

Journal Pre-proof

Epidemiology, clinical features, and visual outcomes after intraocular foreign body removal: an IRIS® Registry (Intelligent Research in Sight) Analysis

Ariel Yuhan Ong, MBChB, FRCOphth, Eric A. Goldberg, MS, William C. Kearney, MS, Connor Ross, BS, Caroline Awh, MD, David A. Merle, MD, Siegfried K. Wagner, FRCOphth, PhD, Robbert R. Struyven, MD, Pearse A. Keane, MD, FRCOphth, Tobias Elze, PhD, Joan W. Miller, MD, Alice Lorch, MD, MPH, Lucia Sobrin, MD, MPH, Ines Lains, MD, PhD, the IRIS® Registry Analytic Center Consortium

PII: S2468-6530(25)00508-1

DOI: <https://doi.org/10.1016/j.oret.2025.11.002>

Reference: ORET 2117

To appear in: *Ophthalmology Retina*

Received Date: 16 September 2025

Revised Date: 28 October 2025

Accepted Date: 10 November 2025

Please cite this article as: Ong A.Y., Goldberg E.A, Kearney W.C, Ross C., Awh C., Merle D.A, Wagner S.K, Struyven R.R, Keane P.A, Elze T., Miller J.W, Lorch A., Sobrin L., Lains I. & the IRIS® Registry Analytic Center Consortium, Epidemiology, clinical features, and visual outcomes after intraocular foreign body removal: an IRIS® Registry (Intelligent Research in Sight) Analysis, *Ophthalmology Retina* (2025), doi: <https://doi.org/10.1016/j.oret.2025.11.002>.

This is a PDF of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability. This version will undergo additional copyediting, typesetting and review before it is published in its final form. As such, this version is no longer the Accepted Manuscript, but it is not yet the definitive Version of Record; we are providing this early version to give early visibility of the article. Please note that Elsevier's sharing policy for the Published Journal Article applies to this version, see: <https://www.elsevier.com/about/policies-and-standards/sharing#4-published-journal-article>. Please also note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2025 Published by Elsevier Inc. on behalf of American Academy of Ophthalmology

1 **Epidemiology, clinical features, and visual outcomes after intraocular foreign body
2 removal: an IRIS® Registry (Intelligent Research in Sight) Analysis**

3 Running head: IRIS Analysis of IOFB visual outcomes

4 Ariel Yuhan Ong, MBChB, FRCOphth;^{1,2,3} Eric A Goldberg, MS;⁴ William C Kearney,
5 MS;⁴ Connor Ross, BS;⁴ Caroline Awh, MD;⁴ David A Merle, MD;^{1,2,3} Siegfried K Wagner,
6 FRCOphth, PhD;^{1,2,3} Robbert R Struyven, MD;^{1,4} Pearse A Keane, MD, FRCOphth;^{1,2,3}
7 Tobias Elze, PhD;⁴ Joan W Miller, MD;⁴ Alice Lorch, MD, MPH;⁴ Lucia Sobrin, MD,
8 MPH;⁴ Ines Lains, MD, PhD;⁴ and the IRIS® Registry Analytic Center Consortium

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

18 **Corresponding author:**

19 Ines Lains

20 Massachusetts Eye and Ear

21 Department of Ophthalmology

22 Harvard Medical School

23 Boston, Massachusetts USA

24

25 **Financial support:** This study was funded by the Massachusetts Eye and Ear Clinical
26 Data Science Fund.

27

28 **Conflicts of Interest:** None relevant to this work. AYO, EAG, WCK, CR, CA, DAM,
29 SKW, RRS, IL do not have any conflicts to declare. PAK: Cofounder of Cascader Ltd.
30 and has acted as a consultant for Retina Consultants of America, Roche, Boehringer
31 Ingelheim, and Bitfount, and is an equity owner in Big Picture Medical. He has received
32 speaker fees from Zeiss, Thea, Apellis, and Roche. He has received travel support from
33 Bayer and Roche. He has attended advisory boards for Topcon, Bayer, Boehringer-
34 Ingelheim, and Roche. TE: Grant support – Genentech Inc. JWM: Grant support –
35 National Eye Institute, Massachusetts Eye and Ear Clinical Data Science Fund, Lowy
36 Medical Research Institute; Consultant – Genentech/Roche, Heidelberg Engineering,
37 KalVista Pharmaceuticals, ONL Therapeutics, Sunovion; Research support – Aptinyx,
38 Inc., Heidelberg Engineering, KalVista Pharmaceuticals, ONL Therapeutics, Sunovion,
39 Valeant Pharmaceuticals/Mass. Eye and Ear; Patents – ONL Therapeutics, Valeant
40 Pharmaceuticals/Mass. Eye and Ear; Stock – Aptinyx, Inc. AL: Grant support –
41 Massachusetts Eye and Ear Clinical Data Science Fund.

42

43 **Key Words:** Intraocular foreign body, Outcomes, IRIS Registry, Pars plana vitrectomy,
44 Retinal detachment

45

46 Supplemental material available at <https://www.ophthalmologyretina.org/>.

47 **Abstract**

48 **Purpose:** To describe the epidemiology, clinical features, and visual outcomes following
49 intraocular foreign body (IOFB) removal.

50 **Design:** Retrospective multicenter cohort study utilizing data from the American
51 Academy of Ophthalmology IRIS® Registry (Intelligent Research in Sight).

52 **Subjects:** Eyes that underwent IOFB removal between January 2016 and October 2024.

53 **Methods:** Sociodemographic information, clinical features at presentation, primary
54 surgical procedures and postoperative complications were summarized. Multivariable
55 linear mixed-effects regression models were employed to investigate predictors of visual
56 outcomes up to 18 months post-IOFB removal.

57 **Main outcome measure:** Epidemiology (including annual incidence rates and
58 associated factors) and clinical characteristics; predictors of visual acuity (VA) up to 18
59 months post-IOFB removal.

60 **Results:** A total of 4784 eyes (4684 patients, 70.3% male) with a median age of 55
61 years at presentation (interquartile range 36-70) were identified over the study period.
62 Mean annual incidence was estimated at 2.32 per 100,000 patient-years (95% CI 2.12-
63 2.52) and was independently associated with male sex, race, and rural residence. The
64 most common complications at presentation were retinal detachment (12.5%), cataract
65 (10.5%), vitreous hemorrhage (7.9%), and endophthalmitis (3.9%). Median VA at
66 presentation was 1.24 logMAR (IQR 0.30-2.30). A significant improvement in VA was
67 seen only from month two post-IOFB removal (-0.38 logMAR, 95%CI -0.41 to -0.34), with
68 further minor improvements up to month 18 (-0.59 logMAR, 95%CI -0.69 to -0.48). After
69 adjusting for relevant covariates, Black or African American race and presence of
70 endophthalmitis, retinal detachment or hyphema at baseline were associated with worse
71 visual outcomes. Subgroup analysis of patients with pre-IOFB VA found that
72 improvement was attenuated for people with pre-IOFB VA worse than 1.0 logMAR.

73 **Conclusions:** These findings offer a real-world benchmark for post-IOFB visual
74 trajectories and outcomes, and may support clinicians in prognostication and patient
75 counselling. Further research is needed to investigate the underlying drivers of observed
76 racial disparities to inform equitable care.

77 Open globe injuries (OGI) involving intraocular foreign bodies (IOFB) are ophthalmic
78 emergencies with the potential for severe and lasting visual impairment. Despite their
79 clinical significance, there remains a lack of contemporary, population-level data on the
80 sociodemographic profiles, clinical presentation, and long-term visual outcomes
81 associated with these injuries.

82 Existing literature on the topic is limited in scope. Most published studies to date
83 predominantly focus on OGI. A smaller number of reports on IOFBs mostly comprise
84 small sample sizes and single-center settings, with a dearth of longitudinal follow-up.¹⁻⁹
85 The available literature includes data largely collected from previous decades, which
86 may not fully capture the impact of modern surgical techniques and treatment protocols
87 (including antimicrobial prophylaxis practices), thus limiting their utility for guiding
88 prognosis and clinical management. In addition, while these studies were conducted
89 across a diverse range of countries, robust data from high-income countries are lacking.

90 While sociodemographic factors such as race and ethnicity, income, education, or
91 geographic disparities are increasingly recognized to be associated with health
92 outcomes across surgical and trauma care,¹⁰ how these factors intersect with treatment
93 outcomes has not been as well characterized. Better understanding of these dimensions
94 may be helpful in guiding clinical decision-making and patient counselling, while
95 informing the design of targeted public health initiatives aimed at prevention and
96 management of IOFB-related injuries and improving health equity.

97 This study aimed to address these research gaps using a large multicenter clinical
98 registry to provide a better understanding of contemporary presentation, management
99 and factors influencing visual prognosis in routine clinical practice. In particular, we
100 assessed the 1) epidemiological and sociodemographic characteristics of patients
101 presenting with IOFB injuries requiring surgery in the American Academy of
102 Ophthalmology IRIS® Registry (Intelligent Research in Sight), a large United States (US)-
103 based dataset of over 80 million patients, 2) clinical presentation and procedures
104 performed around the time of presentation, and 3) the long-term visual outcomes
105 following IOFB removal and their predictors.

106

107 **Methods**

108 ***Study design and data source***

109 This was a multicenter retrospective observational cohort study of eyes with IOFBs
110 treated in the US. The study period spanned January 2016 to October 2024. The study
111 utilized data from the IRIS Registry, one of the largest specialty-specific clinical data
112 registries in the world. The IRIS Registry captures structured electronic health record
113 (EHR) data from a broad network of ophthalmology practices encompassing diverse
114 geographic regions, subspecialties, and practice settings across the US. Details of the
115 EHR data extraction process, data fields, and distribution of practices contributing data
116 has been published previously.¹¹ This version of the database was frozen on October 31,
117 2024.

118 The IRIS Registry is a centralized data repository and reporting tool that can be used for
119 research purposes. This does not constitute human subject research because data in the
120 IRIS Registry is de-identified, and the investigator does not have access to study
121 identifiers. The study was exempted from review by the Massachusetts Eye and Ear
122 Institutional Review Board and did not require informed consent due to its retrospective
123 nature and de-identified data source (protocol number 2020P000080). This study
124 adheres to the Declaration of Helsinki.

125 ***Study population***

126 Clinical diagnoses were identified using International Classification of Diseases (ICD)
127 10th Edition and Systematized Nomenclature of Medicine Clinical Terms (SNOMED-CT)
128 codes, while procedures were identified using Current Procedural Terminology (CPT)
129 codes, allowing for consistent classification across institutions and time.

130 *Inclusion criteria:* Eyes with CPT codes for IOFB removal (65235, 65260, 65265) were
131 identified, and the first-ever instance of this code was assigned as the baseline date.

132 *Exclusion criteria:* Eyes with CPT codes for retained lens fragments following cataract
133 surgery, glaucoma procedures (e.g., goniotomy, insertion of aqueous shunt), removal of
134 implanted foreign materials (e.g., removal of aqueous shunt), or revision thereof (e.g.,
135 intraocular lens (IOL) repositioning, aqueous shunt revision) within 3 days of IOFB
136 removal were excluded. This was a conservative approach designed to minimize
137 potential errors from miscoding. The full list of codes used is provided in Supplementary
138 S1 (available at <https://www.ophthalmologyretina.org/>).

139 ***Variables of interest and data handling***

140 Sociodemographic information including age, sex, race and ethnicity, median income,
141 high school graduation percentage, operating practice geographic location, and
142 urban/rural status were extracted. The terminology used for race and ethnicity (e.g.,
143 "Black or African American") followed the IRIS Registry's data collection and reporting
144 conventions, in accordance with best practice.¹² Operating practice geographic location
145 was converted from state to region based on US Census classifications. Median income
146 and high school graduation percentage are based off the 2021 American Community
147 Survey results for the patient's recorded zip code.

148 Clinical characteristics of interest included IOFB extraction method (magnetic, non-
149 magnetic, or not recorded (NR)), whether they had an IOFB in one or both eyes, IOFB
150 location, and contemporaneous ophthalmic procedures recorded at baseline or up to 3
151 days prior to this, to account for the possibility of delayed primary repair and/or
152 sequential IOFB removal. These data fields were extracted and summarized from a list
153 of CPT codes performed at baseline. Complications at presentation were recorded up to
154 3 days prior to IOFB removal for the same reasons and were detailed separately for
155 'early complications' (1-6 days) and 'later complications' (7 days onwards). The list of
156 complications was informed by a comprehensive literature search, and were extracted
157 using pre-specified ICD-10 codes listed in Supplementary Table 2 (available at
158 <https://www.ophthalmologyretina.org/>).

159 Logarithm of the minimum angle of resolution (logMAR) visual acuity (VA) was used for
160 analysis. Any VA recorded in Snellen fractions was converted to the appropriate logMAR
161 equivalent using a standard conversion table for the IRIS Registry (-log(Snellen fraction),
162 log base 10). All VA measures reported utilize best documented distance visual acuity
163 (BDVA) for a given date and eye. Presenting VA was similarly defined as being the mean
164 of BDVA recorded at baseline or up to 3 days prior to this. VA analyses were restricted to
165 the first 18 months post-IOFB removal for maximal robustness. For the small subset of
166 patients with pre-IOFB VA measurements between 1-12 months prior to baseline, eyes
167 were categorized into one of 3 categories based on their mean pre-IOFB BDVA : -0.3 to
168 0.5 logMAR, 0.5 to 1.0 logMAR, and >1.0 logMAR.

169 **Statistical analysis**

170 Categorical data were described with number and proportion, and continuous data with
171 the median and interquartile range (IQR) after confirming a non-normal distribution with
172 the Shapiro-Wilk test and Q-Q plots.

173 Annual incidence rates (per 100,000 patients) were calculated as the number of patients
 174 undergoing IOFB removal in that year divided by the number of patients recorded in the
 175 IRIS Registry over that same period with 95% confidence intervals (CI) estimated via the
 176 Poisson distribution. Incidence calculations were performed at the patient level, with
 177 bilateral same day cases counted as a single case. Comparison of incidence rates over
 178 time was conducted using the exact Poisson test. Multivariable logistic regression
 179 models were employed to estimate the odds ratios (OR) and 95% CI for factors
 180 associated with IOFB removal; this comprised sociodemographic covariates such as
 181 age, sex, race and ethnicity, median income, and urban/rural status.

182 Two linear mixed-effects models were then employed to assess predictors of post-IOFB
 183 VA, incorporating random intercepts at the eye level to account for the non-
 184 independence of repeated measurements. For the small number of bilateral cases, one
 185 eye was selected at random for VA modelling. A random slope for time was included to
 186 model potential heterogeneity in individual VA trajectories over time. Sociodemographic
 187 factors and clinical features present at baseline were included as covariates. The first
 188 model examined the change in post-procedure VA at each month post-IOFB compared
 189 to baseline to map the trajectory of VA change. The second model was a subgroup
 190 analysis of patients with pre-IOFB VA measurements to evaluate the possibility of poorer
 191 visual outcomes secondary to pre-existing ocular comorbidities in this cohort.

192 To test the robustness of the findings under the potential influence of outliers, a
 193 sensitivity analysis was performed using a mixed-effects quantile regression model
 194 focused on the median rather than the mean. This is because the median is less
 195 sensitive to extreme values (e.g., very poor or very good VA) and does not assume
 196 normality of the residuals. All *P*-values for model coefficients were adjusted using the
 197 Benjamini–Hochberg procedure to control the false discovery rate (FDR) across multiple
 198 comparisons.

199 Data analysis was performed using R version 4.4.2 (R Core Team, 2024). Predictors
 200 were considered statistically significant at a level of *P*<0.05.

201 **Results**

202 ***Epidemiology***

203 A total of 4784 eyes (4684 patients) met the criteria for inclusion within the study period.
 204 The mean annual incidence was 2.28 (95% CI 2.09-2.49) per 100,000 patient-years.
 205 There was a small, gradual decrease in annual incidence from 2017 to 2023 (from 2.84

206 per 100,000 patient-years in 2017 to 1.95 in 2023, $P < 0.001$). Although this trend
 207 continues into 2024, data for the year are incomplete (up to October 2024) (Table 1).

208 Table 2 summarizes the sociodemographic characteristics of the overall study cohort.
 209 The median age was 55 years (IQR 36-70), with a total of 172 pediatric patients aged
 210 under 18 (3.7%, 176 eyes). Most patients were male (70.3%), White (59.6%), and
 211 resided in urban areas (82.6%). They were treated in practices that were predominantly
 212 based in the South (42.6%). The majority resided in areas with a median income of USD
 213 35,000-74,999 (52.0%), broadly aligning with the national average.

214 After adjustment for relevant covariates, factors independently associated with an
 215 increased odds of IOFB removal included male sex (OR 3.44, 95% CI 3.22-3.67), Other
 216 race (OR 1.61, 95% CI 1.16-2.23) or Hispanic/Latino ethnicity (OR 1.49, 95% CI 1.35-
 217 1.64), and residence in a rural area (OR 1.65, 95% CI 1.52-1.79). Older age (OR 0.88
 218 per decade over 65, 95% CI 0.87-0.90) and a median income category of USD 75,000-
 219 149,999 (OR 0.80, 95%CI 0.74-0.86) were protective.

220 Demographic trends across time are reported at the eye level due to a small proportion
 221 (33, 0.66%) of patients sustaining IOFBs in their fellow eye sequentially. While there
 222 were minor year-to-year fluctuations in absolute percentages, the majority of
 223 demographic categories (such as male sex, White ethnicity, urban residence, Southern
 224 geographic region, and mid-range income bracket) remained consistent with the overall
 225 cohort profile throughout the study period (Supplementary Table 3, available at
 226 <https://www.opthalmologyretina.org/>).

227 ***Clinical characteristics and procedures at baseline***

228 Clinical characteristics and procedures performed at baseline are summarized in Table
 229 3. Most cases were unilateral (96.9%). The majority of IOFBs were located in the
 230 posterior segment (51.8%), followed by the anterior segment (46.6%), with a small
 231 percentage affecting both (1.6%). IOFB extraction methods were not recorded in cases
 232 occurring in the anterior segment (46.6%); where this was recorded for IOFBs in the
 233 posterior segment, non-magnetic extraction was most common (40.9%), followed by
 234 magnetic (12.1%), and both techniques (0.3%).

235 A B-scan ultrasound was performed in 9.0% of patients at baseline. Procedures
 236 conducted contemporaneously with the IOFB removal included pars plana vitrectomy
 237 (PPV) with or without retinal detachment (RD) repair (42.5%), repair of anterior segment
 238 laceration(s) (17.8%), anterior chamber (AC) washout (14.6%), and lens extraction

239 (11.5%). Intravitreal injections (drug unspecified) were performed in 3.7%, while
 240 intravitreal antibiotic injections (ceftazidime/vancomycin) were recorded in an additional
 241 1.8%. Of note, 1367 eyes (28.6%) had ≥ 2 additional procedures (Table 3).

242 The most common complications at baseline were RD (12.5%), cataract (10.5%),
 243 vitreous hemorrhage (7.9%), and endophthalmitis (3.9%) (Table 4). An additional 14.3%
 244 of eyes developed RD over the course of their follow-up at a mean of 9.4 months
 245 (median 2.4, IQR 1-9 months) at an incidence of 8.4 per 100 eye-years (95% CI 7.8-9.0)
 246 over a median follow-up of 16.9 months (IQR 4.2-43.9).

247 ***Visual outcomes post-IOFB removal***

248 VA at presentation was available for 1941 eyes. Median VA at presentation was 1.24
 249 logMAR (IQR 0.30-2.30) (approximately 20/400 Snellen), with 54.5% (1058/1941) having
 250 a vision of 1.00 logMAR (20/200 Snellen) or worse. Of the patients in this cohort, 12.2%
 251 (237/1941) presented with light perception (LP) and 1.3% (26/1941) with no light
 252 perception (NLP).

253 ***Predictors of changes in VA from baseline***

254 VA data was available for longitudinal analysis in 1376 unique eyes, requiring one
 255 measure at baseline and at least two more within 18 months post-op. Changes in VA
 256 from baseline post-IOFB removal featured a distinct pattern of VA recovery, with no
 257 significant change at month 1 (β 0.01, 95% CI -0.02-0.04), a statistically significant
 258 improvement of 0.38 logMAR on average by month 2 (95% CI -0.41 to -0.34), and a
 259 gradual improvement to 0.59 logMAR that was maintained to month 18 (95% CI -0.69 to
 260 -0.48) (Figure 1).

261 After adjusting for baseline clinical characteristics, several factors were significantly
 262 associated with poorer VA outcomes (Supplementary Table 4, available at
 263 <https://www.ophthalmologyretina.org/>). Baseline complications including endophthalmitis
 264 (β 0.70, 95% CI 0.56-0.84), hyphema (β 0.74, 95% CI 0.55-0.93), RD (β 0.35, 95% CI
 265 0.22-0.48), and vitreous hemorrhage (β 0.23, 95% CI 0.10-0.36) were strong predictors
 266 of worse overall vision. Compared to anterior segment-only injuries, IOFBs affecting the
 267 posterior segment (β 0.25, 95% CI 0.15-0.35) or both anterior and posterior segments (β
 268 0.58, 95% CI 0.07-1.09) were also associated with significantly worse VA.

269 In terms of sociodemographic characteristics, self-identifying as Black or African
 270 American was independently associated with a worse visual outcome (β 0.35, 95% CI

271 0.17–0.52) even after controlling for all clinical and other socioeconomic variables. No
 272 statistically significant association was found for other socioeconomic factors, including
 273 median household income or urban-rural status. The interaction between race and
 274 median income was not significant as well. The final model explained a substantial
 275 portion of the variance in VA outcomes (marginal $R^2 = 0.200$, conditional $R^2 = 0.750$).

276 ***Sensitivity analysis***

277 Sensitivity analysis was conducted using a mixed-effects quantile regression model to
 278 assess predictors of the median visual outcome and provide a model robust to outliers.
 279 Median logMAR VA improved over time, with a stable improvement of 0.26-0.36 logMAR
 280 units from month 2 onwards compared to baseline (all adjusted $P<0.001$). Compared to
 281 the earlier analysis, only three clinical factors remained associated with a poorer median
 282 VA – the presence of endophthalmitis ($\beta 0.42$, 95%CI 0.05-0.79]) and RD ($\beta 0.418$,
 283 95%CI 0.17-0.67), and IOFB affecting both anterior and posterior segments ($\beta 0.50$, 95%
 284 CI 0.07–0.93) at baseline. In this median-focused model, sociodemographic factors and
 285 presence of other complications at presentation were not significant predictors of VA
 286 (Supplementary Table 5, available at <https://www.ophthalmologyretina.org/>).

287 ***Subgroup analysis of eyes with pre-IOFB VA***

288 A subgroup analysis comprising 625 eyes with at least one pre-IOFB VA measure
 289 (between 1 to 12 months pre-IOFB) and post-IOFB VA reading was performed. In
 290 general, this subgroup was older, had a greater proportion of White patients, more
 291 female representation, and a higher proportion of baseline complications compared to
 292 the overall cohort (see Supplementary Table 6 for cohort characteristics, available at
 293 <https://www.ophthalmologyretina.org/>). For this analysis, eyes were stratified into three
 294 groups based on their pre-IOFB VA: good (-0.3-0.49 logMAR), moderate (0.5-1.0
 295 logMAR), and poor (>1.0 logMAR). Pre-IOFB VA was the strongest predictor of post-
 296 IOFB visual outcomes. While VA generally improved over time for all three groups, a
 297 significant interaction effect demonstrated that this improvement was attenuated for the
 298 group with poor pre-IOFB VA (>1.0 logMAR).

299 Consistent with previous findings, in this subgroup, several other clinical factors were
 300 associated with worse visual outcomes, including the presence of endophthalmitis (0.73,
 301 95%CI 0.56-0.91), RD (0.52, 95%CI 0.31-0.73), vitreous hemorrhage ($\beta 0.39$, 95%CI
 302 0.14-0.64), and hyphema ($\beta 0.37$, 95%CI 0.16-0.58). Patients identifying as Black or
 303 African American ($\beta 0.31$, 95%CI 0.12-0.50) and Other ($\beta 0.25$, 95%CI 0.08-0.41) also
 304 had worse visual outcomes. IOFB location was not found to be a significant predictor of

305 visual outcomes in this model (Supplementary Table 7, available at
306 <https://www.ophthalmologyretina.org/>).

307

308 **Discussion**

309 In this large longitudinal IRIS Registry study of eyes that underwent IOFB removal, we
310 have mapped the epidemiology from 2016-2024, identified a distinct trajectory of visual
311 recovery, and delineated key clinical and socio-demographic factors associated with
312 visual outcomes post-IOFB removal.

313 Our main findings were: 1) mean incidence rates of 2.28 per 100,000 patient-years
314 across ophthalmology practices participating in the IRIS Registry, which represent
315 approximately 70% of practicing ophthalmologists across the US¹³; 2) presence of
316 endophthalmitis or RD at baseline was consistently associated with poorer visual
317 outcomes; 3) mean and median VA typically improve following IOFB removal, with a
318 rapid period of recovery by two months that subsequently plateaus; and 4) pre-IOFB VA
319 was the strongest predictor of post-IOFB removal visual outcomes in the subgroup of
320 patients where this was available, with poor VA (logMAR 1.0 or worse) attenuating any
321 improvement in VA.

322 We found that IOFB injuries in our cohort disproportionately affect middle-aged males,
323 which may reflect the occupational risk in male-dominated manual trades such as
324 construction metalwork. The sex predilection was consistent with previous studies in the
325 literature, albeit with lower proportions of males affected compared to the literature
326 (70.4% versus 80-100%).¹⁻⁹ The median age (55 years) in our cohort remained within
327 the working age population, but was one to two decades older than that described in
328 these previous studies, many of which originate from low- and middle-income countries
329 (LMICs), where injuries may more commonly affect younger men engaged in high-risk
330 industrial or agricultural work. The older age and sex distribution may also reflect
331 demographic shifts in the US workforce or the exposure of older individuals to home-
332 based DIY (do-it-yourself) activities. These findings underscore the importance of
333 tailoring injury prevention strategies to evolving risk profiles in high-income countries.

334 Notably, patients self-identifying as Black or African American had a significantly worse
335 mean visual outcome after controlling for pre-injury VA and a wide range of
336 sociodemographic and clinical presentation factors. Our findings align with reports of
337 racial and ethnic disparities in OGI risk and poorer visual outcomes in the US,¹⁴ as well

338 as a broader body of evidence documenting disparities in ophthalmic care outcomes for
339 conditions such as RD and glaucoma,^{15–17} and broader systemic trauma outcomes.¹⁸
340 However, this disparity may still reflect some degree of unmeasured confounding from
341 social determinants of health, differential access or adherence to follow-up care, or
342 systemic biases within the healthcare system. Given that the association was not
343 observed in a sensitivity analysis using a median-focused mixed effects quantile
344 regression model, the effect of race and ethnicity on visual outcome appears to be driven
345 by a subgroup with particularly poor outcomes. Further research is needed to validate,
346 understand, and address the underlying causes of the racial and ethnic disparities
347 identified which are likely to be social determinants of health, ensuring that efforts to
348 optimize visual outcome and prevention strategies are equitable for all patient
349 populations.

350 Direct comparison of visual outcome predictors with the published literature is
351 complicated by differing follow-up periods, covariate selection, and statistical modelling
352 strategies. We reviewed recent large studies evaluating predictors of post-IOFB VA. One
353 study of 1176 eyes with IOFB in Southwest China identified predictors broadly consistent
354 with ours, including RD, traumatic cataract, endophthalmitis, and posterior segment
355 IOFB, in a multivariable model examining risk factors for VA >20/200 at discharge.
356 However, additional predictors such as wound size (not available in our study) and poor
357 presenting VA were also reported as predictors.³ In contrast, another study of 159 eyes
358 from North China found presenting VA, size of IOFB, size of wound, and macular lesions
359 to be the only factors influencing VA post-IOFB removal.⁹ These variations likely also
360 reflect differences in patient populations, case severity, surgical techniques, and timing
361 of outcome assessment. VA assessment methodology may also vary.¹⁹ Notably, the
362 follow-up period in these studies was not defined. In our study, we were able to
363 characterize the trajectory of visual recovery up to 18 months post-IOFB removal, which
364 provides new insights into the sustained improvements and plateau phases of visual
365 outcomes after IOFB removal, and may be helpful in informing patient expectations.

366 Our visual outcome analysis also benefited from the complementary use of two distinct
367 modeling strategies. The linear mixed-effects model, which predicts the mean, was
368 sensitive to extreme outcomes. It identified the presence of endophthalmitis, RD,
369 vitreous hemorrhage, and hyphema at baseline as significant predictors of a poorer
370 visual outcome on average. Sensitivity analyses employing quantile regression, which is
371 more robust to outliers and predicts the median (i.e. typical) outcome, found that only RD
372 and hyphema were associated with worse vision. This divergence suggests that while

373 most patients experiencing RD and hyphema experience worse vision, other patients
374 with complications such as endophthalmitis and vitreous hemorrhage may have a more
375 varied effect, creating a 'high risk, high variability' profile, wherein some patients
376 experience reasonable recovery, but where a subset suffers catastrophic vision loss,
377 thereby heavily skewing the overall mean.

378 ***Strengths and limitations***

379 Limitations reflect common challenges inherent to research utilizing large administrative
380 EHR databases such as the IRIS Registry, which rely on the completeness and accuracy
381 of routinely collected clinical and billing data.^{13,20-22} This is exemplified by the coding for
382 IOFB material – although specific CPT Z-codes exist to specify IOFB material type, these
383 codes were so infrequently used (n=15/4784 cases) as to render the variable analytically
384 unusable. While it would be clinically relevant to report on the time from diagnosis to
385 repair and on primary versus secondary IOFB removal, this information was unavailable
386 for a number of cases. In addition, such registries typically do not contain granular
387 clinical data obtainable from manual chart review of free-text letters (e.g., etiology or
388 mechanism of injury, injury zone, IOFB material), although advances in natural language
389 processing may make large-scale data extraction possible in the future.^{23,24} Similarly, the
390 IRIS Registry contains very limited data on non-ophthalmic imaging (consistent with
391 previous work examining orbital imaging²⁵), which precluded analysis of ancillary trauma
392 investigations such as computed tomography scans and/or X-rays.

393 Beyond data completeness, the potential for missing data and coding inaccuracies poses
394 another challenge in EHR-based research. For example, pre-IOFB VA was a strong
395 predictor of visual recovery, but pre-IOFB VA data was only available for a subset of
396 patients known to an eye care provider. Given the potential systematic bias (e.g., if these
397 patients were more likely to have pre-existing eye conditions), we opted to conduct a
398 subgroup analysis for the subset of patients with pre-IOFB VA. As a further example,
399 among the 5.5% of patients who received an intraoperative intravitreal injection, 1.8%
400 had a recorded antibiotic, while the drug was unspecified in the other 3.7%. Given the
401 baseline endophthalmitis rate of 4.0% and the procedural context, it is likely that the
402 unspecified drug was an antibiotic, although this could not be confirmed. With regard to
403 the risk of coding inaccuracies, we conducted a review of CPT codes contemporaneous
404 to the time of IOFB removal and identified codes for procedures such as aqueous shunt
405 or anterior segment drainage device revision or insertion, goniotomy, trabeculotomy etc.
406 – interventions which would not be typically performed in the context of OGI repair and
407 IOFB removal. To mitigate this, we adopted a pragmatic and stringent approach in

408 defining our cohort, and incorporated exclusion criteria to remove cases with implausible
409 procedural combinations, with the aim of improving specificity in identifying true IOFB
410 injuries.

411 Overall, as the largest real-world ophthalmic clinical registry, the IRIS Registry has
412 enabled a robust, population-level analysis of IOFB injuries that underwent surgery
413 across a diverse range of socio-demographic and practice settings in the US. The cohort
414 size and national scope provide a powerful foundation for studying clinical questions at
415 scale and estimating trends and outcomes, overcoming the principal constraint of prior
416 literature – namely the limited generalizability of small, single-center series. The large
417 sample size and longer follow-up duration in our cohort allowed us to characterize visual
418 recovery trajectories beyond initial discharge, offering valuable insights into both early
419 and sustained improvements post-IOFB removal, which were not captured in earlier
420 studies. This also facilitated robust evaluation of baseline predictors of visual outcomes.
421 Future work will explore the effect of subsequent complications and procedures.

422 In summary, this comprehensive longitudinal analysis provides a robust, data-driven
423 model for predicting visual outcomes after IOFB injury and removal. We have mapped
424 the standard VA trajectory experienced post-IOFB removal in a large cohort of patients,
425 demonstrated the importance of pre-IOFB VA in predicting visual outcomes, and
426 quantified the additional risk conferred by specific complications and sociodemographic
427 factors. Together, these findings offer clinicians a model for prognostication to help
428 manage patient expectations, guide clinical decision-making, and ultimately optimize
429 patient care. Future work should aim to integrate granular clinical data to refine these
430 predictive models and facilitate external validation.

431 **References**

- 432 1. Bourke L, Bourke E, Cullinane A, O'Connell E, Idrees Z. Clinical outcomes and
433 epidemiology of intraocular foreign body injuries in Cork University Hospital, Ireland:
434 an 11-year review. *Ir J Med Sci.* 2021;190(3):1225-1230. doi:10.1007/s11845-020-
435 02443-9
- 436 2. Sharma S, Thapa R, Bajimaya S, Pradhan E, Poudyal G. Clinical characteristics and
437 visual outcome, prognostic factor, visual acuity and globe survival in posterior
438 segment intraocular foreign body at Tilganga Institute of Ophthalmology. *Nepal J
439 Ophthalmol.* 2018;10(19):66-72. doi:10.3126/hepjoph.v10i1.21691
- 440 3. Chang T, Zhang Y, Liu L, et al. Epidemiology, Clinical Characteristics, and Visual
441 Outcomes of Patients with Intraocular Foreign Bodies in Southwest China: A 10-Year
442 Review. *Ophthalmic Res.* 2021;64(3):494-502. doi:10.1159/000513043
- 443 4. Santamaría A, Pérez S, De Luis B, Orive A, Feijóo R, Etxebarria J. Clinical
444 characteristics and prognostic factors of open globe injuries in a North Spain
445 population: a 10-year review. *Eye.* 2023;37(10):2101-2108. doi:10.1038/s41433-022-
446 02297-8
- 447 5. Yang Y, Yang C, Zhao R, et al. Intraocular foreign body injury in children: clinical
448 characteristics and factors associated with endophthalmitis. *Br J Ophthalmol.*
449 2020;104(6):780-784. doi:10.1136/bjophthalmol-2019-314913
- 450 6. Jabłoński M, Winiarczyk M, Biela K, et al. Open Globe Injury (OGI) with a Presence
451 of an Intraocular Foreign Body (IOFB)-Epidemiology, Management, and Risk Factors
452 in Long Term Follow-Up. *J Clin Med.* 2022;12(1):190. doi:10.3390/jcm12010190
- 453 7. Hapca MC, Muntean GA, Drăgan IAN, Vesa Štefan C, Nicoară SD. Outcomes and
454 Prognostic Factors Following Pars Plana Vitrectomy for Intraocular Foreign Bodies-
455 11-Year Retrospective Analysis in a Tertiary Care Center. *J Clin Med.*
456 2022;11(15):4482. doi:10.3390/jcm11154482
- 457 8. Isik P, Sizmaz S, Esen E, et al. Management and Clinical Outcomes of Eyes With
458 Posterior Segment Intraocular Foreign Bodies Seen at a Tertiary Referral Center.
459 *Ophthalmic Surg Lasers Imaging Retina.* 2024;55(8):434-442.
460 doi:10.3928/23258160-20240402-01
- 461 9. Xing X, Liu F, Qi Y, Li J, Yu B, Wan L. Clinical Characteristics and Prognostic
462 Factors of Patients with Intraocular Foreign Bodies from a Tertiary Eye Center in
463 North China. *Clin Ophthalmol.* 2024;18:3635-3643. doi:10.2147/OPTH.S492986
- 464 10. McCrum ML, Zakrison TL, Knowlton LM, et al. Taking action to achieve health equity
465 and eliminate healthcare disparities within acute care surgery. *Trauma Surg Acute
466 Care Open.* 2024;9(1). doi:10.1136/tsaco-2024-001494
- 467 11. Chiang MF, Sommer A, Rich WL, Lum F, Parke DW. The 2016 American Academy
468 of Ophthalmology IRIS® Registry (Intelligent Research in Sight) Database.
469 *Ophthalmology.* 2018;125(8):1143-1148. doi:10.1016/j.ophtha.2017.12.001
- 470 12. Flanagin A, Frey T, Christiansen SL, AMA Manual of Style Committee. Updated
471 Guidance on the Reporting of Race and Ethnicity in Medical and Science Journals.
472 *JAMA.* 2021;326(7):621-627. doi:10.1001/jama.2021.13304

473 13. Lee CS, Blazes M, Lorch A, et al. American Academy of Ophthalmology Intelligent
 474 Research in Sight (IRIS®) Registry and the IRIS Registry Analytic Center
 475 Consortium. *Ophthalmol Sci.* 2022;2(1):100112. doi:10.1016/j.xops.2022.100112

476 14. Tomaiauolo M, Woreta FA, Li A, et al. Open-Globe Injury Repairs in the American
 477 Academy of Ophthalmology IRIS® Registry 2014 – 2018. *Ophthalmology.*
 478 2023;130(8):812-821. doi:10.1016/j.ophtha.2023.03.002

479 15. Xu J, Davoudi S, Yoon J, et al. Effect of race and ethnicity on surgical outcomes for
 480 rhegmatogenous retinal detachments. *Canadian Journal of Ophthalmology.*
 481 2024;59(2):102-108. doi:10.1016/j.jcjo.2022.12.003

482 16. Mastropasqua R, Luo YHL, Cheah YS, Egan C, Lewis JJ, da Cruz L. Black patients
 483 sustain vision loss while White and South Asian patients gain vision following
 484 delamination or segmentation surgery for tractional complications associated with
 485 proliferative diabetic retinopathy. *Eye.* 2017;31(10):1468-1474.
 486 doi:10.1038/eye.2017.95

487 17. Ciociola EC, Sekimitsu S, Smith S, et al. Racial Disparities in Glaucoma Vision
 488 Outcomes and Eye Care Utilization: An IRIS Registry Analysis. *Am J Ophthalmol.*
 489 2024;264:194-204. doi:10.1016/j.ajo.2024.03.022

490 18. Haider AH, Weygandt PL, Bentley JM, et al. Disparities in trauma care and outcomes
 491 in the United States: A systematic review and meta-analysis. *J Trauma Acute Care*
 492 *Surg.* 2013;74(5):1195-1205. doi:10.1097/TA.0b013e31828c331d

493 19. Elliott DB. The good (logMAR), the bad (Snellen) and the ugly (BCVA, number of
 494 letters read) of visual acuity measurement. *Ophthalmic Physiologic Optic.*
 495 2016;36(4):355-358. doi:10.1111/opo.12310

496 20. Kim MK, Roushafel C, McMichael J, Welch N, Dasarathy S. Challenges in and
 497 Opportunities for Electronic Health Record-Based Data Analysis and Interpretation.
 498 *Gut Liver.* 2024;18(2):201-208. doi:10.5009/gnl230272

499 21. Goldberg E, Douglas V, Ivanov A, et al. Data Duplication and Errors in Large Medical
 500 Datasets: A Case Study in the IRIS® Registry. OSF. Preprint posted online March
 501 10, 2025. doi:10.31219/osf.io/gcqkt_v3

502 22. Ross C, Ivanov A, Elze T, et al. Factors Associated with Missing Sociodemographic
 503 Data in the IRIS® (Intelligent Research in Sight) Registry. *Ophthalmology Science.*
 504 2024;4(6). doi:10.1016/j.xops.2024.100542

505 23. Stein JD, Rahman M, Andrews C, et al. Evaluation of an Algorithm for Identifying
 506 Ocular Conditions in Electronic Health Record Data. *JAMA Ophthalmol.*
 507 2019;137(5):491-497. doi:10.1001/jamaophthalmol.2018.7051

508 24. Maganti N, Tan H, Niziol LM, et al. Natural Language Processing to Quantify
 509 Microbial Keratitis Measurements. *Ophthalmology.* 2019;126(12):1722-1724.
 510 doi:10.1016/j.ophtha.2019.06.003

511 25. Lu JE, Ross C, Ivanov A, et al. Epidemiology of Orbital Inflammatory Disease: An
 512 AAO IRIS Registry Study. *Ocular Immunology and Inflammation.* 2024;32(9):2081-
 513 2084. doi:10.1080/09273948.2024.2322013

514

515 **Figure Legends**

516 Figure 1: Longitudinal trajectory of visual acuity up to 18 months after sustaining an
517 intraocular foreign body injury (IOFB). The error bars indicate the 95% confidence
518 interval.

519 Figure 2: Longitudinal trajectory of visual acuity up to 18 months after sustaining an
520 intraocular foreign body (IOFB) injury, stratified by pre-IOFB visual acuity (logMAR -0.3
521 to 0.5, 0.5-1.0, and >1.0). The error bars indicate the 95% confidence interval.

Table 1: Frequency and incidence of IOFB cases undergoing surgery in the IRIS Registry.

Year	IOFB (N)*	Total population in that year (N)	Incidence with 95% CI per 100,000 patient-years
2016	456	17,518,467	2.60 (2.37, 2.85)
2017	546	19,232,704	2.84 (2.61, 3.10)
2018	573	20,654,335	2.77 (2.55, 3.01)
2019	532	22,258,778	2.39 (2.19, 2.60)
2020	541	21,137,177	2.56 (2.35, 2.79)
2021	600	25,515,248	2.35 (2.17, 2.55)
2022	550	27,233,664	2.02 (1.85, 2.20)
2023	573	29,324,229	1.95 (1.80, 2.12)
2024^	346	23,820,914	1.45 (1.30, 1.61)

Legend: CI- confidence interval; IOFB- intraocular foreign body; N- number.

*Bilateral IOFB cases undergoing surgery on the same date were treated as 1 case (patient-level analysis for incidence calculations).

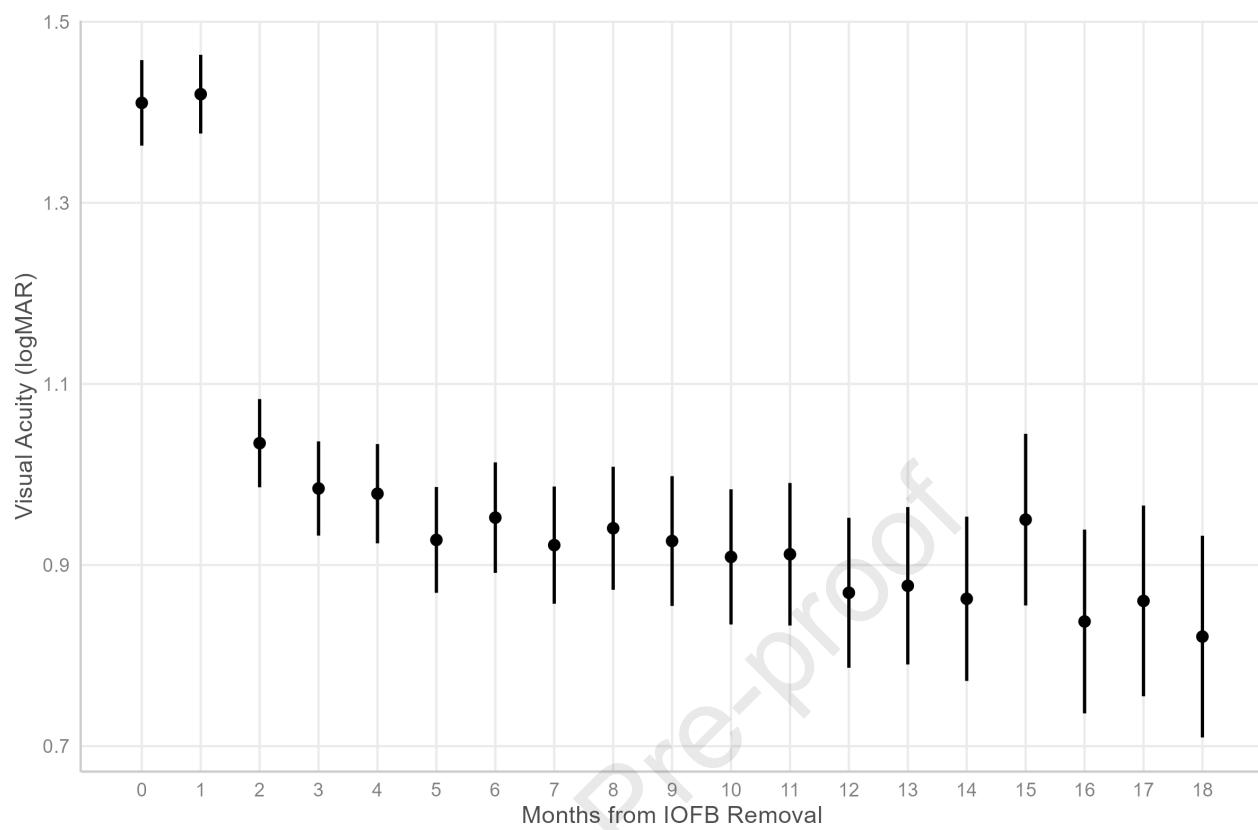
^Data for 2024 were only available till October 2024.

Table 2: Socio-demographic characteristics of the overall patient cohort.

		N (%)
Age (Median, IQR) (years)		55 (36-70)
Sex	Female	1311 (27.4)
	Male	3362 (70.3)
	Unknown	111 (2.3)
High school graduation percentage	≤ 60	28 (0.6)
	61-70	127 (2.7)
	71-80	414 (8.7)
	81-90	1,435 (30.0)
	91-100	2,117 (44.3)
	Unknown	663 (13.9)
Urban/ Rural Status	Urban	3950 (82.6)
	Rural	799 (16.7)
	Unknown	35 (0.7)
Median Income	≤\$34,999	138 (2.9)
	\$35,000 - \$74,999	2,488 (52.0)
	\$75,000 - \$149,999	1,375 (28.7)
	≥ \$150,000	106 (2.2)
	Unknown	677 (14.2)
Race	White	2,853 (59.6)
	Asian	96 (2.0)
	Black or African American	382 (8.0)
	Other	590 (12.3)
	Unknown	863 (18.0)
Ethnicity	Hispanic or Latino	604 (12.6)
	Not Hispanic or Latino	2875 (60.1)
	Unknown	1305 (27.3)
Practice Region	Midwest	697 (14.6)
	Northeast	703 (14.7)
	South	2,039 (42.6)
	West	854 (17.9)
	US Territory	13 (0.3)
	Unknown	478 (10.0)

Legend: IQR, interquartile range; N, number.

Table 3: Clinical characteristics and procedures performed at baseline.


		N (%)
Unilateral		4636 (96.9)
IOFB Location	Anterior segment	2229 (46.6)
	Posterior segment	2478 (51.8)
	Both	77 (1.6)
IOFB Extraction Method	Not recorded	2229 (46.6)
	Non-magnetic	1958 (40.9)
	Magnetic	581 (12.1)
	Both	16 (0.3)
Concurrent Procedures	PPV	2032 (42.5)
	Repair of cornea and/or sclera and/or anterior segment laceration	853 (17.8)
	AC washout	700 (14.6)
	Lens extraction	548 (11.5)
	Intravitreal injection (drug not specified)	179 (3.7)
	AC paracentesis	139 (2.9)
	Intravitreal injection (Ceftazidime/Vancomycin)	86 (1.8)
	Anterior vitrectomy	42 (0.9)
Ocular Investigations	B-scan	432 (9.0)

Legend: IOFB, intraocular foreign body; AC, anterior chamber; PPV, pars plana vitrectomy; N, number.

Table 4: Incident complications at baseline, early (1-6 days), and late (7 days to 18 months).

	Baseline (N, %)	Early (N, %)	Late (N, %)
Retinal detachment	597 (12.5)	52 (1.1)	633 (13.2)
Cataract	501 (10.5)	78 (1.6)	749 (15.7)
Vitreous hemorrhage	378 (7.9)	74 (1.5)	153 (3.2)
Endophthalmitis	187 (3.9)	12 (1.7)	27 (0.6)
HypHEMA	160 (3.3)	36 (0.8)	67 (1.4)
Retinal tear	130 (2.7)	27 (0.6)	93 (1.9)
Raised intraocular pressure or glaucoma	86 (1.7)	36 (0.8)	354 (7.4)
Proliferative vitreoretinopathy	21 (0.4)	7 (0.2)	92 (1.9)
Iridodialysis	6 (0.1)	1 (0.0)	10 (0.2)
Enucleation		2 (0.0)	17 (0.4)
Evisceration		2 (0.0)	9 (0.2)
Corneal scar			237 (5.0)
Siderosis			4 (0.1)
Traumatic optic neuropathy			3 (0.1)
Sympathetic ophthalmia			1 (0.0)

Legend: N, number.

This IRIS® Registry analysis of intraocular foreign body injuries defines visual recovery benchmarks, with vision improving from two months and plateauing thereafter. Baseline complications and Black or African American race were associated with worse vision outcomes.