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Abstract

Purpose Oocyte quality declines with age and metabolic stress, largely due to mitochondrial dysfunction and NAD* deple-
tion. Nicotinamide mononucleotide (NMN), a precursor of NAD", has emerged as a potential intervention to restore cel-
lular energy metabolism. This study systematically reviews preclinical evidence on NMN supplementation and integrates
transcriptomic analysis of human oocytes to assess its relevance in human fertility.

Methods A systematic review was conducted following PRISMA guidelines across Medline, Embase, and Scopus (Janu-
ary 2015-October 2024). Seven high-quality original studies were included after screening and bias assessment. Data were
synthesised through thematic analysis and pathway annotation. Additionally, single-oocyte RNA sequencing was performed
on 46 human oocytes at germinal vesicle, metaphase I, and metaphase II stages to profile NAD*-related gene expression.
Results Across animal models, NMN supplementation has been shown to improve mitochondrial regulation, reduce oxida-
tive stress, and modulate apoptotic and inflammatory pathways in response to metabolic, environmental, and ageing stress.
Transcriptomic analysis identified 900 differentially expressed genes between germinal vesicle and metaphase II oocytes,
with significant changes in mitochondrial and oxidative stress—related genes (i.e. SIRT3, DNMI1L, SOD1), aligned with
NMN’s known mechanisms of action.

Conclusions NMN supplementation shows improvements for oocyte function across diverse preclinical models. Human
transcriptomic data further highlight mitochondrial and oxidative pathways as key regulatory points during oocyte matura-
tion. Standardised protocols and clinical trials are needed to evaluate NMN'’s translational potential in the context of human
reproduction.

Keywords Nicotinamide mononucleotide (NMN) - Oocyte quality - Mitochondrial function - Oxidative stress - Fertility -
Transcriptomics

Introduction mitochondrial function, oxidative stress response, and cel-

lular signalling [2].

Ageing is a battle fought at the cellular level, and the human
oocyte, a powerhouse of reproductive capability, is one of
the first cells to experience age-associated functional decline
[1]. At the heart of cellular vitality lies nicotinamide ade-
nine dinucleotide (NAD"), a coenzyme that regulates a
wide range of essential biological processes, including
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NAD", known as the key molecule in redox reactions,
acts as an electron carrier in metabolic pathways such as
glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative
phosphorylation, where it helps in the production of ATP
[2, 3]. Apart from its role in energy metabolism, NAD" is
also known to be the major substrate for several families of
enzymes, including sirtuins, poly(ADP-ribose) polymerases,
and cyclic ADP-ribose synthetases, all of which contrib-
ute to genomic stability, repair of DNA, and adaptation to
stress conditions [3]. However, the levels of NAD* decline
with age and metabolic stress, causing widespread cellular
dysfunction. This has been observed in many of the species,
from worms to rodents and humans, and in several of the
tissues, from skeletal muscle to liver, brain, and skin [4-6].
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Oocytes have special sensitivity towards mitochondrial
dysfunction as they depend on oxidative phosphorylation for
ATP production. Glycolytic compensation for mitochondrial
dysfunction, noted in other cell types, cannot help oocytes
since they need mitochondria-mediated energy for meiotic
maturation as well as spindle formation, chromosomal seg-
regation, and early embryonic development [7].

Nicotinamide mononucleotide

Given the central role of NAD" in cellular metabolism
and stress resistance, there has been growing interest in its
potential application as an adjuvant intervention in repro-
ductive biology. NAD" homeostasis is regulated through
biosynthetic and salvage pathways, where precursors such
as nicotinamide riboside (NR) and nicotinamide mononu-
cleotide (NMN) serve as intermediates for NAD™ synthesis
[8]. Among these, NMN has gained particular attention due
to its ability to rapidly restore intracellular NAD" levels,
enhancing mitochondrial function, DNA repair, and cellular
resilience in various ageing and metabolic models.

Recent studies suggest that NMN supplementation may
improve age-related mitochondrial decline in murine models
by activating sirtuin-dependent pathways that regulate mito-
chondrial biogenesis, oxidative stress defence, and apopto-
sis [9]. Sirtuins, particularly sirtuin 1 (SIRT1) and sirtuin
3 (SIRT3), are NAD*-dependent deacetylases that modu-
late key metabolic and stress-response pathways. SIRT1 is
involved in maintaining genomic stability by modulating
chromatin structure, suppressing DNA damage accumula-
tion, and regulating the activity of key DNA repair proteins.
SIRT3 is a mitochondrial deacetylase that plays a crucial
role in maintaining oxidative balance [10, 11]. It regulates
the deacetylation of key enzymes involved in the electron
transport chain, TCA cycle, and antioxidant mechanisms.
Given that NAD" depletion impairs sirtuin activity, it has
been hypothesised that NMN supplementation could restore
sirtuin-mediated pathways, thereby improving mitochondrial
health and enhancing oocyte quality [9, 10].

This systematic review aims to explore recent findings on
the potential application of NMN in female reproduction,
particularly in enhancing oocyte quality prior to retrieval.
Furthermore, we aim to explore the transcriptomic finger-
print of human oocytes at different maturity stages to charac-
terise the expression patterns associated with NAD* metabo-
lism and establish future research directions in this field.

Methods
The search protocol was registered at PROSPERO (ID num-

ber CRD420251017045). For the transcriptomic analysis
of human oocytes, ethical approval was granted from the
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London — Surrey Research Ethics Committee (reference: 18/
L0O/1849; Go project ID 253968).

Design and search strategy

A systematic review was conducted to identify, screen,
and synthesise relevant studies in a structured and replica-
ble manner. The search was performed across three major
databases: Medline, Embase, and Scopus to identify studies
investigating NAD* metabolism, NMN supplementation,
and their impact on oocyte quality. For Scopus, subject areas
were limited to the following: Biochemistry, Genetics and
Molecular Biology, Medicine, Chemistry, Inmunology and
Microbiology, and Health Professions.

The search strategy employed free-text keywords, align-
ing with standardised terminology where applicable, to
ensure broad retrieval of relevant publications. Boolean
operators (AND/OR) and parentheses were used to com-
bine the keywords and refine the search results. The search
terms used were as follows: (NAD metabolism OR NAD"
metabolism OR NAD OR nicotinamide adenine dinucleo-
tide OR NMN supplementation OR nicotinamide mononu-
cleotide) AND (oocyte OR fertility OR ovarian reserve OR
female reproductive health) AND (gene expression OR tran-
scriptomic OR mRNA OR RNA sequencing OR differential
expression OR gene regulation OR pathway).

The study selection process followed the Preferred
Reporting Items for Systematic Reviews and Meta-Analy-
sis (PRISMA) guidelines [12]. All retrieved studies were
independently screened by two reviewers (H.N and X.V.G).
Publications between 1 st January 2015 and 31 st October
2024 were reviewed. No restrictions were applied regard-
ing time or species, but only English-language transcripts
were reviewed. Only original sources, such as peer-reviewed
journal articles, were included to ensure the reliability of
the results. The most recent search was conducted on 11th
October 2024.

Quality assessment

The quality and risk of bias of the included studies was
evaluated using the National Heart, Lung, and Blood Insti-
tute (NHLBI)-National Institutes of Health (NIH) quality
assessment tool for case—control studies by two reviewers
(H.Y. and X.V.G.). This tool comprises 12 criteria assess-
ing study design, methodology, and reporting quality. Each
criterion was scored as follows: 1 (yes), 0.5 (partially), or O
(no or not applicable), yielding a total score ranging from
0 to 12. Studies scoring 0—4 were classified as poor, those
scoring 4.5-8 as fair, and those scoring 8.5-12 as good. Only
studies rated as “good” by both independent reviewers were
included in the final synthesis, resulting in seven studies
selected for data extraction.
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Data extraction and synthesis

Table 1 provides a summary of the study characteristics,
including the study country, study type, experimental groups,
NAD*-related genes investigated, supplementation or inter-
vention used, and gene expression changes. Data from the
included studies were analysed using a thematic analysis
approach, allowing the integration of findings across different
study designs. Following data extraction, pathway annotation
analysis of the NAD*-related genes was conducted using the
Reactome database [13]. Overrepresentation analysis was per-
formed against Reactome version 91.

Transcriptomic analysis

For single-oocyte RNA sequencing, a total of 50 oocytes were
obtained from 28 female participants (age 27-39). The sample
collection followed specific exclusion criteria, which included
retrieval of fewer than four metaphase II oocytes (indicating a
suboptimal response), body mass index (BMI) exceeding 30
kg/m?, presence of uterine abnormalities, endometriosis, poly-
cystic ovary syndrome (PCOS), and history of recurrent preg-
nancy loss. Out of the collected samples, 46 were successfully
sequenced from 25 patients (Supplementary Table 1). These
included 14 germinal vesicle (GV) stage oocytes, 9 metaphase
I (MI) oocytes, and 23 metaphase II (MII) oocytes.

Library preparation was conducted using the NEBNext
Single Cell/Low Input RNA Library Prep Kit for [llumina
(New England BioLabs®, USA, #E6420), following the
manufacturer’s protocol with a single modification: NEB-
Next Adaptors were replaced with IDT xGen UDI-UMI
adaptors. Sequencing was performed on the NextSeq 500
platform using a v2.5 High Output 75-cycle kit, generating
20,024,906 reads. Demultiplexing and FASTQ file genera-
tion were carried out using Illumina’s bclConvert software
(v3.7.5). Quality control and downstream bioinformat-
ics analyses were performed on the Galaxy platform [14].
Differential gene expression analysis was conducted using
the Limma-voom tool [15], based on the sample metadata
provided. The detectable fold change for comparisons was
determined following the method described by Hart et al.,
using a statistical power of 0.9 and a false discovery rate
(FDR) threshold of 0.01 [16]. The detectable fold change for
GV-MI, GV-MII, and MI-MII comparisons was 5.61, 3.89,
and 4.32, respectively.

Results

Search strategy

A total of 486 records were identified. After duplicate
removal, 371 unique records remained. Following phase one

screening, 108 studies were selected for further evaluation.
Phase two screening narrowed the selection to 37 publica-
tions. Phase three screening resulted in 10 studies undergo-
ing quality assessment using the NHLBI-NIH assessment
tool. Of these, seven original research articles met the inclu-
sion criteria and were selected for data extraction and syn-
thesis (Fig. 1).

Study characteristics

Of the seven studies, six were conducted in China and one
in Australia. The NHLBI-NIH quality assessment scores
for the quantitative studies ranged from 8.5 to 10. All stud-
ies employed controlled experimental animal models: three
used an in vivo approach, two adopted an in vitro approach,
and two combined in vivo and in vitro methodologies. Five
studies investigated female mice (Mus musculus) and their
oocytes, with two using female C57BL/6 mice and three
using female ICR mice. The remaining studies focused on
porcine and bovine oocytes.

The studies utilised distinct age models to represent vari-
ous stages of reproductive development and ageing. Four
studies focused on early-life models, using female mice aged
3-6 weeks to investigate the effects of NMN intervention
following early exposures such as type 1 diabetes (T1D),
environmental toxins, or high-fat diets (HFD). One study
administered NMN to 16-week-old mice, representing young
adulthood. Later-stage interventions were employed in two
studies: one examined reproductive ageing across a 4- to
60-week continuum, introducing NMN supplementation at
40 weeks, while the other modelled post-ovulatory ageing by
culturing porcine oocytes for 24 and 48 h. Collectively, these
models enabled the examination of molecular and functional
changes across a broad reproductive timeline.

Systematic analysis theme overview

The studies used various physiological and environmen-
tal models, categorised into three themes: intrinsic stress
models, exogenous stress models, and the effect of age-
ing on oocyte quality. Intrinsic metabolic dysregulation
was examined through HFD exposure and T1D models
to understand its impact on oocyte and ovarian function.
Exogenous stress was studied via environmental toxins and
cryopreservation protocols, highlighting external factors
affecting oocyte quality. Ageing was investigated using both
in vivo and in vitro models to explore molecular and cellular
changes in reproductive ageing. All seven studies examined
gene expression changes, analysing 49 unique genes across
cumulus—oocyte complexes (COCs), ovaries, oocytes, and
blastocysts.
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Fig. 1 PRISMA information
flow diagram. Summarised the
detailed database searches, the
number of studies screened, and
the full texts retrieved
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Identification of studies via datasets
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Abstract (n=118)
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Methodology did not involve
the use of NMN as a
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Full text did not investigate
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[7)
1=) Interfaces (n=2)
Ovid (n=212)
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Q assessment
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Transcriptomic analysis in light of previous work

We identified nine hundred differentially expressed genes
when comparing GV to MlI-stage oocytes (756 upregulated
and 144 downregulated). Gene ontology (GO) analysis of
the differentially expressed genes revealed that GV oocytes
(compared to MII) had enriched terms related to organelle
organisation, cellular component biogenesis, and mitochon-
drial function (GO, biological processes) (Supplemental
Fig. 1). With regard to cellular component GOs, there were
enriched terms for intracellular organelles and structure
and intracellular membrane-bounded organelles. Looking
at molecular function, the most overrepresented categories
were molecular function and binding.

Forty-nine genes were identified through the systematic
review. Single-cell analysis determined that nine exhib-
ited significant differential expression in the comparison
between the GV and MII stages (FDR P <0.05) (Fig. 2).
Among these, DNMIL, FISI, MPC1, NFKBI, SIRT3, and
SOD1 were upregulated in the GV stage relative to MII,
while CRY1, LGALS3, and MFNI were downregulated in
GV compared to MIIL. Only one gene, SIRT3, demonstrated

Fig. 2 Differential gene
expression between GV and
MII oocytes. Volcano plot
displaying transcriptomic
differences between GV

and MII oocytes. The x-axis
represents the log, fold change
(logFC), and the y-axis shows 1 =
the —log,((p-value). Genes
significantly downregulated in
GV oocytes are shown in blue, >e
upregulated genes in red, and
non-significant genes in grey.
The nine annotated genes were e
identified through a systematic

review and exhibit statistically g 6 i:
significant differential expres- g .
sion: six are upregulated (FIS1, 03 @ °ae
SIRT3, SODI, MPC1, DNMIL, = a [ 3
NFKBI) and three are down- TS’ * <
regulated in GV (CRYI, MFNI, *%e3

LGALS3) o 'a;"!\c
oo 2% RY1

MFN1
LGALS3

a significant difference in the MI versus MII compari-
son, showing upregulation in MI relative to MII (FDR
p-value <0.05) (Fig. 3).

Discussion
Intrinsic disruptors and NMN-mediated response

Different studies looked at metabolic disruption mod-
els, namely maternal and offspring following a high-fat
diet (HFD) exposure, maternal HFD-induced obesity, and
maternal type 1 diabetes (T1D) [17-19]. One feature shared
among all of them was mitochondrial dysregulation. In T1D-
exposed oocytes, mitochondrial regulators Drpl, Opal,
and Mfn2 were downregulated, alongside NAD*-dependent
deacetylases Sirt/ and Sirt3, indicating impaired energy
metabolism.

Oxidative stress and immune dysregulation were con-
sistently observed across models. In both T1D and HFD-
exposed oocytes, Sodl, a crucial antioxidant enzyme, was
downregulated, indicating increased oxidative stress. In the
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Not Sig

logfc
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between stages, highlighting stage-specific expression patterns

HFD-induced obesity model, Bax was upregulated, sug-
gesting heightened apoptotic vulnerability. Inflammatory
responses varied by tissue and model. Maternal HFD expo-
sure elevated ovarian expression of pro-inflammatory genes
(Adgrel, Ccl2, Tnf, Lgals3) and suppressed anti-inflamma-
tory genes (Clecl0a, I110), indicating a shift towards a pro-
inflammatory state. Nfkbl was downregulated with maternal
HFD, while Lnsr was upregulated in offspring exposed to
HFD, potentially reflecting adaptation to chronic metabolic
stress.

NMN supplementation showed partial reversal of tran-
scriptional dysregulation. In COCs from HFD-exposed
mice, NMN normalised Gdf9 and Mpc1 expression, though
Bmp15 remained unchanged. In ovarian tissue, NMN upreg-
ulated Gdf9, Prkaa2, Cryl, and Sirtl, suggesting improved
follicular and metabolic function. However, Bmp15, Fshr,
Sirt3, and Nfkbl were unaffected, indicating selective gene
responsiveness. Changes in Gdf9 and Bmp15 expression fol-
lowing maternal and offspring high-fat diet exposure suggest
disrupted follicular signalling and accumulating metabolic
stress across generations, underscoring the lasting impact of
early-life nutrition on reproductive health [20-23].

In the T1D model, NMN restored mitochondrial regula-
tory genes (Sirtl, Sirt3, Drpl, Opal, Mfn2) and increased
Sodl, enhancing oxidative stress resilience and energy bal-
ance. These findings align with previous work identifying
Sirtl-mediated pathways as key regulators of reproductive
ageing and metabolic homeostasis [24]. In the HFD model,
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NMN reinstated Lhx8 and Bmp4 expression and modulated
inflammatory signalling by downregulating pro-inflamma-
tory and upregulating anti-inflammatory mediators. Addi-
tionally, Bax was reduced and Sod! increased in oocytes,
indicating improved mechanisms against apoptosis and oxi-
dative damage.

Extrinsic disruptors and NMN-mediated response

Oocytes are particularly susceptible to exogenous stressors,
including environmental toxicants and procedural interven-
tions such as cryopreservation. Two studies that modelled
these stressors through exposure to butyl benzyl phthalate
(BBP) and cryopreservation-induced damage highlight con-
vergent molecular mechanisms of oocyte disruption [25, 26].
These include dysregulated lipid metabolism, mitochondrial
dysfunction, oxidative stress, and apoptosis. In both mod-
els, supplementation with NMN emerged as a promising
intervention to counteract these effects and restore oocyte
function (Fig. 4).

Across both stress models, transcriptomic analyses
revealed significant alterations in gene expression involved
in mitochondrial bioenergetics and structural integrity. In
BBP-exposed oocytes, there was notable downregulation
of genes critical for mitochondrial and cytoskeletal regula-
tion, including Crispl, Scd3, Kifl8b, and Atp6vic2. This
aligns with previous findings suggesting that environmen-
tal endocrine disruptors impair mitochondrial function
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Fig.4 Gene expression changes
and NMN-mediated rescue.
Each cell represents the aver-
age effect on gene expression,
downregulation (blue), upregu-
lation (red), and no change
(white). Overlaid dots indicate
the effect of NMN treatment:
empty dots represent NMN-
induced downregulation, black
dots represent NMN-induced
upregulation, and dotted dots
represent no change in gene
expression. This visualisation
highlights genes whose dys-
regulation may be reversed or
modulated by NMN treatment

Gene Tissue/Cells Gene expression changes
Intrinsic Disruptors | Extrinsic Disruptors Ageing
Gdf9 COCs
Bmp15 COCs
Amhr COCs
Mpc1 COCs
Sirt1 COCs
Gdrf9 Ovary
Bmp15 Ovary
Fshr Ovary
Sirt3 Ovary
Nfkb1 Ovary
Lnsr Ovary
Sirt1 Ovary
Prkaa2 Ovary
Cryl Ovary
Sirt1 Oocyte
Sirt3 QOocyte
Drp1 Oocyte
Opal Oocyte
Mfn2 Oocyte
Sod1 Oocyte
Lhx8 Ovary
Bmp4 Ovary
Adgrel Ovary
Ccl2 Ovary
TNF-a Ovary
Gal-3 Ovary
Clec10a Ovary
IL-10 Ovary
Bax Oocyte
Crisp1 Oocyte
Scd3 Oocyte
Kif18b QOocyte
Atp6vic2 Oocyte
Srebpl Oocyte
Fabp3 Oocyte
Pparg Oocyte
Xbpl QOocyte
Atf4 Oocyte
Grp78 Oocyte
Mfn1 Oocyte
Fis1 Oocyte
Cat Oocyte
Gpx1 Oocyte
Bcl2 Oocyte
P16 Ovary
Pgc-1a Ovary
Nrf-1 Ovary
Lc3b Ovary
Lamp-1 Ovary
Clpp Ovary
Ctsd Ovary
Bcl-2 Oocyte
Nanog Blastocyst
Oct4 Blastocyst
Sox2 Blastocyst
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and oxidative balance, leading to poor oocyte quality and
reduced fertilisation potential [27]. Similarly, cryopreserva-
tion induced mitochondrial fragmentation, as evidenced by
decreased expression of fusion-related genes (Mfnl, Mfn2)
and upregulation of fission-associated genes (Fisl, Drpl),
indicating a breakdown in mitochondrial homeostasis that
compromises energy production and cellular viability. NMN
supplementation restored the expression of mitochondrial
genes in both models, suggesting a conserved mechanism
through which NMN supports mitochondrial dynamics and
function (Fig. 4).

Lipid metabolism also emerged as a commonly affected
pathway. Cryopreserved oocytes showed increased expres-
sion of Srebpl, Fabp3, and Pparg, indicative of enhanced
lipid synthesis and storage. Although BBP-induced altera-
tions in lipid metabolism were less extensively character-
ised, the downregulation of Scd3, a key enzyme in lipid
desaturation, similarly points to metabolic dysregulation. In
both contexts, NMN treatment normalised the expression of
lipid-associated genes.

Oxidative stress and apoptosis were consistently ele-
vated across both models. BBP exposure and cryopreser-
vation each led to increased oxidative damage and com-
promised antioxidant defences. In cryopreserved oocytes,
this was marked by reduced expression of Cat, Gpx1, and
Sodl, alongside elevated pro-apoptotic Bax and decreased
anti-apoptotic Bc/2. NMN supplementation reversed these
molecular signatures, enhancing antioxidant gene expression
and modulating apoptotic pathways. These protective effects
were mirrored in the BBP model, where NMN restored
expression of genes involved in redox balance (Scd3) and
cytoskeletal organisation (Crisp1, Kifl18b).

The effect of ageing and NMN-mediated response

Age-related stress in ovarian and oocyte systems leads to
cellular senescence, mitochondrial dysfunction, oxidative
stress, impaired autophagy, and reduced developmental
potential. Across ovarian, oocyte, and blastocyst models, a
consistent pattern emerges in which ageing disrupts cellular
homeostasis, while NMN supplementation reverses these
effects by enhancing mitochondrial metabolism, antioxidant
defences, and proteostasis [28, 29].

In aged ovarian tissue, elevated expression of P16, a
hallmark of cellular senescence, was particularly evident in
granulosa cells and the corpus luteum. Concurrently, key
regulators of mitochondrial biogenesis, Pgc-Ia and Nrf-1,
were downregulated, indicating compromised mitochon-
drial function and reduced metabolic capacity, consistent
with previous studies [30]. Aged oocytes exhibited signifi-
cant downregulation of antioxidant genes Sod/ and Cat,
contributing to increased oxidative stress. Apoptotic sig-
nalling was also perturbed, with elevated Bax and reduced
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Bcl2 expression, resulting in a lower Bcl2/Bax ratio and
heightened apoptotic susceptibility. These molecular signa-
tures reflect a broader decline in cellular resilience across
reproductive tissues.

NMN supplementation effectively reversed many of these
age-associated alterations (Fig. 4). In ovarian tissue, NMN
reduced P16 expression and restored Pgc-1a and Nrf-1 lev-
els, indicating reduced senescence and improved mitochon-
drial biogenesis. It also enhanced autophagic and lysoso-
mal function, as evidenced by the recovery of Lc3b, Lampl,
Clpp, and Ctsd expression, supporting improved proteosta-
sis, consistent with previous findings [31]. In oocytes, NMN
restored antioxidant gene expression and rebalanced apop-
totic signalling by increasing Bcl2 and decreasing Bax.

These molecular improvements translated into enhanced
developmental potential. Blastocysts derived from aged
oocytes exhibited downregulation of pluripotency-associated
genes Nanog, Oct4, and Sox2, reflecting impaired transcrip-
tional activity essential for embryogenesis. NMN supple-
mentation restored the expression of these genes, suggesting
improved developmental competence and early embryonic
viability.

Transcriptomic insights

The enriched pathways identified in the transcriptomic
analysis of human oocytes, particularly those related to
mitochondrial function, oxidative stress, and cellular
organisation,align with key biological processes modulated
by NMN in preclinical models. This convergence supports
the translational relevance of NMN supplementation and
suggests that the molecular mechanisms observed in ani-
mal studies may be conserved in human oocyte maturation.

The upregulation of mitochondrial genes, particularly
DNMIL, FISI, MPCI1, and SIRT3, indicates that mito-
chondrial remodeling is highly active in immature oocytes.
Dynamin-1-like protein (DNM1L) and mitochondrial fission
1 protein (FIS1) are key regulators of mitochondrial fission,
a process essential for redistributing mitochondrial content
and ensuring that only functional mitochondria are inherited
by the developing embryo [32, 33]. Their upregulation in
GV-stage oocytes suggests that mitochondrial fragmenta-
tion plays a crucial role at this stage, enhancing bioener-
getic efficiency and facilitating the removal of dysfunctional
mitochondria. Moreover, the upregulation of the mitochon-
drial pyruvate carrier 1 gene (MPC1) suggests that pyruvate
metabolism is highly active during the GV stage, support-
ing ATP production via oxidative phosphorylation. Given
the established link between oocyte competence and ATP
availability, this finding aligns with previous research dem-
onstrating that metabolic regulation is fundamental to oocyte
maturation [34]. The increased expression of SIRT3 further
reinforces this concept. SIRT3 is critical for mitochondrial
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metabolism, ATP production, and oxidative stress defence
[10]. The sustained expression of SIRT3 in MI oocytes, com-
pared with MII, suggests that its regulatory functions persist
throughout oocyte maturation.

The differential expression of oxidative stress—related
genes provides further insight into the metabolic shifts
occurring during oocyte development. The higher expres-
sion of SODI in GV-stage oocytes compared with MII sug-
gests that early-stage oocytes may require enhanced oxida-
tive stress defence. Superoxide dismutase 1 (SOD1) is a key
enzyme that neutralises ROS, preventing oxidative damage
that could compromise oocyte viability [35]. The increased
expression of NFKBI in GV-stage oocytes further supports
this, as nuclear factor kappa B (NF-xB) is a major regulator
of cell survival, inflammatory responses, and stress adapta-
tion [36]. The activation of NF-kB signalling in early-stage
oocytes may be critical for maintaining cellular integrity as
they progress through maturation.

Single-cell analysis of larger and more biologically
diverse cohorts could extend these findings and further
investigate age-related differences, helping to determine
whether NMN-rescue pathways observed in animal models
are conserved in humans.

Conclusion

The systematic review examined the potential of NMN sup-
plementation to enhance oocyte quality under diverse bio-
logical stressors. A synthesis of seven preclinical studies
demonstrated that NMN consistently improved oocyte and
ovarian function across models of metabolic, exogenous, and
age-associated stress.

Methodological variability and translational
challenges

There was considerable variability in NMN administration
methods, posing a challenge for cross-study comparisons.
Intraperitoneal injection allows rapid systemic absorption
but differs from physiological NMN intake in humans. Oral
supplementation more closely replicates dietary NMN con-
sumption but is influenced by metabolism and gut micro-
biota [37, 38]. In vitro supplementation ensures controlled
exposure but lacks systemic regulatory factors, including
NMN transport and metabolism [39]. These differences
underscore the need for standardised administration proto-
cols to enhance comparability across studies.

While most NMN studies rely on murine models, spe-
cies-specific differences in oocyte maturation and NAD*
metabolism may limit their direct relevance to human fer-
tility. Notably, variations in NAD* biosynthesis pathways
could modulate NMN’s efficacy across species. Mice exhibit

higher metabolic rates and shorter reproductive lifespans,
which may amplify NMN’s perceived benefits in age-related
fertility decline [39, 40]. In contrast, bovine and porcine
oocytes have longer maturation windows, more closely
mirroring human reproductive timelines, yet their meta-
bolic responses to NMN remain poorly characterised [41].
Future research should determine whether NMN’s effects are
conserved across species and whether metabolic adaptations
influence its efficacy in human oocytes.

A substantial disparity exists between NMN dosages used
in in vivo and in vitro studies. In vivo experiments typically
require doses of 200-500 mg/kg/day to mitigate systemic
stressors such as obesity and environmental toxins, whereas
in vitro models employ significantly lower concentrations
(1-100 uM) to support oocyte maturation without induc-
ing cytotoxicity. While high in vivo doses may be neces-
sary to achieve sufficient systemic NAD* enhancement, they
could also activate metabolic compensation mechanisms or
oxidative stress responses, potentially confounding results
[42]. According to Reagan-Shaw et al., 2008, 300 mg/kg/
day in mice is equivalent to approximately 24 mg/kg/day in
humans, based on body surface area normalisation [43]. In
humans, preliminary clinical trials have primarily focused
on assessing NMN’s safety [44—46]. For instance, a study
involving healthy Japanese men demonstrated that single-
dose administration of up to 500 mg of NMN was well toler-
ated and effectively increased NAD* levels [45]. However,
the long-term safety of such doses remains uncertain across
populations, highlighting the need for further investigation
into dose—response relationships and potential unintended
effects.

A limitation of this review is the geographic concentra-
tion of the included studies. Research environments, animal
handling protocols, and dietary or environmental exposures
can vary significantly across regions, potentially influencing
experimental outcomes. These factors can introduce bias and
limit the generalizability of the findings. Future studies from
diverse geographic and institutional settings are essential
to validate the reproducibility and broader applicability of
NMN’s effects on oocyte quality. On Fertility: Can NMN
save the egg?

Metabolic dysregulation and ageing intersect through
shared molecular pathways that impair oocyte quality and
ovarian function, primarily via disruptions in folliculogen-
esis, mitochondrial metabolism, oxidative stress, inflamma-
tion, and apoptosis. Our review highlights that NMN sup-
plementation in animal models consistently modulates key
genes such as Gdf9, Sirtl, and Sodl, though its effects are not
universally observed; highlighting both its targeted potential
and the complexity of reproductive decline. Notably, NMN’s
ability to restore mitochondrial integrity, redox balance, and
cellular resilience positions it as a promising multifaceted
intervention. Improvements in oocyte competence and
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developmental potential across both metabolic and ageing
models suggest broad therapeutic relevance.

Complementing these findings, transcriptomic analysis
of human oocytes revealed maturation-dependent regulatory
shifts, indicating a potential window for intervention. These
insights support further investigation into NMN’s clinical
utility, with emphasis on standardised, large-scale studies
to determine optimal dosing, safety, and efficacy in human
fertility contexts.
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