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Abstract

mmWave sensing has offered a non-intrusive opportunity for
human behaviour recognition. However, current mmWave
sensing platform is limited for raw signal acquisition to-
gether with time-aligned multimedia data recording func-
tions. In addition, there is a lack of open-sourced solution
multi-mmWave sensor capturing toolbox. In this paper, we
introduce Vomme, a multimodal sensing platform for video,
audio, mmWave, and RBG-extracted skeleton data capturing.
Vomme supports a series of sensor combination setup for
data capturing, demonstrating potentials to be deployed un-
der various application scenarios. Vomme synchronizes mul-
timodal signals via the host computer’s timestamp. Hardware-
level synchronization is also supported by integrating a mi-
cro controller for precise sampling frequency control and
avoiding the inter-sensor interference when using multiple
mmWave sensors. Vomme is fully publicly open-sourced.

CCS Concepts

« Human-centered computing — Ubiquitous and mo-
bile computing systems and tools; Ubiquitous comput-
ing; - Applied computing — Health care information
systems.
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1 Introduction

With the rapid development of radio-frequency (RF) sensing
technology, RF sensing has become a research hotspot for
various sensing purposes. Millimetre-wave (mmWave) radar,
a type of RF sensor, has emerged as a promising candidate
due to its unique advantages: robustness under poor lighting
and harsh environmental conditions [2], capability to pene-
trate certain obstacles such as fog or thin walls [7], and the
ability to directly estimate the Doppler velocity of moving
targets [5]. Its non-intrusive, ubiquitous nature and penetrate
ability make it ideal for diverse applications. For instance,
RF sensing and mmWave sensing have been adopted in the
field of autonomous driving [11], healthcare monitoring [12],
localization and tracking [9, 10, 13], navigation [14-16]. How-
ever, there is a lack of open-source toolboxes that offer an
easy-to-use sensing approach for synchronously capturing
mmWave, video, audio recordings, as well as skeleton key-
points when the presence of a human is detected. To fill this
gap, we present the Vomme, a multimodal sensing platform
for video, audio, mmWave and skeleton Data capturing.
We list our contributions as follows:

e We present Vomme, a multimodal sensing platform for
video, audio, mmWave and skeleton data capturing.
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o We offers single/multi mmWave sensor raw data cap-
turing supports, where multi-mmWave synchroniza-
tion is achieved via integrated micro controller, en-
suring the precise control across multiple sensors and
avoiding inter-sensor interferences.

o We release the Vomme sensing platform with the rec-
ommended hardware choices and configuration details
fully publicly open-sourced.!

2 Background
2.1 mmWave Sensing Methodology

Millimetre-wave (mmWave) radar senses its environment by
transmitting a sequence of chirp signals through the trans-
mit antennas (TX). These chirps, generated by a frequency
synthesizer, propagate through the medium and partially re-
flect off objects. The reflected signals return to the radar and
are captured by receive antennas (RX). The received signal
is then mixed with the transmitted chirp to produce an inter-
mediate frequency (IF) signal, which contains information
about the object’s range and velocity.

Chirp Signal Model: The transmitted chirp is a linearly
frequency-modulated signal. Its instantaneous frequency is:

f(t) = fo+St, 1)

where f; is the start frequency and S = T% is the frequency
slope, determined by the bandwidth B and chirp duration 7.

The instantaneous phase ¢ () of the chirp is the integral
of its frequency:

P(t) = Zﬂ/(fo +St)dt = 2nfyt + wSt°. (2)
Thus, the transmitted signal can be expressed as:
st(t) = cos (2xfot + nSt?). (3)

Received Signal: The reflected signal experiences a round-
trip delay 7 = Z?d, where d is the target distance and c is
the speed of light. Incorporating attenuation «, the received
signal is:

sr(t) = acos (2nfy(t — 7) + 2S(t — 7)°).

©

IF Signal and Beat Frequency: After mixing st (¢) and sg(t)
and applying low-pass filtering, the resulting intermediate
frequency (IF) signal can be characterized by the following
equations:

f(t)=fo+St
P(t) =2ﬂ/(ﬁ)+5t)dt=2ﬂﬁ)t+ﬂ'$t2

st(t) = cos (27 fot + nSt?)

®)

Thttps://weixijia.github.io/Vomme
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where fj is the start frequency and S = % is the frequency
slope, determined by the bandwidth B and chirp duration T.
The beat frequency fir is proportional to the target distance
d, forming the basis for range estimation. Phase variations
across multiple chirps capture Doppler shifts, which enable
velocity estimation.

2.2 FFT-Based Signal Processing

The raw IF signal resides in the time domain. To extract
spatial and motion information, it is processed using Fast
Fourier Transforms (FFT) along different dimensions:

e Range FFT: Applied across ADC samples within a
single chirp to estimate target distances. Each range
bin corresponds to a specific frequency component
related to object range. Magnitude reflects reflection
strength.

e Doppler FFT: Applied across chirps for each range bin
to estimate radial velocity. Motion induces phase shifts
between chirps, which appear as peaks in Doppler bins.

o Azimuth FFT: Applied across antennas to estimate
the angle of arrival (AoA). Phase differences among
antennas reveal the signal’s spatial origin.

These three steps—Range FFT, Doppler FFT, and Azimuth
FFT enable precise estimation of range, velocity, and angle,
forming the foundation of mmWave radar perception.

3 Heatmap Generation

After performing the 3D FFT, the radar data is organized into
a Range-Azimuth-Doppler (RAD) cube. Its three axes rep-
resent the range index (distance), the Doppler index (radial
velocity), and the azimuth index (angle of arrival). Since FFT
outputs are complex, the magnitude is typically taken:

Magnitude = |X| = yRe(X)? + Im(X)?, (6)

where X is the complex FFT output. This magnitude repre-
sents reflection intensity, which depends on factors such as
distance, material, and radar cross-section.

By projecting the RAD cube into any two dimensions, dif-
ferent heatmaps can be generated. The Range—Angle (RA)
heatmap shows intensity versus range and angle, and can
be used to detect targets at different distances and directions.
The Range-Doppler (RD) heatmap displays range ver-
sus radial velocity and contains Doppler patterns that can
be further exploited for classifying specific motions. The
Doppler-Angle (DA) heatmap represents velocity versus
angle, but it is less commonly used in practice.

3.1 MediaPipe Skeleton Detection

The skeleton keypoints are extracted from the RGB camera
via the MediaPipe framework [8]. MediaPipe extracts the
skeleton joint information per frame.
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Figure 1: Vomme System Overview

4 Vomme Sensing Platform

Vomme is a modular, multimodal sensing platform for hu-
man motion capturing, integrating mmWave radars, RGB
cameras, depth or ToF cameras (e.g., Kinect), and microphone
sensors, where the overview of the system is shown in Fig-
ure 1. It supports both single and multi-radar configurations.
Deploying multiple radars with complementary layouts and
viewpoints can expand coverage and mitigate elevation limi-
tations. Accordingly, Vomme enables flexible placement and
synchronization of one or more single-chip mmWave radars
to broaden the field of view and enhance sensing perfor-
marnce.

Figure 2a illustrates Vomme’s system connection. It con-
sists of one or multiple hardware-triggered mmWave radars
synchronized with the host computer and multimedia sen-
sors (e.g., cameras, microphone) for multimodal data captur-
ing. Figure 2b shows an example of Vomme’s sensor connec-
tion, consisting of two orthogonally placed mmWave radars,
an RGB camera for video recording (and for MediaPipe-based
skeleton extraction), with a microphone for audio capture.
Time synchronization is achieved by the micro controller
(attached on a bread board placed on the left).

4.1 Multi-Radar Placement Layouts

Vomme supports three general layouts for multi-radar de-
ployment: (i) an orthogonal (90° rotated) pair, (ii) a line-
up (stacked / collinear) arrangement, and (iii) a distributed
(surround-view) setup. This design allows users to adjust
the sensing coverage, resolution, and hardware according to
application needs.

Orthogonal (90° rotated) pair. Two identical single-chip
mmWave radars can be placed close to each other and rotate
one unit by 90°, as demonstrated in [3, 6]. The rotation maps
the azimuth array of the rotated unit onto the elevation axis.
Consequently, one radar provides high-resolution azimuth
while the rotated unit provides the same high-resolution in
elevation, yielding near-balanced 2D angular resolution. The
design is simple and cost-effective. It substantially improves
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elevation resolution and can even outperform cascaded sys-
tems limited to four vertical virtual antennas (VAs), while
avoiding their added cost and complexity.

Line-up (stacked/collinear). Multiple mmWave radars
can also be placed along a line (often at different heights)
so that each covers a distinct elevation band or horizontal
slice, and their fields of view jointly expand the vertical
coverage, where the similar layout setting is used in [1]. This
configuration is practical when most activity is in front of
the sensors but spans a big height range (from low to high),
e.g., for human skeleton extraction.

Distributed (surround-view). mmWave radars can be
arranged around the subject like a motion-capture rig to pro-
vide complementary viewpoints for robust 3D reconstruction
and skeleton tracking. This surround layout reduces self-
occlusion and view dependence, improving completeness
and tracking stability.

4.2 Hardware Trigger and Synchronization

Inter-radar interference is the main challenge when deploy-
ing multiple mmWave sensors, as sensors sharing the same
band and point into the same direction or facing to each
other. One of the receivers possibly pick up the other’s echo,
leading to ghost targets and biased estimates. A straightfor-
ward and effective solution is time-division that only trigger
one radar at a time and stagger their acquisitions so that
chirp frames could avoid overlapping.

Given number of N mmWave radars sharing the same
band, let Tiame = 40.8 ms be the per-radar frame time and
Teydle = 100ms the acquisition interval (10 Hz). To avoid
overlap within each cycle, choose a start delay t4elay (the idle
time between the end of one frame and the start of the next)
that meets

N (Tframe + tdelay) < Tcycle (7)

In a dual-radar configuration where N = 2, choosing
tdelay = 9-2ms yields a simple schedule: Radar 1 runs from
t = 0 ms to 40.8 ms; wait 9.2 ms; Radar 2 runs from 50.0 ms to
90.8 ms; the remaining 9.2 ms in the 100 ms cycle stays idle
and this prevents any overlap between the dual radar. For
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Figure 2: Vomme hardware connection diagram with an example

N > 2, schedule additional radars sequentially within the
100 ms interval. If needed, shorten Tiame (e.g., fewer chirps
or a higher sample rate) so that Eq. (7) remains satisfied.

Triggering multiple radars requires an external controller
to generate trigger pulses. Common choices include Ar-
duino?, STM323, and Raspberry Pi Pico*. The same trig-
ger source can also be logged for precise timestamping and
shared with other sensors (e.g., cameras) for hardware syn-
chronization. Notably, when hardware synchronization is
unavailable, these sensors can free-run and be aligned to the
radar using timestamps easily.

4.3 Real-Time Processing

Vomme acquires raw data from one or multiple Texas In-
struments AWR1843 Boost single-chip mmWave radars with
DCA1000 EVM capture card. Other TI single-chip devices
that support DCA1000 LVDS streaming are also supported.
Radar configuration parameters are set in the official mmWave
Studio software, but once streaming starts, our custom pipeline
takes over for continuous acquisition, decoding, post pro-
cessing, heatmap generation, and online visualization; un-
like the official workflow, which supports only offline pro-
cessing. To achieve real-time heatmap generation, we use
CUDA [4] to achieve millisecond-level real-time visualiza-
tion. The toolchain is also cross-platform, with optional GPU
acceleration for heatmap generation, and provides ROS/R0OS2°
publishers for easy integration with multi-sensor stacks. In
practice, the system enables plug-and-play, real-time mmWave
data capture and post-processing.

2Arduino is an open-source electronics platform.

3STM32 is a 32-bit microcontroller and microprocessor integrated circuits
by STMicroelectronics.

4Raspberry Pi Pico is the microcontroller chip designed by Raspberry Pi
built using RP2040

The Robot Operating System (ROS) is a set of software libraries and tools
for building robot applications.
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4.4 Video Recording Function

Video recording is achieved by the integrated RGB camera.
Each radar frame is aligned with the corresponding camera
image using timestamps when the camera operates in free-
run mode, or through hardware triggering to ensure precise
synchronization. Vomme also supports the integration of the
Kinect camera. During video recording is activated, Vomme
leverages a parallel threading to ensure the video recording
would not be impacted by other sensing IO.

4.5 Skeleton Extraction

Vomme supports two modes of skeleton extraction. When
using an RGB camera for video recording, Vomme supports
to extract the skeleton information via the MediaPipe at a
frame level. For MediaPipe extracted skeleton, the saved CSV
file includes the three-dimensional joint coordinates, visibil-
ity scores, and corresponding timestamps. When recording
video using the Kinect sensor, Vomme leveraged the Kinect
pre-built pose landmaker models for directly extracting out-
puts skeleton keypoints.

4.6 Audio Recording Function

Audio recording is done via the plugged-in microphone.
Again, audio recording function is achieved by creating a par-
allel thread by using the PyAudio® package. Audio is sampled
at a frequency of 44.1KHz.

5 Data Validity

Figure 3 presents examples of four distinct human actions,
each illustrated by 3 frames, alongside their corresponding
Range-Doppler (RD) representations. The RD frames reveal
unique micro-Doppler patterns associated with different
body gestures. Notably, actions involving larger movements

®PyAudio is a Python-based library for audio recording
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and higher speeds produce broader regions of Doppler shift
in the RD images, reflecting the increased velocity and spatial
extent of the motion.
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Figure 3: Visualization of samples captured via Vomme
platform. We report the RD spectrogram at frame 1,
10, 15 with the corresponding skeleton figures, where
skeletons figures are visualized based on 13 keypoints
from the raw 33 extracted keypoints for visualization
simplification.

6 Conclusion

In this paper, we present Vomme, an open-source multimodal
sensing platform that enables time-aligned acquisition of
video, audio, mmWave data (including both raw signals and
extracted RD/RA/AD heatmaps), and RGB-extracted skeleton
data. Additionally, Vomme supports multi-mmWave sens-
ing setups, addressing inter-mmWave signal interference
by leveraging an additional microcontroller for precise sam-
pling control at the hardware level. Vomme is fully publicly
open-sourced, with hardware recommendations and con-
figuration details. We hope that the release of Vomme can
facilitate easier collection of mmWave signals alongside mul-
timedia signals, reduce the cost and complexity of setting up
data collection platforms through an out-of-the-box solution,
and accelerate the adoption of mmWave sensing in various
real-world scenarios.
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