
RESEARCH

Neuroradiology
https://doi.org/10.1007/s00234-025-03832-6

demonstrating their efficacy in distinguishing tumor char-
acteristics [5–7].

Diffusion-weighted imaging (DWI) is the most estab-
lished quantitative MRI technique and the only one recom-
mended as a standard component of brain tumor imaging 
protocol [1]. It measures the Brownian motion of water 
molecules in tissues, providing insights into cellular den-
sity [8]. Commonly, DWI is analyzed by visually comparing 
the b-1000 isotropic map juxtaposed to an apparent diffu-
sion coefficient (ADC) map. A European glioma imaging 

Introduction

MRI is the primary modality for monitoring adult-type dif-
fuse gliomas, the most prevalent malignant brain tumors in 
adults, providing essential diagnostic and prognostic infor-
mation [1–3]. Conventionally, radiologists interpret MRI 
data visually, and several visually assessed MRI biomark-
ers are now part of routine clinical practice [4]. Quantita-
tive MRI sequences and their standardized or quantitative 
evaluation are gaining attention, with growing evidence 

Extended author information available on the last page of the article

Abstract
Purpose  To evaluate the comparability and reproducibility of standardized visual versus region-of-interest (ROI)-based dif-
fusion assessment and their prediction capacity for isocitrate dehydrogenase (IDH) mutation status in adult gliomas.
Methods  Preoperative MRI scans, including diffusion-weighted imaging (DWI), of grade 2–4 adult-type diffuse gliomas 
(n = 303) were evaluated by three raters and repeated after one month. Visual assessment used the categorization of the 
Visually AcceSAble Rembrandt Images-feature 17 classes (facilitated, dubious, restricted). ROI-based assessment placed 
circular ROI on the visually perceived lowest apparent diffusion coefficient (ADC) areas (absolute/aADC) and contralateral 
normal-appearing white matter (normalized/nADC). Agreement and correlation analysis between visual and ROI-based 
assessments were performed. Logistic regression was conducted for IDH prediction in the subgroup of 99 non-necrotic and 
non-hemorrhagic cases, selected from the full cohort with available IDH status.
Results  ROI-based assessment demonstrated superior inter- and intra-rater agreement (intraclass correlation coefficient ≥
0.56 (95%-CI: 0.48–0.63)) than visual assessment (Kendall’s W/Cohen’s weighted kappa ≥ 0.34 (95%-CI: 0.26–0.42)). 
Thresholds of 1,090 and 623 × 10−6 mm2/s for aADC, and 1.38 and 0.80 for nADC, distinguishing facilitated, dubious, and 
restricted diffusion, significantly correlated with visual assessments (P < .001). IDH classification accuracy of visual assess-
ment was comparable to that of the ROI-based method using thresholds of aADC 1,048 × 10− 6 mm2/sn and nADC 1.38 
(visual vs. aADC/nADC: 69% vs. 73%/70%). However, neither method achieved a balanced performance between specific-
ity (99% vs. 81%/75%) and sensitivity (14% vs. 57%/61%).
Conclusion  ROI-based diffusion assessment guided by visual input showed superior reproducibility than visual assessment 
alone. Although visual assessment demonstrated strong correlation with ADC thresholds and comparable overall IDH pre-
diction accuracy, the two methods differ in clinical profile: visual assessment offered high specificity but low sensitivity, 
whereas ROI-based assessment improved sensitivity at the cost of reduced specificity.

Keywords  Glioma · Magnetic resonance imaging · Diffusion-weighted imaging · Isocitrate dehydrogenase

Received: 7 January 2025 / Accepted: 26 October 2025
© The Author(s) 2025

Visual versus region-of-interest based diffusion evaluation and their 
diagnostic impact in adult-type diffuse gliomas

Aynur Azizova1,2 · Yeva Prysiazhniuk3,4 · Marcus Cakmak1,5 · Elif Kaya7 · Jan Petr1,8 · Frederik Barkhof1,6,9 ·  
Ivar J. H. G. Wamelink1,2 · Vera C. Keil1,2,6

1 3

https://doi.org/10.1007/s00234-025-03832-6
http://crossmark.crossref.org/dialog/?doi=10.1007/s00234-025-03832-6&domain=pdf&date_stamp=2025-11-7


Neuroradiology

survey reported that 78% of surveyed neuroradiologists prefer 
visual assessment of potential diffusion restriction [9]. While 
visual analysis is quick and widely adopted, it is inherently 
subjective. To address this, the Visually AcceSAble Rembrandt 
Images (VASARI) glioma imaging features set [10] introduced 
a standardized approach, categorizing diffusion assessment (fea-
ture 17) into three classes: restricted, dubious, and facilitated. 
In clinical practice, radiologists can opt against this plain visual 
analysis and choose a region-of-interest (ROI)-based assessment 
of diffusivity that produces absolute but normalizable values. 
Absolute ADC values directly reflect the diffusion properties 
within the ROI but are affected by technical factors. Normalized 
ADC values, the ratio of the absolute ADC to that of normal-
appearing white matter, reduce variability across sequences and 
scanners but depend on accurate reference region selection and 
may obscure direct comparability of absolute values.

Diffusion assessment is critical in radiological decision-
making, often alongside other MRI sequences [11, 12]. 
However, its independent diagnostic relevance has also been 
evaluated to better understand its clinical impact [13, 14]. One 
important application is isocitrate dehydrogenase (IDH) status 
prediction, a key biomarker for classifying adult-type diffuse 
gliomas. While visual assessment has been explored for its IDH 
genotyping, a recent meta-analysis [15] found limited evidence 
of its significance compared to other visual imaging features. 
In contrast, ROI-based assessments show strong potential for 
distinguishing IDH-wildtype tumors from IDH-mutant tumors 
[16–18], although the lack of consensus on ADC thresholds 
remains a significant limitation [19]. Almost all of these studies 
included tumors with necrosis and hemorrhage, defining fea-
tures of IDH-wildtype tumors [4, 12, 20–23], which degrade 
ADC map quality and limit the reliability of diffusion assess-
ments. Excluding such tumors could enhance the predictive 
accuracy and clinical applicability of DWI. Moreover, there 
is scant evidence in the literature regarding the correlation 
between visual and ROI-based approaches and the compara-
tive diagnostic accuracy of these methods.

This study aims to evaluate if the visual assessment of 
diffusion - represented by VASARI feature 17 - is compa-
rable with an ROI-based assessment and similarly reproduc-
ible. To explore a possible diagnostic impact of the diffusion 
evaluation method in daily practice, we assess the methods’ 
capacity to predict IDH status in adult-type diffuse gliomas, 
excluding tumors with necrosis and hemorrhage.

Methods

Study cohort

The medical ethics review committee (VUmc_2021-0437) 
approved this retrospective single-center study and waived 

informed consent. Eligible patients between January 2010 
and January 2021 were taken from a cohort presented in 
previous publications [12, 24]. The study cohort was 
sourced from the pseudonymized hospital glioma database 
(IMAGO) by I.W, a fourth-year neuro-oncology Ph.D. stu-
dent. Inclusion criteria were treatment-naïve patients with 
grades 2–4 adult-type diffuse gliomas according to the 5th 
World Health Organization Central Nervous System (WHO-
CNS) Classification. Patients with preoperative MRI data 
consisting of pre-contrast T1-weighted, T2-weighted, 
T2-FLAIR, post-contrast T1-weighted images, and DWI 
b-0 and b-1000 images with ADC maps generated automati-
cally on the scanner were analyzed. Exclusion criteria were 
incomplete histomolecular diagnosis (e.g., missing IDH 
status), incomplete or suboptimal preoperative MRI (e.g., 
motion artifacts), a more than one-month interval between 
preoperative MRI and surgery, suprasellar, midbrain, and 
cerebellar tumors due to their distinct radiophenotype, and 
pediatric age group.

Histomolecular diagnosis

Histomolecular diagnosis followed the 2021 WHO-CNS 
classification and served as the reference standard. IDH 
mutation status was determined using immunohistochem-
istry, next-generation sequencing, or methylation profiling. 
In IDH-wildtype tumors, the diagnosis of glioblastoma was 
made based on characteristic molecular features (e.g., TERT 
promoter mutation, EGFR amplification, or combined gain 
of chromosome 7 and loss of chromosome 10), along with 
supportive histological findings such as necrosis or micro-
vascular proliferation. A small subset of IDH-wildtype 
cases (n = 16) without available (not otherwise specified) or 
conclusive (not elsewhere classified) molecular data were 
included based on a multidisciplinary consensus diagnosis 
of aggressive clinical behavior. IDH-wildtype diffuse glio-
mas were considered grade 4 tumors based on their typically 
aggressive clinical course, regardless of histological grade.

MRI data and analysis

MR images of all patients (n = 303) were acquired on three 
1.5T (n = 120) and four 3 T scanners (n = 183); see Supple-
mentary Table 1 for details. Three raters with different 
levels of radiology experience (V.K., eleven years of neu-
roradiology experience; A.A., five years of neuroradiology 
experience; M.C., a fourth-year medical student with one 
month of specialized radiology training for this study using 
a different small cohort (n = 69) from the hospital glioma 
database) independently conducted imaging evaluations 
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using RADIANT software (version 3.4.1.13367; ​h​t​t​p​​s​:​/​​/​w​w​
w​​.​r​​a​d​i​a​n​t​v​i​e​w​e​r​.​c​o​m​/). The raters evaluated the visual and ​R​
O​I​-​b​a​s​e​d methods, focusing on the solid tumor parts. Hem-
orrhage, necrosis, cysts, and peritumoral edema identified 
from the evaluation of pre- and post-contrast T1-weighted, 
T2-weighted, and T2-FLAIR images were excluded from the 
assessments. In multifocal/multicentric glioma cases, the most 
aggressive-looking lesion defined by the visually lowest ADC 
signal was considered. Visual and ROI-based evaluations were 
performed twice (measurements 1 and 2) by the same raters 
at a one-month interval for all enrolled patients. Raters were 
blinded to the histomolecular diagnosis during evaluation.

Visual and ROI-based DWI assessments

Visual evaluations were conducted using the VASARI fea-
ture 17: facilitated, dubious, and restricted diffusion (Sup-
plementary Fig.  1). Facilitated diffusion is marked by a 
high or low b-1000 signal with a corresponding ADC signal 
higher than normal brain tissue. Dubious diffusion is identi-
fied by a high signal on b-1000 images with a correspond-
ing ADC signal resembling normal brain tissue. Restricted 
diffusion is characterized by a high DWI signal intensity on 
b-1000 images with a corresponding lower signal on ADC 
maps than normal brain tissue. If the lesion showed a het-
erogeneous diffusion pattern, the lowest diffusion score was 
recorded, irrespective of the relative size of the area.

ROI-based assessments included placing circular ROI on 
areas on the ADC map that visually appeared to have the 
lowest ADC (absolute ADC; aADC, mm2/s); see Supple-
mentary Fig. 1. The slice with the largest area of this visu-
ally lowest ADC region was exclusively considered. The 
mean value of the measured area was recorded. The circu-
lar ROI size was 20–40 mm2 to standardize the measure-
ments across the raters. The raters were instructed to cover 
the region with the lowest ADC as completely as possible 
without extending into areas with a visually different ADC. 
A same-size circular ROI was also positioned on the contra-
lateral normal-appearing white matter (ADCNAWM) for nor-
malization (aADC/ADCNAWM = normalized ADC; nADC).

While diffusion classification was based on the combined 
assessment of b-1000 DWI and ADC maps, T2-weighted 
images were also reviewed during evaluation to check the 
tumor’s T2 signal, particularly in cases where T2 shine-
through might be a concern.

Statistical analysis

Analysis was conducted using R package 4.3.0 by Y.P., a 
third-year Ph.D. student in neuroscience. The significance 
threshold was P <.05.

Descriptive analysis

Visual assessment was expressed as percentages per cat-
egory. ROI-based measurements were summarized with the 
median and interquartile range (IQR).

Rater agreement

Consistency among raters was evaluated separately for the 
two assessment rounds through group and pairwise inter-
rater agreements. In contrast, per-rater consistency between 
the first and second assessments was measured using intra-
rater agreement analysis. Bootstrapping with 1000 itera-
tions was used for all agreement analyses to calculate the 
confidence intervals. ROI-based measurements were ana-
lyzed using an intraclass correlation coefficient with two-
way random-effects and mixed-effects models for inter-rater 
and intra-rater agreements. In visual assessment, Kendall’s 
W and Cohen’s weighted kappa were used for group inter-
rater and pairwise inter-rater/intra-rater agreements. Agree-
ment values were interpreted as follows: 0.01–0.20, slight; 
0.21–0.40, fair; 0.41–0.60, moderate; 0.61–0.80, substan-
tial; and 0.81–0.99, almost perfect [25].

Correlation between visual and ROI-based 
DWI assessments

The overall distribution of ROI-based measurements 
(median, IQR) within visual assessment classes was calcu-
lated using all six measurements. Logistic regression analy-
sis was then used to determine aADC and nADC thresholds 
for distinguishing different visual assessment classes (facil-
itated vs. dubious, dubious vs. restricted). Spearman rank 
correlation analysis was conducted to identify the relation-
ship between visual assessment and thresholded ROI-based 
measurements. The interpretation of the correlation coeffi-
cient (⍴) was as follows: 0.00–0.09, negligible; 0.10–0.39, 
weak; 0.40–0.69, moderate; 0.70–0.89, strong; and 0.90–
1.00, very strong [26].

Inter-method IDH classification prediction 
performance

Considering the IDH status of cases, descriptive analyses 
were repeated for both visual and ROI-based measurements. 
Confusion matrices were used to assess the classification 
performance, treating IDH-wildtype gliomas as the positive 
class. The radiological IDH prediction was conducted only 
on cases without visual hemorrhage or necrosis, as these 
imaging features are primarily associated with IDH-wild-
type tumors [4, 12, 20–23] and provide evident descriptive 

1 3

https://www.radiantviewer.com/
https://www.radiantviewer.com/


Neuroradiology

with rater 2 assigning only 7% and 9% of cases to this cat-
egory in assessments 1 and 2, respectively. These percent-
ages were higher for rater 1 (25–26%) and rater 3 (16–20%). 
The most frequently chosen class was the dubious diffusion 
class for rater 2 (assessment 1/2: 64%/65%) and 3 (assess-
ment 1/2: 61%/57%), while rater 1 primarily assigned cases 
to the facilitated diffusion class (assessment 1/2: 40%/43%).

The median (IQR) of aADC ranged between 842 (401) 
and 898 (432) x 10− 6 mm2/s across all measurements. The 
median (IQR) of nADC ranged between 1.10 (0.49) and 
1.15 (0.61); see Fig. 2 and Supplementary Table 3.

Rater agreement

Group inter-rater agreements in measurements 1 and 
2 were moderate for visual assessment (0.51 (95%-CI: 
0.46–0.56) and 0.52 (95%-CI: 0.47–0.56)) and substantial 
for both aADC (0.66 (95%-CI: 0.60–0.72) and 0.64 (95%-
CI: 0.56–0.70)) and nADC (0.62 (95%-CI: 0.56–0.68) and 
0.62 (95%-CI: 0.55–0.68)). Pairwise inter-rater agreements 
were fair-moderate ( ≥ 0.34 (95%-CI: 0.26–0.42) and mod-
erate-substantial ( ≥ 0.56 (95%-CI: 0.48–0.63) for visual 
and ROI-based assessments, respectively; see Table 2 and 
Supplementary Fig. 2. Intra-rater inter-measurement agree-
ments were moderate-substantial ( ≥ 0.56 (95%-CI: 0.49–
0.64)) for visual assessment and substantial-almost perfect 
for ROI-based assessments ( ≥ 0.73 (95%-CI: 0.67–0.77)); 
see Table 3 and Supplementary Fig. 3.

Correlation between visual and ROI-based DWI 
assessments

The median (IQR) of aADC within visual assessment classes 
was as follows: facilitated 1,235 (368) x 10− 6 mm2/s, dubi-
ous 825 (214) x 10− 6 mm2/s, restricted 574 (169) x 10− 6 
mm2/s. Logistic regression analysis yielded optimal aADC 
thresholds of 1,090 × 10− 6 mm2/s for facilitated vs. dubious 
diffusion and 623 × 10− 6 mm2/s for dubious vs. restricted 
diffusion. The median (IQR) of nADC within facilitated, 
dubious, and restricted visual assessment classes were 
1.59 (0.51), 1.07 (0.27), and 0.73 (0.21), respectively. The 
nADC thresholds for facilitated vs. dubious and dubious vs. 
restricted diffusion were 1.38 and 0.80, respectively.

Subsequent analysis using the calculated thresholds 
revealed a strong correlation between visual and ROI-
based assessments, with an overall correlation coefficient of 
⍴=0.79 (P <.001) for visual vs. aADC and ⍴=0.81 (P <.001) 
for visual vs. nADC (Fig. 3). The results per rater and mea-
surement also revealed a consistently strong correlation (all 
P <.001); for details, see Table 4 and Supplementary Fig. 4.

characteristics, making diffusion status assessment less rel-
evant. Hemorrhage and necrosis were evaluated using con-
trast-enhanced MRI as part of a previously published study 
[12], where all 303 cases were independently assessed by 
three raters. In the current analysis, we applied those prior 
results and excluded cases in which at least two raters iden-
tified hemorrhage or necrosis (n = 204), yielding a final IDH 
prediction cohort of 99 patients (33 IDH-wildtype and 66 
IDH-mutant).

For visual assessments, cases rated as restricted diffusion 
were classified as IDH-wildtype, while a rating of dubious 
plus facilitated diffusion was classified as IDH-mutant. The 
rationale is the results of a previous study showing respec-
tive assumptions to be predictive [12].

Logistic regression analysis determined the IDH clas-
sification thresholds for the ROI-based values of both 
aADC and nADC. To ensure robustness and prevent data 
leakage, measurements across all raters were included 
and divided into training (70%) and test (30%) sets at 
the patient level. This approach ensured that all measure-
ments from the same patient were assigned exclusively to 
either the training or test set, preserving the independence 
of the datasets. The Random OverSampling Examples 
method [27] addressed a class imbalance regarding IDH 
status in the training set. Subsequently, the diagnostic 
performance of these thresholded ROI-based measure-
ments was calculated.

Results

Descriptive analysis

Table 1 shows the study cohort demographics.
The distribution of visual assessment classes per rater 

and measurement is shown in Fig.  1 and Supplementary 
Table 2. There was variability among evaluations by differ-
ent raters, particularly in the restricted diffusion class. Over-
all, restricted diffusion class was the least chosen category 
(restricted vs. facilitated and dubious: 7–26% vs. 74–93%), 

Table 1  Study cohort demographics
Sample size: number 303
Age: years (standard deviation) 56.7 (14.2)
Sex: female/male 114/189
Isocitrate dehydrogenase status: mutant (codeleted/
intact)/wildtype

82 
(34/48)/221

Histological World Health Organization grade: grades 
2/3/4

54/22/227

Caption: Table  1 describes the main characteristics of the study 
cohort.
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ROI-based assessments

The median (IQR) of aADC ranged from 1,006 (428) to 
1,081 (425) x 10− 6 mm2/s for IDH-wildtype and from 1,112 
(289) to 1,357 (569) x 10− 6 mm2/s for IDH-mutant gliomas 
across all six measurements. For nADC, the median (IQR) 
ranged from 1.22 (0.50) to 1.37 (0.45) for IDH-wildtype and 
from 1.48 (0.72) to 1.87 (0.80) for IDH-mutant gliomas; see 
Fig. 5; Table 5.

Optimal IDH classification thresholds were 1,048 × 10− 6 
mm2/s and 1.38 for aADC and nADC, respectively; see 
Fig. 5. The subsequent classification accuracy, sensitivity, 
specificity, and positive and negative predictive values for 
aADC were 73%, 57%, 81%, 58%, and 80%, respectively. 
The corresponding results for nADC were 70% accuracy, 
61% sensitivity, 75% specificity, 53% positive predictive 
value, and 80% negative predictive value.

Inter-method IDH classification prediction 
performance

Visual assessments

In IDH-mutant gliomas, facilitated diffusion was the pri-
mary assessment class (52–80%) across all six measure-
ments. For IDH-wildtype gliomas, facilitated (38–58%) and 
dubious (20–51%) classes were selected at similar rates. 
Restricted diffusion, the least common class overall, was 
more prevalent in IDH-wildtype gliomas (7–22%) com-
pared to IDH-mutant gliomas (0–3%); see Fig. 4; Table 5.

When cases with visually restricted diffusion were 
accepted as IDH-wildtype and the remaining as IDH-
mutant, the visual assessment achieved 69% accuracy, 14% 
sensitivity, 99% specificity, 89% positive predictive value, 
and 68% negative predictive value.

Fig. 1  Alluvial plots show the distribution of visual assessment classes per rater between measurements and per measurement between raters. 
Green and red colors represent isocitrate dehydrogenase-mutant (IDHmut) and -wildtype (IDHwt) gliomas, respectively
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this analysis served to explore whether the simpler visual 
approach can provide similar diagnostic utility in practice.

ROI-based assessment demonstrated superior rater 
reproducibility, with moderate-almost perfect inter-/intra-
rater agreements ( ≥ 0.56 (95%-CI: 0.48–0.63)) compared 
to fair-substantial agreements for visual assessment ( ≥
0.34 (95%-CI: 0.26–0.42)). ADC thresholds of 1,090 and 
623 × 10−6 mm2/s for aADC and 1.38 and 0.80 for nADC, 
distinguishing facilitated, dubious, and restricted diffusion, 
however, significantly correlated well with visual assess-
ments. For the clinical use case of IDH classification, visual 
assessment, when compared to the ROI-based method at 

Discussion

This study evaluated the reproducibility, correlation, and 
IDH categorization performance of visual vs. ROI-based 
diffusion assessment in adult-type diffuse gliomas. Our 
primary aim was to assess whether visual assessment of 
diffusion, as used in daily radiological practice, correlates 
well with ROI-based ADC measurements and could offer 
comparable reliability. We also tested whether this meth-
odological distinction had clinical relevance by evaluating 
the ability of each approach to predict IDH mutation status 
in gliomas. Rather than developing a full diagnostic model, 

Fig. 2  Stacked histograms show the distribution of absolute and normalized ADC values per rater and measurement. Green bars represent the 
overlap between the first (yellow bars) and second (blue bars) measurements
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combination of results bears challenging implications for 
clinical practice.

Reproducibility is crucial when evaluating the consis-
tency and reliability of imaging methods. Studies using 
VASARI criteria for visual assessment reported agreements 
ranging from fair to almost perfect (kappa 0.36–0.85), the 
spread highlighting the subjective nature of visual assess-
ments [28–31]. ROI-based methods, being possibly more 
impartial, demonstrated superior reproducibility with intra-
class correlation coefficient agreements ranging from 0.84 
to 0.99 [16, 32, 33]. Our study further showed that an ROI-
based evaluation offers a superior consistency (intraclass 
correlation coefficient 0.56–0.86) than the visual assess-
ment (kappa 0.34–0.76). The lower agreement values for 
the ROI-based method in our study compared to previous 
studies may be attributed to methodological differences. 
For instance, two studies [16, 32] measured three visually 
defined lowest ADC areas and used the mean value of these 
measurements, while another study [33] included all solid 
tumor components with low ADC signal, potentially leading 
to more reliable evaluations. In contrast, our study focused 
on measuring only one area representing the visually lowest 
ADC signal to reflect the day-to-day practice and accurately 
correlate these two methods.

The literature lacked direct comparisons between visual 
and ROI-based diffusion assessments until now. A related 
study [34] compared both approaches but focused on gli-
oma grading using a five-scale visual system, making direct 
comparison with our study challenging. Aligning with our 
results, they found a higher specificity (aADC 89% vs. 
visual 100%) and lower sensitivity (aADC 90% vs. visual 
50%) for a visual evaluation. Our study established ADC 
thresholds for visual assessment classes in gliomas to facili-
tate method correlation, especially for hard-to-classify dif-
fusion cases (aADC range: 623-1,090 × 10− 6 mm2/s and 
nADC range: 0.80–1.30), which are very common in glio-
mas and challenging for radiologists. These thresholds are 
presented to the community to streamline decision-making 
in clinical and research settings by integrating the reproduc-
ibility of ROI-based methods with the time efficiency of 
the visual method. Moreover, the results of this study could 
potentially be utilized to guide the application of diffusion 
data in advanced predictive models that incorporate artifi-
cial intelligence, which is currently hardly established.

Notably, inter-rater differences in assigning the 
“restricted” diffusion category were notable, ranging from 
7 to 9% for rater 2 to 25–26% for rater 1 and 16–20% for 
rater 3. While some variation may reflect differences in 
experience, the trend did not follow seniority. This vari-
ability occurred despite using the standardized VASARI 
criteria, suggesting that individual interpretation thresholds 
and confidence in borderline cases continue to influence 

a threshold of 1,048 × 10−6 mm2/s for aADC and 1.38 for 
nADC, achieved the highest specificity (visual vs. aADC/
nADC: 99% vs. 81%/75%), but had very low sensitivity 
(visual vs. aADC/nADC: 14% vs. 57%/61%). Regarding 
accuracy, the visual assessment showed comparable perfor-
mance to the ROI-based method (69% vs. 73%/70%). This 

Table 2  Pairwise inter-rater agreement in visual and ROI-based diffu-
sion assessments
Rater pairs Measurement 1 Measurement 2
Visual 
assessment*
Rater 1 & 2 0.42 (95%-CI: 0.34–0.50) 0.42 (95%-CI: 

0.34–0.49)
Rater 2 & 3 0.43 (95%-CI: 0.33–0.51) 0.37 (95%-CI: 

0.28–0.46)
Rater 1 & 3 0.34 (95%-CI: 0.26–0.42) 0.39 (95%-CI: 

0.31–0.47)
Absolute ADC 
mm2/s**
Rater 1 & 2 0.74 (95%-CI: 0.69–0.79) 0.69 (95%-CI: 

0.63–0.74)
Rater 2 & 3 0.58 (95%-CI: 0.48–0.67) 0.58 (95%-CI: 

0.47–0.67)
Rater 1 & 3 0.65 (95%-CI: 0.54–0.73) 0.63 (95%-CI: 

0.47–0.74)
Normalized 
ADC**
Rater 1 & 2 0.69 (95%-CI: 0.63–0.75) 0.66 (95%-CI: 

0.58–0.72)
Rater 2 & 3 0.56 (95%-CI: 0.48–0.63) 0.58 (95%-CI: 

0.50–0.65)
Rater 1 & 3 0.60 (95%-CI: 0.51–0.68) 0.62 (95%-CI: 

0.48–0.72)
Caption: Table  2 demonstrates the pairwise inter-rater agreement 
results in visual and ROI-based assessments of diffusion.
*Cohen’s weighted kappa
**Intraclass correlation coefficient

Table 3  Intra-rater inter-measurement agreement in visual and ROI-
based diffusion assessments
Visual assessment*
Rater 1 0.56 (95%-CI: 0.49–0.64)
Rater 2 0.75 (95%-CI: 0.68–0.82)
Rater 3 0.76 (95%-CI: 0.70–0.83)
Absolute ADC mm2/s**
Rater 1 0.76 (95%-CI: 0.70–0.80)
Rater 2 0.86 (95%-CI: 0.83–0.89)
Rater 3 0.79 (95%-CI: 0.75–0.83)
Normalized ADC**
Rater 1 0.73 (95%-CI: 0.67–0.77)
Rater 2 0.85 (95%-CI: 0.81–0.87)
Rater 3 0.77 (95%-CI: 0.72–0.82)
Caption: Table 3 demonstrates intra-rater inter-measurement agree-
ment results in visual and ROI-based assessments of diffusion.
*Cohen’s weighted kappa
**Intraclass correlation coefficient
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analysis practice. To isolate the specific diagnostic contribu-
tion of diffusion, we excluded tumors with visible necrosis 
or hemorrhage from the IDH classification analysis. These 
features are already strong indicators of IDH-wildtype glio-
mas and could bias the interpretation of diffusion by pro-
viding independent visual clues [4, 12, 20–23]. Moreover, 
they often degrade ADC map quality, limiting both visual 
and ROI-based assessments, even though such areas were 
excluded from analysis in all cases. Our aim was not to rep-
licate routine clinical workflow, but to test how well DWI-
based methods perform in diagnostically challenging cases, 
where diffusion signal might be one of the few available 
imaging clues.

Visual diffusion assessment for IDH classification was 
explored in several studies using the VASARI glioma 
imaging set [22, 23, 28–30, 35, 36]. Except for one study 
[28], none reported a significant predictive value for fea-
ture 17, visual assessment of diffusion, excluding it from 
multivariable models. Our study assessed the performance 
of different diffusion assessment approaches and found that 
the accuracy of visual assessment was comparable to that 
of aADC or nADC (69% vs. 73/70%). Nonetheless, both 
approaches revealed limitations, with the visual approach 
achieving high specificity but at the cost of low sensitivity, 
while the ROI-based method improved sensitivity but had 
a lower specificity. This imbalance highlights the challenge 
of reliably distinguishing glioma IDH characteristics using 
either method in isolation.

Studies using ROI-based diffusion assessment for IDH 
subtyping reported aADC thresholds between 900 and 
1,200 × 10− 6 mm2/s [11, 13, 16, 37–39] and nADC thresh-
olds between 1.28 and 1.60 [13, 16, 39]. Similarly, our 
study identified thresholds within this range, with an aADC 

visual classification. The ADC thresholds established in this 
study for distinguishing between facilitated, dubious, and 
restricted diffusion may help guide future efforts to stan-
dardize interpretation and reduce such variability. These 
observations highlight the value of quantitative support in 
improving consistency across observers.

On the other hand, the clinical use case we applied for 
this study may suggest that despite lower reproducibility, the 
visual assessment of diffusivity in glioma and possibly other 
brain tumors is sufficient and diagnostically comparable to 
the ROI-based method, thus clinically equally powerful. 
Obviously, IDH status is not exclusively based on DWI in 
clinical practice. The IDH analysis of this study is a means 
to demonstrate the relevance of the choice of diffusion 

Table 4  The results of correlation analysis between visual and ROI-
based diffusion assessments
Per rater visual 
vs. ROI-based 
assessments

Measure-
ment 1

Measure-
ment 2

⍴* (P-value) ⍴* (P-value)
Rater 1 Visual vs. absolute 

ADC mm2/s
0.78 (< 0.001) 0.77 

(< 0.001)
Visual vs. normal-
ized ADC

0.78 (< 0.001) 0.82 
(< 0.001)

Rater 2 Visual vs. absolute 
ADC mm2/s

0.79 (< 0.001) 0.80 
(< 0.001)

Visual vs. normal-
ized ADC

0.81 (< 0.001) 0.81 
(< 0.001)

Rater 3 Visual vs. absolute 
ADC mm2/s

0.80 (< 0.001) 0.83 
(< 0.001)

Visual vs. normal-
ized ADC

0.82 (< 0.001) 0.86 
(< 0.001)

Caption: Table 4 shows Spearman’s rank correlation analysis results 
for each rater and measurement.
*Spearman’s rank correlation coefficient

Fig. 3  Violin plots show the overall correlation between visual and 
ROI-based assessments of diffusion, including absolute and normal-
ized ADC, across all measurements. Red dashed lines represent the 
absolute/normalized ADC distribution thresholds within visual assess-
ment classes (facilitated, dubious, and restricted) derived from logistic 

regression analysis (absolute ADC: 1,090 x 10− 6 mm2/s for facilitated 
vs. dubious diffusion and 623 x 10− 6 mm2/s for dubious vs. restricted 
diffusion; normalized ADC: 1.38 for facilitated vs. dubious diffusion 
and 0.80 for dubious vs. restricted diffusion)
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Table 5  Distribution of visual and ROI-based assessment of diffusion in IDH-mutant and IDH-wildtype gliomas
Rater 1 Rater 2 Rater 3
run 1 run 2 run 1 run 2 run 1 run 2

Distribution of visual assessment classes %
IDH-mutant Facilitated 72% 80% 52% 52% 79% 80%

Dubious 25% 18% 48% 48% 21% 20%
Restricted 3% 2% 0% 0% 0% 0%

IDH-wildtype Facilitated 55% 58% 44% 38% 50% 46%
Dubious 29% 20% 47% 51% 43% 46%
Restricted 16% 22% 9% 11% 7% 8%

Distribution of absolute ADC median (IQR) x 10− 6 mm2/s
IDH-mutant 1,288 

(540)
1,357 
(569)

1,165 
(427)

1,166 
(520)

1,162 
(290)

1,112 
(289)

IDH-wildtype 1,049 
(566)

1,068 
(544)

1,081 
(425)

1,006 
(428)

1,040 
(333)

1,026 
(404)

Distribution of normalized ADC median (IQR)
IDH-mutant 1.62 

(0.81)
1.87 
(0.80)

1.49 
(0.57)

1.48 
(0.72)

1.56 
(0.35)

1.51 
(0.35)

IDH-wildtype 1.24 
(0.73)

1.33 
(0.68)

1.34 
(0.62)

1.22 
(0.50)

1.23 
(0.32)

1.37 
(0.45)

Caption: Table 5 describes the distribution of visual and ROI-based assessment of diffusion in IDH-mutant and IDH-wildtype gliomas using 
non-necrotic and non-hemorrhagic adult-type diffuse gliomas.
Abbreviation: run 1/2 = first/second assessments, IDH = isocitrate dehydrogenase, IQR = interquartile range

Fig. 4  Stacked bar plots show the distribution of visual diffusion assessment classes per rater and measurement in isocitrate dehydrogenase (IDH)-
mutant and -wildtype gliomas using non-necrotic and non-hemorrhagic adult-type glioma cases. IDHmut = IDH-mutant, IDHwt = IDH-wildtype
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Fig. 5  Stacked histograms show the absolute and normalized ADC distribution 
per rater and measurement in isocitrate dehydrogenase (IDH)-mutant and -wild-
type gliomas using using non-necrotic and non-hemorrhagic adult-type glioma 

cases. Red horizontal lines represent the optimal IDH classification thresholds of 
absolute/normalized ADC, derived from logistic regression analysis (absolute 
ADC threshold: 1,048 x 10-6 mm2/s; normalized ADC threshold: 1.38)
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differed: visual assessment was highly specific but lacked 
sensitivity, while ROI-based assessment improved sensitiv-
ity at the cost of lower specificity. Clinicians can, therefore, 
rely on visual DWI assessment in daily practice but should 
consider supplementing it with ROI measurements, particu-
larly when a more balanced detection performance or repro-
ducibility are required.
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