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Landscape and urban designers strive to create urban forests to mitigate urban heat.
However, research has found that the cooling effect of low or large trees varies, and tree
misuse can negatively impact land surface temperature (LST). Existing research remains
unclear on how tree canopy morphology controls LST at neighboring scales (below 1 km),
a significant limitation in guiding design efforts. This study aims to provide designers
with strategies for selecting canopy morphology to optimize the thermal environment. The
study extracted data from 5.8 million trees in Greater London, including height,
variability, and canopy area. The LST data (2015-2019) was acquired from Landsat 8
using Google Earth Engine. An interpretable machine learning approach was employed
in the study using the XGBoost model and SHAP tool (500 m grid, n=6,079). The results
explained 83% of the LST phenomena. From the training results, it was found that high
trees (>8m) and reasonable canopy cover (18%-40%) could achieve the greatest benefits

from tree cooling. The study also simulates future extreme heat scenarios through the
proposed framework. It has been found that global warming may result in extra trees
being planted in the future to achieve the cooling effect. Finally, the study discusses how
the framework can be applied to practical design work and proposes a long-term
development plan based on a crowdsourcing approach.

Keywords: Tree canopy morphology, Land surface temperature, Nonlinear
Relationships, Interpretable machine learning, Climate change.

INTRODUCTION

Global warming poses a serious threat to the
health of the world's population, and its effects
have intensified in recent years. The World
Meteorological Organisation (WMO) recently
warned that the objective of the 2015 Paris
Climate Change Conference to limit global
warming to a 1.5°C increase is nearly unattainable
(Polya, 2023). Global warming brings frequent
extreme temperatures, causing increased disease

burdens for the residents. Governments around
the world need larger budgets each year to
mitigate the threats from global warming (Lenton
et al,, 2023). In recent years, city managers and
designers have explored low-cost strategies to
mitigate urban high temperatures and reduce the
of heat exposure to residents. Enhancing urban
vegetation systems, particularly optimizing the
urban tree layout, has become a commonly
adopted approach (Tan et al,, 2016). Trees in cities
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are core green infrastructure that considered an
effective way to mitigate urban heat (He et al.,
2024). Landscape and urban designers have
attempted to create urban forests in their project
(Gill et al, 2007). However, recent research
indicates that tree canopies have a complex effect
on air ventilation and heat retention (Dong et al.,
2022). Dwarf and large trees have different
cooling effects, and the misuse of trees can
negatively affect land surface temperature (LST)
(He et al.,, 2024). Designers estimate the trees in
their proposals from past design experience.
However, the lack of quantitative modelling
makes it hard for trees to mitigate environmental
overheating.

In past design processes, the general
approach has wused Computational Fluid
Dynamics (CFD) models to simulate the
distribution of airflow and heat storage on the site
(Gulten et al, 2016). However, the large
computational resources and time costs of CFD
modelling significantly hinder the progress of the
design work (Jurado et al, 2022). Although
designers work on projects at micro to medium
community scales (< 1km?), they normally need to

discuss the impacts of their projects on their
region or even the whole city. With current
technological tools, frequent simulations are
complex to implement quickly and iteratively.
Simulation-based  results  are  generally
challenging when describing a real environmental
situation. Research emphasizes that the city is a
dynamic system with micro-climate zones
composed of physical forms (such as buildings,
topography, and water bodies) (Demuzere et al.,
2019; Pellegatti Franco et al., 2019).

Therefore, this study aims to provide an
efficient tool to assist designers with tree design
in their projects to mitigate the overheating risk.
Interpretable machine learning were created from
5.8 million tree morphology data from the Greater
London region. The completed trained models
can provide recommendations on how tree
morphology can be controlled for LST at
neighbourhood scales (up to 1km). The study also
provides a framework for responding to future
global warming and urges city managers and
planners to consider what is reasonable for cities
to mitigate urban overheating.
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Figure 1

Map of LCZ
distribution in the
study area



Figure 2
Workflow of the
study

DATA AND METHODS

Data

The core data sources of the study are urban land
surface temperature and tree canopy maps. For
the LST, the study obtained Landsat8 data from
Google Earth Engine (GEE), which can have a
spatial resolution of 30 metres (Ermida et al.,
2020). The study obtained the urban tree canopy
maps from the Bluesky National Tree Map (NTM)
(Bluesky Ltd, 2025). The NTM data provides
canopy height, area, and variability data for 5.8
million trees in Greater London using vector
geographic information files (.shp) and records
the geographic coordinates for each tree.

For  the  background  environmental
parameters of the study area, the Local Climate
Zone (LCZ) framework proposed by Demuzere
was selected for the study (Demuzere et al., 2019).

LCZs are an approach that describes the local
microclimate, replacing the long-term climatic
context at the macro scale (Aslam and Rana,
2022). The LCZ was calculated based on the urban
form (height, density), sky view factor (SVF), and
surface cover (pervious and impervious) within
the study area, with a resolution of 100 m. A total
of 17 categories are included in the LCZ
framework, with 10 for building clusters (compact
high-rise buildings, compact low-rise buildings,
open low-rise buildings, heavy industry) and 7 for
vegetation (dense trees, scattered trees, bare soil,
water). Figure 1 shows the distribution of LCZs in
the study area.

Methods
Figure 2 presents the workflow of the study, which
is divided into three main steps.
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Step 1: Data acquisition and processing.

Firstly, the study obtains the surface temperature
from remote sensing satellite data. Satellites
convert the electromagnetic digits received into
spectral radiance, which can detect any
electromagnetic energy emitted above absolute
zero (K) (Ziaul and Pal, 2018). The brightness
temperatures of the Landsat thermal infrared
channel are provided by the U.. Geological
Survey (USGS) to Google Earth Engine (GEE). The
Ermida study provided a standardised procedure
for extracting Landsat data from GEE, which just
required specifying the study boundary and
retrieval period (Ermida et al., 2020). However
data from satellites is challenging to provide a
continuous image database, which is a common
issue (Tang et al, 2021). Satellite return period
limitations and the cloud coverage are important
factors in determining the amount of available
data. Firstly, the work of satellites is to orbit the
earth and take images of the area they pass
through, which means that satellites cannot
record the data for a long time series in an area
(Loveland and Irons, 2016). Secondly, the clouds
have a debilitating effect on the computational
results of LST. The studies in recent years have
discussed how to weaken the effect of clouds and
proposed algorithms to eliminate them, but it is
still controversial (Alvarez-Mendoza et al., 2019).
The reliability of land surface temperature data
obtained from satellites has been a ongoing
discussion topic, with many approaches proposed
in the past. Typical approaches include advanced
cloud removal algorithms and multi-source data
fusion methods. These approaches generally aim
to address data loss at specific points in time.
However, filling in data for long time series
generally requires very high computational costs.
More importantly, the reliability of current
methods still needs further discussion. In our
research, the focus is on exploring the global
trends in surface temperature distribution across
the entire city, rather than specific local values.
This approach aims to avoid the influence of
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extreme weather events, such as extreme
heatwaves. Therefore, a more conservative
approach remains to collect average surface
temperature data over the past five years or
longer. Therefore, in this study, the average LST
data for the summer of the last five years (2015-
2019) were used to avoid the negative effects of
missing data. Summer data was chosen because
summer cloud cover is much lower than winter.
For the canopy maps, the study extracted the
canopy area, mean height, and height variation
standard deviation (STD) from NTM for each tree.
For LCZ maps, the data provided by Demuzere
were stored using raster graphics (tif).
Step 2: Sample production and model training.
In the second step, a sample pool was created for
model training. For this study, samples were
defined as map tiles divided using a square grid.
The feature values for each sample were canopy
morphology metrics (mean height, density,
variability) and LCZ configuration. The mean
annual summer average surface temperature was
the target value for the sample. The sample size is
commonly considered the unit of analysis, which
is highly relevant to the research question
(Esposito et al., 2023). In past research experience,
the scale of the unit of analysis (sample size) is
divided into three categories: street scale (10-100
m), neighbourhood scale (100 m-1 km) and urban
cluster scale (10-20 km) (Ferreira et al., 2021).
Although past studies have not discussed the
impact of scale on results much, the trade-off
between sample size and sample quality needs to
be considered. For machine learning models, an
appropriate increase in sample size usually helps
improve the model's accuracy (Rajput et al., 2023).
However, if the study area is constant, expanding
the sample size decreases the number of feature
values within each sample. Therefore, based on
experience considerations from past research
(Anjos et al., 2020), a square grid with 500m sides
(total number of grids 6,079) covering the whole
of Greater London was used as the analysis unit
for this study.



Figure 3
Feature
dependency
scatterplot

After sample production, the study created
machine learning models using the eXtreme
Gradient Boosting (XGBoost) algorithm. The
SHapley Additive exPlanations (SHAP) approach
was used to interpret the contribution of sample
features in model training (Li, 2022). Using the
SHAP interpreter coupled with the XGBoost
model is a relatively common approach for recent
interpretable machine learning (Vega Garcia and
Aznarte, 2020). In SHAP results, the user can
access the contribution of the features to the
model through their values on the Y-axis, which
may be positive or negative (Ponce-Bobadilla et
al, 2024). In this study, the X-axis represents a
morphological indicator of the tree, such as the
average height of the tree. The value on the Y-axis
is a relative value that describes the contribution
of the sample feature in the model (Li, 2022). In
the feature dependency plot, when Y = 0 indicates
that the contribution of the feature value to the
model at this point will shift boundaries, resulting
in a positive (Y > 0) or negative (Y < 0) transition.
The study extracted the contribution of three
parameters of trees in the model, including tree
height, canopy cover, and tree height standard
deviation.

Step 3: Application and scenario modelling in
the early design workflow.

The third step discusses how the research results
are involved in the daily workflow of designers
and city managers. The study proposes plans for
further development and how the demands of the
various stakeholders can be met. Finally, the study
modelled future extreme temperature scenarios
and estimated tree demand. The study creates a
counterfactual scenario by assuming that the
average temperature in the future after global
warming is the highest temperature from past
summers (Chen et al., 2025). The study loaded the
current tree distribution into the model and
obtained the minimum demand of trees to
achieve tree cooling under extreme temperatures.

RESULTS AND DISCUSSIONS

Model training results

After 100 iterations, the model achieved a
predictive capability of 0.83, with the training
results explaining 83% of the LST phenomenon
(training R? = 0.83, training MAE = 0.85°C; testing
R? = 0.83, testing MAE = 0.86°C).

507 -‘
0.10 ‘i
100 4 z
0.00 + b 50 h: o o}
) ==l 0501 == T
“ - i . b
H - 2 000 -m- - T Z 005
= .10 = | -
B 2 050 e
= < | =
= = | g R e
7 0204 g 10 . 7
1.50 4 i
| “ - -0.05
0304 2001 o
i T AP
0.00 200 400 600 8.00 10.9012.00 14.00 16.00 000 020 040 060 050 1.00) 000 100 200 300 4.00 500 6.00 .00 500 %.00
(a) Tree_AvgH Tree_Density (c) Tree_AvgStd
|
0104 (R0 o
000 4 Y] —
" “E uw2] o w2
2 - 7 7|z - %
K | 1 | 2 E
F 0004 3 Lz Eow 5 &
B | -
E : = B
7 020 i - v | &2 =
030 2001 % . L 030
L T
— 1.50 1 s -V = .- & + + + v +
000 200 400 6.00 500 1000 12.00 14.00 16.00 000 020 040 060 080 100 0.00 200 400 6.00 £00 10.00 1200 14.00 16.00
(d) Tree_AvgH (E) Tree_Density (n Tree_AvgH

Volume 1 - Confluence - eCAADe 43 | 231



Figure 3 shows the feature dependency
scatterplot generated by the SHAP approach to
explain the variation in the contribution of feature
values in the model predictions. The results
(Figure 3) found that low trees did not appear to
cool the site significantly but instead promoted
temperature increases. The cooling effect of trees
occurred when the average tree height was higher
than 8 metres (Figure 3a). It was found that tree
height variation and canopy coverage also have
an important effect on temperature.

Figure 3b shows that a minimum of 18 %
canopy coverage in the site achieves a cooling
effect. However, when the canopy cover exceeds
40%, the cooling effect tends to peak.

For tree height differences, figure 3c shows
that the cooling effect starts to appear when the
canopy height difference is higher than 3 metres.
Figures 3d,e, and f show the feature dependency
plots with interaction. It was found that larger
height variations commonly accompanied higher
trees in the study area and showed a clustered
pattern. Scattered and low trees could not
contribute to temperature reduction but, instead,
may exacerbate the increase in temperature.

Framework application scenarios
Framework development strategies.

The study's outcomes can provide
recommendations for urban landscape policy-
making, especially tree design, including current
status studies and future forecasting. Green
infrastructure in cities frequently involves a wide
range of stakeholders, including designers, city
managers, and scholars. The study recognises that
the purposes for using the research results are
diverse for different stakeholders.

Figure 4 presents the research development
blueprint, describing how stakeholders can use
and further develop the results from the research.
The study proposes a crowdsourcing-based
framework for the sustainable development of
the study outcomes. The crowdsourcing
approach is relatively common in geographic
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research, such as encouraging users to generate
LCZs of the study area using the LCZ map
generator and share them with the community
(Demuzere et al,, 2021). The study defined three

user groups: managers, designers and
researchers.
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For urban managers, the study provides a
quantitative analysis model based on a macro-
scale approach, which can be used to assess the
overall tree distribution and thermal environment
of a city. By integrating regional-scale canopy
distribution, land surface temperature (LST), and
local climate zone (LCZ) data, the model can
generate comprehensive green space distribution
strategies and cooling potential assessments,
helping managers identify high-temperature risk
areas, areas with insufficient tree coverage, and
the impact of urban expansion on the thermal
environment. Based on this, managers can set
landscaping targets for different districts and
formulate  long-term  goals for  green
infrastructure development. For example, using
the model's preliminary training results, managers
can quantify the minimum tree coverage, and
structural indicators (such as tree height and
crown density) required for each district and
conduct a comparative analysis with current data

Figure 4

The research
development
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to scientifically formulate landscaping policies
and investment priorities. Additionally, when
urban data is missing or outdated, managers can
utilise similar cases from other cities within the
platform as references, leveraging analogy
mechanisms to assist in decision-making
validation.

For urban designers, the research provides
scientific tools to support the entire process from
conceptual design to detailed design. Designers
can simulate the cooling effects of different tree
quantities and forms on a 500-metre grid to
determine the minimum landscaping intervention
scale required to achieve a certain cooling target.
This model enables designers to quickly generate
green space configuration strategies in the early
stages of a project for conceptual design
derivation and multi-option comparison. In the
later stages of design development, designers can
use the model's recommended criteria to
quantitatively control tree species selection,
layout methods, and spatial density, thereby
transitioning from ‘greening recommendations’
to ‘implementation standards.” Additionally, the
platform's crowdsourced case library helps
designers draw on design experiences from sites
with similar climates, topography, and functions,
assisting them in optimising their current design
strategies.

For researchers, this research platform also
offers a highly scalable open architecture.
Researchers can not only use existing models for
local validation but also further expand model
functionality and develop new application
scenarios based on existing data. For example,
counterfactual modelling and scenario simulation
methods can be introduced to explore potential
tree configuration needs for different cities under
future global warming scenarios, or to analyse
fairness issues in green space distribution under
different administrative systems. Additionally,
researchers can integrate their own research
outcomes (such as new remote sensing
processing methods, machine learning models, or

urban classification systems) into the platform,
participate in platform development and
technological evolution, thereby establishing an
iterative mechanism of ‘research-development-
research.” Through crowdsourcing mechanisms,
researchers can also aggregate case data from
different cities and scales to train models with
greater universality or adaptability, thereby
supporting cross-city comparative studies and
the development of global urban green policies.

Although the purpose of each user group
differs, it is inevitable that databases and model
training are required for all users. As a link of
interest for each user group, the database is
crowdsourced by administrators and the
necessary technical support is provided.
Designers and researchers can easily access the
GEE and process the data using the platform. The
shared cloud data can be used as a grassroots
database for further model development and will
be continuously iterated. A potential advantage
of crowdsourced data is that it can be used as a
reference. Similar background cases can be a
better reference when the study area faces
extreme data loss.

Scenario simulation.

As a further demonstration, the study conducted
a test from the perspectives of researchers and
managers. The study simulated a future global
warming scenario. Figure 5 shows the distribution
of tree cooling effects for the high-temperature
scenario. The study found that global warming
may result in more trees requiring planting in the
future to achieve the cooling effect. Relative to
existing trees, in the future, global warming may
result in the need for a 27.78% increase in canopy
coverage, a 3.08% increase in height, and a 10.23%
increase in height difference (Figure 5).

This simulation not only provides designers
and managers with quantitative references but
also serves as a warning signal for ‘green lag”: the
costs of passive adaptation to climate warming
will continue to rise, and early intervention in
green infrastructure construction is more cost-
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effective than future remedial measures. For
managers, these results can serve as an important
basis for formulating long-term greening policies
and fiscal investment plans, emphasising the
necessity of ‘early planning and sustained
investment." For designers, design standards
under future scenarios may need to be
‘dynamically upgraded,’ not relying solely on
current climate data but also incorporating future
temperature rise trends into redundant designs to
ensure the long-term adaptability and resilience
of the plans.
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CONCLUSIONS

This study presents a quantitative modelling of
the cooling capacity of trees wusing an
interpretable machine learning approach. It was
found that tree morphology showed a non-linear
relationship with environmental cooling, implying
that misuse of trees may exacerbate
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environmental overheating. The most significant
benefits of tree cooling can be achieved with high
trees (>8m) and reasonable coverage (18%-40%).
This study gives designers and city administrators
a quick assessment tool and guides the necessary
suggestions when designing trees. The outcome
of the study is a methodological framework for
long-term development and can be further
developed in the future based on the
crowdsourcing network approach. Finally, the
study warns that future global warming may lead
to more significant tree demand in mitigating
environmental overheating risks.
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