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Landscape and urban designers strive to create urban forests to mitigate urban heat. 

However, research has found that the cooling effect of low or large trees varies, and tree 

misuse can negatively impact land surface temperature (LST). Existing research remains 

unclear on how tree canopy morphology controls LST at neighboring scales (below 1 km), 

a significant limitation in guiding design efforts. This study aims to provide designers 

with strategies for selecting canopy morphology to optimize the thermal environment. The 

study extracted data from 5.8 million trees in Greater London, including height, 

variability, and canopy area. The LST data (2015-2019) was acquired from Landsat 8 

using Google Earth Engine. An interpretable machine learning approach was employed 

in the study using the XGBoost model and SHAP tool (500 m grid, n=6,079). The results 

explained 83% of the LST phenomena. From the training results, it was found that high 

trees (>8m) and reasonable canopy cover (18%-40%) could achieve the greatest benefits 

from tree cooling. The study also simulates future extreme heat scenarios through the 

proposed framework. It has been found that global warming may result in extra trees 

being planted in the future to achieve the cooling effect. Finally, the study discusses how 

the framework can be applied to practical design work and proposes a long-term 

development plan based on a crowdsourcing approach. 

Keywords: Tree canopy morphology, Land surface temperature, Nonlinear 

Relationships, Interpretable machine learning, Climate change.

INTRODUCTION 
Global warming poses a serious threat to the 
health of the world's population, and its effects 
have intensified in recent years. The World 
Meteorological Organisation (WMO) recently 
warned that the objective of the 2015 Paris 
Climate Change Conference to limit global 
warming to a 1.5°C increase is nearly unattainable 
(Polya, 2023). Global warming brings frequent 
extreme temperatures, causing increased disease 

burdens for the residents. Governments around 
the world need larger budgets each year to 
mitigate the threats from global warming (Lenton 
et al., 2023). In recent years, city managers and 
designers have explored low-cost strategies to 
mitigate urban high temperatures and reduce the 
of heat exposure to residents. Enhancing urban 
vegetation systems, particularly optimizing the 
urban tree layout, has become a commonly 
adopted approach (Tan et al., 2016). Trees in cities 
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are core green infrastructure that considered an 
effective way to mitigate urban heat (He et al., 
2024). Landscape and urban designers have 
attempted to create urban forests in their project 
(Gill et al., 2007). However, recent research 
indicates that tree canopies have a complex effect 
on air ventilation and heat retention (Dong et al., 
2022). Dwarf and large trees have different 
cooling effects, and the misuse of trees can 
negatively affect land surface temperature (LST) 
(He et al., 2024). Designers estimate the trees in 
their proposals from past design experience. 
However, the lack of quantitative modelling 
makes it hard for trees to mitigate environmental 
overheating.  

In past design processes, the general 
approach has used Computational Fluid 
Dynamics (CFD) models to simulate the 
distribution of airflow and heat storage on the site 
(Gülten et al., 2016). However, the large 
computational resources and time costs of CFD 
modelling significantly hinder the progress of the 
design work (Jurado et al., 2022). Although 
designers work on projects at micro to medium 
community scales (<1km²), they normally need to 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

discuss the impacts of their projects on their 
region or even the whole city. With current 
technological tools, frequent simulations are 
complex to implement quickly and iteratively. 
Simulation-based results are generally 
challenging when describing a real environmental 
situation. Research emphasizes that the city is a 
dynamic system with micro-climate zones 
composed of physical forms (such as buildings, 
topography, and water bodies) (Demuzere et al., 
2019; Pellegatti Franco et al., 2019).  

Therefore, this study aims to provide an 
efficient tool to assist designers with tree design 
in their projects to mitigate the overheating risk. 
Interpretable machine learning were created from 
5.8 million tree morphology data from the Greater 
London region. The completed trained models 
can provide recommendations on how tree 
morphology can be controlled for LST at 
neighbourhood scales (up to 1km). The study also 
provides a framework for responding to future 
global warming and urges city managers and 
planners to consider what is reasonable for cities 
to mitigate urban overheating.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 
Map of LCZ 
distribution in the 
study area 
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DATA AND METHODS 

Data 
The core data sources of the study are urban land 
surface temperature and tree canopy maps. For 
the LST, the study obtained Landsat8 data from 
Google Earth Engine (GEE), which can have a 
spatial resolution of 30 metres (Ermida et al., 
2020). The study obtained the urban tree canopy 
maps from the Bluesky National Tree Map (NTM) 
(Bluesky Ltd, 2025). The NTM data provides 
canopy height, area, and variability data for 5.8 
million trees in Greater London using vector 
geographic information files (.shp) and records 
the geographic coordinates for each tree. 

For the background environmental 
parameters of the study area, the Local Climate 
Zone (LCZ) framework proposed by Demuzere 
was selected for the study (Demuzere et al., 2019).  

 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

LCZs are an approach that describes the local 
microclimate, replacing the long-term climatic 
context at the macro scale (Aslam and Rana, 
2022). The LCZ was calculated based on the urban 
form (height, density), sky view factor (SVF), and 
surface cover (pervious and impervious) within 
the study area, with a resolution of 100 m. A total 
of 17 categories are included in the LCZ 
framework, with 10 for building clusters (compact 
high-rise buildings, compact low-rise buildings, 
open low-rise buildings, heavy industry) and 7 for 
vegetation (dense trees, scattered trees, bare soil, 
water). Figure 1 shows the distribution of LCZs in 
the study area. 

Methods 
Figure 2 presents the workflow of the study, which 
is divided into three main steps. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2 
Workflow of the 
study 
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Step 1: Data acquisition and processing. 
Firstly, the study obtains the surface temperature 
from remote sensing satellite data. Satellites 
convert the electromagnetic digits received into 
spectral radiance, which can detect any 
electromagnetic energy emitted above absolute 
zero (K) (Ziaul and Pal, 2018). The brightness 
temperatures of the Landsat thermal infrared 
channel are provided by the U.S. Geological 
Survey (USGS) to Google Earth Engine (GEE). The 
Ermida study provided a standardised procedure 
for extracting Landsat data from GEE, which just 
required specifying the study boundary and 
retrieval period (Ermida et al., 2020). However 
data from satellites is challenging to provide a 
continuous image database, which is a common 
issue (Tang et al., 2021). Satellite return period 
limitations and the cloud coverage are important 
factors in determining the amount of available 
data. Firstly, the work of satellites is to orbit the 
earth and take images of the area they pass 
through, which means that satellites cannot 
record the data for a long time series in an area 
(Loveland and Irons, 2016). Secondly, the clouds 
have a debilitating effect on the computational 
results of LST. The studies in recent years have 
discussed how to weaken the effect of clouds and 
proposed algorithms to eliminate them, but it is 
still controversial (Alvarez-Mendoza et al., 2019). 
The reliability of land surface temperature data 
obtained from satellites has been a ongoing 
discussion topic, with many approaches proposed 
in the past. Typical approaches include advanced 
cloud removal algorithms and multi-source data 
fusion methods. These approaches generally aim 
to address data loss at specific points in time. 
However, filling in data for long time series 
generally requires very high computational costs. 
More importantly, the reliability of current 
methods still needs further discussion. In our 
research, the focus is on exploring the global 
trends in surface temperature distribution across 
the entire city, rather than specific local values. 
This approach aims to avoid the influence of 

extreme weather events, such as extreme 
heatwaves. Therefore, a more conservative 
approach remains to collect average surface 
temperature data over the past five years or 
longer. Therefore, in this study, the average LST 
data for the summer of the last five years (2015-
2019) were used to avoid the negative effects of 
missing data. Summer data was chosen because 
summer cloud cover is much lower than winter. 

For the canopy maps, the study extracted the 
canopy area, mean height, and height variation 
standard deviation (STD) from NTM for each tree. 
For LCZ maps, the data provided by Demuzere 
were stored using raster graphics (.tif). 
Step 2: Sample production and model training. 
In the second step, a sample pool was created for 
model training. For this study, samples were 
defined as map tiles divided using a square grid. 
The feature values for each sample were canopy 
morphology metrics (mean height, density, 
variability) and LCZ configuration. The mean 
annual summer average surface temperature was 
the target value for the sample. The sample size is 
commonly considered the unit of analysis, which 
is highly relevant to the research question 
(Esposito et al., 2023). In past research experience, 
the scale of the unit of analysis (sample size) is 
divided into three categories: street scale (10-100 
m), neighbourhood scale (100 m-1 km) and urban 
cluster scale (10-20 km) (Ferreira et al., 2021). 
Although past studies have not discussed the 
impact of scale on results much, the trade-off 
between sample size and sample quality needs to 
be considered. For machine learning models, an 
appropriate increase in sample size usually helps 
improve the model's accuracy (Rajput et al., 2023). 
However, if the study area is constant, expanding 
the sample size decreases the number of feature 
values within each sample. Therefore, based on 
experience considerations from past research 
(Anjos et al., 2020), a square grid with 500m sides 
(total number of grids 6,079) covering the whole 
of Greater London was used as the analysis unit 
for this study. 
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After sample production, the study created 
machine learning models using the eXtreme 
Gradient Boosting (XGBoost) algorithm. The 
SHapley Additive exPlanations (SHAP) approach 
was used to interpret the contribution of sample 
features in model training (Li, 2022). Using the 
SHAP interpreter coupled with the XGBoost 
model is a relatively common approach for recent 
interpretable machine learning (Vega García and 
Aznarte, 2020). In SHAP results, the user can 
access the contribution of the features to the 
model through their values on the Y-axis, which 
may be positive or negative (Ponce-Bobadilla et 
al., 2024). In this study, the X-axis represents a 
morphological indicator of the tree, such as the 
average height of the tree. The value on the Y-axis 
is a relative value that describes the contribution 
of the sample feature in the model (Li, 2022). In 
the feature dependency plot, when Y = 0 indicates 
that the contribution of the feature value to the 
model at this point will shift boundaries, resulting 
in a positive (Y > 0) or negative (Y < 0) transition. 
The study extracted the contribution of three 
parameters of trees in the model, including tree 
height, canopy cover, and tree height standard 
deviation. 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 

Step 3: Application and scenario modelling in 
the early design workflow. 

The third step discusses how the research results 
are involved in the daily workflow of designers 
and city managers. The study proposes plans for 
further development and how the demands of the 
various stakeholders can be met. Finally, the study 
modelled future extreme temperature scenarios 
and estimated tree demand. The study creates a 
counterfactual scenario by assuming that the 
average temperature in the future after global 
warming is the highest temperature from past 
summers (Chen et al., 2025). The study loaded the 
current tree distribution into the model and 
obtained the minimum demand of trees to 
achieve tree cooling under extreme temperatures. 

RESULTS AND DISCUSSIONS 

Model training results 
After 100 iterations, the model achieved a 
predictive capability of 0.83, with the training 
results explaining 83% of the LST phenomenon 
(training R² = 0.83, training MAE = 0.85°C; testing 
R² = 0.83, testing MAE = 0.86°C).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 
Feature 
dependency 
scatterplot 
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Figure 3 shows the feature dependency 
scatterplot generated by the SHAP approach to 
explain the variation in the contribution of feature 
values in the model predictions. The results 
(Figure 3) found that low trees did not appear to 
cool the site significantly but instead promoted 
temperature increases. The cooling effect of trees 
occurred when the average tree height was higher 
than 8 metres (Figure 3a). It was found that tree 
height variation and canopy coverage also have 
an important effect on temperature.  

Figure 3b shows that a minimum of 18 % 
canopy coverage in the site achieves a cooling 
effect. However, when the canopy cover exceeds 
40%, the cooling effect tends to peak. 

For tree height differences, figure 3c shows 
that the cooling effect starts to appear when the 
canopy height difference is higher than 3 metres. 
Figures 3d,e, and f show the feature dependency 
plots with interaction. It was found that larger 
height variations commonly accompanied higher 
trees in the study area and showed a clustered 
pattern. Scattered and low trees could not 
contribute to temperature reduction but, instead, 
may exacerbate the increase in temperature. 

Framework application scenarios 
Framework development strategies. 

The study's outcomes can provide 
recommendations for urban landscape policy-
making, especially tree design, including current 
status studies and future forecasting. Green 
infrastructure in cities frequently involves a wide 
range of stakeholders, including designers, city 
managers, and scholars. The study recognises that 
the purposes for using the research results are 
diverse for different stakeholders. 

Figure 4 presents the research development 
blueprint, describing how stakeholders can use 
and further develop the results from the research. 
The study proposes a crowdsourcing-based 
framework for the sustainable development of 
the study outcomes. The crowdsourcing 
approach is relatively common in geographic 

research, such as encouraging users to generate 
LCZs of the study area using the LCZ map 
generator and share them with the community 
(Demuzere et al., 2021). The study defined three 
user groups: managers, designers and 
researchers. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
For urban managers, the study provides a 

quantitative analysis model based on a macro-
scale approach, which can be used to assess the 
overall tree distribution and thermal environment 
of a city. By integrating regional-scale canopy 
distribution, land surface temperature (LST), and 
local climate zone (LCZ) data, the model can 
generate comprehensive green space distribution 
strategies and cooling potential assessments, 
helping managers identify high-temperature risk 
areas, areas with insufficient tree coverage, and 
the impact of urban expansion on the thermal 
environment. Based on this, managers can set 
landscaping targets for different districts and 
formulate long-term goals for green 
infrastructure development. For example, using 
the model's preliminary training results, managers 
can quantify the minimum tree coverage, and 
structural indicators (such as tree height and 
crown density) required for each district and 
conduct a comparative analysis with current data 

Figure 4 
The research 
development 
blueprint 
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to scientifically formulate landscaping policies 
and investment priorities. Additionally, when 
urban data is missing or outdated, managers can 
utilise similar cases from other cities within the 
platform as references, leveraging analogy 
mechanisms to assist in decision-making 
validation. 

For urban designers, the research provides 
scientific tools to support the entire process from 
conceptual design to detailed design. Designers 
can simulate the cooling effects of different tree 
quantities and forms on a 500-metre grid to 
determine the minimum landscaping intervention 
scale required to achieve a certain cooling target. 
This model enables designers to quickly generate 
green space configuration strategies in the early 
stages of a project for conceptual design 
derivation and multi-option comparison. In the 
later stages of design development, designers can 
use the model's recommended criteria to 
quantitatively control tree species selection, 
layout methods, and spatial density, thereby 
transitioning from ‘greening recommendations’ 
to ‘implementation standards.’ Additionally, the 
platform's crowdsourced case library helps 
designers draw on design experiences from sites 
with similar climates, topography, and functions, 
assisting them in optimising their current design 
strategies. 

For researchers, this research platform also 
offers a highly scalable open architecture. 
Researchers can not only use existing models for 
local validation but also further expand model 
functionality and develop new application 
scenarios based on existing data. For example, 
counterfactual modelling and scenario simulation 
methods can be introduced to explore potential 
tree configuration needs for different cities under 
future global warming scenarios, or to analyse 
fairness issues in green space distribution under 
different administrative systems. Additionally, 
researchers can integrate their own research 
outcomes (such as new remote sensing 
processing methods, machine learning models, or 

urban classification systems) into the platform, 
participate in platform development and 
technological evolution, thereby establishing an 
iterative mechanism of ‘research-development-
research.’ Through crowdsourcing mechanisms, 
researchers can also aggregate case data from 
different cities and scales to train models with 
greater universality or adaptability, thereby 
supporting cross-city comparative studies and 
the development of global urban green policies. 

Although the purpose of each user group 
differs, it is inevitable that databases and model 
training are required for all users. As a link of 
interest for each user group, the database is 
crowdsourced by administrators and the 
necessary technical support is provided. 
Designers and researchers can easily access the 
GEE and process the data using the platform. The 
shared cloud data can be used as a grassroots 
database for further model development and will 
be continuously iterated. A potential advantage 
of crowdsourced data is that it can be used as a 
reference. Similar background cases can be a 
better reference when the study area faces 
extreme data loss. 
Scenario simulation. 

As a further demonstration, the study conducted 
a test from the perspectives of researchers and 
managers. The study simulated a future global 
warming scenario. Figure 5 shows the distribution 
of tree cooling effects for the high-temperature 
scenario. The study found that global warming 
may result in more trees requiring planting in the 
future to achieve the cooling effect. Relative to 
existing trees, in the future, global warming may 
result in the need for a 27.78% increase in canopy 
coverage, a 3.08% increase in height, and a 10.23% 
increase in height difference (Figure 5).  

This simulation not only provides designers 
and managers with quantitative references but 
also serves as a warning signal for ‘green lag’: the 
costs of passive adaptation to climate warming 
will continue to rise, and early intervention in 
green infrastructure construction is more cost-
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effective than future remedial measures. For 
managers, these results can serve as an important 
basis for formulating long-term greening policies 
and fiscal investment plans, emphasising the 
necessity of ‘early planning and sustained 
investment.’ For designers, design standards 
under future scenarios may need to be 
‘dynamically upgraded,’ not relying solely on 
current climate data but also incorporating future 
temperature rise trends into redundant designs to 
ensure the long-term adaptability and resilience 
of the plans. 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

CONCLUSIONS 
This study presents a quantitative modelling of 
the cooling capacity of trees using an 
interpretable machine learning approach. It was 
found that tree morphology showed a non-linear 
relationship with environmental cooling, implying 
that misuse of trees may exacerbate 

environmental overheating. The most significant 
benefits of tree cooling can be achieved with high 
trees (>8m) and reasonable coverage (18%-40%). 
This study gives designers and city administrators 
a quick assessment tool and guides the necessary 
suggestions when designing trees. The outcome 
of the study is a methodological framework for 
long-term development and can be further 
developed in the future based on the 
crowdsourcing network approach. Finally, the 
study warns that future global warming may lead 
to more significant tree demand in mitigating 
environmental overheating risks. 
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