

**Are human hands and feet affected by climate? A test of
Allen's Rule.**

Journal:	<i>American Journal of Physical Anthropology</i>
Manuscript ID:	AJPA-2014-00354.R1
Wiley - Manuscript type:	Research Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Betti, Lia; University of Roehampton, Department of Life Sciences Lycett, Stephen; University of Buffalo, Department of Anthropology von Cramon-Taubadel, Noreen; University of Buffalo, Department of Anthropology Pearson, Osbjorn; University of New Mexico, Anthropology
Key Words:	neutral variation, cold adaptation, phenotypic plasticity, selection
Subfield: Please select your first choice in the first field.:	Human biology [living humans; behavior, ecology, physiology, anatomy], Bioarchaeology [including forensics]

SCHOLARONE™
Manuscripts

Are human hands and feet affected by climate? A test of Allen's Rule.

Lia Betti^{1*}, Stephen J. Lycett², Noreen von Cramon-Taubadel², Osbjorn M. Pearson³

¹ Centre for Research in Evolutionary and Environmental Anthropology, Department of Life Sciences, University of Roehampton, London, SW15 4JD, UK.

² Department of Anthropology, University at Buffalo, SUNY, Buffalo, NY 14261, USA.

³ Department of Anthropology, University of New Mexico, Albuquerque, NM 87131, USA.

*Email: Lia.Betti@roehampton.ac.uk

13 pages of text, 8 pages of bibliography, 4 tables, 6 supplementary tables, 4 figures.

Abbreviated title: Are hands and feet affected by climate?

Keywords: neutral variation; selection; cold adaptation; phenotypic plasticity.

Proofs to be sent to:

Lia Betti

Department of Life Sciences

University of Roehampton

Holybourne Avenue

London SW15 4JD

E-mail: Lia.Betti@roehampton.ac.uk

Abstract**Objectives**

In recent years, several studies have shown that populations from cold, high-latitude regions tend to have relatively shorter limbs than populations from tropical regions, with most of the difference due to the relative length of the zeugopods (i.e. radius, ulna, tibia, fibula). This pattern has been explained either as the consequence of long-term climatic selection or of phenotypic plasticity, with temperature having a direct effect on bone growth during development. The aims of this study were to test whether this pattern of intra-limb proportions extended to the bones of the hands and feet, and to determine whether the pattern remained significant after taking into account the effects of neutral evolutionary processes related to population history.

Materials and Methods

Measurements of the limb bones, including the first metatarsal and metacarpal, were collected for 393 individuals from 10 globally distributed human populations. The relationship between intra-limb indices and minimum temperature was tested using generalized least squares regression, correcting for spatial autocorrelation.

Results

The results confirmed previous observations of a temperature-related gradient in intra-limb proportions, even accounting for population history. This pattern extends to the hands, with populations from cold regions displaying a relatively shorter and stockier first metacarpal; however, the first metatarsal appears to be wider but not shorter in cold-adapted populations.

Discussion

The results suggest that climatic adaptation played a role in shaping variation in limb proportions between human populations. The different patterns shown by the hands and feet might be due to the presence of evolutionary constraints on the foot to maintain efficient bipedal locomotion.

1
2
3 Studies from across anthropology and human biology have long suggested a causal
4
5 relationship between climate and human body size and its proportions (Ridgeway, 1908; Roberts,
6
7 1953; Schreider, 1964). Human groups living in cold climatic conditions appear to have larger overall
8
9 body mass (e.g., Roberts, 1953; Ruff, 1994; Katzmarzyk and Leonard, 1998; Leonard and Katzmarzyk,
10
11 2010) conforming to the basic predictions of Bergmann's ecogeographic "rule" (Bergmann, 1847).
12
13 When average body dimensions are compared among populations from different geographic areas,
14
15 people living in cold, high-latitude regions appear to have wider hips (Ruff, 1993, 1994, 1995;
16
17 Holliday, 1997b; Weaver and Hublin, 2009; Holliday and Hilton, 2010) and relatively shorter arms
18
19 and legs in respect to populations from hot, tropical regions (Coon, 1962; Roberts, 1978; Trinkaus,
20
21 1981; Ruff, 1994, 2002; Holliday, 1997a,b, 1999, 2002; Tilkens et al., 2007; Holliday and Hilton,
22
23 2010). A similar pattern had been previously described in other endothermic animals and is often
24
25 referred to as Allen's (1877) rule, whereupon comparison of closely related species or subspecies
26
27 shows that high-latitude species tend to display shorter appendages, including ears and tail, than
28
29 low latitude ones (e.g., Niles, 1973; Lindsay, 1987; Rasmussen, 1994; Fooden and Albrecht, 1999;
30
31 Nudds and Oswald, 2007).
32
33
34

35 This pattern of geographic variation in body proportions has often been explained as the
36
37 result of climate-related adaptation. At parity of volume, more elongated shapes have a higher
38
39 surface-to-volume ratio. As body heat in endotherms is generated internally and dissipated at the
40
41 surface, a high surface-to-volume ratio would facilitate heat dissipation, therefore being adaptive in
42
43 hot climates; on the other hand, a low ratio, as resulting from shorter and stockier extremities,
44
45 would promote heat retention and have adaptive value in cold climates. What is less clear, however,
46
47 is to what extent this adaptation is the result of long-term genetic selection or environmentally-
48
49 mediated plasticity. This latter explanation is underpinned by studies showing the short-term effects
50
51 of environmental factors such as nutrition, stress and altitude in regulating childhood limb
52
53 proportions when genetically-similar populations are compared (e.g., Stinson and Frisancho, 1978;
54
55 Pomeroy et al., 2012, 2013).
56
57
58
59
60

1
2
3 Regardless of the underlying mechanism, when this adaptive rationale is applied to humans,
4
5 the more elongated body and longer limbs of tropical populations can be interpreted as an
6
7 adaptation to more efficient heat dissipation, while the more compact body shape of high-latitude
8
9 populations could be advantageous by retaining more metabolic heat in cold climates. Interestingly,
10
11 the reduction in relative limb length in high-latitude populations is not achieved by a general
12
13 shortening of all limb bones; instead, a reduction in the length of the zeugopods (i.e. radius, ulna,
14
15 tibia and fibula) seems to be largely responsible for the difference (Trinkaus, 1981; Ruff and Walker,
16
17 1993; Ruff, 1994; Ahlström, 1997; Holliday and Ruff, 2001; Béguelin, 2011; Pomeroy et al., 2012,
18
19 2013; but see Porter, 1999).

22 Experimental evidence for the link between human body proportions and efficiency in heat
23 dissipation was described in a study by Tilkens and colleagues (2007). They compared resting
24 metabolic rate in individuals of various relative limb lengths under different temperatures. The
25 predictions of the study were that, if longer-limbed individuals were more efficient in dissipating
26 heat than shorter-limbed ones, they would show a larger increase in resting metabolic rate following
27 a drop in ambient temperature in order to maintain stable body temperature. The results showed a
28 significant correlation between resting metabolic rate and body proportions, therefore supporting
29 the causal relationship underlying Allen's rule (Tilkens et al., 2007).

39 Differences in body proportions between populations have been shown to appear early in
40 life. For example, differences in body proportions between Inuit and Aleut on one side, and lower
41 latitude populations on the other side, appear very early in childhood (Y'Edynak, 1976); the same
42 seems to be true for Australian aboriginal body proportions (Eveleth and Tanner, 1976) and limb
43 proportions in prehistoric Japanese from the Jomon period (Temple et al., 2011). Moreover,
44 differences in limb proportions and relative pelvic width between African-American and European-
45 American groups were shown to appear during early fetal development (Schultz, 1923, 1926), and
46 the difference in crural index (tibial length / femoral length) between South Africans and Europeans
47 seems to persist from birth through adulthood (Frelat and Mitterecker, 2011). Finally, a larger
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 comparative study of body size and shape in populations from different continents recently
4
5 confirmed that population differences in both bi-iliac breadth and intra-limb proportions, and their
6
7 correlation with climate, are already present in immature individuals and persist throughout growth
8
9 (Cowgill et al., 2012). The results of such studies imply a strong genetic component of climatic
10
11 adaptation, suggesting the action of natural selection (Holliday, 1997a).

12
13 Although directional selection and the resulting genetic variation between populations has
14
15 long been the favored explanation for latitudinal differences in relative limb proportions, several
16
17 studies have also highlighted a direct effect of temperature on skeletal growth in non-human
18
19 endotherms raised in experimental conditions, which for the limbs matches the prediction of Allen's
20
21 rule (Ashoub, 1958; Lee et al., 1969; Weaver and Ingram, 1969; Riesenfeld 1973; Al-Hilli and Wright,
22
23 1983; Rae et al., 2006; Serrat et al., 2008, 2009; Serrat, 2013). Serrat (2013) and Serrat et al. (2008),
24
25 for example, showed that temperature has a direct effect on limb bone growth in mice, particularly
26
27 accentuated during the early postnatal development. Their results suggest a direct negative
28
29 influence of low environmental temperature on cartilage growth, which, as a precursor of bone, in
30
31 turn affects bone elongation in animal limbs.

32
33
34
35 Despite the evidence of population differences in body and limb proportions at early
36
37 developmental stages, which suggests a genetic basis, phenotypic plasticity could still be a
38
39 contributing factor. A recent study found significantly different body proportions between highland
40
41 and lowland Peruvian populations present throughout ontogeny (Pomeroy et al., 2012). The two
42
43 populations are expected to be genetically close, so the differences are possibly due to early
44
45 exposure to different environmental conditions such as temperature and diet. Separating the effects
46
47 of climate on skeletal morphology through plastic reactions from the long-term effects of directional
48
49 natural selection is extremely difficult, and the question of how these factors interact in shaping
50
51 human morphology is still a matter of some debate (Bogin and Rios, 2003; Wells, 2012, Serrat,
52
53 2013).

Irrespective of the causal mechanism, however, we might expect that the pattern of shorter, more compact limb bones in cold regions be extended to the bones of the hands and feet. Indeed, if the differences in limb proportions are partly due to low temperature during bone development, we would expect the pattern to be particularly accentuated at the end of the extremities, which are further away from the core of the body and more susceptible to the effects of environmental temperature. The accentuated shortening of the zeugopods with respect to the stylopods (i.e. humerus and femur), as reported for high-latitude and high-altitude populations (e.g., Trinkaus, 1981; Ruff and Walker, 1993; Ruff, 1994; Pomeroy et al., 2012, 2013), seems to support this hypothesis. In addition, given that the autopods (hands and feet) are serial homologues, with a common genetic and developmental architecture (e.g. Reno et al., 2008; Rolian et al., 2010; Young et al., 2010), it might be expected that they exhibit the same pattern of association with temperature variation.

There has been limited research on the effect of climate on human and hominin hands and feet. Previous research has shown that climate correlates with the thickness of long bone diaphyses relative to length as well as the size of their articular regions relative to length (Schwidetzky, 1979; Collier, 1989; Ruff, 1994; Pearson, 2000; Pearson and Millones, 2005). The bones of people from cold climates tend to be proportionately thicker and have proportionately larger epiphyses than those of people from warm climates. Stockier, more robust bones can also be interpreted as the result of Allen's rule, as an increase in thickness would have a similar effect on the surface-to-volume ratio to a decrease in length. Pearson (2000) found that this pattern is also valid for the diaphyses of the first metatarsal and third metacarpal, but not the shaft of the first metacarpal, and Pearson and Busby (2006) showed that the stout first metatarsals of Neanderthals resembled those of Holocene populations from cold regions. A comparative study of the shape of the second metacarpal in Inuit and European-American populations also revealed significant differences between the two samples, the Inuit metacarpal being shorter and wider than in European-Americans (Lazenby and Smashnuk, 1999). The results are suggestive, but the limited scope of the study (based on only two populations)

1
2
3 makes it impossible to evaluate if this difference in shape is due to climate, or whether it is simply
4
5 due to neutral genetic differences accumulated after the two populations diverged during the
6
7 expansion of humans out of Africa (Henn et al., 2012).
8

9 Human populations that live in geographic proximity tend to experience similar climatic
10
11 conditions as well as a shared population history, the latter resulting in genetic and consequently
12
13 phenotypic similarity. In a comparable fashion, populations from distant geographic regions tend to
14
15 be genetically more dissimilar as well as often experiencing different climates (Roseman and
16
17 Auerbach, 2015). The collinearity between genetic distance and climatic distance, due to the
18
19 relationship of both variables with geographic distance, can have a confounding effect, leading to a
20
21 spurious correlation between phenotypic characteristics, which are directly affected by underlying
22
23 genetic differences, and climate (von Cramon-Taubadel, 2014; Roseman and Auerbach, 2015). To
24
25 avoid this problem when testing for the effects of climate on the phenotype, it is essential to take
26
27 into account the pattern of similarity between populations due to shared population history, as
28
29 expected under a neutral model of genetic and phenotypic evolution (e.g., see Roseman, 2004).
30
31 Unfortunately, previous tests of the validity of Allen's rule in humans have not accounted for the
32
33 underlying neutral pattern of variation, leaving open the question of how much of the suggested
34
35 signature of climatic adaptation is indeed due to climate as opposed to neutral demographic
36
37 processes.
38

39 Given the foregoing, the aims of this study are two-fold:
40
41

- 42 1) To re-evaluate the effects of climate on human variation in limb proportions, while taking
43
44 into account the underlying neutral pattern due to past population history;
- 45 2) If the pattern of climate-related variation in limb proportion is confirmed, with lower crural
46
47 (tibial length / femoral length) and brachial (radial length / humeral length) indices in high-latitude
48
49 populations, to test if such pattern extends to the hands and feet.

50
51
52
53
54
55 **Materials and Methods**
56
57
58
59
60

1
2 Measurements of the limb bones were collected by LB and OP for 393 individuals from a
3 geographically and climatically diverse set of human populations (Table 1, Figure 1). The
4 measurements included the maximum length of the femur, tibia, humerus and radius, as well as the
5 breadth of the distal epiphysis and the maximum length of the first metacarpal and of the first
6 metatarsal (see Table S1 for the populations' mean and standard deviation). Unilateral data were
7 collected preferentially for the left limb, except in cases where the right limb showed better
8 preservation. The measurements were used to calculate a series of indices, which are informative of
9 limb proportions and metapodial shape (Table 2, Table S2). Crural and brachial indices were
10 calculated in order to verify previous suggestions that high-latitude populations tend to have
11 relatively shorter zeugopods than tropical populations. To evaluate if this pattern extended to the
12 feet, we computed the length of the first metatarsal relative to the maximum length of the femur
13 and the tibia (Foot Index 1 and Foot Index 2). Similar indices were calculated for the first metacarpal,
14 in respect to the humerus and radius (Hand Index 1 and Hand Index 2). Finally, to evaluate if climate
15 had an effect on the general shape of the metapodials, the ratio between epiphyseal breadth and
16 maximum length was calculated for the first metatarsal and the first metacarpal.
17
18

19 Adult individuals of both sexes were included in the study and analyzed together. Males
20 tend to have bigger bones than females, due to body size sexual dimorphism and higher male
21 robusticity. However, by using indices we effectively standardize the measurements by size, making
22 males and females more directly comparable. Sexual dimorphism in robusticity might still have an
23 impact on the shape of the metapodials, where breadth and length are compared. Moreover, it is
24 possible that the two sexes show slightly different limb proportions (Trinkaus, 1981; Aiello and Dean,
25 1990; Ruff, 1994). Although we do not expect these differences to be stronger than between-
26 population differences, their effect on the analyses could increase the amount of noise and partially
27 obscure the general pattern. In order to account for this possibility, we have repeated the analyses
28 for the male and female dataset separately.
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 The analyses were run on modern human data (Table 1). Due to incomplete preservation of
4
5 some of the skeletons, especially in the archeological samples, missing data meant that the sample
6
7 size for the various indices was lower than the total number of studied individuals. The minimum
8
9 sample size in the different analyses was seven individuals in the combined sex dataset (Fuegians).
10
11

12 To test for the effects of climate, the average minimum temperature of the coldest month
13
14 for all populations was obtained from WorldClim (www.worldclim.org, Hijmans et al. 2005) as
15
16 interpolated GIS layers at 30arc-second definition (ca. 1 km). Minimum temperature was chosen as a
17
18 general indicator of climate for two reasons: Allen's rule specifically addresses the effects of
19
20 temperature on body proportions, and minimum temperature consistently showed a stronger effect
21
22 than maximum temperature in previous analyses of human skeletal variation (Betti et al. 2010,
23
24 2014). Population averages for the various indices were regressed on minimum temperature, to test
25
26 for a relationship between climate and limb proportions. The regression was computed by
27
28 Generalized Least Square analysis (GLS, function *gls* in library *nlme*), using the R software version
29
30 3.1.1 (R Core Team, 2014).
31
32

33 Geographically closer populations tend to be genetically more similar to each other (e.g.,
34
35 Relethford 2004b; Ramachandran et al., 2005; Liu et al., 2006), due to shared population history and
36
37 gene flow, and we can expect that this genetic similarity will be reflected in phenotypic similarity. To
38
39 account for this underlying similarity pattern, which could have a confounding effect on the
40
41 analyses, spatial autocorrelation was explicitly included in the regression model (as in Betti et al.,
42
43 2014). Pair-wise geographic distances between populations were calculated using great circle
44
45 distances, based on the haversine (Sinnott, 1984), using waypoints to avoid long-distance sea-
46
47 crossings (Betti et al., 2012). The GLS algorithm can calculate pair-wise geographical distances from
48
49 spatial coordinate data, computing Euclidean distances between coordinate points. However,
50
51 overland distances between human populations, corresponding to likely routes of expansion and
52
53 migration, are effectively non-Euclidean distances. To overcome this problem, Multi Dimensional
54
55 Scaling (MDS) was applied to the original matrix of overland geographic distance, in order to extract
56
57
58
59
60

a number of orthogonal axes to be used as new spatial coordinate axes. Four MDS axes were selected and used as spatial coordinates for the GLS analysis. A Mantel test confirmed that original and new distances, calculated from the MDS variables, were highly correlated ($r = 0.999$, $p < 0.001$). Different autocorrelation structures were fitted to the data within the GLS model, and an ANOVA test was carried out to test the significance of the contribution of each spatial autocorrelation structure to the model. When adding a significant improvement, the structure associated with the largest decrease in AIC (Akaike Information Criterion; Akaike, 1973) was chosen for the analyses. In the absence of a significant effect of spatial autocorrelation, the model would become a simple regression.

Results

The results show that the crural and brachial indices vary according to temperature in modern human populations (Figure 2, Table 3). Confirming the results of previous studies, high-latitude populations tend to have a shorter tibia and radius in respect to the proximal limb bones. This pattern is still valid even after taking into account spatial autocorrelation due to past population history.

There is some evidence that males tend to have a higher brachial index than females (Trinkaus, 1981; Aiello and Dean, 1990; Ruff, 1994). Sexual dimorphism could have, in principle, a confounding effect on these analyses, especially as the proportion of males and females is not the same in all population samples. However, repeating the analyses on male and female individuals returned comparable results (Tables S3 and S4).

A similar effect of climate appears to extend to the hands, but not the feet. The first metacarpal is relatively shorter in populations inhabiting cold regions in respect to tropical populations, when compared to humeral length (Hand Index 1). However, no significant difference can be detected when metacarpal length is computed relative to radial length (Hand Index 2). The results suggest that the length of the first metacarpal is affected by climate in the same way as the radius, but its more peripheral position is not reflected in a more extreme reduction in length in

1
2
3 respect to the radius. The length of the first metatarsal, on the other hand, does not appear to be
4
5 significantly affected by climate (Figure 3, Table 3).
6

7 Despite the different way in which climate seems to have affected relative metatarsal and
8 metacarpal length, the shape of both bones follows the prediction of Allen's rule: the two
9 metapodials are significantly stockier in populations from cold area in respect to warm areas (Figure
10 4, Table 3). The difference in metapodial robusticity in human populations could also be an indirect
11 consequence of a general increase in body size and robusticity in cold environments, a pattern
12 previously identified in human populations and usually referred to as Bergmann's (1847) rule
13 (Roberts, 1978; Ruff, 1994; Holliday, 1997a, 1997b; Pearson, 2000). Both Allen's and Bergmann's
14 rules stem from the same principle: both an isometric increase in body size and shorter, stockier
15 extremities will reduce the surface-to-volume ratio of the body, and favor heat retention in cold
16 environments.
17
18

19 When the two sexes are analyzed independently, the female dataset does not show a
20 significant relationship between the length and shape of the metacarpal and temperature (Table S4).
21 Given the fact that the female dataset is smaller than the male dataset and includes fewer
22 populations, it is possible that this difference is simply due to the reduced and less representative
23 female sample size.
24
25

26 To evaluate from a different angle the co-variation in length between the different bones,
27 we calculated the variance, covariance, and correlation (i.e. standardized covariance) for the studied
28 limb segments (Table 4; Tables S5 and S6 present sex-specific results). The results show that limb
29 bone lengths tend to show the highest correlation with the homologous bone in the other limb, as
30 opposed to other bones within the same limb. These results support the hypothesis that different
31 evolutionary processes affect the various limb segments differently. The lowest correlation between
32 homologous segments is the one between the two metapodials, in accordance with the different
33 patterns identified in the climatic regression analyses.
34
35

36 Discussion 37 38

1
2
3 This study adds to the body of evidence of a temperature gradient in limb proportions in
4
5 human populations. A correlation between crural and brachial indices and minimum temperature
6
7 holds true even when taking into consideration the neutral pattern of variation due to past
8
9 population history. Spatial autocorrelation is the natural outcome of gene flow and recent shared
10
11 ancestry between geographically close populations, and it would be expressed through the genetic
12
13 component of phenotypic variation. However, this study could only detect a significant spatial
14
15 autocorrelation for the crural index. This finding is consistent with the findings of Roseman and
16
17 Auerbach (2015) who also found that a model of population structure best described variation in
18
19 global crural indices, while brachial indices were best related to a model that included both
20
21 population structure and latitude.
22
23

24
25 This lack of spatial autocorrelation is surprising, as a number of recent studies have
26
27 highlighted a significant and substantial signature of population history in cranial and pelvic global
28
29 human variation (Relethford, 2004a,b; Roseman, 2004; Harvati and Weaver, 2006; Manica et al.,
30
31 2007; von Cramon-Taubadel and Lycett, 2008; von Cramon-Taubadel, 2009, 2011a, 2014; Betti et al.,
32
33 2009, 2010, 2013, 2014). However, the preservation of a neutral population history signature in a
34
35 species' phenotypic variation can be affected by various processes (Roseman and Weaver, 2007),
36
37 including strong diversifying natural selection acting on the populations, and substantial phenotypic
38
39 plasticity (von Cramon-Taubadel 2011b, 2014). Both of these processes have been suggested to
40
41 affect the limbs. An alternative explanation for the lack of a consistent pattern of spatial
42
43 autocorrelation is that the small number of populations analyzed, and their scattered geographic
44
45 distribution, make it difficult to identify and model the underlying neutral pattern. Although both
46
47 explanations are possibly valid, other studies have revealed a weaker, if not absent, signature of past
48
49 population history on limb bones, in contrast to the cranium and the pelvis, even when a larger
50
51 number of populations was analyzed (Betti et al., 2012; von Cramon-Taubadel et al., 2013). This
52
53 suggests that the effects of selection and developmental plasticity on the limbs are likely to
54
55 contribute to the lack of a clear spatial autocorrelation pattern for many of the indices.
56
57
58
59
60

1
2
3 The role of climate in generating the described pattern is also supported by the fact that it
4
5 extends to the hands and feet, affecting the shape of the metapodials and the relative length of the
6
7 first metacarpal, in accordance with the predictions of Allen's rule. Although the shortening of distal
8
9 bones in cold regions extends to the metacarpal, the same is not true for the first metatarsal. On the
10
11 other hand, the *shape* of the metatarsal, as for the metacarpal, is significantly stockier (i.e., relatively
12
13 broader) in cold climates, suggesting that the preservation of the metatarsal length might be due to
14
15 evolutionary constraints and not to the lack of climatic selective pressures. One possible explanation
16
17 for the difference in the results for the metatarsal is the need to maintain a certain relative
18
19 metatarsal length for efficient bipedalism. This would suggest a functional constraint on foot
20
21 morphology not present (to the same extent) in the hand. Another possibility to consider is the
22
23 effect of cultural buffering via the extensive use of footwear. While cold-dwelling populations no
24
25 doubt also use insulating clothing on their hands in the form of gloves, the use of temperature-
26
27 relevant footwear may have been more ubiquitous throughout human prehistory as a means of
28
29 preventing debilitating tissue damage to feet during periods of seasonal or persistent low
30
31 temperature. On the basis of trends in pedal phalange gracility it has been estimated that the use of
32
33 human footwear dates back at least to the middle Upper Paleolithic (~40 kya) (Trinkaus and Shang,
34
35 2008).

36
37 It is interesting to note that the first metacarpal tends to be shorter in cold regions, but only
38
39 relative to the humerus and not to the radius. In other words, the reduction in the length of the
40
41 metacarpal in cold regions does not exceed the reduction of the radius, which means that the
42
43 process that generated the temperature-related difference, be it directional selection or plasticity, is
44
45 not stronger at the distal extremity of the limb. If temperature has a direct effect on bone elongation
46
47 during development, as shown by Serrat and colleagues in their experimental studies (Serrat et al.,
48
49 2008; Serrat, 2013), we would have expected that the hands and feet showed a particularly marked
50
51 difference in length in opposite climates, being further away from the core of the body and more
52
53 susceptible to the effects of environmental temperature. This is not the case. It is worth noting,
54
55
56
57
58
59
60

1
2
3 however, that there is evidence that recent polar populations have evolved physiological
4
5 adaptations that help the diffusion of body heat to the extremities, which could reduce the direct
6
7 effect of low environmental temperature (see e.g., Frisancho, 1993). Brown and colleagues (1953)
8
9 reported an increase in peripheral blood flow in Inuit individuals after exposure to low
10
11 temperatures, interpreted as an adaptation against frostbite. Similarly, Hildes and colleagues (1961)
12
13 found that a more efficient vasodilation in Inuit hunters increased heat flow to the hands in
14
15 comparison to men of European ancestry. Our findings are also consistent with those of Pomeroy et
16
17 al., (2012, 2013) whereby hand and foot size is protected from hypoxia during growth relative to the
18
19 zeugopod, which they attribute to a response analogous to a “thrifty phenotype”. Therefore, while
20
21 our results suggest that metacarpal dimensions are not being wholly protected from cold-mediated
22
23 adaptation in the same way as the metatarsal, the overall reduction in metacarpal length in cold-
24
25 adapted populations does not *exceed* that seen in the arm zeugopod.
26
27
28

29 It is also important to consider that the first metapodials might not be representative of the
30
31 other bones of the hand and feet. This is particularly true for the first metatarsal, which differs
32
33 remarkably in size and shape in respect to the other metatarsals, and has a more significant role in
34
35 support and propulsion during bipedal locomotion.
36
37

38 Other indirect evidence for a causal relationship between climate and limb bone proportions
39 comes from the fact that Neanderthals seem to fit the same trend as recent human populations,
40
41 showing hyper-polar proportions for the lower limb (see also Holliday, 1997a,b; Weaver, 2003). The
42
43 hyper-polar lower limb proportions of Neanderthals have been suggested to be the result of strong
44
45 natural selection during glacial periods. However, temperatures in Europe during glacial peaks would
46
47 likely have been less extreme than in polar regions inhabited currently by Inuit people. The lack of
48
49 evidence for footwear and the ability to make fitting clothes (Trinkaus, 2005; Gilligan, 2008) could
50
51 mean that Neanderthals had a lower level of cultural buffering in respect to later modern humans,
52
53 resulting in a higher selective pressure (Ruff 1994). On the other hand, Paleolithic anatomically
54
55 modern humans in Europe do not show a latitudinal pattern in limb proportions (Trinkaus, 1981;
56
57
58
59
60

1
2 Holliday, 1997a, 1999). The absence of climatic adaptation in these early European human
3 populations has been attributed to their relatively recent migration into higher latitudes from
4 warmer regions of Africa and the Near East, with limited time for natural selection to affect their
5 body shape (Holliday and Falsetti, 1995; Holliday 1997a). The absence of a short-term variation in
6 limb proportions with the colonization of colder, high-latitude regions might suggest a limited role of
7 phenotypic plasticity in driving geographical variation in human populations, and better support
8 long-term climatic adaptation through natural selection.
9
10

11 In summary, human limb bones proportions show a temperature-related gradient most
12 likely due to long-term climatic adaptation (instead or in addition to developmental plasticity), even
13 after accounting for past population history. This temperature gradient characterizes not only the
14 relative length of the zeugopods, but it extends to the hands and partially the feet. The difference
15 between the upper and lower limb extremities is surprising, as serially homologous structures would
16 be expected to vary in a similar fashion (e.g. Lande 1979; Cheverud 1996; Rolian et al., 2010), and
17 might be due to the presence of evolutionary constraints on the foot related to locomotory
18 efficiency. Indeed, the lengths of the two metapodials show a lower correlation than other
19 homologous limb segments, supporting the possibility that the two bones are shaped by different
20 processes. More in-depth studies will be necessary to test this specific hypothesis in the future.
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4
Literature Cited
5

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Aiello L, Dean C. 1990. An introduction to human evolutionary anatomy. London: Academic Press.
Ahlström T. 1997. Pitted-ware skeletons and Boreal temperatures. Lund Archaeological Review 3:37-48.
Akaike H. 1973. Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F, editors. Second international symposium on information theory. Budapest: Academiai Kiado. p 267-281.
Al-Hilli F, Wright EA. 1983. The effects of changes in the environmental temperature on the growth of tail bones in the mouse. Br J Exp Pathol 64:34-42.
Allen JA. 1877. The influence of physical conditions in the genesis of species. Radic Rev 1:108-140.
Ashoub MA. 1958. Effect of two extreme temperatures on growth and tail-length of mice. Nature 181:284.
Béguelin M. 2011. Variación geográfica en la morfología del esqueleto postcraneal de las poblaciones humanas de Pampa y Patagonia durante el Holoceno Tardío: una aproximación morfométrica (BAR International Series 2253). Oxford: Archaeopress.
Bergman C. 1846. Über die verhältnisse der warmeokonomie der thiere zu ihrer grosse. Gottingen Studien 1:595-708.
Betti L, Balloux F, Amos W, Hanihara T, Manica A. 2009. Ancient demography, not climate, explains within-population phenotypic diversity in humans Proc R Soc Biol Sci Ser B 276: 809-814.
Betti L, Balloux F, Hanihara T, Manica A. 2010. The relative role of drift and selection in shaping the human skull. Am J Phys Anthropol 141:76-82.
Betti L, von Cramon-Taubadel N, Lycett SJ. 2012. Human pelvis and long bones reveal differential preservation of ancient population history and migration out of Africa. Hum Biol 84:139-152.
Betti L, von Cramon-Taubadel N, Manica A, Lycett SJ. 2013. Global geometric morphometric analyses of the human pelvis reveal substantial neutral population history effects, even across sexes. PLOS One 8:e55909.

1
2
3 Betti L, von Cramon-Taubadel N, Manica A, Lycett SJ. 2014. The interaction of neutral evolutionary
4
5 processes with climatically-driven adaptive changes in the 3D shape of the human os coxae. *J Hum*
6
7 *Evol* 73:64-74.
8
9
10 Begun B, Rios L. 2003. Rapid morphological change in living humans: implications for modern human
11
12 origins. *Comp Biochem Physiol Part A* 136:71-84.
13
14 Brown GM, Hatcher JD, Page J. 1953. Temperature and blood flow in the forearm of the Eskimo. *J*
15
16 *App Physiol* 5:410-420.
17
18 Cheverud JM. 1996. Developmental integration and the evolution of pleiotropy. *Amer Zool* 36: 44-
19
20 50.
21
22 Collier S. 1989. The influence of economic behaviour and environment upon robusticity of the post-cranial
23
24 skeleton: a comparison of Australian Aborigines and other populations. *Archaeol Oceania* 24:17-30.
25
26 Coon CS. 1962. The origin of races. New York: Alfred A. Knopf.
27
28 Cowgill LW, Eleazer CD, Auerbach BM, Temple DH, Okazaki K. 2012. Developmental variation in
29
30 ecogeographic body proportions. *Am J Phys Anthropol* 148:557-570.
31
32 Eveleth PB, Tanner JM. 1976. Worldwide variation in human growth. Cambridge: Cambridge
33
34 University Press.
35
36 Fooden J, Albrecht GH. 1999. Tail-length evolution in *Fascicularis*-group macaques (Cercopithecidae:
37
38 *Macaca*). *Int J Primatol* 20:431-440.
39
40 Frelat MA, Mitterecker P. 2011. Postnatal ontogeny of tibia and femur form in two human
41
42 populations: a multivariate morphometric analysis. *Am J Hum Biol* 23:796-804.
43
44 Frisancho AR. 1993. Human adaptation and accommodation. Ann Arbor: U Michigan Press.
45
46 Gilligan I. 2008. Neanderthal extinction and modern human behaviour: the role of climate change
47
48 and clothing. *World Archaeol* 39:499-514.
49
50
51 Harvati K, Weaver TD. 2006. Human cranial anatomy and the differential preservation of population
52
53 history and climate signatures. *Anat Rec A* 288:1225-1233.
54
55
56
57
58
59
60

1
2 Henn BM, Cavalli-Sforza LL, Feldman MW. 2012. The great human expansion. *Proc Natl Acad Sci USA*
3
4 109:17758-17764.
5
6

7 Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate
8 surfaces for global land areas. *Int J Climatol* 25:1965-1978.
9
10

11 Hildes A, Irving L, Hart JS. 1961. Estimation of heat flow from hands of Eskimos by calorimetry. *J App*
12
13 *Physiol* 1:617-623.
14
15

16 Holliday TW. 1997a. Body proportions in Late Pleistocene Europe and modern human origins. *J Hum*
17
18 *Evol* 32:423-447.
19
20

21 Holliday TW. 1997b. Postcranial evidence of cold adaptation in European Neandertals. *Am J Phys*
22
23 *Anthropol* 104:245-258.
24
25

26 Holliday TW. 1999. Brachial and crural indices of European Late Upper Paleolithic and Mesolithic
27 humans. *J Hum Evol* 36:549-566.
28
29

30 Holliday TW. 2002. Body size and postcranial robusticity of European Upper Paleolithic hominins. *J*
31
32 *Hum Evol* 43:513-528.
33
34

35 Holliday TW, Falsetti AB. 1995. Lower limb length of European early modern humans in relation to
36 mobility and climate. *J Hum Evol* 29:141-153.
37
38

39 Holliday TW, Hilton CE. 2010. Body proportions of circumpolar peoples as evidenced from skeletal
40 data: Ipiutak and Tigara (Point Hope) versus Kodiak Island Inuit. *Am J Phys Anthropol* 142:287-302.
41
42

43 Holliday TW, Ruff CB. 2001. Relative variation in human proximal and distal limb segment lengths.
44 *Am J Phys Anth* 116:26-33.
45
46

47 Katzmarzyk PT, Leonard WR. 1998. Climatic influences on human body size and proportions:
48 Ecological adaptations and secular trends. *Am J Phys Anthropol* 106:483-503.
49
50

51 Lande R. 1979. Quantitative genetic analysis of multivariate evolution, applied to brain: body size
52 allometry. *Evolution* 33:402-416.
53
54

55 Lazenby R, Smashnuk A. 1999. Osteometric variation in the Inuit second metacarpal: a test of Allen's
56 rule. *Int J Osteoarchaeol* 9:182-188.
57
58
59
60

1
2
3 Lee MMC, Chu PC, Chan HC. 1969. Effects of cold on the skeletal growth of albino rats. Am J Anat
4
5 124:239-249.
6
7 Leonard WR, Katzmarzyk PT. 2010. Body size and shape: Climatic and nutritional influences on
8
9 human body morphology. In: MP Muehlenbein (ed.): Human Evolutionary Biology. Cambridge:
10 Cambridge University Press. p 157-169.
11
12 Lindsay SL. 1987. Geographic size and non-size variation in Rocky Mountain *Tamiasciurus*
13
14 *hudsonicus*: significance in relation to Allen's rule and vicariant biogeography. J Mammal 6:39-48.
15
16 Liu H, Prugnolle F, Manica A, Ballouz F. 2006. A geographically explicit genetic model of worldwide
17
18 human-settlement history. Am J Hum Genet 79: 230-237.
19
20
21 Manica A, Amos W, Balloux F, Hanihara T. 2007. The effect of ancient population bottlenecks on
22
23 human phenotypic variation. Nature 448:346-U346.
24
25
26 Niles DM. 1973. Adaptive variation in body size ad skeletal proportions of horned larks of
27
28 Southwester United states. Evolution 27:405-426.
29
30
31 Nudd RL, Oswald SA. 2007. An interspecific test of Allen's rule: evolutionary implications for
32
33 endothermic species. Evolution 61:2839-2848.
34
35 Pearson OM. 2000. Activity, climate, and postcranial robusticity: Implications for modern human origins and
36
37 scenarios of adaptive change. Curr Anthropol 41:569-607.
38
39 Pearson OM, Busby AM. 2006. Physique and ecogeographic adaptations of the Last Interglacial Neandertals
40
41 from Krapina. Periodicum Biologorum 108:449-455.
42
43 Pearson OM, Millones M. 2005. Rasgos esqueléticos de adaptación al clima y a la actividad entre los
44
45 habitantes aborígenes de Tierra del Fuego. Anales del Instituto de la Patagonia Serie Ciencias Humanas
46
47 33:37-51.
48
49
50 Pomeroy E, Stock JT, Stanojevic S, Miranda JJ, Cole TJ, Wells JCK. 2012. Trade-offs in relative limb
51
52 length among Peruvian children: extending the thrifty phenotype hypothesis to limb proportions.
53
54 PLOS One 7:e51795.
55
56
57
58
59

1
2
3 Pomeroy E, Stock JT, Stanojevic S, Miranda JJ, Cole TJ, Wells JCK. 2013. Associations between arterial
4 oxygen saturation, body size and limb measurements among high-altitude Andean children. Am J
5 Hum Biol 25:629-636.
6
7 Porter AMW. 1999. Modern human, early modern human and Neanderthal limb proportions. Int J
8 Osteoarchaeol 9:54-67.
9
10 R Core Team. 2014. R: a language and environment for statistical computing. Vienna: R Foundation
11 for Statistical Computing.
12
13 Rae TC, Viðarsdóttir US, Jeffery N, Steegmann AT. 2006. Developmental response to cold stress in
14 cranial morphology of *Rattus*: implications for the interpretation of climatic adaptation in fossil
15 hominins. Proc R Soc Biol Sci Ser B 273:2605-2610.
16
17 Ramachandran S, Deshpande O, Roseman CC, Rosenberg NA, Feldman, MW, Cavalli-Sforza LL. 2005.
18 Support from the relationship of genetic and geographic distance in human populations for a serial
19 founder effect originating in Africa. Proc Natl Acad Sci USA 102:15942-15947.
20
21 Rasmussen PC. 1994. Geographic variation in morphology and allozymes of South American imperial
22 shags. Auk 111:143-161.
23
24 Relethford JH. 2004a. Boas and beyond: migration and craniometric variation. Am J Hum Biol 16:379-
25 386.
26
27 Relethford JH. 2004b. Global patterns of isolation by distance based on genetic and morphological
28 data. Hum Biol 76:499-513.
29
30 Reno PL, McCollum MA, Cohn MJ, Meindl RS, Hamrick M, Lovejoy CO. 2008. Patterns of correlation
31 and covariation of anthropoid distal forelimb segments correspond to Hoxd expression territories. J
32 Exp Zool 310B: 240-258.
33
34 Ridgeway W. 1908. The application of zoological laws to man. Rep Brit Assoc Adv Sci 1:832-847.
35
36 Riesenfeld A. 1973. The effect of extreme temperatures and starvation on the body proportions of
37 the rat. Am J Phys Anthropol 39:427-459.
38
39 Roberts DF. 1953. Body weight, race and climate. Am J Phys Anthropol 11:533-558.
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 Roberts DF. 1978. Climate and human variability. Menlo Park: Cummings.
4
5 Rolian C, Lieberman DE, Hallgrímsson B. 2010. The coevolution of human hands and feet. *Evolution*
6
7 64: 1558-1568.
8
9 Roseman CC. 2004. Detecting interregionally diversifying natural selection on modern human cranial
10 form by using matched molecular and morphometric data. *Proc Natl Acad Sci USA* 101:12824-12829.
11
12 Roseman CC, Auerbach BM. 2015. Ecogeography, genetics, and the evolution of human body form. *J*
13
14 *Hum Evol* 78:80-90.
15
16
17 Roseman CC, Weaver TD. 2007. Molecules versus morphology? Not for the human cranium.
18
19 *BioEssays* 29: 1185-1188.
20
21
22 Ruff C. 1993. Climatic adaptation and hominid evolution: the thermoregulatory imperative. *Evol*
23
24 *Anthropol* 2:53–60.
25
26
27 Ruff C. 1994. Morphological adaptation to climate in modern and fossil hominids. *Am J Phys*
28
29 *Anthropol* 37:65–107.
30
31
32 Ruff C. 1995. Biomechanics of the hip and birth in early Homo. *Am J Phys Anthropol* 98:527-574.
33
34
35 Ruff C. 2002. Variation in human body size and shape. *Annu Rev Anthropol* 31:211–232.
36
37 Ruff CB, Walker A. 1993. Body size and body shape. In: Walker A, and Leakey RE, editors. *The*
38 *Nariokotome Homo Erectus skeleton*. Cambridge: Harvard University Press. p 234-265.
39
40 Schreider E. 1964. Ecological rules, body-heat regulation, and human evolution. *Evolution* 18:1-9.
41
42 Schultz AH. 1923. Fetal growth in man. *Am J Phys Anthropol* 6:389-399.
43
44 Schultz AH. 1926. Fetal growth of man and other primates. *Quart Rev Biol* 1:465-521.
45
46 Schwidetzky, I. 1979. Contribution à l'étude de la variabilité climatique chez l'homme: taille et robustesse
47
48 des os longs. *Bull Mém Soc Anthropol Paris, série XIII* 6:343-347.
49
50 Serrat MA. 2013. Allen's rule revisited: temperature influences bone elongation during a critical
51
52 period of postnatal development. *Anat Rec* 296:1534-1545.
53
54 Serrat MA, King D, Lovejoy CO. 2008. Temperature regulates limb length in homeotherms by directly
55
56 modulating cartilage growth. *Proc Natl Acad Sci USA* 105:19348-19353.
57
58
59
60

1
2
3 Serrat MA, Williams RM, Farnum CE. 2009. Temperature alters solute transport in growth plate
4
5 cartilage measured by in vivo multiphoton microscopy. *J App Physiol* 106:2016-2025.
6
7 Sinnott RW. 1984. Virtues of the haversine. *Sky and Telescope* 68:158.
8
9 Stinson S, Frisancho AR. 1978. Body proportions of highland and lowland Peruvian Quechua children.
10 *Hum Biol* 50:57-68.
11
12
13 Temple DH, Okazaki K, Cowgill LW. 2011. Ontogeny of limb proportions in late through final Jomon
14 period foragers. *Am J Phys Anthropol* 145:415-425.
15
16 Tilkens MJ, Wall-Scheffler C, Weaver TD, Steudel-Numbers K. 2007. The effects of body proportions
17 on thermoregulation: an experimental assessment of Allen's rule. *J Hum Evol* 53:286-291.
18
19 Trinkaus E. 1981. Neanderthal limb proportions and cold adaptation. In: Stringer CB, editor. *Aspects*
20
21 of human evolution. London: Taylor and Francis. p 187-224.
22
23
24 Trinkaus E. 2005. Anatomical evidence for the antiquity of human footwear use. *J Archaeol Sci*
25
26 32:1515-1526.
27
28
29 Trinkaus E, Shang H. 2008. Anatomical evidence for the antiquity of human footwear: Tianyuan and
30
31 Sunghir. *J Arch Sci* 35:1928-1933.
32
33
34 von Cramon-Taubadel N. 2009. Congruence of individual cranial bone morphology and neutral
35
36 molecular affinity patterns in modern humans. *Am J Phys Anthropol* 140:206-215.
37
38
39 von Cramon-Taubadel N. 2011a. The relative efficacy of functional and developmental cranial
40
41 modules for reconstructing global human population history. *Am J Phys Anthropol* 146:83-93.
42
43
44 von Cramon-Taubadel N. 2011b. Global human mandibular variation reflects differences in
45
46 agricultural and hunter-gatherer subsistence strategies. *Proc Natl Acad Sci USA* 108:19546-19551.
47
48
49 von Cramon-Taubadel N. 2014. Evolutionary insights into global patterns of human cranial diversity:
50
51 population history, climatic and dietary effects. *J Anthropol Sci* 92:43-77.
52
53 von Cramon-Taubadel N, Lycett SJ. 2008. Brief communication: human cranial variation fits iterative
54
55 founder effect model with African origin. *Am J Phys Anthropol* 136:108-113.
56
57
58
59
60

1
2
3 von Cramon-Taubadel N, Stock JT, Pinhasi R. 2013. Skull and limb morphology differentially track
4
5 population history and environmental factors in the transition to agriculture in Europe. *Proc R Soc
6
7 Biol Sci Ser B* 280:20131337.

8
9
10 Weaver ME, Ingram DL. 1969. Morphological changes in swine associated with environmental
11
12 temperature. *Ecology* 50:710-713.

13
14 Weaver TD. 2003. The shape of the Neandertal femur is primarily the consequence of a hyperpolar
15
16 body form. *Proc Natl Acad Sci USA* 100:6926-6929.

17
18 Weaver TD, Hublin JJ. 2009. Neandertal birth canal shape and the evolution of human childbirth.
19
20 *Proc Natl Acad Sci USA* 106:8151-8156.

21
22 Wells JCK. 2012. Ecogeographical associations between climate and human body composition:
23
24 analyses based on anthropometry and skinfolds. *Am J Phys Anthropol* 147:169-186.

25
26 Y'Edynak G. 1976. Long bone growth in western Eskimo and Aleut skeletons. *Am J Phys Anthropol*
27
28 45:569-574.

29
30 Young NM, Wagner GP, Halgrímsson B. 2010. Development and the evolvability of human limbs.
31
32 *Proc Natl Acad Sci USA* 107: 3400-3405.

Figure Legends

Fig. 1. Geographic location of the studied populations.

Fig. 2. Relationship between average crural (**A**; $R^2 = 0.553$, $P = 0.014$) and brachial (**B**; $R^2 = 0.585$, $P = 0.010$) indices and minimum temperature in modern human populations.

Fig. 3. Relationship between average Foot Index 1 (**A**; $R^2 = 0.082$, $P = 0.423$) and Hand Index 1 (**B**; $R^2 = 0.506$, $P = 0.021$) and minimum temperature in modern human populations.

Fig. 4. Relationship between average shape indices for the first metatarsal (**A**; $R^2 = 0.473$, $P = 0.028$) and metacarpal (**B**; $R^2 = 0.791$, $P < 0.001$) (Metatarsal 1 Index and Metacarpal 1 Index) and minimum temperature in modern human populations.

Fig. 1. Geographic location of the studied populations.
57x27mm (300 x 300 DPI)

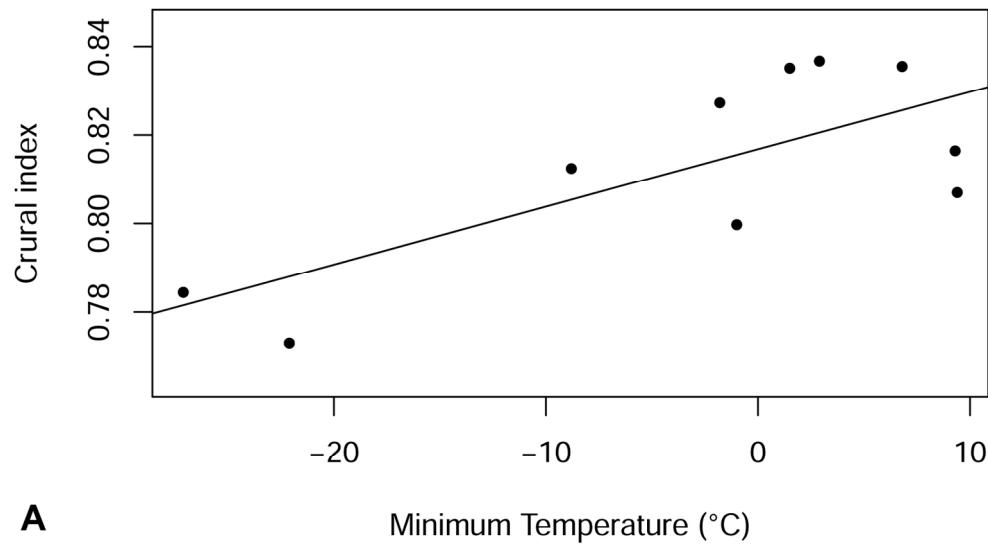


Fig. 2. Relationship between average crural (A; $R^2 = 0.553$, $P = 0.014$) and brachial (B; $R^2 = 0.585$, $P = 0.010$) indices and minimum temperature in modern human populations.

140x76mm (300 x 300 DPI)

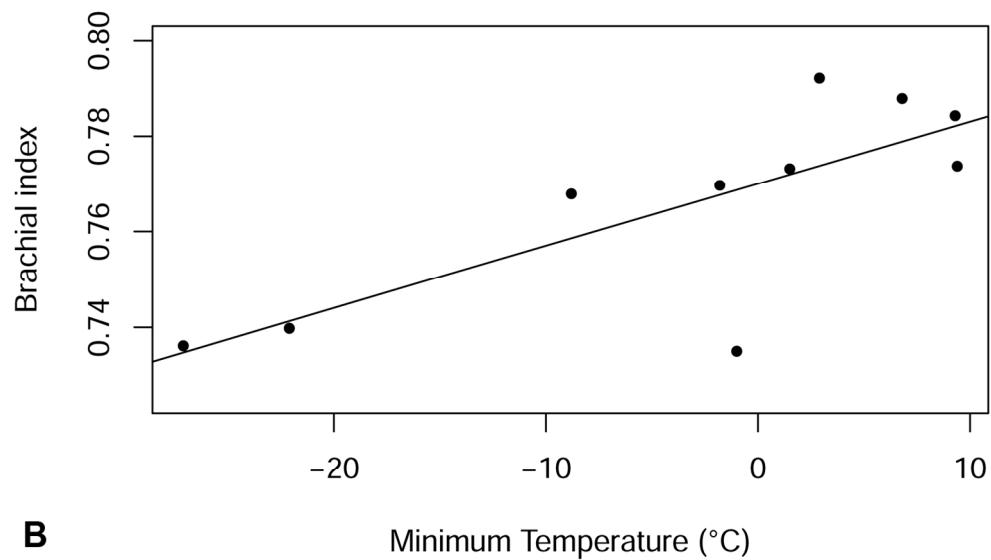


Fig. 2. Relationship between average crural (A; $R^2 = 0.553$, $P = 0.014$) and brachial (B; $R^2 = 0.585$, $P = 0.010$) indices and minimum temperature in modern human populations.

140x80mm (300 x 300 DPI)

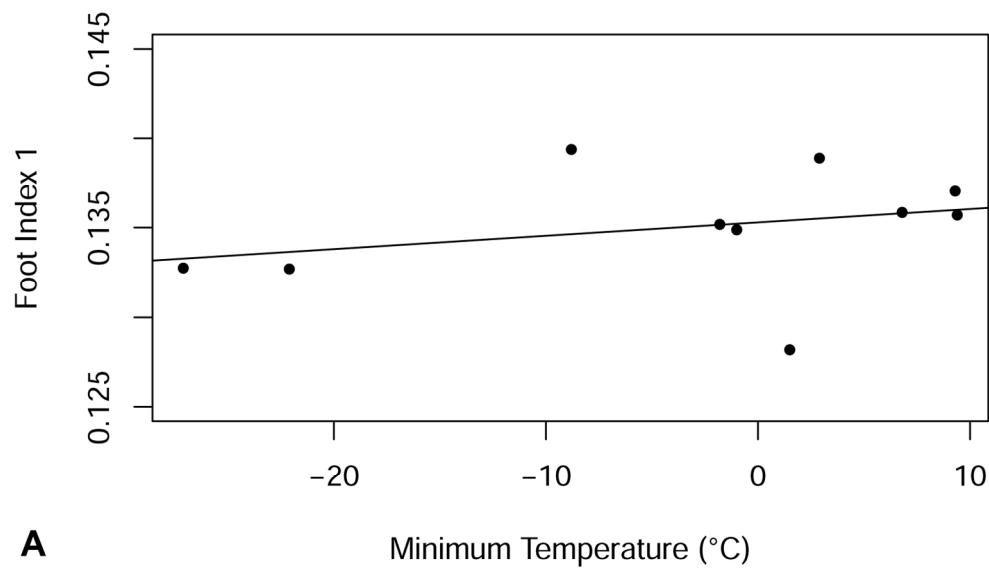


Fig. 3. Relationship between average Foot Index 1 (A; $R^2 = 0.082$, $P = 0.423$) and Hand Index 1 (B; $R^2 = 0.506$, $P = 0.021$) and minimum temperature in modern human populations.
140x81mm (300 x 300 DPI)

Fig. 3. Relationship between average Foot Index 1 (A; $R^2 = 0.082$, $P = 0.423$) and Hand Index 1 (B; $R^2 = 0.506$, $P = 0.021$) and minimum temperature in modern human populations.
140x81mm (300 x 300 DPI)

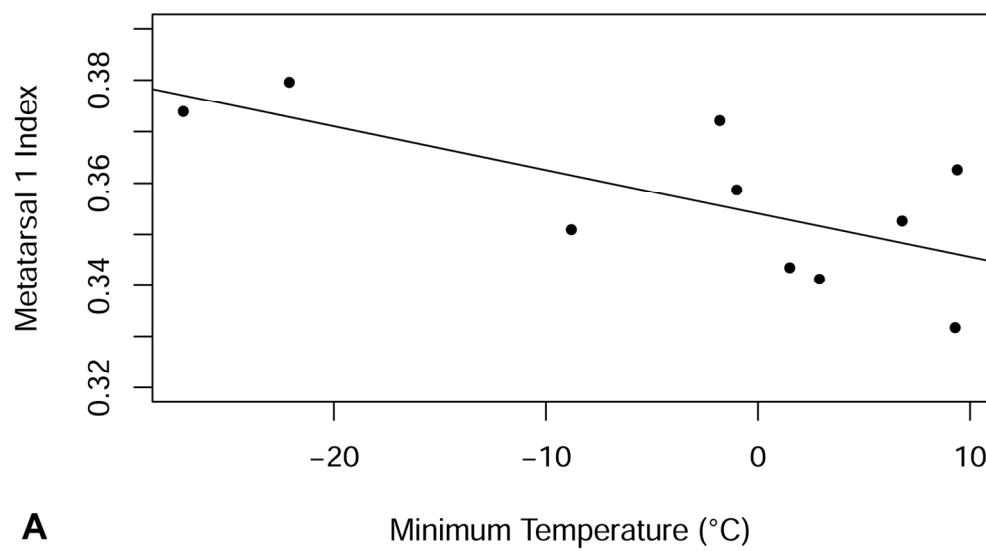


Fig. 4. Relationship between average shape indices for the first metatarsal (A; $R^2 = 0.473$, $P = 0.028$) and metacarpal (B; $R^2 = 0.791$, $P < 0.001$) (Metatarsal 1 Index and Metacarpal 1 Index) and minimum temperature in modern human populations.

140x75mm (300 x 300 DPI)

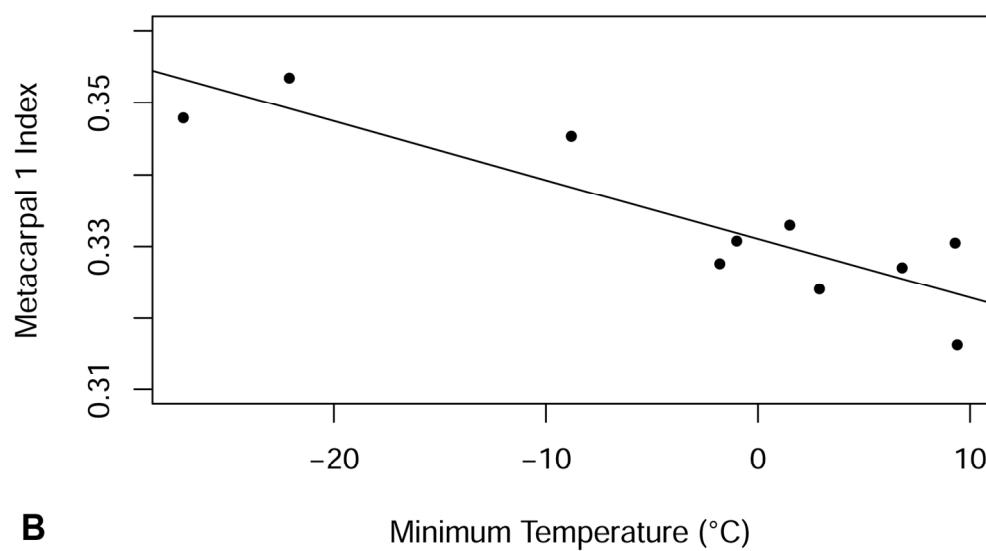


Fig. 4. Relationship between average shape indices for the first metatarsal (A; $R^2 = 0.473$, $P = 0.028$) and metacarpal (B; $R^2 = 0.791$, $P < 0.001$) (Metatarsal 1 Index and Metacarpal 1 Index) and minimum temperature in modern human populations.

140x75mm (300 x 300 DPI)

Tables

TABLE 1. Population samples and institutions where the material is curated. Tmin = average minimum temperature of the coldest month (°C).

Population	Latitude	Longitude	Tmin	Total		Males	Females	Institution*
				sample size				
Australia	-34.9	138.6	6.8	23		17	6	DC, NMNH,
								AMNH, UO
South China	23.1	113.3	9.4	26		26		NMNH
Inupiat,	68.5	-165.5	-27.1	63		40	23	NMNH, AMNH
Alaska								
Zuni, New	34.9	-109	-8.8	25		8	17	DC
Mexico								
Khoisan	-25	21	1.5	38		22	16	SAM, UCT, DC
Saami	69	24	-22.1	50		26	24	UO
Nubia	19.6	30.4	9.3	50		27	23	DC
Fuegians	-53.5	-71.3	-1.8	10		6	4	IP, MFM, ME
European-	50.8	4.5	-1	50		25	25	NMNM
Americans								
Zulu	-26.2	28.1	2.9	58		31	27	DCUW

* AMNH = American Museum of Natural History, New York; DC= Duckworth Collection, Cambridge, UK; DCUW = Dart Collection of the University of the Witwatersrand, Johannesburg; IP = Instituto de la Patagonia, Punta Arenas; ME = Museo Etnográfico, Buenos Aires; MFM = Museo del Fin del Mundo, Ushuaia; NMNH = National Museum of Natural History, Washington, DC; SAM = South African Museum, Cape Town; UCT = University of Cape Town; UO = University of Oslo.

1
2
3 TABLE 2. Description of the indices used in the analyses. Mt1 = first metatarsal; Mc1 = first
4
5 metacarpal.
6

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	Index	Description
Crural index	Maximum length of tibia/maximum length of femur	
Foot index 1	Maximum length of Mt1/maximum length of femur	
Foot index 2	Maximum length of Mt1/maximum length of tibia	
Metatarsal 1 index	Maximum breadth of distal epiphysis/maximum length	
Brachial index	Maximum length of radius/maximum length of humerus	
Hand index 1	Maximum length of Mc1/maximum length of humerus	
Hand index 2	Maximum length of Mc1/maximum length of radius	
Metacarpal 1 index	Maximum breadth of distal epiphysis/maximum length	

29 TABLE 3. Results of generalized linear models of the various indices on minimum temperature. R^2
30
31 and p-value are estimated after a simple linear regression analysis. Significant results in bold.
32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	Index	R^2	P-value	P-value ANOVA ^a	New p-value ^b
Crural index	0.553	0.014	<0.001	CorGaus	<0.001
Foot index 1	0.082	0.423	n.s.		
Foot index 2	0.177	0.226	n.s.		
Metatarsal 1 index	0.473	0.028	n.s.		
Brachial index	0.585	0.010	n.s.		
Hand index 1	0.506	0.021	n.s.		
Hand index 2	0.092	0.394	n.s.		
Metacarpal 1 index	0.791	<0.001	n.s.		

^a Results of ANOVA test comparing the simpler linear model with the generalized least square model
that accounted for spatial autocorrelation (p-value ANOVA). A significant result ($\alpha \leq 0.05$) implies

1
2
3 that spatial autocorrelation is a significant factor in the model. The type of spatial autocorrelation is
4
5 specified in the table (CorGaus = gaussian).
6
7

8 ^b New p-value obtained including spatial autocorrelation in the model.
9
10
11

12
13
14 TABLE 4. Variance (diagonal), covariance (upper triangle), and correlation (lower triangle, italic)
15 values for the lengths of the studied bones. Mt1 = first metatarsal; Mc1 = first metacarpal.
16
17
18
19
20
21
22
23
24

	Femur	Tibia	Mt1	Humerus	Radius	Mc1
Femur	940.182	855.158	113.226	543.327	484.638	70.330
Tibia	<i>0.908</i>	943.104	118.058	489.998	512.644	72.196
Mt1	<i>0.770</i>	<i>0.802</i>	22.996	67.854	67.834	12.940
Humerus	<i>0.878</i>	<i>0.791</i>	<i>0.701</i>	407.367	310.693	45.343
Radius	<i>0.846</i>	<i>0.894</i>	<i>0.757</i>	<i>0.824</i>	348.777	45.992
Mc1	<i>0.687</i>	<i>0.705</i>	<i>0.809</i>	<i>0.673</i>	<i>0.738</i>	11.133