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We exploit cutting-edge deep learning methodologies to explore the predictability of high-frequency
Limit Order Book mid-price changes for a heterogeneous set of stocks traded on the NASDAQ
exchange. In so doing, we release ‘LOBFrame’, an open-source code base to efficiently process
large-scale Limit Order Book data and quantitatively assess state-of-the-art deep learning models’
forecasting capabilities. Our results are twofold. We demonstrate that the stocks’ microstructural
characteristics influence the efficacy of deep learning methods and that their high forecasting power
does not necessarily correspond to actionable trading signals. We argue that traditional machine
learning metrics fail to adequately assess the quality of forecasts in the Limit Order Book context. As
an alternative, we propose an innovative operational framework that evaluates predictions’ practical-
ity by focusing on the probability of accurately forecasting complete transactions. This work offers
academics and practitioners an avenue to make informed and robust decisions on the application
of deep learning techniques, their scope and limitations, effectively exploiting emergent statistical
properties of the Limit Order Book.
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1. Introduction

Financial markets operate as highly stochastic environ-
ments characterized by a low signal-to-noise ratio, where a
diverse set of market participants interacts at varying time
scales with asymmetric access to information and differ-
ing trading capabilities (Bouchaud et al. 2009, Farmer and
Skouras 2013, Scholl et al. 2021). Managing the complex-
ity of these interactions requires modern exchanges to rely
on sophisticated computerized systems that constantly collect,
process, and organize the continuous flux of orders. These
systems facilitate order matching while ensuring transaction
fairness. A key component of such systems is the Limit Order
Book (LOB), which provides real-time access to market sup-
ply and demand through a structured queue of buy and sell
orders. Execution priority in most modern exchanges follows
a first-in, first-out (FIFO) mechanism (Bouchaud et al. 2018),
influencing the price formation process and market dynamics
(Abergel et al. 2016, O’hara 2018).
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A crucial aspect of modern trading is High-Frequency
Trading (HFT), a strategy that gain an edge through speed,
allowing certain traders to act on information not yet accessi-
ble to others (Lehalle and Laruelle 2018). Unlike traditional
trading approaches, HFT does not rely on fundamental val-
uation but instead exploits market microstructure patterns,
often generating noise and reinforcing price unpredictabil-
ity (Bouchaud et al. 2009). While some studies suggest that
HFT enhances market efficiency, others argue it may exac-
erbate instability (Markets 2009, Zhang 2010, Zhang and
Powell 2011, Cartea and Penalva 2012, Jarrow and Prot-
ter 2012). The role of HFT in shaping LOB dynamics under-
scores the importance of accurate short-term price forecasting
models, which can aid in understanding market behavior and
improving trading strategies.

Recent advances in deep learning have significantly trans-
formed the landscape of LOB price forecasting, introduc-
ing models capable of capturing complex, non-linear rela-
tionships within high-frequency data (Dixon 2018, Sirig-
nano 2019, Zhang et al. 2019, Briola et al. 2020). However,
despite the growing interest in applying deep learning tech-
niques to LOB forecasting, significant challenges remain.
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Many academic studies focus on algorithmic improvements,
while neglecting the practical applicability of their findings.
Moreover, the field suffers from a lack of standardized evalu-
ation methodologies and open-source tools to facilitate model
benchmarking and replication.

To bridge this gap, we introduce ‘LOBFrame’,† an open-
source framework designed to standardize the preprocess-
ing, modeling, and evaluation of deep learning models for
LOB forecasting. LOBFrame addresses three fundamental
challenges in the field:

• Microstructural Understanding: By linking
stocks’ ‘predictability rate’ (i.e. the probability
of correctly forecasting the direction of mid-price
movements over a certain time horizon) directly to
their microstructural properties, such as tick size
and liquidity, LOBFrame provides a framework
for evaluating model effectiveness beyond standard
classification metrics.

• Reproducibility and Accessibility: Unlike prior
work that often relies on proprietary datasets and
non-reproducible methodologies, LOBFrame offers
an open-source, modular codebase, which eases the
integration with new forecasting models.

• Practical Benchmarking: Our framework enables
rigorous model evaluation, bridging the gap
between theoretical forecasting performance and
real-world usability by incorporating simulation-to-
reality gap analysis (Prata et al. 2023). In particular,
we introduce a new metric, i.e. the probability pT

to execute a correct transaction, to evaluate mod-
els’ performance beyond standard machine learning
metrics.

In this study, we focus on the interplay between microstruc-
tural characteristics and LOB forecasting accuracy. Using a
diverse set of 15 NASDAQ stocks, we assess the predictabil-
ity of mid-price movements across varying time horizons and
evaluate the performance of a state-of-the-art deep learning
model, DeepLOB (Zhang et al. 2019). While DeepLOB has
demonstrated strong performance in prior studies, our anal-
ysis explores why forecasts succeed or fail in relation to
underlying LOB properties. Furthermore, while this paper
uses the state-of-the-art deep learning model DeepLOB as
a case study, LOBFrame is designed to be model-agnostic.
Our approach allows for seamless integration of alternative
forecasting models, including traditional machine learning
algorithms, and other deep learning architectures. The broader
goal of this work is to establish a benchmark methodology
for assessing LOB forecasting models, encouraging further
advancements in the field through an open, reproducible, and
interpretable approach.

The rest of the paper is structured as follows: section 2
provides an overview of LOB mechanics, followed by a dis-
cussion of related literature in section 3. In section 4, we
describe the dataset used in our experiments, while section 5
introduces the LOBFrame framework and experimental setup.
Section 6 explores the microstructural characteristics of the
selected stocks, and section 7 presents our forecasting results

† https://github.com/FinancialComputingUCL/LOBFrame.

and their implications. Finally, section 8 concludes the paper
providing a unified view of market microstructure-informed
deep learning methods for LOB forecasting, with an overview
on the open challenges in the field.

2. Limit order book

The majority of modern exchanges utilize an electronic sys-
tem that stores and matches agents’ trading intentions. This
system operates on a data structure known as the ‘Limit Order
Book’ (LOB) (see figure 1). Each security has its own LOB,
which gives traders simultaneous access to the currently vis-
ible market’s supply and demand. In this context, the price
formation of an arbitrary security is a self-organized process
driven by the submission and cancellation of orders (Briola
et al. 2021).

An order can be considered a visible declaration of a mar-
ket participant’s intention to buy or sell a fixed amount of
an asset’s shares at a specified price. Its execution is subor-
dinated to finding a counterpart willing to trade at the same
conditions. Following the notation proposed by Bouchaud
et al. (2018), an order o is formally defined as a tuple
(εo, po, vo, τo) where:

• εo indicates the sign or direction at which a given
asset is traded. Conventionally, buy (or bid) orders
have a positive sign ε = +1, while sell (or ask)
orders have a negative sign ε = −1.

• po indicates the price a trader wants to trade a given
asset. Orders can be submitted at prices belong-
ing to a discrete set, constituting the LOB’s price
levels (or quotes). The smallest price increment is
known as ‘tick size’ (θ ), which, on the NASDAQ
exchange, is fixed and equal to $0.01 for all the
securities.‡

• vo indicates the number of asset shares a trader
wants to exchange. Orders can be submitted on a
discrete set of volumes, constituting LOB’s vol-
ume levels. The smallest volume increment, which
determines the minimum distance between two
consecutive volume levels, is known as ‘lot size’,
and, on the NASDAQ exchange, it is fixed and
equal to 1 for all the securities.

• τo indicates the time an order is submitted, and it
is a continuous variable (typically known with a
precision of up to the nanoseconds).

There are three main families of orders that can be sub-
mitted: (i) limit orders; (ii) market orders; (iii) cancellation
orders. A limit order represents an intention to buy or sell
a fixed amount of an asset at a price different from the cur-
rent best available matching price on the opposite side of
the LOB. There is no guarantee of execution for this type
of orders. A limit order is typically subject to lower trans-
action costs (i.e. the costs of transferring ownership rights

‡ The value of θ varies across exchanges and, within the same
exchange, for a single stock, it can vary across time as a function
of the price attained by the asset.
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Figure 1. Pictorial representation of the LOB. In the upper part of the Figure, we show the dynamical evolution of the LOB price levels as
a consequence of the submission of limit, market and cancellation orders; in the lower part of the Figure, we show a static view of a LOB
snapshot (i.e. L(τ0)) including also the volumes.

(Niehans 2018)) since it actively provides liquidity to the
LOB. A market order represents an intention to buy or sell
a fixed amount of shares at the current best available match-
ing price. If its volume is higher than the one supporting the
best quote on the opposite side of the LOB, the remaining
amount is executed against active orders at deeper price lev-
els (sitting further away from the best quote). A market order
is typically subject to higher transaction costs since it reduces
the liquidity available in the LOB. A cancellation order rep-
resents an intention to fully or partially delete an active limit
order. It is typically not subject to any transaction cost. The
majority of executed trades often result from aggressive limit
orders, rather than solely from market orders (Bouchaud et al.
2018).

All the elements introduced above allow us to define the
LOB as a collection of unmatched (active) limit orders for a
given asset, on a given platform, at time τ (Briola et al. 2021)
(see figure 1). We represent it as a multivariate time-series
L, where each L(τ ) ∈ R

4L is a LOB record characterized by
L price/volume levels (Prata et al. 2023). More specifically,
L(τ ) can be written in the form of {Ps(τ ), Vs(τ )}s∈{ask,bid},
where Pask(τ ), Pbid(τ ) ∈ R

L are the sets of prices on the
ask and bid side, and Vask(τ ), Vbid(τ ) ∈ R

L are the sets of
volumes on the ask and bid side, respectively:

L(τ ) = {pask
� (τ ), vask

� (τ ), pbid
� (τ ), vbid

� (τ )}L
�=1. (1)

This means that, ∀ τ ∈ {1, . . . , N} and ∀ � ∈ {1, . . . , L} on the
s side, vs

�(τ ) shares can be sold or bought at price ps
�(τ ).

The mid-price mτ of the stock at time τ , is defined as the
average between the best ask price (i.e. pask

1 (τ )) and the

best bid price (i.e. pbid
1 (τ )), mτ = pask

1 (τ )+pbid
1 (τ )

2 . The bid-ask
spread στ of the stock at time τ , is defined as the difference
between the best ask price and the best bid price, στ = pask

1 (τ )

− pbid
1 (τ ).

3. Related work

Market microstructure and automated learning modeling of
LOB dynamics are two continuously evolving research areas.
In this Section, we provide a subset of core references to
works that allow the reader to navigate the broader universe
of related literature.

Market microstructure entails the analysis of how
traders’ intentions are translated into prices and vol-
umes (Madhavan 2000, Biais et al. 2005). The aim is
to understand fundamental issues and phenomena, such
as characterizing price formation mechanisms (Mike and
Farmer 2005, Bonart and Lillo 2018, Lillo 2021) and quan-
tifying the impact of asymmetric information (Glosten and
Milgrom 1985, Kyle 1985). In terms of markets’ dynamics,
price jumps (Tóth et al. 2009, Zheng et al. 2012, Cont and



4 A. Briola et al.

De Larrard 2013, Marcaccioli et al. 2022) and flash crashes
events (Brewer et al. 2013, Kirilenko et al. 2017, Paddrik
et al. 2017, Turiel and Aste 2021, 2022) have been extensively
studied. Modeling and analyzing transaction costs (e.g. price
impact (Avellaneda and Stoikov 2008, Eisler et al. 2012, Cont
et al. 2014, Mastromatteo et al. 2014)), and optimal order exe-
cution is also among core areas of investigation, especially in
the context of HFT (Hollifield et al. 2004, Cartea and Jaimun-
gal 2015, Lehalle and Mounjid 2017, Cartea et al. 2018).
In this paper, we analyze a set of microstructural proper-
ties that can be used to characterize and classify stocks.
For a complete review and deep discussion of the emer-
gent statistical properties of stocks, we refer the reader to
the comprehensive book by Bouchaud et al. (2018). Specif-
ically, we focus on spread and liquidity (e.g. depth at best),
whose behaviors have been extensively studied for differ-
ent types of stocks in various markets, evidencing typical
intra-day behaviors and statistical properties (Chakraborti
et al. 2011, Abergel et al. 2016, Lehalle and Mounjid 2017).
In our analysis, we also reference a more recently intro-
duced measure, namely the ‘information richness’ (IR) (Kolm
et al. 2023), which characterizes the stocks’ activity in terms
of the number of events occurring at the best levels of
the LOB.

In this paper, we directly link the microstructural assess-
ment of the LOB properties with mid-price changes fore-
casting performance of a state-of-the-art deep learning
model, namely the DeepLOB (Zhang et al. 2019), specifi-
cally crafted to handle such data. Regarding the automated
learning modeling of the LOB, it is useful to organize
the related literature into three main areas of interest: (i)
the study of linear models and regression analysis tools
for LOB features extraction (Alvim et al. 2010, Zheng
et al. 2012, Cenesizoglu et al. 2014, Detollenaere and
D’hondt 2017, Panayi et al. 2018); (ii) the study of non-
linear deep learning models for short-term price forecasting
(Kearns and Nevmyvaka 2013, Passalis et al. 2017, Tsan-
tekidis et al. 2017b, Tran et al. 2018, Nousi et al. 2019, Zhang
et al. 2019, Briola et al. 2020, Passalis et al. 2020, Tsantekidis
et al. 2020, Tran et al. 2021, Zhang and Zohren 2021, Guo and
Chen 2023); (iii) the study of reinforcement learning meth-
ods for automated trading (Nevmyvaka et al. 2006, Zarkias
et al. 2019, Kumar 2020, Briola et al. 2021, Gašperov
and Kostanjčar 2021, Gašperov et al. 2021, Tsantekidis
et al. 2021, Kumar 2023, Frey et al. 2023, Nagy
et al. 2023, Tsantekidis et al. 2023). Linear models are easy
to estimate and capture in a simple way the trends, linear
correlations and autocorrelations in the state variables. Even
if largely explored in the past years, their limitations have
been recently analytically characterized in the work by Sirig-
nano and Cont (2021), where the authors, supported by an
abundant empirical and econometric literature documenting
nonlinear effects in financial time series, demonstrate the
necessity of flexible deep learning-based models to capture
nonlinear relations between state variables and price moves
in LOBs. For this reason, in the current paper, we direct our
attention toward the second macro-area listed above. Assess-
ing non-linear deep learning models for short-term price
forecasting, we underline 3 main issues that are common
to the majority of referenced research works: (i) the usage

of only one simplistic dataset, namely the FI-2010 dataset
(Ntakaris et al. 2018) as benchmark dataset; (ii) the lack of
data analysis for proprietary LOB data; (iii) the difficulty
in experiments’ reproducibility. FI-2010 consists of 10 trad-
ing days LOB data from 5 Finnish companies traded on the
NASDAQ Nordic stock market. It records 4M events sam-
pled at intervals of 10 LOB updates, resulting in ≈ 395K
events. This dataset represents the first and unique experi-
ment to provide a standard benchmark for research in LOB
forecasting. Even if remarkable, the outcome of this attempt
presents some significant limitations. The dataset comes in
an already pre-processed (filtered, normalized, and labeled)
format so that the original LOB cannot be backtracked, thus
hampering thorough experimentation. In addition to this, the
dataset is too simplistic, leaving ample space for models’
overfitting (Prata et al. 2023), consequently undermining their
robustness when tested in real-world scenarios. Using this
dataset as a benchmark for deep learning models represents
the first cause of the so-called ‘simulation-to-reality’ gap (Liu
et al. 2022, Zaznov et al. 2022). The singular characteristics
of this benchmark dataset lead us to discuss the second type of
criticality. Proprietary LOB data are considered sensible data,
owned and managed by private financial institutions (Briola
and Aste 2022, Vidal-Tomás et al. 2023, Briola et al. 2023a)
with few third-party vendors, who only distribute exchange-
specific historical samples. This makes academic research
in the field highly dependent on data sources and the gen-
eralization capabilities of developed models questionable.
Moreover, an accurate description and quantitative analysis of
the dataset are often lacking, making comparisons of models’
performances on stocks traded on different exchanges even
more unreliable, thus representing a barrier towards experi-
ments’ reproducibility (Prata et al. 2023). Similarly, the code
used to conduct the analysis is also rarely shared, directly
hampering a meaningful comparison between different
approaches.

In the broader context of the questions addressed in
this paper, closely related works are those by Lucchese
et al. (2022), Prata et al. (2023), Kolm et al. (2023) and
Aït-Sahalia et al. (2022). The common aspect that links all
these research papers is a significant effort in investigating
the reasons why deep learning models are effective only in
specific scenarios. In the work by Lucchese et al. (2022),
the authors isolate some important factors that guarantee a
successful forecast, including working with what they define
‘high-frequency stocks’, L2 data (i.e. all available bid and
ask prices and corresponding volumes) and an order-flow
representation of the LOB. In their narrative, the authors
are particularly interested in statistically assessing the per-
formance’s degradation at longer prediction horizons. The
work by Prata et al. (2023) anticipates some of the techni-
cal drawbacks discussed in this Section and highlights the
influence of volatility clusters on forecasting models’ per-
formances. In the work by Kolm et al. (2023), the authors
introduce the concept of ‘information-rich stocks’ and show
how automated learning models can handle them more eas-
ily. Lastly, in the work by Aït-Sahalia et al. (2022), the
authors succeed in isolating some of the variables that are
thought to be among the more responsible for driving stocks’
predictability.
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4. Data

In this work we consider 15 stocks from different sec-
tors and industries, all traded on the NASDAQ exchange
(NASDAQ 2023a). For each of them, we use high quality,
tick-by-tick, LOB data from the LOBSTER provider (LOB-
STER 2023). To determine stocks’ sector and industry affil-
iation, we follow the taxonomy proposed by the NASDAQ
exchange itself (NASDAQ 2023b); in this context, the strong
heterogeneity of our choices ensures robustness to results. As
one can see from table 1, we consider 5 stocks belonging to
the ‘Technology’ sector (i.e. AAPL, GOOG, IBM, NVDA,
ORCL), 3 stocks belonging to the ‘Health Care’ sector (i.e.
ABBV, PFE, PM), 3 stocks belonging to the ‘Telecommuni-
cations’ sector (i.e. CHTR, CSCO, VZ), 2 stocks belonging to
the ‘Finance’ sector (i.e. BAC, GS), 1 stock belonging to the
‘Consumer Staples’ sector (i.e. KO) and 1 stock belonging to
the ‘Consumer Discretionary’ sector (i.e. MCD). We consider
the entire trading period from 2017 to 2019, ensuring to treat
only stocks maintaining a large- (i.e. 10B-200B) to mega- (i.e.
≥ 200B) capitalization.

To train our model, we use only a portion of the entire
dataset. For each year, we choose 45 consecutive days of
training, 5 days of validation and 10 consecutive days of test-
ing (see table 2). It is worth noting that the 5 days of the
validation set are not consecutive and are randomly chosen
from the same period of the training set. This choice guar-
antees greater robustness in the validation step, and it is made
possible by the adopted standardization procedure, which pre-
vents any data leakage. In line with what is suggested by
Lucchese et al. (2022), a 5-days feature-wise rolling window
z-score normalization is applied to the data. This procedure
differs from the others used in most of the related litera-
ture (which usually standardizes the entire training dataset at
once based on the overall statistics) (Zhang et al. 2019) and
guarantees greater effectiveness in an evolving and strongly
non-stationary environment like the LOB. All the experi-
ments presented in the current work are conducted using the
first L = 10, non-empty LOB levels (see equation (1)). Data
(LOBSTER 2023) are originally made of two separate files:
(i) the ‘message file’ lists every market-, limit- and cancel-
lation order, reporting the arrival time, event type, id, size,
price and direction; (ii) the ‘orderbook file’ describes the mar-
ket state (i.e. the total volume of buy or sell orders at each
price level) immediately after an event occurs. These files
are jointly processed as described by Lucchese et al. (2022)
by (i) removing crossed quotes; (ii) collapsing states occur-
ring at the same timestamp (to nanoseconds precision) to the
last state; and (iii) removing the effects of potential auction
calls by considering only events happening between 9:40 am
(Eastern Time) and 03:50 pm (Eastern Time). This last choice
is made following the suggestion by Briola et al. (2021) to
exclude from experiments the first and the last 10 minutes
of each trading day due to the widely different dynamics and
higher volatility that usually affect the market’s opening and
closing periods. The reader should be aware that trading does
not occur on weekends or public holidays, so these days are
excluded from all the analyses.

In this work, based on the microstructural properties of a
given stock, we are interested in studying the predictability

of the direction of mid-price changes at different time hori-
zons when such a movement is larger than or equal to θ . For
the sake of readability, we will refer to these mid-price dif-
ferences as ‘increments’, stressing that we refrain from using
relative returns nor logarithmic ones. We decide to use the
simple difference in mid-prices to gain higher control over the
amplitude of the change at different time horizons, preserv-
ing, at the same time, the stationarity property of the resulting
time-series. Many alternatives have been proposed as target
variables in the literature (Tsantekidis et al. 2017a, Ntakaris
et al. 2018, Zhang et al. 2019, Lucchese et al. 2022). All
of them are based on the usage of the log-return as a fun-
damental quantity and apply different smoothing methods to
prevent a strong fit between labels and actual prices. Even if
acceptable from an academic perspective, the practicability of
these choices is unclear since they are designed to characterize
mid-price trends (not immediate changes), leaving a reduced
control over tick-by-tick changes, which are of higher interest
in the development of high-frequency trading strategies.

In this paper, we consider 3 different horizons H�τ ∈
{10, 50, 100} and, for each of them, the labeling step can be
described as follows:

⎧⎨
⎩

(mτ+�τ − mτ ) ≤ −θ → −1 → Down,
−θ < (mτ+�τ − mτ ) < +θ → 0 → Stable,
(mτ+�τ − mτ ) ≥ +θ → 1 → Up,

(2)

where θ is the tick size and mτ is the mid-price at time τ .†
It is worth noting that horizons are always defined in terms
of LOB updates (which are unevenly spaced), while physical
time is never used. Tables 3, 4 and 5 report the stocks’ aver-
age daily class distribution for the training, validation and test
set, computed across the 3-year analysis period, for H�τ ∈
{10, 50, 100}. Generally speaking, it is always possible to
detect imbalances. Their evolution across horizons, however,
varies for different groups (or sets) of stocks (notice that, in
tables 3, 4 and 5, groups are separated by horizontal lines).
The groups’ separation into so-called small-tick stocks (group
1), medium-tick stocks (group 2) and large-tick stocks (group
3) will be formally described in section 6 in relation to the
microstructural properties displayed by the financial assets.

The first set (group 1, small-tick stocks) has cardinality
equal to 6 and is made of CHTR, GOOG, GS, IBM, MCD and
NVDA. At H10, the order of magnitude for the daily aver-
age number of samples for each label remains constant for the
training, validation and test set, with only minor oscillations.
At H50 and H100, the order of magnitude of representatives
for classes ‘Up’ and ‘Down’ gradually increases, highlight-
ing a more pronounced imbalance towards the two ‘active’
classes. This pattern can be detected in the training, vali-
dation and test set. The second group of stocks (group 2,
medium-tick stocks) has cardinality equal to 3 and is made
of AAPL, ABBV and PM. In this case, the order of magni-
tude of labels’ representatives remains stable across horizons
and for the training, validation and test set. Lastly, the third

† The reader should be aware that, in the Python code related to
the current research paper, the labeling schema is: 0 → Down, 1 →
Stable, 2 → Up. In equation (2) we use labels −1, 0 and 1, respec-
tively, to enhance the paper’s readability and remain coherent with
the standard used in the related literature (Zhang et al. 2019).



6
A

.B
riola

etal.

Table 1. Overview of the stocks used in the papers. For each asset we report the ticker, the extended name, the sector, the industry and the capitalization during 2017, 2018 and 2019. To determine
stocks’ sector and industry affiliation, we follow the taxonomy proposed by the NASDAQ exchange itself (NASDAQ 2023b). To determine stock’s capitalization we rely on the data provided by

CompaniesMarketCap.com (Companies Market Cap 2024). For each year, we report the average capitalization, standard deviation, as well as the 35th and 75th percentiles.

Ticker Stock name Sector Industry
Capitalization

(2017)
Capitalization

(2018)
Capitalization

(2019)

AAPL Apple, Inc. Technology Computer Manufacturing $860.88 B $746.07 B $1.287 T
ABBV AbbVie, Inc. Health Care Biotechnology: Pharmaceutical Preparations $154.39 B $136.33 B $130.94 B
BAC Bank of America Corporation Finance Major Banks $307.91 B $238.25 B $311.20 B
CHTR Charter Communications, Inc. Telecommunications Cable & Other Pay Television Services $83.94 B $64.21 B $101.85 B
CSCO Cisco Systems, Inc. Telecommunications Computer Communications Equipment $189.34 B $194.81 B $203.45 B
GOOG Alphabet, Inc. Technology Computer Software: Programming, Data Processing $729.45 B $723.55 B $921.13 B
GS Goldman Sachs Group, Inc. Finance Investment Bankers/Brokers/Service $96.09 B $61.43 B $79.86 B
IBM International Business Machines

Corporation
Technology Computer Manufacturing $142.03 B $101.44 B $118.90 B

KO Coca-Cola Company Consumer Staples Beverages (Production/Distribution) $195.47 B $202.08 B $236.89 B
MCD McDonald’s Corporation Consumer Discretionary Restaurants $137.21 B $136.21 B $147.47 B
NVDA NVIDIA Corporation Technology Semiconductors $117.26 B $81.43 B $144.00 B
ORCL Oracle Corporation Technology Computer Software: Prepackaged Software $195.72 B $162.03 B $169.94 B
PFE Pfizer, Inc. Health Care Biotechnology: Pharmaceutical Preparations $215.89 B $249.54 B $216.82 B
PM Philip Morris International, Inc. Health Care Medicinal Chemicals and Botanical Products $164.09 B $103.78 B $132.39 B
VZ Verizon Communications, Inc. Telecommunications Telecommunications Equipment $215.92 B $232.30 B $253.93 B

Mean $253.71 B $228.90 B $297.05 B
Standard deviation $220.29 B $207.36 B $329.04 B

35th Percentile $153.15 B $132.97 B $142.84 B
75th Percentile $ 215.90 B $ 235.28 B $245.41 B
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Table 2. Basic structure of the datasets used during the training,
validation and test stages. For each year, for the training and test
set, we report the starting and the ending day (which are included),
while, for the validation set, we report all the days in an extended
way. It is worth noticing that weekends and public holidays are
not trading days and, consequently, do not belong to any of the

datasets.

Training Validation Test

Year From To Days From To

Mar 23, Apr 05,
2017 Mar 13 May 22 Apr 13, Apr 18, May 23 Jun 06

May 02
Aug 15, Aug 16,

2018 Aug 09 Oct 18 Sep 19, Sep 26 Oct 19 Nov 01
Oct 03
Jun 14, Jun 27,

2019 Jun 04 Aug 13 Jul 08, Jul 10, Oct 19 Nov 01
Jul 24

group of stocks (group 3, large-tick stocks) has a cardinality
equal to 6 and is made of BAC, CSCO, KO, ORCL, PFE
and VZ. The order of magnitude of representatives for the
‘Stable’ class is higher than the one for classes ‘Down’ and
‘Up’ at H10, while a stability is gradually matured moving
to horizons H�τ ∈ {50, 100}. We highlight that this behav-
ior is diametrically opposed to the one detected for group 1.
As already underlined for the other two groups of assets, also
in this case, the described pattern remains constant for the
training, validation and test set.

5. Methods

From a practical perspective, this paper aims to provide a
straightforward way to estimate a given stock’s predictabil-
ity based on its LOB microstructural properties. This aim
can be achieved by splitting the research process into two
steps: (i) extract and classify the microstructural properties of
a heterogeneous set of stocks (see section 6); (ii) accomplish

Table 3. Stocks’ average daily class distribution for the training set, computed across the 3-year analysis period, for H�τ ∈ {10, 50, 100}.
H10 H50 H100

Ticker Down Stable Up Down Stable Up Down Stable Up

CHTR 2.19e + 04 1.93e + 04 2.11e + 04 2.95e + 04 4.67e + 03 2.81e + 04 3.05e + 04 2.24e + 03 2.96e + 04
GOOG 8.82e + 04 1.92e + 05 8.66e + 04 1.47e + 05 7.31e + 04 1.47e + 05 1.64e + 05 3.71e + 04 1.66e + 05
GS 3.96e + 04 4.18e + 04 3.96e + 04 5.50e + 04 1.12e + 04 5.49e + 04 5.77e + 04 6.12e + 03 5.72e + 04
IBM 4.10e + 04 7.29e + 04 4.13e + 04 6.56e + 04 2.40e + 04 6.56e + 04 7.04e + 04 1.46e + 04 7.03e + 04
MCD 3.46e + 04 5.60e + 04 3.50e + 04 5.32e + 04 1.84e + 04 5.39e + 04 5.69e + 04 1.10e + 04 5.77e + 04
NVDA 1.18e + 05 1.27e + 05 1.18e + 05 1.62e + 05 3.80e + 04 1.63e + 05 1.69e + 05 2.42e + 04 1.70e + 05

AAPL 2.06e + 05 4.59e + 05 2.06e + 05 3.36e + 05 1.98e + 05 3.37e + 05 3.67e + 05 1.33e + 05 3.70e + 05
ABBV 4.00e + 04 1.07e + 05 3.98e + 04 6.95e + 04 4.82e + 04 6.90e + 04 7.77e + 04 3.17e + 04 7.73e + 04
PM 3.68e + 04 9.05e + 04 3.69e + 04 6.37e + 04 3.63e + 04 6.42e + 04 7.02e + 04 2.30e + 04 7.09e + 04

BAC 1.24e + 04 4.59e + 05 1.23e + 04 4.32e + 04 3.98e + 05 4.30e + 04 6.91e + 04 3.46e + 05 6.87e + 04
CSCO 2.36e + 04 4.51e + 05 2.39e + 04 7.32e + 04 3.52e + 05 7.33e + 04 1.12e + 05 2.75e + 05 1.12e + 05
KO 1.44e + 04 2.14e + 05 1.44e + 04 4.17e + 04 1.59e + 05 4.15e + 04 6.03e + 04 1.22e + 05 6.00e + 04
ORCL 2.63e + 04 3.15e + 05 2.62e + 04 6.93e + 04 2.29e + 05 6.93e + 04 9.75e + 04 1.73e + 05 9.75e + 04
PFE 1.85e + 04 2.97e + 05 1.85e + 04 5.25e + 04 2.29e + 05 5.25e + 04 7.65e + 04 1.82e + 05 7.62e + 04
VZ 2.45e + 04 2.62e + 05 2.44e + 04 6.52e + 04 1.81e + 05 6.49e + 04 8.97e + 04 1.33e + 05 8.91e + 04

Table 4. Stocks’ average daily class distribution for the validation set, computed across the 3-year analysis period, for H�τ ∈ {10, 50, 100}.
H10 H50 H100

Ticker Down Stable Up Down Stable Up Down Stable Up

CHTR 1.90e + 04 1.82e + 04 1.87e + 04 2.66e + 04 3.95e + 03 2.54e + 04 2.76e + 04 1.71e + 03 2.66e + 04
GOOG 6.73e + 04 1.56e + 05 6.70e + 04 1.15e + 05 6.13e + 04 1.15e + 05 1.30e + 05 3.16e + 04 1.29e + 05
GS 4.10e + 04 4.77e + 04 4.10e + 04 5.83e + 04 1.38e + 04 5.76e + 04 6.12e + 04 7.58e + 03 6.10e + 04
IBM 3.59e + 04 6.92e + 04 3.58e + 04 5.86e + 04 2.34e + 04 5.90e + 04 6.31e + 04 1.43e + 04 6.35e + 04
MCD 3.19e + 04 5.73e + 04 3.24e + 04 5.03e + 04 1.92e + 04 5.21e + 04 5.41e + 04 1.12e + 04 5.63e + 04
NVDA 1.33e + 05 1.37e + 05 1.32e + 05 1.80e + 05 4.29e + 04 1.79e + 05 1.87e + 05 2.77e + 04 1.87e + 05

AAPL 1.79e + 05 4.63e + 05 1.79e + 05 3.11e + 05 2.00e + 05 3.11e + 05 3.42e + 05 1.36e + 05 3.43e + 05
ABBV 4.80e + 04 1.31e + 05 4.77e + 04 8.31e + 04 6.01e + 04 8.34e + 04 9.29e + 04 3.99e + 04 9.38e + 04
PM 3.60e + 04 9.34e + 04 3.59e + 04 6.38e + 04 3.80e + 04 6.36e + 04 7.06e + 04 2.41e + 04 7.06e + 04

BAC 1.17e + 04 4.38e + 05 1.17e + 04 4.06e + 04 3.80e + 05 4.07e + 04 6.50e + 04 3.31e + 05 6.50e + 04
CSCO 1.90e + 04 3.98e + 05 1.85e + 04 5.88e + 04 3.21e + 05 5.57e + 04 9.09e + 04 2.57e + 05 8.72e + 04
KO 1.16e + 04 1.97e + 05 1.14e + 04 3.45e + 04 1.52e + 05 3.35e + 04 5.10e + 04 1.19e + 05 4.98e + 04
ORCL 1.95e + 04 2.69e + 05 1.92e + 04 5.25e + 04 2.03e + 05 5.26e + 04 7.44e + 04 1.58e + 05 7.56e + 04
PFE 1.49e + 04 2.68e + 05 1.50e + 04 4.31e + 04 2.12e + 05 4.30e + 04 6.40e + 04 1.70e + 05 6.39e + 04
VZ 2.04e + 04 2.42e + 05 2.04e + 04 5.62e + 04 1.69e + 05 5.70e + 04 7.95e + 04 1.22e + 05 8.09e + 04
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Table 5. Stocks’ average daily class distribution for the test set, computed across the 3-year analysis period, for H�τ ∈ {10, 50, 100}.
H10 H50 H100

Ticker Down Stable Up Down Stable Up Down Stable Up

CHTR 3.47e + 04 4.49e + 04 3.20e + 04 4.87e + 04 1.73e + 04 4.57e + 04 5.22e + 04 9.96e + 03 4.94e + 04
GOOG 1.76e + 05 3.02e + 05 1.63e + 05 2.72e + 05 1.05e + 05 2.63e + 05 2.95e + 05 5.42e + 04 2.91e + 05
GS 4.54e + 04 5.19e + 04 4.53e + 04 6.45e + 04 1.33e + 04 6.48e + 04 6.79e + 04 6.62e + 03 6.81e + 04
IBM 5.82e + 04 7.68e + 04 5.90e + 04 8.51e + 04 2.42e + 04 8.47e + 04 9.01e + 04 1.57e + 04 8.82e + 04
MCD 5.12e + 04 5.91e + 04 5.14e + 04 7.20e + 04 1.79e + 04 7.18e + 04 7.57e + 04 1.08e + 04 7.52e + 04
NVDA 1.09e + 05 7.34e + 04 1.10e + 05 1.37e + 05 1.78e + 04 1.37e + 05 1.41e + 05 1.12e + 04 1.40e + 05

AAPL 2.71e + 05 3.50e + 05 2.70e + 05 3.75e + 05 1.39e + 05 3.76e + 05 3.98e + 05 9.35e + 04 4.00e + 05
ABBV 4.45e + 04 8.43e + 04 4.45e + 04 7.09e + 04 3.16e + 04 7.08e + 04 7.71e + 04 1.99e + 04 7.63e + 04
PM 4.57e + 04 8.92e + 04 4.66e + 04 7.62e + 04 3.01e + 04 7.53e + 04 8.25e + 04 1.85e + 04 8.05e + 04

BAC 1.88e + 04 5.93e + 05 1.88e + 04 6.37e + 04 5.03e + 05 6.40e + 04 1.02e + 05 4.26e + 05 1.02e + 05
CSCO 4.82e + 04 6.26e + 05 4.84e + 04 1.47e + 05 4.29e + 05 1.47e + 05 2.10e + 05 3.06e + 05 2.07e + 05
KO 2.54e + 04 2.87e + 05 2.55e + 04 7.18e + 04 1.94e + 05 7.27e + 04 9.93e + 04 1.39e + 05 1.00e + 05
ORCL 4.22e + 04 4.43e + 05 4.18e + 04 1.18e + 05 2.92e + 05 1.18e + 05 1.65e + 05 1.97e + 05 1.65e + 05
PFE 2.78e + 04 3.51e + 05 2.78e + 04 7.64e + 04 2.53e + 05 7.64e + 04 1.07e + 05 1.92e + 05 1.07e + 05
VZ 4.59e + 04 3.42e + 05 4.63e + 04 1.13e + 05 2.09e + 05 1.13e + 05 1.43e + 05 1.47e + 05 1.43e + 05

the forecasting task on each of them and review the
obtained results in relation to the outcomes of the previous
step.

5.1. LOBFrame architecture

To perform the forecasting task, we release ‘LOBFrame’ (see
figure 2), a novel, open-source code base, which presents a
renewed way to process large-scale LOB data. This frame-
work integrates all the latest cutting-edge insights from related
scientific research into a cohesive system. Its strength lies
in the comprehensive nature of the implemented pipeline,
which includes the data transformation and processing stage,
an ultra-fast implementation of the training, validation, and
testing steps, as well as the evaluation of the quality of a
model’s outputs through trading simulations.† Moreover, it
offers flexibility by accommodating the integration of new
models, ensuring adaptability to future advancements in the
field. This contributes to the establishment of best practices in
the field and fosters a more rigorous approach to forecasting
model validation.

This paper integrates two crucial interconnected aspects:
(i) the engineering effort behind the development of
‘LOBFrame’, and (ii) the valuable insights it enables within
the field of market microstructure research. One challenge in
fully conveying the strengths of LOBFrame lies in the neces-
sity of selecting a specific forecasting model to demonstrate
its capabilities. While this is essential for empirical analy-
sis, it may inadvertently suggest that the framework is tied
to a particular model, potentially overshadowing its broader
applicability. To clarify, LOBFrame is model-agnostic—its
strength lies not only in facilitating robust forecasting, but also
in its ability to accommodate diverse predictive models and
seamlessly adapt to future advancements. This adaptability
ensures that it remains relevant as deep learning methodolo-
gies evolve. The framework is designed to be both flexible
and accessible, making it a valuable tool for both academic
research and industry applications. Researchers benefit from

† We remark that results of trading simulations are not part of this
work because of the reasons reported in section 7.2.

an open-source, modular infrastructure that facilitates experi-
mentation and collaboration, while practitioners gain a practi-
cal solution for evaluating and deploying forecasting models
in real-world trading environments.

The robustness of LOBFrame has been further validated
in in the work by Briola et al. (2025), where the framework
was applied across multiple forecasting models, consistently
revealing fundamental microstructural patterns independent
of model-specific characteristics. This underscores its reliabil-
ity as a standardized tool for market microstructure research,
providing consistent and actionable results across a variety
of methodologies. By offering an open-source, flexible, and
extensible pipeline, LOBFrame establishes itself as a bench-
mark resource for researchers and practitioners seeking to
explore and advance LOB forecasting.

5.2. Deep learning model benchmark: DeepLOB

Results discussed in the current paper come from the usage
of a state-of-the-art model in literature: DeepLOB (Zhang
et al. 2019).‡ This architecture mainly relies on two well-
known deep learning modules: it exploits (i) the power of
convolutional neural networks (CNNs) to model inter-levels,
spatial LOB’s dynamics (LeCun et al. 1998, O’Shea and
Nash 2015, Albawi et al. 2017); and (ii) the memory of the
LSTM module to handle the temporal dimension of the input
(Hochreiter and Schmidhuber 1997, Van Houdt et al. 2020).
For a detailed overview of the architecture, the reader is
referred to the original work by Zhang et al. (2019), while,
in this Section, our efforts are towards providing the intu-
ition behind the model. The main idea of using CNNs is to
automate the feature extraction process in a notoriously noisy
and with low signal-to-noise ratio context (Briola et al. 2021)
such as the one provided in LOB, without any strong initial

‡ We stress that theoretical findings discussed in section 7 are inde-
pendent of the choice of the model. Indeed, in this work, we decide
to use DeepLOB only because it fully respects the following three
criteria: (i) availability of the original code used in the experiments;
(ii) data-driven design of the model’s architecture; (iii) community’s
recognition as a state-of-the-art model in the field.
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Figure 2. Pictorial representation of LOBFrame. This framework facilitates the Limit Order Book (LOB) forecasting practice through
a seamless pipeline that includes data cleaning, standardized preprocessing, model selection, and integration of both existing and novel
forecasting models, and ultra-fast data feeding. It enables comprehensive model training, out-of-sample inference, statistical analysis, and
robust backtesting, offering the academic and practitioner communities a benchmark tool for advancing research and standardizing practices
in the field. The use of distinct colors in the diagram highlights logically separated stages of the pipeline.

assumption. Indeed, weights are learned during inference,
and derived features (i.e. learned from the training set) are
data-adaptive. The LSTM layer, on the other side, is used
to capture residual time dependencies among the resulting
features. It is worth underlining that short time dependen-
cies are already captured by the convolutional layers, which
take LOB snapshots as inputs (see figure 3). To train, validate
and test the DeepLOB model, we design a high-performance
data loader, which samples mini-batches of size 32 (as per
in the original model’s implementation), each made of inputs
with size 100 × 40. Dimension 100 (i.e. the temporal dimen-
sion) represents the history length and corresponds to the
number of historically consecutive LOB updates constituting
each sample. Dimension 40, instead, is the number of spa-
tial constituents for each LOB’s snapshot (see equation (1)).
The sampling process differs for the training, validation, and
test sets. During training, the (sub)-sampling is random and
balanced. From each trading day, we detect the number of
samples for the less represented class and (i) if this value is
≥ 5000, then we sample 5000 random representatives (a rep-
resentative is a 100 × 40 input) for each of the three classes
(see equation (2)), otherwise, (ii) if this value is < 5000,
then we sample a number of random representatives for each
class which is equal to the number of samples for the less
represented class.

During validation and test stages, we still sample batches
with a size of 32, but they are always sequential and cover
the totality of data in the two sets. In line with the related lit-
erature (Zhang et al. 2019), the model is always trained for
a maximum number of epochs equal to 100, with patience
equal to 15 epochs. We use a modified version of the Adam
optimizer (Kingma and Ba 2014) with decoupled weight
decay (Loshchilov and Hutter 2017), commonly known as
‘AdamW’. Following the latest applied research findings

(Brown et al. 2020, Karpathy 2024), we use a learning rate
equal to 6 × 10−5, a β1 decay rate equal to 0.9 and a β2 decay
rate equal to 0.95. The choices of values for these parame-
ters are determined by the training pipeline described above,
which is different from the one proposed in the original work
(Zhang et al. 2019) and relies on a smaller number of training
samples to reduce the model’s exposition to the noise char-
acterizing the LOB. The entire framework described in this
paper is coded in Python using the PyTorch deep learning
library (Paszke et al. 2019). A total number of 135 exper-
iments have been run on the University College London
Computer Science Department’s High-Performance Comput-
ing Cluster (UCL 2024) for a cumulative GPU runtime of
959 hours, 16 minutes and 27 seconds. Six different types of
GPUs have been used: (i) NVIDIA GeForce GTX 1080 Ti; (ii)
NVIDIA GeForce RTX 2080 Ti; (iii) NVIDIA TITAN X (Pas-
cal); (iv) NVIDIA TITAN Xp; (v) Tesla V100-PCIE-16GB;
and (vi) Tesla V100-PCIE-32GB.

6. Microstructural priors

In this section, we investigate stocks’ foundational micro-
structural properties, focusing on the interplay between tick
size and bid-ask spread, liquidity at the best levels, and
the structural organization of the Limit Order Book (LOB).
Through this analysis:

• We identify a practical classification standard for
tick-based stock categories, identifying unique
behavioral patterns across small-, medium-, and
large-tick stocks and revealing the macro-stability
of spread distributions over the 3-year analysis
period.
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Figure 3. Pictorial representation of an input batch for the DeepLOB model (left-hand side of the Figure), and of the architecture itself
(right-hand side of the Figure).

• We introduce the ‘actual LOB depth’ metric to
quantify the sparsity of the LOB and uncover het-
erogeneous behaviors across stock categories, with
large-tick stocks displaying more homogeneous
structures and small-tick stocks showing higher
variability.

• We analyze the relationship between physical time
and tick-time, emphasizing the practical implica-
tions of varying trading activity levels across stock
categories, with distinct clustering patterns for dif-
ferent prediction horizons.

As a first microstructural property, we study the relation-
ship between the stocks’ average spread 〈σ 〉 and the tick
size θ across the 3-year analysis period. In literature, a stock
is differently classified based on a general definition which
establishes that if 〈σ 〉 � θ , than the asset is a small-tick stock,
if 〈σ 〉 � θ , than it is a large-tick stock (Bouchaud et al. 2018).
Even if widespread, this definition is not quantitative and pos-
sibly too restrictive to characterize the more nuanced behavior
of stocks traded in the NASDAQ exchange.

In this paper, we provide a practical classification which
establishes that if (i) 〈σ 〉 � 3θ , we are dealing with a small-
tick stock; if (ii) 〈σ 〉 � 1.5θ , we are dealing with a large-tick
stock; if (iii) 1.5θ � 〈σ 〉 � 3θ , we are dealing with a medium-
tick stock. In this way, we impose quantitative boundaries for
stock classification that allow the introduction of an extra fam-
ily (i.e. medium-tick stocks) that groups ‘borderline’ assets.
This category was previously identified by Bonart (2017) and
Bouchaud et al. (2018). Considering that we analyse 3 years

of data, one of the previously mentioned conditions should
remain valid for at least 2 of the 3 considered years. Looking
at table 6, we have 6 representatives of small-tick stocks (i.e.
CHTR, GOOG, GS, IBM, MCD, NVDA), 3 representatives
of medium-tick stocks (i.e. AAPL, ABBV, PM) and 6 repre-
sentatives of large-tick stocks (i.e. BAC, CSCO, KO, ORCL,
PFE, VZ). It is evident that, for small-tick stocks, the yearly
average spread is subject to non-negligible fluctuations, while
medium- and large-tick stocks are more stable across years.
As we will point out several times in this paper, specific prop-
erties of small-, medium- and large-tick stocks highly impact
their predictability.

Extending the previous analysis, in figure 4, we report the
PDF of the spread (expressed in number of ticks) for each
considered stock. As one can notice, distributions are dif-
ferent for small-, medium- and large-tick stocks, defining
evident behavioral clusters. For large-tick stocks, distributions
are peaked at an average value of 1.5 ticks (extremely close
to the minimum spread allowed of 1 tick), with rare open-
ings to larger realizations. This finding is consistent across
the 3 years. It is worth noting that, from a practical per-
spective, tighter spreads are beneficial for traders looking for
stocks allowing to enter and exit positions quickly and with
minimal impact on the transaction costs. For medium-tick
stocks, distributions are peaked slightly over the minimum
spread: during 2017, the average peak value is equal to 1.50
ticks; during 2018, the average peak value is equal to 2.50
ticks; while, during 2019, the average peak value is equal to
1.83 ticks. Notably, these distributions express more signifi-
cant variations than those describing large-tick stocks. Among
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Table 6. The 15 small-, medium- and large-tick stocks that we include in our analysis, along with their mean price and mean bid-ask spread
during 2017, 2018 and 2019.

2017 2018 2019

Mean Mean Mean Mean Mean Mean
Ticker price [$] spread [$] price [$] spread [$] price [$] spread [$] Size

CHTR 343.65 0.2869 312.61 0.3475 394.76 0.2206 small
GOOG 934.44 0.4362 1099.33 0.7898 1186.57 0.5511 small
GS 232.82 0.0965 223.35 0.1111 204.19 0.0759 small
IBM 157.90 0.0362 140.23 0.0444 137.94 0.0316 small
MCD 146.71 0.0321 166.39 0.0542 198.29 0.0531 small
NVDA 144.12 0.0437 233.82 0.0844 172.13 0.0500 small

AAPL 151.97 0.0145 190.11 0.0223 208.62 0.0190 medium
ABBV 71.59 0.0211 94.98 0.0422 76.86 0.0212 medium
PM 110.78 0.0231 86.96 0.0293 81.89 0.0240 medium

BAC 24.69 0.0109 29.31 0.0109 29.40 0.0105 large
CSCO 33.20 0.0106 44.25 0.0110 51.31 0.0107 large
KO 44.11 0.0112 45.84 0.0116 51.00 0.0111 large
ORCL 46.51 0.0115 47.89 0.0117 54.05 0.0111 large
PFE 33.93 0.0111 39.85 0.0114 39.99 0.0109 large
VZ 48.30 0.0119 52.80 0.0121 57.92 0.0112 large

these assets, AAPL is characterized by a distribution with a
shape more similar to that of large-tick stocks, while ABBV
and PM show a behavior more similar to that of small-tick
stocks. This result is expected since, by definition, medium-
tick stocks are ‘borderline’ assets characterized by behavioral
patterns that do not clearly belong to the class of small- nor
large-tick stocks. Lastly, small-tick stocks show consistently
broader distributions. In this family, we distinguish two differ-
ent subsets of assets: the first one is made of CHTR, GOOG,
and GS, while the second one is made of IBM, MCD, and
NVDA. Distributions characterizing the first subset have an
average peak of 18.16 ticks in 2017, 27.50 ticks in 2018
and 22.60 ticks in 2019. Distributions characterizing the sec-
ond subset, instead, have an average peak equal to 2.50 ticks
in 2017, 3.83 ticks in 2018 and 3.50 ticks in 2019. In both
cases, small-tick stocks express more significant variances
than large-tick stocks, suggesting less frequent trading activ-
ity or larger orders that could move the market (Bouchaud
et al. 2018) and, consequently, an higher exposition to mar-
ket impact for actors placing trades. It is worth noting that,
for each class of stocks, the shape of the spread’s distribution
remains consistent over the three years, suggesting an overall
macro-stability.

A second microstructural aspect to investigate concerns the
liquidity at the best levels. Indeed, once the impact of stocks’
tick size on the potential costs related to fast trading is clar-
ified, it is relevant to study the CCDF of volumes available
at the best quotes to understand if there is the necessary liq-
uidity to perform such an activity. Figure 5 reports the results
of this analysis. The x-axis utilizes a symmetric log-scale to
study both the ask side (negative part, red area) and the bid
side (positive part, green area) of the LOB, while underlying
the broadness of distributions. As one can notice, distributions
are roughly symmetric for the two sides; also, in this case,
a behavioral clustering directly dependent on the tick size
of the stocks is evident. Distributions characterizing large-
tick stocks are significantly wider, highlighting a condition of
higher liquidity at best quotes. Even if not visible in figure

5, as explained by Bouchaud et al. (2018), it is relevant to
underline that in the case of large-tick stocks, the volume
of the queues decreases before transactions since liquidity
takers rush to take the remaining volumes before it disap-
pears. This phenomenon provides more information on the
direction of future price changes, potentially contributing to
an improved forecast accuracy of deep learning models. One
more time, it is possible to highlight the ‘borderline’ behavior
of medium-tick stocks. They exhibit distributions that fall in
the middle between the ones characterizing large- and small-
tick stocks. Lastly, the curves characterizing small-tick stocks
are the steepest, highlighting an overall condition of lower
liquidity and potentially higher volatility. Also in this case,
even if not immediately visible from figure 5, as explained
by Bouchaud et al. (2018), it is relevant to underline that the
volume at the best quote increases immediately before being
hit by a market order, indicating that liquidity takers choose
to submit their orders when the opposite volume is relatively
high.

As pointed out in the work by Wu et al. (2021), the LOB
representation adopted in the current paper (see equation (1)),
which is commonly referred to as ‘compressed representa-
tion’ (Wu et al. 2021), presents a major drawback: its spatial
structure is not homogeneous (see figure 1) since there is no
assumption for adjacent price levels to have fixed intervals,
while only a monotonic order is guaranteed (Wu et al. 2021).
This representation is prone to dramatic changes due to occa-
sional price-level shifts, significantly impacting predictability
when treated as input for deep learning models. Indeed, in the
work by Wu et al. (2021), the authors underline that one of
the main assumptions in deep learning is that signals from
the same channel (or input dimension) are from the same
source. In our case, a ‘level’ is an artifact strictly related to
a single snapshot of the LOB and it is not associated with a
constant source, especially when its information shifts due to
aggressive orders. To measure stocks’ exposure to this issue,
we compute a metric defined as the ‘actual LOB depth’ (	).
Given a snapshot L(τ ), this measure is computed for the two
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Figure 4. PDF of the spread (expressed in number of ticks) for the 15 stocks of interest, in the 3-year analysis period.

Figure 5. CCDF of the volumes available at the best quotes for the 15 stocks of interest, in the 3-year analysis period.

sides of the market as follows:

	Ask
τ = pask

10 (τ ) − pask
1 (τ )

θ
ask side,

	Bid
τ = pbid

1 (τ ) − pbid
10 (τ )

θ
bid side .

In figure 6, we report the PDF for 	Bid and 	Ask for each
stock, across the 3-year period of analysis.

Even if less evident than in previous analyses, detecting
separate clusters of stocks displaying a different behavior is
still possible. One more time, distributions are roughly sym-
metric for the two sides of the LOB. The likelihood of having
a homogeneous spatial structure across different levels is
higher for large-tick stocks. In this case, distributions have an
average peak equal to 9.50 price levels (slightly more than the

minimum allowed distance between the two extreme levels of
the LOB) for both the ask and bid side across all the 3-year
analysis period. The same behavior is detected for medium-
tick stocks even if distributions are slightly wider, especially
for PM and ABBV, suggesting a higher likelihood of extreme
events. Lastly, when analyzing small-tick stocks, it is useful
to divide them into two separate subsets as we did above: the
first set is made of CHTR, GOOG and GS, while the second
is made of IBM, MCD and NVDA. Distributions characteriz-
ing the first subset have an average peak equal to 23.10 and
23.00 price levels for the bid and ask side, respectively, in
2017, 37.50 and 40.83 in 2018, and 31.00 and 26.66 in 2019.
Distributions characterizing the second subset have an aver-
age peak equal to 9.50 for both bid and ask sides in 2017,
11.33 for both sides in 2018, and 11.33 and 10.50 in 2019.
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Figure 6. PDF of the ‘actual LOB depth’ (	) for the 15 stocks of interest, in the 3-year analysis period.

Table 7. Average probability (computed across the 3-year analysis period) that the number of updates characterizing the three horizons
H�τ ∈ {10, 50, 100}, happens in a physical time (i) < 1 second; (ii) ≥ 1 second and < 10 seconds; or (iii) ≥ 10 seconds.

< 1 s >= 1 s & < 10 s >= 10 s

Ticker H10 H50 H100 H10 H50 H100 H10 H50 H100

CHTR 0.46 0.06 0.01 0.41 0.36 0.18 0.13 0.58 0.81
GOOG 0.76 0.32 0.14 0.18 0.53 0.56 0.06 0.15 0.30
GS 0.51 0.05 0.01 0.39 0.56 0.29 0.10 0.39 0.70
IBM 0.57 0.07 0.01 0.35 0.65 0.40 0.08 0.28 0.59
MCD 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00
NVDA 0.72 0.24 0.06 0.18 0.68 0.73 0.10 0.08 0.21

AAPL 0.92 0.55 0.23 0.04 0.41 0.73 0.04 0.04 0.04
ABBV 0.00 0.00 0.00 0.31 0.63 0.40 0.69 0.37 0.60
PM 0.63 0.07 0.01 0.32 0.69 0.42 0.05 0.24 0.57

BAC 0.78 0.43 0.30 0.12 0.47 0.55 0.10 0.10 0.15
CSCO 0.80 0.45 0.24 0.13 0.46 0.58 0.07 0.09 0.18
KO 0.68 0.33 0.14 0.23 0.49 0.51 0.09 0.18 0.35
ORCL 0.75 0.39 0.18 0.17 0.45 0.56 0.08 0.16 0.26
PFE 0.72 0.38 0.17 0.19 0.48 0.54 0.09 0.14 0.29
VZ 0.73 0.38 0.16 0.19 0.48 0.57 0.08 0.14 0.27

In this case, distributions are much wider than those charac-
terizing large-tick stocks, underlying a higher likelihood of
heterogeneous spatial structure across different levels of the
LOB. This means that the corresponding stocks are character-
ized by a sparse LOB structure with empty levels, potentially
inflating the inner representation of deep learning models.

In addition to these foundational microstructural properties,
many derived ones have been recently introduced. Despite the
goal of all of them is digging into a specific (sub)-aspect of
the LOB microstructural structure, it is easily demonstrable
that most of them can be directly mapped to one or more of
the fundamental quantities introduced earlier in this Section.
An example is the ‘information richness’ (IR) score (Kolm
et al. 2023). In the original paper, the authors claim it is a
measure of stocks’ predictability; this is only partially true. As
we empirically show in Appendix 1, there is a direct mapping
between the IR score of a stock and its tick size; consequently,

the tick size itself could be used as a proxy measure of a
stock’s predictability.

So far, in all the analyses, we have always defined the time
in terms of number of LOB updates (i.e. ‘tick time’). This
means that, for different stocks, there is a different mapping
between physical time and tick-time. This aspect constitutes
an issue from the point of view of practitioners who are not
interested in the forecasts as the result of a mere academic
exercise, but are mainly focused on their actual practicability
in real-world scenarios. In table 7, we report the average prob-
ability (computed across the 3-year analysis period) that the
number of updates characterizing the three horizons H�τ ∈
{10, 50, 100}, happens in a physical time (i) < 1 second (s),
(ii) ≥ 1 and < 10 seconds, or (iii) ≥ 10 seconds. For each
H�τ ∈ {10, 50, 100}, the probabilities of the three cases sums
to 1. As one can notice, for all the stocks, except MCD
(small-tick stock) and ABBV (medium-tick stock), 10 LOB’s
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updates are more likely to happen in a physical time < 1 s.
50 LOB’s updates, instead, are more likely to happen in a
physical time ≥ 1 s ∧ < 10 s except that for CHTR (small-
tick stock), MCD (small-tick stock) and AAPL (medium-tick
stock). The case of AAPL is particularly notable since it is
characterized by a remarkably more frequent trading activity
than observed in all the other assets. Lastly, H100 repre-
sents the scenario where behavioral clustering is more evident
among different classes of stocks. For small-tick stocks, 100
LOB’s updates are more likely to happen in a physical time ≥
10 s. The only two exceptions are GOOG and NVDA, which
are characterized by higher trading activity. For medium-tick
stocks, ABBV and PM, as per all the other microstructural
analyses, show a behavior which is comparable to the one of
small-tick stocks, while AAPL has a behavior more similar
to the one of large-tick stocks. Indeed, for this last class of
stocks, 100 LOB’s updates are always more likely to happen
in a physical time ≥ 1 s ∧< 10 s, delineating a trading activ-
ity which is higher than the one of small- and medium-tick
stocks.

7. Results

In this Section, we report the results of our analysis, in par-
ticular concerning (i) the assessment of the DeepLOB model
performance for mid-price changes direction forecast using
traditional machine learning metrics; and (ii) the introduc-
tion of a novel, cutting-edge strategy-oriented methodology
that computes the probability of correctly predicting a trans-
action using the model’s forecasts. In all the experiments,
we assess the behavior of the three classes of stocks (i.e.
small-, medium- and large-tick stocks) at 3 predictions hori-
zons H�τ ∈ {10, 50, 100}, at different confidence levels (i.e.
adopting various probability thresholds). The classification
of stocks into small-, medium-, and large-tick reflects dis-
tinct microstructural behaviors, as detailed in section 6. The
goal is to evaluate the forecasting performances in different
scenarios and link them to the microstructural properties of
the stocks and the complex underlying LOB dynamics. For
instance, stocks with small tick sizes tend to exhibit broader
spread distributions (figure 4), and lower liquidity at best lev-
els (figure 5): these microstructural characteristics influence
forecasting performance by affecting the signal-to-noise ratio
and the reliability of observed patterns in LOB data.

7.1. Assessing model’s forecast performances using
traditional machine learning metrics

This section provides a detailed evaluation of the forecasting
performance of the DeepLOB model across different classes
of stocks. The focus is on analyzing the confusion matrices
and derived performance metrics to characterize the model’s
predictive accuracy and error patterns. The main findings are
summarized as follows:

• Models trained on small- and medium-tick stocks
show significant reciprocal misclassification
between extreme classes (i.e. −1 and 1), with
higher misclassification rates at longer prediction
horizons.

• Large-tick stocks consistently exhibit superior pre-
dictive performance, with fewer misclassifications
and robust results across all horizons, as reflected
in both confusion matrices and derived metrics.

• The application of probability thresholds enhances
predictive accuracy for all stock classes, with large-
tick stocks demonstrating both higher accuracy
and greater resilience in maintaining a substan-
tial proportion of usable forecasts even at stricter
thresholds.

To assess the forecasting performances of the DeepLOB
model, we analyse the confusion matrices computed for each
class of stocks – small-, medium- and large-tick stocks – at
3 predictions horizons H�τ ∈ {10, 50, 100}, across the 3-year
analysis period. In figure 7, we show the average confusion
matrix for each class of stocks at H10. We observe that models
trained on small- and medium-tick stocks demonstrate a non-
negligible frequency of reciprocal misclassifications between
the extreme classes (−1 and 1), corresponding to a ‘Down’
and ‘Up’ movement, respectively. Specifically, for small-tick
stocks, the 29% of true class 1 is misclassified as class −1,
and the 27% of true class −1 is misclassified as class 1.
Medium-tick stocks exhibit a similar pattern with a slight
increase in misclassification for true class 1 as class −1 (i.e.
36%). Conversely, for large-tick stocks, the model’s predic-
tive performance is markedly distinct with a stronger ability
to correctly classify the two extreme classes, and most of the
errors concentrated towards their misclassification as 0.

In figure 8, we report the average confusion matrix for each
class of stocks, across the 3-year analysis period, at H50.
In this case, we observe that, compared to what happens at
H10, models trained on small- and medium-tick stocks have a
higher tendency to mix the extreme classes (−1 and 1), which,
we stress again, anticipate a ‘Down’ and ‘Up’ movement. For
small-tick stocks, we observe that the 39% of the true class
1 instances are misclassified as class −1, and the 37% of
true class −1 instances are mistaken for class 1. Medium-tick
stocks show a comparable trend, with slightly more misclas-
sification of extreme classes to the central one. On the other
hand, for large-tick stocks, the model performance remains
similar to the one observed at H10.

In figure 9, we report the average confusion matrix for each
class of stocks, across the 3-year analysis period, at H100.
In this case, we observe that models trained on small-tick
stocks have an equal tendency to correctly classify and mis-
classify the two extreme classes. In addition to this, in line
with what is observed for H50, there is a remarkable ten-
dency to classify class 0 as −1 or 1, further incrementing the
probability of critical errors. A similar scenario is detected
for medium-tick stocks, while, for large-tick stocks, one more
time, the model’s performance remains consistent with the
one observed at H10 and H50.

Confusion matrices serve as the foundational instrument for
presenting the behavior of predictive models in their broadest
context. They provide a detailed breakdown of the model’s
forecasts, which helps in evaluating the performance across
different scenarios. However, to gain a deeper insight into a
model’s capabilities and to make more nuanced assessments
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Figure 7. Average confusion matrices at H10. To obtain these compact representations, we firstly compute individual confusion matrices for
each stock over the 3-year analysis period, aggregating them into a list based on the class (i.e. small-, medium- and large-tick stocks). The
average matrix is obtained by summing these matrices and dividing by their count, thus reflecting overall performance metrics. This average
is finally normalized row-wise, turning counts into proportionate metrics of predictive accuracy and class-specific performance. The final
normalized matrix succinctly visualizes the model’s average effectiveness in classifying mid-price changes directions, during the period of
interest.

Figure 8. Average confusion matrices at H50. To obtain these compact representations, we firstly compute individual confusion matrices for
each stock over the 3-year analysis period, aggregating them into a list based on the class (i.e. small-, medium- and large-tick stocks). The
average matrix is obtained by summing these matrices and dividing by their count, thus reflecting overall performance metrics. This average
is finally normalized row-wise, turning counts into proportionate metrics of predictive accuracy and class-specific performance. The final
normalized matrix succinctly visualizes the model’s average effectiveness in classifying mid-price changes directions, during the period of
interest.

Figure 9. Average confusion matrices at H100. To obtain these compact representations, we firstly compute individual confusion matrices
for each stock over the 3-year analysis period, aggregating them into a list based on the class (i.e. small-, medium- and large-tick stocks). The
average matrix is obtained by summing these matrices and dividing by their count, thus reflecting overall performance metrics. This average
is finally normalized row-wise, turning counts into proportionate metrics of predictive accuracy and class-specific performance. The final
normalized matrix succinctly visualizes the model’s average effectiveness in classifying mid-price changes directions, during the period of
interest.
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of its effectiveness, derived metrics are essential. These met-
rics offer a more granular view of the model’s predictive
accuracy and error tendencies, facilitating a comprehensive
understanding of its strengths and limitations. By analyzing
derived metrics, researchers and practitioners can better com-
prehend the potential of each model, enabling them to make
informed decisions regarding its application and improve-
ment. To assess the forecasting performances of the DeepLOB
model we use the Matthews Correlation Coefficient (MCC)
(Gorodkin 2004). It is a generalization of Pearson’s correla-
tion coefficient between actual and predicted classes; it takes
values between −1 (in case of inverse prediction) and +1
(in case of perfect prediction), while a value of 0 indicates a
random prediction. MCC is generally regarded as a balanced
measure which can be used even if the classes are of very dif-
ferent sizes (Chicco 2017, Powers 2020). Figure 10 shows the
average MCC computed on the 3-year analysis period for the
different classes of stocks. Results are organized according to
prediction horizons (see columns) and stocks’ tick-sizes (see
rows). Each plot contains three main pieces of information:
(i) the model performance’s changes by applying different
probability thresholds (shown on the bottom of the x-axis);
(ii) the average percentage amount of remaining data after
using probability thresholds (shown on the top of the x-axis);
(iii) the performance average trend (computed across stocks
belonging to the same class) and the corresponding standard
deviation (shown through the gray line and shadow, respec-
tively). Looking at these results, it is worth highlighting the
different scales on the y-axes for each horizon and each class
of stocks.

Overall, we observe that the DeepLOB model exhibits
greater misclassification rates for small-tick stocks at H50
and H100. This aligns with the findings in Section 6, where
small-tick stocks have a significantly wider distribution of
spread realizations (figure 4) and lower liquidity at best quotes
(figure 5). These factors contribute to noisier market envi-
ronments, reducing the model’s ability to distinguish between
price movement classes.

At H10, without the application of any threshold, the aver-
age MCC for small-tick stocks is 0.11, while the standard
deviation is 0.04, with only one stock (GOOG) acting as an
outlier with an average MCC value (computed across the 3-
year period of analysis) equal to 0.19. We observe that, for
thresholds ≤ 0.6, there is an increasing pattern in the aver-
age performance. This behavior is associated with a rapid
decrease in the average percentage of data used for the met-
ric’s computation. The average performance decreases for
thresholds > 0.6, and only an average percentage of data
< 1% is used for the metric’s computation. Similar find-
ings are detected for medium-tick stocks. At H10, without
applying any threshold, the average MCC is 0.13, while the
standard deviation equals 0.03. By increasing the thresh-
old value, we observe an increase in performance and a
decrease in the percentage of data used for the metric’s com-
putation. Such a decrease is smoother if compared to the
one observed in small-tick stocks, but still relevant. Among
medium-tick stocks, AAPL performs slightly better than other
stocks, remarking an intra-class separation that we already
observed from the point of view of microstructural proper-
ties in section 6. The scenario radically changes for large-tick
stocks. At H10, without applying any threshold, the average

MCC is 0.29 (18 units higher than the one characterizing
small-tick stocks and 16 units higher than the one charac-
terizing medium-tick stocks). At the same time, the standard
deviation has a value equal to 0.017. In this case, a threshold-
dependent increasing pattern is also evident, especially for
values > 0.5. However, unlike the other two classes of stocks,
the average percentage of data used to compute the metric
remains remarkably high. In this sense, the case of threshold
equal to 0.9 is meaningful since the metric is still computed
using the 31% of available forecasts, hence highlighting an
enhanced strength of the signal associated with each forecast.

Moving to H50, we note that, without applying any thresh-
old, the average MCC for small-tick stocks is 0.04, while
the standard deviation is 0.029. Also in this case, GOOG
acts as an outlier with an average MCC value (computed
across the 3-year period of analysis) equal to 0.089. The same
happens for NVDA, but in negative terms: in this case, the
average MCC value equals 0.006. We remark that by varying
the threshold, the average performance for small-tick stocks
remains almost constant. In contrast, the decrease in the aver-
age percentage of data used for the metric’s computation is
comparable to that observed at H10. For medium-tick stocks,
at H50, without applying any threshold, the average MCC
is 0.085, while the standard deviation has a value of 0.019.
An average growing pattern is detected for threshold val-
ues ≤ 0.6. In contrast, the average percentage of values used
for metric computation decreases with the same velocity as
in small-tick stocks. A larger standard deviation is detected
for threshold values > 0.6. AAPL always performs better
than other stocks belonging to the same class. For large-tick
stocks, at H50, without the application of any threshold, the
average MCC is 0.36 (32 units higher than the one of small-
tick stocks and 28 units higher than the one of medium-tick
stocks). At the same time, the standard deviation has a value
of 0.056. A clear average growing pattern is detected for all
threshold values. In contrast, the average percentage of data
used to compute the metric decreases considerably more than
what happened at H10, remaining higher than the minimum
reached by small- and medium-tick stocks. We remark that
the difference between the average performance at threshold
0.9 and the one without threshold (i.e. threshold equals 0.3)
equals 0.30.

Lastly, considering H100, we notice that, without applying
any threshold, the average MCC for small-tick stocks is 0.01,
while the standard deviation is 0.009. These results suggest
that the model is producing random forecasts. The average
performance remains almost constant, varying the threshold,
while the decrease in the average percentage of data used
for the metric’s computation is the steepest if compared to
the values at H�τ ∈ 10, 50. For medium-tick stocks, at H100,
without applying any threshold, the average MCC is 0.036,
while the standard deviation has a value of 0.03. An aver-
age growing pattern is detected for threshold values ≤ 0.5,
while the decrease in average percentage is as steeper as
in small-tick stocks. A larger standard deviation is detected
when the threshold value is ≤ 0.8, with AAPL stock per-
forming, one more time, better than other class components.
For large-tick stocks, at H100, without the application of any
threshold, the average MCC is 0.26 (25 units higher than the
one of small-tick stocks and 23 units higher than the one of
medium-tick stocks). At the same time, the standard deviation
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Figure 10. Average Matthews Correlation Coefficient (MCC). Results are organized according to the prediction horizons taken into account
(see columns) and stocks’ tick-size (see rows). Each plot contains three main pieces of information: (i) the model’s performance changes
applying different thresholds on the probabilities associated with each forecast (shown on the bottom of the x-axis); (ii) the average per-
centage amount of remaining data after using the threshold (shown on the top of the x-axis); (iii) the performance average pattern and
the corresponding standard deviation (shown through the gray line and shadows). All the average values and the standard deviations are
computed by considering stocks with the same tick-size, spanning the 3-year analysis period.

has a value of 0.078. Differently from what happens for the
other two classes of stocks, a clear average growing pattern
is detected for threshold values ≤ 0.8, while the average per-
centage of data used to compute the metric decreases more
than what happened at H50, remaining, however, higher than
the minima reached for small- and medium-tick stocks. Over-
all, large-tick stocks demonstrate greater forecast stability
across horizons, as evidenced by the lower variance in MCC.
This robustness is strongly linked to their higher liquidity and
less broad spread distributions, which provide a more stable
market dynamics for the DeepLOB model to learn from.

The analysis reported in this Section is further deepened
in Appendices 2 and 3, where we report (i) the year-wise
MCC of the DeepLOB model at H�τ ∈ {10, 50, 100}, for
different confidence levels; (ii) the corresponding statistical
significance; and (iii) a replica of the analysis in figure 10 for
the F1 and accuracy score. The coherence of the results bol-
sters the robustness of the findings discussed earlier in this
Section, highlighting that large-tick stocks exhibit a signif-
icant predictability rate across all the considered horizons.

This is evidenced in figures A1 and A2, where we observe
that these stocks achieve F1 score realizations greater than
0.45 without applying any thresholds and surpass 0.7 when
probability thresholds are implemented. Similarly, accuracy
scores exceed 0.7 without thresholds and reach over 0.9 with
the application of probability thresholds. However, as detailed
in section 7.2, achieving high scores on these traditional
machine learning metrics does not necessarily translate into
the generation of actionable trading signals. This distinction
remarks the complexity of converting predictive accuracy into
practical trading strategies.

7.2. On the practicability of model’s forecasts

The analysis presented above offers significant insights into
the DeepLOB model’s performance at different horizons for
different classes of stocks. However, further discussion is
needed to understand the results from the perspective of
the microstructural properties of the LOB. To do so, in this
Section, we introduce a novel methodology to evaluate the
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practicability of forecasts. The main findings are summarized
as follows:

• We demonstrate that for a signal to be considered
tradable, the chronological positioning of correct
forecasts is more critical than their sheer abun-
dance.

• We show that, consistently with previously dis-
cussed results, using the newly introduced met-
ric, large-tick stocks exhibit higher practicability
compared to small- and medium-tick stocks.

• We find that the effectiveness of the newly intro-
duced metric can be further enhanced by relaxing
certain construction constraints.

Despite the recent attempts made in state-of-the-art
research papers (Zhang et al. 2019, Wood et al. 2021, Yin
and Wong 2023), backtesting a trading strategy based on the
outputs of a deep learning model by using historical data-
only is not possible. Indeed, several assumptions are needed,
including but not limited to (i) having the technical and infras-
tructural potential to record and process live data, produce
forecasts and execute them in due time; (ii) being always
executed; (iii) having a zero market-impact; (iv) having zero
transaction costs. The combination of all or part of these
assumptions ruins any attempt to produce a reliable backtest,
and, indeed, it is different from what academics should try to
achieve to bridge the gap with the practitioners’ community.
In this Section, we propose a strategy-oriented analysis of the
model’s forecasts, which is entirely assumption-free and fully
immune to class imbalances. As an introductory example, let
us consider a scenario where the mid-price changes’ direc-
tion forecasts, which, in our case, are always chronologically
sorted, are defined as per in figure 11. The direct mapping
between predictions and trading actions would include (i)
opening a selling position in correspondence of the first pre-
dicted mid-price ‘Down’ movement (i.e. Os); (ii) maintaining
the selling position in correspondence of the predicted mid-
price ‘Stable’ period (i.e. Ms); (iii) closing the existing selling
position (i.e. Cs), while opening a new buying position (i.e.
Ob) in correspondence of the predicted mid-price ‘Up’ move-
ment; (iv) maintaining the position in correspondence of the
predicted mid-price ‘Stable’ period (i.e. Mb); and, (v) closing
the existing buying position (i.e. Cb), while opening a selling
position (i.e. Os) in correspondence of the newly predicted
mid-price ‘Down’ movement. By performing this simplified
strategy, we would have opened 3 positions and closed 2 of
them, overall completing 2 transactions (i.e. a transaction is
completed when a position is successfully opened and later
closed). Using forecasts, however, necessarily implies rely-
ing on their ‘correctness’. To contextualize this concept, let us
consider the two examples of chronologically sorted vectors
of forecasts presented in figure 12. For each of them, we report
the MCC, the F1 score, and the following transactions-related
metrics:

• The number of potential transactions (PT). Looking
at figure 11, we remark that a transaction happens
when one is able to open a position and then close
it (i.e. Os → Cs ∨ Ob → Cb). In this context, we

use the term ‘potential’ because transactions are
counted on the targets’ set.

• The total number of executed transactions (TT).
This metric is computed in the same manner as PT,
but on the predictions’ set.

• The total number of correctly executed transac-
tions (CT). This metric counts how many times a
transaction executed on the predictions’ set has a
correspondence in the targets’ set. In figure 12(a),
we show an example where CT = 0, due to dis-
crepancies in the positions’ entering/exiting points
in the two sets.

• The probability pT to execute a correct transaction.

From the definitions provided above, it is evident that the
set CT is given by the intersection of PT and TT sets; the prob-
ability to execute a correct transaction, pT, is hence computed
as follows:

pT = CT

PT + TT − CT
. (3)

We remark that, being our approach assumption-free, when
we refer to ‘opening/closing a position’ and ‘executing a
transaction’, we mean the model’s capability to accurately
identify an optimal entry point for initiating or concluding a
trade, either as separate actions or together, respectively.

The examples provided in figure 12 are explicitly designed
to highlight the fragility of using traditional machine learning
metrics to evaluate the out-of-sample practicability of predic-
tions in the context of LOB forecasting. In particular, they
constitute two ‘extreme’ scenarios where traditional machine
learning metrics take values far from the ones given by pT,
remarking the potential distance of academically acceptable
findings and actually practicable ones. Indeed, in this appli-
cation domain, we are more interested in the chronological
location of prediction errors rather than in the number of their
occurrence. To be more specific, we are interested in (i) hav-
ing at least one correct prediction in correspondence of each
‘Down’ or ‘Up’ movement; and, consequently, (ii) in not hav-
ing any premature closing signal for an existing open position.
The nature and the number of other errors are tolerable when
these two conditions are satisfied. In real-world scenarios, also
probabilities associated with forecasts should be taken into
account. Indeed, we can decide to enter or exit a position
based on the probability associated with the forecast (i.e. the
strength of the signal).

These metrics are studied at different granularity levels in
figure 13 (i.e. coarse-grained representation) and in tables 8,
9, 10 (i.e. fine-grained representation). Specifically, in figure
13, for each class of stocks, we compute the average value
for pT and MCC applying different probability thresholds
(0.3, 0.5, 0.7, 0.9) and we notice two different behaviors that
remain consistent across different scenarios: (i) pT decreases
for increasing probability thresholds and increases moving
from small-tick stocks to large-tick stocks; (ii) the MCC
increases for increasing probability thresholds (this is more
evident moving to longer prediction horizons) and increases
also moving from small-tick stocks to large-tick stocks. On
one side these findings highlight the relevance of the posi-
tioning of the signal. By applying different probability thresh-
olds we may break the signal’s sequence, and even if the
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Figure 11. Pictorial representation of a chronologically sorted vector of forecasts. Following the mapping in equation (2), we derive a
simplified strategy where Op∈{s/b} means ‘opening a new selling/buying position’, Mp∈{s/b} means ‘maintaining an existing selling/buying
position’, Cp∈{s/b} means ‘closing an existing selling/buying position’.

Figure 12. Transaction-related (PT,TT, CT, pT ) and machine learning metrics (MCC, F1) computed on two chronologically sorted vectors
of forecasts and corresponding targets.

performance of classical machine learning metrics increases
because of the increase of the strength of the signal, we are
not able to correctly manage positions. On the other hand
they highlight, one more time, the impact of the microstruc-
tural properties of the stocks on the signal’s usability: overall
large-tick stocks demonstrate to offer higher probabilities to
actually operate trading in a fully automated way compared
to small-tick stocks).

Deepening the analysis at the the level of specific stocks,
looking at tables 8, 9, 10, we notice that, for the class of small-
tick stocks, at H10, the average PT is 1.63 × 105. Without
the application of any threshold, looking at pT, we observe
a separation between stocks: the first set is made of CHTR,
GOOG and GS and is characterized by an average pT equal
to 0.06, while the second one is made of IBM, MCD and
NVDA and is characterized by an average pT equal to 0.12.
Such a separation, which was not evident in figure 10, is
directly linked to the microstructural properties of the con-
sidered stocks. Indeed, as observed in figures 4 and 6, assets
belonging to the second family present less extreme realiza-
tions of the spread and of the actual LOB’s depth, making
them structurally more similar to large-tick stocks and more
suitable to be treated as input for a deep learning model.† We

† These findings are also coherent with the ones observed in table A1,
where for stocks belonging to the second family, we observe an aver-
age (computed across years) IR value equal to 1.85, which is higher
than the one observed for the stocks belonging to the first family of
stocks (i.e. 1.71).

remark that the above-mentioned statistical properties of the
LOB can be effectively exploited by the deep learning model
thanks to the rough balancing in class distribution observed at
H10 (see table 5). As we point out later in this Section, moving
to H�τ ∈ {50, 100}, this effect will vanish due to a stronger
class imbalance. For all the small-tick stocks, the decrease
of pT is fast when applying probability thresholds. Specifi-
cally, net of minor oscillations, the probability of correctly
executing a trade at a threshold larger than 0.5 is zero. For
medium-tick stocks, the average PT (i.e. 2.1 × 105) is strongly
biased by the behavior of AAPL. In contrast, pT (which has
an average value equal to 0.14) has similar realizations for all
the stocks. Also in this case, the decrease in pT is fast when
thresholds are applied, and the probability of correctly exe-
cuting a transaction at a threshold larger than 0.5 is 0. The
behavior is different when we analyze large-tick stocks. In
this case, the average PT equals 5.3 × 104, which is almost
1/3 of the one detected for small-tick stocks. Even if the num-
ber of LOB updates is much higher for large-tick stocks than
for small-tick stocks, the number of mid-price changes, and,
consequently, the number of potentially exploitable transac-
tions, follows an inverse pattern, being, on average, one order
of magnitude higher for small-tick stocks than for large-tick
stocks. Also the application of probability thresholds in large-
tick stocks leads to different results. Indeed, without applying
any threshold, the average pT value for this class of stocks
equals 0.10, with a smoother decrease for higher threshold
values. In this case, the probability of correctly executing



20 A. Briola et al.

Figure 13. Coarse-grained representation of the behavior of the average pT and MCC at H�τ ∈ {10, 50, 100}. For each class of stocks, we
compute the average value for both metrics applying different probability thresholds (i.e. 0.3, 0.5, 0.7, 0.9). We notice two different behaviors
that remain consistent across different scenarios: (i) pT decreases for increasing probability thresholds and increases moving from small-tick
stocks to large-tick stocks; (ii) the MCC increases for increasing probability thresholds (this is more evident moving to longer prediction
horizons) and increases also moving from small-tick stocks to large-tick stocks. We highlight in red the scenarios where no probability
threshold is applied (i.e. the signal’s sequence is untouched).

a transaction is ≈ 0 only for a threshold equal to 0.9. To
deepen the pT-related results discussed for H10, it is useful to
exploit the average confusion matrices in figure 7 as an instru-
ment to understand the distribution of forecasting errors. In
this context, indeed, we observe that the non-negligible fre-
quency of reciprocal misclassifications between the extreme
classes (−1 and 1) for models trained on small- and medium-
tick stocks, directly determines a sub-optimal management of
the opening/closing of existing or new positions. Conversely,
for large-tick stocks, errors’ concentration towards the mis-
classification of the two extreme classes as 0 guarantees a
reduced impact on the management of the opening/closing
of existing or new positions. Moving to H50, for small-tick
stocks, we observe a decrease in the average PT, which is
equal to 9.1 × 104. Also the pT, for all the probability thresh-
olds, is consistently lower than the one observed at H10.
Indeed, without the application of any threshold (i.e. 0.3),
the average pT is equal to 0.04, while the probability of cor-
rectly executing a transaction at a threshold larger than 0.5 is
always 0. Differently from what is observed at H10, stocks
have no intra-class separation. These findings are also true for
medium-tick stocks. In this case, the average PT is equal to

9.9 × 104, while the average pT is equal to 0.09. One more
time, a symmetrically different trend is observed for large-tick
stocks. In this case, it remains true that the average number of
potentially executable transactions (i.e. 3.6 × 104) decreases
when compared to the one observed at H10, however, curi-
ously, the average pT increases reaching a value of 0.15. The
analysis of confusion matrices (see figure 8) reveals that, for
small- and medium-tick stocks, the lowest realizations of pT

compared to H10, are directly linked to a more evident ten-
dency to mix the extreme classes (−1 and 1) which directly
determine the opening/closing of existing or new positions.
Conversely, for large-tick stocks, a decrease of these types
of errors in favor of a misclassification of extreme classes
toward the central one (i.e. class 0), determines an increase in
realizations of pT compared to H10. Similar findings can be
detected moving to H100. In this case, for small-tick stocks,
we observe a further decrease in the average PT, which is
equal to 6.7 × 104. Without applying any threshold, the aver-
age pT is in line with the one observed at H50, while the
probability of correctly executing a transaction with the appli-
cation of a threshold larger than 0.3 is always 0. Also in
this case, there is no intra-class separation among stocks. For
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Table 8. Strategy-oriented, assumption-free study on the practicability of deep learning forecasts. For H�τ ∈ {10}, we report the stock’s
PT, pT, MCC and F1 score with the application of a probability threshold equal to 0.3 (i.e. no threshold), 0.5, 0.7 and 0.9. Being pT a

computational expensive metric, results reported in this Table refers to the first 50% of available data only.

H10

0.3 0.5 0.7 0.9

Ticker PT pT MCC F1 pT MCC F1 pT MCC F1 pT MCC F1

CHTR 84 751 0.06 0.09 0.37 0.00 0.13 0.37 0.00 0.04 0.29 0.00 0.00 0.00
GOOG 297 533 0.04 0.20 0.46 0.00 0.33 0.53 0.00 0.28 0.39 0.00 0.00 0.00
GS 99 858 0.08 0.08 0.30 0.01 0.13 0.33 0.00 0.00 0.22 0.00 0.00 0.00
IBM 131 162 0.14 0.10 0.36 0.04 0.17 0.35 0.00 0.12 0.30 0.00 0.00 0.00
MCD 132 481 0.10 0.12 0.41 0.02 0.20 0.44 0.00 0.29 0.51 0.00 0.00 0.00
NVDA 233 588 0.12 0.08 0.35 0.02 0.16 0.37 0.00 0.23 0.42 0.00 0.00 0.13

AAPL 483 853 0.15 0.17 0.42 0.05 0.23 0.46 0.00 0.33 0.50 0.00 0.00 0.29
ABBV 79 782 0.14 0.15 0.41 0.04 0.25 0.47 0.00 0.23 0.41 0.00 0.02 0.33
PM 80 043 0.13 0.13 0.38 0.04 0.22 0.43 0.00 0.35 0.47 0.00 0.00 0.00

BAC 27 155 0.07 0.30 0.45 0.06 0.30 0.46 0.04 0.36 0.50 0.01 0.40 0.54
CSCO 69 914 0.10 0.31 0.50 0.08 0.32 0.51 0.03 0.37 0.55 0.00 0.33 0.54
KO 37 589 0.11 0.24 0.46 0.09 0.25 0.47 0.04 0.28 0.50 0.00 0.20 0.45
ORCL 62 514 0.12 0.32 0.49 0.11 0.33 0.50 0.04 0.40 0.56 0.00 0.39 0.50
PFE 38 853 0.09 0.28 0.46 0.08 0.29 0.47 0.03 0.36 0.54 0.00 0.36 0.52
VZ 87 383 0.11 0.27 0.48 0.09 0.27 0.49 0.02 0.31 0.52 0.00 0.21 0.44

Table 9. Strategy-oriented, assumption-free study on the practicability of deep learning forecasts. For H�τ ∈ {50}, we report the stock’s
PT, pT, MCC and F1 score with the application of a probability threshold equal to 0.3 (i.e. no threshold), 0.5, 0.7 and 0.9. Being pT a

computational expensive metric, results reported in this Table refers to the first 50% of available data only.

H50

0.3 0.5 0.7 0.9

Ticker PT pT MCC F1 pT MCC F1 pT MCC F1 pT MCC F1

CHTR 54 303 0.03 0.05 0.35 0.01 0.06 0.34 0.00 0.09 0.21 0.00 0.00 0.06
GOOG 196 149 0.06 0.09 0.36 0.01 0.13 0.36 0.00 − 0.03 0.26 0.00 0.00 0.00
GS 55 020 0.05 0.02 0.29 0.00 0.02 0.22 0.00 0.02 0.13 0.00 0.00 0.02
IBM 64 859 0.06 0.03 0.28 0.01 0.02 0.20 0.00 0.00 0.22 0.00 0.00 0.00
MCD 73 427 0.04 0.04 0.31 0.01 0.07 0.32 0.00 0.07 0.36 0.00 0.00 0.00
NVDA 104 414 0.01 0.01 0.19 0.00 0.00 0.12 0.00 0.00 0.14 0.00 0.00 0.00

AAPL 218 318 0.08 0.10 0.34 0.04 0.18 0.45 0.00 0.16 0.47 0.00 0.00 0.00
ABBV 38 321 0.08 0.08 0.28 0.03 0.12 0.27 0.00 0.23 0.48 0.00 0.21 0.54
PM 42 523 0.10 0.07 0.37 0.01 0.12 0.34 0.00 0.10 0.31 0.00 0.00 0.00

BAC 20 711 0.11 0.43 0.61 0.10 0.44 0.62 0.07 0.57 0.71 0.02 0.69 0.76
CSCO 48 673 0.17 0.36 0.57 0.15 0.38 0.58 0.12 0.49 0.65 0.06 0.60 0.68
KO 25 581 0.16 0.33 0.54 0.15 0.34 0.55 0.10 0.45 0.63 0.03 0.64 0.75
ORCL 41 516 0.16 0.34 0.55 0.15 0.37 0.57 0.08 0.51 0.67 0.00 0.65 0.71
PFE 25 519 0.15 0.38 0.57 0.14 0.40 0.59 0.08 0.59 0.72 0.00 0.74 0.79
VZ 51 748 0.12 0.25 0.48 0.11 0.29 0.50 0.05 0.38 0.56 0.00 0.47 0.61

medium-tick stocks, the average PT is equal to 7.0 × 104,
while the average pT is lower than the one observed at H50,
with a value equal to 0.05. One more time, for large-tick
stocks, we observe that even if it remains true that the average
number of potentially executable transactions (i.e. 2.7 × 104)
decreases when compared to the one observed at H50, the
average pT remains unchanged with a value equal to 0.15. In
this case, the probability of correctly executing a transaction
is remarkably higher than 0 for probability thresholds ≤ 0.7.
In this case, results of the analysis of confusion matrices (see
figure 9) are identical to the ones performed at H50.

To conclude the analysis of the results, we draw the atten-
tion to the uniqueness of the pattern of pT observed for
large-tick stocks across the different horizons. Microstructural

properties alone cannot fully explain this behavior. Instead,
we must also consider the primary role of class distribu-
tions at H�τ ∈ {10, 50, 100} in determining this trend. As
we have previously noted in tables 3, 4 and 5, class imbal-
ances follow two symmetrically different patterns for small-
and large-tick stocks. The first class of assets has a more bal-
anced distribution at H10, while the second class of assets
achieves a stable balance at H�τ ∈ {50, 100}. Overall, this
result, combined with the balanced sampling technique used
during the training stage, as well as the aggregate statisti-
cal properties of the LOB for different classes of stocks,
sheds lights on the practicability of forecasts and issues
related to the use of deep learning forecasting techniques on
LOB data.
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Table 10. Strategy-oriented, assumption-free study on the practicability of deep learning forecasts. For H�τ ∈ {100}, we report the stock’s
PT, pT, MCC and F1 score with the application of a probability threshold equal to 0.3 (i.e. no threshold), 0.5, 0.7 and 0.9. Being pT a

computational expensive metric, results reported in this Table refers to the first 50% of available data only.

H100

0.3 0.5 0.7 0.9

Ticker PT pT MCC F1 pT MCC F1 pT MCC F1 pT MCC F1

CHTR 42 794 0.04 0.03 0.34 0.00 0.03 0.23 0.00 0.03 0.08 0.00 0.00 0.16
GOOG 15 0428 0.06 0.02 0.32 0.00 0.01 0.21 0.00 -0.00 0.19 0.00 0.00 0.01
GS 39 687 0.06 0.01 0.29 0.00 0.00 0.04 0.00 0.00 0.03 0.00 0.00 0.00
IBM 45 758 0.03 − 0.01 0.27 0.00 0.01 0.21 0.00 0.00 0.06 0.00 0.00 0.00
MCD 52 440 0.04 0.01 0.28 0.00 0.04 0.21 0.00 0.00 0.02 0.00 0.00 0.00
NVDA 70 535 0.03 0.00 0.31 0.00 0.01 0.07 0.00 0.00 0.00 0.00 0.00 0.00

AAPL 153 620 0.06 0.06 0.32 0.00 0.17 0.46 0.00 0.00 0.30 0.00 0.00 0.00
ABBV 26 504 0.05 0.04 0.30 0.01 0.06 0.20 0.00 0.18 0.29 0.00 0.00 0.00
PM 30 333 0.05 0.01 0.30 0.00 0.01 0.16 0.00 0.00 0.05 0.00 0.00 0.00

BAC 15 693 0.19 0.35 0.55 0.19 0.36 0.55 0.16 0.46 0.60 0.09 0.62 0.70
CSCO 39 307 0.16 0.30 0.53 0.15 0.33 0.56 0.13 0.44 0.61 0.02 0.56 0.65
KO 19 119 0.13 0.25 0.50 0.12 0.27 0.51 0.08 0.37 0.57 0.02 0.52 0.62
ORCL 31 524 0.17 0.25 0.48 0.16 0.30 0.51 0.11 0.43 0.55 0.00 0.25 0.49
PFE 19 621 0.13 0.28 0.50 0.12 0.31 0.52 0.08 0.42 0.59 0.01 0.55 0.58
VZ 37 859 0.09 0.11 0.31 0.08 0.13 0.31 0.03 0.20 0.35 0.00 0.31 0.40

8. Conclusion and future work

Understanding and forecasting Limit Order Book (LOB)
dynamics is a fundamental challenge in financial markets.
LOBs are complex systems where price formation is influ-
enced by microstructural properties, high-frequency trading
activity, and order flow dynamics. Accurate forecasting is
particularly difficult due to the stochastic nature of financial
markets, the low signal-to-noise ratio, and structural varia-
tions across different stocks. While significant research has
been conducted on LOB modeling and predictive analyt-
ics, a standardized framework for integrating microstructural
analysis with forecasting has remained largely absent.

To address this gap, we develop LOBFrame, an open-
source framework designed to facilitate the systematic study
and evaluation of LOB forecasting models. Our approach is
twofold: (i) we analyze the microstructural characteristics of
a diverse set of 15 highly liquid NASDAQ stocks over a
three-year period (2017–2019), categorizing them based on
their tick size, and (ii) we leverage these insights to enhance
and understand limitations of forecasting methodologies. We
also establish clear quantitative benchmarks that enable us to
differentiate between small-tick, medium-tick, and large-tick
stocks.

On the microstructural side, we analyze various LOB
properties to understand how different tick sizes influence
market behavior. While new measures such as the informa-
tion richness ratio (Kolm et al. 2023) have been proposed, we
find that many observed behavioral clusters can be directly
attributed to tick-size-driven effects.

On the forecasting side, LOBFrame provides a scalable
and modular system for processing large-scale LOB data, inte-
grating cutting-edge deep learning methodologies. It offers a
standardized pipeline for data transformation, training, valida-
tion, and trading simulation. This allows for rigorous model
evaluation and ensures comparability across different fore-
casting approaches. In this study, we build upon DeepLOB,

a state-of-the-art deep learning model for LOB forecasting,
and propose an enhanced labeling procedure that improves
usability in high-frequency trading strategies. Additionally,
we introduce a data-parsimonious pipeline to address inherent
class imbalances in LOB datasets.

To assess forecasting performance, we measure the
Matthews Correlation Coefficient (MCC) across three
prediction horizons (expressed in LOB updates) at varying
confidence levels (i.e. probability thresholds). Our findings
reveal a strong correlation between tick size and forecast
accuracy:

• Large-tick stocks exhibit the highest predictability,
with robust performance across different horizons.

• Small-tick stocks present a weaker predictive
signal, requiring more sophisticated modeling
approaches.

However, we also highlight a critical practical limitation:
the usefulness of this predictive signal depends significantly
on the availability of low-latency hardware infrastructure.
Even though deep learning models can detect market ineffi-
ciencies, their real-world utility is constrained by execution
delays inherent to trading systems.

Finally, going deeper with the study the practicability
of obtained forecasts in real-world scenarios, we develop
a strategy-oriented, assumptions-free and class imbalances-
immune methodology to compute the probability of executing
a correct transaction using the forecasts of the chosen model.
We argue that this approach is more general than the one based
on estimating the PnL of a single strategy on historical data,
which is often based on unrealistic assumptions. We show that
assessing the probability of executing a correct transaction is
a more robust procedure compared to those used in traditional
deep learning, as it correctly takes into account the impact of
the chronological location of errors on the performance.



Deep limit order book forecasting 23

Our paper provides a robust methodology and a data
pipeline that bridges the analysis and modeling of microstruc-
tural properties of LOB data with the forecast of LOB
dynamics, providing specific indications to practitioners on
the stocks characteristics and factors driving the forecast per-
formance. Indeed, there are a number of research avenues yet
to be explored. Specifically, a cross-exchange validation of
our results is needed. In addition, we remark the need for
structured testing of different deep learning models on hetero-
geneous classes of stocks. This analysis would aim to unveil
how the models’ architectural peculiarities can be exploited
to handle specific challenges coming from, for example,
the sparser LOB structure characterizing small- to medium-
tick stocks. This includes further studies on the potential-
ities of transformer models (Vaswani et al. 2017, Zhou
et al. 2021, Wen et al. 2022, Zeng et al. 2023), diffusion mod-
els (Sohl-Dickstein et al. 2015, Song and Ermon 2019, Ho
et al. 2020, Nichol and Dhariwal 2021) and graph-based
models (Wang and Aste 2022, Briola and Aste 2023, Briola
et al. 2023b, Wang et al. 2023) in the application domain
considered in this paper.
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Appendices

Appendix 1. Information richness ratio

An example of a derived microstructural property is the stocks’
‘information richness’ (IR) ratio. This measure was introduced by
Kolm et al. (2023), and is defined as the logarithm of the ratio of the
total number of LOB’s updates to price changes (i.e. events occurring
at the best levels of the LOB).

As one can notice from table A1, where we report for for each
stock (belonging to one of the three tick size classes) the total number
of LOB updates, the total number of price changes and the associated
‘information-richness’ (IR) ratio, an evident clustering behavior is
detectable based on the stocks’ tick-size.

As expected from results of analyses in section 6, small-tick
stocks, inherently characterized by a lower number of updates, are
exposed to a less granular and information-poor price discovery. In
this case, the maximum IR value (i.e. 2.24) is reached by GOOG

during 2018, while the minimum IR value (i.e. 1.38) is reached
by CHTR in 2019. Medium-tick stocks are instead characterized
by higher IR values with a maximum value of 2.72 achieved by
AAPL in 2017 and a minimum value of 1.76 for ABBV in 2018.
It is worth noting that, differently from previous analyses, a clear
separation between AAPL and the other two stocks is not evident.
Lastly, large-tick stocks are characterized by higher values of IR and,
consequently, by a more granular and information-rich price discov-
ery. The maximum realization (i.e. 5.16) is detected for BAC during
2017, while the minimum realization (i.e. 3.36) is detected for VZ
during 2018.

The analysis of the stocks’ ‘information richness’ needs further
discussion. Indeed, in the original paper by Kolm et al. (2023), the
authors claim it is a measure for stocks’ predictability; this is only
partially true. As we empirically show here, there is a direct map-
ping between the ‘information-richness’ of a stock and its tick-size;
consequently, the tick-size itself could be used as a proxy measure of
a stock’s predictability.

Table A1. In this Table, for each stock, we report the total number of LOB updates, the total number of price changes and the associated
‘information-richness’ (IR) ratio.

2017 2018 2019

LOB Price IR LOB Price IR LOB Price IR
Ticker Updates Changes Updates Changes Updates Changes

CHTR 1.25e + 07 2.89e + 06 1.46 1.84e + 07 4.12e + 06 1.49 1.52e + 07 3.84e + 06 1.38
GOOG 3.39e + 07 5.23e + 06 1.87 1.37e + 08 1.47e + 07 2.24 1.10e + 08 1.27e + 07 2.16
GS 1.84e + 07 3.97e + 06 1.54 3.55e + 07 6.69e + 06 1.67 2.79e + 07 5.50e + 06 1.62
IBM 2.35e + 07 2.84e + 06 2.11 4.10e + 07 6.17e + 06 1.89 4.18e + 07 5.13e + 06 2.10
MCD 2.44e + 07 2.70e + 06 2.20 3.48e + 07 6.09e + 06 1.74 2.69e + 07 4.19e + 06 1.86
NVDA 7.31e + 07 1.26e + 07 1.76 9.05e + 07 2.16e + 07 1.43 8.37e + 07 1.62e + 07 1.64

AAPL 1.91e + 08 1.25e + 07 2.72 2.22e + 08 2.88e + 07 2.04 2.30e + 08 2.47e + 07 2.23
ABBV 3.53e + 07 3.38e + 06 2.35 3.40e + 07 5.85e + 06 1.76 5.03e + 07 4.54e + 06 2.40
PM 3.40e + 07 3.66e + 06 2.23 3.88e + 07 4.48e + 06 2.16 3.96e + 07 3.48e + 06 2.43

BAC 9.58e + 07 5.91e + 05 5.09 1.62e + 08 1.26e + 06 4.85 1.23e + 08 7.06e + 05 5.16
CSCO 6.76e + 07 4.29e + 05 5.06 1.69e + 08 2.59e + 06 4.18 1.42e + 08 1.80e + 06 4.37
KO 3.71e + 07 4.59e + 05 4.39 6.93e + 07 1.53e + 06 3.82 7.27e + 07 1.13e + 06 4.17
ORCL 4.80e + 07 9.23e + 05 3.95 1.11e + 08 2.86e + 06 3.66 1.03e + 08 1.96e + 06 3.96
PFE 4.40e + 07 5.13e + 05 4.45 9.68e + 07 1.84e + 06 3.96 9.70e + 07 1.18e + 06 4.41
VZ 4.84e + 07 1.18e + 06 3.71 9.16e + 07 3.19e + 06 3.36 9.24e + 07 1.81e + 06 3.93



Deep limit order book forecasting 27

Appendix 2. Statistical significance of traditional machine learning metrics

Table A2. DeepLOB model’s year-wise Matthews Correlation Coefficient (MCC) at H10 for different confidence levels (i.e. probability
thresholds). Statistical significance obtained through a parametric t-test is represented through asterisks. p-values > 0.05 are not marked.
p-values < 0.001 are marked as ∗∗∗. 0.001 ≤ p-values < 0.01 are marked as ∗∗. 0.01 ≤ p-values < 0.05 are marked as ∗. The ‘/’ symbol is

used when applying a probability thresholds leads to the absence of any remaining forecast.

H10

Ticker Year 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CHTR 2017 7.60e − 02∗∗∗ 7.97e − 02∗∗∗ 8.75e − 02∗∗∗ 9.32e − 02∗∗∗ −1.88e − 02 / /
2018 1.07e − 01∗∗∗ 1.13e − 01∗∗∗ 2.13e − 01∗∗∗ 1.48e − 01∗∗∗ 0.00e + 00 0.00e + 00 /
2019 1.05e − 01∗∗∗ 1.26e − 01∗∗∗ 1.65e − 01∗∗∗ 2.30e − 01∗∗∗ 1.73e − 01∗∗∗ / /

GOOG 2017 1.40e − 01∗∗∗ 1.62e − 01∗∗∗ 2.46e − 01∗∗∗ 3.30e − 01∗∗∗ 5.53e − 01∗∗∗ / /
2018 2.42e − 01∗∗∗ 2.66e − 01∗∗∗ 3.43e − 01∗∗∗ 2.52e − 01∗∗∗ 9.73e − 02∗∗∗ 0.00e + 00 /
2019 2.01e − 01∗∗∗ 2.28e − 01∗∗∗ 3.06e − 01∗∗∗ 3.69e − 01∗∗∗ 1.05e − 01∗∗∗ 0.00e + 00 /

GS 2017 1.87e − 01∗∗∗ 2.13e − 01∗∗∗ 3.17e − 01∗∗∗ 3.52e − 01∗∗∗ 1.24e − 02 0.00e + 00 /
2018 5.80e − 02∗∗∗ 6.25e − 02∗∗∗ 1.31e − 01∗∗∗ 2.22e − 01∗∗∗ / / /
2019 5.13e − 02∗∗∗ 4.89e − 02∗∗∗ 8.72e − 03∗∗∗ 4.34e − 03 0.00e + 00 / /

IBM 2017 1.17e − 01∗∗∗ 1.38e − 01∗∗∗ 1.81e − 01∗∗∗ 3.51e − 02∗∗ 0.00e + 00 / /
2018 9.31e − 02∗∗∗ 9.72e − 02∗∗∗ 1.36e − 01∗∗∗ 1.97e − 01∗∗∗ 2.53e − 01∗∗∗ 2.61e − 01∗∗∗ /
2019 1.25e − 01∗∗∗ 1.64e − 01∗∗∗ 2.39e − 01∗∗∗ 1.96e − 01∗∗∗ 7.88e − 02∗∗∗ −3.32e − 02 /

MCD 2017 1.98e − 01∗∗∗ 2.16e − 01∗∗∗ 2.97e − 01∗∗∗ 4.12e − 01∗∗∗ 4.74e − 01∗∗∗ 5.85e01∗∗∗ /
2018 7.05e − 02∗∗∗ 9.29e − 02∗∗∗ 1.60e − 01∗∗∗ 1.30e − 01∗∗∗ 1.18e − 01∗∗ / /
2019 8.84e − 02∗∗∗ 1.04e − 01∗∗∗ 1.54e − 01∗∗∗ 1.27e − 01∗∗ / / /

NVDA 2017 2.40e − 02∗∗∗ 2.34e − 02∗∗∗ 2.95e − 02∗∗∗ 3.05e − 02∗∗∗ 1.54e − 01∗∗∗ 6.14e − 02 /
2018 1.16e − 01∗∗∗ 1.20e − 01∗∗∗ 2.33e − 01∗∗∗ 3.98e − 01∗∗∗ 3.83e − 01∗∗∗ / /
2019 1.08e − 01∗∗∗ 1.36e − 01∗∗∗ 2.18e − 01∗∗∗ 2.86e − 01∗∗∗ 2.44e − 01∗∗∗ 1.73e − 01∗∗∗ 0.00e + 00

AAPL 2017 2.80e − 01∗∗∗ 2.88e − 01∗∗∗ 3.30e − 01∗∗∗ 4.10e − 01∗∗∗ 5.07e − 01∗∗∗ 6.14e − 01∗∗∗ 0.00e + 00
2018 5.92e − 02∗∗∗ 7.34e − 02∗∗∗ 1.35e − 01∗∗∗ 2.20e − 01∗∗∗ 1.59e − 01∗∗∗ 1.75e − 02 0.00e + 00
2019 1.82e − 01∗∗∗ 1.93e − 01∗∗∗ 2.59e − 01∗∗∗ 3.28e − 01∗∗∗ 3.87e − 01∗∗∗ 1.41e − 01∗∗∗ 0.00e + 00

ABBV 2017 1.66e − 01∗∗∗ 1.74e − 01∗∗∗ 2.66e − 01∗∗∗ 3.11e − 01∗∗∗ 3.40e − 01∗∗∗ 3.64e − 01∗∗∗ 6.90e − 02∗∗∗
2018 8.02e − 02∗∗∗ 9.28e − 02∗∗∗ 1.84e − 01∗∗∗ 2.12e − 01∗∗∗ 1.56e − 01∗∗ / /
2019 1.34e − 01∗∗∗ 1.47e − 01∗∗∗ 2.16e − 01∗∗∗ 2.94e − 01∗∗∗ 3.48e − 01∗∗∗ 2.40e − 01∗∗∗ /

PM 2017 1.60e − 01∗∗∗ 1.78e − 01∗∗∗ 2.61e − 01∗∗∗ 3.71e − 01∗∗∗ 4.34e − 01∗∗∗ 4.80e − 01∗∗∗ /
2018 7.73e − 02∗∗∗ 8.37e − 02∗∗∗ 1.10e − 01∗∗∗ 1.14e − 01∗∗∗ 9.59e − 02∗∗∗ 3.90e − 01∗∗ /
2019 1.19e − 01∗∗∗ 1.27e − 01∗∗∗ 1.65e − 01∗∗∗ 2.18e − 01∗∗∗ 2.61e − 01∗∗∗ 3.57e − 01∗∗∗ /

BAC 2017 2.85e − 01∗∗∗ 2.86e − 01∗∗∗ 2.93e − 01∗∗∗ 3.30e − 01∗∗∗ 3.78e − 01∗∗∗ 4.38e − 01∗∗∗ 4.53e − 01∗∗∗
2018 3.33e − 01∗∗∗ 3.33e − 01∗∗∗ 3.37e − 01∗∗∗ 3.65e − 01∗∗∗ 3.93e − 01∗∗∗ 4.26e − 01∗∗∗ 4.65e − 01∗∗∗
2019 2.86e − 01∗∗∗ 2.86e − 01∗∗∗ 2.88e − 01∗∗∗ 3.17e − 01∗∗∗ 3.46e − 01∗∗∗ 3.64e − 01∗∗∗ 3.48e − 01∗∗∗

CSCO 2017 2.51e − 01∗∗∗ 2.51e − 01∗∗∗ 2.52e − 01∗∗∗ 2.78e − 01∗∗∗ 2.92e − 01∗∗∗ 2.90e − 01∗∗∗ 2.83e − 01∗∗∗
2018 2.96e − 01∗∗∗ 2.97e − 01∗∗∗ 3.04e − 01∗∗∗ 3.32e − 01∗∗∗ 3.61e − 01∗∗∗ 3.96e − 01∗∗∗ 4.54e − 01∗∗∗
2019 3.52e − 01∗∗∗ 3.54e − 01∗∗∗ 3.66e − 01∗∗∗ 4.07e − 01∗∗∗ 4.47e − 01∗∗∗ 4.79e − 01∗∗∗ 3.60e − 01∗∗∗

KO 2017 2.37e − 01∗∗∗ 2.37e − 01∗∗∗ 2.42e − 01∗∗∗ 2.68e − 01∗∗∗ 2.98e − 01∗∗∗ 3.42e − 01∗∗∗ 3.83e − 01∗∗∗
2018 2.93e − 01∗∗∗ 2.94e − 01∗∗∗ 2.99e − 01∗∗∗ 3.16e − 01∗∗∗ 3.29e − 01∗∗∗ 3.28e − 01∗∗∗ 2.55e − 01∗∗∗
2019 3.10e − 01∗∗∗ 3.11e − 01∗∗∗ 3.20e − 01∗∗∗ 3.55e − 01∗∗∗ 3.86e − 01∗∗∗ 4.04e − 01∗∗∗ 1.73e − 01∗∗∗

ORCL 2017 3.18e − 01∗∗∗ 3.19e − 01∗∗∗ 3.23e − 01∗∗∗ 3.72e − 01∗∗∗ 4.29e − 01∗∗∗ 4.74e − 01∗∗∗ 4.73e − 01∗∗∗
2018 3.23e − 01∗∗∗ 3.24e − 01∗∗∗ 3.30e − 01∗∗∗ 3.58e − 01∗∗∗ 3.72e − 01∗∗∗ 3.32e − 01∗∗∗ 1.18e − 01∗∗∗
2019 3.10e − 01∗∗∗ 3.11e − 01∗∗∗ 3.20e − 01∗∗∗ 3.49e − 01∗∗∗ 3.79e − 01∗∗∗ 4.23e − 01∗∗∗ 5.15e − 01∗∗∗

PFE 2017 2.52e − 01∗∗∗ 2.55e − 01∗∗∗ 2.67e − 01∗∗∗ 3.10e − 01∗∗∗ 3.69e − 01∗∗∗ 4.09e − 01∗∗∗ 3.29e − 01∗∗∗
2018 2.72e − 01∗∗∗ 2.73e − 01∗∗∗ 2.80e − 01∗∗∗ 2.99e − 01∗∗∗ 3.13e − 01∗∗∗ 3.07e − 01∗∗∗ 1.53e − 01∗∗∗
2019 2.86e − 01∗∗∗ 2.87e − 01∗∗∗ 2.92e − 01∗∗∗ 3.21e − 01∗∗∗ 3.53e − 01∗∗∗ 3.96e − 01∗∗∗ 4.32e − 01∗∗∗

VZ 2017 3.13e − 01∗∗∗ 3.16e − 01∗∗∗ 3.23e − 01∗∗∗ 3.63e − 01∗∗∗ 4.08e − 01∗∗∗ 4.52e − 01∗∗∗ 3.85e − 01∗∗∗
2018 2.42e − 01∗∗∗ 2.45e − 01∗∗∗ 2.61e − 01∗∗∗ 2.88e − 01∗∗∗ 3.06e − 01∗∗∗ 2.97e − 01∗∗∗ 1.81e − 01∗∗∗
2019 2.86e − 01∗∗∗ 2.87e − 01∗∗∗ 2.88e − 01∗∗∗ 2.99e − 01∗∗∗ 2.97e − 01∗∗∗ 2.80e − 01∗∗∗ 1.92e − 01∗∗∗
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Table A3. DeepLOB model’s year-wise Matthews Correlation Coefficient (MCC) at H50 for different confidence levels (i.e. probability
thresholds). Statistical significance obtained through a parametric t-test is represented through asterisks. p-values > 0.05 are not marked.
p-values < 0.001 are marked as ∗∗∗. 0.001 ≤ p-values < 0.01 are marked as ∗∗. 0.01 ≤ p-values < 0.05 are marked as ∗. The ‘/’ symbol is

used when the application of a probability thresholds implies the absence of any remaining forecast.

H50

Ticker Year 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CHTR 2017 1.15e − 01∗∗∗ 1.22e − 01∗∗∗ 1.40e − 01∗∗∗ 1.56e − 01∗∗∗ 1.32e − 01∗∗∗ 0.00e + 00 0.00e + 00
2018 4.04e − 02∗∗∗ 4.42e − 02∗∗∗ 6.39e − 02∗∗∗ 9.08e − 02∗∗∗ 5.37e − 02∗∗∗ 0.00e + 00 0.00e + 00
2019 1.69e − 02∗∗∗ 1.90e − 02∗∗∗ 2.87e − 02∗∗∗ 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00

GOOG 2017 2.02e − 02∗∗∗ 2.36e − 02∗∗∗ 4.45e − 02∗∗∗ 6.33e − 02∗∗∗ 4.95e − 02∗∗∗ 3.74e − 02 0.00e + 00
2018 1.34e − 01∗∗∗ 1.44e − 01∗∗∗ 1.48e − 01∗∗∗ 1.86e − 01∗∗∗ 0.00e + 00 / /
2019 1.16e − 01∗∗∗ 1.32e − 01∗∗∗ 2.15e − 01∗∗∗ 0.00e + 00 / / /

GS 2017 6.44e − 02∗∗∗ 7.38e − 02∗∗∗ 8.36e − 02∗∗∗ 3.82e − 02∗∗∗ 5.81e − 02∗∗∗ 0.00e + 00 0.00e + 00
2018 1.80e − 02∗∗∗ 2.72e − 02∗∗∗ 0.00e + 00 0.00e + 00 0.00e + 00 / /
2019 −2.80e − 04 4.74e − 04 −8.48e − 04 −2.21e − 01 / / /

IBM 2017 3.47e − 02∗∗∗ 3.50e − 02∗∗∗ 3.54e − 02∗∗∗ 3.16e − 02∗∗∗ 0.00e + 00 0.00e + 00 /
2018 4.73e − 02∗∗∗ 4.71e − 02∗∗∗ 1.32e − 02∗∗∗ 2.50e − 03∗∗ 1.17e − 02 / /
2019 1.72e − 02∗∗∗ 3.89e − 02∗∗∗ 0.00e + 00 / / / /

MCD 2017 9.19e − 02∗∗∗ 1.03e − 01∗∗∗ 1.47e − 01∗∗∗ 1.57e − 01∗∗∗ 1.57e − 01∗∗∗ / /
2018 2.98e − 02∗∗∗ 3.95e − 02∗∗∗ 9.07e − 02∗∗∗ 0.00e + 00 / / /
2019 4.90e − 03∗∗∗ 3.75e − 03∗∗∗ 3.24e − 03∗∗ 4.72e − 02 0.00e + 00 0.00e + 00 /

NVDA 2017 −1.64e − 03∗∗ −9.20e − 04 0.00e + 00 0.00e + 00 / / /
2018 1.16e − 02∗∗∗ 1.87e − 02∗∗∗ 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 /
2019 9.21e − 03∗∗∗ 1.39e − 03 0.00e + 00 / / / /

AAPL 2017 1.97e − 01∗∗∗ 2.28e − 01∗∗∗ 3.15e − 01∗∗∗ 4.16e − 01∗∗∗ 5.09e − 01∗∗∗ 6.09e − 01∗∗∗ /
2018 1.05e − 02∗∗∗ 1.31e − 02∗∗∗ / / / / /
2019 1.12e − 01∗∗∗ 1.18e − 01∗∗∗ 2.34e − 01∗∗∗ 3.65e − 01∗∗∗ 7.96e − 02∗∗∗ 0.00e + 00 /

ABBV 2017 1.22e − 01∗∗∗ 1.24e − 01∗∗∗ 1.75e − 01∗∗∗ 3.01e − 01∗∗∗ 4.69e − 01∗∗∗ 6.05e − 01∗∗∗ 7.18e − 01∗∗∗
2018 1.06e − 02∗∗∗ −2.10e − 03 0.00e + 00 0.00e + 00 / / /
2019 9.77e − 02∗∗∗ 1.02e − 01∗∗∗ 1.89e − 01∗∗∗ 1.40e − 01∗∗∗ 1.10e − 01∗∗∗ 0.00e + 00 /

PM 2017 8.66e − 02∗∗∗ 8.90e − 02∗∗∗ 1.94e − 01∗∗∗ 2.57e − 01∗∗∗ 0.00e + 00 / /
2018 5.71e − 02∗∗∗ 6.06e − 02∗∗∗ 9.23e − 02∗∗∗ 3.85e − 02∗∗∗ 3.81e − 02∗∗ / /
2019 7.08e − 02∗∗∗ 8.18e − 02∗∗∗ 1.24e − 01∗∗∗ 7.35e − 02∗∗∗ / / /

BAC 2017 4.53e − 01∗∗∗ 4.53e − 01∗∗∗ 4.59e − 01∗∗∗ 5.28e − 01∗∗∗ 6.16e − 01∗∗∗ 6.98e − 01∗∗∗ 7.80e − 01∗∗∗
2018 4.57e − 01∗∗∗ 4.57e − 01∗∗∗ 4.59e − 01∗∗∗ 4.94e − 01∗∗∗ 5.25e − 01∗∗∗ 5.54e − 01∗∗∗ 5.90e − 01∗∗∗
2019 4.03e − 01∗∗∗ 4.05e − 01∗∗∗ 4.18e − 01∗∗∗ 4.94e − 01∗∗∗ 5.81e − 01∗∗∗ 6.75e − 01∗∗∗ 7.77e − 01∗∗∗

CSCO 2017 3.86e − 01∗∗∗ 3.86e − 01∗∗∗ 3.87e − 01∗∗∗ 4.16e − 01∗∗∗ 4.53e − 01∗∗∗ 5.22e − 01∗∗∗ 6.57e − 01∗∗∗
2018 3.58e − 01∗∗∗ 3.61e − 01∗∗∗ 3.85e − 01∗∗∗ 4.32e − 01∗∗∗ 4.86e − 01∗∗∗ 5.52e − 01∗∗∗ 6.49e − 01∗∗∗
2019 3.69e − 01∗∗∗ 3.75e − 01∗∗∗ 4.12e − 01∗∗∗ 5.00e − 01∗∗∗ 6.07e − 01∗∗∗ 6.89e − 01∗∗∗ 5.83e − 01∗∗∗

KO 2017 4.21e − 01∗∗∗ 4.22e − 01∗∗∗ 4.34e − 01∗∗∗ 5.11e − 01∗∗∗ 5.98e − 01∗∗∗ 6.94e − 01∗∗∗ 7.68e − 01∗∗∗
2018 2.94e − 01∗∗∗ 2.97e − 01∗∗∗ 3.13e − 01∗∗∗ 3.52e − 01∗∗∗ 3.93e − 01∗∗∗ 4.49e − 01∗∗∗ 5.60e − 01∗∗∗
2019 3.18e − 01∗∗∗ 3.21e − 01∗∗∗ 3.37e − 01∗∗∗ 3.91e − 01∗∗∗ 4.58e − 01∗∗∗ 5.50e − 01∗∗∗ 6.93e − 01∗∗∗

ORCL 2017 4.04e − 01∗∗∗ 4.07e − 01∗∗∗ 4.34e − 01∗∗∗ 5.10e − 01∗∗∗ 6.00e − 01∗∗∗ 6.99e − 01∗∗∗ 7.92e − 01∗∗∗
2018 3.15e − 01∗∗∗ 3.16e − 01∗∗∗ 3.29e − 01∗∗∗ 3.80e − 01∗∗∗ 4.67e − 01∗∗∗ 6.04e − 01∗∗∗ 6.40e − 01∗∗∗
2019 3.17e − 01∗∗∗ 3.19e − 01∗∗∗ 3.39e − 01∗∗∗ 4.02e − 01∗∗∗ 4.77e − 01∗∗∗ 5.28e − 01∗∗∗ 5.10e − 01∗∗∗

PFE 2017 4.12e − 01∗∗∗ 4.13e − 01∗∗∗ 4.26e − 01∗∗∗ 5.09e − 01∗∗∗ 6.21e − 01∗∗∗ 7.50e − 01∗∗∗ 8.44e − 01∗∗∗
2018 3.07e − 01∗∗∗ 3.10e − 01∗∗∗ 3.40e − 01∗∗∗ 4.24e − 01∗∗∗ 5.11e − 01∗∗∗ 5.82e − 01∗∗∗ 6.46e − 01∗∗∗
2019 4.13e − 01∗∗∗ 4.17e − 01∗∗∗ 4.42e − 01∗∗∗ 5.38e − 01∗∗∗ 6.51e − 01∗∗∗ 7.56e − 01∗∗∗ 7.33e − 01∗∗∗

VZ 2017 3.27e − 01∗∗∗ 3.33e − 01∗∗∗ 3.71e − 01∗∗∗ 4.26e − 01∗∗∗ 4.78e − 01∗∗∗ 5.36e − 01∗∗∗ 6.30e − 01∗∗∗
2018 2.06e − 01∗∗∗ 2.11e − 01∗∗∗ 2.46e − 01∗∗∗ 3.00e − 01∗∗∗ 3.68e − 01∗∗∗ 4.76e − 01∗∗∗ 4.48e − 01∗∗∗
2019 3.07e − 01∗∗∗ 3.09e − 01∗∗∗ 3.32e − 01∗∗∗ 3.90e − 01∗∗∗ 4.59e − 01∗∗∗ 5.39e − 01∗∗∗ 5.83e − 01∗∗∗
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Table A4. DeepLOB model’s year-wise Matthews Correlation Coefficient (MCC) at H100 for different confidence levels (i.e. probability
thresholds). Statistical significance obtained through a parametric t-test is represented through asterisks. p-values > 0.05 are not marked.
p-values < 0.001 are marked as ∗∗∗. 0.001 ≤ p-values < 0.01 are marked as ∗∗. 0.01 ≤ p-values < 0.05 are marked as ∗. The ‘/’ symbol is

used when the application of a probability thresholds implies the absence of any remaining forecast.

H100

Ticker Year 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CHTR 2017 4.66e − 02∗∗∗ 7.13e − 02∗∗∗ 7.76e − 02∗∗∗ 0.00e + 00 0.00e + 00 0.00e + 00 /
2018 3.08e − 02∗∗∗ 3.25e − 02∗∗∗ 4.73e − 02∗∗∗ 7.03e − 02∗∗∗ 7.49e − 02∗∗∗ 0.00e + 00 0.00e + 00
2019 3.58e − 03∗∗∗ −1.57e − 03 7.23e − 03 0.00e + 00 0.00e + 00 0.00e + 00 /

GOOG 2017 1.25e − 02∗∗∗ 1.28e − 02∗∗∗ 8.49e − 03∗∗∗ 3.16e − 03 −5.84e − 03∗∗ −3.88e − 02∗∗∗ 0.00e + 00
2018 7.10e − 03∗∗∗ 6.52e − 03∗∗∗ 0.00e + 00 0.00e + 00 / / /
2019 2.39e − 02∗∗∗ 2.20e − 02∗∗∗ 1.56e − 02∗∗∗ 0.00e + 00 0.00e + 00 0.00e + 00 /

GS 2017 1.43e − 02∗∗∗ 1.42e − 02∗∗∗ 3.26e − 02∗∗∗ 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00
2018 1.48e − 03∗∗ 8.64e − 03∗∗∗ 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 /
2019 −6.92e − 03∗∗∗ −7.32e − 03∗∗∗ 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 /

IBM 2017 3.78e − 03∗∗∗ 4.26e − 03∗∗∗ 1.81e − 02∗∗∗ 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00
2018 4.20e − 03∗∗∗ 4.35e − 02∗∗∗ −7.08e − 03 0.00e + 00 / / /
2019 1.46e − 03 1.25e − 02∗∗∗ 1.19e − 02∗∗∗ 0.00e + 00 0.00e + 00 / /

MCD 2017 2.85e − 02∗∗∗ 3.70e − 02∗∗∗ 9.68e − 02∗∗∗ 1.03e − 02 0.00e + 00 / /
2018 8.15e − 03∗∗∗ 9.12e − 03∗∗∗ 6.63e − 03 0.00e + 00 0.00e + 00 0.00e + 00 /
2019 1.81e − 03∗∗ 6.88e − 03∗∗∗ 5.37e − 03 0.00e + 00 0.00e + 00 / /

NVDA 2017 4.80e − 03∗∗∗ 2.14e − 03∗∗ 0.00e + 00 / / / /
2018 4.84e − 03∗∗∗ 1.42e − 03 7.53e − 03 0.00e + 00 / / /
2019 3.98e − 03∗∗∗ −3.50e − 03∗∗∗ 0.00e + 00 / / / /

AAPL 2017 1.36e − 01∗∗∗ 1.84e − 01∗∗∗ 3.21e − 01∗∗∗ 9.54e − 02∗∗∗ 0.00e + 00 / /
2018 7.56e − 03∗∗∗ 1.17e − 02∗∗∗ / / / / /
2019 6.38e − 02∗∗∗ 6.84e − 02∗∗∗ 1.67e − 01∗∗∗ 0.00e + 00 / / /

ABBV 2017 7.07e − 02∗∗∗ 7.59e − 02∗∗∗ 1.81e − 01∗∗∗ 3.53e − 01∗∗∗ 4.59e − 01∗∗∗ 0.00e + 00 /
2018 9.28e − 03∗∗∗ 1.38e − 02∗∗∗ 7.35e − 03 0.00e + 00 0.00e + 00 / /
2019 1.50e − 02∗∗∗ 2.29e − 02∗∗∗ 4.74e − 02∗∗∗ / / / /

PM 2017 1.94e − 02∗∗∗ 1.88e − 02∗∗∗ 3.29e − 02∗∗∗ 0.00e + 00 0.00e + 00 / /
2018 3.15e − 03∗∗∗ 2.49e − 03∗∗∗ 3.40e − 03 0.00e + 00 0.00e + 00 0.00e + 00 /
2019 1.32e − 03 8.93e − 04 7.86e − 02∗∗∗ 0.00e + 00 / / /

BAC 2017 4.48e − 01∗∗∗ 4.48e − 01∗∗∗ 4.66e − 01∗∗∗ 5.60e − 01∗∗∗ 6.74e − 01∗∗∗ 8.04e − 01∗∗∗ 8.83e − 01∗∗∗
2018 3.87e − 01∗∗∗ 3.87e − 01∗∗∗ 3.91e − 01∗∗∗ 4.27e − 01∗∗∗ 4.64e − 01∗∗∗ 5.10e − 01∗∗∗ 5.99e − 01∗∗∗
2019 2.62e − 01∗∗∗ 2.63e − 01∗∗∗ 2.69e − 01∗∗∗ 2.90e − 01∗∗∗ 3.27e − 01∗∗∗ 3.90e − 01∗∗∗ 5.10e − 01∗∗∗

CSCO 2017 3.30e − 01∗∗∗ 3.30e − 01∗∗∗ 3.33e − 01∗∗∗ 3.94e − 01∗∗∗ 4.66e − 01∗∗∗ 5.89e − 01∗∗∗ 8.06e − 01∗∗∗
2018 2.30e − 01∗∗∗ 2.36e − 01∗∗∗ 2.66e − 01∗∗∗ 3.05e − 01∗∗∗ 3.52e − 01∗∗∗ 4.29e − 01∗∗∗ 5.43e − 01∗∗∗
2019 2.78e − 01∗∗∗ 2.95e − 01∗∗∗ 3.65e − 01∗∗∗ 4.36e − 01∗∗∗ 4.68e − 01∗∗∗ 5.07e − 01∗∗∗ 2.49e − 01∗∗∗

KO 2017 3.36e − 01∗∗∗ 3.38e − 01∗∗∗ 3.53e − 01∗∗∗ 4.00e − 01∗∗∗ 4.58e − 01∗∗∗ 5.38e − 01∗∗∗ 6.44e − 01∗∗∗
2018 2.25e − 01∗∗∗ 2.31e − 01∗∗∗ 2.60e − 01∗∗∗ 3.06e − 01∗∗∗ 3.56e − 01∗∗∗ 4.13e − 01∗∗∗ 4.97e − 01∗∗∗
2019 2.24e − 01∗∗∗ 2.29e − 01∗∗∗ 2.55e − 01∗∗∗ 3.02e − 01∗∗∗ 3.61e − 01∗∗∗ 4.46e − 01∗∗∗ 4.91e − 01∗∗∗

ORCL 2017 3.39e − 01∗∗∗ 3.49e − 01∗∗∗ 4.03e − 01∗∗∗ 4.75e − 01∗∗∗ 5.44e − 01∗∗∗ 6.21e − 01∗∗∗ 6.97e − 01∗∗∗
2018 1.73e − 01∗∗∗ 1.76e − 01∗∗∗ 1.92e − 01∗∗∗ 2.27e − 01∗∗∗ 2.85e − 01∗∗∗ 3.66e − 01∗∗∗ 8.05e − 02∗∗∗
2019 2.38e − 01∗∗∗ 2.48e − 01∗∗∗ 3.01e − 01∗∗∗ 3.55e − 01∗∗∗ 3.94e − 01∗∗∗ 4.86e − 01∗∗∗ /

PFE 2017 3.24e − 01∗∗∗ 3.27e − 01∗∗∗ 3.55e − 01∗∗∗ 4.19e − 01∗∗∗ 4.97e − 01∗∗∗ 6.17e − 01∗∗∗ 7.76e − 01∗∗∗
2018 1.79e − 01∗∗∗ 1.82e − 01∗∗∗ 2.07e − 01∗∗∗ 2.51e − 01∗∗∗ 2.90e − 01∗∗∗ 2.69e − 01∗∗∗ 2.09e − 01∗∗∗
2019 3.32e − 01∗∗∗ 3.39e − 01∗∗∗ 3.77e − 01∗∗∗ 4.47e − 01∗∗∗ 5.21e − 01∗∗∗ 5.55e − 01∗∗∗ 6.62e − 01∗∗∗

VZ 2017 7.78e − 02∗∗∗ 7.80e − 02∗∗∗ 8.10e − 02∗∗∗ 1.06e − 01∗∗∗ 1.47e − 01∗∗∗ 1.82e − 01∗∗∗ 9.13e − 02∗∗∗
2018 1.03e − 01∗∗∗ 1.05e − 01∗∗∗ 1.14e − 01∗∗∗ 1.23e − 01∗∗∗ 1.79e − 01∗∗∗ 3.51e − 01∗∗∗ 3.54e − 01∗∗∗
2019 1.87e − 01∗∗∗ 1.91e − 01∗∗∗ 2.17e − 01∗∗∗ 2.61e − 01∗∗∗ 3.13e − 01∗∗∗ 3.77e − 01∗∗∗ 5.30e − 01∗∗∗
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Appendix 3. Additional analyses using traditional machine learning metrics

Figure A1. DeepLOB model’s average F1 score. Results are organized according to the prediction horizons taken into account (see columns)
and stocks’ tick-size (see rows). Each plot contains three main pieces of information: (i) the model’s performance changes applying different
thresholds on the probabilities associated with each forecast (shown on the bottom of the x-axis); (ii) the average percentage amount of
remaining data after using the threshold (shown on the top of the x-axis); (iii) the performance average pattern and the corresponding standard
deviation (shown through the gray line and shadows). All the average values and the standard deviations are computed by considering stocks
with the same tick-size, spanning the 3-year analysis period.
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Figure A2. DeepLOB model’s average accuracy score. Results are organized according to the prediction horizons taken into account (see
columns) and stocks’ tick-size (see rows). Each plot contains three main pieces of information: (i) the model’s performance changes applying
different thresholds on the probabilities associated with each forecast (shown on the bottom of the x-axis); (ii) the average percentage amount
of remaining data after using the threshold (shown on the top of the x-axis); (iii) the performance average pattern and the corresponding stan-
dard deviation (shown through the gray line and shadows). All the average values and the standard deviations are computed by considering
stocks with the same tick-size, spanning the 3-year analysis period.
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