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Abstract—We report the development of InAs/InAlGaAs
quantum-dot (QD) lasers grown on both InP and Si substrates. A
modified indium flush technique was employed to control dot-
height distribution and tailor the emission wavelength by using a
strained partial capping layer. Using this approach, 7-stack
InAs/InAlGaAs QD lasers on InP substrates exhibit a low
threshold current density (Ju) of 63 A/cm? per QD layer and high-
temperature operation up to 140 °C. Furthermore, electrically
pumped InAs/InAlGaAs QD lasers directly grown on Si are also
demonstrated, with a low Ju of 1.35 kA/cm? and a maximum
operating temperature of 100 °C. This work highlights the
effectiveness of the modified indium flush in achieving high-
performance InAs/InAlGaAs QD lasers. These results represent a
significant step forward in the development of high-performance
C-/L-band QD lasers in the InAs/InAlGaAs/InP material system
for Si photonics.
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I. INTRODUCTION

High-performance semiconductor lasers operating in the C-
and L-band wavelengths are of great importance for modern
optical communication systems applied in data center and Si
photonics [1-3]. Furthermore, amid the rise of artificial
intelligence and big data, light sources compatible with large-
scale photonic integration are urgently required to tackle the
surging bandwidth and energy consumption [4]. In particular,
light sources that can be monolithically integrated onto Si
platforms are considered key elements for next-generation
electronic and photonic integrated circuits for artificial
intelligence and big data [5].

Quantum-dot (QD) lasers have emerged as a promising
candidate for such applications, offering various advantages
over conventional quantum well lasers [6-8]. Their three-
dimensional carrier confinement leads to a discrete energy state,
resulting in low threshold current density (Js), nearly-zero
linewidth enhancement factor, ultra-fast gain dynamics, high
temperature operation, etc [6, 9-14]. Furthermore, the strong
carrier localization in QDs provides defect tolerance, making
them suitable for monolithic integration on Si substrates, which
inevitably suffer from high density of defects during the
heteroepitaxy [15-18].

Although InAs/InAlGaAs QD lasers are promising
candidates for C- and L-band light sources, their development
has been hampered by epitaxial growth challenges. One of the
primary obstacles in InAs/InP material system is the anisotropic
indium diffusion coefficient along [110] and [110] directions
on an InP (001) substrate, leading to the formation of elongated
quantum dash (Qdash) structures along the [110] direction,
which disrupts the desired three-dimensional carrier
confinement and undermines many benefits of QDs [9, 19-21].
Additionally, the broader dot-size distributions induced by
moderate lattice mismatch (~ 3.2 %) between InAs and InP
result in significant inhomogeneous spectral broadening, which
limits modal gain and hinders the realization of high-
performance InAs/InAlGaAs QD lasers [6, 22, 23].

Over the past two decades, a great deal of effort has been
made to improve the size/shape uniformity of InAs/InAlGaAs
QDs. Various growth strategies have been explored, including
the adjustments to growth temperature, V/III ratio, growth rate,
growth interruption and use of As; instead of Ass [19, 24-26].
These aim at accelerating the dot formation process and thereby
suppressing the anisotropic surface diffusion of indium.
Furthermore, modifications to the underlying layer
composition, such as InAlAs, InGaAs, AlGaAs, GaAs or
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InAlGaAs, have been employed to control the growth front,
strain field, and phase separation, thereby optimizing QD
nucleation and morphology [19, 27-31].

As an alternative solution, the indium flush technique
controls the dot-height uniformity and tunes the emission
wavelength [32-37]. This involves partially capping the QDs
with a thin first capping layer (FCL), followed by annealing at
elevated temperature to evaporate the indium or to induce an
As/P exchange process, which reduces the height of large dots.
A subsequent second capping layer (SCL) is then grown to
complete the structure. Most dots present a similar height as the
FCL, leading to a significant blueshift in emission wavelength
and a narrower full-width at half-maximum (FWHM) of
photoluminescence (PL). For example, Luo et al. demonstrated
a peak wavelength blueshift from 1690 nm to 1570 nm and a
PL FWHM reduction from 124 meV to 87 meV for 5-stacked
InAs/InGaAsP QDs, by using an optimal SCL growth
temperature that maximizes the indium migration and As/P
exchange reaction [34]. Our previous work optimized the FCL
thickness and annealing temperature, achieving a narrow PL
FWHM of 50.9 meV for a 5-layer InAs/InAlGaAs QD stack
[32]. However, the employment of the indium flush technique
in the InAs/InAlGaAs/InP QD system remains relatively
underexplored, particularly with varied composition of FCL
and thickness adjustment for FCL/SCL combinations.

Furthermore, there is a growing demand toward realizing
monolithic InAs/InAlGaAs QD lasers on Si as an on-chip light
source for Si photonics, because QDs are less sensitive to
defects generated from the interface between I1I-V and Si [15,
38, 39]. While O-band InAs/GaAs QD lasers have shown
substantial advances in monolithic integration on Si platforms,
the situation for the C-/L-band InAs/InAlGaAs QD lasers is
more complex. The large lattice mismatch of ~ 8% between InP
and Si (~ 4% for GaAs and Si) results in much higher densities
of threading dislocation, as well as antiphase boundaries and
thermal cracks [40, 41]. These issues make the direct growth of
electrically pumped InAs/InAlGaAs QD lasers on Si (001)
extremely difficult, and only a few reports have demonstrated
such devices to date [42, 43]. For instance, Zhu et al. [42]
reported pulsed InAs/InAlGaAs QD lasers on Si with Jy, of 1.6
kA/cm?, total output power of 110 mW, and maximum
operating temperature of 80 °C, using InGaAs/InP defect filter
layer and V-groove patterned (001) Si.

In this work, we present an epitaxial approach to develop
InAs/InAlGaAs QD lasers on both InP and Si substrates. The
QD active regions were grown by molecular beam epitaxy
(MBE) as its sub-monolayer precision and solid-source
evaporation offer superior control over interface abruptness and
stoichiometry compared to metal-organic chemical vapor
deposition (MOCVD), where gas-phase reactions can introduce
variability. We first examine a modified indium flush
technique, utilizing a strained InAlGaAs layer as part of the
FCL and varying strained/unstrained FCL thickness
combination, to improve dot height uniformity and control
emission wavelength. This growth strategy is then used to
fabricate 7-stack InAs/InAlGaAs QD lasers on (001) InP
substrates, demonstrating high-performance lasers with low Jy,

and high-temperature operation. This technique is further
exploited to grow InAs/InAlGaAs QD lasers directly on Si
(001) substrates. Lasing operation up to 100 °C is demonstrated
for InAs/InAlGaAs QD lasers directly grown on Si with a low
Ju of 1.35 kA/cm? at room temperature (RT). These results
represent significant progress in InAs/InAlGaAs QD laser
development and highlight the potential for InP- and Si-based
InAs/InAlGaAs QD lasers in optical communication and Si
photonics.

II. EXPERIMENT

All the active regions of the InAs/InAlGaAs QD samples
were grown by solid-source MBE system equipped with a
valved arsenic cracker source on InP (001) and Si (001)
substrates. Prior to growth, the substrates were degassed in the
buffer chamber at 400 °C for an hour and then transferred to the
growth chamber for a 1-min deoxidation at 500 °C under As;
overpressure. The detailed growth information regarding
InAs/InAlGaAs QDs will be presented in each respective
section. Scanning transmission electron microscopy (STEM)
was performed to investigate the cross-sectional structural
characteristics. In addition, atomic force microscopy (AFM)
was employed to examine the surface morphology of QD
samples, enabling direct comparison before and after stacking.
PL measurements at RT were conducted using a Nanometrics
RPM2000 system, incorporating a 635 nm continuous-wave
laser at an excitation power density of 430 W/ecm? and a
wavelength-extended InGaAs detector with a cutoff at 2 um.

Fabry-Pérot (FP) lasers were fabricated on both InP and Si
substrates. Ridges were formed slightly above the active region
by conventional photolithography and wet chemical etch using
a mixture of HC1 and H3POs. For Si-based lasers, an additional
wet etch step was employed to form a second mesa structure
and expose the n-type InP contact layer for a top-top contact
configuration. After the ridge formation, a 400 nm SiO»
passivation layer was deposited by plasma-enhanced chemical
vapor deposition, and contact windows were opened by reactive
ion etching. Ti/Au (20/400 nm) was deposited on the exposed
ridge using a sputtering system as the p-contact. For InP-based
lasers, substrates were thinned to 150 pm and subsequently, an
n-type Ni/AuGe/Ni/Au (10/100/10/200 nm) contact layer was
deposited on the polished surface using a thermal evaporator.
For Si-based lasers, the same n-type metallization was first
deposited on the exposed n-type InP contact layer, followed by
substrate thinning to 150 um. Both were annealed at 380 °C for
1 min to form ohmic contacts. No facet coating was applied.

II1. INDIUM FLUSH FOR INAS/INALGAAS QD GROWTH

A. Mechanism Revealed by STEM Investigations

While indium flush has been widely applied to InAs/GaAs
QD growth to manipulate the dot uniformity and hence enhance
gain [44-46], its adoption in InAs/InAlGaAs/InP material
system remains less explored, especially in the quaternary alloy
barrier matrices. Therefore, we studied the mechanism of
indium flush in an InAs/InAlGaAs material system. Two
single-layer QD samples were grown to study the effect of
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indium flush, of which the growth parameters were discussed
in our previous work [32]. Reference sample A (without indium
flush) consists of 500 nm InAlAs and 100 nm InAlGaAs grown
on an n-type InP (001) substrate. 5.5 monolayers (MLs) of InAs
were deposited directly onto InAlGaAs at 485 °C with a V/III
ratio of 18, followed by a 10-second growth interruption under
As overpressure to promote QD ripening [26]. A 100 nm
InAlGaAs capping layer was then deposited at the same
temperature. Additional 100 nm InAlAs, 100 nm InAlGaAs,
and surface QDs were grown sequentially to complete the
reference sample for PL measurements. A high indium growth
rate of 0.42 ML/s and As, were used for the QD growth to
suppress the anisotropic indium surface diffusion. All layers
except the InAs QD layer are lattice-matched to InP. Sample B
(with indium flush) was grown under identical conditions
except that after the QD deposition and growth interruption, a
4-nm InAlGaAs FCL was grown at 485 °C. Then, the substrate
temperature was increased to 540 °C and held for 1 min under
As; flux with a beam equivalent pressure of 7 x 10 Torr (the
indium flush step), followed by the growth of the remaining 96
nm InAlGaAs SCL at 500 °C [47]. The emission wavelength
was blue shifted by over 300 nm from 1824 nm for sample A to
1522 nm for sample B, and the PL FWHM improved
significantly from 89.2 to 47.9 meV. High-angle annular-dark-
field (HAADF) STEM images of sample A and B are presented
in Fig. 1 (a) and (b), respectively. For sample A without indium
flush, a large QD size dispersion is observed, with a mean QD
height of 5.46 + 0.84 nm. In contrast, the QDs in sample B with
indium flush are clearly truncated, with a reduced average
height of 3.54 + 0.48 nm, as the larger dots are affected by the
flush while smaller dots are fully buried. This facilitates the size
quantization-assisted blue shift and improves the uniformity of
the dot ensemble dramatically.

Apart from the QD height modifications, HAADF images of
sample B also show dark-contrasted regions connecting
adjacent dots and bright-contrasted regions above large,
truncated dots. Electron energy loss spectroscopy (EELS)
measurements confirm these to be Al-rich and In-rich regions,
respectively, as seen in Figure 1 (c) and (d). Based on these
distinctive observations, we propose a growth model, as shown
in Fig. 1 (e — j). Initially, QDs form via Stranski-Krastanov
growth mode. Then, the 4 nm quaternary InAlGaAs FCL is
deposited; as the average dot height is 5.46 + 0.84 nm, only
larger dots (> 4 nm) remain exposed while smaller dots (< 4
nm) are buried. The elastically relaxed InAs island apices of
exposed QDs create energetically unfavorable nucleation sites
for Ga and Al adatoms, thereby limiting the FCL growth atop
the QDs [22, 44, 46-48]. Strain from the InAlGaAs FCL
promotes indium migration across the FCL surface, forming a
partial capping layer to reduce the surface energy [44]. Upon
substrate temperature elevation, indium desorbs from both the
partially capped dot layer and the FCL, leaving the top of the
FCL Al-rich, thereby accounting for the dark-contrasted
regions between adjacent dots in atomic-number-sensitive
STEM-HAADF images. During the subsequent SCL growth,
indium atoms readily incorporate above the truncated dots
because of the smaller lattice mismatch, i.e. less compressive

strain, forming In-rich regions above truncated dots as shown
in Fig. 1(b).

These findings offer important insight into the complex
dynamics occurring during the indium flush process in
quaternary material matrices, thereby contributing to the further
optimization and broader applicability of this technique.
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Fig. 1. HAADF images of QD morphologies and adjacent
layers of sample A (without indium flush) in (a) and sample B
(with indium flush) in (b). (c) and (d) Individual EELS maps of
sample B, showing the relative distribution of Al (green
intensity channel) and In (red intensity channel). (e — j) The
schematic illustration of the proposed impact of the indium
flush technique on QDs and adjacent regions. (e) Formation of
InAs QDs. (f) The deposition of FCL. (g) The substrate
temperature is elevated, and indium atoms desorb from both
FCL and QDs. (h) Desorbed indium atoms are flushed away. (i)
Indium-rich region and (j) indium-depleted (Al-rich) region
formed after the deposition of SCL (Adapted from [47] under
CC BY 4.0).

B. Modified Indium Flush Technique

More flexibility is given to optimizing the growth condition
for high density and uniform QDs due to the capability of
indium flush to effectively tune the emission wavelength and
QD height uniformity. Theoretically, increasing the InAs
deposition thickness leads to a shape transition from elongated
QD dashes to round-shaped islands, hence increasing QD
density [8]. Consequently, to increase QD density, we further
increased the InAs thickness based on previous work [32]. High
QD densities of 4.4 x 10" cm™? and 5.2 x 10'° cm? were
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achieved by an InAs coverage of 6.5 MLs and 6.8 MLs,
respectively. However, the emission wavelength also increases
with increasing InAs coverage [32]. For the sample with 6.5
ML InAs coverage, even using indium flush technique with an
unstrained InAlGaAs FCL of 3.5 nm, the emission wavelength
is still as long as 1726 nm.

To further shift the emission wavelength to within the C-/L-
band, we developed a modified indium flush technique that
utilized a strained InAlGaAs layer as part of the FCL. By
changing the thickness of the strained Ing3s0Alo323Gao318As
FCL, which has a smaller lattice parameter than InP, significant
blue shift in PL peak wavelength can be achieved. Three
samples with different FCL were grown to investigate the
capability of wavelength tuning. The schematic QD structure is
shown in Fig. 2(a). For sample R1, after the 6.5 ML QD growth
and interruption for 10 seconds at 485 °C, a 0.5-nm strained
Ino3s0Alo.323Gag318As layer and a 2-nm Ings:8Alo238Gag234As
layer were subsequently deposited on the QDs as the FCL. Then
the thermal annealing was carried out at 515 °C for 3 min and
the remaining 97.5-nm Ings:3Alo238Gag234As SCL  growth
resumed at 485 °C. Note that the difference in annealing
temperature compared with that in Section III-A is due to the
variations in the different facility setup. For sample R2, the FCL
consisted of 1.5 nm strained Ino3s50Alo323Gao318As and 1 nm
Ino s28Alp238Gag234As and R3 is a reference sample with
unstrained FCL. It should be noted that in our experiment, the
stressor layer was grown directly on top of QDs rather than in
the second part of the FCL because this should have an
immediate impact on the strain field within and around the dots,
which more readily affects the indium flush procedure and the
material exchange at the interface. The PL spectra of the three
samples are shown in Fig. 2(b). The inset in Fig. 2(b) shows a
1 x 1 um? AFM image of the uncapped surface dots of the
samples with highly uniform and high density QDs. A
significant blue shift from 1624.8 nm to 1576.2 nm is obtained
just by changing the strained Ing3s0Alo323GagsisAs layer
thickness by 1 nm from R1 to R2. The effectiveness of using
lower composition InAlGaAs FCL in tuning emission
wavelength is also reported by Kwoen et al. [49], thanks to the
band energy modification and reduced indium interdiffusion
during subsequent annealing process. In addition, a 27%
enhancement in PL intensity is achieved for the sample with 0.5
nm strained Ing3s0Alo.323Gao 318As. The reduction in strain in the
FCL and the spacer layer brought by this strained InAlGaAs is
reported to affect the interdiffusion of indium atoms at the
InAs/InAlGaAs interface [50], which might account for the
observed improvement in PL intensity. Compared to the
reference sample, the peak wavelength of the sample with 1.5
nm strained InAlGaAs is blue shifted significantly by 150 nm.
The FWHM of the strained InAlGaAs samples shows a slight
decrease (58.2 meV for R1 and 58.3 meV for R2) compared to
the reference sample (59 meV).

This modified indium flush technique not only effectively
shifts the emission wavelength, thus allowing more flexibility
for QD growth optimization, but is also especially
advantageous for multi-layer QD stack growth due to the strain
compensation effect [35, 51]. More QD stacks and thinner

spacer layers can be expected using this technique, which
favors the growth of high gain, low defect density QDs. In the
following sections, multi-layer InAs/InAlGaAs/InP QD lasers
based on this modified indium flush have been developed and
demonstrated high performance in terms of high-temperature

operation and low Jy,.
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Fig. 2. (a) Schematic structure of single-layer QD sample
applying the modified indium flush with different strained FCL.
(b) RT PL spectra for single-layer QD samples with different
FCL applying modified indium flush. The inset shows 1 x 1
um? AFM of the uncapped surface dots of the samples.

IV. INAS/INALGAAS QD LASERS ON (001) INP SUBSTRATE

Compared with InAs/GaAs QD lasers, the performance of
InAs/InAlGaAs QD lasers lags, particularly in terms of low Jy
and temperature-insensitive operation, mainly due to the severe
size/shape inhomogeneity of QDs. To realize high-performance
InAs/InAlGaAs QD lasers, achieving uniform QDs with narrow
FWHM of PL is critical for enhancing modal gain, low Ji, and
high-temperature operation. Here, we employed the modified
indium flush technique to effectively control dot height and thus
obtain high-density and uniform QDs. This approach resulted
in InAs/InAlGaAs QD lasers with low threshold and high-
temperature operation.

A. 7-stack InAs/InAlGaAs OD laser Growth

The InAs/InAlGaAs QD laser structure was grown on a (001)
n-type InP substrate by MBE, and consists of the following
layers: Si-doped 200 nm IngssAlp476As, Si-doped 200 nm
Ino.s28Al0.238Ga0234As, a 7-stack InAs QD active region with
optimized growth conditions, Be-doped 200 nm
Ino,5ngloAz3gGa0,234As, and Be—doped 200 nm Ings24AlAs. A 10
nm Be-doped InGaAs cap was deposited to prevent oxidation
during the subsequent transfer to MOCVD, where a Zn-doped
1700 nm InP p-type cladding layer and a Zn-doped 200 nm
InGaAs p-contact layer were grown.

Fig. 3 presents HAADF STEM images for the seven-stack
QD laser along the (a) [110] and (b) [110] directions to confirm
the dot morphology. The InAs QDs exhibit a truncated lens
shape with an average size of 25.7 nm along [110] and 47.3 nm
along [110] direction. Although minor elongation is observed,
the nanostructures are distinct from the Qdash that presents
continuous-phase InAs layer along the [1 1 0] direction
resembling a QW [26]. The height along [110] direction is 3.4
nm, slightly higher than 2.9 nm observed along [11 0],
indicating a minor anisotropy. Importantly, the positions of the
QDs in each layer are randomly distributed, rather aligned with
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the bottom of QDs in layers above or below, evidencing
negligible strain coupling effects.

() (b)

Schematic QDs along [110]

Along [110] direction

Fig. 3 HAADF images along both (a) [110] and (b) [110]
directions of the seven-QD-layer laser on InP substrate and their
schematic shapes.

B. Low threshold InAs/InAlGaAs QD lasers

Broad-area FP lasers with a ridge width of 15 pm were first
fabricated and tested. The fabricated FP lasers were
characterized under pulsed injection (1 % duty cycle, 1 us pulse
width) to minimize the self-heating effect. Fig. 4(a) displays
typical power-current (L/) curves for varied cavity lengths. The
threshold current (/) and Jy; for devices with 3000, 2000, 1000,
and 500 um cavity lengths were measured to be 198 mA (440
A/cm?), 145 mA (483 A/cm?), 92 mA (613 A/cm?), and 89 mA
(1,189 A/cm?), respectively. These correspond to Jy per QD
layer of 63, 69, 88, and 170 A/cm®. The achieved Jy per QD
layer of 63 and 69 A/cm? for the 3000 and 2000 pm devices
outperformed prior reports for C-/L-band InAs/InAlGaAs QD
lasers on (001) InP. Fig. 4(b) presents temperature-dependent
LI characteristics of the 2000 pm device, showing a maximum
operating temperature of 130 °C. The inset of Fig. 4(b) depicts
Ju versus temperature on a logarithm scale, in which the Jy
increases from 483 A/cm? at 20 °C to 6,628 A/cm? at 130 °C.
The characteristic temperature (7)), a measure of temperature
sensitivity of I or Jy evaluated from Ju(T) = Jy X exp(T/Tp),
was 48.2 K (below 70 °C) and 44.9 K (above 70 °C). The RT
peak lasing wavelength is 1624 nm and the shift rate is 0.37
nm/K. Note that maximum operating temperatures for the 3000,
1000, and 500 pm devices were 110, 120, and 120 °C,
respectively (not shown here).
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Fig. 4. (a) RT LI for the InAs/InAlGaAs QD lasers with cavity
width of 15 pum and different cavity lengths. (b) Temperature-
dependent LI characteristics for the 15 um x 2000 pm device.
The inset presents the Jy versus temperature. (Adapted from
[52] under CC BY 4.0)

Fig. 5 exhibits continuous-wave (CW) temperature-
dependent LI curves of the 15 pum x 2000 pm device,
confirming a maximum operating temperature of 35 °C. The
device yields I, of 393 mA (Jy of 1.31 kA/cm?; 187 A/cm? per
QD layer), series resistance of 1.6 Q, and turn-on voltage of ~
0.7 V. The reduced Ty of 32 K was evaluated, highlighting the
substantial impact of self-heating under CW operation. As
shown in the inset of Fig. 5, the RT peak lasing wavelength at
an injection current of 1.1 x [; and wavelength shift rate are
evaluated as 1631 nm and 0.76 nm/K, respectively.
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Fig. 5. CW temperature-dependent LI characteristics of the 15
pum x 2000 pm device. The inset shows peak lasing wavelength
versus temperature.

Low threshold L-band InAs/InAlGaAs QD lasers were
demonstrated using the modified indium flush technique. The
fabricated seven-stack as-cleaved lasers with a cavity length of
15 um and cavity lengths of 2000 and 3000 um under pulsed
injection achieved very low J; per QD layer of 63 and 69 A/cm?
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and maximum operating temperature of 110 and 130 °C,
respectively. While the pulsed performance is promising, the
performance under CW—a Jy, per QD layer of 187 A/cm? and
a maximum operating temperature of 35 °C for the 15 x 2000
pum? device—is limited, requiring further optimization to
enhance CW performance.

C. High-temperature and ultra-short cavity operation of
InAs/InAlGads QD lasers

To investigate the impact of a reduced ridge width on the
temperature stability, narrow-ridge devices with a cavity width
of 5 um were fabricated. Fig. 6 displays pulsed temperature-
dependent LI curves for the 2000 um device, yielding /,; of 64.3
mA (Jy of 643 A/cm?) and a maximum operating temperature
of 140 °C, which is 10 °C higher than the 15 pm % 2000 pm
device. Ty values were 58 K (20 — 70 °C) and 36 K (70 — 140
°C). The enhanced maximum operating temperature for the
narrow-ridge device with moderate cavity length of 2000 pm
can be attributed primarily to the lower /; compared to the 15
pm ridge device with the same cavity length—namely, less
Joule heating. The inset of Fig. 6 shows a lasing wavelength
shift with increasing temperature at an injection current of 1.1
x Iy The peak lasing wavelength at RT is centered at 1625 nm
and redshifts with a shift rate of 0.39 nm/K. Note that the
reduced redshift is observed near the maximum operating
temperature, which has also been found in literature [12, 53].
This is believed to be due to high current injection-induced
variation in effective refractive index [54]. While the redshift
driven by bandgap shrinkage dominates over the carrier-
induced blueshift as the temperature increases, an excessively
increased J; and reduced quantum efficiency near the
maximum operating temperature generate a large amount of
unclamped excess carriers, which would mitigate the redshift
[55].
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Fig 6. Temperature-dependent LI curves under pulsed injection
for the 5 pm X% 2000 um device. Temperature-induced lasing
wavelength shift is shown in the inset.

The 5 pm x 2000 pm device was further characterized under
CW operation. Fig. 7 shows CW temperature-dependent L/
curves, with a maximum operating temperature of 60 °C, 25 °C

higher than the 15 um x 2000 um device. The 7 (Ji) at RT was
measured as 137 mA (1.37 kA/cm?), with a series resistance of
1.6 Q and turn-on voltage of ~ 0.7 V. The improved 7, of 40 K
was obtained, compared to the 15 pm x 2000 pum device (32.0
K). The inset of Fig. 7 displays a peak lasing wavelength shift
at an injection current of 1.1 x /; as a function of temperature.
The RT peak lasing wavelength is 1627 nm, and the shift rate is
0.56 nm/K, lower than 0.76 nm/K (15 pm x 2000 pum).
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Fig. 7. CW temperature-dependent L/ characteristics for the 5 x
2000 pm? device. Inset presents peak lasing wavelength shift as
a function of temperature.

Table 1 summarizes key performance metrics for the devices
with different cavity lengths and widths, in terms of Iy, Ju,
single-facet power, maximum operating temperature, and 7.
For the device with cavity width of 15 pum under pulsed
injection, shorter cavity length devices have shown higher
maximum operating temperature than longest cavity length
(3000 pum) predominantly due to reduction in /7 and Joule
heating. However, the 1000 and 500 um devices degraded by
10 °C, compared with the 2000 um device. This is because the
excessive mirror loss in short cavity length significantly
increases the Ju, thereby resulting in increased non-radiative
recombination and thermal carrier escape rate at high
temperature regime [52]. In other words, excessively high
carrier density in short cavity length diminishes the benefit of
lower I at high temperatures. For the temperature dependence
of Ju, shorter cavity devices exhibit higher 7) at lower
temperatures but more pronounced degradation in 7y at higher
temperatures. Similar to the operating temperature, this can be
attributed to the higher mirror loss and resultant higher carrier
density, further enhancing loss mechanism at high temperature
range [52]. Compared with the 15 x 2000 pm? device,
accordingly, the much lower 7, contributed to the improved
thermal stability of the 5 x 2000 um? device.

However, a notable performance degradation was observed
under CW operation compared with pulsed mode, primarily
attributed to self-heating, further exacerbated by non-optimal
shallow, wet-etched waveguide ridge geometry and defects in
the regrown p-InP cladding layer. Adopting a deep, dry-etched
ridge waveguide can enhance optical mode confinement and
reduce I [56]. Using monolithic growth to avoid regrowth
defects [57] and applying high-reflection facet coatings will
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TABLE I
SUMMARY OF DEVICE PERFORMANCE FOR INAS/INALGAAS QD LASERS WITH VARIED CAVITY LENGTHS AND CAVITY WIDTH OF

15 uM AND 5 uM

Current Cavity Cavity In Jih Single facet power Max. To To
injection width length (mA) (A/cm?) (mA) at0.5/1.0 A temp. (<70 °C) (>70°C)
Pulse 15 um 3000 pm 198 440 5.6/30 110 °C 443 K 413K
2000 pm 145 483 12/48 130 °C 482K 449K
1000 pm 92 613 22 /69 120 °C 509K 39.0K
500 pm 89 1189 24 /60 120 °C 553K 372K
5 pm 2000 pm 64 643 17/43 140 °C 58.0K 36.0K
CwW 15 um 393 1310 1.5/4.7 (at 0.8 A) 35°C 32K -
2000 pm
S pm 137 1370 8.4/9.3 (at 0.65 A) 60 °C 40K -
. iy . (a)
further improve CW performance. In addition, epi-side-down
mounting on high-thermal-conductivity submounts can greatly ST—% m
improve heat dissipation [58]. These strategies can narrow the — ggg m
gap between CW and pulsed operation. 41— 200 ym
In addition to demonstrating high-temperature operation of s 180 pm
InAs/InAlGaAs QD lasers, we investigated the lasing £31
characteristics of short cavity-length devices to explore their 5
potential for high-speed applications. InAs/InAlGaAs QD 3 24
lasers with cavity lengths less than 500 um were characterized 8
at RT under pulsed injection. 14
As shown in Fig. 8(a), the LI curves for devices with cavity
lengths of 375, 300, 250, 200, and 180 pum reveals 7, of 46, 52, 0 ; ; ;
61,82, and 95 mA, corresponding to Jy; 0f2.4,3.5,4.8, 8.2, and 0 50 100 150 200
10.6 kA/cm?, respectively. Notably, even the ultra-short cavity Current (mA)
device with a length of 180 pm demonstrated lasing without any (b)
facet coating, highlighting the capability of our QD laser
structure to support considerably high gain. To the best of our 1475 15|00 15|25 15|50 1575 16|00 1625
knowledge, this represents the record-short cavity length ——375um )
achieved for C-/L-band InAs/InAlGaAs QD lasers on (001)
InP. Fig. 8(b) presents the optical spectra at an injection current
of 1.1 x I;. The peak lasing wavelength blue-shifted from 1589 0 Hﬁ; . w s
nm (L-band) to 1540 nm (C-band). This shift is primarily “" , | L-band
ascribed to the higher threshold gain requirement induced by - W“Mi ”W
higher mirror losses in shorter cavities, leading to lasing at T | comamryeonensmrmratL s
shorter wavelengths within the QD ensemble where the modal 8 | 250um M‘
gain is higher [59, 60]. 2 H wﬂ
g vw\-wwMww“*.www'w,w‘f‘m IMWMW.M”WW_—
] 200 pm —
180 um

1475 1500 1525 1550 1575 1600 1625
Wavelength (nm)

Fig. 8. (a) RT LI characteristics for devices with cavity length
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less than 500 pm. (b) Optical spectra at an injection current of
1.1 x I, for the short cavity length devices.

Based on the device data with varying cavity lengths and
widths, the peak modal gain at threshold was evaluated. The
mirror losses for each cavity length were calculated assuming
an as-cleaved facet reflectivity of R = 0.32. Internal loss (a;) and
internal quantum efficiency (#;) were extracted from the
dependence of the external differential quantum efficiency on
cavity length, using devices with a 5 um and varied cavity
lengths ranging from 500 to 2000 pm. A linear fit to this data
yielded 7; of 20 % and @; of ~ 12 cm’!. Note that the extracted
low #; is likely limited by non-radiative recombination at
defects introduced during p-InP regrowth, while a; is influenced
by heterointerface and defect-induced scattering. Future
optimization will focus on monolithic MBE growth to reduce
these losses. Fig. 9 exhibits the peak modal gain at threshold as
a function of current density, calculated from the mirror losses
for each cavity length and the evaluated o; of ~ 12 cm™.. In
addition to the 5 um cavity width devices, data from devices
with 15 pm and 50 um cavity widths and varying cavity lengths
were included in the analysis. A high modal gain of 76 cm™! was
obtained.
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Fig. 9. Peak modal gain versus current density.

V. INAS/INALGAAS QD LASERS DIRECTLY GROWN ON (001)
S1 SUBSTRATE

Despite the growing demand for C- and L-band Si-based on-
chip light sources, progress in developing InAs/InAlGaAs QD
lasers directly grown on (001) Si substrates is stagnant. In contrast
to the substantial advances achieved with O-band InAs/GaAs QD
lasers on Si, the realization of high-performance InAs/InAlGaAs
QD lasers remains more challenging. First, the lattice mismatch
between InP and Si (~ 8%) is larger than GaAs and Si (~ 4%),
generating a much higher density of threading dislocations.
Second, the severe size and shape inhomogeneity of InAs QDs
grown on InP/Si limits sufficient gain, resulting in higher J;; and
limited high-temperature operation. Here, Si substrate pre-
treatment [61] and InAsP dislocation filters [62] were employed
to suppress the formation of antiphase boundaries and reduce
threading dislocation density. On a MOCVD-grown InP/Si

template, 7-stack InAs/InAlGaAs QD lasers were grown using the
modified indium flush technique.

A. 7-stack InAs/InAlGaAs QD lasers growth on Si substrate

Based on the InAs/InAlGaAs QD laser results, an optimized
seven-stack InAs/InAlGaAs/InP QD laser structure was further
exploited on on-axis Si (001) substrate. First, an InP/GaAs/Si
template with a total thickness of 570 nm was grown. The use
of a plasma-based surface deoxidization process in conjunction
with high-temperature Si annealing result in antiphase
boundary-free III-V epitaxial layers [61]. The threading
dislocation density of the thin buffer template was measured to
be 1.7 x 10° cm™. This dislocation density was further reduced
to 6.6 x 107 cm™ via two sets of InAsP dislocation filters [62].
The InP/GaAs buffer developed here is considerably thinner
than previous work in the literature [42, 63]. Unlike InP-based
QD lasers where an n-type InP substrate serves as the n-type
contact layer, an undoped (230 nm) and an n-type (770 nm) InP
layers were subsequently grown by MOCVD for this role. The
InAs/InAlGaAs QDs region was repeated following the
previous optimized conditions using the modified indium flush
technique in MBE. Finally, the p-type InP cladding and p-
InGaAs contact layers were grown by MOCVD to complete the
laser structure.

B. Electrically pumped InAs/InAlGaAs QD lasers on Si

7-stack InAs/InAlGaAs QD FP lasers directly grown on
(001) Si substrate with ridge widths of 50 um and 5 pm were
fabricated. The FP lasers were characterized under pulsed
injection (1 % duty cycle, 1 um pulse width) to suppress self-
heating effect. Typical LI characteristics at RT for devices with
varied cavity lengths and ridge widths of 50 and 5 pm were
measured to evaluate Jy, trend (not shown). For the broad-area
lasers (50 um ridge width) with cavity lengths of 2000, 1000,
750, 500, and 350 pm, the measured I, were 1353, 694, 666,
576, and 524 mA, corresponding to Jy values of 1.35, 1.39,
1.78, 2.30, and 2.79 kA/cm?, respectively. The narrow-ridge
devices (5 um) with cavity lengths 0of 2000, 1500, 750, 500, and
375 pum exhibit I (Ju) of 323 (3.23), 262 (3.49), 154 (4.10),
119 (4.76), and 104 mA (5.57 kA/cm?), respectively. Fig. 10
plots J versus inverse cavity length for both cavity widths. The
extracted transparency current density (J;-) was calculated to be
0.84 and 2.83 kA/cm? for the 50 and 5 pm width devices,
respectively.
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Fig. 10. Jy versus inverse cavity length (cavity length) for the
7-stack InAs/InAlGaAs QD lasers on (001) Si with cavity
widths of 50 and 5 pm and varied cavity lengths.

To assess the temperature stability of the InAs/InAlGaAs QD
lasers on Si, the 5 pm x 2000 pm device was selected for further
characterization. Fig. 11(a) presents the temperature-dependent
LI curves, showing a maximum operating temperature of 100
°C. Note that the RT single-facet power at an injection current
of 1 A was measured as 16 mW without showing roll-over. The
logarithmic Jy; versus temperature plot in the inset of Fig. 11(a)
exhibits a typical linear relation across the whole temperature
range. The characteristic temperatures 7y and 77, indicating the
temperature dependence of Jy and slope efficiency,
respectively, were also evaluated, as shown in Fig. 11 (b). The
Ty was extracted as 62.2 K (20 — 100 °C), slightly better than
InP-based QD lasers with the same cavity size (58 K below
70 °C and 36 K above 70 °C), due to higher thermal
conductivity of Si [64]. On the other hand, the 7; values were
calculated to be 116 K (< 60 °C) and 44 K (> 60 °C). Since the
T; is sensitive to the conversion efficiency of carriers into
photons above threshold, a notable degradation of slope
efficiency at higher temperature range is mainly due to the
increased thermal carrier escape/leakage and enhanced non-
radiative recombination [52].

Fig. 11 (c) displays optical spectra at an injection current of
1.1 x Iy as the temperature increases. The ground-state lasing
at 1585 nm is observed at RT, and the peak lasing wavelength
redshifts to 1620 nm at 100 °C, without switching to the
excited-state lasing. The corresponding redshift rate was
determined to be 0.45 nm/K, as shown in the inset of Fig. 10
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Fig. 11. (a) Temperature-dependent L/ curves for the 5 pm %
2000 pm device. The temperature-dependent J;, is shown in the
inset. (b) Characteristic temperatures 7y and 7; (c¢) Optical
spectra at an injection current of 1.1 X [, in a temperature range
0f20 — 100 °C. The inset displays the temperature-induced peak
lasing wavelength shift.
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VI. CONCLUSION

This work presents a comprehensive advancement of
InAs/InAlGaAs QD lasers on both InP and Si substrates,
enabled by the development of a new capping technique to
QDs. By introducing a strained partial capping layer during QD
growth, we achieved high-density and uniform QDs with
reduced height dispersion and emission wavelength tuning,
supporting multi-stack InAs/InAlGaAs/InP QD active region
with suppressed strain coupling. By employing this approach,
7-stack InAs/InAlGaAs/InP QD lasers on InP exhibit a record-
low Jy of 63 A/cm? per QD layer (15 x 3000 um?) and a
maximum operating temperature of 140 °C (5 x 2000 pm?)
under pulsed injection. Under CW operation, the 5 x 2000 pum?
device achieved a maximum operating temperature of 60 °C,
underscoring the need for further thermal and structural
optimization. Furthermore, we also achieved -electrically
injected InAs/InAlGaAs QD lasers directly grown on CMOS-
compatible Si (100) substrate, with a low Jy, of 1.35 kA/cm? (50
x 2000 pm?) and a maximum operating temperature of 100 °C
(5 x 2000 pm?). These results highlight the potential of the
InAs/InAlGaAs QD laser as off-chip or on-chip light sources
for optical communication and Si photonics, and mark
significant progress toward monolithic integration of long-
wavelength QD lasers.
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