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Microscopic analysis of above-threshold ionization driven by squeezed light
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Above-threshold ionization (ATI) is a strong-field-driven process where electrons absorb more photons than
required for ionization. While ATI dynamics and outputs are well-understood when driven by classical, perfectly
coherent light, the recent development of nonclassical light sources for strong-field phenomena has spurred
interest in their effect on the involved electron dynamics. In this work, we present a microscopic quantum optical
theory describing ATI under the influence of strong squeezed light. We observe that squeezed light significantly
enhances the coupling between light and matter, making their mutual backaction more important than under
classical driving. This backaction profoundly impacts the electronic ionization times, as well as the nonclassical
properties of the joint electron-light state. This results in pronounced entanglement features, both immediately
after ionization and at later times. These entanglement features are reflected in the properties of the quantum
optical state of the driving field, revealing notable non-Gaussian features that depend on both the amount of
squeezing and the number of ionization events occurring during the interaction.
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I. INTRODUCTION

Strong-field physics investigates light-matter interactions
in regimes where the intensity of the driving field becomes
comparable to the atomic force binding electrons to their
nuclei. In these extreme conditions, and particularly when the
frequency of the driving field is insufficient to ionize the atom
via single-photon absorption (which is typical for fields in the
infrared regime), a variety of nonperturbative phenomena can
arise [1,2], among which above-threshold ionization (ATI) is
a prominent example [3–5]. ATI refers to the ionization of an
electron with the absorption of more photons than required
to surpass the atom’s ionization potential. Under especially
intense fields, this energy excess may correspond not to just
a few photons [6], but to dozens or even hundreds [7,8]. In
such regimes, ionization is no longer adequately described as
a multiphoton absorption process [9,10], but rather as optical
tunneling [7], where the laser field distorts the atomic poten-
tial forming a barrier through which the electron can tunnel
and subsequently be accelerated by the field [1,11].

Thus, from a semiclassical perspective—where matter is
treated quantum mechanically and the electromagnetic field
as a classical wave—the dynamics underlying ATI are well-
understood across various levels of depth [11–17]. However,
the introduction of quantum optical frameworks has not
only historically reinforced the theoretical foundations of
ATI [18–24], but more recent developments over the last
five years have enabled the prediction of phenomena be-
yond the reach of semiclassical models by explicitly treating
the electromagnetic field as quantized, even when the light
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source is a conventionally classical laser [25–28]. In this
direction, Ref. [27] developed a quantum theory of photoe-
mission in ATI, predicting emission probabilities that are
orders of magnitude higher than those associated with high-
harmonic generation (HHG). This enhancement stems from
the single-step nature of direct ATI processes, as opposed
to the more intricate three-step mechanism characteristic of
HHG [29–31]. Additionally, Ref. [26] found that the electron
dynamics after ionization can impact the quantum state of the
field; these effects result in mild yet nonnegligible entangle-
ment between the ionized photoelectrons and the driving field
[25], as illustrated in Fig. 1(a).

The use of quantum optical descriptions has also opened
new avenues for understanding how nonclassical states of
light, such as squeezed states of light [32,33], can influ-
ence the electron dynamics in ATI. In an initial theoretical
study, Ref. [34] demonstrated that employing squeezed light
enhances the contribution of higher-order multiphoton ion-
ization channels and leads to the broadening of the peaks
observed in photoelectron spectra. More recently, analogous
investigations in the optical tunneling regime have been con-
ducted, utilizing a formalism originally developed for HHG
[35–39] based on the generalized positive P-representation
[40] to describe nonclassical driving fields. These studies
confirmed the persistence of the previously observed effects:
broadening of the ATI photoelectron peaks [41,42], extended
ATI cutoffs [42,43], and increased probability of different
photoionization channels [44], all attributed to the amplified
field fluctuations characteristic of squeezed light. Importantly,
recent experimental progress at this new intersection—driving
metal needle tips with strong squeezed light—has shown
how the photon statistics of the driving field are reflected in
the measured photoelectron statistics within the multiphoton
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FIG. 1. (a) When driven by coherent states of light, the backac-
tion on the driving field from photoionized electrons generated in ATI
processes is negligible, as are any nonclassical features arising from
the light-matter interaction. (b) By introducing squeezing into the
driving field, these nonclassical features become more pronounced,
leading to non-negligible entanglement between electron and light—
pictorially represented through the gray curves. This entanglement
can be exploited to engineer non-Gaussian states in the driving field.

regime [45], and has also demonstrated significant modifica-
tions in the photoelectron spectra in the tunneling regime [46].

These studies have provided valuable insights into how
nonclassical driving fields can modify standard ATI observ-
ables. Yet, it remains open to understand how the use of
nonclassical drivers affects the joint quantum state of light and
matter. The aim of this work is to address this question by pre-
senting a microscopic theory of light-matter interaction during
ATI in the presence of squeezed light. We show that, under rel-
atively strong squeezing conditions—compatible with current
state-of-the-art capabilities [47–51]—the squeezing enhances
the light-matter coupling, which in turn significantly affects
the mutual backaction between light and matter. This sets
our theory apart from standard approximations compatible
with classical, coherent driving fields where such backaction
is treated only in one direction [25,26,52–56] or through
Markov-like approximations [57,58]. It is worth noting that,
in the context of HHG in strongly correlated materials driven
by classical coherent fields, more comprehensive numerical
studies have been conducted beyond these approximations
[59,60], identifying the regimes in which such simplifications
hold [61]. Recently, similar analyses have been done for HHG
in the context of sideband high-harmonic generation [62]. As
a consequence of the enhanced light-matter coupling induced
by squeezing, we observe pronounced nonclassical features
[63,64] in the quantum state of the driving field, as well as
strong entanglement between light and matter, as illustrated
in Fig. 1(b).

II. THEORETICAL ANALYSIS

In this section, we present the theoretical framework
adopted in this work, highlighting the key differences with

respect to previous analyses of ATI in a quantum optical
context [25,26].

A. Light-matter interaction Hamiltonian

The primary objective of this work is to describe the in-
teraction of a high-intensity displaced squeezed state with
frequency ωL and an atomic system that is initially in its
ground state [Fig. 1(b)]. Accordingly, we express the initial
state of the joint light-matter system as

|�(t0)〉 = |g〉 ⊗ |ξ, α〉
⊗
q �=1

|0q〉, (1)

where |g〉 denotes the atomic ground state, and |ξ, α〉 =
D̂q(α)Ŝq(ξ )|0〉 represents a displaced squeezed vacuum
(DSV) state in the driving field mode (q = 1 ≡ L). Here
D̂q(α) = exp[αâ†

q − α∗âq] is the displacement operator and
Ŝq(ξ ) = exp[ξ ∗â†2

q − ξ â2
q] is the squeezing operator, with âq

(â†
q) denoting the annihilation (creation) operator acting on

the qth harmonic mode. All other optical modes (q > 1) are
initially in the vacuum state |0q〉.

For DSV states, the mean photon number is given by
〈â†

qâq〉 = |α|2 + sinh2(|ξ |). In this work, we focus on sce-
narios where, even in the absence of squeezing (ξ = 0), the
coherent contribution (α) alone is sufficient to induce strong-
field dynamics in atomic systems [2], corresponding to peak
intensities IL ≈ 1014 W/cm2. Within this framework, we in-
vestigate how the inclusion of squeezing affects both the ATI
electron dynamics and the final state of the joint light-matter
system.

Under the single-active electron and dipole approxima-
tion, the Hamiltonian describing the interaction between an
atomic system and a quantized electromagnetic field can be
expressed, within the length gauge [26], as

Ĥ = Ĥat + er̂Ê + Ĥfield, (2)

where the light-matter interaction dynamics is governed
by ih̄ ∂|�(t )〉/∂t = Ĥ |�(t )〉. In Eq. (2), Ĥat = p̂2/(2me) +
Vat(r̂) denotes the atomic Hamiltonian, Ê = ∑

q Êq =
−i

∑
q g(ωq)[âq − â†

q] is the electric-field operator, and
Ĥfield = ∑

q h̄ωqâ†
qâq represents the free-field Hamiltonian.

Throughout this work, we restrict ourselves to a discrete set
of optical modes corresponding to harmonic orders of the
fundamental frequency ωL, i.e., ωq = qωL. Besides simplify-
ing the analytical treatment, this choice ensures finite values
of the light-matter coupling g(ωq), which depends on the
quantization volume [65]. In standard strong-field physics
parameter regimes, g(ωq) is estimated to be on the order of
10−8 a.u. [25], leading to electric-field amplitudes for the driv-
ing mode on the order of 〈α|ÊL|α〉 ∝ 108 V/cm. While this
discrete-mode treatment is particularly suitable for ATI, which
primarily involves interactions between the driving field mode
and the atomic system, the use of a continuous light spectrum
is shown not to significantly alter the results [26].

To describe the light-matter interaction dynamics, it is
particularly convenient to work in the interaction picture
with respect to Ĥfield, which effectively transforms âq →
âqe−iωqt , rendering the electric-field operator explicitly time-
dependent. Additionally, to leverage insights from strong-field

063101-2



MICROSCOPIC ANALYSIS OF ABOVE-THRESHOLD … PHYSICAL REVIEW A 112, 063101 (2025)

semiclassical analyses [31], it is useful to adopt a displaced
frame with respect to the coherent-state amplitude of the
driving mode. This transformation effectively modifies the
Hamiltonian as

Ĥ (t ) = Ĥat + er̂[Ecl(t ) + Ê (t )], (3)

where Ecl(t ) = 〈α|ÊL(t )|α〉. In this displaced frame, the initial
state is given by |�̄(t0)〉 = |g〉 ⊗ |ξ, 0〉⊗

q �=1 |0q〉 and, at an
arbitrary time t , it is related to the state in the original frame
by |�(t )〉 = e−iĤfield(t−t0 )/h̄D̂L(α)|�̄(t )〉.

These unitary transformations are standard in quan-
tum optical analyses of strong-field-driven interactions
[25,26,52,53,55,66], particularly in scenarios where the driv-
ing field is a coherent state. Here, we take an additional
step further by performing a transformation analogous to the
displacement before, but involving the squeezing operation
ŜL(ξ ). Specifically, we define |�̄(t )〉 = ŜL(ξ )|�̃(t )〉, such that
the initial state simplifies to |�̃(t0)〉 = |g〉 ⊗ |0̄〉, where |0̄〉 is
the vacuum state in all modes. Under this transformation, the
electric-field operator transforms to (see Appendix A 1)

Ŝ†
L(ξ )Ê (t )ŜL(ξ ) = −i[ f (ξ, t )âL − f ∗(ξ, t )â†

L] +
∑
q>1

Êq(t )

≡ ÊL(ξ, t ) + Êuv(t ), (4)

where f (ξ, t ) = g(ωL )[cosh(r)e−iωLt + sinh(r)ei(ωLt−θ )], with
ξ = reiθ (r > 0). Consequently, the effective Hamiltonian
reads

Ĥeff(t ) = Ĥat + er̂[Ecl(t ) + ÊL(ξ, t ) + Êuv(t )]. (5)

One of the main differences compared with the case where
only classical coherent light drives the strong-field dynam-
ics appears already at this stage: the light-matter coupling
g(ωL ) becomes exponentially enhanced with the amount of
squeezing r. Thus, under the presence of substantial squeez-
ing, the contribution of the quantum fluctuations er̂ÊL(ξ, t )
can no longer be treated as a perturbation relative to the
classical driving field er̂Ecl(t ), as is typically the case
with coherent-state drivers. Consequently, standard approx-
imations commonly employed in quantum optical analyses
of strong-field interactions—such as neglecting the backac-
tion of the quantum optical state on the electron dynamics
[25,26,52,53,55,57,58]—become inadequate in the regimes of
interest here.

Interestingly, the stronger coupling can amplify nonclas-
sical behaviors of the postinteraction state [25]. This has
been recently observed in Ref. [67], where enhanced light-
matter coupling—achieved through the use of an optical
cavity—led to nonclassical features in the quantum optical
state after HHG processes. Moreover, the electron dynamics
themselves can be substantially altered by these enhanced
quantum fluctuations [36,68]. It is important to note, how-
ever, that this enhancement only affects, directly, the driving
field mode; all other harmonic orders remain perturbatively
coupled, as they are not influenced by squeezing, though indi-
rectly [35,36,38,49,50,62]. In this regard, Ref. [69] explored
a complementary scenario, investigating HHG when selected
harmonic modes were prepared in squeezed vacuum states.

B. Light-matter interaction dynamics

We now focus our attention on the dynamics governed by
the Hamiltonian in Eq. (5). These dynamics are encapsulated
by the time-evolution operator Û (t ), which satisfies

ih̄
∂Û (t )

∂t
= Ĥeff(t )Û (t ). (6)

When applied to an initial state |�̃(t0)〉, this propagator
yields the evolved state at any later time t , i.e., |�̃(t )〉 =
Û (t, t0)|�̃(t0)〉. A general solution to this differential equa-
tion can be expressed via the following integral form [70]:

Û (t, t0) = Û0(t, t0) − i

h̄

∫ t

t0

dt1Û (t, t1)V̂ (t1)Û0(t1, t0), (7)

where the Hamiltonian Ĥeff has been partitioned into two
parts, Ĥ0(t ) and V̂ (t ), such that ih̄∂Û0(t )/∂t = Ĥ0(t )Û0(t ).
The choice of how to partition the Hamiltonian—what to in-
clude in Ĥ0(t ) versus V̂ (t )—is not unique; it typically reflects
the physical process under study or is guided by the aim to
simplify the resulting equations. Moreover, in different recur-
sive iterations of Eq. (7), one may adopt different partitions to
better isolate specific physical mechanisms of interest [12,71].

Here, following Ref. [71], we consider a total of two
recursive iterations of Eq. (7), developed in more detail
in Appendix A 2. For the first iteration, we adopt the
partition Ĥ (1)

0 (t ) = Ĥat and V̂ (1)(t ) = er̂[Ecl(t ) + ÊL(ξ, t ) +
Êuv(t )]. For the second recursive iteration, we instead use
Ĥ (2)

0 (t ) = Ĥat + er̂[Ecl(t ) + ÊL(ξ, t )] and V̂ (2)(t ) = er̂Êuv(t ).
With this choice, we express Eq. (13) as

Û (t ) = Û (1)
0 (t, t0) (8)

− i

h̄

∫ t

t0

dt1Û
(2)
0 (t, t1)V̂ (1)(t1)Û (1)

0 (t1, t0) + R̂(2)(t ),

(9)

with ih̄∂Û (i)
0 (t )/∂t = Ĥ (i)

0 (t )Û (i)
0 (t ) and R̂(2)(t ) denoting the

higher-order contributions (see Appendix A 2 for the ex-
plicit expression). In this formulation, the zeroth-order term
[Eq. (8)] corresponds to an evolution solely under the atomic
Hamiltonian. The first-order term [Eq. (9)] describes an inter-
mediate transition at time t1 mediated by the dipole interaction
coupling with both the classical field contribution Ecl(t ) and
the quantum optical fields ÊL(ξ, t ) and Êuv(t ), followed by
evolution driven by H (2)

0 (t ) until the final time t . As we will
see, this term allows us to capture the dynamics underlying
ATI. Finally, the higher-order term R̂(2)(t ) accounts for addi-
tional interactions responsible for HHG.

1. The strong-field approximation

A connection between the physical processes described by
Eqs. (8) and (9) and the strong-field dynamics becomes more
transparent upon introducing the strong-field approximation
(SFA) in its standard formulation [2,11,31] (see Appendix A 3
for a detailed analysis). Within the SFA framework, the fol-
lowing assumptions are made:

(1) The strong laser field couples exclusively to the (non-
degenerate) ground state |g〉, and not to the bound states. As
a result, the dynamics are confined between the ground state
and the continuum states {|k〉}.
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(2) Once ionized, the electron is treated as a free particle
evolving solely under the influence of the external electric
field. The interaction with the nuclear potential can be incor-
porated as a perturbative correction to the electronic motion.

The first of these assumptions holds whenever there are
no intermediate resonances in the atomic system and when
tunneling ionization is the dominant ionization channel. The
latter condition is satisfied in regimes where the Keldysh
parameter γ = [2Ipmeω

2/(e2E2
0 )]1/2 � 1 [2,31], with E0 de-

noting the electric-field amplitude. Under these conditions, we
can introduce an SFA-version of the identity over the atomic
Hilbert space as

1 = |g〉〈g| +
∫

dk|k〉〈k|, (10)

which, when inserted after every V̂ (i)(ti ) term in Eq. (9), en-
ables us to identify the first-order term with ATI processes (see
Appendix A 3 for more information about the higher-order
contributions). Therefore, by applying the time-evolution op-
erator Û (t, t0) to the initial state and using Eq. (10), we obtain

|�̃(t )〉 � |�̃0(t )〉 + |�̃ATI(t )〉 + O(R̂(2)(t )|�̃(t0)〉), (11)

where |�̃0(t )〉, corresponding to Eq. (8), describes the contri-
bution where the electron remains in the ground state up to
time t ; and |�̃ATI(t )〉, corresponding to Eq. (9), accounts for
ATI processes.

In this work, we focus on describing ATI events under the
influence of strong squeezed light, which we later isolate by
performing suitable projective operations. Accordingly, we re-
strict our attention to the ATI component of the wavefunction,
|�̃ATI(t )〉, which can be expressed as (see Appendixes A 2
and A 3)

|�̃ATI(t )〉 = − ie
h̄

∫ t

t0

dt1

∫
dk ÛL(t, t1)〈k|r̂|g〉

× [Ecl(t1) + ÊL(ξ, t1) + Êuv(t1)]

× eiIp(t1−t0 )/h̄|k〉 ⊗ |0̄〉, (12)

where Ip is the ionization potential, defined via Ĥat|g〉 =
−Ip|g〉, and ÛL(t ) is a time-evolution operator satisfying

ih̄
∂ÛL(t )

∂t
=

[
p̂2

2m
+ Vat(r̂) + er̂

(
Ecl(t ) + ÊL(ξ, t )

)]
ÛL(t ).

(13)
Equation (12) captures the sequence of steps involved in

an ATI event. From the initial time t0 until t1, the electron re-
mains in the ground state, accumulating a phase proportional
to the ionization potential Ip. At time t1, it transitions into a
continuum state |k〉 via a dipolar interaction with the field.
From t1 to the final time t , the electron propagates according
to Eq. (13), which governs its evolution under the combined
influence of the classical driving field, its quantum fluctua-
tions, and the atomic potential. Within the SFA framework,
this expression accounts for both direct and high-order ATI
processes: in direct ATI (dATI), the electron gets ionized and
escapes without returning to the atomic core, while in high-
order ATI (HATI), the electron undergoes elastic recollisions

with the parent ion, reaching higher continuum energies that
are inaccessible through direct ATI alone [2,11].

2. The direct ATI component

For the remainder of our analysis, we focus on dATI events,
where the electron propagates far from the nucleus while pop-
ulating high-energetic continuum states. In this regime, and
accordingly to the second of the SFA assumptions introduced
earlier, the Coulomb potential can be treated perturbatively
[11,31], yielding

|�̃ATI(t )〉 ≈ |�̃d(t )〉 + |�̃h(t )〉, (14)

where the zeroth-order term accounts for dATI events,
and higher-order terms capture HATI contributions [2,11],
denoted with “d” and “h” subscripts, respectively. This ap-
proximation is particularly appropriate for the processes
considered here, in which typical photoelectron energies lie
below 2Up, with Up = E2

0 /(4ω2
L ) the ponderomotive energy.

More specifically, it performs well when working with strong-
laser fields in the near-infrared regime (λL ≈ 800 nm), though
with some caveats [72]. However, it becomes less accurate in
the mid-infrared regime (λL ≈ 2000 nm), where the electron
is more slowly driven away from the ion, resulting in pro-
nounced low-energy structures in the photoelectron spectrum
[73–75], which are not captured by the standard SFA.

Thus, the evolution governed by the zeroth-order term in
perturbation theory around the atomic potential reads, for a
generic state |ψ (t )〉,

ih̄
∂|ψ (t )〉

∂t
=

[
p̂2

2m
+ er̂

(
Ecl(t ) + ÊL(ξ, t )

)]|ψ (t )〉, (15)

where we define |ψ (t )〉 = ÛL(t )|ψ (t0)〉, with |ψ (t0)〉 an ar-
bitrary initial state. A general solution to Eq. (15) can be
expressed as (see Appendix A 3)

|ψ (t )〉 = Ûvg(t )ÛV (t, t0)Û †
vg(t0)|ψ (t0)〉

≡ Ûvg(t )|ψ̄ (t )〉, (16)

where Ûvg(t ) ≡ eier̂[Acl (t )+ÂL (ξ,t )]/h̄ denotes a gauge
transformation—which in the limit g(ωL ) → 0 corresponds
to the standard length to velocity gauge transformation—and
with |ψ̄ (t )〉 = UV (t, t0)|ψ̄ (t0)〉 satisfying

ih̄
∂|ψ̄ (t )〉

∂t
= 1

2m
[ p̂ + eAcl(t ) + eÂL(ξ, t )]2|ψ̄ (t )〉. (17)

Here, Acl(t ) and ÂL(ξ, t ) denote the classical and quantum
vector potentials, respectively, related to the correspond-
ing electric fields via Ecl(t ) = −∂Acl(t )/∂t and ÊL(ξ, t ) =
−∂ÂL(ξ, t )/∂t .

It is worth highlighting that the total time-evolution op-
erator in Eq. (16) cannot, in general, be decomposed as
Ûe(t, t0) ⊗ Ûfield(t, t0). This reflects the fact that, during the
electron’s excursion in the continuum, entanglement between
light and matter naturally emerges. The degree of this entan-
glement critically depends on the amount of squeezing; when
cosh(r)g(ωL ) → 0, Eq. (16) simplifies to Ûe(t, t0) ⊗ 1, and
the evolution becomes separable: in this limit, our expressions
coincide with those from semiclassical analyses [2,11]. Here,
we focus on regimes where | cosh(r)g(ωL )| � |αg(ωL )|, with
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the right-hand side representing the electric-field amplitude.
That is, we consider scenarios in which the contribution from
squeezing is, at most, comparable to that of the coherent
component of the driving field, but never dominant. This
parameter regime is consistent with current experimental im-
plementations [47–50], where the intensity associated with
the squeezed component is typically two orders of magnitude
smaller than that of the coherent component required to drive
strong-field processes in atomic systems. Finally, we note
that the explicit inclusion of light–matter backaction, which
prevents factorization of the evolution as ÛL(t ) = Ûe(t, t0) ⊗
Ûfield(t, t0), sets our approach apart from other recent theories
[41–44], where such backaction is neglected.

Recalling that, in the context of dATI events, the propaga-
tor can be approximated as ÛL(t, t1) ≈ Ûvg(t )ÛV (t, t1)Û †

vg(t1),
we insert this expression into Eq. (12) to obtain an explicit
form of the dATI component of the state

|�̃d(t )〉 = − ie
h̄

∫ t

t0

dt1

∫
dk Ûvg(t )ÛV (t, t1)Û †

vg(t1)

× 〈k|r̂|g〉[Ecl(t1) + ÊL(ξ, t1) + Êuv(t1)]

× eiIp(t1−t0 )/h̄|k〉 ⊗ |0̄〉. (18)

In the following, we analyze the role of each term in the
decomposition of ÛL(t, t1), and how they influence the light–
matter interaction dynamics.

3. Light-matter entanglement after ionization

The action of Ûvg(t ) is best understood by moving to the
position representation for the electronic degrees of freedom.
In this framework, we find that

Ûvg(t )|x〉 = e−iexAcl (t )/h̄D̂L
[ e

h̄ xF (ξ, t )
]|x〉, (19)

that is, Ûvg(t ) induces a displacement on the driving field
mode that depends on the electron’s position and the amount
of squeezing through

F (ξ, t ) = ig(ωL )

[
cosh (r)

ωL
eiωLt − sinh (r)

ωL
e−i(ωLt−θ )

]
. (20)

Therefore, by introducing the identity in the position repre-
sentation for the electronic degrees of freedom, we can rewrite
Eq. (18) as

|�̃d(t )〉 = − ie
h̄

∫ t

t0

dt1Ûvg(t )ÛV (t, t1)e
iIp
h̄ (t1−t0 )

× [Ecl(t1) + ÊL(ξ, t1) + Êuv(t1)]|�̃ion(t1)〉, (21)

where |�ion(t1)〉 represents the joint light-matter system state
immediately after ionization, given by

|�̃ion(t )〉 =
∫

dxD̂L
[ e

h̄ xF (ξ, t )
]
h(x)|x〉 ⊗ |0̄〉, (22)

where h(x) ≡ ∫
dk〈x|k〉〈k|r̂|g〉. In this expression, h(x) pro-

vides the probability amplitude for the electron to tunnel
through the potential barrier and emerge at position x. The
displacement operator D̂L[exF (ξ, t1)/h̄] encodes the effect
of this tunneling event on the field degrees of freedom, re-
sulting in a position-dependent displacement of the driving
field mode. Importantly, the magnitude of this displacement

FIG. 2. Panels (a)–(c) show the purity γ = tr[ρ̂2
field(t1)], with

ρ̂field(t1) = trelec[|�̃ion(t1)〉〈�̃ion(t1)|], computed at different times t1

and for varying squeezing strengths, with ε = erg(ωL ). Results
for amplitude squeezing (θ = π ) and phase squeezing (θ = 0) are
shown in blue and red, respectively. Panels (d) and (e) display,
for reference, the expectation value (dashed curve) and fluctuations
(solid curves) of the vector potential operator, evaluated with respect
to amplitude-squeezed and phase-squeezed states, respectively.

increases with the amount of squeezing, as the enhanced field
fluctuations provide a broader range of quantum paths for the
electron to tunnel through.

To gain further insight into the extent of light-matter entan-
glement in Eq. (22), we evaluate the state’s purity after tracing
out either the electronic or photonic degrees of freedom:
since the full light-matter state remains pure due to unitary
evolution, obtaining a mixed reduced state upon tracing out
one subsystem indicates a loss of coherence arising from pre-
existing quantum entanglement between the two. The results
are presented in Fig. 2, where the purity is computed for both
amplitude and phase squeezing, across varying squeezing
strengths defined by ε ≡ erg(ωL ) (cosh(r) ≈ sinh(r) ≈ er for
r � 1). In both cases, the purity exhibits oscillations between
two well-defined bounds, which converge as ε decreases. This
indicates that stronger squeezing leads to higher degrees of en-
tanglement, with the precise value depending on the ionization
time. In the absence of squeezing, the amount of entanglement
is minimal at all times.

Interestingly, we find that amplitude and phase squeezing
yield purity oscillations that are out of phase by half-cycle,
and these oscillations occur with twice the frequency of
the driving vector potential [see Figs. 2(d) and 2(e)]. This
behavior arises because the purity reaches its maximum at
times when the vector potential fluctuations—responsible for
determining the electron’s kinetic energy upon tunneling—
are themselves maximal. Larger field fluctuations result in
increased spatial delocalization of the electron immediately
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after ionization, broadening the distribution of possible optical
displacements in Eq. (22), thereby enhancing entanglement.

4. Propagation in the continuum

While Ûvg(t1) encodes light-matter correlations at the ion-
ization time, ÛV (t, t1) accounts for correlations that develop
during the electron’s propagation from the ionization time t1
to the final detection time t . To analyze its contribution in
Eq. (21), it is particularly convenient to insert the identity
in the momentum representation, allowing the state to be
rewritten as

|�̃d(t )〉 = − ie
h̄

∫ t

t0

dt1

∫
dv Ûvg(t )ÛV (t, t1)|v〉ei

Ip
h̄ (t1−t0 )

× [Ecl(t1) + ÊL(ξ, t1) + Êuv(t1)]〈v|�̃ion(t1)〉.
(23)

For the regime of squeezing parameters used in this work, we
find in Appendix A 3 that

ÛV (t, t1)|v〉 ≈ exp

[
− i

2meh̄

∫ t

t1

dτ [p + eAcl(t1)]2

]

× D̂[δ(v, t, t1)]|v〉, (24)

where this expression reveals that the electron not only accu-
mulates a propagation-dependent phase, but also induces an
additional displacement on the driving field quantum optical
degrees of freedom, given by

δ(v, t, t0) = e
2meh̄

∫ t

t0

dτ [v + Acl(τ )]F (ξ, τ ). (25)

This displacement has its analog in Refs. [25,55], where
the backaction of the electron dynamics on the quantum op-
tical degrees of freedom was analyzed for ATI and HHG
processes driven by coherent-state drivers, respectively. In
those cases, however, the resulting displacement was found
to be proportional to

δ[25,55] ∝
∫ t

t1

dt2

∫ t2

t1

dτ [v1 + eAcl(τ )]eiωLτ , (26)

which does not reduce to Eq. (25) when r = 0. The dis-
crepancy can be traced back to the approximations made
in Refs. [25,55]. A key assumption in that model was that
the electron trajectories remained unperturbed by the quan-
tum fluctuations—i.e., the field backaction on the electron
was neglected—while retaining the backaction of the elec-
tron on the field. Within this regime, the electron behaves as
a classical charge current oscillating under the influence of
the driving field, inducing a dipole moment proportional to∫ t

t1
dτ [v1 + eAcl(τ )], which in turn modulates the amplitude of

the quantum optical modes in a mean-field-like manner. That
is, the field responds to the electron motion, but not vice versa,

FIG. 3. Comparison of the displacements given by Eq. (25)
[panel (a) for phase squeezing and panel (b) for amplitude squeezing]
and Eq. (26) [panel (c)] as a function of the ionization time t1.
In all cases, we set E0 = 0.053 a.u. and ωL = 0.057 a.u. and fix
t2 = 5π/ωL . The displacement in each plot is normalized by the
corresponding value ε.

with the effects being obtained through a Fourier transform of
the effective charge current [33].

In contrast, the present work goes beyond this approxi-
mation by including strongly squeezed states of light, which
exponentially enhance the light-matter coupling with the
squeezing parameter. As a result, the interaction during the
electron’s excursion in the continuum significantly affects
both the field amplitude and the electron dynamics. The in-
creased coupling strength leads to a bidirectional feedback:
the field’s quantum fluctuations perturb the electron trajecto-
ries, while the electron’s motion nonperturbatively displaces
the field. This mutual influence invalidates a mean-field de-
scription and highlights the inherently entangled nature of the
light-matter interaction in the presence of squeezed drivers.

In Fig. 3, we compare the displacement given by Eq. (25),
for phase and amplitude squeezing—shown in Figs. 3(a)
and 3(b), respectively—with that of Eq. (26), shown in Fig.
3(c). All displacements are plotted in units of ε as a func-
tion of the ionization time t1, with the final time fixed at
t2 = 5π/ωL. For both phase and amplitude squeezing, we
consider large values of the squeezing parameter r, such that
cosh(r) ≈ sinh(r) ≈ er . As shown, the displacement behavior
varies significantly across the three cases. First, we ob-
serve that the displacement increases with earlier ionization
times in the phase-squeezed and mean-field cases, but not
for amplitude squeezing. This similarity between the phase-
squeezed and mean-field cases can be attributed to the fact that
phase squeezing does not introduce an additional phase into
the electric-field operator (θ = 0), in contrast with amplitude
squeezing, where θ = π . Additionally, for both the amplitude-
squeezed and mean-field cases, the displacement tends to
increase with the final electron momentum, whereas in the
phase-squeezed case it remains relatively insensitive. These
differences highlight the limitations of the mean-field ap-
proximation underlying Eq. (26), which neglects the mutual
backaction between the electron and the field.

With all this in place and by having in mind that the
analysis of Û †

vg(t ) is alike that of Ûvg(t ) in Sec. II B 3, the total
quantum state after dATI events can be written as

|�̃d(t )〉 = − ie√
2π h̄3

∫ t

t0

dt1

∫
dx2

∫
dv

∫
dx1D̂L[α(v, t, t1, x2, x1)]

[
Ecl(t1) + ÊL(ξ, t1) + Êxuv(t )

]
× h(x1)e−i{Ssc (v,t,t1 )−x2[v+eAcl (t )]+x1[v+eAcl (t1 )]}/h̄|x2〉 ⊗ |0〉, (27)
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where Ssc(v, t, t1) = 1
2me

∫ t
t1

dτ [p + eAcl(τ )]2 − Ip(t1 − t0)
denotes the semiclassical action and α(v, t, t1, x2, x1)
represents the total quantum optical displacement, given
by

α(v, t, t1, x2, x1) = δ(v, t, t1) − e
h̄ x2F (ξ, t ) + e

h̄ x1F (ξ, t1).

(28)

We note that, due to the contribution of Û †
vg(t ), we get an

additional displacement of −ex2F (ξ, t )/h̄ on the driving field
mode. In what follows, we quantify the nonclassical features
of this state and analyze how the mutual backaction between
the field and electronic degrees of freedom perturbs the elec-
tronic trajectories.

III. RESULTS

For the analysis presented in this section, we set Ecl(t ) =
E0 cos(ωLt ), with ωL = 0.057 a.u. and E0 = 0.053 a.u., cor-
responding to a wavelength λL = 800 nm and a peak intensity
of IL = 1014 W/cm2. As the atomic system, we consider a
hydrogen atom with ionization potential Ip = 0.5 a.u., mod-
eled using a Gaussian potential [31,76]. Furthermore, in what
follows, we set the measurement time t = 2πncyc/ω, where
ncyc ∈ W denotes the number of field cycles. This choice
ensures that Acl(t ) = 0, so that the semiclassical kinetic and
canonical momenta coincide instantaneously.

A. Modification of the ionization times

In analyses of HHG driven by squeezed light, it has been
shown that the use of states with non-Poissonian photon
statistics can induce an effective force that modifies the semi-
classical electron trajectories [36], even enabling HHG in
scenarios that are otherwise forbidden when using coherent-
state drivers [38]. In those studies, the effective force was
solely attributed to the photon statistics of the driver, as the
mutual backaction between the light and matter resulting from
their interaction was neglected [26,52,53]. In contrast, here
we investigate how the ionization events leading to ATI are
perturbed by this mutual interaction.

For that purpose, we follow an approach similar to that
presented in Ref. [55] and express the postselected quantum
optical state of the driver, conditioned on the electron momen-
tum vf, i.e., |�̃d(vf, t )〉 ≡ 〈vf|�̃d(t )〉, in the Fock basis as

|�̃d(vf, t )〉 ∝
∞∑

n=0

∫
dθ x1e−iSQO(θ)/h̄ α(θ)n

√
n!

× [Ecl(t1) − Eα(θ)(ξ, t1) + ÊL(ξ, t1)]|n〉. (29)

Here, for clarity, we denote θ ≡ (t1, x2, v, x1), and
Eα(θ)(ξ, t1) = 〈α(θ)|ÊL(ξ, t )|α(θ)〉, the latter obtained by
moving the displacement operator in front of the vacuum
state. The term SQO(θ) denotes a modified semiclassical
action incorporating quantum optical corrections, given by
(see Appendix A 4)

SQO(θ) = Scl(v, t, t1) − x2(v − vf ) − ih̄
|α(θ)|2

2

− i

2
x1{2[vf + eAcl(t1)] + x1α}. (30)

In the limit ε → 0, we have α(θ) → 0, and the integration
variables can be regrouped to yield Dirac delta functions that
recover the semiclassical dATI probability amplitude [2,11].

Writing the final state as in Eq. (29) proves beneficial
because all integrals concern only the probability ampli-
tudes in the state. Since these involve highly oscillatory
integrals, the saddle-point approximation becomes a partic-
ularly suitable tool for their evaluation [31,55]. This method
allows one to express the integrals as a sum over carefully
selected points—namely, the saddle points of SQO(θ), sat-
isfying ∇θSQO(θ) = 0. We find, however, that the explicit
form of the saddle-point equations generally differs depend-
ing on the type of squeezing considered (see Appendix A 4).
Nonetheless, both phase and amplitude squeezing lead to
the same structure for the saddle-point equation governing
ionization:

[v + eAcl(t1)]2

2
+ Ip − ex1Ecl(t1) − ih̄

2

∂|α(θ)|2
∂t1

= 0, (31)

where we see that, in addition to the semiclassical saddle-
point equation contributions, we identify two extra terms
that effectively modify the ionization potential experienced
by the electron. The first, ex1Ecl(t1), arises as an indirect
consequence of light-matter entanglement at the moment of
ionization (Fig. 2). The second, involving α(θ), reflects a
modification of the field amplitude induced by the electron’s
own dynamics.

Of the two additional contributions, the most intriguing one
is that arising from the quantum optical displacement α(θ). As
seen in Eq. (28), this quantity explicitly depends on the final
measurement time t , meaning that the solution to the saddle-
point equations is inherently influenced by the time at which
the photoelectron is detected. This explicit time dependence
emerges as a direct consequence of entanglement between the
electron and the quantized field. In semiclassical treatments,
the field is described by a mean-field approximation, where
the quantum optical state is effectively assumed to remain
unchanged by its interaction with the electron. As a result,
the saddle-point equations derived in that context depend only
on instantaneous field conditions and are independent of the
measurement time.

By contrast, when adopting a fully quantum-optical
description—where the field and electron interact
bidirectionally—the field retains memory of its prior
interactions with the electron, and vice versa. This is encoded
in the displacement α(θ): the quantum state of the field is
perturbed by the electronic motion, which in turn influences
the electron’s trajectories. The resulting entanglement
between both subsystems introduces a history-dependent
feedback mechanism: the field’s state at time t reflects
the electron’s dynamics over the time interval [t1, t]. As a
consequence, the obtained saddle-point equations become
explicitly dependent on the final measurement time t .

To illustrate how the type of squeezing modifies the
ionization times, in Fig. 4 we display the real and imag-
inary parts of the ionization times within the interval t1 ∈
[−π/(2ωL ), π/(2ωL )]—shown in the left and right columns,
respectively—for both phase and amplitude squeezing, dis-
played in the first and second rows, respectively. As observed,

063101-7



RIVERA-DEAN, STAMMER, FARIA, AND LEWENSTEIN PHYSICAL REVIEW A 112, 063101 (2025)

FIG. 4. Real and imaginary parts of the ionization time as a func-
tion of ε = erg(ωL ). Panels (a) and (b) correspond to phase squeezing
(θ = 0), while panels (c) and (d) correspond to amplitude squeezing
(θ = π ). In all cases, we set E0 = 0.053 a.u., ωL = 0.057 a.u., and
the final measurement time to t = 2π/ωL .

for small amounts of squeezing, presented in terms of ε =
erg(ωL ), the ionization times coincide for both phase and
amplitude squeezing, and are symmetric around vf = 0 a.u.,
with vf < 0 (vf > 0) ionizing to the left (right) side of the field
maximum (at t = 0).

As the squeezing increases, this symmetry becomes in-
creasingly broken, depending on the squeezing type. For
phase squeezing [Figs. 4(a) and 4(b)], the real parts of all
ionization times shift toward earlier times, compensating for
the stronger acceleration caused by the enhanced field fluctua-
tions that follow. These larger fluctuations minimally facilitate
tunneling, resulting in overall slightly reduced imaginary
components of the ionization time.

In contrast, for amplitude squeezing [Figs. 4(c) and 4(d)],
the modifications are more symmetric. The real part of the ion-
ization time remains nearly symmetric around vf = 0 a.u.—as
expected since in those cases Re[tion] = 0 a.u., where the field
fluctuations are minimal. For vf < 0 (vf > 0), the ionization
times shift to the left (right) of the field maximum, as these
occur in regions where the field fluctuations are stronger than
at the maximum. The imaginary part, however, reveals an
asymmetry: ionization events with vf > 0 experience a re-
duction in Im[tion], indicating facilitated tunneling, whereas
for vf < 0, Im[tion] increases, reflecting a higher tunneling
barrier. This behavior arises because, for amplitude squeezing,
fluctuations are maximally enhanced when Ecl(t ) = 0, i.e., at
t = (2n + 1)π/(2ωL ) with n ∈ Z. In the absence of squeez-
ing, electrons with vf �= 0 ionize primarily away from the field
maxima, i.e., in temporal regions where field fluctuations are
stronger. These enhanced field fluctuations can significantly
modify the atomic potential barrier and, in turn, affect ioniza-
tion, although this requires relatively strong squeezing values
(around ε ≈ 10−2.5).

B. Quantifying nonclassical properties

After applying the saddle-point approximation to compute
the probability amplitudes in Eq. (29), we can rewrite the
quantum state up to a normalization factor as

|�̃d(vf, t )〉 =
∑
θs

G(θs)D̂L[α(θs)][Ecl(t1,s) + ÊL(ξ, t1,s)]|0〉,

(32)
where G(θs) is a complex-valued prefactor that arises from
evaluating the integrand at the saddle points, combined
with additional weights that account for the contribution of
each saddle point [31,76,77] (see Appendix A 4 for more
details). From this expression, we observe that the result-
ing state is generally nonclassical because it comprises a
superposition of coherent states with different amplitudes
α(θs), as well as displaced Fock states, arising from the term
D̂[α(θs)]ÊL(ξ, t1,s)|0〉 ∝ D̂[α(θs)]|1〉. Importantly, the degree
of nonclassicality increases with both ε and the number of
saddle-point solutions—the former by making each of the
α(θs) more distinct, and the latter by adding more compo-
nents to the total superposition. Because the number of saddle
points is directly connected to the number of critical points
in the field, we anticipate a corresponding dependence of
the state’s nonclassical character on the number of optical
cycles ncyc.

In this subsection, our main objective is to characterize
the potential nonclassical properties of the quantum optical
state, and their dependence on both ncyc and ε. To properly
analyze these features, we consider the state in its original
frame of reference, i.e., |�d(vf, t )〉 = D̂L(αL )Ŝ(ξ )|�̃d(vf, t )〉.
However, this transformation complicates the numerical eval-
uation: while displacement operators do not hinder the key
properties of important nonclassical witnesses such as the
Wigner function or the covariance matrix, squeezing opera-
tions instead do modify them. Here, the amount of squeezing
considered is extremely large, requiring very high cutoffs in
the Fock basis for accurate numerical implementation (see
Appendix B 2 for more details).

To circumvent this issue, we use the negative volume N , a
measure of nonclassicality defined as [63,64]

N = −1 +
∫

dx
∫

dp |W (x, p)|, (33)

which quantifies the amount of negativity in the Wigner func-
tion W (x, p)—a hallmark of non-Gaussianity, and therefore of
nonclassical behavior [63]. Importantly for our purposes, this
measure is invariant under Gaussian transformations [64] such
as displacement and squeezing operations (see Appendix B 1).
This invariance implies that computing the negative volume of
|�d(vf, t )〉—in the original frame of reference—is equivalent
to computing it for |�̃d(vf, t )〉—in the displaced and squeezed
frame of reference—with the latter requiring significantly
fewer numerical resources.

Figure 5 presents the results of our analysis in the case
of phase squeezing. Figure 5(a) shows the negativity N as a
function of the final kinetic momentum vf of the measured
photoelectron for different numbers of optical cycles, with
ε = 10−2.9 fixed. Figure 5(c) displays the average of N (solid
curves) and its fluctuations (dashed region), computed over
the interval vf ∈ [0,

√
Up], as a function of ncyc for several
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FIG. 5. Behavior of the negative volume as a function of ε and ncyc for phase squeezing (θ = 0). Panel (a) shows the negative volume as a
function of the final photoelectron kinetic momentum for different values of ncyc, while ε = 10−2.9. Panel (b) shows the probability of finding
the electron with kinetic momentum vf for the same conditions as those of panel (a). Panel (c) shows the average value of N (solid curve) and
its fluctuations (dashed region) as a function of ncyc and for different values of ε.

values of ε. As expected, we observe that both larger ncyc and
ε result in more overall pronounced nonclassical features, as
captured by N .

Interestingly, Fig. 5(a) reveals that the negativity exhibits
a strong dependence on the final kinetic momentum vf,
with more prominent features appearing at specific values
of vf. These features appear to be approximately symmet-
ric around vf = 0. In particular, we observe that the energy
separation between the two most prominent peaks—located
at vf ≈ 0.2 a.u. and vf ≈ 0.4 a.u.—is approximately �Ev =
0.056 a.u., which is comparable to the spacing between
ATI peaks observed in standard ATI spectra [8,78]. This
suggests that some of the nonclassical features may be cor-
related with the ATI structure. To verify this point, Fig. 5(b)
shows the probability of finding the electron with kinetic
momentum vf, i.e., |〈vf|�̃d(vf, t )〉|2, evaluated under the same
conditions as in Fig. 5(a). As observed, maxima of the
negative volume coincide with minima of this probability,
which become more pronounced as the number of cycles
increases.

While for coherent light an increase in the number of
cycles typically sharpens the peaks of standard ATI spectra, in
our case, additional interferences emerge. Such interferences
stem from the squeezing-enhanced backaction on the driving
field modifies the ionization times in a nontrivial manner,
breaking their symmetry across different optical cycles (see
Appendix A 4). Furthermore, unlike standard ATI spectra, for
large values of ncyc (ncyc > 1), the negativity profile is not
fully symmetric about vf = 0; in fact, we observe a small
discontinuity at vf ≈ 0, with an extended version of Fig. 5(a)
displayed in Appendix B 1. This asymmetry arises because the
number of saddle points differs between positive and negative
vf in our calculations. In our setup, we fix the measurement
time to t = 2πncyc/ωL, which implies that trajectories con-
tributing to vf < 0 include an additional ionization event just
before the field maximum at t , whereas for vf > 0, the extra
ionization event would occur after the maximum (see Fig. 4
for reference).

C. Light-matter entanglement properties

In Ref. [25], it was shown that the electron’s backaction on
the quantum optical state can lead to the emergence of light-
matter entanglement when considering coherent-state drivers.
However, such entanglement features were found to be neg-
ligible in the near-infrared regime (λL ≈ 800 nm), and only
mildly present at midinfrared wavelengths (λL ≈ 2000 nm).
In this section, motivated by the emergence of prominent
non-Gaussian features in the final quantum optical state—and
their dependence on the final electronic momentum—we in-
vestigate whether the introduction of squeezing features in the
driver can enhance these correlations.

To address this question—and in contrast with Ref. [25],
which focused on electrons propagating with a specific ki-
netic energy and in opposite directions—we characterize the
properties of the driving field after performing the projec-
tive measurement �̂lim = ∫ vlim

−vlim
dv|v〉〈v| on the electronic

degrees of freedom. This operator describes a measure-
ment that filters electrons whose kinetic energy lies within
the range [0, v2

lim/2] and, together with its complement
ˆ̄� = 1 − �̂lim, forms a complete measurement basis [79].
Accordingly, when vlim <

√
4Up, applying �̂lim to Eq. (11)

yields, up to normalization,

ρ̂ = tr[�̂lim|�̃(t )〉〈�̃(t )|] ≈
∫ vlim

−vlim

dv|�̃d(v, t )〉〈�̃d(v, t )|,

(34)

where the ground state and HATI components in Eq. (11)
vanish, as electrons with the considered energy range are pre-
dominantly produced through dATI processes. The resulting
state is generally mixed, and since the original state before
the measurement was pure, the degree of mixedness reflects
the amount of entanglement that was present in the original
pure light-matter state. To quantify this, we use the linear
entropy Slin(ρ̂) = 1 − tr(ρ̂2) [80,81], a particularly suitable
entanglement measure for systems with infinite-dimensional
Hilbert spaces.
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FIG. 6. Linear entropy as a function of the amount of squeezing,
quantified through ε, and the number of field cycles, ncyc.

Figure 6 shows the linear entropy of the postselected state
in Eq. (34) for the case of a phase-squeezed driver, plotted
as a function of both the number of cycles in the driving
field—which determines the number of ionization events be-
tween the initial and measurement times—and the squeezing
amplitude ε. As expected from Ref. [25], in the limit of van-
ishing squeezing, the linear entropy tends to zero, indicating
negligible light-matter entanglement. As ε increases, entan-
glement features become more pronounced, with the effect
amplified by a greater number of ionization events, that is,
larger ncyc. This results in significant entanglement features
for sufficiently large values of both parameters, reaching a
maximum of maxε,ncyc [Slin(ρ̂)] ≈ 0.79 for the range of param-
eters considered here. Interestingly, for a fixed value of ε, we
observe the emergence of a saturation point beyond which
increasing the number of cycles no longer leads to further en-
tanglement growth. This saturation occurs around ncyc = 5 for
log10(ε) ∈ [−4.25 − 3.4]. Notably, for squeezing amplitudes
compatible with current experimental capabilities—namely,
ε ≈ 10−3.5 a.u. [48,49]—we find a substantial degree of
entanglement with Slin(ρ̂) ≈ 0.5, provided the driving field
spans at least ten optical cycles.

IV. CONCLUSIONS

In this work, we have studied the process of direct ATI
driven by intense squeezed light and explored its impact on
the nonclassical properties of the joint electron-light state.
We have shown that the presence of squeezing significantly
enhances the light-matter coupling, rendering the mutual
backaction between light and matter an essential effect to
consider. As a consequence of this enhanced interaction, the
nonclassical properties of the resulting state are markedly
modified compared with the scenario where a classical coher-
ent state driver is used [25].

Specifically, we found that the mutual backaction modifies
the ionization events of the electron (Fig. 4), as well as the
entanglement properties of the joint state, both immediately
after ionization (Fig. 2), and at the final measurement time
(Fig. 6). These effects amplify as the amount of squeezing
in the driving field increases. For the latter, we also observed
that the number of ionization events occurring between the
initial and final times—ultimately set by the number of optical
cycles—strongly influences the degree of entanglement. Ad-
ditionally, we showed that projecting the electronic state onto

specific final momenta can result in non-Gaussian quantum
optical states of the driving field (Fig. 5). Remarkably, all
these effects are predicted to be observable under squeezing
levels achievable with current state-of-the-art experimental
capabilities [47–50]. Finally, we note that our derivations were
carried out in the length gauge within the SFA. While the
SFA is not gauge invariant by construction, the length gauge
generally provides the best agreement with time-dependent
Schrödinger equation (TDSE) solutions [82,83]. How differ-
ent gauges might affect the nonclassical properties of the joint
light–matter system remains an open question, although such
effects are expected to be minor (see Appendix B 1).

Although this work has focused primarily on describing
direct ATI processes, our formalism readily allows for ex-
tensions to high-order ATI events by explicitly incorporating
the first-order perturbative contributions to Eq. (14) [11,12],
or to below-threshold nonsequential double ionization, which
can be described as time-ordered ATI-like processes [15,16].
More intriguingly, given the S-matrix-like structure adopted in
our approach [12], it would be particularly valuable to explore
how path-integral techniques [84] might be integrated with
this quantum optical framework. Such an integration could en-
able the development of Coulomb-distorted SFA approaches
[14,16,72,85–87] within a fully quantized field description,
potentially yielding exact analytical expressions for expecta-
tion values of the propagator in Eq. (13). Finally, it would be
of practical interest to explore how the framework adapts to
pulsed fields, which are experimentally more accessible.
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APPENDIX A: ANALYSIS OF THE LIGHT-MATTER
INTERACTION DYNAMICS

1. Light-matter interaction Hamiltonian

In this work, we aim to solve the light-atom interac-
tion dynamics—within the single-active electron and dipole
approximation—governed by the following time-dependent
Schrödinger equation (TDSE):

ih̄
∂|�(t )〉

∂t
= [Ĥat + er̂Ê + Ĥfield]|�(t )〉, (A1)

subject to the initial condition |�(t0)〉 = |g〉 ⊗
|ξ, α〉⊗

q �=1 |0q〉, where |g〉 denotes the atomic ground state,
and |ξ, α〉 ≡ D̂q(α)Ŝq(ξ )|0〉 is a displaced squeezed vacuum
(DSV) state in the qth harmonic order (in the following we
denote q = 1 ≡ L). In Eq. (A1), Ĥat represents the atomic
Hamiltonian, er̂ the dipole operator, Ê (t ) the electric-field
operator, and Ĥfield the free-field Hamiltonian.

When transitioning to the interaction picture with respect
to the free-field Hamiltonian, the electric field operator be-
comes time-dependent and takes the form

Ê (t ) =
∑
q=1

Êq(t ) = −i
∑
q=1

g(ωq)[âqe−iωqt − â†
qeiωqt ], (A2)

where g(ωq) ≡ √
h̄ωq/(2ε0V ) is a mode-dependent prefactor

that arises from the expansion of the electric-field operator
in terms of the creation and annihilation operators â†

q and âq,
which respectively create and destroy energy quanta in the qth
harmonic mode. In our context, g(ωq) represents the coupling
between the qth harmonic mode with matter. This interaction
picture is introduced by defining the time-dependent state as
|�(t )〉 = e−iĤfieldt/h̄|�̌(t )〉, where |�̌(t )〉 evolves according to

ih̄
∂|�̌(t )〉

∂t
= [Ĥat + er̂Ê (t )]|�̌(t )〉. (A3)

Next, we define |�̌(t )〉 = D̂L(α)|�̄(t )〉, which corresponds
to moving into a frame displaced by the initial coherent-state

amplitude of the driving field mode. In this displaced frame,
the initial state takes the form |�̄(t0)〉 = |g〉 ⊗ ŜL(ξ )|0̄〉,
where |0̄〉 ≡ ⊗

q |0q〉 denotes the vacuum state across all
modes. Making use of the identity D̂†(α)âD̂(α) = â + α, the
TDSE above transforms to

ih̄
∂|�̄(t )〉

∂t
= [Ĥat + er̂Ecl(t ) + er̂Ê (t )]|�̄(t )〉, (A4)

with Ecl(t ) = 〈α|Ê1(t )|α〉 = −ig(ωL )[αe−iωLt − α∗eiωLt ].
Within this framework, analogies with semiclassical
strong-field physics become more transparent, allowing
us to leverage established analytical techniques [2,31].

Finally, we perform the transformation |�̄(t )〉 =
ŜL(ξ )|�̃(t )〉, which brings the initial quantum optical state to
the vacuum across all modes, i.e., |�̃(t0)〉 = |g〉 ⊗ |0̄〉. Using
the identity Ŝ†(α)âŜ(α) = â cosh(r) − â†eiθ sinh(r), where
ξ = reiθ (r > 0), the component of the electric-field operator
acting on the driving field mode transforms as

ÊL(ξ, t ) ≡ Ŝ†
L(ξ )ÊL(t )ŜL(ξ )

= −ig(ωL )
{[

cosh (r)e−iωLt + ei(ωLt−θ ) sinh (r)
]

× âL − [
cosh (r)eiωLt + e−i(ωLt−θ ) sinh (r)

]
â†

L

}
= −i[ f (ξ, t )âL − f ∗(ξ, t )â†

L], (A5)

where we define f (ξ, t ) ≡ g(ωL )[cosh(r)e−iωLt +
ei(ωLt−θ ) sinh(r)]. This expression shows explicitly how
squeezing modifies and enhances the effective light-matter
coupling. Under this transformation, the TDSE becomes

ih̄
∂|�̃(t )〉

∂t

= [Ĥat + er̂Ecl(t ) + er̂ÊL(ξ, t ) + er̂Êuv(t )]|�̃(t )〉,
(A6)

where we denote Êuv(t ) = ∑
q>1 Êq(t ). Equation (A6) defines

the central dynamical equation used in this work.

2. Solving the time-dependent Schrödinger equation

To solve Eq. (A6), we adopt a strategy inspired by
the approach in Ref. [71], which aims to construct the
time-evolution operator Û (t, t0) that propagates the initial
state according to |�̃(t0)〉 → |�̃(t )〉 = Û (t, t0)|�̃(t0)〉. To
outline the method in general terms, let us consider a Hamil-
tonian of the form Ĥ (t ) = Ĥ0(t ) + V̂ (t ), where Ĥ0(t ) is a
Hamiltonian whose evolution can be handled analytically, and
V̂ (t ) is a time-dependent interaction. In this setting, the time-
evolution operator satisfies the differential equation

ih̄
∂Û (t )

∂t
= [Ĥ0(t ) + V̂ (t )]Û (t ). (A7)

A solution to the differential equation above can always be
written in the form [70]

Û (t, t0) = Û0(t, t0) − i

h̄

∫ t

t0

dt1Û (t, t1)V̂ (t1)Û0(t1, t0), (A8)

where Û0(t, t0) describes the evolution under the unperturbed
Hamiltonian Ĥ0(t ), i.e., it satisfies ih̄∂Û0(t )/∂t = Ĥ0(t )Û0(t ).
Equation (A8) serves as the basis for a recursive formulation,
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where Û (t, t1) accounts for the full dynamics governed by
Ĥ0(t ) + V̂ (t ). The key idea used in Refs. [12,71] is to adopt
different partitions of the total Hamiltonian at each recursive
step—effectively reassigning what is considered the “free”
part Ĥ0(t ) and what remains in the interaction V̂ (t ). In the case
of Eq. (A6), we can naturally distinguish two contributions to
the interaction,

Ĥ0 = Ĥat, V̂L(t ) = er̂Ecl(t ) + er̂ÊL(ξ, t ),

V̂uv(t ) = er̂Êuv(t ), (A9)

and initially choose the decomposition Ĥ0 = Ĥat and V̂ (t ) =
V̂L(t ) + V̂uv(t ). With this partition, the Dyson expansion (A8)
reads

Û (t, t0)

= Ûat(t, t0) − i

h̄

∫ t

t0

dt1Û (t, t1)[V̂L(t1) + V̂uv(t1)]Ûat(t1, t0),

(A10)

where Ûat(t ) denotes the propagator generated by the atomic
Hamiltonian alone, i.e., it solves ih̄∂Ûat(t )/t = ĤatÛat(t ).

For the second iteration, we redefine the partition as
Ĥ0(t ) = Ĥat + V̂L(t ) and V̂ (t ) = V̂uv(t ). This yields an equally
valid solution to Eq. (A7), written as

Û (t, t0) = ÛL(t, t0) − i

h̄

∫ t

t0

dt1Û (t, t1)V̂uv(t1)ÛL(t1, t0),

(A11)
where ÛL(t ) denotes the evolution operator governed by the
atomic Hamiltonian plus the interaction with the driving field,
satisfying ih̄∂ÛL(t )/t = [Ĥat + V̂L(t )]ÛL(t ). This operator in-
volves only the degrees of freedom associated with the driving
optical mode. Inserting Eq. (A11) into Eq. (A10), we obtain

Û (t, t0) = Ûat(t, t0) − i

h̄

∫ t

t0

dt1ÛL(t, t1)

× [V̂L(t1) + V̂uv(t1)]Ûat(t1, t0)

− 1

h̄2

∫ t

t1

dt2

∫ t

t0

dt1Û (t, t2)V̂uv(t2)ÛL(t2, t1)

× [V̂L(t1) + V̂uv(t1)]Ûat(t1, t0), (A12)

where retaining just the first two terms is already sufficient
to describe ATI events, while the remaining contributions
account for more complex processes such as HHG or UV-
driven excitations. In particular, by reinserting Eq. (A10) in
the expression above and neglecting higher-order terms, we
arrive at

Û (t, t0) ≈ Ûat(t, t0) − i

h̄

∫ t

t0

dt1ÛL(t, t1)

× [V̂L(t1) + V̂uv(t1)]Ûat(t1, t0)

− 1

h̄2

∫ t

t1

dt2

∫ t

t0

dt1Ûat(t, t2)V̂uv(t2)ÛL(t2, t1)

× [V̂L(t1) + V̂uv(t1)]Ûat(t1, t0), (A13)

3. The strong-field approximation and the direct
ATI contribution

To further advance our analysis and derive quasianalytical
expressions for the quantum state of the joint light-matter
system, we rely on the strong-field approximation (SFA)
[2,31]. Broadly speaking, the SFA encompasses a remarkably
successful set of methods for simplifying the treatment of
strongly driven light-matter interactions [2,88]. In its standard
formulation, two key assumptions are made:

(1) The strong laser field does not couple to any bound
state other than the ground state |g〉, so that only the ground
state and the continuum states {|k〉} are included in the dy-
namics.

(2) Once in the continuum, the electron is effectively
treated as a free particle driven by the external electric field,
with the Coulomb potential acting only as a perturbative cor-
rection to its motion.

Assumption (a) allows us to define an SFA-version of the
identity operator for the atomic Hilbert space as

1 = |g〉〈g| +
∫

dk|k〉〈k|, (A14)

which, when inserted between the time-evolution operator and
a V̂ (t )-like interaction term in Eq. (A13), yields

|�̃(t )〉 = Û (t, t0)|g〉 ⊗ |0̄〉

≈ Ûat(t )|g〉 ⊗ |0̄〉 − i

h̄

∫ t

t0

dt1

∫
dk ÛL(t, t1)

× 〈k|[V̂L(t1) + V̂uv(t1)]|g〉eiIp(t1−t0 )/h̄|k〉 ⊗ |0̄〉
(A15)

− 1

h̄2

∫ t

t1

dt2

∫ t

t0

dt1

∫
dkei

Ip
h̄ (t−t2 )〈g|V̂uv(t2)ÛL(t2, t1)|k〉〈k|

× [V̂L(t1) + V̂uv(t1)]|g〉ei
Ip
h̄ (t1−t0 )|g〉 ⊗ |0̄〉 (A16)

− 1

h̄2

∫ t

t1

dt2

∫ t

t0

dt1

∫
dk2

∫
dk1Ûat(t, t2)〈k2|V̂uv(t2)

× ÛL(t2, t1)|k1〉〈k1|[V̂L(t1) + V̂uv(t1)]|g〉ei
Ip
h̄ (t1−t0 )|k2〉 ⊗ |0̄〉.

(A17)

Here, we used 〈g|r̂|g〉 = 0 due to parity symmetry. Each of the
resulting contributions—Eqs. (A15) to (A17)—corresponds
to a distinct strong-field mechanism, which can be indi-
vidually identified by the structure of the interaction terms
involved. Specifically:

(1) In Eq. (A15), we identify two distinct contributions.
The first term corresponds to the scenario where the elec-
tron remains in the ground state throughout the interaction,
experiencing no coupling with the external electromagnetic
field. Consequently, the photonic state remains unchanged.
The second term captures events in which the electron in-
teracts with the field at time t1—via either the driving field
mode or the harmonic modes—resulting in a transition from
the ground state |g〉 to a continuum state |k1〉. From that point
on, the light-matter system evolves under ÛL(t, t1) until the
final time t . In the absence of the quantum optical interac-
tion term, er̂ÊL(t ), ÛL(t, t1) describes the propagation of an
electron driven by a classical field, including the effect of
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the atomic core—capturing both direct and high-order ATI.
The inclusion of the quantum-optical coupling modifies this
evolution, allowing for backaction on the field and vice versa,
ultimately resulting in entanglement between light and matter
[25].

(2) In contrast, Eq. (A16) features two-field induced tran-
sitions. The first occurs at time t1, promoting the electron from
the ground state to the continuum. The second, at time t2,
involves a recombination process in which the electron, after
evolving through ÛL(t2, t1), returns to the ground state while
emitting a photon into the harmonic modes. Consequently,
this process underlies HHG events.

(3) The final contribution, given in Eq. (A17), is struc-
turally similar to the HHG term, with the key distinction that
the second transition occurs between two continuum states
|k2〉 and |k1〉 and is mediated by interaction with the harmonic
modes. Since the coupling to these modes is typically weak
[proportional to g(ωq) and unaffected by squeezing], this con-
tribution constitutes a higher-order correction to Eq. (A15).

In this work, our main focus lies on the ATI contribution,
namely,

|�̃ATI(t )〉 = − i

h̄

∫ t

t0

dt1

∫
dk ÛL(t, t1)

× 〈k|[V̂L(t1) + V̂uv(t1)]|g〉eiIp(t1−t0 )/h̄|k〉 ⊗ |0̄〉,
(A18)

which, in contrast with semiclassical analyses, explicitly in-
corporates the coupling between the quantum optical modes
and the matter degrees of freedom. As mentioned earlier, and
in contrast with approaches where the driving field lies in a
coherent state [25,26], this coupling is further enhanced by
the presence of squeezing features in the driving field. It is
important to emphasize that this expression is fully general:
the influence of the atomic potential is encoded within ÛL(t ),
allowing the expression to account for both direct and high-
order ATI processes. The operator ÛL(t ) satisfies

ih̄
∂ÛL(t )

∂t
=

[
p̂2

2m
+ Vat(r̂) + er̂(Ecl(t ) + ÊL(t ))

]
ÛL(t ),

(A19)
and, when acting on an arbitrary state |ψ (t )〉, it can be ex-
pressed as

ih̄
∂|ψ (t )〉

∂t
=

[
p̂2

2m
+ Vat(r̂) + er̂(Ecl(t ) + ÊL(t ))

]
|ψ (t )〉.

(A20)
Among direct ATI and high-order ATI processes, we are

particularly interested in the former—those in which the elec-
tron is ionized and does not subsequently rescatter with the
parent ion. Following ionization, the electron is accelerated by
the strong-laser field, acquiring high velocities and moving far
from the nucleus, where the influence of the atomic potential
Vat(r̂) becomes negligible. This observation has motivated
many early theoretical treatments in strong-field physics to
model the postionization electron dynamics as those of a free
particle interacting with the field [1,31,89,90]. However, such
an approximation is insufficient for describing high-order ATI
events, where the electron revisits the atomic core and un-
dergoes rescattering. This rescattering enables the electron to
gain significantly more kinetic energy, giving rise to a sec-

ondary plateau at high energies in the photoelectron spectra.
To address these limitations, Ref. [11] introduced an exten-
sion of the original SFA framework [31], referred to as the
generalized SFA, in which rescattering events are included
perturbatively. This methodology has since been extended to
S-matrix approaches [12], as well as to Coulomb-distorted
SFA models, where the interaction with the atomic poten-
tial is nonperturbatively included via Feynmann path-integral
techniques [14,16,72,85–87].

Here, in the spirit of Refs. [11,12], we consider a pertur-
bative expansion of Eq. (A24) [or, equivalently, Eq. (A19)]
around the atomic potential. Specifically, we retain only the
zeroth-order term, which corresponds to direct ATI events.
This is a well-justified approximation when working with
photoelectron energies around 2Up, with Up = E2

0 /(4ω2
L ) the

ponderomotive energy, and within the near-infrared regime
(λL ≈ 800 nm). However, it becomes less accurate in the mid-
infrared regime (λL ≈ 2000 nm), where the electron is more
slowly driven away from the parent ion. In such cases, the
atomic potential plays a more significant role, giving rise to
prominent low-energy structures in the photoelectron spectra
[73,74] which are not captured within standard SFA. However,
for the laser parameters considered here, this zeroth-order
treatment remains appropriate, yielding

ih̄
∂|ψ (t )〉

∂t
=

[
p̂2

2m
+ er̂(Ecl(t ) + ÊL(t ))

]
|ψ (t )〉, (A21)

which corresponds to the zeroth-order term in a perturbative
expansion around Vat(r̂) in Eq. (A24).

For reasons that will become clearer in the following anal-
ysis, it is convenient to express Eq. (A21) in a velocity-like
gauge. This can be achieved via the unitary transforma-
tion |ψ (t )〉 = Ûvg(t )|ψ̄ (t )〉 = eier̂[Acl (t )+ÂL (ξ,t )]/h̄|ψ̄ (t )〉, where
Acl(t ) is the classical vector potential, related to the electric
field through Ecl(t ) = −∂Acl(t )/∂t , and ÂL(ξ, t ) is the vec-
tor potential operator, satisfying ÊL(ξ, t ) = −∂ÂL(ξ, t )/∂t . In
our case, the vector potential operator takes the explicit form

ÂL(ξ, t ) = i

[
âL

∫
dt f (ξ, t ) − â†

L

∫
dt f ∗(ξ, t )

]

= ig(ωL )

[
i

(
cosh (r)

ωL
e−iωLt − sinh (r)

ωL
ei(ωLt−θ )

)
âL

+ i

(
cosh (r)

ωL
eiωLt − sinh (r)

ωL
e−i(ωLt−θ )

)
â†

L

]

≡ i[F (ξ, t )â†
L − F ∗(ξ, t )âL]. (A22)

Using this transformation, Eq. (A21) simplifies to

ih̄
∂|ψ̄ (t )〉

∂t
= 1

2m
[ p̂ + eAcl(t ) + eÂL(ξ, t )]2|ψ̄ (t )〉, (A23)

which we refer to as |ψ̄ (t )〉 = ÛV (t, t0)|ψ̄ (t0)〉. Having in
mind that |ψ (t )〉 = Ûvg(t0)|ψ̄ (t0)〉, we can then write for the
original |ψ (t )〉
|ψ (t )〉

= eier̂[Acl (t )+ÂL (ξ,t )]/h̄︸ ︷︷ ︸
3

ÛV (t, t0)︸ ︷︷ ︸
2

e−ier̂[Acl (t0 )+ÂL (ξ,t0 )]/h̄︸ ︷︷ ︸
1

|ψ (t0)〉.

(A24)
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The unitary operator given above cannot, in general, be
decomposed as Ûe(t, t0) ⊗ Ûfield(t, t0), indicating that, dur-
ing the electron’s excursion in the continuum, entanglement
between light and matter degrees of freedom emerges. The
degree of this entanglement is expected to depend strongly on
the amount of squeezing. In the limit where g(ωL ) → 0, the
operator reduces to ÛL(t, t0) → Ûe(t, t0) ⊗ 1, and the evolu-
tion becomes separable. However, when squeezing becomes
sufficiently strong—comparable in magnitude to the classical
field strength E0 ∝ |α|g(ωL )—the operator ÛL(t, t0) generates
three distinct contributions, denoted 1, 2, and 3 in Eq. (A24),
each modifying the joint light-matter state immediately fol-
lowing ionization in a different way.

(1) Term 1, when acting on a momentum eigenstate,
describes the momentum shift imparted by the electron
upon ionization at time t1. In the absence of quantum
optical effects—when the light-matter coupling vanishes—
its action is simple: it shifts the momentum state as
|v〉 → |v − eAcl(t1)〉. However, for non-negligible coupling
strengths, its action is no longer deterministic and leads to
the generation of light-matter entanglement already at the ion-
ization stage. This becomes clear when acting on an initially
separable light-matter state

e−ier̂[Acl (t )+Â(ξ,t )]/h̄|v〉 ⊗ |�〉

= 1√
2π h̄

∫
dx eix[v−eAcl (t )]/h̄D̂

[
e
h̄ xF (ξ, t )

]|x〉 ⊗ |�〉,
(A25)

which, in general, results in an entangled state, since the
displacement imparted to the field depends explicitly on the
electron’s position.

(2) Term 2 governs the joint evolution of the electron
and the light field during the electron’s propagation in
the continuum. As we discuss later, these dynamics result
in a momentum-dependent displacement of the field de-
grees of freedom—stemming from the [ p̂ + Acl(t )]ÂL(ξ, t )
contribution—as well as squeezing of the fundamental
mode—arising from the Â2

L(ξ, t ) contribution.
(3) Term 3 is structurally similar to term 1, but applies

at the later time t , associated here with the electron’s mea-
surement time. While Âcl(t ) and ÂL(ξ, t ) are both periodic
with period T = 2π/ωL, in general t �= t0 + nT for n ∈ N.
Therefore, even in the absence of term 2, term 3 does not
necessarily cancel the effects induced by term 1.

Based on this analysis, we can express the direct ATI
(dATI) contribution of Eq. (A18) as

|�̃d(t )〉 = − i

h̄

∫ t

t0

dt1

∫
dk Ûvg(t )ÛV (t, t1)Û †

vg(t1)

× 〈k|[V̂L(t1) + V̂uv(t1)]|g〉eiIp(t1−t0 )/h̄|k〉 ⊗ |0̄〉,
(A26)

which becomes more tractable by inserting the identity in the
position and momentum representations before the operators

Ûvg(t1) and ÛV (t, t1), respectively. This yields

|�̃d(t )〉 = − ie√
2π h̄3

∫ t

t0

dt1

∫
dv

∫
dx Ûvg(t )ÛV (t, t1)

× D̂L[xF (ξ, t1)][Ecl(t1) + ÊL(ξ, t1) + Êuv(t )]

× ei{Ip(t1−t0 )−x[v+eAcl (t1 )]}/h̄h(x)|v〉 ⊗ |0̄〉, (A27)

where we have defined h(x) ≡ ∫
dk〈x|k〉〈k|r̂|g〉, and made use

of Eq. (A25). In the remainder of this section, we elaborate on
the structure of h(x) as well as the action of ÛV (t, t1) on initial
product states of the form |v〉 ⊗ |�0〉, where |�0〉 denotes an
arbitrary quantum optical state. However, it is worth remark-
ing that, when setting g(ωL ) → 0, the expressions we recover
match those found in semiclassical SFA-based analyses of
dATI [2,11,12].

a. On the form of h(x)

Now, our aim is to derive an analytical expression for h(x).
To simplify the analysis—and motivated by the fact that we
are interested in transitions to high-energy continuum states—
we assume that the electronic continuum wavefunctions can
be approximated by plane waves. Adopting a Gaussian model
for the atomic potential, we follow the approximation from
Ref. [31]

〈k|r̂|g〉 ≈ −i

(
1

πα

)3/4 k

α
exp

[
− k2

2α

]
, (A28)

where, when working in atomic units, α = 0.8Ip [76]. Given
that 〈x|k〉 ≈ (2π h̄)−1/2eixk/h̄, we can perform the integral with
respect to k:

h(x) =
√

α

π h̄

(
1

πα

)1/4 x

α2
exp

[
−αx2

2h̄2

]
. (A29)

b. Continuum states evolution

Next, we proceed to evaluate the action of the operator
ÛV (t ) on states of the form |v〉 ⊗ |�(t )〉, where |�(t )〉 denotes
an arbitrary pure quantum optical state |v〉. It is important to
note that ÛV (t ) is diagonal in the momentum basis |v〉. There-
fore, by projecting Eq. (A23) onto a momentum eigenstate |v〉,
we obtain

ih̄
∂|�(v, t )〉

∂t
= 1

2m
[v + eAcl(t ) + eÂL(ξ, t )]2|�(v, t )〉

=
{

1

2m
[v + eAcl(t )]2

︸ ︷︷ ︸
1

+ e
m

[v + eAcl(t )]ÂL(ξ, t )︸ ︷︷ ︸
2

+ e2

2m
Â2

L(ξ, t )︸ ︷︷ ︸
3

}
|�(v, t )〉. (A30)

In the evolution of the quantum optical contribution, we iden-
tify three distinct terms:

(1) Term 1 corresponds to the classical contribution of
the field to the electron’s kinetic energy. It induces a time-
dependent phase on the state.

(2) Term 2 represents a linear coupling between the elec-
tron’s motion and the driving field’s creation and annihilation
operators. This term leads to a time-dependent displacement
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of the quantum optical degrees of freedom driven by the elec-
tronic dynamics [25,26,55]. In the regime of strong squeezing,
where cosh(r) ≈ sinh(r) ≈ er/2, this contribution scales as
g(ωL )er/ωL. In our case, with g(ωL ) ∝ 10−8 and ωL ∝ 10−2,
the scaling becomes approximately 10−6er .

(3) Term 3, commonly referred to as the diamagnetic
term, introduces second-order contributions of the creation
and annihilation operators, typically associated with squeez-
ing features. This term scales as g(ωL )2e2r/ω2

L, which for our
parameters amounts to 10−14e2r .

In our analysis, we focus on regimes where the squeezing
introduced in the driving field results in intensities comparable
to, or lower than, those of a classical electric field. That is, we
consider αg(ωL ) ≈ 10−2 � erg(ωL ), which implies 106 � er .
Under the most extreme conditions where this inequality be-
comes an equality, we find that the contribution from Term 2
(scaling as ≈1) significantly outweighs that of Term 3 (scaling
as ≈10−2). This justifies the approximation that squeezing
effects, represented by Term 3, are negligible within the pa-
rameter regimes of interest.

As a result, we simplify Eq. (A30) by neglecting the con-
tribution of Term 3, yielding

ih̄
∂|�(v, t )〉

∂t
≈

{
1

2m
[v + eAcl(t )]2

+ e
2m

[v + eAcl(t )]ÂL(ξ, t )

}
|�(v, t )〉.

(A31)

The solution to this simplified evolution equation, up to a
global phase that scales with [g(ωL )er]2, can be expressed as
[25,26,53,55]

|�(v, t )〉 = e−iSsc (v,t,t0 )/h̄D̂[δ(v, t, t0)]|�(v, t0)〉, (A32)

where we define Ssc(v, t, t0) = 1
2m

∫ t
t0

dτ [v + eAcl(τ )]2 and

δ(v, t, t0) = e
2mh̄

∫ t

t0

dτ [v + Acl(τ )]F (ξ, τ ). (A33)

c. The final state at time t

In the following, we conveniently set the measurement
time t = 2πncyc/ω, where ncyc ∈ W denotes the number of
field cycles. This choice is motivated by the fact that, at such
times, both the semiclassical values of canonical and kinetic
momentum coincide. With this, and incorporating the analysis
developed in the previous two subsections together with the
fact that the effect of Ûvg(t2) is like that of Û †

vg(t1), we can
express Eq. (A27) as

|�̃d(t )〉 = − ie√
2π h̄3

∫ t

t0

dt1

∫
dx2

∫
dv

∫
dx1

× D̂L
[
δ(v, t, t1) − e

h̄ x2F (ξ, t ) + e
h̄ xF (ξ, t1)

]
× [Ecl(t1) + ÊL(ξ, t1) + Êuv(t )]

× h(x1)e−i{Ssc (v,t,t1 )−Ip(t1−t0 )−x2v+x1[v+eAcl (t1 )]}/h̄

× |x2〉 ⊗ |0̄〉, (A34)

where all the displacement operators are combined directly,
without an additional phase factor since they share the same
phase.

4. Evaluating the saddle-point equations

In the main text, we focus on the analysis of both
phase- and amplitude-squeezed states, which in our scheme
correspond to setting θ = 0 and θ = π , respectively. For
phase squeezing, we find that

F (ξ, t ) = ig(ωL )

(
cosh (r)

ωL
eiωLt − sinh (r)

ωL
e−iωLt

)

� −erg(ωL )

ωL
sin (ωLt ), (A35)

which when evaluated at t = 2πncyc/ωL, yields F (ξ, t ) = 0.
Consequently, the quantum optical state obtained after projec-
tion onto a final electron momentum state |vf〉 takes the form

|�̃d(t )〉 = 〈vf|�̃d(t )〉 = − ie√
2π h̄3

∫ t

t0

dt1

∫
dx1

× D̂L[δ(vf, t, t1) + e
h̄ x1F (ξ, t1)]

× [Ecl(t1) + ÊL(ξ, t1) + Êuv(t )]h(x1)

× e−i{Ssc (vf,t,t1 )−Ip(t1−t0 )+x1[vf+eAcl (t1 )]}/h̄|0̄〉. (A36)

In contrast, for the case of amplitude squeezing, we find
that the F (ξ, t ) function reads

F (ξ, t ) = ig(ωL )

(
cosh (r)

ωL
eiωLt + sinh (r)

ωL
e−iωLt

)

� i
erg(ωL )

ωL
cos (ωLt ), (A37)

which, unlike the phase-squeezing case, reaches its critical
point at t = 2πncyc/ωL. As a result, the quantum optical state
obtained upon projection of the electronic part onto |vf〉 in-
volves a greater number of integrals, and is more explicitly
given by

|�̃d(t )〉 = − ie√
2π h̄3

∫ t

t0

dt1

∫
dx2

∫
dv

∫
dx1

× D̂L[δ(v, t, t1) − e
h̄ x2F (ξ, t ) + e

h̄ x1F (ξ, t1)]

× [Ecl(t1) + ÊL(ξ, t1) + Êuv(t )]

× h(x1)e−i{Ssc (v,t,t1 )−Ip(t1−t0 )−x2(v−vf )+x1[v+eAcl (t1 )]}/h̄

× |0̄〉. (A38)

To evaluate the properties of the state in Eqs. (A36) and
(A38), we employ the saddle-point approximation, following
an approach analogous to that presented in Ref. [55]. This
approximation is particularly useful for simplifying integrals
involving highly oscillatory functions, by approximating the
full integral as a sum over dominant contributions at specific
points—namely, the saddle points of the integrand’s rapidly
varying phase. In our case, however, the integrand includes
operators whose action on the initial state explicitly depends
on the integration variables. More generally, the quantum state
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under consideration can be written as

|�̃d(t )〉 =
∫

dθD̂L[α(θ)]

× [Ecl(t1) + ÊL(ξ, t1) + Êuv(t )]h(x1)e−iS(θ)|0̄〉

=
∫

dθ[Ecl(t1) − Eα(θ)(ξ, t ) + ÊL(ξ, t1) + Êuv(t )]

× h(x1)e−iS(θ)D̂L[α(θ)]|0̄〉, (A39)

where, in going from the first to the second equality, we
have rearranged the displacement operator to act directly on
the vacuum state |0̄〉. To proceed analytically, we expand
D̂L[α(θ)]|0̄〉 in the Fock basis, where the dependence on the
integration variables is transferred to the expansion coeffi-
cients, i.e., the probability amplitudes, and the quantum states
themselves become independent of the integration variables.
This yields

|�̃d(t )〉 =
∞∑

n=0

∫
dθ[Ecl(t1) − Eα(θ)(ξ, t ) + ÊL(ξ, t1)

+ Êuv(t )]h(x1)e−iS(θ)−|α(θ)|2/2 α(θ)n

√
n!

|n〉
⊗
q �=1

|0q〉.

(A40)

In this way, all the dependence on the integration vari-
ables is transferred to the probability amplitudes, which
are amenable to the saddle-point approximation. However,
we emphasize that the saddle-point equations—and the
number of saddles—differ between the phase- and amplitude-
squeezed cases. Specifically, for phase squeezing, the function
used to identify the saddle points is given by

S(ph)
QO (θ) = Scl(v, t, t1) − Ip(t1 − t0) − ih̄

|αph(θ)|2
2

− i

2
x1{i2[vf + eAcl(t1)] + x1α}, (A41)

where αph(θ) ≡ δ(vf, t, t1) + e
h̄ x1F (ξ, t1). The correspond-

ing saddle-point equations are obtained by setting ∇θS(ph)
QO

(θ)|θs = 0, where θs = (tion, x1,s) denotes the saddle-point
coordinates. More explicitly, the saddle-point equations are
given by

∂S(ph)
QO (θ)

∂t1

∣∣∣
θs

= 0 ⇒ [v + eAcl(tion)]2

2m
+ Ip − x1,sEcl(tion)

− ih̄

2

∂|αph(θ)|2
∂t1

∣∣∣
θs

= 0, (A42)

∂S(ph)
QO (θ)

∂x1

∣∣∣
θs

= 0 ⇒ [vf + eAcl(tion)] − iαx1,s

− ih̄

2

∂|αph(θ)|2
∂x1

∣∣∣
θs

= 0. (A43)

In contrast, for amplitude squeezing, the function used to
determine the saddle points is given by

S(ph)
QO (θ) = Scl(v, t, t1) − Ip(t1 − t0) − ih̄

∣∣αamp(θ)
∣∣2

2

− i

2
x1{i2[v + eAcl(t1)] + x1α} − x2(v − vf ),

(A44)

where αamp(θ) ≡ δ(vf, t, t1) − e
h̄ x2F (ξ, t ) + e

h̄ x1F (ξ, t1). The
corresponding saddle-point equations, with solutions given in
this case by θs = (tion, x2,s, x1,s, vs), are as follows:

∂S(amp)
QO (θ)

∂t1

∣∣∣
θs

= 0 ⇒ [v + eAcl(tion)]2

2m
+ Ip − x1,sEcl(tion)

− ih̄

2

∂
∣∣αamp(θ)

∣∣2

∂t1

∣∣∣
θs

= 0, (A45)

∂S(amp)
QO (θ)

∂x1

∣∣∣
θs

= 0 ⇒ [vf + eAcl(tion)] − iαx1,s

− ih̄

2

∂|αamp(θ)|2
∂x1

∣∣∣
θs

= 0, (A46)

∂S(amp)
QO (θ)

∂x2

∣∣∣
θs

= 0 ⇒ (vs − vf ) + ih̄

2

∂|αamp(θ)|2
∂x2

∣∣∣
θs

= 0,

(A47)

∂S(amp)
QO (θ)

∂v

∣∣∣
θs

= 0 ⇒ 1

m

∫ t

tion

dτ [vs + eAcl(τ )] − (x2,s − x1,s)

− ih̄

2

∂|αamp(θ)|2
∂x2

∣∣∣
θs

= 0. (A48)

To obtain solutions of both the phase-squeezing
[Eqs. (A42) and (A43)] and the amplitude-squeezing
equations [Eqs. (A45)–(A48)] for different values of vf

and ncyc, we employ numerical root-finding techniques.
Specifically, we use the FindComplexRoots solver
implemented in the RBSFA Mathematica package [91].

Figure 7 shows the ionization times for ncyc = 8 and two
values of vf in Fig. 7(a), while Fig. 7(b) displays the differ-
ences between consecutive ionization times. As can be seen,
the cycle-to-cycle symmetry of the ionization times is broken,
primarily because the light–matter backaction accumulates
over the full interaction time. This accumulation alters the
electron’s kinetic energy and thereby modifies the effective
ionization time at which an electron with momentum vf is
measured at time t . We note that, although not shown here,
decreasing ε restores temporal symmetry.

After applying the saddle-point approximation, we can
generally rewrite Eq. (A39) as

|�̃d(t )〉 =
∑
θs

G(θs)D̂L[α(θs)][Ecl(t1)

+ ÊL(ξ, t1) + Êuv(t )]|0̄〉, (A49)

with G(θs) a complex-valued prefactor that arises from eval-
uating the integrand at the saddle points. It also accounts
for additional weights, depending on the diagonal elements
of the Hessian of the action evaluated at the saddle points,
arising from the application of the saddle-point approximation
[31,76,77].

APPENDIX B: QUANTUM OPTICAL ANALYSIS

1. Invariance of the negativity volume

In our analysis, we adopt the Wigner negativity volume as
a quantitative measure of nonclassicality, specifically employ-
ing the definition introduced in Ref. [63]. A key advantage of
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FIG. 7. Ionization times for the case of phase squeezing with ncyc = 8 and ε = 10−2.9. Panel (a) shows the real part of the ionization times
within the driving field, while panel (b) displays the differences between consecutive ionization times. Dashed lines are included as guides to
the eye.

this measure lies in its invariance under Gaussian operations
[64], which comparably simplifies numerical calculations. In
particular, this property allows us to avoid explicitly im-
plementing the strong squeezing operator associated with
the driving field when evaluating the negativity volume (see
Sec. B 2). The purpose of this section is to explicitly demon-
strate this invariance.

Following Ref. [92], the Wigner function associated with a
quantum state ρ̂ can be written as

W (β ) = tr[D̂(−β )�̂D̂(β )ρ̂] = tr[�̂D̂(β )ρ̂D̂(−β )], (B1)

where �̂ denotes the parity operator. In transitioning from
the first to the second equality, we make use of the cyclic
property of the trace. In our case, by undoing the squeezing
transformation that leads to Eq. (A5), the state can be written
as ρ̂ = Ŝ(ξ )σ̂ Ŝ†(ξ ). Substituting this into the expression for
the Wigner function yields

W (β ) = tr[�̂D̂(β )Ŝ(ξ )σ̂ Ŝ†(ξ )D̂†(β )]. (B2)

Taking into account that the displacement and squeez-
ing operators satisfy the identity D̂(β )Ŝ(ξ ) = Ŝ(ξ )D̂(γ ), with
γ = β cosh(ξ ) + β∗ sinh(σ ) and assuming without loss of
generality that ξ > 0, we can rewrite the expression above as

W (β ) = tr[�̂Ŝ(ξ )D̂(γ )σ̂ D̂†(γ )Ŝ†(ξ )]. (B3)

Since Ŝ(ξ ) is an even operator—being quadratic in creation
and annihilation operators—it commutes with the parity oper-
ator �̂. Applying the cyclic property of the trace then yields

W (β ) = tr[Ŝ(ξ )�̂D̂(γ )σ̂ D̂†(γ )Ŝ†(ξ )]

= tr[D̂(γ )σ̂ D̂†(γ )] = W (γ ), (B4)

i.e., the Wigner function is simply evaluated at the trans-
formed phase-space point γ . Summing over all values of β,

we can express the result N as

N =
∫

d2βW (β ) =
∫

d2βW (γ ) =
∫

d2γW (γ ), (B5)

where, in going from the second to the third equality, we used
the fact that d2β = d2γ . Thus, as expected, the squeezing
operation preserves the norm (or total integral) of the Wigner
function.

In our case, we are particularly interested in whether∫
dβ|W (β )| remains invariant under squeezing. This follows

straightforwardly from Eq. (B5), such that we can write

|W (β )| = |W (γ )|. (B6)

Thus, when integrating over β while making the change of
variables β → γ in the right-hand side, we arrive at∫

dβ|W (β )| =
∫

dγ |W (γ )|, (B7)

where the left-hand side corresponds to the Wigner function of
the squeezed state Ŝ(ξ )σ̂ Ŝ†(ξ ), while the right-hand side cor-
responds to that of the unsqueezed state σ̂ . We conclude that
the volume of Wigner negativity is invariant under squeezing.

Another crucial topic of importance is gauge invariance.
While physical theories should be gauge-invariant, certain
approximations might break this invariance, and the SFA is
one of them [82,83]. This is mainly due to the fact that,
as nicely phrased in Ref. [82], “making formally the same
approximation in two gauges may correspond to different
approximations physically.” Here, to naively test the influence
of the gauge transformation Ûvg(t ) we compared the negative
volume N with and without including Ûvg(t ) (artificially set-
ting it to the identity). The results are presented in the new
Fig. 8: Fig. 8(a) corresponds to the full transformation, Fig.
8(b) excludes it, and Fig. 8(c) shows the absolute difference
between both. As observed, the impact of Ûvg(t ) is minor
and does not significantly alter the qualitative or quantitative
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FIG. 8. Comparison of the negative volume obtained under different assumptions: (a) when including the contribution from Ûvg(t ), (b)
when artificially setting to zero its contribution, and (c) the absolute value of the difference between both.

behavior of N as a function of vf and ncyc. However, we
emphasize that this is a simplified check; a full velocity-
gauge treatment would modify the interaction term V (t ) and
potentially alter some matrix elements, which remains an in-
teresting topic to address in future work.

2. Numerical analysis

The analysis of the quantum optical and quantum infor-
mation measures was carried out entirely in Python, utilizing
the QuTiP package [93,94]. Within this framework, the quan-
tum optical states are represented in the Fock basis, with
a Hilbert-space truncation at 200 elements. This cutoff was
benchmarked against higher values (up to 300) to ensure nu-
merical convergence. In this context, the use of measures that
are invariant under displacement and squeezing operators—
such as the negative volume—proved essential. Without
such invariance, the effective Hilbert-space dimension re-

quired for accurate computation would increase significantly,
resulting in substantial additional memory usage and compu-
tational time. To evaluate the negative volume, we computed
the Wigner function of the state—shown in Fig. 9 for
completeness—and obtained the negativity via a Riemann
sum over a 300 × 300 grid, which we verified to be sufficient
for numerical convergence.

3. Wigner functions of the outgoing state

While the Wigner functions of the state |�d(vf, t )〉, i.e.,
in the original quantum optical frame of reference, become
numerically impractical to compute due to the strong squeez-
ing present in the initial state, those of |�̃d(vf, t )〉, defined
in a displaced and squeezed frame of reference, are much
more tractable. Apart from a trivial displacement, the main
difference between these two descriptions is the absence of
the additional squeezing in the latter. Importantly, as shown

FIG. 9. Wigner function of the state |�̃d(vf, t )〉 for different values of vf and t . Each column corresponds to a distinct vf, while each row
corresponds to a different measurement time t , expressed in terms of the number of optical cycles elapsed between the initial and final times.
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in Appendix B 1, the amount of Wigner negativity remains
unchanged in both frames.

Figure 9 displays these Wigner functions for various values
of vf and t . As can be seen, the state’s features strongly
depend on vf, with the most pronounced negative structures

appearing at vf = 0.2 a.u., corresponding to the maxima of
N in Fig. 5(a). Furthermore, as the number of optical cycles
increases, more coherent states contribute to the overall super-
position, leading to a greater number of negative regions in the
Wigner functions as well as elongated shapes.
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Pérez-Hernández, A. Picón, E. Pisanty, J. Prauzner-Bechcicki
et al., Rep. Prog. Phys. 82, 116001 (2019).
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