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Abstract—In this paper, partial output consensus (POC) based1

on distributed robust model predictive control (DRMPC) is2

investigated for multi-rate chain interconnected processes. To3

accommodate potential differences in sensor sampling character-4

istics, ‘Consensus’ and ‘Nonconsensus’ outputs (i.e. those outputs5

with and without a consensus target) have different sampling6

periods. A fusion estimation strategy (FES) is initially designed,7

which can utilize multi-rate measured outputs to generate state8

estimates in real time. Using the results of this FES, a DRMPC is9

then proposed that can simultaneously stabilize all the outputs.10

The POC cost function and consensus constraint can ensure that11

all subsystems meet POC requirements. The effectiveness of the12

proposed approach is shown to be guaranteed theoretically and13

further demonstrated by simulations and experimental testing.14

Index Terms—Partial output consensus, Chain interconnected15

process, Multi-rate sampling, Fusion estimation strategy, Dis-16

tributed robust model predictive control17

I. INTRODUCTION18

Fig. 1. Multistage flash distillation process for desalination with three grades.

A chain interconnected process is composed of subsystems19

experiencing chained flow across material, energy and/or in-20

formation interconnections. These are common in the chemical21

industry [1] and production dispatching [2]. Optimization and22

control of such chained, interconnected processes is complex23

and varied resulting in the problem receiving wide attention in24

the literature [3], [4]. As shown in Fig.1, the multistage flash25

distillation process is chained. Its workflow is that materials26

(sea water) go through multiple chambers (with progressively27
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decreasing pressures), and the product (fresh water) can be ob- 28

tained through evaporation and condensation of water. Within 29

this process, the pressures should maintain a decreasing rela- 30

tion, which can be modelled using ‘Consensus’ outputs with a 31

consensus target. The temperatures should reach their own set- 32

points, which must be modelled as ‘Nonconsensus’ outputs. 33

This problem is called ‘partial output consensus’(POC) and it 34

is common in chain interconnected processes. 35

Regarding the POC problem, there have been many studies 36

presented in [5]–[9]. Previous work [5]–[7] investigated POC 37

control design, but ignored the stability of ‘Nonconsensus’ 38

outputs and were only suitable for multi-agent systems without 39

interconnections. To address this, the authors of this paper 40

proposed a distributed robust POC control in [8] for chain 41

interconnected systems with uncertainties, which can stabi- 42

lize all outputs. Further, a distributed optimization method 43

was proposed in [9] to calculate the feasible set-points for 44

‘Consensus’ and ‘Nonconsensus’ outputs. Nevertheless, these 45

methods cannot meet some objectives, such as the satisfaction 46

of state/input constraints and optimal performance. In contrast, 47

distributed robust model predictive control (DRMPC) has 48

excellent robustness and optimality, it has bee extended to 49

consensus control [10], [11] and interconnected system control 50

[12], [13]. DRMPC is a potential method for POC, but it has 51

not been considered for addressing POC until now. 52

Due to the differences in sensors, subsystems employ multi- 53

rate sampling in practice. In Fig.1, all ‘Consensus’ and ‘Non- 54

consensus’ outputs are sampled asynchronously and there is 55

no measurement information available for the control update at 56

some times. For multi-rate sampling, the conventional method 57

(see for example [14], [15]) is to derive new state-space 58

models with a common rate for the control design. However, 59

the interconnection terms bring the coupling effects into the 60

time series and it can be challenging to find the desired 61

rate. Adopting a different methodology, the authors in [16] 62

proposed a DRMPC control based on distributed Kalman 63

filters for interconnected systems, where the filters can utilize 64

multi-rate outputs to generate the estimated states and DRMPC 65

can provide the stabilized control inputs. Nevertheless, the 66

cross-covariance calculation for the filters is too complex 67

and DRMPC lacks robust theoretical analysis. To reduce 68

the computation complexity, [17] presents distributed set- 69

membership observers that provide performance comparable 70

to the distributed Kalman filters, but this method is only 71

suitable for single-output systems. In summary, the multi- 72

rate sampling control has been widely investigated, but there 73
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are few available results on interconnected systems, let alone74

addressing the POC problem.75

Motivated by the problems and open questions mentioned76

above, POC is studied for multi-rate chain interconnected sys-77

tems in this paper. There are two challenges to be addressed.78

Firstly, how to handle the influences of multi-rate sampling and79

utilize measured ‘Consensus’ and ‘Nonconsensus’ outputs to80

provide reliable real-time information for the control calcula-81

tion. Secondly, how to design DRMPC controls for POC and82

guarantee their robustness, feasibility and stability.83

A POC control framework is developed using DRMPC and84

the main contributions are as follows.85

• The proposed fusion estimation strategy (FES) can esti-86

mate in real-time zonotopes of states. The FES consists87

of two multi-rate filters and a fusion module. By using88

the ‘Consensus’ and ‘Nonconsensus’ measured outputs,89

the filters can synchronously generate two pre-estimated90

zonotopes of states. The fusion module then integrates91

them to obtain a more precise estimated zonotope.92

• Using the FES results as a basis, an effective DRMPC93

for POC is proposed by formulating a distributed opti-94

mization problem. To handle the chain interconnections,95

‘shadow’ variables are defined to represent the dynamics96

of neighboring subsystems. With the designed POC cost97

function and consensus constraint, the control inputs can98

ensure that subsystems meet POC requirements.99

• The recursive feasibility and stability of the proposed100

method are both analyzed.101

Compared with [14], [15], multi-rate systems with intercon-102

nections are considered in this paper. In contrast to [16], [17],103

the proposed FES can simultaneously handle two-part outputs104

with different sampling periods. Although the method in [17]105

can also solve multi-rate POC, the method in this paper can106

make full use of ‘Consensus’ and ‘nonconsensus’ measured107

outputs to improve controller performance and robustness.108

The structure of this paper is as follows. Section II formu-109

lates POC for a multi-rate chain interconnected process and110

presents the ‘Consensus’ and ‘Nonconsensus’ filters. Then,111

FES and DRMPC for POC is developed in Section III,112

including the design and analysis of the proposed method. The113

results of numerical simulations and experiments are shown in114

Section IV. Finally, the conclusion is presented in Section V.115

Notation 1: R and Z respectively represent the set of real116

numbers and integers, and Zj
i refers to the set {i, i+ 1, · · · , j}117

with i < j ∈ Z . Note P ′ and rank(P ) denote the transpose118

and rank of P , respectively. ∅, 0n and 0n×m represent the119

empty set, n-dimensional zero vector and n×m dimensional120

zero matrix. The matrix diag[Si]N denotes the diagonal121

block matrix composed of S1, S2, · · · , SN . The quadratic122

norm with respect to a positive definite matrix P = P ′
123

is denoted by ‖x‖2P = x′Px. ‖x‖ and ‖x‖∞ represent the124

2-norm and ∞-norm of x respectively. The eigenvalues of125

P are denote by λ(P ). Given two sets X ,Y ⊆ Rn and126

matrix A ∈ Rm×n, AX = {Ax|x ∈ X}. The Minkowski127

set addition is defined by X ⊕ Y = {x+ y|x ∈ X , y ∈ Y}128

and the Minkowski (Pontryagin) set difference is defined by129

X ⊖Y = {z ∈ Rn|z ⊕ Y ⊆ X}. A zonotope χ is denoted as130

〈c, E〉 := {x ∈ Rn|x = c+ Eu, ‖u‖∞ ≤ 1}, where c ∈ Rn
131

and E ∈ Rn×r are the center and generator matrix of χ. 132

II. PROBLEM FORMULATION 133

In this paper, the considered chain interconnected process 134

is composed of N subsystems, which are shown in Fig.2. 135

Subsystems have chain interconnections which refer to the 136

couplings in mass and energy. The information can be ex- 137

changed among subsystems by the communication network. 138

Each subsystem has two types of output, the ‘Consensus’ out- 139

put yc,i and the ‘Nonconsensus’ output yn,i. Due to differences 140

in the sensors, these outputs have different sampling periods. 141

The goal of POC is to make all yc,i, i ∈ V achieve consensus 142

and converge to the ‘Consensus’ set-point yd,con, while yn,i 143

is stable and converges to the ‘Nonconsensus’ set-point yd,i 144

respectively. Note that, yd,con is only assigned to subsystem 1 145

and yd,i is assigned to subsystem i.

Fig. 2. Multi-rate chain interconnected process.

146

The subsystems can be formulated as 147

xi(k + 1) =Aiixi(k) +Biui(k) +
∑

j∈Nc,i

Aijxj(k) + wi(k),

yc,i(k) =Cc,ixi(k) + vc,i(k),

yn,i(k) =Cn,ixi(k) + vn,i(k),
(1)

where i ∈ V = ZN
1 , xi ∈ Xi ⊆ Rn and ui ∈ Ui ⊆ Rm are the 148

state and input, yc,i ∈ Rpc , yn,i ∈ Rpn are the ‘Consensus’ 149

and ‘Nonconsensus’ outputs, Aii, Aij ∈ Rn×n, Bi ∈ Rn×m, 150

Cc,i ∈ Rpc×n and Cn,i ∈ Rpn×n are known matrices. The 151

state and input are constrained, and Xi, Ui are convex, compact 152

polytopes whose interiors are not empty. wi ∈ Wi ⊆ Rn is 153

the disturbance, where Wi := 〈0n, ηw,iIn〉 and ηw,i > 0. 154

vc,i ∈ Vc,i ⊆ Rqc , vn,i ∈ Vn,i ⊆ Rqn are the measurement 155

noises, where Vc,i := 〈0qc , ηc,iIqc〉, Vn,i := 〈0qn , ηn,iIqn〉, 156

and ηc,i, ηn,i > 0. Nc,i refers to subsystem i’s neighbor set, 157

Nc,i =







{2} , i = 1

{i − 1, i+ 1} , i ∈ ZN−1
2

{N − 1} , i = N
,

and the chained interconnection satisfies
∑

j∈Nc,i

Aijxj ∈ Vij , 158

where Vij = ⊕j∈Nc,i
AijXj . 159

The following Assumption is required. 160

Assumption 1: Suppose that the parameters in (1) satisfy 161

rank









InN − A B
Cc 0pcN×mN

Cn 0pnN×mN









= (n+ pc + pn)N,
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where A = [Aij ]N×N , B = diag[Bi]N , Cc = diag[Cc,i]N162

and Cn = diag[Cn,i]N .163

Remark 1: Assumption 1 is made to ensure that all sub-164

systems can attain appropriate steady-states and inputs cor-165

responding to the desired set-points. Similar assumptions are166

also made in tracking DMPC [18].167

Multi-rate sampling is common in process industries. When168

this occurs, inputs and/or outputs of different subsystems may169

have different sampling periods. Fig. 3 presents several multi-170

rate sampling mechanisms. In Fig. 3(a), [15] outputs have a171

larger sampling period than the inputs, but the subsystems172

are sampled synchronously. Fig. 3(b) describes the multi-173

rate sampling in [16], where only the outputs have different174

sampling periods. Fig. 3(c) describes the sampling scenario175

considered in this paper, where each subsystem has two176

output elements which have different sampling periods. Not177

only that, subsystems are sampled asynchronously and outputs178

have larger sampling periods than the inputs. Clearly the179

case considered in this paper is more difficult than the cases180

conisdered in [15], [16]. Further the control design should181

consider how best to utilize ‘Consensus’ and ‘Nonconsensus’182

outputs to provide reliable information for real-time feedback.183

For convenience, let δc,i, δn,i represent the sampling periods184

of yc,i, yn,i and δu represent the control period. It is assumed185

that δc,i, δn,i ≥ δu. The measured ‘Consensus’ output ψc,i186

and the ‘Nonconsensus’ output ψn,i are denoted as ψc,i(l
i
c) =187

yc,i(l
i
cδc,i), ψn,i(l

i
n) = yn,i(l

i
nδn,i), where lic, l

i
n ∈ Z∞

0 .188

The objective of this paper is then to develop a DRMPC-189

based control method, which can utilize ψc,i(l
i
c) and ψn,i(l

i
n)190

to complete the following POC targets, i.e.191

lim
k→∞

‖yc,1(k)− yd,con‖ ≤σc,1, (2a)

lim
k→∞

‖yn,i(k)− yd,i‖ ≤σn,i, (2b)

lim
k→∞

‖yc,i(k)− yc,j(k)‖ ≤σc,i, j ∈ Nc,i. (2c)

where σc,i, σn,i > 0 are constants.192

III. MAIN RESULTS193

This section presents a POC control framework as shown194

in Fig. 4, for multi-rate chain interconnected systems. The195

framework includes both FES and DRMPC where the main196

principles can be described as follows.197

• The FES contains two filters and a fusion module, and198

can provide the estimated state x̂i and zonotope χ̂i for199

the control calculation.200

• With the results from the FES, DRMPC can provide the201

control input ui(k), which can ensure that subsystems202

meet the POC requirements.203

A. FES for Multi-rate Outputs204

For each subsystem in (1), the FES is designed as follows205

χ́i(k) =

{ 〈ϕi(k),Φi(k)〉, mod(k, δc,i) 6= 0,

〈ξ́i(lic), Ξ́i(l
i
c)〉, k = licδc,i,

(3a)

χ̀i(k) =

{ 〈ϕi(k),Φi(k)〉, mod(k, δn,i) 6= 0,

〈ξ̀i(lin), Ξ̀i(l
i
n)〉, k = linδn,i.

(3b)

χ̂i(k) = χ́i(k) ∩ χ̀i(k) :=
〈

x̂i(k), R̂i(k)
〉

, (3c)

Fig. 3. The common multi-rate sampling mechanisms.

Fig. 4. The POC control framework for multi-rate systems.

where χ́i, χ̀i ⊆ Rn are the pre-estimated zonotopes accord- 206

ing to ‘Consensus’ and ‘Nonconsensus’ measured outputs, 207

respectively. ϕi, ξ́i, ξ̀i are the pre-estimated values of xi(k) at 208

different times, and Φi, Ξ́i, Ξ̀i are the corresponding generator 209

matrices. x̂i ∈ Rn represents the estimated value of xi(k) and 210

χ̂i ⊆ Rn is a zonotope with x̂i as the center and R̂i ∈ Rn×r
211

as the generator matrix. The superscript represents the time 212

index. 213
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The above variables can be updated by the following steps214

ϕi(k) =Aiix̂i(k − 1) +Biui(k − 1)

+
∑

j∈Nc,i

Aij x̂j(k − 1), (4a)

Φi(k) =[AiiR̂i(k − 1), [AijR̂j(k − 1)]j∈Nc,i
, ηw,iI], (4b)

ξ́i(l
i
c) =ϕi(k) + Ḱi(l

i
c)(ψc,i(l

i
c)− Cc,iϕi(k)), (4c)

Ξ́i(l
i
c) =[(I− Ḱi(l

i
c)Cc,i)Φi(k),−ηc,iḰi(l

i
c)], (4d)

ξ̀i(l
i
n) =ϕi(k) + K̀i(l

i
n)(ψn,i(l

i
n)− Cn,iϕi(k)), (4e)

Ξ̀i(l
i
n) =[(I− K̀i(l

i
n)Cn,i)Φi(k),−ηn,iK̀i(l

i
n)], (4f)

where Ḱi(l
i
c) ∈ Rn×pc and K̀i(l

i
n) ∈ Rn×pn are the filtering215

gains, and [AijR̂j(k − 1)]j ∈ Nc,i is formulated as216

[AijR̂j(k − 1)]j∈Nc,i
=







A12R̂2(k − 1), i = 1,

[Ai,i−1R̂i−1(k − 1), Ai,i+1R̂i+1(k − 1)], i ∈ ZN−1
2 ,

AN,N−1R̂N−1(k − 1), i = N.

The proposed FES consists of the following parts:217

• Equations (3a) and (3b) define ‘Consensus’ and ‘Non-218

consensus’ filters. Under multi-rate sampling, they can219

generate the estimated states at every instant. Their input220

signals are ψc,i/ψn,i and the output signals are the pre-221

estimated states x́i/x̀i and zonotopes χ́i/χ̀i.222

• Equation (3c) defines a fusion module, which is employed223

to integrate χ́i and χ̀i in order to obtain a more precise224

zonotope χ̂i of less size. Its input signals are χ́i and χ̀i225

and its output signal is the estimated state χ̂i.226

Considering minimizing ‖Ξ́i(l
i
c)‖2F and ‖Ξ̀i(l

i
n)‖2F , the227

optimal ‘Consensus’ and ‘Nonconsensus’ filtering gains are228

derived as229

Ḱi(l
i
c) =Φi(k)(Cc,iΦi(k))

′

(Cc,iΦi(k)(Cc,iΦi(k))
′ + η2c,iI)

−1,

K̀i(l
i
n) =Φi(k)(Cn,iΦi(k))

′

(Cn,iΦi(k)(Cn,iΦi(k))
′ + η2n,iI)

−1.

(5)

Lemma 1: Assume that xi(0) ∈ χ̂i(0) holds for all i ∈ V ,230

then χ̂i(k) calculated by (3) satisfies χ̂i(k) 6= ∅ and xi(k) ∈231

χ̂i(k) for k ∈ Z∞
1 .232

Proof. According to the principle of induction, this Lemma233

can be proven by showing that xi(k − 1) ∈ χ̂i(k − 1) ⇒234

xi(k) ∈ χ̂i(k).235

(i) When mod(k, δc,i) 6= 0, using the subsystem dynamics236

in (1), it follows that237

xi(k) ∈Aiiχ̂i(k − 1)⊕j∈Nc,i
Aijχ̂j(k − 1)

⊕Bi〈ui(k − 1),0〉 ⊕Wi,

so that xi(k) ∈ 〈ϕi(k),Φi(k)〉.238

(ii) When k = licδc,i, consider the dynamics of ψc,i(l
i
c). It239

follows that240

xi(k) =xi(k) + Ḱi(l
i
c)(ψc,i(l

i
c)− Cc,ixi(k)− vc,i(k))

∈(I− Ḱi(l
i
c)Cc,i)〈ϕi(k),Φi(k)〉

⊕ (−Ḱi(l
i
c)Vc,i)⊕ Ḱi(l

i
c)〈ψc,i(l

i
c),0〉,

so that xi(k) ∈ 〈ξ́i(lic), Ξ́i(l
i
c)〉. 241

Based on (i) and (ii), it follows that xi(k) ∈ χ́i(k). 242

Similarly, it can be inferred that xi(k) ∈ χ̀i(k) also holds for 243

all k. According to the convexity of χ́i(k) and χ̀i(k), it can be 244

concluded that χ̂i(k) in (3c) is non-empty and xi(k) ∈ χ̂i(k) 245

holds for all k. Then, xi(k− 1) ∈ χ̂i(k− 1) ⇒ xi(k) ∈ χ̂i(k) 246

can be proven. Since xi(0) ∈ χ̂i(0) is satisfied by hypothesis, 247

Lemma 1 can be proven. � 248

Lemma 1 demonstrates that the zonotope χ̂i(k) can always 249

contain the real state xi(k). Based on this, χ̂i(k) can be 250

utilized as reliable information for the control calculation. 251

Denote two error sets χe,i(k) := χ̂i(k) ⊖ x̂i(k) and 252

χ̄e,i(k) := Aiiχe,i(k) ⊕j∈Nc,i
Aijχe,j(k) ⊕ Wi. According 253

to (3), χe,i(k) ⊆ χ̄e,i(k) holds for all k. The proposed FES 254

can provide x̂i(k), χ̂i(k), χe,i(k) and χ̄e,i(k) for DRMPC at 255

every instant. 256

Remark 2: The steps (3c) can be implemented by the 257

zonotope calculation method in [19], or by using the MPT3 258

toolbox. 259

B. DRMPC for POC 260

The prediction horizon is denoted by Np. For clarity, all the 261

variables in the DRMPC optimization problem are presented: 262

xi(k + l|k) the predicted value of xi(k + l) at instant k

xi,j(k + l|k) xi(k + l|k) estimated by subsystem j at instant k

ui(k + l|k) the predicted value of ui(k + l) at instant k

ui(k|k) the sequence of ui(k + l|k), l ∈ ZNp

0

ys,c,i the steady-state ‘Consensus’ output

ys,n,i the steady-state ‘Nonconsensus’ output

xs,i the steady-state value of xi

xs,i,j xs,i estimated by subsystem j

us,i the steady-state value of ui

263

Note that xi,j(k + l|k) and xs,i,j are called ‘shadow’ 264

variables, which can replace xi(k) and xs,i in subsystem i 265

for decoupling the chain interconnections. ys,c,i, ys,n,i, xs,i, 266

xs,i,j and us,i are steady-state variables, which satisfy 267

xs,i = Aiixs,i +Bius,i +
∑

j∈Nc,i

Aijxs,j,i,

ys,c,i = Cc,ixs,i,

ys,n,i = Cn,ixs,i.

(6)

Denote di(k) = (xi(k|k),ui(k|k), xs,i, us,i) as the decision 268

variable for subsystem i, which contains the initial predicted 269

state, the sequence of the predicted inputs and the steady- 270

state outputs. Following [20], a parameterized control input 271

ui applied to subsystem i is designed as 272

ui(k) = ui(k|k) + Fi(x̂i(k)− xi(k|k)), (7)

where Fi ∈ Rm×n is a gain matrix, which satisfies ||As,i|| = 273

||Aii +BiFi|| < 1. 274
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According to (2), POC cost function can be designed as275

Ji(di(k)) = Vp,i + Vf,i +
∑Np−1

l=0
Ii(l), (8)

where Vp,i is the POC cost, which is composed of the276

quadratic-norm differences between steady-state outputs and277

set-points. Vp,i is the terminal cost and I li is the stage cost,278

which are common in MPC design and can guarantee the279

stability and optimality of systems. They are formulated as280

Vp,i =

{ ‖ys,c,i − yd,con‖2Tc
+ ‖ys,n,i − yd,i‖2Tn,i

, i = 1,

‖ys,n,i − yd,i‖2Tn,i
, i 6= 1,

281

Vf,i = ‖xi(k +Np|k)− xs,i‖2Pf,i
,

I li = ‖xi(k + l|k)− xs,i‖2Qi
+ ‖ui(k + l|k)− us,i‖2Ri

,

where Pf,i ∈ Rn×n is the terminal weight matrix, Tc ∈282

Rpc×pc , Tn,i ∈ Rpn×pn , Qi ∈ Rn×n and Ri ∈ Rm×m are283

weight matrices, which are positive definite symmetric.284

Assumption 2: [21]Suppose that there exists a gain matrix285

Fi ∈ Rm×n for the subsystems (1) such that:286

• Xf,i =
{

a|‖a‖2Pf,i
≤ αi, αi > 0

}

is a positive invariant287

set for xi − xs,i, i.e., xi(k + 1)− xs,i ∈ Xf,i, ∀xi(k) −288

xs,i ∈ Xf,i, wi(k) = 0.289

• A′
oPfAo − Pf ≤ −Q − K ′RK holds, where Ao =290

A + BF , F = diag[Fi]N , Pf = diag[Pf,i]N , Q =291

diag[Qi]N , R = diag[Ri]N .292

Assumption 2 is common in MPC design. Similar assump-293

tions are also adopted in [18] and [22]. Although the inequality294

is centralized, it can be solved using the distributed method in295

[8]. Then, Fi can be obtained.296

The DRMPC optimization problem can be formulated as297

min
di(k)

Ji(di(k))

s.t. (6) and

xi(k + l + 1|k) = Aiixi(k + l|k) +Biui(k + l|k)
+

∑

j∈Nc,i

Aijxj,i(k + l|k), l ∈ ZNp−1
0 ,

(9a)

xi(k|k) ∈ χ̂i(k), (9b)

xi(k + l|k) ∈ Xi ⊖ Sx,i(l|k), (9c)

ui(k + l|k) ∈ Ui ⊖ FiSu,i(l|k), l ∈ ZNp−1
0 , (9d)

xi(k +Np|k)− xs,i ∈ Xf,i, (9e)

xs,i ∈ Xs,i, us,i ∈ Us,i, (9f)

ys,c,i − ys,c,j = 0, j ∈ Nc,i. (9g)

xi(k + l|k)− xi,j(k + l|k) = 0, l ∈ ZNp

0 , (9h)

xs,i − xs,i,j = 0, j ∈ Nc,i. (9i)

where298

Sx,i(l|k) =















2χe,i(k), l = 0,
AiiSx,i(l − 1|k)

⊕j∈Nc,i
AijSx,j(l − 1|k)

⊕BiFiχe,i(k)⊕Wi

, l > 0.

Su,i(l|k) =







χe,i(k), l = 0,
AiiSu,i(l − 1|k)

⊕j∈Nc,i
AijSu,j(l − 1|k)⊕Wi

, l > 0.

299

Xs,i = Xi ⊖ Sx,i(Np|k)⊖Xf,i,

Us,i = Ui ⊖ FiSu,i(Np − 1|k)⊖ F̄iXf,i.

Sx,i(l|k) and Su,i(l|k) are the tube constraints, which can 300

ensure that xi(k) and ui(k) always belong to Xi and Ui. 301

Xf,i =
{

a|‖a‖2Pf,i
≤ αi, αi > 0

}

is the terminal set and 302

αi > 0 is a constant. At every instant, Sx,i(l|k) and Su,i(l|k) 303

can be calculated based on χe,i(k) which is generated by the 304

FES. After that, (9) can be solved. 305

The constraints in (9) are explained as follows. (9a) is 306

the prediction equation of subsystem i with xi(k + l|k) and 307

xj,i(k + l|k). (9b) ensures that xi(k|k) belongs to χ̂i(k) for 308

approximating xi(k). (9c) and (9d) are the state and input 309

constraints, which can guarantee xi(k) ∈ Xi and ui(k) ∈ Ui. 310

(9e) is the terminal constraint and Xf,i is a positive invariant 311

set. Pf,i and F̄i can be obtained by solving the linear matrix 312

inequality in Assumption 2. (6), (9f) and (9g) form the 313

constraints for steady-state variables. Note that, POC cost 314

combined with (9g) can ensure that ys,c,i and ys,n,i meet 315

POC requirements. (9h) and (9i) can ensure the consistency 316

of the ‘shadow’ variables to guarantee the effectiveness of the 317

solution. 318

The optimization problem (9) can be directly solved 319

using the distributed optimization methods in [23], [24] 320

and its optimal solution at k is represented by d
∗
i (k) = 321

(x∗i (k|k),u∗
i (k|k), x∗s,i(k), u∗s,i(k)). 322

C. Theoretical Analysis 323

Algorithm 1: DRMPC for POC of multi-rate chain

interconnected process

Input: Kmax, N,Np, δc,i, δn,i, ηw,i, αi, yd,con, yd,i,
xi(0), x̂i(0), R̂i(0), Qi, Ri, Tc, Tn,i.

Output: The responses of yc,i(k) and yn,i(k).
Initialization: calculate Pf,i, Fi and let k = 1.

while k ≤ Kmax do
Subsystems exchange

(x̂i(k − 1), R̂i(k − 1), χ̂i(k − 1)).
Calculate ϕi(k),Φi(k) by (4a) and (4b).

if k = licδc,i then
Measure ‘Consensus’ output and obtain

ψc,i(l
i
c).

Calculate ξ́i(k), Ξ́i(k) by (4c) and (4d).
end

if k = linδn,i then
Measure ‘Nononsensus’ output and obtain

ψn,i(l
i
n).

Calculate ξ̀i(k), Ξ̀i(k) by (4e) and (4f).
end

Calculate x̂i(k), χ̂i(k) by (3), and calculate

Sx,i(l|k), Su,i(l|k).
Solve (9) and obtain the optimal input u∗i (k|k).
Calculate ui(k) in (7) and apply it.

Let k = k + 1.
end
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This subsection completes the proof of the recursive feasi-324

bility and the stability. Before that, the computation procedures325

for the proposed method can be summarized by Algorithm 1.326

Theorem 1: (Recursive feasibility) Suppose that Assump-327

tions 1 and 2 hold. For each subsystem, provided that xi(0) ∈328

χ̂i(0) holds and (9) has a feasible solution at k = 1, if there329

exists Pi > 0, Fi satisfying330

A′
s,iPiAs,i −A′

iiPiAii < 0, (10)

then Algorithm 1 remains feasible at all times.331

The proof of Theorem 1 can be found in Appendix. A.332

Theorem 2: (Stability) Suppose that Assumptions 1 and333

2 hold and consider the given set-points yd,con and334

yd,1, · · · , yd,N . For any initial state xi(0) ∈ Xi, all subsystems335

in (1) deploying Algorithm 1 are stable and can achieve POC336

in (2) with xi(k) ∈ Xi and ui(k) ∈ Ui.337

The proof of Theorem 2 can be found in Appendix. B.338

Remark 3: Compared with the single-filter method in [17],339

the proposed FES has less conservatism, meaning that it can340

tighten the boundaries of χ̂i(k) to make the size of χ̂i(k)341

as small as possible. Then, the DRMPC can approximate the342

dynamics of the real process and achieve good performance.343

This feature will be demonstrated in the following simulation344

results.345

IV. NUMERICAL SIMULATIONS AND EXPERIMENTS346

A. Numerical Simulations347

To validate the effectiveness of the proposed method, the348

numerical experiments for five subsystems are presented. The349

parameters of the subsystems are Aii = [0.8, 0.2;−0.3+0.1 ∗350

i, 0.9], Bi = [1.0, 0; 0, 1.0 + 0.1 ∗ i], Cc,i = [1, 0], Cn,i =351

[−0.1, 0.5], ηw,i = 0.05, ηc,i = ηn,i = 0.01 and the state and352

input constraints are Xi = {xi||xi| ≤ 10}, Ui = {xi||ui| ≤ 5}.353

The sampling periods of all outputs are: δc,1 = 2s, δc,2 =354

3s, δc,3 = 2s, δc,4 = 4s, δc,5 = 3s, δn,1 = 3s, δn,2 = 4s,355

δn,3 = 3s, δn,4 = 2s, δn,5 = 2s.356

For the ‘Consensus’ and ‘Nonconsensus’ filters,357

the initial values are set as x̂1(0) = (0.06,−0.94)′,358

x̂2(0) = (0.92,−0.45)′, x̂3(0) = (2.08,−0.01)′,359

x̂4(0) = (2.91, 0.45)′, x̂5(0) = (4.05, 0.91)′ and360

R̂1(0) = R̂2(0) = R̂3(0) = R̂4(0) = R̂5(0) = 0.1 ∗ I2.361

The set-points are piecewise constants, for k ∈ [0, 20],362

yd,con = 2.3, yd,1 = 1.0, yd,2 = 1.5, yd,3 = 2.0, yd,4 = 2.5363

and yd,5 = 3.0. For k ∈ (21, 40], yd,con = 1.2, yd,1 = 0,364

yd,2 = 0.5, yd,3 = 1.5, yd,4 = 1.0 and yd,5 = 2.0. For365

k ∈ (41, 60], yd,con = 1.8, yd,1 = 0.5, yd,2 = 1.0, yd,3 = 1.0,366

yd,4 = 2.0 and yd,5 = 2.5.367

In this section, the following two methods are considered:368

(a) the single-filter method in [17] and (b) the proposed369

method. The single-filter method estimates the states by ψc,i370

and then calculates a DRMPC control. For the sake of impar-371

tiality in the results, the parameters for the two methods are372

set identically. For DRMPC, set Np = 10, αi = 0.2, Qi = I2,373

Ri = I2 and Tc = Tn,i = 70.374

The responses of the ‘Consensus’ outputs with both methods375

are shown in Fig. 5. All yc,i can achieve consensus and reach376

a neighborhood of yd,con. Note that, with the single-filter377

Fig. 5. The responses of ‘Consensus’ outputs.

method, yc,i in Fig.5(a) can reach [yd,con−0.2, yd,con+0.2]. In 378

contrast, yc,i in Fig. 5(b) can converge smoothly to a smaller 379

neighborhood of yd,con. This difference is more evident in the 380

responses of the ‘Nonconsensus’ outputs, which are presented 381

in Fig. 6. To quantify the performance, the Integral of Time- 382

weighted Square Errors (ITSEs) are adopted here and are 383

presented in Table I. Obviously, the proposed method has 384

improved performance when compared with the single-filter 385

method.

TABLE I
THE ITSES OF yc,i AND yn,i UNDER TWO METHODS

Single-filter method The proposed method

yc,1 841.92 844.25
yn,1 606.24 593.16
yc,2 719.21 676.40
yn,2 652.89 643.36
yc,3 705.57 662.68
yn,3 1442.01 1427.40
yc,4 812.58 808.89
yn,4 1529.62 1534.41
yc,5 1096.43 1049.50
yn,5 720.41 703.36

386

To illustrate the advantages of FES, Fig. 7 shows χ̂i(k) at 387

k = 2s and 6s, where the black and dark grey areas are χ́i 388

and χ̀i, the light gray area is χ̂i, ‘*’ and ‘+’ are the real state 389

and estimated state. Based on (3b), the size of χ̂i(k) can be 390

significantly reduced. In this way, DRMPC can approximate 391

the dynamics of real subsystems well and hence achieve good 392

performance. 393

The proposed method also achieves robustness to the vary- 394

ing sensor sampling periods. To verify this, five groups of 395
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Fig. 6. The responses of ‘Nonconsensus’ outputs.

Fig. 7. The zonotope χ̂3(k) at k = 2s and 6s.

20s simulation tests with δc,4 = 3s, 4s, 5s, 6s and 7s are396

developed. Other sampling periods are the same as before. To397

avoid randomness, each group is repeated ten times, and the398

average sum of ITSEs is taken as a reference, which is shown399

in Table II. The performance of the single-filter method is400

negatively correlated with δc,4 and subsystems are divergent401

when δc,4 = 7s. The proposed method is robust to changes in402

δc,4 and the sum of ITSEs remains around 6.75e3− 6.80e3.403

Therefore, the effectiveness and robustness of the proposed404

method is further demonstrated.405

B. Experimental Testing406

To further verify the effectiveness of the proposed method,407

an NaOH solution proportioning experiment is presented here,408

TABLE II
THE SUM OF ITSES UNDER DIFFERENT δc,4

δc,4 3s 4s 5s 6s 7s
Single-filter method 7.19e3 7.12e3 7.28e3 7.26e3 7.44e3

The proposed method 6.76e3 6.76e3 6.76e3 6.74e3 6.79e3

Fig. 8. The two tanks platform.

which is carried out using the platform in Fig.8. For clarity, 409

the flow chart is shown in Fig.9 and it can be explained 410

by listing the following major elements of equipment. Tank 411

R-101 and R-102 are used for producing the desired NaOH 412

solution. They are connected by a pipe (red line), which can 413

transfer the solution from R-101 to R-102. Therefore, they can 414

be considered as two subsystems with chain interconnections. 415

Tank V -111 and V -112 are the material tanks containing water 416

and NaOH solution, respectively.Tank V -113 is a hot-water 417

tank and the hot water (at about 55◦C) can be transferred to 418

the jackets of R-101 and R-102 for heating.

Fig. 9. The flow chart of the solution proportioning experiment.

419

The objective of this experiment is to ensure that R-101 420

and R-102 can product the NaOH solution with different 421

temperatures and the same concentration. The temperature and 422

concentration can be respectively modelled as ‘Consensus’ and 423

‘Nonconsensus’ outputs. The partial output consensus problem 424

with multi-rate sampling can be formulated as follows. 425
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• Controlled variables: the temperatures T1, T2 and the426

concentrations C1, C2 for R-101 and R-102.427

• Manipulated variables: the flow rates vh,1, vh,2 of hot428

water and the flow rates vw,1, vw,2 of water for R-101429

and R-102. Their ranges are 0− 25.0L/h.430

• ‘Consensus’ and ‘Nonconsensus’ set-points: the ‘Consen-431

sus’ set-points is set as Cd = 3.0 kmol/m3, i.e. the432

concentration set-point. The ‘Nonconsensus’ set-points433

are set as 42◦C and 38◦C, i.e. the temperature set-points.434

• Constraints: T1, T2 cannot exceed 45◦C and C1, C2435

cannot exceed 10.0 kmol/m3.436

• Multi-rate sampling: the sampling periods are δT1
= 2s,437

δT2
= 3s, δC1

= 3s and δC1
= 4s.438

• Disturbance and measurement noise: they are stochastic439

and the bounds are ηw,i = 0.01, ηc,i = ηn,i = 0.005.440

Denote xi = col(Ti, Ci), the model parameters are A11 =441

[0.548, 0.006;−0.001, 0.735], B1 = [0.531, 0.001; 0, 0.465],442

C1 = [1, 0], A22 = [0.732,−0.004;−0.002, 0.628],443

B2 = [0.409,−0.001;−0.001, 0.423], C2 = [0, 1], A12 =444

[0.001,−0.009; 0, 0.001], A21 = [−0.002, 0; 0,−0.001].445

To highlight the advantages of the proposed method, the446

single-filter method in [17] is chosen for comparison. Both447

methods use the same parameters, which are listed in Table III.448

The solver for the DMPC is CasADi from the MPT3 toolbox.449

The control inputs are calculated and transmitted to the lower450

computer via OLE for Process Control (OPC).

TABLE III
THE PARAMETERS OF FES AND DRMPC

Term Value Term Value Term Value Term Value

Np 10 R1 5 ∗ I2 T̂1(0) 37.0 R̂1(0) 0.05 ∗ I2

α 0.6 R2 5 ∗ I2 T̂2(0) 34.0 R̂2(0) 0.05 ∗ I2

Q1 10 ∗ I2 Tc 100 Ĉ1(0) 1.2

Q2 10 ∗ I2 Tn 100 Ĉ2(0) 1.3
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Fig. 10. The results of the single-filter method.
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Fig. 11. The results of the proposed method.

451

The total time is 6000s, and the results are presented in452

Fig.10 and Fig.11. After preheating, T1 and T2 respectively453

reached about 37◦C and 34◦C. The initial values of C1 and C2 454

are 1.2 kmol/m3 and 1.3 kmol/m3. With the two methods, 455

T1 and T2 can reach neighborhoods of their own set-points, 456

C1 and C2 can achieve consensus at a neighborhood of 3.0 457

kmol/m3. In TABLE IV, ITSE, overshoot and convergence 458

time are presented. It can be seem that the proposed method 459

has improved performance when compared to the single-filter 460

method. This is particularly notable in the response of C1 461

where with the benefit of FES, C1 exhibits low overshoot and 462

rapid convergence speed. Therefore, the effectiveness of the 463

proposed method is further validated.

TABLE IV
THE SIMULATION RESULTS OF TWO METHODS

Index Single-filter method The proposed method

ITSE of T1 3.82e6 3.43e6
ITSE of T2 4.65e6 3.85e6
ITSE of C1 2.01e5 1.49e5
ITSE of C2 2.13e6 4.96e5

Overshoot of C1 23.78% 12.96%
Convergence time of C1 about 5000s about 3400s

464

V. CONCLUSION 465

In this paper, a novel POC framework is developed for 466

multi-rate chain interconnected processes. This is composed of 467

FES and DRMPC. The designed FES can generate estimated 468

states in real-time using ‘Consensus’ and ‘Nonconsensus’ 469

filters and a fusion module. Based on the output of the FES, a 470

novel DRMPC is developed for POC, which can drive subsys- 471

tems to meet POC requirements. The recursive feasibility and 472

stability are proven. Compared to previous methods, DRMPC 473

with FES can achieve better performance and robustness to 474

multi-rate sampling. Finally, some numerical simulations and 475

experiments are presented to validate the effectiveness of the 476

proposed method. 477

VI. APPENDIX 478

A. Proof of Theorem 1 479

Based on the solution at k, the feasible solution of (9) for 480

k+1 can be formulated as d̄i(k+1) = (x̄i(k+1|k+1), ūi(k+ 481

1|k+1), x∗s,i(k), u
∗
s,i(k)), where x̄i(k+1|k+1) = x∗i (k+1|k) 482

and ūi(k+1|k+1) = (u∗i (k + 1|k), · · · , u∗i (k +Np|k), κ̄f,i). 483

Note that, κ̄f,i = u∗s,i(k) + Fi(x̄i(k +Np|k + 1)− x∗s,i(k)). 484

The feasible state trajectory can be derived as 485

x̄i(k + l|k + 1) =










x∗i (k + l|k), l ∈ ZNp

1 ,
Aiix̄i(k + l− 1|k + 1) +Biκ̄f,i
+

∑

j∈Nc,i

Aij x̄j,i(k + l − 1|k + 1), l = Np + 1.

According to the feasibility of d
∗
i (k), it can be easily 486

concluded that d̄i(k + 1) can satisfy the equality constraints 487

(9a) and (9f)-(9i). Due the complexity of the particular fusion 488

strategy, the feasibility for (9b)-(9e) cannot be directly proven, 489

and the analysis is presented as follows. 490
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(i) The satisfaction of the constraint (9b):491

Denote x́i(k) and x̀i(k) as the centers of χ́i(k) and χ̀i(k)492

respectively. Consider the ‘Consensus’ filter. There are two493

cases for x̄
k+1|k+1
i that need to be considered.494

Case 1: while k 6= licδc,i, then x̄i(k + 1|k + 1)− x́i(k + 1) ∈495

Γ́i(k+1), where Γ́i(k+1) = As,iχe,i(k)⊕j∈Nc,i
Aijχe,j(k).496

The error between xi(k + 1) and x́i(k + 1) is xi(k + 1) −497

x́i(k+1) ∈ Π́i(k+1), where Π́i(k+1) = Aiiχe,i(k)⊕j∈Nc,i
498

Aijχe,j(k)⊕Wi.499

Similarly, when k 6= linδn,i, it follows that500

x̄i(k + 1|k + 1)− x̀i(k + 1) ∈ Γ̀i(k + 1),

xi(k + 1)− x̀i(k + 1) ∈ Π̀i(k + 1),
(11)

where Γ̀i(k+1) = Γ́i(k+1) and with Π̀i(k+1) = Π́i(k+1).501

Due to ‖As,i‖ < 1, it can be easily inferred that Γ́i(k+1) ⊆502

Π́i(k + 1) and Γ̀i(k + 1) ⊆ Π̀i(k + 1).503

Case 2: while k = licδc, then x̄i(k + 1|k + 1) − x́i(k +504

1) ∈ Γ́i(k + 1), where Γ́i(k + 1) = (Ḱd,i(l
i
c)Aii +505

BiFi)χe,i(k) ⊕j∈Nc,i
Ḱd,i(l

i
c)Aijχe,j(k) ⊕ Ḱi(l

i
c)Vi and506

Ḱd,i(l
i
c) = I − Ḱi(l

i
c)Cc,i.507

The error between xi(k + 1) and x́i(k + 1) satisfies508

xi(k + 1) − x́i(k + 1) ∈ Π́i(k + 1), where Π́i(k + 1) =509

Ḱd,i(l
i
c)Aiiχe,i(k) ⊕j∈Nc,i

Ḱd,i(l
i
c)Aijχe,j(k) ⊕ Ḱd,iWi ⊕510

ḰiVc,i.511

Similarly, while k 6= linδn,i, then512

x̄i(k + 1|k + 1)− x̀i(k + 1) ∈ Γ̀i(k + 1),

xi(k + 1)− x̀i(k + 1) ∈ Π̀i(k + 1),
(12)

where513

Γ̀i(k + 1) = (K̀d,i(l
i
n)Aii +BiFi)χe,i(k)

⊕j∈Nc,i
K̀d,i(l

i
n)Aijχe,j(k)⊕ K̀i(l

i
n)Vc,i,

Π̀i(k + 1) = K̀d,i(l
i
n)Aiiχe,i(k)⊕j∈Nc,i

K̀d,i(l
i
n)Aijχe,j(k)

⊕ K̀d,i(l
i
n)Wi ⊕ K̀i(l

i
n)Vc,i.

Based on the above analysis, it follows that514

x̄i(k + 1|k + 1) ∈ χ̄i(k + 1)

=(x́i(k + 1)⊕ Γ́i(k + 1)) ∩ (x̀i(k + 1)⊕ Γ̀i(k + 1)),

xi(k + 1) ∈ χ̂i(k + 1)

=(x́i(k + 1)⊕ Π́i(k + 1)) ∩ (x̀i(k + 1)⊕ Π̀i(k + 1)).

(13)

If (10) holds, then Γ́i(k+1) ⊆ Π́i(k+1) holds for k = licδc,i515

and Γ̀i(k + 1) ⊆ Π̀i(k + 1) holds for k = linδn,i. Further, the516

following conditions are satisfied for all time,517

(x́i(k + 1)⊕ Γ́i(k + 1)) ⊆ (x́i(k + 1)⊕ Π́i(k + 1)),

(x̀i(k + 1)⊕ Γ̀i(k + 1)) ⊆ (x̀i(k + 1)⊕ Π̀i(k + 1)).

According to (13), it can be concluded that χ̄i(k + 1) ⊆518

χ̂i(k + 1) and x̄i(k + 1|k + 1) ∈ χ̂i(k + 1). Using Lemma 1,519

χ̂i(k+1) is not empty. Then, it can be proven that d̄i(k+1)520

satisfies (9b).521

(ii) The satisfaction of the tight constraint (9c)-(9d):522

Due to x̄i(k+1|k+1), xi(k+1) ∈ χ̂i(k+1) and xi(k+1) ∈523

Xi, then x̄i(k + 1|k + 1) ∈ 2χe,i(k + 1) holds. For x̄i(k +524

2|k+1), then x̄i(k+2|k+1) = x∗i (k+2|k) ∈ Xi⊖Sx,i(2|k).525

According to (3), it follows that χe,i(k + 1) ⊆ χ̄e,i(k + 1). 526

Then, Sx,i(0|k + 1) ⊆ Sx,i(1|k) holds. By induction, it can 527

be inferred that S
l|k+1
x,i ⊆ Sx,i(l + 1|k) holds for l ∈ ZNp−1

1 . 528

Therefore, x̄i(k + l|k + 1) ∈ Xi ⊖ Sx,i(l − 1|k + 1) can be 529

proven for l ∈ ZNp−2
1 . For l = Np, due to x∗s,i(k) ⊕ Xf,i ∈ 530

Xi⊖Sx,i(Np|k), it follows that x̄i(k+Np|k) = x∗i (k+Np|k) ∈ 531

x∗s,i(k)⊕Xf,i ⊆ Xi ⊖ Sx,i(Np − 1|k + 1). 532

Because u∗i (k + l|k) ∈ Ui ⊖ FiSx,i(l|k) and χe,i(k) ⊆ 533

χ̄e,i(k), it follows that Su,i(l|k + 1) ⊆ Su,i(l + 1|k). Then, 534

ūi(k + l + 1|k + 1) ∈ Ui ⊖ FiSx,i(l|k + 1) holds. Therefore, 535

d̄i(k + 1) satisfies the constraint (9c)-(9d). 536

(iii) The satisfaction of the terminal constraint (9e): 537

According to Assumption 2, it can be inferred that ‖x̄i(k+ 538

Np+1|k+1)−x∗s,i(k)‖2Pf,i
≤ ‖x̄i(k+Np|k+1)−x∗s,i(k)‖2Pf,i

. 539

Due to x̄i(k +Np|k + 1)− x∗s,i(k) ∈ Xf,i, then x̄i(k +Np + 540

1|k + 1)− x∗s,i(k) ∈ Xf,i can be proven. 541

From the analysis above, d̄i(k + 1) is a feasible solution 542

for (9) at k + 1. Therefore, it can be deduced that if (9) has 543

a solution at the initial time, then it remains feasible for all 544

time. � 545

B. Proof of Theorem 2 546

For the given set-points yd,con and yd,1, · · · , yd,N , an opti- 547

mization problem for ys,c,i, ys,n,i can be formulated as 548

(y†s,c,i, y
†
s,n,i) = arg min

∑

i∈V

Vp,i(ys,c,i, ys,n,i; yd,i)

s.t. (6), (9f) and (9g).

(14)

549

The optimal solution of (14) satisfies y†s,c,1 = · · · = 550

y†s,c,N = yd,con and y†s,n,i = yd,i, i ∈ V , that is, 551

(y†s,c,i, y
†
s,n,i) meets the requirements of POC. Therefore, if 552

the systems (1) can track (x†s,i, u
†
s,i) corresponding to y†s,c,i, 553

y†s,n,i, then the POC targets are attained. According to Lemma 554

1 in [25], if Assumption 1 holds, suppose that the optimal 555

solution of (9) is such that lim
k→∞

‖xi(k|k)− xs,i‖ = 0, 556

there is lim
k→∞

J(d∗
i (k)) = Vp,i(y

†
s,c,i, y

†
s,n,i) = 0, that is 557

(x∗s,i(k), u
∗
s,i(k)) can converge to (x†s,i, u

†
s,i). 558

For subsystem i, the Lyapunov function is designed as 559

Wi(xi(k|k)) = Ji(x
∗
i (k|k),u∗

i (k|k))− Vp,i(y
∗
s,c,i, y

∗
s,n,i),

(15)

and (15) is the standard form in MPC, which satisfies 560

α0(|xi(k|k)− x†s,i|) ≤Wi(xi(k|k)) ≤ αW (|xi(k|k)− x†s,i|),
(16)

where α0, αW : R → R are both suitable K∞ functions [25]. 561
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The difference of W =
∑

i∈V
Wi is562

△W (k) ≤
∑

i∈V

(Ji(x̄i(k + 1|k + 1), ūi(k + 1|k + 1), x∗s,i(k))

− Ji(x
∗
i (k|k),u∗

i (k|k), x∗s,i(k)))
=
∑

i∈V

(‖x̄i(k +Np + 1|k + 1)− x∗s,i(k)‖2Pf,i

− ‖x∗i (k +Np|k)− x∗s,i(k)‖2Pf,i

+ ‖x̄i(k +Np|k + 1)− x∗s,i(k)‖2Qi

+ ‖κf,i − u∗s,i(k)‖2Ri
− ‖x∗i (k|k)− x∗s,i(k)‖2Qi

− ‖u∗i (k|k)− u∗s,i(k)‖2Ri
)

≤
∑

i∈V

−‖x∗i (k|k)− x∗s,i(k)‖2Qi
.

There are W ≥ 0 and △W ≤ 0, then it can be obtained that563

lim
k→∞

W (k) = 0. Combined lim
k→∞

‖x̄s,i(k + 1)− x∗s,i‖ = 0564

and (16), it follows that lim
k→∞

α0(|xi(k|k)− x†s,i|) = 0, i.e.565

lim
k→∞

‖x∗i (k|k)− x†s,i‖ = 0, lim
k→∞

‖u∗i (k|k)− u†s,i‖ = 0 and566

yc,i, yn,i can reach yd,con, yd,i respectively.567

According to xi(k) − xi(k|k) ∈ 2χe,i(k), the real outputs568

can achieve the objectives in (2) and reach the neighborhoods569

of the set points, whose bounds are σc,i ≤
√
2‖Cc,iR̂i(k)‖570

and σn,i ≤
√
2‖Cn,iR̂i(k)‖. In addition, because of the571

satisfaction of (9c) and (9d), xi(k) and ui(k) can always572

satisfy the state and input constraint sets. Theorem 2 is573

proven. �574
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