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Abstract 

Understanding the impact of extreme weather, particularly flooding, on urban transportation 

systems is critical for enhancing city resilience and traffic management. However, research and 
policy development are often hampered by a lack of datasets that comprehensively integrate 
detailed traffic dynamics, high-resolution weather information, and road network topology across 

multiple diverse urban environments. To address this significant gap, we present the Integrated 
Urban Traffic-Flood (IUTF) dataset. This open-access resource covers 40 major cities across 

Europe, North America, and Asia, including 21,739 sensors. The IUTF dataset uniquely combines 
(i) high-resolution traffic parameters derived from over 21,700 sensors (with raw data typically at 
5-minute intervals, harmonised to hourly); (ii) detailed hourly precipitation data from ERA5 

reanalysis, spatially aligned with (iii) the underlying road network topology for over 1 million road 
segments, processed from OpenStreetMap. This meticulously curated and validated dataset, 

created through a novel spatio-temporal harmonisation framework, enables unprecedented, cross-
border analysis of weather impacts on urban mobility. It provides a foundational data resource to 
support applications in traffic flow prediction, infrastructure planning, and the future development 

of quantitative resilience models. 
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Background & Summary 

Urban transportation networks are fundamental to the economic and social vitality of modern 

cities1. However, these critical systems face escalating threats from extreme weather events, with 
flooding, in particular, emerging as a profoundly disruptive force to urban mobility in the 21st 

century2. Projections indicate a future with more frequent and intense precipitation3. a trend 
already causing global disruptions, overwhelming infrastructure, and incurring substantia l 
economic losses—often exceeding $100 billion USD annually in recent years4,5, starkly illustrated 

by major incidents from Zhengzhou to the US East Coast and Europe6–9. Beyond immed iate 
inundation, rainfall triggers complex cascading effects and non-linear interactions within transport 

networks10–13, making prediction and management exceptionally challenging without 
comprehensive, integrated data. This research presents a data descriptor that provides the 
foundational infrastructure for such analyses, with data crucial for applications ranging from 

vulnerability assessments and predictive modelling to the strategic planning of resilient 
infrastructure and adaptive traffic management. While significant public datasets for urban traffic 

analysis exist—such as METR-LA14, the PEMS family15,16, and the UTD1917—and 
meteorological monitoring has advanced with tools like weather radar and reanalysis products such 
as European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5)18,19, 

a critical gap remains when addressing traffic-weather interactions at a detailed, multi-city scale. 
Specifically, the public datasets have three key limitations: 

• Lack of Integrated Traffic and Detailed Weather Data: Most existing datasets focus on 

either traffic or weather, seldom providing concurrent, high-resolution data from both 

domains directly linked at the road network level. For example, widely used traffic datasets 

such as METR-LA (207 sensors in Los Angeles) and PEMS-BAY (325 sensors in San 

Francisco Bay Area) provide detailed traffic measurements but lack corresponding 

meteorological data, while weather datasets like ERA5 offer comprehensive climate 

information at ~31km resolution but are not spatially aligned with transportation 

infrastructure. Researchers attempting to combine these sources face substantial technical 

barriers including data format incompatibility. coordinate system mismatches (local vs. 

geographic coordinate systems), and temporal alignment complexity (local time zones vs. 

UTC). 

• Insufficient Spatio-Temporal Alignment: When both data types are available, they often 

lack the necessary spatial and temporal harmonisation (e.g., traffic sensors aligned with 

relevant weather data grids, consistent time zones and resolutions) required for robust 

interaction analysis. Spatial misalignment occurs due to scale mismatches (ERA5's ~31km 

grid resolution vs. point-based traffic sensors), coverage disparities (weather stations 

spaced 10-25km apart vs. traffic sensors at 0.5-2km intervals), and boundary effects where 

urban areas span multiple weather grid cells. Temporal misalignment arises from time zone 

complexity (traffic data in local time across multiple time zones vs. weather data in UTC), 

resolution inconsistencies (5-minute traffic intervals vs. hourly weather data), and 
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measurement timing differences (accumulated weather values vs. instantaneous traffic 

readings). 

• Limited Multi-City Scope for Integrated Datasets: While some regional efforts integrate 

traffic and weather data20, comprehensive datasets covering diverse international cities 

remain extremely rare in the public domain. Most traffic-weather interaction studies focus 

on single metropolitan areas, with multi-city studies typically constrained to single 

countries or regions, limiting cross-climatic and cross-cultural generalizability. When 

multi-city integration is attempted, researchers face methodological inconsistenc ies 

(different sensor technologies and data collection protocols across cities), incomplete 

temporal coverage (varying data availability periods), and weather data heterogene ity 

(combining different sources with varying spatial resolutions and quality standards). 

To address these fundamental limitations, this paper introduces the Integrated Urban Traffic-Flood 
(IUTF) dataset, a comprehensive, open-access resource spanning 40 major cities across Europe, 

North America, and Asia. The IUTF incorporates three key data components: (1) high-resolut ion 
traffic measurements from 21,739 sensors recording at 5-minute intervals, yielding 411,631 
temporal observations per sensor; (2) detailed road network information encompassing the 

topology and attributes of 1,067,085 road segments; and (3) hourly precipitation data from ERA5 
reanalysis, providing 3,356 city-days of meteorological observations across all cities during the 

study period.  

The IUTF uniquely integrates traffic measurements with spatially and temporally aligned 

precipitation data and road network topology from OpenStreetMap (OSM)21. This integrat ion 

creates a novel resource for analysing weather-traffic interactions across diverse urban contexts, 

providing the data foundation that enables researchers to conduct comprehensive analysis of how 

extreme weather events impact urban mobility patterns while maintaining the temporal resolution 

necessary for capturing both immediate and longer-term effects of precipitation on traffic flow.  

The IUTF dataset advances the field through several key contributions: 

• A Large-Scale, Multi-City Integrated Resource: It provides an unprecedented, 

standardised collection of traffic, weather, and network data for 40 diverse global cities, 

specifically designed to enable robust comparative urban resilience studies. 

• A Novel and Replicable Harmonisation Framework: We develop and implement a 

systematic methodology for the spatial and temporal harmonisation of point-based traffic 

sensor data, linear road networks, and gridded precipitation data, offering a transferable 

approach for future global urban data integration. 

• Ensuring Data Quality and Accessibility: The dataset undergoes rigorous quality control 

procedures, including automated consistency checks and manual validation, to ensure 

reliability across all cities. The data is structured in accessible formats that support diverse 
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analytical workflows while maintaining technical rigor, facilitating both academic research 

and practical applications in urban transportation management. 

• Providing Data Infrastructure for Advanced Impact and Resilience Analysis : By 

providing deeply integrated and contextualised data, IUTF creates the essential empirica l 

foundation needed to facilitate sophisticated investigations into how precipitation events 

affect urban mobility patterns and to support the future development and validation of 

quantitative resilience models. 

Methods 

Our data workflow for creating the IUTF dataset comprises three main stages: (1) sourcing, 
selection, and initial processing of open data for traffic flow, road networks, and precipitation; (2) 

comprehensive spatio-temporal harmonisation, integrating these diverse data types into coherent 
urban network structures; and (3) compilation of the final structured dataset, including derived 
analytical matrices and rigorous technical validation. We employ a consistent and standardised 

pipeline to process and align data from established sources like UTD19, OpenStreetMap, and 
ERA5 across 40 global cities. Fig.1 provides a visual overview of this workflow. 

  

Figure 1. Overview of the IUTF Dataset Generation Process. (a) Raw data inputs include delineated urban road networks. (b) This 

stage involves processing the road network (e.g., centroid line extraction), mapping traffic sensors to road segments, and 

performing spatial and temporal matching of weather data with the road network and traffic data, including time zone 

Standardisation and resolution aggregation. (c) The final output is the structured IUTF dataset, featuring a clear schema for road 
networks, traffic readings (original 5-minute and aggregated hourly), and aligned hourly rainfall data, enabling localised and 

network-wide analysis of traffic-weather interactions. 
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Data Collection and Sources 

The IUTF Dataset combines three primary data sources: high-resolution traffic measurements from 

UTD19, comprehensive road network data from OpenStreetMap, and precipitation records from 
ERA5 reanalysis. Each data source was carefully selected to ensure temporal alignment, spatial 
compatibility, and data quality consistency across all study cities. 

Traffic Flow Data 

The traffic flow measurements are sourced from UTD19, a benchmark urban traffic dataset that 
covers 40 global cities. For our study, we extracted data from 40 cities that demonstrated consistent 
sensor coverage and data quality between 2015 and 2017. The raw data includes three fundamenta l 

traffic parameters: flow (vehicles per hour), and occupancy (percentage). These measurements are 
collected through various types of stationary sensors, including inductive loop detectors, 

supersonic detectors, and cameras, with each sensor providing readings at hourly intervals. The 
sensor density varies across cities, ranging from 150 to 850 sensors per city, with an average 
spacing of approximately 500 meters along major arterials. 

Road Network Information 

Road network data is obtained from OpenStreetMap (OSM), accessed through the OSMNX 
Python package. We extracted the complete road network for each city, including attributes such 
as road type, speed limits, and number of lanes. The OSM data provides comprehensive coverage 

of the urban road network, with particularly detailed information for major roads where traffic 
sensors are typically located. The road network data was retrieved for the 2015-2017 period to 

ensure temporal consistency with the traffic sensor data and accurate sensor-to-road segment 
matching. The 2015-2017 timeframe was selected to maximize temporal overlap and consistent 
sensor coverage across all 40 cities within the UTD19 dataset, representing the optimal period that 

met our rigorous criteria for robust cross-city comparative analysis. 

Precipitation Data 

Precipitation measurements are derived from the ERA5 reanalysis dataset, provided by the 
ECMWF. ERA5 offers global coverage at approximately 31-kilometer spatial resolution and 

hourly temporal resolution. For each city, we extracted precipitation data for the entire study period 
(2015-2017), including both total precipitation and precipitation rate. The ERA5 dataset was 

chosen for its consistent methodology across all study regions and its proven reliability in urban 
meteorological applications. While the spatial resolution is coarser than some local weather station 
networks, it provides uniform coverage and methodology across all study cities, enabling 

consistent cross-city analysis. 

Spatial Harmonisation Process 

The integration of traffic sensor data, road networks, and precipitation measurements required a 
comprehensive spatial harmonisation approach to ensure consistent geographical representation 
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and analysis capabilities. As illustrated in Fig.2(a), our methodology was designed to ensure 
consistent geographical representation and robust analysis capabilities by addressing three key 

spatial integration challenges: the processing and simplification of road networks, precise mapping 
of traffic sensor locations to these networks, and accurate alignment of gridded precipitation data 

with the road infrastructure. 

Road Network Processing and Sensor Integration 

The spatial harmonisation of traffic sensor data with road networks presents a fundamenta l 
challenge in multi-source transportation data integration. Raw OpenStreetMap road networks 

contain complex geometries with varying levels of detail, while traffic sensors from UTD19 are 
provided as discrete point locations without explicit road segment associations. This stage 
addresses two critical requirements (as shown in Fig .2(a)): first, transforming complex OSM road 

geometries into simplified but topologically accurate centreline representations suitable for 
network analysis; and second, establishing precise spatial relationships between point-based 

sensor locations and their corresponding road segments. This process is essential for creating a 
unified spatial framework that enables subsequent integration with gridded precipitation data. 

Centreline Network Extraction: The first stage, Centreline Network Extraction, is visually 
detailed in the six-panel workflow shown in Figure 2(b). The process begins with the original road 

network from OSM (Fig. 2(b)-1), which often contains complex multi- lane geometries, detailed 
intersection configurations, and varying levels of geometric detail across different road types. 

These roads are then converted into buffered polygons (Fig. 2(b)-2) using appropriate buffer 
distances that account for road width characteristics when available in OSM attributes, or standard 
geometric assumptions based on road functional classification when width information is absent. 

Following this, Voronoi tessellation22 is applied to the buffered polygons (Fig. 2(b)-3) to derive 
the medial axis through computational geometry algorithms, where the resulting Voronoi cell 

boundaries represent the geometric centreline of each road corridor (Fig. 2(b)-4). This raw 
centreline geometry is subsequently refined using the Douglas-Peucker algorithm23 to create 
simplified and cleaned centrelines (Fig. 2(b)-5), which systematically removes redundant vertices 

while preserving essential geometric characteristics and maintaining critical topologica l 
relationships. The final step involves using a point-vicinity algorithm to refine intersection 

topology (Fig. 2(b)-6), ensuring proper connectivity between road segments and resolving issues 
such as overshooting or undershooting lines at network nodes. This comprehensive approach 
transforms complex, multi- lane geometries into representative single- line centrelines, a 

representation that is critical for integrating sensor data reflecting aggregate flow conditions across 
multiple lanes. 

Sensor-to-Road Segment Matching: Once the topologically sound centreline network is 

established, traffic sensors (sourced from UTD19 as point locations) are integrated through the 
Sensor-to-Road Segment Matching stage, as depicted in the overall workflow (Figure 2(a)). We 
implement a proximity-based matching algorithm that employs nearest-neighbour analysis to 

identify the most suitable road segment for each sensor location. The algorithm operates by 
calculating the geometric distance between each sensor and candidate road segments within its 

vicinity, specifically measuring the shortest perpendicular distance from the sensor point to each 
road segment centreline rather than using arbitrary endpoint distances.  
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Topological Validation of Matches: The initial automated matches are then subjected to rigorous 
Topological Validation of Matches, a critical quality control step that addresses the limitations of 

purely distance-based matching approaches. This validation process systematically examines each 
sensor-road association to identify and resolve potential ambiguities, particularly in complex 

geometric scenarios such as multi- lane highways where sensors may be equidistant from mult ip le 
roadway facilities, intersections where sensor positioning relative to approach/departure 
configurations affects appropriate assignment, and closely parallel roads where functiona l 

classification and directional analysis are required to determine correct associations.  

Precipitation Data Integration 

The integration of meteorological data with transportation networks presents a significant 
methodological challenge due to fundamental differences in spatial representation and resolution 

between these data sources. ERA5 reanalysis provides precipitation data at approximately 31km 
spatial resolution in a regular grid format, while road networks consist of linear features with 

highly variable spatial density and geometric complexity. This spatial scale mismatch creates 
substantial difficulties for establishing meaningful relationships between weather conditions and 
traffic patterns, as a single ERA5 grid cell may encompass multiple distinct road segments with 

potentially different precipitation exposure characteristics. Thus, this stage addresses the 
fundamental challenge of accurately aligning gridded meteorological data with fine-scale 

transportation infrastructure. 

Spatial Overlay and Grid-Road Intersection Analysis: The first stage, Spatial Overlay and 
Grid-Road Intersection Analysis, begins by extracting only the relevant ERA5 grid cells that 
geometrically intersect with each city's road network boundary, creating a focused precipitat ion 

dataset for each urban area while significantly reducing computational demands. The process then 
employs computational geometry algorithms to determine precise intersection relationships 

between linear road segments and rectangular grid cells. This analysis requires coordinate system 
harmonisation, as road networks typically use local projected coordinate systems while ERA5 data 
employs WGS84 geographic coordinates, necessitating appropriate datum transformations to 

maintain spatial accuracy. For each road segment, the algorithm calculates the exact geometric 
relationship with intersecting grid cells, including the proportional length of road segment within 

each grid cell and the total intersection area, forming the foundation for subsequent precipitat ion 
attribution calculations. 

Dual Attribution Methodology Implementation: The second stage implements a dual attribution 
methodology specifically designed to support different analytical requirements through parallel 

processing pathways. The detailed attribution pathway preserves individual precipitation time 
series for each grid cell that intersects with a road segment, maintaining these as indexed data 

structures that retain the full spatial granularity of ERA5 data and enable analysis of precipitat ion 
variability along extended road segments. Simultaneously, the aggregated attribution pathway 
creates single precipitation values for each road segment through area-weighted averaging, 

calculated using the formula: 

𝑃𝑠𝑒𝑔𝑚𝑒𝑛𝑡 =
∑  𝑛
𝑖=1 𝑃𝑔𝑟𝑖𝑑𝑖 × 𝐿 𝑖
∑  𝑛
𝑖=1 𝐿 𝑖

(1) 

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS



 

 

where 𝑃𝑠𝑒𝑔𝑚𝑒𝑛𝑡  represents the final precipitation value for the road segment, 𝑃𝑔𝑟𝑖𝑑𝑖  is the 

precipitation value in grid cell 𝑖, 𝐿𝑖 is the length of road segment within grid cell 𝑖, and 𝑛 is the 

total number of grid cells that intersect with the road segment. This weighted averaging approach 
ensures that grid cells containing longer portions of a road segment contribute proportionally more 

to the final precipitation attribution, accounting for the varying spatial influence of different grid 
cells on individual road segments. 

Technical Implementation and Computational Optimisation: To handle the computationa l 
demands of processing extensive road networks against precipitation grids, the implementa t ion 

employs several optimisation strategies. Spatial indexing structures, specifically R-tree algorithms, 
are used to efficiently identify potential grid-road intersections and reduce computational overhead 

while maintaining complete accuracy in intersection detection. The algorithm also employs 
minimum bounding rectangle calculations to pre-filter grid cells that cannot possibly intersect with 
road segments, reducing processing time by eliminating unnecessary geometric calculations. For 

road segments that span multiple cities or extend across large geographic areas, the processing is 
partitioned spatially to enable parallel computation and manage memory requirements effective ly.  

Temporal Harmonisation Process 

The temporal harmonisation process addresses the challenge of aligning traffic measurements 

collected at 5-minute intervals in Local Standard Time with precipitation data provided at hourly 
intervals in Coordinated Universal Time. The objective is to create temporally synchronised 

datasets that enable precise analysis of cause-effect relationships between precipitation events and 
traffic responses while maintaining the temporal resolution necessary for capturing both immed iate 
and longer-term weather impacts. 

Time Zone Standardisation 

The temporal alignment of multi-source urban data presents fundamental challenges when datasets 
originate from different temporal reference systems and measurement frequencies. Global urban 
traffic datasets inherently use local time standards that reflect regional timekeeping practices and 

local traffic patterns, while meteorological reanalysis products typically employ standardised 
universal time coordinates to ensure consistency across global coverage areas. This temporal 

heterogeneity creates significant complications for integrated analysis, as the same physical time 
moment may be represented by different timestamp values across datasets, and seasonal time 
adjustments (daylight saving time) introduce additional temporal discontinuities that can 

substantially affect traffic pattern interpretation. Furthermore, the different measurement interva ls 
-5-minute traffic observations versus hourly precipitation data - require systematic temporal 

alignment to enable meaningful weather-traffic interaction analysis. The complexity increases 
when considering 40 globally distributed cities spanning multiple time zones with varying 
daylight-saving time policies and historical time zone changes during the study period (2015-2017). 

This stage (as shown in Fig.2(c)) addresses the critical requirement of establishing a unified 
temporal framework that enables accurate synchronisation of traffic and weather observations 

while preserving the temporal integrity of both datasets. 
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Time Zone Mapping and DST Handling: To address the temporal misalignment, all traffic 
measurements were converted from their native LST to UTC using a systematic conversion 

algorithm. This process involved establishing a comprehensive time zone mapping for all 40 cities, 
accounting for city-specific UTC offsets (examples of which are provided in Fig.2(c)) and 

meticulously handling daylight-saving time (DST) transitions where applicable. The conversion 
algorithm specifically addresses DST transitions through systematic procedures that manage 
"spring forward" periods where local time jumps from 2:00 AM to 3:00 AM, and "fall back" 

periods where 1:00-2:00 AM occurs twice in local time. These procedures involve examining 
timestamp context and applying disambiguation rules based on surrounding data patterns. 

UTC Conversion Implementation: The conversion follows the systematic formula: 

𝑈𝑇𝐶𝑡𝑖𝑚𝑒 = 𝐿𝑆𝑇𝑡𝑖𝑚𝑒 −𝑂𝑓𝑓𝑠𝑒𝑡𝑈𝑇𝐶 − 𝐷𝑆𝑇𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 (2) 

where 𝐿𝑆𝑇𝑡𝑖𝑚𝑒  represents the original local standard time timestamp, 𝑂𝑓𝑓𝑠𝑒𝑡𝑈𝑇𝐶  is the city-

specific UTC offset, and 𝐷𝑆𝑇𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡  represents the additional offset (typically 1 hour) applied 

during daylight saving periods. A comprehensive time zone reference table documenting standard 

UTC offsets and DST schedules for each city during the study period (2015-2017) informed this 
conversion algorithm, ensuring direct temporal linkage with the UTC-based ERA5 precipitat ion 
data. The process includes validation procedures to ensure temporal consistency and identify 

potential conversion errors through timestamp sequence analysis and traffic pattern verification. 

Temporal Resolution Aggregation 

The temporal aggregation of high-frequency traffic measurements presents significant 
methodological challenges due to the need to preserve different statistical characteristics of various 

traffic parameters while achieving temporal alignment with meteorological data. Traffic flow, 
speed, and occupancy measurements each represent fundamentally different physical phenomena 

with distinct statistical properties and temporal variability patterns that require parameter-specific 
aggregation approaches to maintain their analytical significance. Simple temporal averaging may 
obscure critical traffic dynamics, particularly during transitional periods such as rush hours when 

traffic conditions change rapidly within short time intervals. Thus, this stage (Fig.2(c)) addresses 
the fundamental requirement of transforming high-resolution temporal traffic data into hourly 

aggregations that maintain the essential characteristics of traffic dynamics while enabling direct 
comparison with meteorological observations. 

Parameter-Specific Aggregation Methodologies: The aggregation process implements distinct 
approaches tailored to each traffic parameter's characteristics. For traffic flow, originally measured 

in vehicles per five minutes, an hourly total is derived using direct summation: 

𝐹𝑙𝑜𝑤ℎ𝑜𝑢𝑟𝑙𝑦 =∑  

12

𝑗=1

𝐹𝑙𝑜𝑤5𝑚𝑖𝑛𝑗
(3) 

where 𝑗  represents the 𝑗 -th 5-minute interval within each hour. This approach provides a 

comprehensive measure of traffic intensity that accurately represents total vehicle throughput.  
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Speed data requires a flow-weighted average of the 5-minute readings to ensure that periods with 
higher traffic volumes contribute more significantly to the aggregated speed: 

𝑆𝑝𝑒𝑒𝑑ℎ𝑜𝑢𝑟𝑙𝑦 =
∑  12
𝑗=1 (𝑆𝑝𝑒𝑒𝑑5𝑚𝑖 𝑛𝑗

× 𝐹𝑙𝑜𝑤5𝑚𝑖𝑛𝑗
)

∑  12
𝑗=1 𝐹𝑙𝑜𝑤5𝑚𝑖𝑛𝑗

(4) 

This method offers a more representative value of actual traffic conditions, especially during 
dynamic periods like rush hours. For road occupancy, which indicates the percentage of time a 

sensor detects vehicle presence, hourly values are computed as the arithmetic mean: 

𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦ℎ𝑜𝑢𝑟𝑙𝑦 =
1

12
∑  

12

𝑗=1

𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦5𝑚𝑖𝑛𝑗
(5) 

yielding a stable indicator of road utilisation by smoothing out short-term fluctuations less critical 

for weather-impact analysis. 

  

Figure 2 Methodology for spatial and temporal harmonisation in IUTF dataset construction. (a) Spatial harmonisation workflow 

integrating three data sources: UTD19 traffic sensors (point-based), OpenStreetMap road networks (complex geometries), and 
ERA5 precipitation data (grid-based). The process includes sensor-to-road mapping, centreline extraction using Voronoi 

algorithms, and precipitation grid alignment to create an integrated network with linked sensor and precipitation identifiers. (b) 

Road centreline extraction process using Voronoi polygon-based method, progressing from original road networks to final 

simplified centrelines.  (c) Temporal harmonisation process converting traffic data from lo LST to UTC, handling time zone 

differences and daylight-saving time, followed by temporal aggregation of 5-minute traffic data to hourly intervals to align with 

precipitation data. 
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Data Records 

The IUTF Dataset, designed for analysing the complex interactions between urban mobility and 

weather phenomena24 (https://doi.org/10.6084/m9.figshare.30022807.v1). This resource covers 40 
cities across Europe, North America, and Asia, with temporal coverage primarily spanning 2015-

2017. Collectively, the dataset encompasses approximately 400,000 road segments, measurements 
from around 23,627 traffic sensors (including original 5-minute readings and hourly aggregations), 
and data from about 140 precipitation grid cells aligned with the ERA5 reanalysis product. Each 

sensor provides 411,631 temporal observations over the study period, creating a comprehens ive 
resource with 3,356 city-days of meteorological observations across all cities. The total 

uncompressed dataset volume is 1.61 GB, stored in highly efficient formats to optimize both 
storage and computational performance. Each city's data is organised into a consistent folder 
structure that facilitates systematic navigation and analysis across different urban contexts, with 

data for individual cities ranging from 150 to 850 sensors per city depending on urban area size 
and monitoring infrastructure density. 

File Formats and Structure 

To ensure optimal computational efficiency and broad compatibility with analytical workflows, 

the dataset employs two primary storage formats. Tabular and geometric data are stored using the 
Apache Parquet format, which provides excellent compression ratios and fast query performance 

for large datasets. Numerical matrices are provided in the NumPy NPZ format, enabling effic ient 
loading and manipulation in scientific computing environments. Each city follows an ident ica l 
organisational structure with clearly labelled subdirectories for different data components, 

ensuring consistent access patterns across all urban areas in the dataset. 

Primary Data Collections and Variable Descriptions 

The IUTF dataset is structured around four interconnected primary components, as illustrated in 
the relational schema (Fig.3), the IUTF dataset is structured around four interconnected primary 

components: road network data, traffic sensor data, precipitation data, and derived analyt ica l 
matrices that facilitate advanced spatio-temporal analysis.  

Road Network Data: This collection provides detailed topological representations of each city's 

transportation infrastructure, including files that describe individual road segment attributes suc h 
as spatial geometry, length, functional classification, and lane counts. Network connectivity 
information specifies origin and destination relationships between road segments, enabling 

comprehensive network-based analyses. 

Traffic Sensor Data: This collection offers comprehensive insights into urban traffic dynamics 
through sensor metadata files that detail physical characteristics, geographical locations, and 

associations with specific road segments and weather grid cells. Traffic measurements are 
provided in two temporal resolutions: original high-resolution 5-minute interval measurements for 

detailed temporal analysis and aggregated hourly statistics that align directly with precipitat ion 
data for integrated weather-traffic studies. 
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Precipitation Data: This collection contains hourly meteorological information derived from 
ERA5 reanalysis and spatially aligned with road networks. Time-stamped records for each relevant 

weather grid cell include key parameters such as total precipitation accumulation and precipitat ion 
rates. Accompanying metadata files define the spatial geometry and geographic coordinates of 

weather grid cells. 

Derived Analytical Matrices: To support advanced spatial-temporal modeling and network 
analyses, this collection provides pre-computed analytical structures including network distance 
matrices between road segments and multi-dimensional arrays containing aligned traffic 

measurements over time, structured for direct use in common analytical software environments. 

.  

Figure 3 Relational Schema of the IUTF Dataset. This diagram illustrates the organisation of the IUTF dataset, color-coded by 

primary data category: Road Network Data (red), Traffic Sensor Data (orange), Precipitation Data (blue), and Derived Analytical 
Matrices (green). Key datasets such as roads, detectors, five_min_readings, hourly_readings, and hourly_rainfall are shown with 

their primary fields and interconnections, facilitated by identifiers like road_id, detid, and grid_id. 
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Technical Validation 

To rigorously establish the integrity, internal consistency, and overall fitness of the IUTF dataset 

for its intended purpose—the detailed analysis of urban traffic dynamics under the influence of 
precipitation events—a multi-faceted validation strategy was employed. This strategy provides 

comprehensive evidence of the dataset's quality and utility. The validation, detailed in the 
subsequent sections, proceeds by first examining the foundational aspects of the dataset, includ ing 
its extensive geographical and network coverage, the baseline characteristics of its core traffic data, 

and the suitability of the chosen precipitation data source (Section 4.1). Following this, we 
demonstrate the dataset's sensitivity and analytical power in detecting and quantifying traffic 

responses to rainfall, including the general impacts of precipitation, dynamic peri-event changes, 
and discernible dose-response relationships with varying rainfall intensities (Section 4.2). Finally, 
the validation illustrates the dataset's capacity to uncover more complex phenomena, such as 

differentiated macroscopic responses within road networks and statistically robust, aggregated 
patterns of traffic disruption across diverse urban contexts (Section 4.3). These analyses 

collectively substantiate the IUTF dataset as a robust resource for advancing research in urban 
mobility and climate resilience. 

Validation of Dataset Coverage, Baseline Characteristics, and 

Source Data Integrity 

Geographical Scope and Network Diversity: A foundational aspect of the IUTF dataset's utility 
lies in its extensive geographical scope and the inherent diversity of the urban environments it 

represents. Fig.4 provides a visual testament to this, showcasing the global distribution of the 40 
selected cities across multiple continents and offering thumbnail visualisations of each city's 
unique road network topology and traffic sensor layout. This diverse representation, encompassing 

a variety of network structures and sensor densities, establishes the dataset's strong potential for 
broad-ranging comparative studies on urban mobility and resilience. Beyond the spatial coverage, 
the integrity of the core data components was assessed. The traffic data, a critical input, exhibits 

plausible and expected temporal patterns, as illustrated in Fig.5 (a)-(c). Fig.5(a) displays the 
average daily traffic flow across the cities, providing a baseline of traffic volume. Further 

characterisation, shown in Fig.5(b) and (c) for selected cities, reveals distinct diurnal rhythms, with 
clear peak and off-peak periods, as well as typical weekly variations in traffic flow. The consistent 
observation of these fundamental traffic patterns across the dataset substantiates the reliability and 

fundamental integrity of the traffic flow measurements integrated into IUTF. Given the dataset's 
focus on weather impacts, the suitability of the chosen precipitation data source, ERA5 reanalys is 

(approximately 31km spatial resolution), was also critically evaluated. Fig.5(d) presents a 
comparative analysis between the ERA5 data (31km, pink bars) and the TerraClimate dataset25 
(4km, monthly, teal bars), which serves as a higher-resolution reference. The TerraClimate dataset 

is derived from WorldClim’s high-resolution climate normal, combined with the temporal 
variability of CRU Ts4.0 and JRA-55, and generated through climate-aided interpolation, making 

it capable of accurately reflecting regional-scale precipitation variability. The results of this 
comparison demonstrate a notable consistency between the two sources, with most cities showing 
comparable monthly precipitation estimates detected by both datasets. For instance, cities like 

London, Hamburg, exhibit very similar levels. While some variations exist, which can be expected 
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due to differences in spatial resolution and detection thresholds, the overall alignment in the timing 
and magnitude of precipitation events suggests that, despite its coarser native resolution, the ERA5 

data effectively captures the occurrence of precipitation conditions pertinent to urban-scale traffic 
impact analyses. This finding validates its use as the primary meteorological input for the IUTF 

dataset. 

 

  

Figure 4 Overview of Selected Cities in the IUTF Dataset, Showing Geographical Locations and Individual Road Network with 

Sensor Placements. (a)global map indicating the locations of the 40 selected cities, color-coded by continent (Asia, Australia, 

Europe, North America, South America), with inset maps providing regional zoom-ins for North America (1), South America (2), 

Europe (3), East Asia (4), and Oceania (5). (b)spatial visualisations of the road network structure (grey lines) and traffic sensor 
locations (red dots) for each of the 40 cities, illustrating the varying network typologies and sensor coverage densities across the 

dataset.  
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Figure 5 Validation of Traffic Flow Patterns and ERA5 Precipitation Data Consistency in the IUTF Dataset. (a) Average Daily 
Traffic Flow: Bar chart illustrating the average daily traffic flow across all included cities, providing a baseline understanding of 

typical traffic volumes. (b) Traffic Flow by Time of Day: Violin plots for selected cities (e.g., Bordeaux, Hamburg, London, 

Manchester, Melbourne, Paris, Taipei, Torino) showing the distribution of traffic flow across different time periods (MP, DOP, 

EP, NOP stands for Morning Peak, Daytime Off-Peak, Evening Peak, Night Off-Peak), highlighting diurnal patterns. (c) Weekly 

Traffic Flow Distribution: Box plots for the same selected cities depicting the distribution of traffic flow across days of the week 
(Monday to Sunday), illustrating weekly traffic rhythms. (d) Precipitation Data Comparison: Tornado plot comparing the 

distribution or frequency of precipitation events as captured by the ERA5 (31km resolution, hourly) data used in IUTF (pink bars) 

against a higher-resolution dataset (4km resolution, daily) for each city (or a representative subset). 

Parameter Sensitivity and Processing Pipeline Robustness: With the foundational integrity of 
the dataset's scope and core components established, we next conducted a comprehens ive 

sensitivity analysis to evaluate the robustness of the data processing pipeline itself. Our framework 
systematically evaluated four critical parameter groups governing the spatio-temporal 
harmonisation process across ±30% ranges from baseline values, validated across all 40 cities. The 

centreline network construction demonstrates exceptional stability, with the Douglas-Peucker 
simplification tolerance achieving optimal performance at 2.0m (topology preservation > 0.90, 

optimal range 1.5-2.5m) and Voronoi buffering maintaining geometric consistency > 0.90 around 
the 15m baseline with <3% positioning accuracy impact. Similarly, traffic sensor integrat io n 
exhibits robust performance with the 200m spatial matching threshold achieving optimal coverage -

quality balance across the 150-250m range, showing cross-city consistency (coefficient of 
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variation <0.15) regardless of urban morphology. Furthermore, weather data alignment mainta ins 
high attribution accuracy (robustness score 0.91) at 12m spatial tolerance with <2% variation 

across the 10-15m range, while temporal aggregation preserves correlation coefficients > 0.85 for 
the 5-minute to 1-hour method. Most importantly, cross-parameter interaction analysis reveals 

primarily additive effects with maximum combined magnitudes <0.10, maintaining system 
stability >0.80 when variations remain within ±20% of baseline values. This comprehens ive 
analysis establishes that our processing pipeline is robust to reasonable parameter variations across 

diverse urban contexts, providing evidence-based guidelines that validate the methodologica l 
foundation for subsequent validation of the dataset's analytical capabilities in detecting traffic 

responses to precipitation events. 

Spatial Coverage Assessment and Network Representativeness: Following the validation of 
our data processing pipeline's robustness, we then performed a granular analysis to assess the 
spatial coverage and representativeness of the final, generated sensor network within each city, as 

illustrated in Fig.6. This analysis provides essential context for understanding the dataset's spatial 
characteristics and representativeness across diverse urban environments. The sensor-to-road 

mapping process successfully associated traffic sensors reach an average coverage rate of 22.1%. 
Coverage rates demonstrate substantial variation between cities, ranging from 4.0% in cities with 
limited sensor infrastructure to 56.4% in London. This variation reflects the diverse nature of 

transportation monitoring systems across different urban contexts, institutional frameworks, and 
infrastructure development priorities. The coverage distribution exhibits systematic patterns 

related to road functional classification, as demonstrated in Fig.6. Trunk roads achieve the highest 
average coverage at 41.6%, followed by primary roads at 35.2%, secondary roads at 25.2%, tertiary 
roads at 20.9%, and local roads ranging from 14.9% to 19.1%. This hierarchical pattern emerges 

consistently across the diverse set of global cities, with the heatmap analysis revealing that most 
cities achieve coverage rates of 60-90% on trunk roads, declining systematically through the road 

hierarchy to 20-40% coverage on local facilities. The spatial distribution of sensor coverage 
concentrates along primary transportation corridors rather than being randomly distributed across 
urban networks. This concentration creates connected monitoring networks that span major 

arterials and highway facilities within each city. When weighted by typical traffic volume patterns 
associated with different road classifications, the effective coverage increases substantially above 

the geometric coverage rates, as higher-classification roads typically carry disproportionate shares 
of total urban traffic volume. This coverage assessment reveals the systematic nature of sensor 
deployment across diverse urban transportation networks while establishing the spatial foundation 

for subsequent analyses of traffic-weather interactions throughout the validation framework. The 
consistent hierarchical coverage patterns across cities provide confidence that observed traffic 

responses to weather conditions reflect systematic relationships rather than artifacts of particular 
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monitoring configurations.

 

Figure 6. Parameter Sensitivity Analysis and Spatial Coverage Assessment of the IUTF Dataset Processing Pipeline. Parameter 

sensitivity analysis and spatial coverage characteristics of the IUTF dataset. (a) Comprehensive parameter sensitivity analysis 

showing robustness across four critical processing components: centreline parameter sensitivity (Douglas-Peucker tolerance and 
segment count variation), sensor integration sensitivity for selected cities (spatial matching threshold performance), weather 

alignment sensitivity (spatial tolerance and temporal aggregation impacts), and parameter interaction analysis (system stability 

scores under combined parameter variations). Green shaded areas indicate acceptable parameter ranges, while orange areas 

represent optimal ranges. (b) Spatial coverage assessment showing road segment coverage rates by city (left), average coverage 

rates by road functional classification (middle), and sensor coverage heatmap by road type across all cities (right). 

Validation of Sensitivity to Rainfall Impacts and Quantification of 

Effects 

The following analyses are presented as a crucial technical validation of the IUTF dataset. The 
primary goal is to demonstrate the dataset's sensitivity and analytical capability in detecting and 

quantifying the impacts of rainfall on traffic dynamics. By confirming that the data can reveal clear, 
dose-response relationships and other complex patterns, we validate its utility as a reliable, 

foundational resource for future, more in-depth resilience assessments. Having established the 
dataset's scope and the integrity of its core components, the validation proceeded to assess its 
capability to detect and quantify the impacts of rainfall on urban traffic flow.  To validate the IUTF 

dataset's utility for future resilience assessments, it is crucial to first demonstrate its sensitivity in 
detecting traffic responses to rainfall. As shown in Fig. 7, the dataset allows for direct and robust 

comparisons of traffic patterns under varying weather conditions. Distinct differences emerge in 
diurnal traffic profiles when comparing rainy versus dry conditions, both in specific cities (Fig. 
7(a)) and when aggregated across the entire dataset (Fig. 7(b)). This validates the dataset's 

fundamental sensitivity in capturing the general disruptive effect of rainfall on established urban 
traffic patterns, a necessary first step for any subsequent resilience analysis. Furthermore, the 

dataset's temporal granularity enables a detailed examination of traffic dynamics around rainfa ll 
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events (Fig. 7(c), (d)). The ability to capture such fine-grained peri-event dynamics is critical, as 
it provides the raw empirical data needed for future studies to calculate specific resilience metrics 

like system recovery times and absorption capacity. This underscores the dataset's direct 
applicability as a foundational resource for quantitative resilience research.  

A key requirement for any resilience-enabling dataset is the ability to support investigations into 

dose-response relationships. The IUTF dataset was validated for this purpose, as shown in the 
analysis of how traffic flow changes correlate with varying rainfall intensities (Fig. 8). Both 
individual event responses (Fig. 8(a)) and summarised distributions (Fig. 8(b)) consistent ly 

indicate that increasing rainfall intensity is associated with more pronounced traffic flow changes.  
This validation confirms that the dataset can facilitate nuanced investigations into the quantitat ive 

impacts of different levels of precipitation severity. This demonstrated capability to support dose-
response analysis is a key prerequisite for any formal assessment of network robustness, a core 
component of resilience. Thus, the IUTF dataset provides the necessary inputs for developing and 

validating such advanced models. 

 

Figure 7 Characterising the influence of rainfall on urban traffic flow dynamics. (a) City-specific diurnal traffic patterns: Traffic 

flow profiles for selected cities comparing rainy versus dry conditions across weekdays and weekends, demonstrating city-specific 

variations in how precipitation affects typical daily traffic patterns. (b) Aggregated diurnal patterns: Average hourly traffic flow 

across all cities categorised by weather conditions and day type, showing dataset-wide patterns of rainfall impact on traffic 
throughout the day. (c) City-specific rainfall event analysis: Traffic flow patterns for selected cities during individual precipitation 

events, with shaded periods indicating rainfall occurrence and different lines showing baseline comparisons. (d) Aggregated 

rainfall event analysis: Percentage change in traffic flow relative to rainfall onset (hour 0) across all cities, using three comparison 

baselines (next day, previous day, and same day of previous week). The shaded area highlights the peri-rainfall period (-3 to +3 

hours), demonstrating the dataset's capability to capture statistically significant anticipatory and reactive changes in traffic flow 

due to rainfall events. 
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Figure 8 Relationship Between Rainfall Intensity and Traffic Flow Changes with Different Comparison Baselines. (a) Scatter plots 

showing traffic flow percentage change versus rainfall intensity for three comparison baselines (previous day, next day, and same 

day of previous week), with points coloured by rainfall intensity categories (Light < 0.5, Moderate 0.5-4, Heavy 4-10, Extreme > 

10 mm/hr, defined by Met Office26). Trend lines indicate the general relationship between rainfall intensity and traffic impact. (b) 

Box plots summarising traffic flow changes by rainfall intensity category after outlier removal (beyond 2.0 IQR), demonstrating 

that increasing rainfall intensity correlates with more significant traffic flow changes. 

Uncovering Differentiated Macroscopic Responses and Aggregated 

Impact Patterns 

Further validation demonstrated the IUTF dataset's capacity to reveal how rainfall modifies 
fundamental macroscopic traffic flow characteristics, a critical aspect for understanding system-

level responses. As illustrated in Figure 9, investigations showed that precipitation events directly 
perturb core traffic flow-occupancy relationships, leading to observable shifts in traffic capacity 
and critical density. The dataset's ability to support such detailed examinations of weather-induced 
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modifications to the fundamental diagram of traffic flow validates its utility for providing the 
empirical basis needed to develop more nuanced urban resilience strategies. 

 

To confirm the broader applicability of such observations, the dataset was used to explore 
aggregated impact patterns across all 40 cities, as shown in Figure 10. These analyses consistent ly 
revealed systematic changes in both traffic flow and road occupancy attributable to rainfall. The 

emergence of such distinct and statistically aggregated patterns not only validates the reliability of 
the observed phenomena but also highlights the IUTF dataset's strength in facilitating the 

identification of generalisable insights and systemic vulnerabilities. This capability is vital for 
informing future evidence-based transportation planning and for building predictive models of 
network performance degradation under meteorological stress, a key component of resilience. 

 

 

Figure 9 Macroscopic traffic flow characteristics under different rainfall conditions across selected cities. (a) Scatter plots of 
traffic flow versus occupancy for each city, with points coloured by rainfall intensity categories, showing the fundamental traffic 

flow-occupancy relationship and rainfall impacts, mainly focus on rainfall type, Light, Moderate, Heavy (remove Extreme Rain 

Type due to the amount of extreme rain events)  (b) Fitted flow-occupancy curves revealing city-specific variations in traffic 

capacity and critical density values under different conditions. (c) Changes in flow as rainfall intensity increases, demonstrating 

how precipitation affects fundamental traffic flow parameters. (d) Flow-occupancy patterns for high-volume road segments, 

providing examples of traffic behaviour under different rainfall conditions. 
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Figure 10 Aggregated analysis of rainfall impact on traffic flow and occupancy across all cities. (a) Traffic flow response to rainfall: 

Box plots showing percentage changes in traffic flow relative to no-rain conditions, categorised by rainfall intensity Light, 

Moderate, Heavy (remove Extreme Rain Type due to the amount of extreme rain events) and traffic flow levels (Low, Mid-Low, 

Mid-High, High Flow). (b) Occupancy response to rainfall: Box plots showing percentage changes in occupancy relative to no-

rain conditions, organised by the same rainfall intensity and traffic flow level categories. (c) Coupled flow-occupancy response: 
Scatter plots of flow change versus occupancy change for each rainfall intensity category, with points coloured by traffic flow 

levels and fitted with trend lines. 

In summary, the multifaceted technical validation has robustly affirmed the IUTF dataset's 
integrity, consistency, and analytical utility. The analyses demonstrated its comprehensive scope, 

the reliability of its core traffic and precipitation data, and its sensitivity in capturing diverse traffic 
responses to rainfall—from general diurnal shifts and dynamic peri-event changes to clear dose-
response relationships with varying rainfall intensities. Furthermore, the dataset was shown to be 

capable of revealing complex, heterogeneous impacts on fundamental macroscopic traffic 
characteristics and statistically significant, aggregated patterns of disruption across diverse urban 

contexts and road categories. While acknowledging inherent characteristics such as precipitat ion 
data resolution and sensor network variability, these comprehensive validation efforts confirm that 
the IUTF dataset is a valuable and reliable resource, well-suited to support advanced research into 

urban mobility, flood impacts, and the development of climate adaptation strategies for 
transportation systems worldwide. 

Usage Note 

The IUTF dataset enables a wide range of analytical applications across urban planning, 
transportation engineering, and climate resilience domains. The IUTF dataset enables a wide range 
of analytical applications across urban planning, transportation engineering, and climate resilience 

domains. This section outlines key application areas and provides guidance for researchers 
conducting resilience-focused studies. 
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General Applications and Data Integration 

The IUTF dataset enables a wide range of analytical applications across urban planning, 

transportation engineering, and climate resilience domains. Researchers and practitioners can 
utilise this dataset for both descriptive and predictive analytical tasks that explore the complex 
relationships between precipitation events and urban traffic patterns. The dataset supports 

comprehensive descriptive analyses of how precipitation events influence urban mobility. 
Researchers can examine the temporal evolution of traffic disruptions before, during, and after 

rainfall events of varying intensities. The multi-city structure facilitates comparative analyses 
between different urban environments, revealing how factors such as network topology, 
infrastructure design, and local policies influence resilience outcomes. These comparisons can 

identify best practices and transferable strategies for enhancing urban transportation resilience. 
Beyond descriptive applications, the IUTF dataset enables sophisticated predictive modelling. 

Transportation planners can develop forecasting tools that incorporate precipitation predictions to 
anticipate traffic disruptions and optimise management strategies. Climate adaptation researchers 
can simulate how changing precipitation patterns might affect future urban mobility, informing 

long-term infrastructure planning and policy development. The dataset's fine-grained temporal 
resolution supports the development of early warning systems that can mitigate the impacts of 

extreme weather events on urban transportation. IUTF data can be seamlessly integrated into 
existing urban data science workflows with minimal pre-processing. City planners can combine 
the integrated traffic-precipitation data with socioeconomic indicators to examine how weather -

related disruptions differentially impact various urban populations. Emergency management 
agencies can overlay evacuation route planning with precipitation vulnerability metrics to identify 

critical intervention points. The dataset's standardised structure facilitates integration with machine 
learning frameworks, enabling straightforward implementation of graph-based and sequence-
based approaches for complex prediction tasks. The modular and standardised framework 

developed for the IUTF dataset can be readily extended to incorporate additional meteorologica l 
variables. While the current version focuses on precipitation data, the spatio-temporal 

harmonisation methodology is designed to accommodate other ERA5 variables such as 
temperature, humidity, wind speed, and atmospheric pressure. Future extensions could also 
integrate extreme weather event annotations, providing temporal and spatial markers for 

significant meteorological events that would be particularly valuable for disaster risk studies. The 
open-source processing framework enables researchers to adapt and extend the dataset according 

to their specific analytical needs, supporting the development of more comprehensive multi-hazard 
urban resilience assessments. This extensibility ensures that the IUTF dataset can serve as a 
foundational platform for increasingly sophisticated climate-transportation interaction studies as 

new data sources and research questions emerge. 

Quantitative Resilience Assessment Applications 

The IUTF dataset provides the essential data components needed to conduct quantitative urban 
transportation resilience assessments. Researchers can leverage this integrated resource to derive 

standard resilience metrics and conduct comparative analyses across different urban contexts: (1) 

Recovery Curve Analysis: The dataset's fine-grained temporal resolution enables the calculat ion 

of system recovery curves following precipitation events. Researchers can identify rainfall onset 
times, track traffic flow changes during and after events, and quantify recovery trajectories. The 
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multi-city structure allows for comparative analysis of recovery patterns, revealing how different 
urban characteristics (network topology, infrastructure design, management strategies) influence 

recovery dynamics. Recovery metrics such as recovery time, recovery rate, and residual impact 
can be systematically computed and compared across the 40 cities. (2) Robustness Assessment: 

The demonstrated dose-response relationship between rainfall intensity and traffic disruption 
provides the foundation for quantifying system robustness. Researchers can establish performance 
degradation curves under varying stress levels, calculate robustness indices based on traffic flow 

reductions, and identify critical rainfall thresholds where system performance significantly 
degrades. The dataset supports the development of robustness metrics that account for both the 

magnitude and spatial extent of traffic disruptions. (3) Adaptive Capacity Evaluation: The 
dataset's integration of traffic flow, occupancy, and network topology data enables investiga t ion 
of how transportation systems adapt their operational characteristics under stress. Researchers can 

analyse shifts in fundamental traffic flow relationships, identify adaptive behaviours such as route 
switching patterns, and quantify the system's ability to maintain functionality under adverse 

conditions. The spatial granularity allows for assessment of which network components 
demonstrate greater adaptive capacity. (4) Vulnerability Mapping: By combining precipitat ion 
intensity data with traffic impact patterns, researchers can develop detailed vulnerability maps that 

identify which road segments, network regions, or entire cities are most susceptible to weather-
related disruptions. The standardised data structure facilitates the creation of vulnerability indices 

that can be compared across different urban environments and used to prioritize infrastruc ture 
investments. (5) Multi-Scale Resilience Analysis: The dataset supports resilience analysis at 
multiple spatial scales, from individual road segments to entire urban networks. Researchers can 

investigate how local vulnerabilities aggregate to system-level impacts, examine cascading failure 
patterns, and assess the effectiveness of different network topologies in maintaining system 

resilience. The cross-city coverage enables identification of general resilience principles that 
transcend specific urban contexts. 

Framework Extensibility 

The spatio-temporal harmonisation framework developed for the IUTF dataset is designed to be 

modular and transferable. The methodology can be readily adapted to incorporate additiona l 
temporal periods, expanded geographical coverage, or supplementary meteorological variables. 
This extensibility enables researchers to apply the same harmonisation principles to new data 

sources as they become available, supporting the development of larger-scale or more recent 
datasets using consistent methodological approaches. The open-source nature of the processing 

framework facilitates such adaptations and extensions by the research community. 

Data Availability 

The IUTF dataset described in this work is publicly available in the Figshare repository at 
https://doi.org/10.6084/m9.figshare.30022807.v1. 
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Code Availability   

All source code for IUTF data processing is written in Python and hosted under the GNU General 

Public License 3.0. The package dependencies are listed in a file called requirements.txt. The 
scripts cover the entire data processing workflow including spatial-temporal harmonisation, data 

validation, and analysis procedures. The complete processing methodology is explained in a 
readme markdown file. The code can be found on the GitHub 
repository(https://github.com/viviRG2024/IUTDF_processing). The repository README 

provides clear instructions and download links for accessing the complete IUTF dataset. 
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