Sc' e ntlﬁ c Data https://doi.org/1 0.1038/s41597-025-06336-3
Article in Press

IUTF Dataset: Enabling Cross-Border Resource for
Analysing the Impact of Rainfall on Urban
Transportation

Received: 24 June 2025 Xuhui Lin, Qiuchen Lu, Long Chen, Jack Chin Pang Cheng, Jiayi Yan, Jingke Hong &
Accepted: 18 November 2025 Pengjun Zhao

Cite this article as: Lin, X., Lu, Q., We are providing an unedited version of this manuscript to give early access to its
Chen, L. et al. IUTF Dataset: Enabling findings. Before final publication, the manuscript will undergo further editing. Please
Cross-Border Resource for Analysing note there may be errors present which affect the content, and all legal disclaimers
the Impact of Rainfall on Urban apply.

Transportation. Sc¢/ Data (2025).
https://doi.org/10.1038/
s41597-025-06336-3

If this paper is publishing under a Transparent Peer Review model then Peer
Review reports will publish with the final article.

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included
in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative
Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.


https://doi.org/10.1038/s41597-025-06336-3
https://doi.org/10.1038/s41597-025-06336-3
https://doi.org/10.1038/s41597-025-06336-3
http://creativecommons.org/licenses/by/4.0/

IUTF Dataset: Enabling Cross-Border Resource for
Analysing the Impact of Rainfall on Urban
Transportation

Xuhui Lin!, Qiuchen Lu? ", Long Chen?, Jack Chin Pang Cheng*, Jiayi Yan’, Jingke Hong®,
Pengjun Zhao’

1 Phd Candidate, The Bartlett School of Sustainable Construction, University College London,
UK;
2 Professor/Royal Academy of Engineering (RAEng)/Leverhulme Trust Research Fellow, The
Bartlett School of Sustainable Construction, University College London, UK;
3 Assistant Professor, Department of Architecture and Civil Engineering, The City University of
Hong Kong, Hong Kong, China;
4 Professor, Department of Civil and Environmental Engmneering, The Hong Kong University of
Science and Technology, Hong Kong, China;
5 Scientist, Department of Information Services, University of Cambridge, UK;
6 Professor, Chongging University, Chongqing, China;
7 Professor, School of Urban Planning and Design, Shenzhen Graduate School, Peking Univers ity,
Shenzhen, China;
* Corresponding Email: giuchen. lu@ucl.ac.uk;

Abstract

Understanding the impact of extreme weather, particularly flooding, on urban transportation
systems is critical for enhancing city resilience and traffic management. However, research and
policy development are often hampered by a lack of datasets that comprehensively integrate
detailed traffic dynamics, high-resolution weather information, and road network topology across
multiple diverse urban environments. To address this significant gap, we present the Integrated
Urban Traffic-Flood (IUTF) dataset. This open-access resource covers 40 major cities across
Europe, North America, and Asia, including 21,739 sensors. The IUTF dataset uniquely combines
(1) high-resolution traffic parameters derived from over 21,700 sensors (with raw data typically at
5-minute intervals, harmonised to hourly); (i) detailed hourly precipitation data from ERAS
reanalysis, spatially aligned with (iii) the underlying road network topology for over 1 million road
segments, processed from OpenStreetMap. This meticulously curated and validated dataset,
created through a novel spatio-temporal harmonisation framework, enables unprecedented, cross-
border analysis of weather impacts on urban mobility. It provides a foundational data resource to
support applications in traffic flow prediction, infrastructure planning, and the future development
of quantitative resilience models.


mailto:qiuchen.lu@ucl.ac.uk

Background & Summary

Urban transportation networks are fundamental to the economic and social vitality of modern
cities!. However, these critical systems face escalating threats from extreme weather events, with
flooding, in particular, emerging as a profoundly disruptive force to urban mobility in the 21st
century?. Projections indicate a future with more frequent and intense precipitation®. a trend
already causing global disruptions, overwhelming infrastructure, and incurring substantial
economic losses—often exceeding $100 billion USD annually in recent years*®, starkly illustrated
by major incidents from Zhengzhou to the US East Coast and Europe®—°. Beyond immediate
inundation, rainfall triggers complex cascading effects and non-linear interactions within transport
networks!®-13 making prediction and management exceptionally challenging without
comprehensive, integrated data. This research presents a data descriptor that provides the
foundational infrastructure for such analyses, with data crucial for applications ranging from
vulnerability assessments and predictive modelling to the strategic planning of resilient
infrastructure and adaptive traffic management. While significant public datasets for urban traffic
analysis exist—such as METR-LAM, the PEMS family’>16 ~ and the UTD19'"—and
meteorological monitoring has advanced with tools like weather radar and reanalysis products such
as European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5)18:19,
a critical gap remains when addressing traffic-weather interactions at a detailed, multi-city scale.
Specifically, the public datasets have three key limitations:

o Lack of Integrated Traffic and Detailed Weather Data: Most existing datasets focus on
either traffic or weather, seldom providing concurrent, high-resolution data from both
domains directly linked at the road network level. Forexample, widely used traffic datasets
such as METR-LA (207 sensors in Los Angeles) and PEMS-BAY (325 sensors in San
Francisco Bay Area) provide detailed traffic measurements but lack corresponding
meteorological data, while weather datasets like ERAS offer comprehensive climate
information at ~31km resolution but are not spatially aligned with transportation
infrastructure. Researchers attempting to combine these sources face substantial technical
barriers including data format incompatibility. coordinate system mismatches (local vs.
geographic coordinate systems), and temporal alignment complexity (local time zones vs.
UTC).

« Insufficient Spatio-Temporal Alignment: When both data types are available, they often
lack the necessary spatial and temporal harmonisation (e.g., traffic sensors aligned with
relevant weather data grids, consistent time zones and resolutions) required for robust
interaction analysis. Spatial misalignment occurs due to scale mismatches (ERA5's ~31km
grid resolution vs. point-based traffic sensors), coverage disparities (weather stations
spaced 10-25km apart vs. traffic sensors at 0.5-2km intervals), and boundary effects where
urban areas span multiple weather grid cells. Temporal misalignment arises from time zone
complexity (traffic data in local time across multiple time zones vs. weather data in UTC),
resolution inconsistencies (5-minute traffic intervals vs. hourly weather data), and



measurement timing differences (accumulated weather values vs. instantaneous traffic
readings).

o Limited Multi-City Scope for Integrated Datasets: While some regional efforts integrate
traffic and weather data2®, comprehensive datasets covering diverse international cities
remain extremely rare in the public domain. Most traffic-weather interaction studies focus
on single metropolitan areas, with multi-city studies typically constrained to single
countries or regions, limiting cross-climatic and cross-cultural generalizability. When
multi-city integration is attempted, researchers face methodological inconsistencies
(different sensor technologies and data collection protocols across cities), incomp lete
temporal coverage (varying data availability periods), and weather data heterogeneity
(combining different sources with varying spatial resolutions and quality standards).

To address these fundamental limitations, this paper introduces the Integrated Urban Traffic-Flood
(IUTF) dataset, a comprehensive, open-access resource spanning 40 major cities across Europe,
North America, and Asia. The IUTF incorporates three key data components: (1) high-resolution
trafic measurements from 21,739 sensors recording at 5-minute intervals, yielding 411,631
temporal observations per sensor; (2) detailed road network information encompassing the
topology and attributes of 1,067,085 road segments; and (3) hourly precipitation data from ERAS
reanalysis, providing 3,356 city-days of meteorological observations across all cities during the
study period.

The IUTF uniquely integrates traffic measurements with spatially and temporally aligned
precipitation data and road network topology from OpenStreetMap (OSM)2L. This integration
creates a novel resource for analysing weather-traffic interactions across diverse urban contexts,
providing the data foundation that enables researchers to conduct comprehensive analysis of how
extreme weather events impact urban mobility patterns while maintaining the temporal resolution
necessary for capturing both immediate and longer-term effects of precipitation on traffic flow.
The IUTF dataset advances the field through several key contributions:

e A Large-Scale, Multi-City Integrated Resource: It provides an unprecedented,
standardised collection of traffic, weather, and network data for 40 diverse global cities,
specifically designed to enable robust comparative urban resilience studies.

« A Novel and Replicable Harmonisation Framework: We develop and implement a
systematic methodology for the spatial and temporal harmonisation of point-based traffic
sensor data, linear road networks, and gridded precipitation data, offering a transferable
approach for future global urban data integration.

o Ensuring Data Quality and Accessibility: The dataset undergoes rigorous quality control
procedures, including automated consistency checks and manual validation, to ensure
reliability across all cities. The data is structured in accessible formats that support diverse



analytical workflows while maintaining technical rigor, facilitating both academic research
and practical applications in urban transportation management.

e Providing Data Infrastructure for Advanced Impact and Resilience Analysis: By
providing deeply integrated and contextualised data, IUTF creates the essential empirical
foundation needed to facilitate sophisticated investigations into how precipitation events
affect urban mobility patterns and to support the future development and validation of
guantitative resilience models.

Methods

Our data workflow for creating the IUTF dataset comprises three main stages: (1) sourcing,
selection, and initial processing of open data for traffic flow, road networks, and precipitation; (2)
comprehensive spatio-temporal harmonisation, integrating these diverse data types into coherent
urban network structures; and (3) compilation of the final structured dataset, including derived
analytical matrices and rigorous technical validation. We employ a consistent and standardised
pipeline to process and align data from established sources like UTD19, OpenStreetMap, and
ERAS5 across 40 global cities. Fig.1 provides a visual overview of this workflow.
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Figure 1. Overview ofthe IUTF Dataset Generation Process. (a) Raw data inputs include delineated urban road networks. (b) This
stage involves processing the road network (e.g., centroid line extraction), mapping traffic sensors to road segments, and
performing spatial and temporal matching of weather data with the road network and traffic data, including time zone
Standardisation and resolution aggregation. (c) The final output is the structured IUTF dataset, featuring aclear schema for road
networks, traffic readings (original 5-minute and aggregated hourly), and aligned hourly rainfall data, enabling localised and
network-wide analysis of traffic-weather interactions.



Data Collection and Sources

The IUTF Dataset combines three primary data sources: high-resolution traffic measurements from
UTD19, comprehensive road network data from OpenStreetMap, and precipitation records from
ERAS reanalysis. Each data source was carefully selected to ensure temporal alignment, spatial
compatibility, and data quality consistency across all study cities.

Traffic Flow Data

The traffic flow measurements are sourced from UTD19, a benchmark urban traffic dataset that
covers 40 global cities. For our study, we extracted data from 40 cities that demonstrated consistent
sensor coverage and data quality between 2015 and 2017. The raw data includes three fundamental
traffic parameters: flow (vehicles per hour), and occupancy (percentage). These measurements are
collected through wvarious types of stationary sensors, including inductive loop detectors,
supersonic detectors, and cameras, with each sensor providing readings at hourly intervals. The
sensor density varies across cities, ranging from 150 to 850 sensors per city, with an average
spacing of approximately 500 meters along major arterials.

Road Network Information

Road network data is obtained from OpenStreetMap (OSM), accessed through the OSMNX
Python package. We extracted the complete road network for each city, including attributes such
as road type, speed limits, and number of lanes. The OSM data provides comprehensive coverage
of the urban road network, with particularly detailed information for major roads where traffic
sensors are typically located. The road network data was retrieved for the 2015-2017 period to
ensure temporal consistency with the traffic sensor data and accurate sensor-to-road segment
matching. The 2015-2017 timeframe was selected to maximize temporal overlap and consistent
sensor coverage across all 40 cities within the UTD19 dataset, representing the optimal period that
met our rigorous criteria for robust cross-city comparative analysis.

Precipitation Data

Precipitation measurements are derived from the ERAS reanalysis dataset, provided by the
ECMWEF. ERAS offers global coverage at approximately 31-kilometer spatial resolution and
hourly temporal resolution. For each city, we extracted precipitation data for the entire study period
(2015-2017), including both total precipitation and precipitation rate. The ERA5 dataset was
chosen for its consistent methodology across all study regions and its proven reliability in urban
meteorological applications. While the spatial resolution is coarser than some local weather station
networks, it provides uniform coverage and methodology across all study cities, enabling
consistent cross-city analysis.

Spatial Harmonisation Process

The integration of traffic sensor data, road networks, and precipitation measurements required a
comprehensive spatial harmonisation approach to ensure consistent geographical representation



and analysis capabilities. As illustrated in Fig.2(a), our methodology was designed to ensure
consistent geographical representation and robust analysis capabilities by addressing three key
spatial integration challenges: the processing and simplification of road networks, precise mapping
of traffic sensor locations to these networks, and accurate alignment of gridded precipitation data
with the road infrastructure.

Road Network Processing and Sensor Integration

The spatial harmonisation of traffic sensor data with road networks presents a fundamental
challenge in multi-source transportation data integration. Raw OpenStreetMap road networks
contain complex geometries with varying levels of detail, while traffic sensors from UTD19 are
provided as discrete point locations without explicit road segment associations. This stage
addresses two critical requirements (as shown in Fig .2(a)): first, transforming complex OSM road
geometries into simplified but topologically accurate centreline representations suitable for
network analysis; and second, establishing precise spatial relationships between point-based
sensor locations and their corresponding road segments. This process is essential for creating a
unified spatial framework that enables subsequent integration with gridded precipitation data.

Centreline Network Extraction: The first stage, Centreline Network Extraction, is visually
detailed in the six-panel workflow shown in Figure 2(b). The process begins with the original road
network from OSM (Fig. 2(b)-1), which often contains complex multi-lane geometries, detailed
intersection configurations, and varying levels of geometric detail across different road types.
These roads are then converted into buffered polygons (Fig. 2(b)-2) using appropriate buffer
distances that account for road width characteristics when available in OSM attributes, or standard
geometric assumptions based on road functional classification when width information is absent.
Following this, Voronoi tessellation?? is applied to the buffered polygons (Fig. 2(b)-3) to derive
the medial axis through computational geometry algorithms, where the resulting Voronoi cell
boundaries represent the geometric centreline of each road corridor (Fig. 2(b)-4). This raw
centreline geometry is subsequently refined using the Douglas-Peucker algorithn??® to create
simplified and cleaned centrelines (Fig. 2(b)-5), which systematically removes redundant vertices
while preserving essential geometric characteristics and maintaining critical topological
relationships. The final step involves using a point-vicinity algorithm to refine intersection
topology (Fig. 2(b)-6), ensuring proper connectivity between road segments and resolving issues
such as overshooting or undershooting lines at network nodes. This comprehensive approach
transforms complex, multi-lane geometries into representative  single-line  centrelines, a
representation that is critical for integrating sensor data reflecting aggregate flow conditions across
multiple lanes.

Sensor-to-Road Segment Matching: Once the topologically sound centreline network is
established, traffic sensors (sourced from UTD19 as point locations) are integrated through the
Sensor-to-Road Segment Matching stage, as depicted in the overall workflow (Figure 2(a)). We
implement a proximity-based matching algorithm that employs nearest-neighbour analysis to
identify the most suitable road segment for each sensor location. The algorithm operates by
calculating the geometric distance between each sensor and candidate road segments within its
vicinity, specifically measuring the shortest perpendicular distance from the sensor point to each
road segment centreline rather than using arbitrary endpoint distances.



Topological Validation of Matches: The initial automated matches are then subjected to rigorous
Topological Validation of Matches, a critical quality control step that addresses the limitations of
purely distance-based matching approaches. This validation process systematically examines each
sensor-road association to identify and resolve potential ambiguities, particularly in complex
geometric scenarios such as multi-lane highways where sensors may be equidistant from multip le
roadway facilities, intersections where sensor positioning relative to approach/departure
configurations affects appropriate assignment, and closely parallel roads where functional
classification and directional analysis are required to determine correct associations.

Precipitation Data Integration

The integration of meteorological data with transportation networks presents a significant
methodological challenge due to fundamental differences in spatial representation and resolution
between these data sources. ERAS reanalysis provides precipitation data at approximately 31km
spatial resolution in a regular grid format, while road networks consist of linear features with
highly variable spatial density and geometric complexity. This spatial scale mismatch creates
substantial difficulties for establishing meaningful relationships between weather conditions and
traffic patterns, as a single ERA5 grid cell may encompass multiple distinct road segments with
potentially different precipitation exposure characteristics. Thus, this stage addresses the
fundamental challenge of accurately aligning gridded meteorological data with fine-scale
transportation infrastructure.

Spatial Overlay and Grid-Road Intersection Analysis: The first stage, Spatial Overlay and
Grid-Road Intersection Analysis, begins by extracting only the relevant ERAS5 grid cells that
geometrically intersect with each city's road network boundary, creating a focused precipitation
dataset for each urban area while significantly reducing computational demands. The process then
employs computational geometry algorithms to determine precise intersection relationships
between linear road segments and rectangular grid cells. This analysis requires coordinate system
harmonisation, as road networks typically use local projected coordinate systems while ERA5 data
employs WGS84 geographic  coordinates, necessitating appropriate datum transformations to
maintain spatial accuracy. For each road segment, the algorithm calculates the exact geometric
relationship with intersecting grid cells, including the proportional length of road segment within
each grid cell and the total intersection area, forming the foundation for subsequent precipitation
attribution calculations.

Dual Attribution Methodology Implementation: The second stage implements adual attribution
methodology specifically designed to support different analytical requirements through parallel
processing pathways. The detailed attribution pathway preserves individual precipitation time
series for each grid cell that intersects with a road segment, maintaining these as indexed data
structures that retain the full spatial granularity of ERAS data and enable analysis of precipitation
variability along extended road segments. Simultaneously, the aggregated attribution pathway
creates single precipitation values for each road segment through area-weighted averaging,
calculated using the formula:

n.op . XIL.
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where Py gene represents the final precipitation value for the road segment, P, is the
precipitation value in grid cell i, L; is the length of road segment within grid cell i, and nis the
total number of grid cells that intersect with the road segment. This weighted averaging approach
ensures that grid cells containing longer portions of a road segment contribute proportionally more
to the final precipitation attribution, accounting for the varying spatial influence of different grid

cells on individual road segments.

Technical Implementation and Computational Optimisation: To handle the computational
demands of processing extensive road networks against precipitation grids, the implementation
employs several optimisation strategies. Spatial indexing structures, specifically R-tree algorithms,
are used to efficiently identify potential grid-road intersections and reduce computational overhead
while maintaining complete accuracy in intersection detection. The algorithm also employs
minimum bounding rectangle calculations to pre-fitter grid cells that cannot possibly intersect with
road segments, reducing processing time by eliminating unnecessary geometric calculations. For
road segments that span multiple cities or extend across large geographic areas, the processing is
partitioned spatially to enable parallel computation and manage memory requirements effectively.

Temporal Harmonisation Process

The temporal harmonisation process addresses the challenge of aligning traffic measurements
collected at 5-minute intervals in Local Standard Time with precipitation data provided at hourly
intervals in Coordinated Universal Time. The objective is to create temporally synchronised
datasets that enable precise analysis of cause-effect relationships between precipitation events and
traffic responses while maintaining the temporal resolution necessary for capturing both immed iate
and longer-term weather impacts.

Time Zone Standardisation

The temporal alignment of multi-source urban data presents fundamental challenges when datasets
originate from different temporal reference systems and measurement frequencies. Global urban
traffic datasets inherently use local time standards that reflect regional timekeeping practices and
local traffic patterns, while meteorological reanalysis products typically employ standardised
universal time coordinates to ensure consistency across global coverage areas. This temporal
heterogeneity creates significant complications for integrated analysis, as the same physical time
moment may be represented by different timestamp values across datasets, and seasonal time
adjustments  (daylight saving time) introduce additional temporal discontinuities that can
substantially affect traffic pattern interpretation. Furthermore, the different measurement intervals
-5-minute traffic observations wversus hourly precipitation data - require Systematic temporal
alignment to enable meaningful weather-traffic interaction analysis. The complexity increases
when considering 40 globally distributed cities spanning multiple time zones with varying
daylight-saving time policies and historical time zone changes during the study period (2015-2017).
This stage (as shown in Fig.2(c)) addresses the critical requirement of establishing a unified
temporal framework that enables accurate synchronisation of traffic and weather observations
while preserving the temporal integrity of both datasets.



Time Zone Mapping and DST Handling: To address the temporal misalignment, all traffic
measurements were converted from their native LST to UTC using a systematic conversion
algorithm. This process involved establishing a comprehensive time zone mapping for all 40 cities,
accounting for city-specific UTC offsets (examples of which are provided in Fig.2(c)) and
meticulously handling daylight-saving time (DST) transitions where applicable. The conversion
algorithm specifically addresses DST transitions through systematic procedures that manage
"spring forward" periods where local time jumps from 2:00 AM to 3:00 AM, and "fall back"
periods where 1:00-2:00 AM occurs twice in local time. These procedures involve examining
timestamp context and applying disambiguation rules based on surrounding data patterns.

UTC Conversion Implementation: The conversion follows the systematic formula:
UTCtime = LSTtime - OffsetUTC - DSTadjustment (2)

where LST,;,,. represents the original local standard time timestamp, Offset, . is the city-
specific UTC offset, and DST,;j,sement TEPresents the additional offset (typically 1 hour) applied
during daylight saving periods. A comprehensive time zone reference table documenting standard
UTC offsets and DST schedules for each city during the study period (2015-2017) informed this
conversion algorithm, ensuring direct temporal linkage with the UTC-based ERAS precipitation
data. The process includes validation procedures to ensure temporal consistency and identify
potential conversion errors through timestamp sequence analysis and traffic pattern verification.

Temporal Resolution Aggregation

The temporal aggregation of high-frequency traffic  measurements presents significant
methodological challenges due to the need to preserve different statistical characteristics of various
traffic parameters while achieving temporal alignment with meteorological data. Traffic flow,
speed, and occupancy measurements each represent fundamentally different physical phenomena
with distinct statistical properties and temporal variability patterns that require parameter-specific
aggregation approaches to maintain their analytical significance. Simple temporal averaging may
obscure critical traffic dynamics, particularly during transitional periods such as rush hours when
traffic conditions change rapidly within short time intervals. Thus, this stage (Fig.2(c)) addresses
the fundamental requirement of transforming high-resolution temporal traffic data into hourly
aggregations that maintain the essential characteristics of traffic dynamics while enabling direct
comparison with meteorological observations.

Parameter-Specific Aggregation Methodologies: The aggregation process implements distinct
approaches tailored to each traffic parameter's characteristics. For traffic flow, originally measured
in vehicles per five minutes, an hourly total is derived using direct summation:

12

Flowhourly = z FlOWSminj (3)
j=1

where j represents the j-th 5-minute interval within each hour. This approach provides a
comprehensive measure of traffic intensity that accurately represents total vehicle throughp ut.



Speed data requires a flow-weighted average of the 5-minute readings to ensure that periods with
higher traffic volumes contribute more significantly to the aggregated speed:

P2 (Speed

12
j=1

Smin]- X FlOWSminj)

Speed (4)

hourly FlOWSminj

This method offers a more representative value of actual traffic conditions, especially during
dynamic periods like rush hours. For road occupancy, which indicates the percentage of time a
sensor detects vehicle presence, hourly values are computed as the arithmetic mean:

12
1
Occupancypoyriy = EZ Occupancysy;n; (5)

j=1

yielding a stable indicator of road utilisation by smoothing out short-term fluctuations less critical
for weather-impact analysis.
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Data Records

The IUTF Dataset, designed for analysing the complex interactions between urban mobility and
weather phenomena?* (https://doi.org/10.6084/m9.figshare.30022807.v1). This resource covers 40
cities across Europe, North America, and Asia, with temporal coverage primarily spanning 2015-
2017. Collectively, the dataset encompasses approximately 400,000 road segments, measureme nts
from around 23,627 traffic sensors (including original 5-minute readings and hourly aggregations),
and data from about 140 precipitation grid cells aligned with the ERA5 reanalysis product. Each
sensor provides 411,631 temporal observations over the study period, creating a comprehensive
resource with 3,356 city-days of meteorological observations across all cities. The total
uncompressed dataset volume is 1.61 GB, stored in highly efficient formats to optimize both
storage and computational performance. Each city's data is organised into a consistent folder
structure that facilitates systematic navigation and analysis across different urban contexts, with
data for individual cities ranging from 150 to 850 sensors per city depending on urban area size
and monitoring infrastructure density.

File Formats and Structure

To ensure optimal computational efficiency and broad compatibility with analytical workflows,
the dataset employs two primary storage formats. Tabular and geometric data are stored using the
Apache Parquet format, which provides excellent compression ratios and fast query performance
for large datasets. Numerical matrices are provided in the NumPy NPZ format, enabling efficient
loading and manipulation in scientific computing environments. Each city follows an identical
organisational structure with clearly labelled subdirectories for different data components,
ensuring consistent access patterns across all urban areas in the dataset.

Primary Data Collections and Variable Descriptions

The IUTF dataset is structured around four interconnected primary components, as illustrated in
the relational schema (Fig.3), the IUTF dataset is structured around four interconnected primary
components: road network data, traffic sensor data, precipitation data, and derived analytical
matrices that facilitate advanced spatio-temporal analysis.

Road Network Data: This collection provides detailed topological representations of each city's
transportation infrastructure, including files that describe individual road segment attributes such
as spatial geometry, length, functional classification, and lane counts. Network connectivity
information specifies origin and destination relationships between road segments, enabling
comprehensive network-based analyses.

Traffic Sensor Data: This collection offers comprehensive insights into urban traffic dynamics
through sensor metadata files that detail physical characteristics, geographical locations, and
associations with specific road segments and weather grid cells. Traffic measurements are
provided in two temporal resolutions: original high-resolution 5-minute interval measurements for
detailed temporal analysis and aggregated hourly statistics that align directly with precipitation
data for integrated weather-traffic studies.



Precipitation Data: This collection contains hourly meteorological information derived from
ERAS reanalysis and spatially aligned with road networks. Time-stamped records for each relevant
weather grid cell include key parameters such as total precipitation accumulation and precipitation
rates. Accompanying metadata files define the spatial geometry and geographic coordinates of
weather grid cells.

Derived Analytical Matrices: To support advanced spatial-temporal modeling and network
analyses, this collection provides pre-computed analytical structures including network distance
matrices between road segments and multi-dimensional arrays containing aligned traffic
measurements over time, structured for direct use in common analytical software environments.
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"precipitation_type" float

"local_time" timestamp

J Road Network Data

Traffic Sensor Data ‘

Derived Analytical Aatrices

‘ Precipitation Data

Figure 3 Relational Schema of the IUTF Dataset. This diagram illustrates the organisation of the IUTF dataset, color-coded by
primary data category: Road Network Data (red), Traffic Sensor Data (orange), Precipitation Data (blue), and Derived Analytical
Matrices (green). Key datasets such as roads, detectors, five_min_readings, hourly_readings, and hourly_rainfall are shown with
their primaryfields and interconnections, facilitated by identifiers like road_id, detid, and grid_id.



Technical VValidation

To rigorously establish the integrity, internal consistency, and overall fitness of the IUTF dataset
for its intended purpose—the detailed analysis of urban traffic dynamics under the influence of
precipitation events—a multi-faceted validation strategy was employed. This strategy provides
comprehensive evidence of the dataset's quality and utility. The validation, detailed in the
subsequent sections, proceeds by first examining the foundational aspects of the dataset, including
its extensive geographical and network coverage, the baseline characteristics of its core traffic data,
and the suitability of the chosen precipitation data source (Section 4.1). Following this, we
demonstrate the dataset's sensitivity and analytical power in detecting and quantifying traffic
responses to rainfall, including the general impacts of precipitation, dynamic peri-event changes,
and discernible dose-response relationships with varying rainfall intensities (Section 4.2). Finally,
the validation illustrates the dataset's capacity to uncover more complex phenomena, such as
differentiated macroscopic responses within road networks and statistically robust, aggregated
patterns of traffic disruption across diverse urban contexts (Section 4.3). These analyses
collectively substantiate the IUTF dataset as a robust resource for advancing research in urban
mobility and climate resilience.

Validation of Dataset Coverage, Baseline Characteristics, and
Source Data Integrity

Geographical Scope and Network Diversity: A foundational aspect of the IUTF dataset's utility
lies in its extensive geographical scope and the inherent diversity of the urban environments it
represents. Fig.4 provides a visual testament to this, showcasing the global distribution of the 40
selected cities across multiple continents and offering thumbnail visualisations of each city's
unique road network topology and traffic sensor layout. This diverse representation, encompassing
a variety of network structures and sensor densities, establishes the dataset's strong potential for
broad-ranging comparative studies on urban mobility and resilience. Beyond the spatial coverage,
the integrity of the core data components was assessed. The traffic data, a critical input, exhibits
plausible and expected temporal patterns, as illustrated in Fig.5 (a)-(c). Fig.5(a) displays the
average daily traffic flow across the cities, providing a baseline of traffic volume. Further
characterisation, shown in Fig.5(b) and (c) for selected cities, reveals distinct diurnal rhythms, with
clear peak and off-peak periods, as well as typical weekly variations in traffic flow. The consistent
observation of these fundamental traffic patterns across the dataset substantiates the reliability and
fundamental integrity of the traffic flow measurements integrated into IUTF. Given the dataset's
focus on weather impacts, the suitability of the chosen precipitation data source, ERA5 reanalysis
(approximately 31km spatial resolution), was also critically evaluated. Fig.5(d) presents a
comparative analysis between the ERAS5 data (31km, pink bars) and the TerraClimate dataset?®
(4km, monthly, teal bars), which serves as a higher-resolution reference. The TerraClimate dataset
is derived from WorldClim’s high-resolution climate normal, combined with the temporal
variability of CRU Ts4.0 and JRA-55, and generated through climate-aided interpolation, making
it capable of accurately reflecting regional-scale precipitation variability. The results of this
comparison demonstrate a notable consistency between the two sources, with most cities showing
comparable monthly precipitation estimates detected by both datasets. For instance, cities like
London, Hamburg, exhibit very similar levels. While some variations exist, which can be expected



due to differences in spatial resolution and detection thresholds, the overall alignment in the timing
and magnitude of precipitation events suggests that, despite its coarser native resolution, the ERA5
data effectively captures the occurrence of precipitation conditions pertinent to urban-scale traffic
impact analyses. This finding validates its use as the primary meteorological input for the IUTF
dataset.
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Figure 4 Overview of Selected Cities in the IUTF Dataset, Showing Geographical Locations and Individual Road Network with
Sensor Placements. (a)global map indicating the locations of the 40 selected cities, color-coded by continent (Asia, Australia,
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dataset.
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Figure 5 Validation of Traffic Flow Patterns and ERA5 Precipitation Data Consistency in the IUTF Dataset. (a) Average Daily
Traffic Flow: Bar chart illustrating the average daily traffic flow across all included cities, providing a baseline understanding of
typical traffic volumes. (b) Traffic Flow by Time of Day: Violin plots for selected cities (e.g., Bordeaux, Hamburg, London,
Manchester, Melbourne, Paris, Taipei, Torino) showing the distribution of traffic flow across different time periods (MP, DOP,
EP, NOP stands for Morning Peak, Daytime Off-Peak, Evening Peak, Night Off-Peak), highlighting diurnal patterns. (c) Weekly
Traffic Flow Distribution: Box plots for the same selected cities depicting the distribution of traffic flow across days of the week
(Monday to Sunday), illustrating weekly traffic rhythms. (d) Precipitation Data Comparison: Tornado plot comparing the
distribution or frequency of precipitation events as captured by the ERA5 (31km resolution, hourly) data used in IUTF (pink bars)
against a higher-resolution dataset (4km resolution, daily) for each city (or a representative subset).

Parameter Sensitivity and Processing Pipeline Robustness: With the foundational integrity of
the dataset's scope and core components established, we next conducted a comprehensive
sensitivity analysis to evaluate the robustness of the data processing pipeline itself. Our framework
systematically evaluated four critical parameter groups governing the spatio-temporal
harmonisation process across +30% ranges from baseline values, validated across all 40 cities. The
centreline network construction demonstrates exceptional stability, with the Douglas-Peucker
simplification tolerance achieving optimal performance at 2.0m (topology preservation > 0.90,
optimal range 1.5-2.5m) and Voronoi buffering maintaining geometric consistency > 0.90 around
the 15m baseline with <3% positioning accuracy impact. Similarly, traffic sensor integratio n
exhibits robust performance with the 200m spatial matching threshold achieving optimal coverage -
quality balance across the 150-250m range, showing cross-city consistency (coefficient of



variation <0.15) regardless of urban morphology. Furthermore, weather data alignment maintains
high attribution accuracy (robustness score 0.91) at 12m spatial tolerance with <2% variation
across the 10-15m range, while temporal aggregation preserves correlation coefficients > 0.85 for
the 5-minute to 1-hour method. Most importantly, cross-parameter interaction analysis reveals
primarily additive effects with maximum combined magnitudes <0.10, maintaining system
stability >0.80 when variations remain within +20% of baseline values. This comprehensive
analysis establishes that our processing pipeline is robust to reasonable parameter variations across
diverse urban contexts, providing evidence-based guidelines that validate the methodological
foundation for subsequent validation of the dataset's analytical capabilities in detecting traffic
responses to precipitation events.

Spatial Coverage Assessment and Network Representativeness: Following the validation of
our data processing pipeline's robustness, we then performed a granular analysis to assess the
spatial coverage and representativeness of the final, generated sensor network within each city, as
llustrated in Fig.6. This analysis provides essential context for understanding the dataset's spatial
characteristics and representativeness across diverse urban environments. The sensor-to-road
mapping process successfully associated traffic sensors reach an average coverage rate of 22.1%.
Coverage rates demonstrate substantial variation between cities, ranging from 4.0% in cities with
limited sensor infrastructure to 56.4% in London. This variation reflects the diverse nature of
transportation monitoring systems across different urban contexts, institutional frameworks, and
infrastructure  development priorities. The coverage distribution exhibits systematic patterns
related to road functional classification, as demonstrated in Fig.6. Trunk roads achieve the highest
average coverage at41.6%, followed by primary roads at 35.2%, secondary roads at 25.2%, tertiary
roads at 20.9%, and local roads ranging from 14.9% to 19.1%. This hierarchical pattern emerges
consistently across the diverse set of global cities, with the heatmap analysis revealing that most
cities achieve coverage rates of 60-90% on trunk roads, declining systematically through the road
hierarchy to 20-40% coverage on local facilities. The spatial distribution of sensor coverage
concentrates along primary transportation corridors rather than being randomly distributed across
urban networks. This concentration creates connected monitoring networks that span major
arterials and highway facilities within each city. When weighted by typical traffic volume patterns
associated with different road classifications, the effective coverage increases substantially above
the geometric coverage rates, as higher-classification roads typically carry disproportionate shares
of total urban traffic volume. This coverage assessment reveals the systematic nature of sensor
deployment across diverse urban transportation networks while establishing the spatial foundation
for subsequent analyses of traffic-weather interactions throughout the validation framework. The
consistent hierarchical coverage patterns across cities provide confidence that observed traffic
responses to weather conditions reflect systematic relationships rather than artifacts of particular



monitoring configurations.
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Validation of Sensitivity to Rainfall Impacts and Quantification of
Effects

The following analyses are presented as a crucial technical validation of the IUTF dataset. The
primary goal is to demonstrate the dataset's sensitivity and analytical capability in detecting and
quantifying the impacts of rainfall on traffic dynamics. By confirming that the data can reveal clear,
dose-response relationships and other complex patterns, we validate its utility as a reliable,
foundational resource for future, more in-depth resilience assessments. Having established the
dataset's scope and the integrity of its core components, the validation proceeded to assess its
capability to detect and quantify the impacts of rainfall on urban traffic flow. To validate the IUTF
dataset's utility for future resilience assessments, it is crucial to first demonstrate its sensitivity in
detecting traffic responses to rainfall. As shown in Fig. 7, the dataset allows for direct and robust
comparisons of traffic patterns under varying weather conditions. Distinct differences emerge in
diurnal traffic profiles when comparing rainy versus dry conditions, both in specific cities (Fig.
7(a)) and when aggregated across the entire dataset (Fig. 7(b)). This validates the dataset's
fundamental sensitivity in capturing the general disruptive effect of rainfall on established urban
traffic patterns, a necessary first step for any subsequent resilience analysis. Furthermore, the
dataset's temporal granularity enables a detailed examination of traffic dynamics around rainfall



events (Fig. 7(c), (d)). The ability to capture such fine-grained peri-event dynamics is critical, as
it provides the raw empirical data needed for future studies to calculate specific resilience metrics
like system recovery times and absorption capacity. This underscores the dataset's direct
applicability as a foundational resource for quantitative resilience research.

A key requirement for any resilience-enabling dataset is the ability to support investigations into
dose-response relationships. The IUTF dataset was validated for this purpose, as shown in the
analysis of how traffic flow changes correlate with varying rainfall intensities (Fig. 8). Both
individual event responses (Fig. 8(a)) and summarised distributions (Fig. 8(b)) consistently
indicate that increasing rainfall intensity is associated with more pronounced traffic flow changes.
This validation confirms that the dataset can facilitate nuanced investigations into the quantitative
impacts of different levels of precipitation severity. This demonstrated capability to support dose-
response analysis is a key prerequisite for any formal assessment of network robustness, a core
component of resilience. Thus, the IUTF dataset provides the necessary inputs for developing and
validating such advanced models.

(&l) —Rainy Weekday Rainy Weekend (b) — Rainy Weckday Rainy Weckend
— Dry Weekday Dry Weekend Dry Weekday —— Dry Weekend
mow B Darmetadt N —
/ B \, 500 X =

150 \ 150 ,/ X /1 = N
& N / / [ )
S ol ol== @ 4 " S, B O
) T T 10 4 0 16 2 g / ———— 0\
o — [ London [ (- & A\
g, _ R———— = 7 N\
8200 / \ 00 i - % N
z N\ / £ 300 /i
<< 100 \ 5 \ g ° | AN

v, - | 150 / 2 / /4 N
) < & y / N
0 § 16 2 0 8 16 2 % /’ //
3 / 7
100 /\ /\ /\_//‘\ S . / 7
/ N 300 A - S A Z
5 \ = s *
200 ) 0] S5 100 T
0 ] 16 4 0 - 8 16 2 2
Hour of Day 0 8 Hour of Day 16 24
(c) |—ReinyDay ~— PreviousDay ——NextDay © Rain>dmm d) [ Rainstart Key Period(-3to3h) |
Rain Period 3h before 3h after
m—, compare with previous day
300 NS 8\ 300 N 200
i N \ 100

oo oo ey o

200 f o A\ 5

-100]

-10 -5 0 5 10
compare with next day

- P 3
[ ee——

100

Flow Change Pct(%)

Nt e

0
B -100]
0 3 I p2] T 16 2 -10 -5 0 5 10

| Jusine | N Torouto | Ll compare with same day last week

=\ _/;/, . . 100 =
I ) 53 e g .

200+ {7 NG | wol s\ \ /[ — S

) S -100
L g T 0 § 16 2 -10 -5 0 5 10

24
Hour of Day Relative Hour (0 = rain start)

Figure 7 Characterising the influence of rainfall on urban traffic flow dynamics. (a) City-specific diurnal traffic patterns: Traffic
flow profiles for selected cities comparing rainy versus dry conditions across weekdays and weekends, demonstrating city-specific
variations in how precipitation affects typical daily traffic patterns. (b) Aggregated diurnal patterns: Average hourly traffic flow
across all cities categorised by weather conditions and day type, showing dataset-wide patterns of rainfall impact on traffic
throughout the day. (c) City-specific rainfall event analysis: Traffic flow patterns for selected cities during individual precipitation
events, with shaded periods indicating rainfall occurrence and different lines showing baseline comparisons. (d) Aggregated
rainfall eventanalysis: Percentage change in traffic flow relative to rainfall onset (hour 0) across all cities, using three comparison
baselines (next day, previous day, and same day of previous week). The shaded area highlights the peri-rainfall period (-3 to +3
hours), demonstrating the dataset's capability to capture statistically significant anticipatory and reactive changes in traffic flow
due to rainfall events.
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Figure 8 Relationship Between Rainfall Intensity and Traffic Flow Changes with Different Comparison Baselines. (a) Scatter plots
showing traffic flow percentage change versus rainfall intensity for three comparison baselines (previous day, next day, and same
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10 mm/hr, defined by Met Office?®). Trend lines indicate the general relationship between rainfall intensity and traffic impact. (b)
Box plots summarising traffic flow changes by rainfall intensity category after outlier removal (beyond 2.0 IQR), demonstrating
that increasing rainfall intensity correlates with more significant traffic flow changes.

Uncovering Differentiated Macroscopic Responses and Aggregated
Impact Patterns

Further validation demonstrated the IUTF dataset's capacity to reveal how rainfall modifies
fundamental macroscopic traffic flow characteristics, a critical aspect for understanding system-
level responses. As illustrated in Figure 9, investigations showed that precipitation events directly
perturb core traffic flow-occupancy relationships, leading to observable shifts in traffic capacity
and critical density. The dataset's ability to support such detailed examinations of weather-induced



modifications to the fundamental diagram of traffic flow validates its utility for providing the
empirical basis needed to develop more nuanced urban resilience strategies.

To confirm the broader applicability of such observations, the dataset was used to explore
aggregated impact patterns across all 40 cities, as shown in Figure 10. These analyses consistently
revealed systematic changes in both traffic flow and road occupancy attributable to rainfall. The
emergence of such distinct and statistically aggregated patterns not only validates the reliability of
the observed phenomena but also highlights the IUTF dataset's strength in facilitating the
identification of generalisable insights and systemic wulnerabilities. This capability is vital for
informing future evidence-based transportation planning and for building predictive models of
network performance degradation under meteorological stress, a key component of resilience.
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Figure 9 Macroscopic traffic flow characteristics under different rainfall conditions across selected cities. (a) Scatter plots of
traffic flow versus occupancy for each city, with points coloured by rainfall intensity categories, showing the fundamental traffic
flow-occupancy relationship and rainfall impacts, mainly focus on rainfall type, Light, Moderate, Heavy (remove Extreme Rain
Type due to the amount of extreme rain events) (b) Fitted flow-occupancy curves revealing city-specific variations in traffic
capacity and critical density values under different conditions. (c) Changes in flow as rainfall intensity increases, demonstrating
how precipitation affects fundamental traffic flow parameters. (d) Flow-occupancy patterns for high-volume road segments,
providing examples of traffic behaviour under different rainfall conditions.
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Figure 10 Aggregated analysis of rainfall impact on traffic flow and occupancy across all cities. (a) Traffic flow response to rainfall:
Box plots showing percentage changes in traffic flow relative to no-rain conditions, categorised by rainfall intensity Light,
Moderate, Heavy (remove Extreme Rain Type due to the amount of extreme rain events) and traffic flow levels (Low, Mid-Low,
Mid-High, High Flow). (b) Occupancy response to rainfall: Box plots showing percentage changes in occupancy relative to no-
rain conditions, organised by the same rainfall intensity and traffic flow level categories. (c) Coupled flow-occupancy response:
Scatter plots of flow change versus occupancy change for each rainfall intensity category, with points coloured by traffic flow
levels and fitted with trend lines.

In summary, the multifaceted technical validation has robustly affirmed the IUTF dataset's
integrity, consistency, and analytical utility. The analyses demonstrated its comprehensive scope,
the reliability of its core traffic and precipitation data, and its sensitivity in capturing diverse traffic
responses to rainfall—from general diurnal shifts and dynamic peri-event changes to clear dose-
response relationships with varying rainfall intensities. Furthermore, the dataset was shown to be
capable of revealing complex, heterogeneous impacts on fundamental macroscopic traffic
characteristics and statistically significant, aggregated patterns of disruption across diverse urban
contexts and road categories. While acknowledging inherent characteristics such as precipitation
data resolution and sensor network variability, these comprehensive validation efforts confirm that
the IUTF dataset is a valuable and reliable resource, well-suited to support advanced research into
urban mobility, flood impacts, and the development of climate adaptation strategies for
transportation systems worldwide.

Usage Note

The IUTF dataset enables a wide range of analytical applications across urban planning,
transportation engineering, and climate resilience domains. The IUTF dataset enables a wide range
of analytical applications across urban planning, transportation engineering, and climate resilience
domains. This section outlines key application areas and provides guidance for researchers
conducting resilience-focused studies.



General Applications and Data Integration

The IUTF dataset enables a wide range of analytical applications across urban planning,
transportation engineering, and climate resilience domains. Researchers and practitioners can
utilise this dataset for both descriptive and predictive analytical tasks that explore the complex
relationships between precipitation events and urban traffic patterns. The dataset supports
comprehensive descriptive analyses of how precipitation events influence urban mobility.
Researchers can examine the temporal evolution of traffic disruptions before, during, and after
rainfall events of varying intensities. The multi-city structure facilitates comparative analyses
between different urban environments, revealing how factors such as network topology,
infrastructure design, and local policies influence resilience outcomes. These comparisons can
identify best practices and transferable strategies for enhancing urban transportation resilience.
Beyond descriptive applications, the IUTF dataset enables sophisticated predictive modelling.
Transportation planners can develop forecasting tools that incorporate precipitation predictions to
anticipate traffic disruptions and optimise management strategies. Climate adaptation researchers
can simulate how changing precipitation patterns might affect future urban mobility, informing
long-term infrastructure planning and policy development. The dataset's fine-grained temporal
resolution supports the development of early warning systems that can mitigate the impacts of
extreme weather events on urban transportation. IUTF data can be seamlessly integrated into
existing urban data science workflows with minimal pre-processing. City planners can combine
the integrated traffic-precipitation data with socioeconomic indicators to examine how weather -
related disruptions differentially impact various urban populations. Emergency manageme nt
agencies can overlay evacuation route planning with precipitation vulnerability metrics to identify
critical intervention points. The dataset's standardised structure facilitates integration with machine
learning frameworks, enabling straightforward implementation of graph-based and sequence-
based approaches for complex prediction tasks. The modular and standardised framework
developed for the IUTF dataset can be readily extended to incorporate additional meteorological
variables. While the current version focuses on precipitation data, the spatio-temporal
harmonisation methodology is designed to accommodate other ERAS5 variables such as
temperature, humidity, wind speed, and atmospheric pressure. Future extensions could also
integrate  extreme weather event annotations, providing temporal and spatial markers for
significant meteorological events that would be particularly valuable for disaster risk studies. The
open-source processing framework enables researchers to adapt and extend the dataset according
to their specific analytical needs, supporting the development of more comprehensive multi- hazard
urban resilience assessments. This extensibility ensures that the IUTF dataset can serve as a
foundational platform for increasingly sophisticated climate-transportation interaction studies as
new data sources and research questions emerge.

Quantitative Resilience Assessment Applications

The IUTF dataset provides the essential data components needed to conduct quantitative urban
transportation resilience assessments. Researchers can leverage this integrated resource to derive
standard resilience metrics and conduct comparative analyses across different urban contexts: (1)
Recovery Curve Analysis: The dataset's fine-grained temporal resolution enables the calculation
of system recovery curves following precipitation events. Researchers can identify rainfall onset
times, track traffic flow changes during and after events, and quantify recovery trajectories. The



multi-city structure allows for comparative analysis of recovery patterns, revealing how differe nt
urban characteristics (network topology, infrastructure design, management strategies) influence
recovery dynamics. Recovery metrics such as recovery time, recovery rate, and residual impact
can be systematically computed and compared across the 40 cities. (2) Robustness Assessment:
The demonstrated dose-response relationship between rainfall intensity and traffic disruption
provides the foundation for quantifying system robustness. Researchers can establish performance
degradation curves under varying stress levels, calculate robustness indices based on traffic flow
reductions, and identify critical rainfall thresholds where system performance significantly
degrades. The dataset supports the development of robustness metrics that account for both the
magnitude and spatial extent of traffic disruptions. (3) Adaptive Capacity Evaluation: The
dataset's integration of traffic flow, occupancy, and network topology data enables investigation
of how transportation systems adapt their operational characteristics under stress. Researchers can
analyse shifts in fundamental traffic flow relationships, identify adaptive behaviours such as route
switching patterns, and quantify the system's ability to maintain functionality under adverse
conditions. The spatial granularity allows for assessment of which network components
demonstrate greater adaptive capacity. (4) Vulnerability Mapping: By combining precipitation
intensity data with traffic impact patterns, researchers can develop detailed vulnerability maps that
identify which road segments, network regions, or entire cities are most susceptible to weather-
related disruptions. The standardised data structure facilitates the creation of wulnerability indices
that can be compared across different urban environments and used to prioritize infrastructure
investments. (5) Multi-Scale Resilience Analysis: The dataset supports resilience analysis at
multiple spatial scales, from individual road segments to entire urban networks. Researchers can
investigate how local vulnerabilities aggregate to system-level impacts, examine cascading failure
patterns, and assess the effectiveness of different network topologies in maintaining system
resilience. The cross-city coverage enables identification of general resilience principles that
transcend specific urban contexts.

Framework Extensibility

The spatio-temporal harmonisation framework developed for the IUTF dataset is designed to be
modular and transferable. The methodology can be readily adapted to incorporate additional
temporal periods, expanded geographical coverage, or supplementary meteorological variables.
This extensibility enables researchers to apply the same harmonisation principles to new data
sources as they become available, supporting the development of larger-scale or more recent
datasets using consistent methodological approaches. The open-source nature of the processing
framework facilitates such adaptations and extensions by the research community.

Data Availability

The IUTF dataset described in this work is publicly available in the Figshare repository at
https//doi.org/10.6084/m9.figshare.30022807.v1.



Code Availability

All source code for IUTF data processing is written in Python and hosted under the GNU General
Public License 3.0. The package dependencies are listed in a file called requirements.txt. The
scripts cover the entire data processing workflow including spatial-temporal harmonisation, data
validation, and analysis procedures. The complete processing methodology is explained in a
readme markdown file. The code can be found on the  GitHub
repository(https://github.com/viviRG2024/IUTDF_processing).  The repository README
provides clear instructions and download links for accessing the complete IUTF dataset.
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