

Failure of normal development of central drive to ankle dorsiflexors relates to gait deficits in children with cerebral palsy.

3 Tue Hvass Petersen^{1,2}, Simon F. Farmer³, Mette Kliim-Due² and Jens Bo Nielsen^{1,2}

4 1) Department of Exercise and Sport Science, Nørre Alle 51, 2200 Copenhagen N, Denmark

5 2) Helene Elsass Center, Holmegåardsvej 28, 2920 Charlottenlund, Denmark

6 3) Sobell Department of Motor Neuroscience & Movement Disorders, Institute of Neurology,
7 University College London & Department of Clinical Neurology, National Hospital for
8 Neurology and Neurosurgery, Queen Square, London WC1 3BG, UK

9 Abstract word count: 250

10 **Total word count:** 7437

11 Number of figures: 8

12 Number of tables: 3

13 **Abbreviations:** CP, Cerebral Palsy; EEG, electroencephalography; EMG, electromyography;
14 MEG, magnetoencephalography; MEP, motor evoked potential; MVC, maximal voluntary
15 contraction; RMS, root mean square; TA, tibialis anterior muscle; TMS, transcranial magnetic
16 stimulation.

17 **Keywords:** Coherence; Development; Gait

18 Proof and correspondence to:

19 Tue Hvass Petersen

20 Department of Physical Exercise and Sport Sciences

21 University of Copenhagen,

22 Panum Institute 18.5

23 Blegdamsvej 3, 2200 Copenhagen N, Denmark.

24 Phone: +45 35 73 13 fax: +45 35 32 74 99, E-mail: tue@sund.ku.dk

25 **Abstract**

26 Neurophysiological markers of the central control of gait in children with cerebral palsy (CP) are
27 used to assess developmental response to therapy. Here we measure the central common drive to a
28 leg muscle in children with CP. We recorded EMGs from the Tibialis Anterior (TA) muscle of 40
29 children with hemiplegic CP and 42 typically-developing age-matched controls during static
30 dorsiflexion of the ankle and during the swing phase of treadmill walking. The common drive to
31 TA motoneurones was identified through time and frequency domain cross-correlation methods. In
32 control subjects, the common drive consists of frequencies between 1 and 60 Hz with peaks at beta
33 (15-25 Hz) and gamma (30-45 Hz) frequencies known to be caused by activity within sensori-motor
34 cortex networks: this drive to motoneurones strengthens during childhood. Similar to control
35 subjects, this drive to the least affected TA in the CP children tended to strengthen with age,
36 although compared to the control subjects it was slightly weaker. For CP subjects' of all ages the
37 most affected TA muscle common drive was markedly reduced compared both to their least
38 affected muscle and to controls. These differences between the least and most affected TA muscles
39 were unrelated to differences in the magnitude of EMG in the two muscles but positively correlated
40 with ankle dorsiflexion velocity and joint angle during gait. Time and frequency domain analysis of
41 on-going EMG recruited during behaviourally relevant lower limb tasks provides a non-invasive
42 and important measure of the central drive to motoneurones in subjects with CP.

43

44

45

46 **Introduction**

47 Can the developmental outcome of children with pre-natal brain lesions causing cerebral palsy (CP)
48 be improved and if so what would be the neurophysiological correlates of such an improvement?
49 (Blauw-Hospers et al. 2007). In individuals diagnosed with hemiplegic cerebral palsy (CP) the
50 ability to walk is impaired and loss of locomotor capability may greatly affect these subjects' ability
51 to participate in everyday activities such as education and fitness activities (Lepage et al. 1998).
52 Maintaining or even improving mobility throughout development in these children is a therapy goal
53 of great importance. However, attempts at optimizing gait training, for example, are hampered by
54 our lack of knowledge of the neural mechanisms involved in the control of gait and how they
55 change during motor development and the effect of early brain lesion on these changes. Normal
56 human lower limb muscle activation and walking involves activity in multiple neural networks that
57 are hierarchically organised (Hultborn and Nielsen 2007; Rossignol 2006). In studies of healthy
58 and neurologically impaired subjects, the strong corticospinal drive to Tibialis Anterior (TA)
59 muscle during gait has received particular attention because loss of TA activation is a universal
60 feature of the lower limb upper motoneurone syndrome (see Nielsen 2003 for review).

61 The CP syndrome emerges as the result of developmental adaptations to early brain lesions that
62 involve central motor pathways and as such the activity within the neural networks that provide
63 drive to spinal motoneurones is of crucial importance in understanding the pathophysiology of CP.
64 A neurophysiological measure of the central drive to spinal motoneurones involved in lower limb
65 muscle activation and gait is required and changes in the central drive in children developing with
66 CP needs to be understood.

67 Through time and frequency domain analysis of pairs of EMG signals the common drive to
68 motoneurones can be detected without experimental perturbation (Farmer 1998). Common drive is
69 detected over a broad frequency range between 1 and 60 Hz (De Luca et al. 1993; Farmer et al.
70 1993a; Halliday et al. 1995). Beta (15-25 Hz) and gamma (30-45 Hz) frequencies, which are in
71 excess of the mean motor unit firing rate, are of particular interest, since they are strongly related to
72 oscillatory corticospinal drive from the sensory-motor cortex (Brown et al. 1998; Conway et al.
73 1995; Kilner et al. 2000; Mima and Hallett 1999). Recently, the oscillatory central common drive
74 to spinal motoneurones during tonic leg muscle activation (Perez et al. 2006; Ushiyama et al. 2011)
75 and during walking has been measured in adults using EMG-EMG (Halliday et al. 2003) and EEG-
76 EMG coherence analysis (Petersen et al. 2012). In adult subjects common drive to motoneurones is

77 reduced by lesions of the corticospinal pathways projecting to upper (Farmer et al. 1993b; Smith et
78 al. 1999) and lower limb muscles (Hansen et al. 2005; Nielsen et al. 2008). Furthermore, in a recent
79 study of subjects with spinal cord lesions reduction in common drive to the TA muscle during
80 walking was linked to the degree of foot drop (Barthelemy et al. 2010).

81 The common drive to upper limb human motoneurones undergoes a developmental increase both
82 during static and dynamic muscle activation (Deutsch et al. 2011; Farmer et al. 2007; James et al.
83 2008). Recently it was shown that the common drive to motoneurones controlling the Tibialis
84 anterior (TA) muscle in the beta (15-25 Hz) and gamma (30-45 Hz) frequency bands increases with
85 age in healthy children during static dorsiflexion of the TA muscle and during the dynamic swing
86 phase of walking during which TA is active (Petersen et al. 2010). It was suggested that this age-
87 related increase in common drive reflects the functional maturation of the central neural networks
88 responsible for control of the ankle joint during walking.

89 In the present study we build on these findings and ask what effect early acquired brain lesions
90 causing hemiplegic CP have on the central drive to spinal motoneurone pools and its emergence
91 over the course of childhood and early adolescence.

92 We hypothesise that children with hemiplegic cerebral palsy will show loss and failure of
93 developmental emergence of central common drive to their TA motoneurones during static muscle
94 activation and during walking. We expect that this will be most evident for their most affected
95 muscle and that this loss of drive will correlate with deficits in the control of the ankle joint during
96 walking.

97

98

99

100

101

102

103

104 **Methods**

105 *Subjects*

106 Forty children with cerebral palsy (mean age= 10 years; age range 4-15 years; 26 male and 14
107 female) participated in the study. All children were diagnosed with congenital spastic hemiplegia
108 (19 subjects: right hemiplegia and 21 subjects: left hemiplegia) and classified according to the Gross
109 Motor Classification System (GMFCS), which is validated for use in CP subjects and describes five
110 levels of impairment (Palisano et al. 1997). Classification was performed by a pediatric neuro-
111 physiotherapist (MKD). In this study only children with mild-moderate hemiplegia at GMFCS
112 levels I and II were included (Level I, n=36, Level II, n=4). The study was approved by the local
113 ethics committee (H-B-2009-017) and all procedures were conducted within the standards of the
114 Helsinki declaration. Prior to all experiments all parents received written and verbal information,
115 and consent for participation was obtained from the parents and the child. Two subjects were
116 excluded from further analysis due to cross-talk in the EMG measurements (see below). Six
117 subjects had undergone lengthening of the Achilles tendon a minimum of one year prior to the
118 study. An analysis was performed excluding these subjects, but since this did not change any
119 conclusions, data from all subjects is presented. Subjects who had received Botulinum toxin
120 injections into the most affected calf muscle were included providing no injections had been given
121 within 6 months of the recordings. No subjects had received botox injections into the TA muscle.
122 Twenty-one children had been treated with a Botulinum toxin between 6 month and 7 years prior to
123 the study (median= 12 month). Two subjects were taking baclofen at the time of the study, one
124 subject was taking Levetiracetam to prevent epileptic seizures, one subject was taking an LHRH
125 antagonist (Procren) and one was taking sertraline as treatment for ADHD.

126 Data from static muscle activation (n=36, mean age= 9.4 years; age range 4-15 Years; 21 male and
127 15 female) and walking (n=42, mean age= 9.5 years; age range 4-15 Years; 24 male and 18 female)
128 in typically developing subjects was used to compare with the CP subjects. The common drive
129 developmental profile of this group has previously been published (Petersen et al. 2010). For the
130 purpose of further analysis, all children (CP and controls) were split into three different age groups:
131 4-7 yrs, 8-11 yrs and 12-15 yrs.

132

133 *Experimental procedures*

134 Two sets of experiments were performed in all subjects. First, we examined static muscle activation
135 of the TA muscle. The children were asked to sit comfortably on a plastic box that could be
136 adjusted according to height. With the left or right foot in front of them, keeping an angle of 100
137 deg. in both the knee and the ankle joint they were asked to produce a non-fatiguing weak static
138 contraction of the TA muscle for 1 minute against the hand of the experimenter who opposed the
139 movement. The experimenter monitored the EMG signal online. Two to three minutes of rest were
140 allowed before another trial was initiated. The hemiplegic subjects were able to produce EMG
141 activity in both legs (see for example, figure 1). However, it should also be noted that the CP
142 subjects reported that it took more effort to complete the task with the most affected leg and the root
143 mean square (RMS) EMG values were lower (see results). The second part of the experiments
144 consisted of 5 minutes of treadmill walking. The children were asked to choose their own walking
145 speed. Details of this can be found in table 1. After 5-10 minutes of familiarization, EMG
146 measurements and 3-D kinematic data was collected. All children had previous experience of
147 treadmill walking, and did not experience any difficulties regarding this task, however most held on
148 to the handlebar in front of the treadmill with one or both hands for safety.

149

150 *EMG recordings*

151 Bipolar EMG recordings were obtained from two sets of non-polarizable Ag-AgCL electrodes
152 (Blue Sensor, AMBU, Denmark) placed at the proximal and distal end of the TA muscle
153 respectively. In the control children we recorded only from the left leg TA muscle, whereas
154 recordings in the hemiplegic subjects were obtained from both left and right TA muscles and were
155 designated with respect to the side of the hemiplegia as the most affected (MA) and least affected
156 (LA) muscles, respectively. In all cases the inter electrode pair distances were two cm. Details on
157 the distance (influenced by limb size) between the two sets of electrode pairs can be found in table
158 1. The signal was amplified (GAIN =1000) and band bass filtered (10 Hz to 1 KHz) with a Wireless
159 EMG system (Zerowire EMG, Aurion S.l.r, Italy) and sampled at 2KHz (Using a micro 1401 AD
160 converter and spike 2 software, Cambridge Electronic Design, UK) and stored on a PC for further
161 analysis. A pressure resistive sensor placed under the heel of both feet was used to monitor the time
162 of heel contact in the case of treadmill walking. In three hemiplegic subjects the sensor was placed
163 under the medial part of the fore foot since these subjects failed to make heel contact during
164 walking. It was ensured in all cases that the heel trigger was activated with the first contact between

165 the foot and the ground with each step. The heel contact data were used as triggers for the EMG
166 epochs used in the frequency domain analysis. In the static muscle activation experiment we
167 included 60 seconds of EMG data. For the experiment on treadmill walking we used a total of 300
168 steps for each leg (EMG epochs) for each subject. Each epoch consisted of 500-600ms of data
169 corresponding to the EMG activity observed prior to heel strike. We avoided using EMG from the
170 time of heel strike and onwards to exclude heel strike artefacts from the analysis. Cross-talk
171 between the bipolar EMG recordings was recognized through visual inspection of the EMG and
172 through calculation of time and frequency domain analysis. Cross-talk contamination is easily
173 identified in the cumulant density function from the presence of very narrow peaks (< 2 ms) and in
174 the coherence estimates from the presence of coherence at all frequencies represented in the data
175 (see Fig. 1 in Hansen et al. 2005). All recordings with central peaks in the cumulant density
176 function lasting less than 5 ms or with coherence over the interval 0-150 Hz were consequently
177 omitted from further analysis. It should be noted that the risk of cross-talk increases with reduced
178 muscle size and hence shorter inter-electrode differences and with increased motor unit size. This
179 issue was addressed by measuring inter-electrode distances (see table 1). The results of the present
180 study show opposite effects to those expected from EMG cross-talk: there is lack of coherence in
181 the youngest (i.e. those with the smallest inter-electrode distance) and in the MA TA muscle
182 (expected to have the largest motor units).

183

184 *Kinematic recordings and analysis*

185 Six infrared Qqus cameras (Qualisys, Sweden) were used for kinematic recordings. Markers were
186 placed on both legs on 1) the caput fibulae, 2) the lateral malleolus and 3) the lateral side of the 5th
187 metatarophalangeal joint. The data were collected at a rate of 200 Hz on a PC and stored for further
188 analysis. Based on 30 randomly selected steps, we calculated the mean amount of ankle dorsiflexion
189 performed during the early swing phase $\mu\Delta\varphi$, the standard deviation (S.D.) of this and the mean
190 time $\mu\Delta t$ this movement took. From these parameters we calculated the mean velocity of the dorsi-
191 flexion movement $\mu\Delta\varphi/\mu\Delta t$ and the coefficient of variation (COV) of the dorsiflexion movement
192 S.D./ $\mu\Delta\varphi$

193

194 *Frequency domain and statistical analysis.*

195 Frequency domain analysis of the data was undertaken using the methods set out in detail by
196 Halliday *et al.* (1995). Briefly, the practice of full wave rectification of surface EMG signals was
197 adopted. This approach has been shown to maximize the information regarding timing of motor unit
198 action potentials (MUAP) whilst suppressing information regarding MUAP waveform shape
199 (Boonstra and Breakspear 2012; Halliday and Farmer 2010; Myers *et al.* 2003). As a precursor to
200 undertaking population analysis of the data the two rectified TA EMG signals were normalized to
201 have unit variance (Halliday and Rosenberg 2000). Rectified and normalized EMG signals are
202 assumed to be realizations of stationary zero mean time series, denoted by x and y . The results of
203 analysis of individual records generated estimates of the auto-spectra of the two EMGs
204 $f_{xx}(\lambda)$, $f_{yy}(\lambda)$, and their cross-spectra $f_{xy}(\lambda)$. We then estimated three functions that characterize the
205 signals' correlation structure: coherence, $|R_{xy}(\lambda)|^2$; phase, $\varphi_{xy}(\lambda)$; and cumulant density, $q_{xy}(u)$.
206 Coherence estimates are bounded measures of association defined over the range $[0, 1]$; cumulant
207 density estimates are not bounded, and phase is defined over the range $[-\pi, +\pi]$. For the present
208 data, coherence estimates provide a measure of the fraction of the activity in one surface EMG
209 signal at any given frequency that can be predicted by the activity in the second surface EMG
210 signal. In this way, coherence estimates quantify the strength and range of frequencies of common
211 rhythmic synaptic inputs distributed across the motoneurone pool. The timing relations between the
212 EMG signals are estimated from the phase. The cumulant density provides an unbounded time-
213 domain representation of the EMG-EMG correlation structure analogous to the motor unit cross-
214 correlogram (Halliday *et al.* 1995)

215

216 Pooled estimates provide a single time or frequency domain measure that describes the correlation
217 structure across a number of data sets (Amjad *et al.* 1997). Like individual coherence estimates,
218 pooled coherence estimates provide a normative measure of linear association on a scale from 0 to 1
219 (Halliday & Rosenberg, 2000). Similarly, pooled cumulant density estimates provide a measure of
220 the time-domain correlation across a number of records. Pooled spectra provide a normalised
221 average spectra.

222

223 The interpretation of pooled estimates is similar to those for individual records, except any
224 inferences relate to the population as a whole. Details of pooled coherence analysis and on setting
225 of confidence limits can be found in (Amjad *et al.* 1997). The approach used here to calculate

226 pooled coherence estimates was to pool individual coherency estimates (Farmer et al. 2007;
227 Halliday and Rosenberg 2000). The individual coherency estimate for record i was denoted as
228 $R_{xy}^i(\lambda)$, where this has been calculated from L_i segments of data. This coherency function is a
229 complex quantity, the corresponding coherence is its the magnitude squared.. The pooled coherence
230 across k records, at frequency λ is then:

231

$$232 \quad \left| \frac{\sum_{i=1}^k L_i R_{xy}^i(\lambda)}{\sum_{i=1}^k L_i} \right|^2$$

233

234

235

236 Estimates of the above pooled coherence provide a single parameter describing the correlation
237 structure, as a function of frequency, within the k records in a single population. This can be
238 considered analogous to single coherence estimate calculated from $\sum_{i=1}^k L_i$ segments of data.

239 Inherent within pooled coherence framework is the Chi-Squared χ^2 extended difference of
240 coherence test with the null hypothesis no difference in coherence at a given frequency. Like
241 coherence the χ^2 test is applied separately at each frequency of interest (see Amjad et al., 1997).
242 Changes in the correlation structure between two different subject populations, can be ascertained
243 by undertaking a χ^2 extended difference of coherence test on the populations to be compared. The
244 resulting χ^2 difference test, thus provides a metric of amount of pooled coherence difference at
245 each frequency between the two populations (Farmer et al. 2007).

246 Estimates of pooled coherence, pooled spectra, pooled cumulant density functions and pooled phase
247 were used to summarize the EMGs and the EMG-EMG correlation structure in each group of
248 subjects. Estimates of pooled coherence provide a single parameter describing the correlation
249 structure, as a function of frequency, within the records in a single population, where the total
250 number of records to be used equates to the number of subjects for each group.

251

252

253 In addition to pooled statistics the peak values of EMG-EMG coherence in the beta and gamma
254 frequency range were collected along with the duration and magnitude of the central peak in the
255 EMG-EMG cumulant density function and RMS EMG magnitude. The central peak was calculated
256 as the total time where the central peak was above the upper 95 % confidence limit.
257 Data were tested for normality before analysis using the Kolmogorov-Smirnov test. Data were rank
258 transformed since all peak coherences were found to be normally distributed. For the comparison of
259 peak coherence values, cumulant density measures, and leg kinematic data between the LA and MA
260 muscle and data from typically developing control subjects a 2-way factorial ANOVA general
261 linear model was calculated using SigmaPlot 11, with age ranges: 4-7 years, 8-11 years and 12-15
262 years as one factor and muscle: MA, LA and control as the other factor.
263 For the comparison of MA/LA ratios of beta and gamma coherence, RMS EMG amplitude and
264 kinematic measures across the three age groups a 1-way ANOVA was calculated. Multiple pair
265 wise comparisons were performed using Tukey's t-test. All values are given as mean \pm 95 %
266 confidence intervals. For correlation analysis we used Pearson product moment correlations.
267 Multiple linear regression analysis was used to account for the effect of age or EMG RMS
268 amplitude on the correlations between peak coherences and kinematic parameters
269

270 **Results**

271 *Static muscle activation*

272 During static activation all CP subjects were able to produce EMG in the Most Affected (MA) and
273 Least Affected (LA) TA muscles. A typical example is shown in figure 1 (A and B) in which
274 EMGs from the LA and MA TA muscles were recorded in a 12 year old subject during static ankle
275 dorsiflexion. The corresponding power spectra and output from the time/frequency analysis are
276 displayed in this figure. The χ^2 difference of coherence measure (Fig 1L) calculated for the two
277 muscles emphasizes that the main differences in the common drive between the LA and MA TA
278 muscles are at 10, 16-22 and 24-40 Hz, with the highest coherence values obtained from the LA TA
279 muscle. The corresponding time domain measures of synchrony show a central peak at time zero
280 with broad side lobes indicative of broad-peak synchrony in the MA TA muscle (Fig 1K). The LA
281 muscle (Fig 1M) shows a narrower central peak with a peak value of double that of the MA muscle.
282 From the phase plots (Fig. 1H and J) it is seen that the two EMGs were in phase over the frequency

283 range up to 50 Hz for the LA TA (Fig. 1J) whereas this was only the case for frequencies up to 10
284 Hz for the LA TA (Fig. 1H).

285 Using the technique of pooled coherence and Chi² comparisons the common drive to the muscles
286 during static activation was quantified for the MA and LA sides in all subjects (figure 2). The
287 subjects were divided into 3 age groups: 4-7 years (n=7; Fig 2A & 2B), 8-11 years (n=17; Fig 2D
288 & 2E) and 12-15 years (n=14; Fig 2G & 2H). In keeping with the results illustrated for the
289 individual subject there were marked MA vs. LA differences in pooled coherence (Fig 2C, 2F &
290 2I). The chi² difference of coherence between MA and LA muscles for the older age groups (8-11
291 and 12-15 years) showed marked differences in the range 10-50 Hz (Chi²: 75-125). The
292 comparison for the younger 4-7 year age group showed a less impressive MA and LA difference
293 (Chi²: 20 in range 10-50 Hz and 50 at 5 Hz). The interaction between age and the effects of the
294 CNS lesion was further explored through Chi² comparisons and through calculation of the
295 correlation between age and peak coherence (see Fig 3).

296 In figure 3 is shown Chi² differences for within side MA vs LA comparisons across age groups. The
297 three age groups were compared against one another: 4-7 vs. 8-11 years (Fig. 3A & 3B); 4-7 years
298 vs. 12-15 years (Fig. 3C & 3D) and 8-11 years vs. 12-15 years (Fig 3E & 3F). For the MA muscle
299 coherence there was an increase in common drive when comparing the youngest (4-7 years) age
300 against the oldest (12-15 years) age group (Chi²: 40-50 in frequency range 15-40 Hz). Some small
301 changes in common drive were observed when comparing the MA coherence between 4-7 and 8-
302 11 years age groups and also when comparing the 8-11 years age group with those of 12-15 years
303 age group (Chi²: 10-20 for frequency range 15-40 Hz). The Chi² differences were overall much
304 smaller than those observed in the same subjects when comparing the LA muscle coherence
305 strength between the different age groups. For the LA muscle there was a marked increase in
306 common drive in the range 15-50 Hz when comparing the youngest age group against the two older
307 groups (Chi²: 40-125 for frequency range 15-40 Hz). The largest difference between the coherence
308 values was observed for age ranges 4-7 years vs. 12-15 years. These results demonstrated that it
309 was between the ages 4-7 and 8-11 years that there was a maximal increase in the development of
310 the common drive to the LA muscle.

311 Figure 3 G & H display peak coherence (mean \pm 95 % confidence intervals) for the three age
312 groups in the beta (15-25 Hz) and gamma frequency bands (30-45 Hz) for the MA and LA TA

313 muscle in comparison to that of the TA muscle in typically developing children (control group).
314 Peak values are given in table 2

315 A significant effect of age group ($F(2,103)=7.9$, $p<0.001$) and muscle ($F(2,103)=39.6$, $p<0.001$) was
316 found for peak beta coherence, with no interaction between the two parameters ($F(4,103)=1.1$,
317 $p=0.34$). For peak gamma coherence an effect of age group ($F(2,103)=15.6$, $p<0.001$) and muscle
318 ($F(2,103)=15.59$, $p<0.001$) was found, with no significant interaction between the two parameters
319 ($F(4,103)=1.0$, $p=0.39$).

320 Pair wise comparisons across age ranges showed significantly lower levels of peak beta coherence
321 in the 4-7 yrs age group compared to the 8-11 yrs and ($p=0.005$) and the 12-15 yrs age groups
322 ($p<0.001$), respectively. No significant difference was observed between the 8-11 and the 12-15 yrs
323 age groups ($p=0.68$)

324 Pair wise comparisons across muscle showed significantly lower levels of peak beta coherence in
325 the MA TA muscle compared to the LA ($p<0.001$) and the control TA muscle ($p<0.001$),
326 respectively. No significant difference was observed between the LA and the control TA muscle
327 ($p=0.68$)

328 Pair wise comparisons across age ranges showed significantly lower levels of peak gamma
329 coherence in the 4-7 yrs age group compared to the 8-11 yrs and ($p<0.001$) and the 12-15 yrs age
330 groups ($p<0.001$), respectively. No significant difference was observed between the 8-11 and the
331 12-15 yrs age groups ($p=0.63$)

332 Pair wise comparisons across muscle showed significantly lower levels of peak gamma coherence
333 in the MA TA muscle compared to the LA ($p<0.001$) and the control TA muscle ($p<0.001$),
334 respectively. significantly lower levels of gamma coherence was observed between the LA and the
335 control TA muscle ($p=0.08$)

336

337 Higher amplitudes of EMG RMS were found for the LA side compared to the MA side ($P<0.001$,
338 for ratio MA/LA see Fig 3I). In the CP subjects for both the coherence and RMS EMGs, the ratio
339 for the MA and LA muscles (MA/LA) was calculated for each subject. The results are presented
340 for each of the 3 age groups in Fig 3I. The MA/LA ratio for the beta band coherence decreased
341 with increasing age group ($F(2,35)=3.6$, $p=0.04$). The gamma coherence ratio MA/LA did not

342 change significantly with increasing age group ($F(2,35)=1.3$, $p=0.29$). The MA/LA ratio for the
343 RMS EMG increased with increasing age group ($F(2,35)=6.4$, $p=0.004$). When the ratio MA/LA
344 was examined for individual subjects the tendency for RMS EMG to increase with age was
345 confirmed ($r=0.46$, $P=0.004$). The coherence MA/LA ratios for individual subject's showed an
346 effect of reduction with increasing age for beta frequencies ($r= -0.40$, $P=0.01$) and a tendency in this
347 direction for gamma frequencies ($r= -0.25$, $p=0.13$). Thus whilst the RMS EMG values for the MA
348 muscle approach those of the LA muscle with increasing age the relative modulation of the EMG
349 due to common drive either does not increase for gamma frequencies or for beta frequencies
350 decrease. To summarize during static TA muscle activation there are differences in beta and gamma
351 band coherence between the MA muscle and the LA muscle with a reduction of age-related
352 increases in coherence in the MA muscle.

353

354 *Muscle activation during walking*

355 Figure 4 illustrates for a single subject (same subject as figure 1) the common drive to the TA
356 muscle during gait. Rectified and averaged EMG from the MA and LA TA muscles during the
357 swing phase of gait is shown (Fig 4 A and B). The heel strike occurred at 0 ms. Both MA and LA
358 TA muscles showed modulation of the EMG activity throughout the swing phase. We focused on
359 the EMG activity prior to the heel strike, indicated by shaded areas which correspond to the first
360 peak of EMG activity where the forefoot is lifted to clear the toes above the ground during the
361 swing phase. Power spectra recorded from the two electrodes on the left and right sides, coherence
362 and phase plots for the EMG-EMG correlation are shown in Fig 4 C-J. For the MA muscle there is
363 coherence at low frequencies with little coherence at frequencies in excess of 10 Hz. For the LA
364 muscle there is significant coherence at all frequencies between 1 and 45 Hz. The difference in
365 common drive (higher magnitude coherence in the LA muscle) between MA and LA muscles is
366 quantified by the χ^2 difference plot (Fig. 4L) in which the primary differences between the two
367 muscles during gait are a low coherence frequencies (<5 Hz and at 10 Hz) and in the range 17-27
368 Hz. Figure 4 K and M show the corresponding MA and LA cumulant densities for this subject,
369 from these it can be seen that the overall level of EMG-EMG synchrony in the MA TA muscle is
370 less than 50% of that of the LA TA muscle. Note the longer duration of the central peak of
371 synchronization during gait as compared to static contraction. This is explained by the
372 synchronizing effect of the EMG envelope during gait (cf. Hansen et al. 2005; Nielsen et al. 2008).

373 The pooled coherence data for all CP subjects during walking are shown in figure 5. As for the
374 static contractions the data are presented for the MA and LA TA muscle across 3 age groups: 4-7
375 years (n=7; Fig. 5A & 5B), 8-11 years (n=17; Fig. 5D & 5E) and 12-15 years (n=14; Fig 5G & 5H).
376 In comparison to the MA muscle, the values of coherence in the LA muscle across a broad
377 frequency range (1-50 Hz) at each age were greater and this was shown clearly in the Chi²
378 comparisons (Fig. 5C, 5F and 5I). The Chi² coherence difference was least marked for the MA
379 versus LA comparison in the 4-7 years age group (Chi²: 150 at 3 Hz and 10-50 for range 10-40 Hz).
380 The most marked differences between the MA and LA muscles were identified for the older age
381 groups: 8-11 and 12-15 years, with particularly marked differences for the 4-7 vs. 8-11 year group
382 comparison at low <10 Hz frequencies (Chi²: ~200) as well as frequencies between 10 and 50 Hz
383 (Chi²: 50-150).

384 The effect of age was explored further through Chi² comparisons and through calculation of the
385 correlation between age and peak coherence (Fig. 6). As with static contraction for the LA muscle
386 of CP subjects there was a similar effect of age to that observed in typically developing subjects
387 performing the same task (see Petersen *et al.*, 2010). The youngest age group (4-7 years) showed
388 less gamma band (~40 Hz) common drive compared to the 8-11 and 12-15 year age groups, Fig 6 B
389 and D (Chi²: 25 for range 25-50 Hz). In the gamma frequency range there was little difference in
390 common drive between the two older age groups (Fig 6 F). Using Chi² analysis no evidence of a
391 clear age related increase in the beta frequency band was observed for gait. Interestingly the Chi²
392 comparison detected differences for the MA TA muscle in favor of the oldest group when compared
393 to the two younger groups (see Fig 6C and 6E, Chi²: 20-50 at 35 Hz), suggesting that weak gamma
394 common drive during gait developed late for the MA muscle.

395 Figure 6 G & H show peak coherence (mean \pm 95 % confidence intervals) for the three age groups
396 in the beta (15-25 Hz) and gamma frequency bands (30-45 Hz) for the MA and LA TA muscle in
397 CP subjects and for the TA muscle of typically developing children. Peak values are given in table
398 2. No significant effect of age range ($F(2,109)=2.3$, $p=0.11$), but a significant effect of muscle
399 ($F(2,109)=24.4$, $p<0.001$) was found for peak beta coherence, with no interaction between the two
400 parameters ($F(4,109)=0.39$, $p=0.82$).

401 For peak gamma coherence a significant effect of both age range ($F=10.2$, $p<0.001$) and muscle
402 ($F=36.0$, $p<0.001$) was found, with no significant interaction between the two parameters
403 ($F(4,109)=1.0$, $p=0.46$).

404 Pair wise comparisons across muscle showed significantly lower levels of peak beta coherence in
405 the MA TA muscle compared to the LA ($p<0.001$) and the control TA muscle ($p<0.001$),
406 respectively. No significant difference was observed between the LA and the control TA muscle
407 ($p=0.97$)

408 Pair wise comparisons across age ranges showed significantly lower levels of peak gamma
409 coherence in the 4-7 yrs age group compared to the 8-11 yrs and ($p=0.02$) and the 12-15 yrs age
410 groups ($p<0.001$), respectively. No significant difference was observed between the 8-11 and the
411 12-15 yrs age groups ($p=0.13$)

412 Pair wise comparisons across muscle showed significantly lower levels of peak gamma coherence
413 in the MA TA muscle compared to the LA ($p<0.001$) and the control TA muscle ($p<0.001$),
414 respectively. No significant difference was observed between the LA and the control TA muscle
415 ($p=0.63$)

416

417 In the CP subjects the ratio of the coherence and RMS EMG between the MA and LA muscles
418 during walking was calculated for each subject. The results are presented for each of the 3 age
419 groups in Fig 6I. The MA/LA ratio for the beta and gamma band coherence ranges showed a
420 tendency to decrease with increasing age (see Fig 6I) but these did not reach statistical significance
421 ($F(2,35)=0.75$, $p=0.48$ and $F(2,35)=1.0$, $p=0.39$). The MA/LA ratio for the RMS EMG showed a
422 tendency to increase between the youngest and oldest age groups but this did not reach statistical
423 significance ($F(2,35)=1.1$, $p=0.33$). When the ratio MA/LA was examined for individual subjects
424 the tendency for RMS EMG to increase with age was confirmed ($r=0.18$, $P=0.28$). The coherence
425 MA/LA ratios for individual subject's showed little affect of subjects' age ($r= -0.03$, $P=0.85$ for
426 beta and $r= -0.22$, $p=0.19$ for gamma). Thus there was a weaker tendency for MA/LA ratio to
427 increase for RMS EMGs and decrease for coherence with increasing age during walking when
428 compared to static muscle activation. To summarize during walking differences between the MA
429 and the LA muscles in beta and gamma band coherence with a loss of age-related increases in
430 coherence in the MA were found.

431

432 *EMG-EMG synchronization during static muscle activation and walking*

433 Figure 7 (upper part) shows pooled cumulant density plots obtained during static activation for the
434 MA, LA and control TA muscle across all three age groups: 4-7 yrs (Fig. 7 A, B & C), 8-11 years
435 (Fig. 7 D, E & F) and 12-15 years (Fig. 7 G, H& I). Peak cumulant magnitudes and peak cumulant
436 durations are given in table 3. The peak size showed an overall effect of age group ($F(2,109)=15.8$,
437 $p<0.001$) and muscle ($F(2,109)=23.2$, $p<0.001$) with no significant interaction between the two
438 parameters ($F(4,109)=0.8$, $p=0.53$).

439 Pair wise comparisons showed significantly smaller peaks for the 4-7 yrs age group compared to the
440 8-11 yrs and ($p=0.02$) and the 12-15 yrs age groups ($p<0.001$), respectively. No significant
441 difference was observed between the 8-11 and the 12-15 yrs age groups ($p=0.34$)

442 Pair wise comparisons across muscle showed significantly smaller peaks in the MA TA muscle
443 compared to the LA ($p<0.001$) and the control TA muscle ($p<0.001$), respectively. No significant
444 difference was observed between the LA and the control TA muscle ($p=0.99$)

445 Pair wise comparisons showed significantly longer peak duration the 4-7 yrs age group compared to
446 the 12-15 yrs age groups ($p<0.001$). No significant difference was observed between the 8-11 and
447 the 4-7 ($p=0.06$) and 12-15 yrs age groups ($p=0.34$), respectively

448 Pair wise comparisons across muscle showed significantly longer peak duration for the MA TA
449 muscle compared to the LA ($p=0.002$) and the control TA muscle ($p=0.02$), respectively. No
450 significant difference was observed between the LA and the control TA muscle ($p=0.61$)

451

452 Figure 7 (lower part) shows pooled cumulant density plots obtained during walking for the MA,
453 LA and control TA muscle across all three age ranges: 4-7 yrs (Fig. 7 J, K & L), 8-11 years (Fig. 7
454 M, N & O) and 12-15 years (Fig. P, Q & R). Peak sizes and durations are given in table 3. The
455 peak size showed no significant effect of age group ($F(2,109)=0.002$, $p=0.99$) but an overall effect
456 of muscle ($F(2,109)=42.8$, $p<0.001$) with no significant interaction between the two parameters
457 ($F(4,109)=0.69$, $p=0.60$) was observed.

458 Pair wise comparisons across muscle showed significantly smaller peaks in the MA TA muscle
459 compared to the LA ($p<0.001$) and the control TA muscle ($p<0.001$), respectively. No significant
460 difference was observed between the LA and the control TA muscle ($p=0.75$)

461 No differences ($p>0.05$) were observed for the peak duration and the effect of gait modulation on
462 the peak duration renders it meaningless

463

464

465 *Kinematic recordings*

466 There was a significant effect of age group ($F(2,109)=3.6$, $p=0.03$) and leg ($F(2,109)=19.1$,
467 $p<0.001$) when comparing the ankle joint dorsiflexion movement ranges (Fig 8A). A significant
468 higher movement range was found for the LA and control ankle joint compared to the MA leg for
469 the two oldest age groups (8-11 yrs; $p<0.001$ & $p=0.011$, 12-15 yrs; $p<0.001$ & $p=0.01$).

470 There was not a significant effect of age group ($F(2,109)=2.3$, $p=0.11$) but a significant effect of
471 leg ($F(2,109)=34.4$, $p<0.001$) when comparing the ankle joint dorsiflexion movement velocities
472 (Fig 8B). A significant higher movement velocity was found for the LA and control ankle joint
473 compared to the MA leg for the all three age groups (4-7 yrs; $p=0.013$ & $p=0.004$, 8-11; $p>0.001$ &
474 $p<0.001$, 12-15 yrs; $p<0.001$ & $p<0.001$).

475 The COV of the dorsiflexion movement decreased with age for the LA side ($r=0.56$, $p<0.001$) but
476 not for the MA side ($r=0.28$, $p=0.085$) showing a similar effect for the LA side as for that of the
477 controls (Petersen et al. 2010). No significant relationship between MA or LA COV of the
478 dorsiflexion movement and peak MA or LA beta and gamma coherence was observed ($p>0.05$) nor
479 was the MA/TA beta or gamma coherence ratio correlated with the MA/LA COV ratio ($p>0.05$)

480 The functional significance of the difference in coherence between the LA and MA TA muscle was
481 further explored. Because of inter-subject differences and the effects on coherence of age we
482 calculated the ratio peak coherence magnitude for beta and gamma frequency ranges (see Fig 3I and
483 6I) and compared this to the ratio of ankle joint movement range and the ratio of ankle joint
484 velocity. Comparison between the beta coherence ratio and the ankle dorsiflexion angle ratio and
485 movement velocity ratio (Fig 8C, D) revealed positive relationships independent of the effects of
486 age and RMS EMG ($r=0.57$, $p<0.001$; $r=0.61$, $p<0.001$, respectively). No relationship was
487 observed between either the MA/LA gamma coherence ratio ($r=0.08$, $p=0.64$ & $r=0.11$, $p=0.5$,
488 respectively) or the MA/LA RMS EMG ratio ($r= 0.17$, $p=0.32$ & $r=0.24$, $p=0.15$, respectively) and
489 the MA/LA ratios for range and velocity of joint movement (Fig 8E-H). No significant ($p>0.05$)

490 relationships were observed between the MA/LA coherence ratios obtained during static contraction
491 and kinematic parameters.

492

493 **Discussion**

494

495 We have shown that the common drive to the most affected TA muscle during static dorsiflexion
496 and walking in children with CP is reduced as compared to the least affected TA muscle and
497 typically developing control subjects. The reduction of common drive during gait in the CP children
498 was related to deficits in their ability to lift the foot in the swing phase of gait.

499 *Methodological considerations*

500 Cross-talk between recording electrodes will always be a concern for analysis of coherence between
501 EMG recordings from adjacent muscles or as in the present study from the same muscle. To
502 minimise the influence of cross-talk we ensured that the distance between recording electrodes was
503 as large as possible. In previous studies we have ensured a distance of more than 10 cm between
504 electrodes, which exceeds the length of individual muscle fibres in the adult TA muscle. It was not
505 possible to separate the electrodes by an as long distance especially in the smaller children in this
506 study (Table I). We do not know the exact length of TA muscle fibres in the different age groups,
507 but if there is a relatively proportionate scaling to body size, the distance between electrodes was
508 considerably longer than the fibre length even in the youngest (smallest) children. It may also be
509 argued that the youngest children had the shortest distance between electrodes but the least coupling
510 between the recordings in both the time and frequency domains. Cross-talk due to sampling of
511 activity from too closely located electrodes would have been expected to produce the opposite
512 result. To further minimize any influence from cross-talk, all data showing either very narrow peaks
513 in the cumulant density function (less than 2 ms) or equal and significant coherence at all
514 frequencies were deemed to be influenced by cross-talk and therefore omitted from further analysis.
515 All recordings that were used for the analysis thus showed coherence for only restricted frequency
516 band and cannot easily be explained by cross-talk.. It should also be noted that coherence in a
517 similar restricted frequency band and central peaks of synchrony in the time domain with a similar
518 duration as observed for surface EMG recordings in the present study have been observed in needle
519 and wire recordings of the activity of individual motor units (Hansen et al. 2005; Farmer et al.
520 2003).

521

522 *Central motor pathways underlying common drive in CP*

523 Based on studies of patients with CNS lesions, primate physiology and MEG/EEG-EMG coherence
524 it is recognized that motor unit synchronization and beta and gamma rhythm common drive to
525 upper (Baker et al. 1997; Brown et al. 1998; Conway et al. 1995; Datta et al. 1991; Farmer et al.
526 1993a; Farmer et al. 1993b; Halliday et al. 1998; Mima and Hallett 1999; Salenius et al. 1997) and
527 lower limb motoneurones (Gross et al. 2000; Hansen and Nielsen 2004; Hansen et al. 2002) are the
528 result of oscillatory activity in cortical networks. Other peripheral feedback mechanisms may play a
529 supportive but not essential role in maintaining EMG-EMG and EEG-EMG coherence (Farmer et
530 al. 1993a; Hansen et al. 2002; Kilner et al. 2004; Pohja and Salenius 2003). In healthy adults the
531 duration of single TA motor unit synchrony during static muscle activation is ~13 ms between TA
532 motor units (Datta et al., 1991). In subjects who have suffered stroke damage to central motor
533 pathways or spinal cord damage short-term synchrony is lost and may be replaced by longer
534 duration (~29 ms) broad-peak synchrony (Datta et al. 1991). In the CP subjects the central
535 cumulant peak size was smaller for the MA TA muscle both during static muscle activation and
536 during walking supporting the results of Rose & McGill (2005) in which CP subjects were shown
537 during static contraction to have reduced short-term synchronization compared to controls. Spinal
538 cord lesions in cat produce a loss of short-term synchrony with the emergence of broad peak
539 synchrony, which results from lesion-induced increased drive to the motoneurone pool from
540 synchronized polysynaptic inputs (Kirkwood et al. 1982). In CP subjects the combined results of
541 the loss of higher frequencies of coherence coupled with smaller central cumulant peaks of longer
542 duration during static muscle activation suggests that for the MA muscle motoneurone activation is
543 achieved through polysynaptic pathways rather than from directly projecting corticospinal
544 pathways. The RMS EMG amplitude was larger for all age groups in the LA TA muscle compared
545 to the MA TA muscle. However, taking into account individual differences in the CP subjects
546 through calculation of the ratio MA/LA for coherence and RMS EMG amplitude we were able to
547 show that for static muscle activation with increasing age, in contrast to the coherence values, the
548 RMS EMG ratio between the MA and LA muscle normalized. We suggest therefore that RMS
549 EMG levels during static muscle activation cannot explain the developmental pathophysiology of
550 CP without taking into account the failure of the modulatory effects on motoneurone activity of
551 common drive to develop.

552

553 *The relationship between common drive and TA muscle activation during walking*

554 Tibialis Anterior is the prime dorsiflexor of the ankle and its activation is essential in allowing the
555 toes to clear the ground during the swing phase of gait. The importance of central drive for normal
556 TA muscle function is evident clinically and in neurophysiological studies (Barthelemy et al. 2010;
557 Halliday et al. 2003; Hansen et al. 2005; Nielsen et al. 2008; Petersen et al. 2001). It has recently
558 been shown that during the swing phase of gait the EEG is coherent with TA muscle EMG at
559 frequencies in the range 24-40 Hz (high beta-gamma range) and at 10 Hz (Petersen et al. 2012).
560 These results show that during the swing phase of gait the TA muscle EMG synchronizes with EEG
561 over the leg area of sensory-motor cortex indicating that during this period of gait TA EMG is also
562 integrated (synchronized) within a cortical oscillatory network. Taken together these findings
563 support the view that as for static TA activation during walking the beta and gamma drives to the
564 muscle are the result of oscillatory synchrony within cortical circuits that include the leg area of the
565 primary motor cortex.

566 Impaired central drive to TA results in a dropped foot and a gait pattern characterized by toe rather
567 than heel strike. Interestingly 24-40 Hz common drive to thigh muscles has been shown to increase
568 following treadmill training and improvement of locomotion skills (Norton and Gorassini 2006).
569 During normal gait the common drive is present in the early and late part of the swing phase with a
570 maximum right before the foot is placed on the ground in very late swing phase (Halliday et al.
571 2003). Therefore, measurement of common drive provides important information about the
572 corticospinal involvement in the control of the TA muscle at a time where precise control of the
573 ankle joint is required during human walking. Gamma range common drive (~35-55 Hz) has been
574 described in strongly contracting hand muscles (Brown et al. 1998; McAuley et al. 1997) and is
575 coherent with cortical rhythms (Brown et al. 1998). Our previous study and the results of the
576 present study support those of Omlor *et al.* (2007) which showed a switch from beta to gamma band
577 drive during dynamic force output for upper limb muscles. Omlor *et al.* (2007) suggested that
578 gamma range EEG-EMG coherence underpins binding of the attentional, visual, somatosensory
579 information necessary for control of dynamic force output as opposed to static force output. We
580 suggest that such integrated dynamic force control of the ankle joint during gait is essential for co-
581 coordinated walking and that failure of development of gamma range common drive to TA muscle
582 during walking may be a pathophysiological underpinning of the increased clumsiness and excess
583 falls seen in CP children. In our recent study on normally developing children we found an increase

584 in gamma band coherence with age that was associated with a reduction in the step to step
585 variability (COV) (Petersen et al. 2010). In the present study a similar relationship was not found
586 for CP children for either the most or least affected leg, although COV decreased with age for the
587 LA side but not for the MA side. This lack of correlation is in all likelihood explained by low values
588 and large inter-individual variability of common gamma drive levels in the CP subjects. We did
589 find, however, a significant relation between the LA/MA ratio of beta coherence and the range and
590 velocity of dorsiflexion in the swing phase of walking. The LA/MA ratio gives a measure of the
591 difference in function between the two legs within each individual and thus greatly reduces inter-
592 subject variability. The significant correlation of beta coherence with the functional kinematic
593 parameters, corrected for age and EMG magnitude suggests that this measure of central drive to TA
594 motoneurones is of functional significance for the gait ability of the children. Furthermore the
595 MA/LA ratios of beta and gamma coherence for static muscle activation did not correlate with the
596 functional kinematic parameters. Static muscle activation is used widely in the measurement of
597 motor unit synchrony however our finding signifies that the common drive should also be measured
598 during functionally relevant conditions.

599 We do not as yet have data showing increases in EEG-EMG coherence during static TA activation
600 and during walking across childhood or in subjects with CP. However, for upper limb muscles the
601 increases in EMG-EMG synchrony and coherence seen in childhood are mirrored by an increase in
602 beta and gamma EEG-EMG coherence during childhood (Graziadio et al. 2010; James et al. 2008).
603 We have suggested therefore that the developmental increases in TA EMG-EMG synchrony and
604 coherence in static activation and walking across childhood reflect that the TA muscle receives
605 increased oscillatory drive from motor cortex networks. We now suggest that the failure of the MA
606 TA muscle to show increases in beta and gamma range coherence across childhood is evidence that
607 in CP there is a failure of development of oscillatory motor cortex networks and a failure to
608 integrate TA EMG activity through the mechanism of oscillatory synchrony with these cortical
609 networks.

610

611 *Conclusion*

612 We conclude that children with CP show reduced oscillatory beta and gamma common drive to
613 spinal motoneurones that innervate the MA TA muscle during static contraction and gait. The

614 relation between the MA/LA ratio of beta and gamma coherence during gait and the kinematics of
615 gait suggests that the time and frequency domain analyses of EMGs may in the future provide
616 pathophysiologically meaningful and functionally relevant measures of the effect of gait training
617 and other therapeutic interventions on the cortical drive to spinal motoneurones during gait in
618 children with CP. The ease with which these techniques may be applied makes them ideal for
619 longitudinal studies of training interventions in which mechanistic understanding of neuro-plastic
620 changes in central networks is required.

621

622 *References*

623 **Amjad AM, Halliday DM, Rosenberg JR, and Conway BA.** An extended difference of coherence test for
624 comparing and combining several independent coherence estimates: theory and application to the study of
625 motor units and physiological tremor. *J Neurosci Methods* 73: 69-79, 1997.

626 **Baker SN, Olivier E, and Lemon RN.** Coherent oscillations in monkey motor cortex and hand muscle
627 EMG show task-dependent modulation. *J Physiol* 501 (Pt 1): 225-241, 1997.

628 **Barthelemy D, Willerslev-Olsen M, Lundell H, Conway BA, Knudsen H, Biering-Sorensen F, and**
629 **Nielsen JB.** Impaired transmission in the corticospinal tract and gait disability in spinal cord injured persons.
630 *J Neurophysiol* 2010.

631 **Blauw-Hospers CH, de Graaf-Peters VB, Dirks T, Bos AF, and Hadders-Algra M.** Does early
632 intervention in infants at high risk for a developmental motor disorder improve motor and cognitive
633 development? *Neurosci Biobehav Rev* 31: 1201-1212, 2007.

634 **Boonstra TW, and Breakspear M.** Neural mechanisms of intermuscular coherence: implications for the
635 rectification of surface electromyography. *Journal of Neurophysiology* 107: 796-807, 2012.

636 **Brown P, Salenius S, Rothwell JC, and Hari R.** Cortical correlate of the Piper rhythm in humans. *J*
637 *Neurophysiol* 80: 2911-2917, 1998.

638 **Conway BA, Halliday DM, Farmer SF, Shahani U, Maas P, Weir AI, and Rosenberg JR.** Synchronization
639 between motor cortex and spinal motoneuronal pool during the performance of a maintained
640 motor task in man. *J Physiol* 489 (Pt 3): 917-924, 1995.

641 **Datta AK, Farmer SF, and Stephens JA.** Central nervous pathways underlying synchronization of human
642 motor unit firing studied during voluntary contractions. *J Physiol* 432: 401-425, 1991.

643 **De Luca CJ, Roy AM, and Erim Z.** Synchronization of motor-unit firings in several human muscles. *J*
644 *Neurophysiol* 70: 2010-2023, 1993.

645 **Deutsch KM, Stephens JA, and Farmer SF.** Developmental profile of slow hand movement oscillation
646 coupling in humans. *J Neurophysiol* 105: 2204-2212, 2011.

647 **Farmer SF.** Rhythmicity, synchronization and binding in human and primate motor systems. *J Physiol* 509 (Pt 1): 3-14, 1998.

648 **Farmer SF, Bremner FD, Halliday DM, Rosenberg JR, and Stephens JA.** The frequency content of
649 common synaptic inputs to motoneurones studied during voluntary isometric contraction in man. *J Physiol*
650 470: 127-155, 1993a.

651 **Farmer SF, Gibbs J, Halliday DM, Harrison LM, James LM, Mayston MJ, and Stephens JA.** Changes
652 in EMG coherence between long and short thumb abductor muscles during human development. *J Physiol*
653 579: 389-402, 2007.

654 **Farmer SF, Swash M, Ingram DA, and Stephens JA.** Changes in motor unit synchronization following
655 central nervous lesions in man. *J Physiol* 463: 83-105, 1993b.

656 **Graziadio S, Basu A, Tomasevic L, Zappasodi F, Tecchio F, and Eyre JA.** Developmental Tuning and
657 Decay in Senescence of Oscillations Linking the Corticospinal System. *The Journal of Neuroscience* 30:
658 3663-3674, 2010.

660 **Gross J, Tass PA, Salenius S, Hari R, Freund HJ, and Schnitzler A.** Cortico-muscular synchronization
661 during isometric muscle contraction in humans as revealed by magnetoencephalography. *J Physiol* 527 Pt 3:
662 623-631, 2000.

663 **Halliday DM, Conway BA, Christensen LO, Hansen NL, Petersen NP, and Nielsen JB.** Functional
664 coupling of motor units is modulated during walking in human subjects. *J Neurophysiol* 89: 960-968, 2003.

665 **Halliday DM, Conway BA, Farmer SF, and Rosenberg JR.** Using electroencephalography to study
666 functional coupling between cortical activity and electromyograms during voluntary contractions in humans.
667 *Neurosci Lett* 241: 5-8, 1998.

668 **Halliday DM, and Farmer SF.** On the Need for Rectification of Surface EMG. *J Neurophysiol* 103: 3547,
669 2010.

670 **Halliday DM, and Rosenberg JR.** On the application, estimation and interpretation of coherence and
671 pooled coherence. *J Neurosci Methods* 100: 173-174, 2000.

672 **Halliday DM, Rosenberg JR, Amjad AM, Breeze P, Conway BA, and Farmer SF.** A framework for the
673 analysis of mixed time series/point process data--theory and application to the study of physiological tremor,
674 single motor unit discharges and electromyograms. *Prog Biophys Mol Biol* 64: 237-278, 1995.

675 **Hansen NL, Conway BA, Halliday DM, Hansen S, Pyndt HS, Biering-Sorensen F, and Nielsen JB.**
676 Reduction of common synaptic drive to ankle dorsiflexor motoneurons during walking in patients with spinal
677 cord lesion. *J Neurophysiol* 94: 934-942, 2005.

678 **Hansen NL, and Nielsen JB.** The effect of transcranial magnetic stimulation and peripheral nerve
679 stimulation on corticomuscular coherence in humans. *J Physiol* 561: 295-306, 2004.

680 **Hansen S, Hansen NL, Christensen LO, Petersen NT, and Nielsen JB.** Coupling of antagonistic ankle
681 muscles during co-contraction in humans. *Exp Brain Res* 146: 282-292, 2002.

682 **Hultborn H, and Nielsen JB.** Spinal control of locomotion--from cat to man. *Acta Physiol (Oxf)* 189: 111-
683 121, 2007.

684 **James LM, Halliday DM, Stephens JA, and Farmer SF.** On the development of human corticospinal
685 oscillations: age-related changes in EEG-EMG coherence and cumulant. *Eur J Neurosci* 27: 3369-3379,
686 2008.

687 **Kilner JM, Baker SN, Salenius S, Hari R, and Lemon RN.** Human cortical muscle coherence is directly
688 related to specific motor parameters. *J Neurosci* 20: 8838-8845, 2000.

689 **Kilner JM, Fisher RJ, and Lemon RN.** Coupling of oscillatory activity between muscles is strikingly
690 reduced in a deafferented subject compared with normal controls. *J Neurophysiol* 92: 790-796, 2004.

691 **Kirkwood PA, Sears TA, Tuck DL, and Westgaard RH.** Variations in the time course of the
692 synchronization of intercostal motoneurones in the cat. *J Physiol* 327: 105-135, 1982.

693 **Lepage C, Noreau L, and Bernard PM.** Association between characteristics of locomotion and
694 accomplishment of life habits in children with cerebral palsy. *Phys Ther* 78: 458-469, 1998.

695 **McAuley JH, Rothwell JC, and Marsden CD.** Frequency peaks of tremor, muscle vibration and
696 electromyographic activity at 10 Hz, 20 Hz and 40 Hz during human finger muscle contraction may reflect
697 rhythmicities of central neural firing. *Exp Brain Res* 114: 525-541, 1997.

698 **Mima T, and Hallett M.** Electroencephalographic analysis of cortico-muscular coherence: reference effect,
699 volume conduction and generator mechanism. *Clin Neurophysiol* 110: 1892-1899, 1999.

700 **Myers LJ, Lowery M, O'Malley M, Vaughan CL, Heneghan C, St Clair Gibson A, Harley YX, and**
701 **Sreenivasan R.** Rectification and non-linear pre-processing of EMG signals for cortico-muscular analysis. *J*
702 *Neurosci Methods* 124: 157-165, 2003.

703 **Nielsen JB.** How we walk: central control of muscle activity during human walking. *Neuroscientist* 9: 195-
704 204, 2003.

705 **Nielsen JB, Brittain JS, Halliday DM, Marchand-Pauvert V, Mazevet D, and Conway BA.** Reduction of
706 common motoneuronal drive on the affected side during walking in hemiplegic stroke patients. *Clin*
707 *Neurophysiol* 119: 2813-2818, 2008.

708 **Norton JA, and Gorassini MA.** Changes in cortically related intermuscular coherence accompanying
709 improvements in locomotor skills in incomplete spinal cord injury. *J Neurophysiol* 95: 2580-2589, 2006.

710 **Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, and Galuppi B.** Development and reliability of
711 a system to classify gross motor function in children with cerebral palsy. *Dev Med Child Neurol* 39: 214-223,
712 1997.

713 **Perez MA, Lundbye-Jensen J, and Nielsen JB.** Changes in corticospinal drive to spinal motoneurones
714 following visuo-motor skill learning in humans. *J Physiol* 573: 843-855, 2006.

715 **Petersen NT, Butler JE, Marchand-Pauvert V, Fisher R, Ledebt A, Pyndt HS, Hansen NL, and Nielsen**
716 **JB.** Suppression of EMG activity by transcranial magnetic stimulation in human subjects during walking. *J*
717 *Physiol* 537: 651-656, 2001.

718 **Petersen TH, Kliim-Due M, Farmer SF, and Nielsen JB.** Childhood development of common drive to a
719 human leg muscle during ankle dorsiflexion and gait. *J Physiol* 588: 4387-4400, 2010.

720 **Petersen TH, Willerslev-Olsen M, Conway BA, and Bo Nielsen J.** The motor cortex drives the muscles
721 during walking in human subjects. *The Journal of Physiology* 2012.

722 **Pohja M, and Salenius S.** Modulation of cortex-muscle oscillatory interaction by ischaemia-induced
723 deafferentation. *Neuroreport* 14: 321-324, 2003.

724 **Rose J, and McGill KC.** Neuromuscular activation and motor-unit firing characteristics in cerebral palsy.
725 *Dev Med Child Neurol* 47: 329-336, 2005.

726 **Rossignol S.** Plasticity of connections underlying locomotor recovery after central and/or peripheral lesions
727 in the adult mammals. *Philos Trans R Soc Lond B Biol Sci* 361: 1647-1671, 2006.

728 **Salenius S, Portin K, Kajola M, Salmelin R, and Hari R.** Cortical control of human motoneuron firing
729 during isometric contraction. *J Neurophysiol* 77: 3401-3405, 1997.

730 **Smith HC, Davey NJ, Savic G, Maskill DW, Ellaway PH, and Frankel HL.** Motor unit discharge
731 characteristics during voluntary contraction in patients with incomplete spinal cord injury. *Exp Physiol* 84:
732 1151-1160, 1999.

733 **Ushiyama J, Suzuki T, Masakado Y, Hase K, Kimura A, Liu M, and Ushiba J.** Between-subject
734 variance in the magnitude of corticomuscular coherence during tonic isometric contraction of the tibialis
735 anterior muscle in healthy young adults. *J Neurophysiol* 106: 1379-1388, 2011.

736

737

738

739 **Author contributions**

740 T.H.P. and J.B.N. designed the experiment. T.H.P. and M.K.-D. collected the data. T.H.P. and
741 S.F.F. analysed the data. T.H.P.,S.F.F. and J.B.N. interpreted the data and drafted the manuscript.
742 All experiments were performed at the Helene Elsass Center.

743

744 **Acknowledgements**

745 This work was supported by a grant from the Ludvig and Sara Elsass Foundation. Camilla Voigt is
746 acknowledged for her participation in some of the experiments. We would like to acknowledge Dr.
747 Lucinda Carr for constructive feedback on the manuscript. We would like to acknowledge David
748 Halliday for providing the MATLAB routines used for analysis. We would also like to
749 acknowledge the Helene Elsass Center for the use of laboratory facilities. S. F. Farmer is supported
750 by the UCLH/UCL Comprehensive Biomedical Research Centre

751

752 **Table 1.** Summary of data from the three different age groups. All values are given as mean \pm 95%
753 CI. Inter electrode distance between the proximal and distal electrode pair placed above the least
754 (LA) and most (MA) affected muscle. Treadmill walking speed in km/h.

755

756 **Table 2.** Summary of peak coherence values for the MA, LA and control TA muscle across the
757 three different age groups. Peak coherence in the beta (15-25 Hz) and gamma (30-45 Hz) frequency
758 band are given for static muscle activation and for walking. All values are given as mean \pm 95% CI.
759 Please refer to text for detailed statistics.

760 **Table 3.** Summary of cumulant density estimates for the MA, LA and control TA muscle across the
761 three different age groups. Peak durations and peak sizes band are given for static muscle activation
762 and for walking. All values are given as mean \pm 95% CI. Please refer to text for detailed statistics

763

764

765

766 **Figure 1.** Data from one hemiplegic CP subject (12 yrs of age). Raw EMG traces obtained from
767 electrodes placed at the proximal and distal part of the MA (A) and LA(B) TA muscle. Power
768 spectra constructed from the rectified EMG signals from the MA (C & D) and LA muscle (E & F).
769 Coherence estimates from MA (G) and LA (I) muscle, the dashed lines denote upper 95%
770 confidence limits. Phase estimates from MA (H) and LA (J) muscle. Cumulant density plots from
771 MA (K) and LA (M) solid lines around zero denotes upper and lower 95% confidence limits. (L)
772 display the extended χ^2 test of difference of coherence between MA and LA. The dashed line
773 denotes the upper 95% confidence limit on the assumption of independence.

774 **Figure 2.** Pooled estimates of coherence from all hemiplegic CP subjects. Pooled coherence
775 estimates from the MA side are shown for three different age groups 4-7 yrs (A), 8-11 yrs (D) and
776 12-15 yrs (G). Pooled coherence estimates from the LA side are show for the three different age
777 groups 4-7 yrs (B), 8-11 yrs (E) and 12-15 yrs (H). Results from the extended χ^2 test for
778 difference of coherence are shown for the three age groups 4-7 yrs (C), 8-11 yrs (F) and 12-15 yrs
779 (I)

780 **Figure 3.** Statistical comparisons of pooled coherence using the extended χ^2 test for difference of
781 coherence. Comparisons of 4-7 yrs vs. 8-11 yrs for the MA muscle (A) and LA muscle (B).
782 Comparisons of 4-7 yrs vs. 12-15 yrs for the MA muscle (C) and LA muscle (D). Comparisons of
783 8-11 yrs. vs. 12-15 yrs for the MA side (E) and LA side (F). Comparisons of peak beta band
784 coherence (G) and peak gamma band coherence. (H) from MA muscle, LA muscle and control
785 group (data from Petersen *et al.* 2010) across the three different age groups. Ratios (MA/LA) for
786 peak beta coherence, peak gamma coherence and EMG RMS amplitude across the three different
787 age groups (I). Error bars denote 95% confidence intervals. Please refer to text for detailed
788 statistics.

789

790

791

792 **Figure 4.** Data from one hemiplegic CP subject (12 yrs of age). Rectified and averaged EMG from
793 300 individual steps from electrodes placed at the proximal and distal part of the MA (A) and LA
794 (B) TA muscle. Heel strike at 0 ms. Shaded areas represent the EMG segments analysed. Power
795 spectra constructed from the rectified EMG signals from the MA (C & D) and LA muscle (E & F).
796 Coherence estimates from MA (G) and LA (I) muscle, the dashed lines denote upper 95%
797 confidence limits. Phase estimates from MA (H) and LA (J) muscle. Cumulant density plots from
798 MA (K) and LA (M) solid lines around zero denotes upper and lower 95% confidence limits. (L)
799 display the extended chi² test of difference of coherence between MA and LA. The dashed line
800 denotes the upper 95% confidence limit on the assumption of independence.

801 **Figure 5.** Pooled estimates of coherence from all hemiplegic CP subjects during walking. Pooled
802 coherence estimates from the MA side are shown for three different age groups 4-7 yrs (A), 8-11
803 yrs (D) and 12-15 yrs (G). Pooled coherence estimates from the LA side are show for the three
804 different age groups 4-7 yrs (B), 8-11 yrs (E) and 12-15 yrs (H). Results from the extended chi² test
805 for difference of coherence are shown for the three age groups 4-7 yrs (C), 8-11 yrs (F) and 12-15
806 yrs (I)

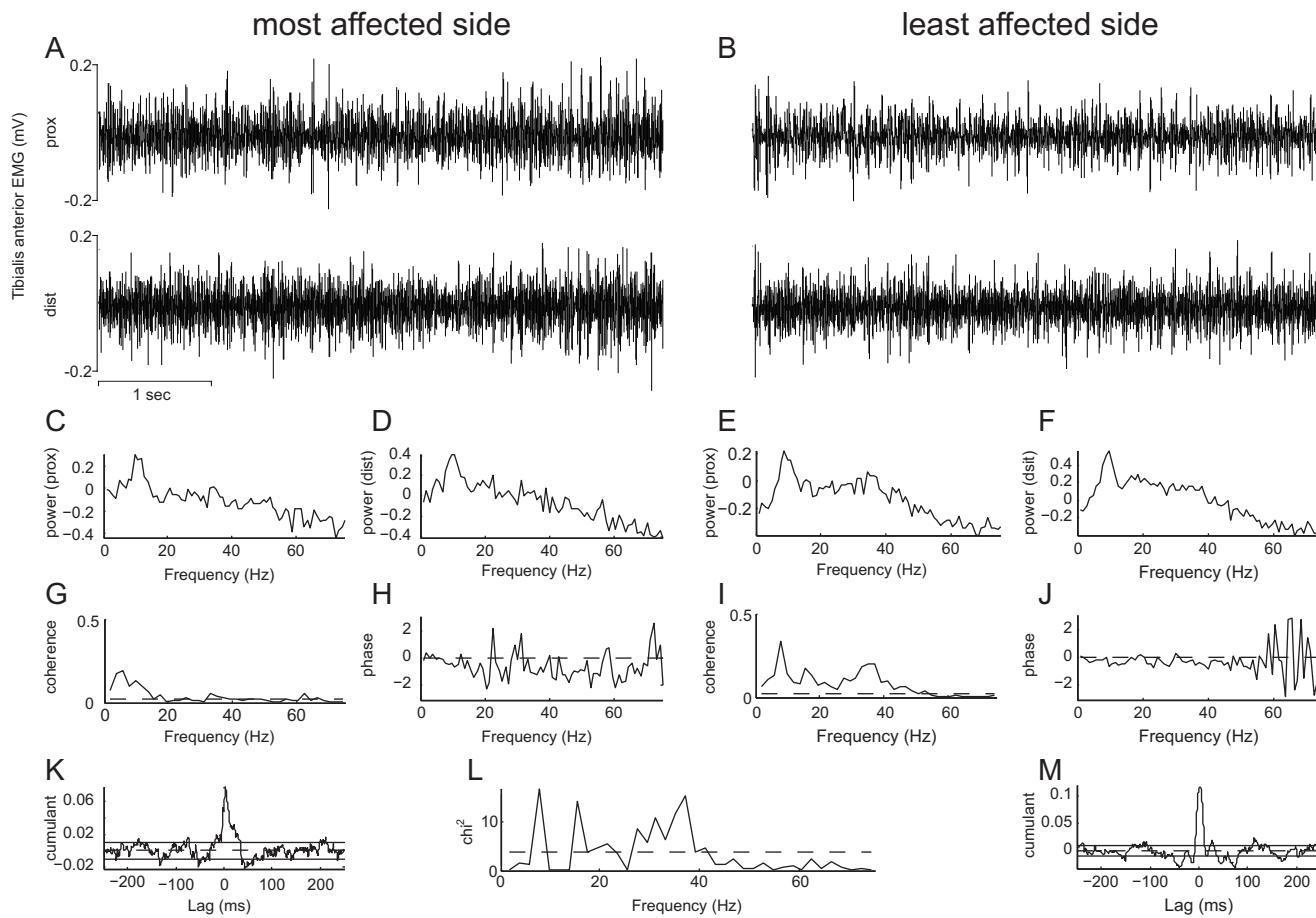
807 **Figure 6.** Statistical comparisons of pooled coherence obtained during walking using the extended
808 chi² test for difference of coherence. Comparisons of 4-7 yrs vs. 8-11 yrs for the MA muscle (A)
809 and LA muscle (B). Comparisons of 4-7 yrs vs. 12-15 yrs for the MA muscle (C) and LA muscle
810 (D). Comparisons of 8-11 yrs. vs. 12-15 yrs for the MA side (E) and LA side (F). Comparisons of
811 peak beta band coherence (G) and peak gamma band coherence (H) from MA muscle, LA muscle
812 and control group (data from Petersen *et al.* 2010) across the three different age groups. Error bars
813 denote 95% confidence intervals. Ratios (MA/LA) for peak beta coherence, peak gamma coherence
814 and EMG RMS amplitude across the three different age groups (I). Please refer to text for detailed
815 statistics.

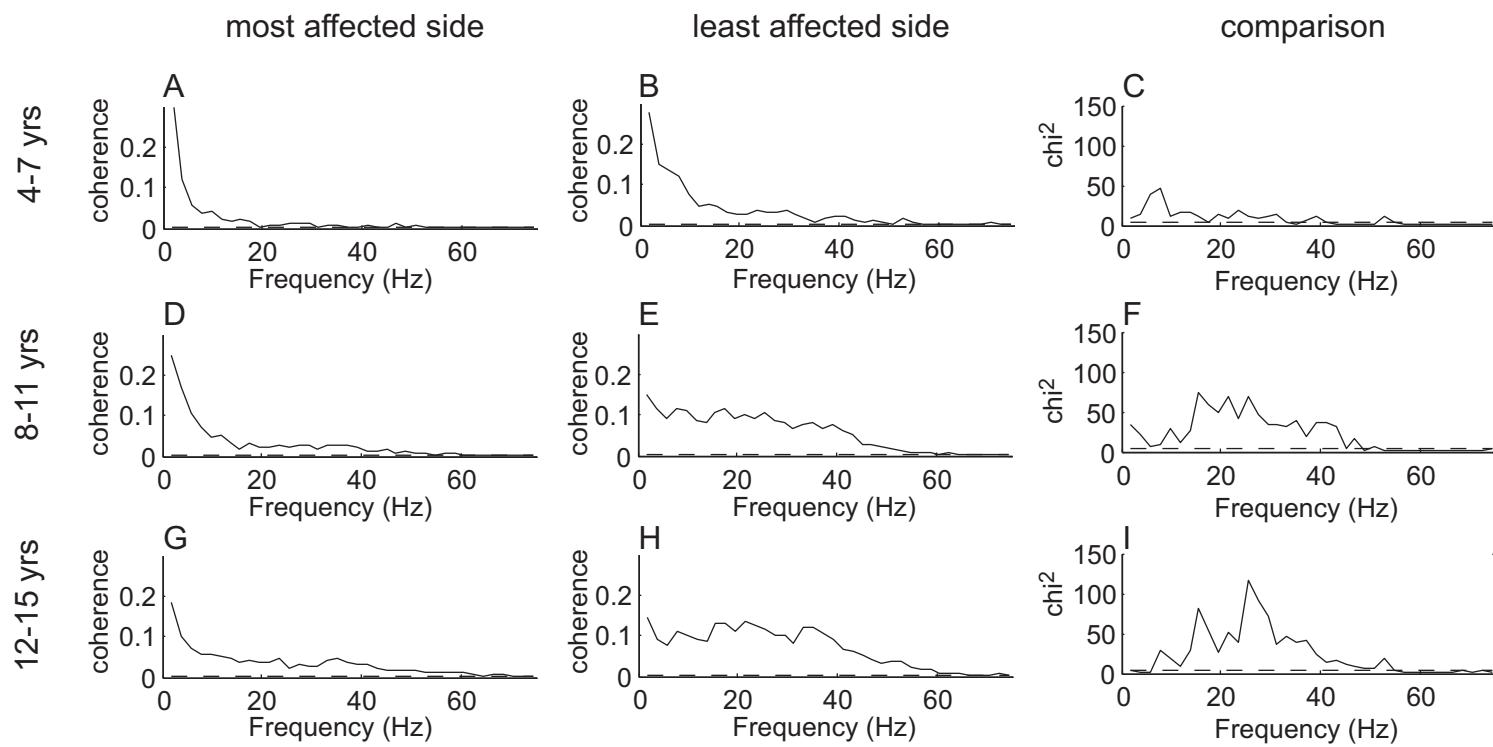
816

817

818

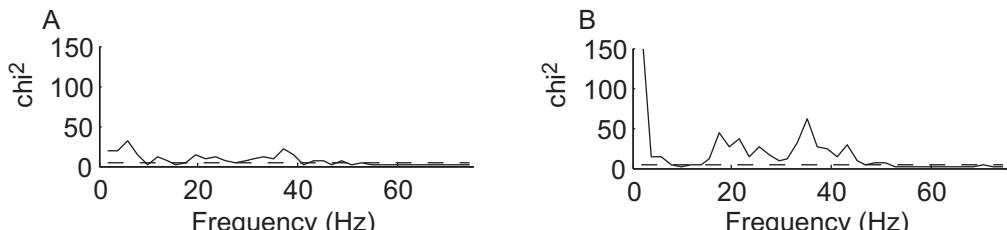
819

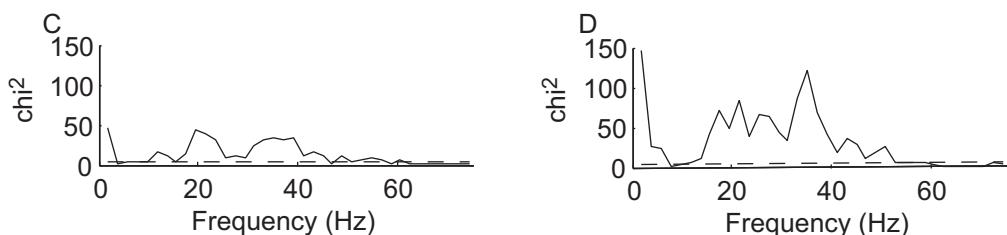

820 **Figure 7.** Pooled cumulant density plots are shown for the LA, MA and control TA muscle for the
821 three age groups. 4-7 yrs (A,B, C & J, K, L), 8-11 yrs (D, E, F & M, N, O), 12-15 yrs (G,H, I & P,
822 Q, R) for static muscle activation (upper part) and walking (lower part), respectively. Peak
823 magnitudes and peak durations are given in table 3. Please refer to text for detailed statistics.


824 **Figure 8.** Kinematic data for the MA, LA and control ankle joint movements and correlations with
825 EMG results. Dorsiflexion movement ranges for the ankle joint (A). Dorsiflexion movement
826 velocity (B). Correlation between peak beta coherence ratio and dorsiflexion movement range ratio
827 (C) and dorsiflexion movement velocity ratio (D). Correlation between peak gamma coherence ratio
828 and dorsiflexion movement range ratio (E) and dorsiflexion movement velocity ratio (F).
829 Correlation between RMS EMG amplitude ratio and dorsiflexion movement range ratio (G) and
830 dorsiflexion movement velocity ratio (H). Please refer to text for detailed statistics on A & B.

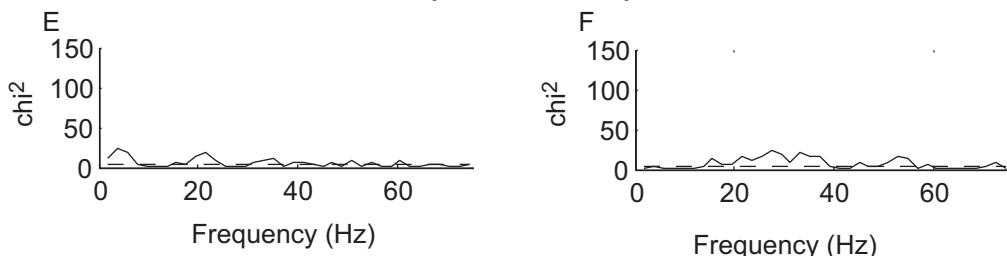
	4-7 years (n=7)	8-11 years (n=17)	12-15 years (n=14)
Electrode dist. MA (cm)	7.0±0.7	10.6±0.6	12.5±1.0
Electrode dist. LA (cm)	7.4±0.4	10.8±0.5	12.5±0.9
Walking speed (km/h)	1.9± 0.4	2.5±0.2	2.8±0.2

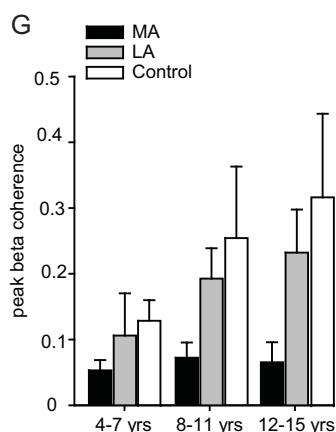
Coherence estimates	Static contraction			Walking		
	CP MA side	CP LA side	Control	CP MA side	CP LA side	Control
4-7 yrs, peak beta	0.05±0.02	0.11±0.06	0.13±0.03	0.09±0.03	0.16±0.07	0.15±0.03
8-11 yrs, peak beta	0.07±0.02	0.18±0.04	0.25±0.11	0.08±0.02	0.19±0.03	0.21±0.06
12-15 yrs, peak beta	0.07±0.03	0.24±0.07	0.32±0.13	0.11±0.04	0.20±0.04	0.20±0.04
4-7 yrs, peak gamma	0.04±0.01	0.07±0.04	0.11±0.02	0.05±0.02	0.09±0.05	0.08±0.02
8-11 yrs, peak gamma	0.08±0.03	0.15±0.04	0.27±0.12	0.05±0.01	0.13±0.04	0.16±0.06
12-15 yrs, peak gamma	0.11±0.07	0.21±0.07	0.27±0.08	0.07±0.05	0.16±0.04	0.18±0.03

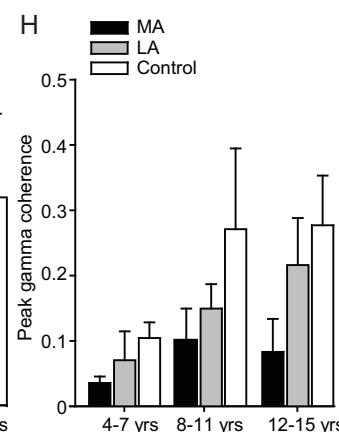

Cumulant estimates	Static contraction			Walking		
	CP MA side	CP LA side	Control	CP MA side	CP LA side	Control
4-7 yrs, peak size	0.047±0.014	0.083±0.043	0.068±0.015	0.169±0.042	0.269±0.078	0.295±0.046
8-11 yrs, peak size	0.066±0.015	0.110±0.016	0.159±0.065	0.155±0.023	0.254±0.036	0.328±0.041
12-15 yrs, peak size	0.072±0.020	0.144±0.042	0.167±0.053	0.166±0.030	0.242±0.051	0.329±0.052
4-7 yrs, peak width (ms)	42±20	26±12	24±4	128±29	136±23	147±22
8-11 yrs, peak width (ms)	31±7	22±3	21±4	147±22	121±14	121±19
12-15 yrs, peak width(ms)	23±6	18±2	19±2	128±22	106±26	167±23

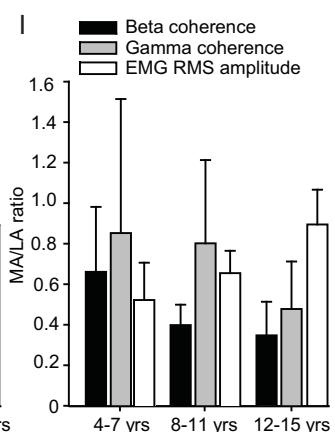


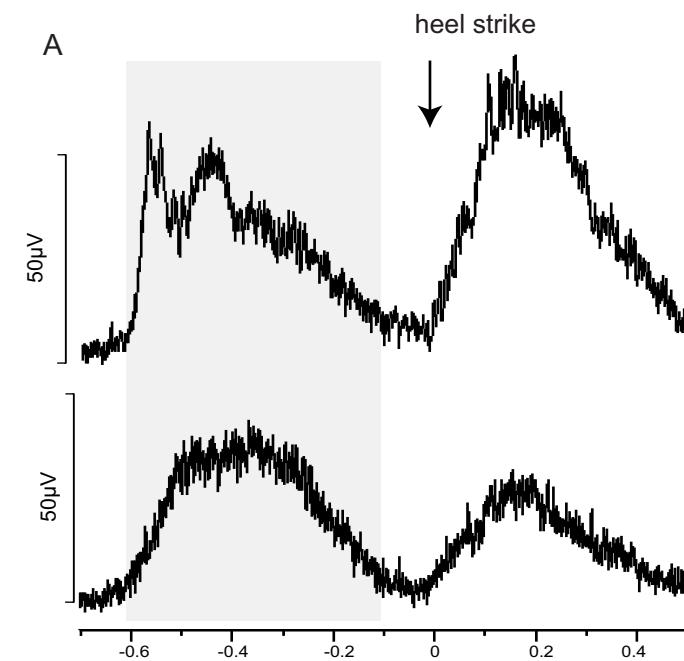
most affected side comparisons least affected side comparisons

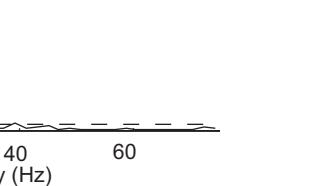
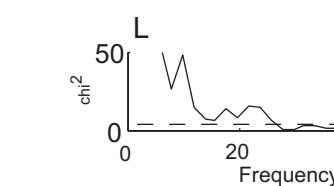
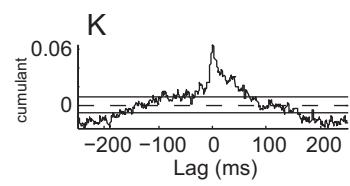
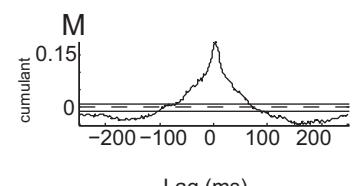
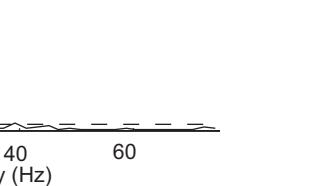
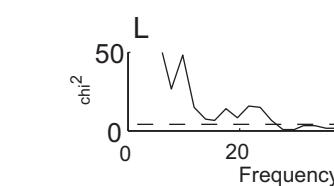
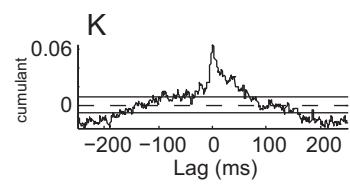
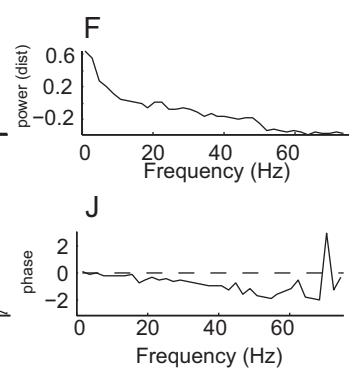
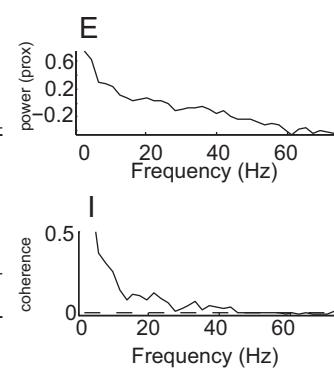
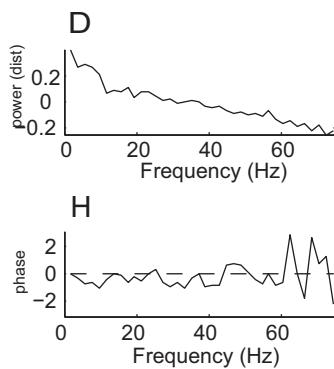
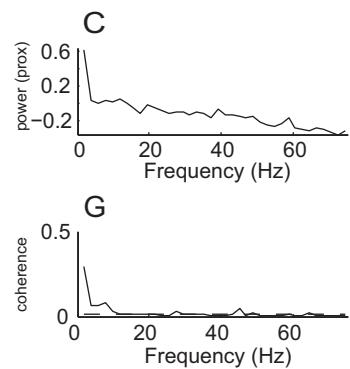
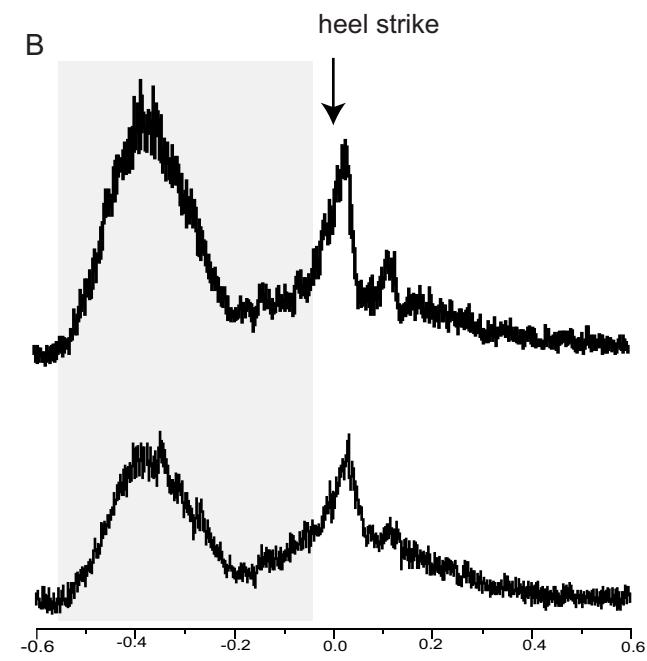

4-7 yrs vs. 8-11 yrs

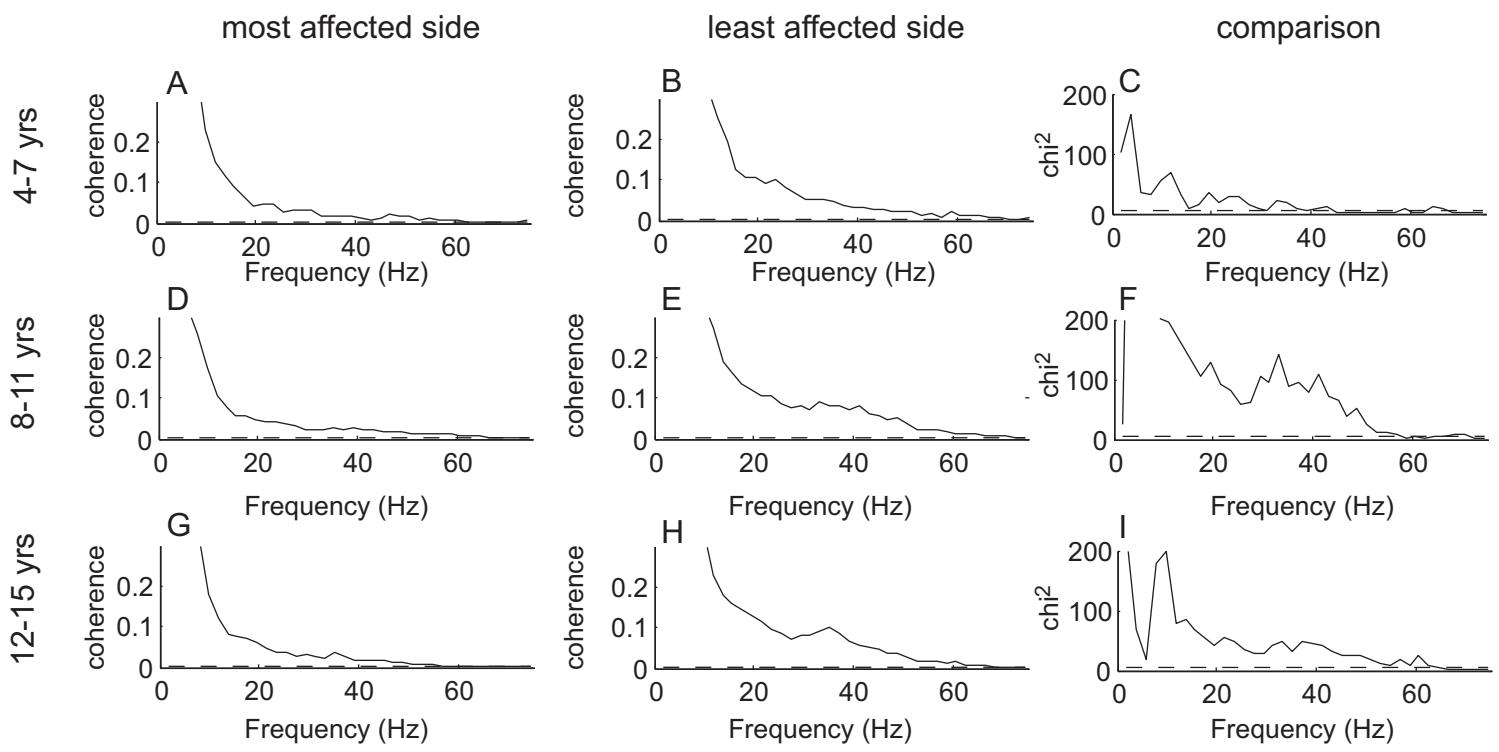

4-7 yrs vs. 12-15 yrs


8-11 yrs vs. 12-15 yrs


G
MA
LA
Control

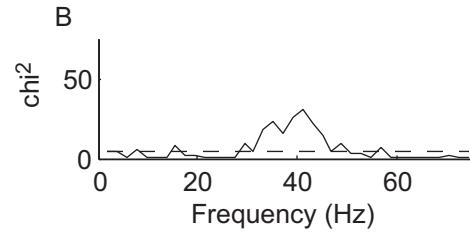
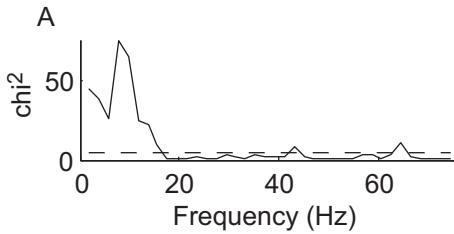

H
MA
LA
Control

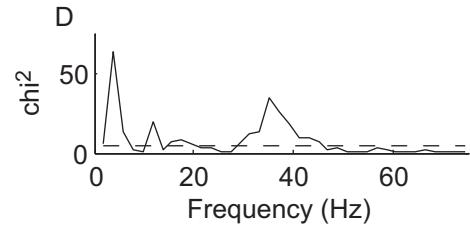
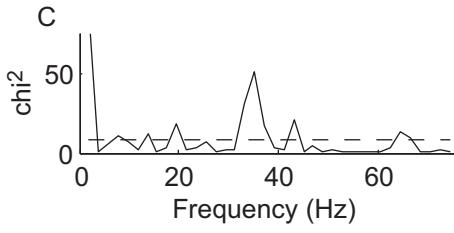












I
Beta coherence
Gamma coherence
EMG RMS amplitude



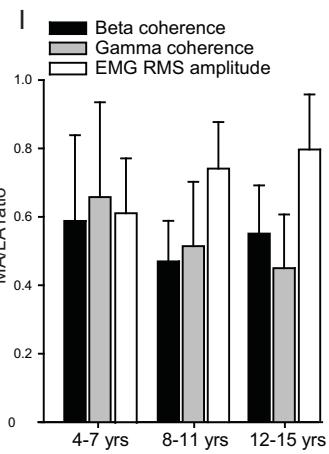
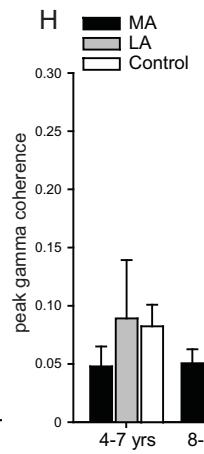
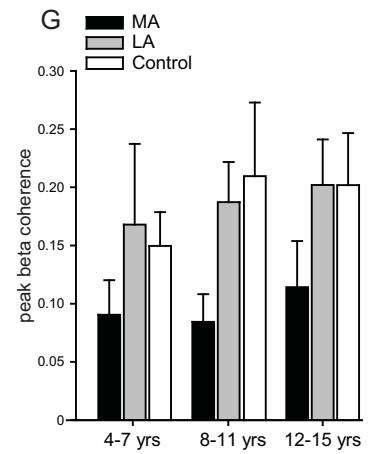
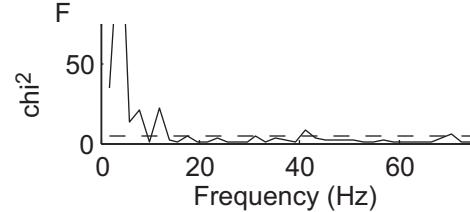
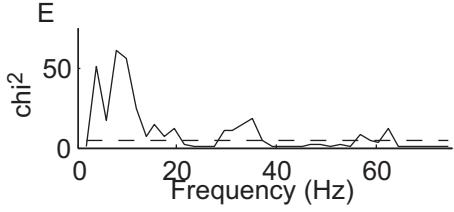
most affected side

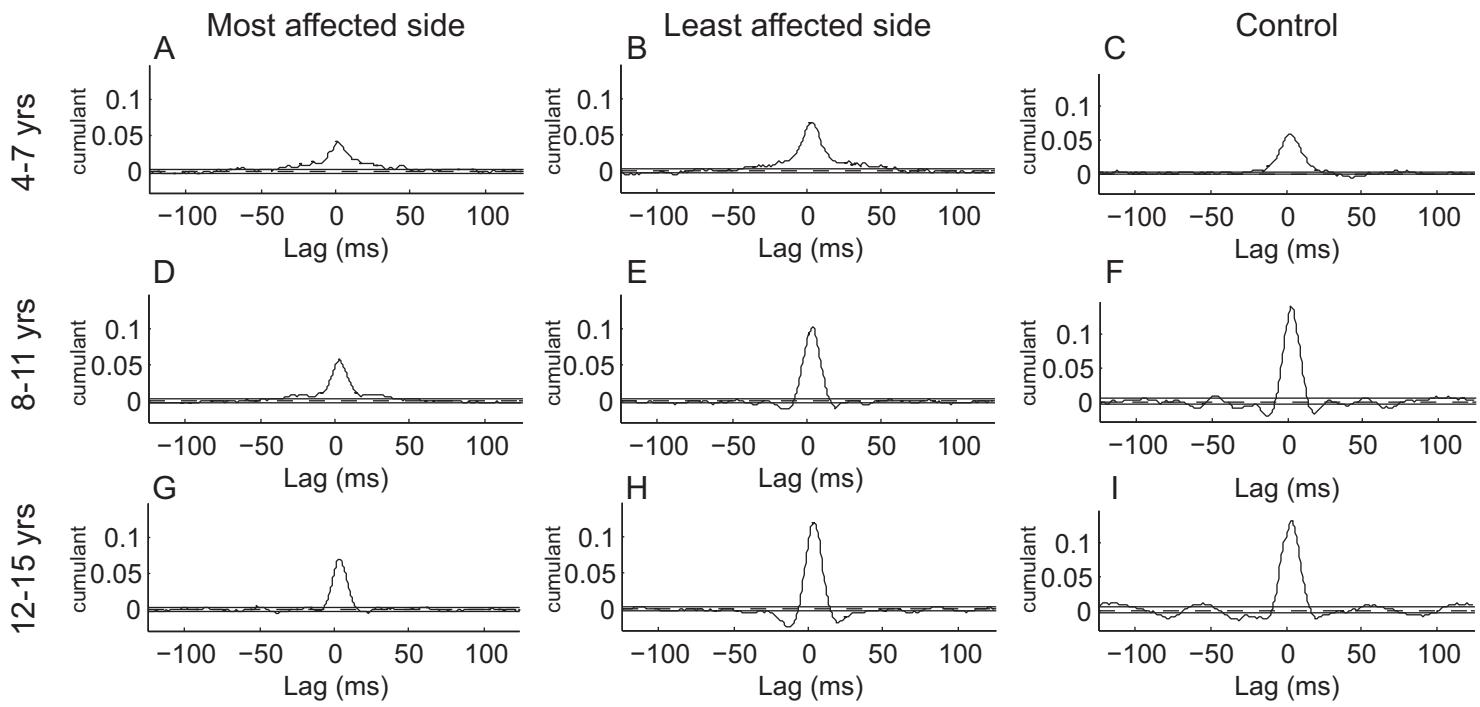
least affected side

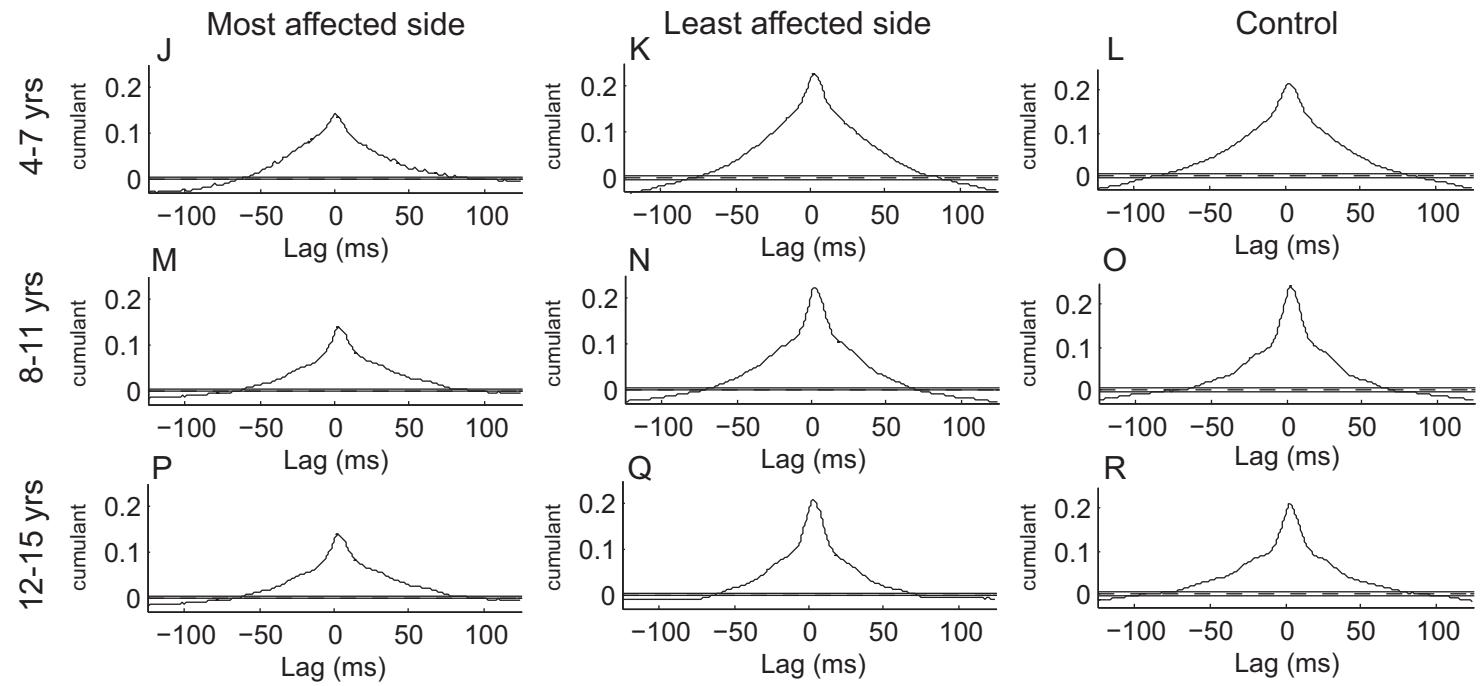



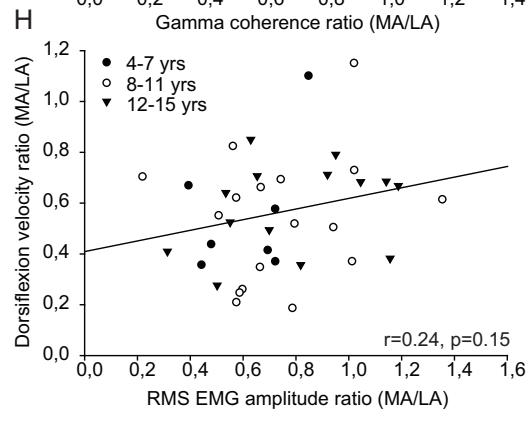
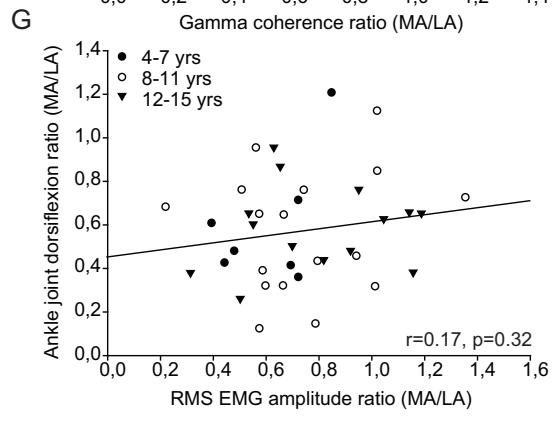
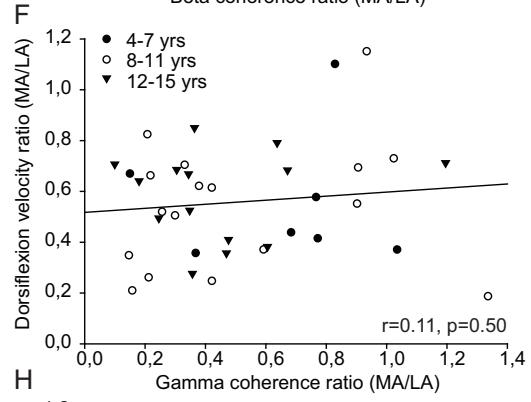
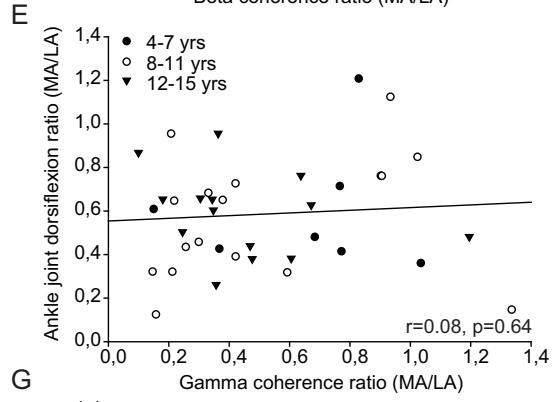
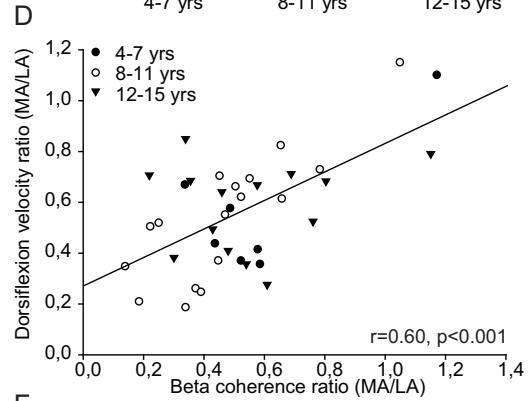
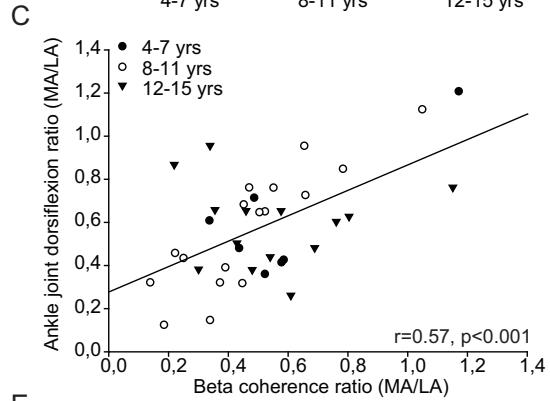
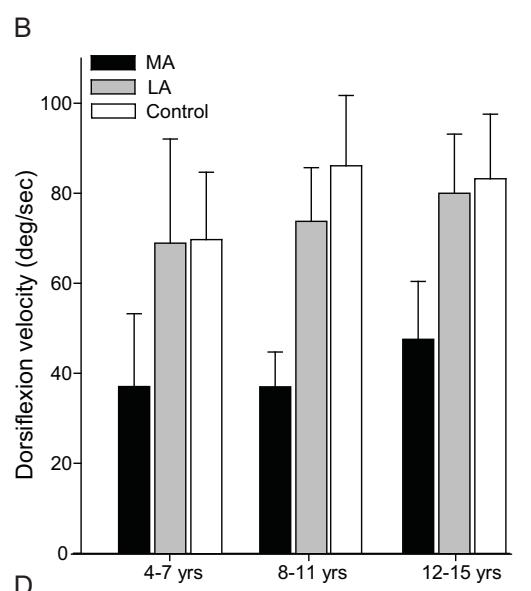
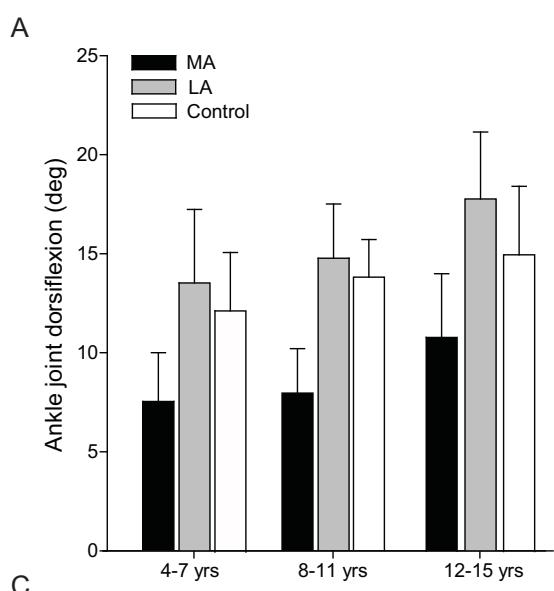


most affected side comparisons

least affected side comparisons






4-7 yrs vs. 8-11 yrs


4-7 yrs vs. 12-15 yrs


8-11 yrs vs. 12-15 yrs

Static contraction

Walking

