layer of 187 A/cm2 and 

a maximum operating temperature of 35 °C for the 15 × 2000 

µm2 device—is limited, requiring further optimization to 

enhance CW performance. 

C. High-temperature and ultra-short cavity operation of 

InAs/InAlGaAs QD lasers 

To investigate the impact of a reduced ridge width on the 

temperature stability, narrow-ridge devices with a cavity width 

of 5 μm were fabricated. Fig. 6 displays pulsed temperature-

dependent LI curves for the 2000 μm device, yielding Ith of 64.3 

mA (Jth of 643 A/cm2) and a maximum operating temperature 

of 140 °C, which is 10 °C higher than the 15 µm × 2000 µm 

device. T0 values were 58 K (20 – 70 °C) and 36 K (70 – 140 

°C). The enhanced maximum operating temperature for the 

narrow-ridge device with moderate cavity length of 2000 µm 

can be attributed primarily to the lower Ith compared to the 15 

µm ridge device with the same cavity length—namely, less 

Joule heating. The inset of Fig. 6 shows a lasing wavelength 

shift with increasing temperature at an injection current of 1.1 

× Ith. The peak lasing wavelength at RT is centered at 1625 nm 

and redshifts with a shift rate of 0.39 nm/K. Note that the 

reduced redshift is observed near the maximum operating 

temperature, which has also been found in literature [12, 53]. 

This is believed to be due to high current injection-induced 

variation in effective refractive index [54]. While the redshift 

driven by bandgap shrinkage dominates over the carrier-

induced blueshift as the temperature increases, an excessively 

increased Jth and reduced quantum efficiency near the 

maximum operating temperature generate a large amount of 

unclamped excess carriers, which would mitigate the redshift 

[55]. 
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Fig 6. Temperature-dependent LI curves under pulsed injection 

for the 5 µm × 2000 µm device. Temperature-induced lasing 

wavelength shift is shown in the inset. 

 

The 5 μm × 2000 μm device was further characterized under 

CW operation. Fig. 7 shows CW temperature-dependent LI 

curves, with a maximum operating temperature of 60 °C, 25 °C 

higher than the 15 μm × 2000 μm device. The Ith (Jth) at RT was 

measured as 137 mA (1.37 kA/cm2), with a series resistance of 

1.6 Ω and turn-on voltage of ~ 0.7 V. The improved T0 of 40 K 

was obtained, compared to the 15 μm × 2000 μm device (32.0 

K). The inset of Fig. 7 displays a peak lasing wavelength shift 

at an injection current of 1.1 × Ith as a function of temperature. 

The RT peak lasing wavelength is 1627 nm, and the shift rate is 

0.56 nm/K, lower than 0.76 nm/K (15 μm × 2000 μm). 
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Fig. 7. CW temperature-dependent LI characteristics for the 5 × 

2000 µm2 device. Inset presents peak lasing wavelength shift as 

a function of temperature. 

 

Table I summarizes key performance metrics for the devices 

with different cavity lengths and widths, in terms of Ith, Jth, 

single-facet power, maximum operating temperature, and T0. 

For the device with cavity width of 15 µm under pulsed 

injection, shorter cavity length devices have shown higher 

maximum operating temperature than longest cavity length 

(3000 µm) predominantly due to reduction in Ith and Joule 

heating. However, the 1000 and 500 µm devices degraded by 

10 °C, compared with the 2000 µm device. This is because the 

excessive mirror loss in short cavity length significantly 

increases the Jth, thereby resulting in increased non-radiative 

recombination and thermal carrier escape rate at high 

temperature regime [52]. In other words, excessively high 

carrier density in short cavity length diminishes the benefit of 

lower Ith at high temperatures. For the temperature dependence 

of Jth, shorter cavity devices exhibit higher T0 at lower 

temperatures but more pronounced degradation in T0 at higher 

temperatures. Similar to the operating temperature, this can be 

attributed to the higher mirror loss and resultant higher carrier 

density, further enhancing loss mechanism at high temperature 

range [52]. Compared with the 15 × 2000 µm2 device, 

accordingly, the much lower Ith contributed to the improved 

thermal stability of the 5 × 2000 µm2 device.  

However, a notable performance degradation was observed 

under CW operation compared with pulsed mode, primarily 

attributed to self-heating, further exacerbated by non-optimal 

shallow, wet-etched waveguide ridge geometry and defects in 

the regrown p-InP cladding layer. Adopting a deep, dry-etched 

ridge waveguide can enhance optical mode confinement and 

reduce Ith [56]. Using monolithic growth to avoid regrowth 

defects [57] and applying high-reflection facet coatings will 
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TABLE I 

SUMMARY OF DEVICE PERFORMANCE FOR INAS/INALGAAS QD LASERS WITH VARIED CAVITY LENGTHS AND CAVITY WIDTH OF 

15 µM AND 5 µM  

 

further improve CW performance. In addition, epi-side-down 

mounting on high-thermal-conductivity submounts can greatly 

improve heat dissipation [58]. These strategies can narrow the 

gap between CW and pulsed operation. 

In addition to demonstrating high-temperature operation of 

InAs/InAlGaAs QD lasers, we investigated the lasing 

characteristics of short cavity-length devices to explore their 

potential for high-speed applications. InAs/InAlGaAs QD 

lasers with cavity lengths less than 500 µm were characterized 

at RT under pulsed injection. 

As shown in Fig. 8(a), the LI curves for devices with cavity 

lengths of 375, 300, 250, 200, and 180 µm reveals Ith of 46, 52, 

61, 82, and 95 mA, corresponding to Jth of 2.4, 3.5, 4.8, 8.2, and 

10.6 kA/cm2, respectively. Notably, even the ultra-short cavity 

device with a length of 180 µm demonstrated lasing without any 

facet coating, highlighting the capability of our QD laser 

structure to support considerably high gain. To the best of our 

knowledge, this represents the record-short cavity length 

achieved for C-/L-band InAs/InAlGaAs QD lasers on (001) 

InP. Fig. 8(b) presents the optical spectra at an injection current 

of 1.1 × Ith. The peak lasing wavelength blue-shifted from 1589 

nm (L-band) to 1540 nm (C-band). This shift is primarily 

ascribed to the higher threshold gain requirement induced by 

higher mirror losses in shorter cavities, leading to lasing at 

shorter wavelengths within the QD ensemble where the modal 

gain is higher [59, 60]. 
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less than 500 µm. (b) Optical spectra at an injection current of 

1.1 × Ith for the short cavity length devices. 

 

Based on the device data with varying cavity lengths and 

widths, the peak modal gain at threshold was evaluated. The 

mirror losses for each cavity length were calculated assuming 

an as-cleaved facet reflectivity of R = 0.32. Internal loss (αi) and 

internal quantum efficiency (ηi) were extracted from the 

dependence of the external differential quantum efficiency on 

cavity length, using devices with a 5 µm and varied cavity 

lengths ranging from 500 to 2000 µm. A linear fit to this data 

yielded ηi of 20 % and αi of ~ 12 cm-1. Note that the extracted 

low ηi is likely limited by non-radiative recombination at 

defects introduced during p-InP regrowth, while αi is influenced 

by heterointerface and defect-induced scattering. Future 

optimization will focus on monolithic MBE growth to reduce 

these losses. Fig. 9 exhibits the peak modal gain at threshold as 

a function of current density, calculated from the mirror losses 

for each cavity length and the evaluated αi of ~ 12 cm-1. In 

addition to the 5 µm cavity width devices, data from devices 

with 15 µm and 50 µm cavity widths and varying cavity lengths 

were included in the analysis. A high modal gain of 76 cm-1 was 

obtained.  
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Fig. 9. Peak modal gain versus current density. 

V. INAS/INALGAAS QD LASERS DIRECTLY GROWN ON (001) 

SI SUBSTRATE 

Despite the growing demand for C- and L-band Si-based on-

chip light sources, progress in developing InAs/InAlGaAs QD 

lasers directly grown on (001) Si substrates is stagnant. In contrast 

to the substantial advances achieved with O-band InAs/GaAs QD 

lasers on Si, the realization of high-performance InAs/InAlGaAs 

QD lasers remains more challenging. First, the lattice mismatch 

between InP and Si (~ 8%) is larger than GaAs and Si (~ 4%), 

generating a much higher density of threading dislocations. 

Second, the severe size and shape inhomogeneity of InAs QDs 

grown on InP/Si limits sufficient gain, resulting in higher Jth and 

limited high-temperature operation. Here, Si substrate pre-

treatment [61] and InAsP dislocation filters [62] were employed 

to suppress the formation of antiphase boundaries and reduce 

threading dislocation density. On a MOCVD-grown InP/Si 

template, 7-stack InAs/InAlGaAs QD lasers were grown using the 

modified indium flush technique. 

A. 7-stack InAs/InAlGaAs QD lasers growth on Si substrate 

Based on the InAs/InAlGaAs QD laser results, an optimized 

seven-stack InAs/InAlGaAs/InP QD laser structure was further 

exploited on on-axis Si (001) substrate. First, an InP/GaAs/Si 

template with a total thickness of 570 nm was grown. The use 

of a plasma-based surface deoxidization process in conjunction 

with high-temperature Si annealing result in antiphase 

boundary-free III-V epitaxial layers [61]. The threading 

dislocation density of the thin buffer template was measured to 

be 1.7 × 109 cm-2. This dislocation density was further reduced 

to 6.6 × 107 cm-2 via two sets of InAsP dislocation filters [62]. 

The InP/GaAs buffer developed here is considerably thinner 

than previous work in the literature [42, 63]. Unlike InP-based 

QD lasers where an n-type InP substrate serves as the n-type 

contact layer, an undoped (230 nm) and an n-type (770 nm) InP 

layers were subsequently grown by MOCVD for this role. The 

InAs/InAlGaAs QDs region was repeated following the 

previous optimized conditions using the modified indium flush 

technique in MBE. Finally, the p-type InP cladding and p-

InGaAs contact layers were grown by MOCVD to complete the 

laser structure. 

B. Electrically pumped InAs/InAlGaAs QD lasers on Si 

7-stack InAs/InAlGaAs QD FP lasers directly grown on 

(001) Si substrate with ridge widths of 50 μm and 5 μm were 

fabricated. The FP lasers were characterized under pulsed 

injection (1 % duty cycle, 1 µm pulse width) to suppress self-

heating effect. Typical LI characteristics at RT for devices with 

varied cavity lengths and ridge widths of 50 and 5 µm were 

measured to evaluate Jth trend (not shown). For the broad-area 

lasers (50 μm ridge width) with cavity lengths of 2000, 1000, 

750, 500, and 350 µm, the measured Ith were 1353, 694, 666, 

576, and 524 mA, corresponding to Jth values of 1.35, 1.39, 

1.78, 2.30, and 2.79 kA/cm2, respectively. The narrow-ridge 

devices (5 μm) with cavity lengths of 2000, 1500, 750, 500, and 

375 μm exhibit Ith (Jth) of 323 (3.23), 262 (3.49), 154 (4.10), 

119 (4.76), and 104 mA (5.57 kA/cm2), respectively. Fig. 10 

plots Jth versus inverse cavity length for both cavity widths. The 

extracted transparency current density (Jtr) was calculated to be 

0.84 and 2.83 kA/cm2 for the 50 and 5 μm width devices, 

respectively. 
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Fig. 10. Jth versus inverse cavity length (cavity length) for the 

7-stack InAs/InAlGaAs QD lasers on (001) Si with cavity 

widths of 50 and 5 µm and varied cavity lengths. 

 

To assess the temperature stability of the InAs/InAlGaAs QD 

lasers on Si, the 5 μm × 2000 μm device was selected for further 

characterization. Fig. 11(a) presents the temperature-dependent 

LI curves, showing a maximum operating temperature of 100 

°C. Note that the RT single-facet power at an injection current 

of 1 A was measured as 16 mW without showing roll-over. The 

logarithmic Jth versus temperature plot in the inset of Fig. 11(a) 

exhibits a typical linear relation across the whole temperature 

range. The characteristic temperatures T0 and T1, indicating the 

temperature dependence of Jth and slope efficiency, 

respectively, were also evaluated, as shown in Fig. 11 (b). The 

T0 was extracted as 62.2 K (20 – 100 °C), slightly better than 

InP-based QD lasers with the same cavity size (58 K below 

70 °C and 36 K above 70 °C), due to higher thermal 

conductivity of Si [64]. On the other hand, the T1 values were 

calculated to be 116 K (< 60 °C) and 44 K (> 60 °C). Since the 

T1 is sensitive to the conversion efficiency of carriers into 

photons above threshold, a notable degradation of slope 

efficiency at higher temperature range is mainly due to the 

increased thermal carrier escape/leakage and enhanced non-

radiative recombination [52]. 

Fig. 11 (c) displays optical spectra at an injection current of 

1.1 × Ith as the temperature increases. The ground-state lasing 

at 1585 nm is observed at RT, and the peak lasing wavelength 

redshifts to 1620 nm at 100 °C, without switching to the 

excited-state lasing. The corresponding redshift rate was 

determined to be 0.45 nm/K, as shown in the inset of Fig. 10 

(d). 

 

 

 

 
Fig. 11. (a) Temperature-dependent LI curves for the 5 µm × 

2000 µm device. The temperature-dependent Jth is shown in the 

inset. (b) Characteristic temperatures T0 and T1 (c) Optical 

spectra at an injection current of 1.1 × Ith in a temperature range 

of 20 – 100 °C. The inset displays the temperature-induced peak 

lasing wavelength shift. 
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VI. CONCLUSION 

This work presents a comprehensive advancement of 

InAs/InAlGaAs QD lasers on both InP and Si substrates, 

enabled by the development of a new capping technique to 

QDs. By introducing a strained partial capping layer during QD 

growth, we achieved high-density and uniform QDs with 

reduced height dispersion and emission wavelength tuning, 

supporting multi-stack InAs/InAlGaAs/InP QD active region 

with suppressed strain coupling. By employing this approach, 

7-stack InAs/InAlGaAs/InP QD lasers on InP exhibit a record-

low Jth of 63 A/cm2 per QD layer (15 × 3000 µm2) and a 

maximum operating temperature of 140 °C (5 × 2000 µm2) 

under pulsed injection. Under CW operation, the 5 × 2000 µm2 

device achieved a maximum operating temperature of 60 °C, 

underscoring the need for further thermal and structural 

optimization. Furthermore, we also achieved electrically 

injected InAs/InAlGaAs QD lasers directly grown on CMOS-

compatible Si (100) substrate, with a low Jth of 1.35 kA/cm2 (50 

× 2000 µm2) and a maximum operating temperature of 100 °C 

(5 × 2000 µm2). These results highlight the potential of the 

InAs/InAlGaAs QD laser as off-chip or on-chip light sources 

for optical communication and Si photonics, and mark 

significant progress toward monolithic integration of long-

wavelength QD lasers. 
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